WorldWideScience

Sample records for ammonia emission inventories

  1. Ammonia emission inventory for the state of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

    2003-12-17

    Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal

  2. Ammonia emissions in Europe, part I: Development of a dynamical ammonia emission inventory

    Science.gov (United States)

    Backes, Anna; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-04-01

    Nitrogen input from agricultural ammonia emissions into the environment causes numerous environmental and health problems. The purpose of this study is to present and evaluate an improved ammonia emission inventory based on a dynamical temporal parameterization suitable to compare and assess ammonia abatement strategies. The setup of the dynamical time profile (DTP) consists of individual temporal profiles for ammonia emissions, calculated for each model grid cell, depending on temperature, crop type, fertilizer and manure application, as well as on local legislation. It is based on the method of Skjøth et al., 2004 and Gyldenkærne et al., 2005. The method has been modified to cover the study area and to improve the performance of the emission model. To compare the results of the dynamical approach with the results of the static time profile (STP) the ammonia emission parameterizations have been implemented in the SMOKE for Europe emission model. Furthermore, the influence on secondary aerosol formation in the North Sea region and possible changes triggered through the use of a modified temporal distribution of ammonia emissions were analysed with the CMAQ chemistry transport model. The results were evaluated with observations of the European Monitoring and Evaluation Programme (EMEP). The correlation coefficient of NH3 improved significantly for 12 out of 16 EMEP measurement stations and an improvement in predicting the Normalized Mean Error can be seen for particulate NH4+ and NO3-. The prediction of the 95th percentile of the daily average concentrations has improved for NH3, NH4+ and NO3-. The NH3 concentration modelled with the STP is 157% higher in winter, and about 22% lower in early summer than the one modelled with the new DTP. Consequently, the influence of the DTP on the formation of secondary aerosols is particularly noticeable in winter, when the PM2.5 concentration is 25% lower in comparison to the use of STP for temporal disaggregation. Besides

  3. Comparison of models used for national agricultural ammonia emission inventories in Europe

    DEFF Research Database (Denmark)

    Reidy, B; Dämmgen, U; Döhler, H

    2008-01-01

    Ammonia (NH3) emissions from agriculture commonly account for >80% of the total NH3 emissions. Accurate agricultural NH3 emission inventories are therefore required for reporting within the framework of the Gothenburg Protocol of the UN Convention on Long-range Transboundary Air Pollution. To allow...

  4. High-resolution inventory of ammonia emissions from agricultural fertilizer in China from 1978 to 2008

    Science.gov (United States)

    Xu, P.; Liao, Y. J.; Lin, Y. H.; Zhao, C. X.; Yan, C. H.; Cao, M. N.; Wang, G. S.; Luan, S. J.

    2016-02-01

    The quantification of ammonia (NH3) emissions is essential to the more accurate quantification of atmospheric nitrogen deposition, improved air quality and the assessment of ammonia-related agricultural policy and climate mitigation strategies. The quantity, geographic distribution and historical trends of these emissions remain largely uncertain. In this paper, a new Chinese agricultural fertilizer NH3 (CAF_NH3) emissions inventory has been compiled that exhibits the following improvements: (1) a 1 × 1 km gridded map on the county level was developed for 2008; (2) a combined bottom-up and top-down method was used for the local correction of emission factors (EFs) and parameters; (3) the temporal patterns of historical time trends for 1978-2008 were estimated and the uncertainties were quantified for the inventories; and (4) a sensitivity test was performed in which a province-level disaggregated map was compared with CAF_NH3 emissions for 2008. The total CAF_NH3 emissions for 2008 were 8.4 TgNH3 yr-1 (a 6.6-9.8 Tg interquartile range). From 1978 to 2008, annual NH3 emissions fluctuated with three peaks (1987, 1996 and 2005), and total emissions increased from 3.2 to 8.4 Tg at an annual rate of 3.0 %. During the study period, the contribution of livestock manure spreading increased from 37.0 to 45.5 % because of changing fertilization practices and the rapid increase in egg, milk, and meat consumption. The average contribution of synthetic fertilizer, which has a positive effect on crop yields, was approximately 38.3 % (minimum: 33.4 %; maximum: 42.7 %). With rapid urbanization causing a decline in the rural population, the contribution of the rural excrement sector varied widely between 20.3 % and 8.5 %. The average contributions of cake fertilizer and straw returning were approximately 3.8 and 4.5 %, respectively, thus small and stable. Collectively, the CAF_NH3 emissions reflect the nation's agricultural policy to a certain extent. An effective approach to

  5. High-resolution ammonia emissions inventories in China from 1980–2012

    Directory of Open Access Journals (Sweden)

    Y. Kang

    2015-10-01

    Full Text Available Ammonia (NH3 can interact in the atmosphere with other trace chemical species, which can lead to detrimental environmental consequences, such as the formation of fine particulates and ultimately global climate change. China is a major agricultural country, and livestock numbers and nitrogen fertilizer use have increased drastically since 1978, following the rapid economic and industrial development experienced by the country. In this study, comprehensive NH3 emissions inventories were compiled for China for 1980–2012. In a previous study, we parameterized emissions factors (EFs considering ambient temperature, soil acidity, and the method and rate of fertilizer application. In this study, we refined these EFs by adding the effects of wind speed and new data from field experiments of NH3 flux in cropland in northern China. We found that total NH3 emissions in China increased from 5.9 to 11.2 Tg from 1980 to 1996, and then decreased to 9.5 Tg in 2012. The two major contributors were livestock manure and synthetic fertilizer application, which contributed 80–90 % of the total emissions. Emissions from livestock manure rose from 2.87 Tg (1980 to 6.17 Tg (2005, and then decreased to 5.0 Tg (2012; beef cattle were the largest source followed by laying hens and pigs. The remarkable downward trend in livestock emissions that occurred in 2007 was attributed to a decrease in the numbers of various livestock animals, including beef cattle, goats, and sheep. Meanwhile, emissions from synthetic fertilizer ranged from 2.1 Tg (1980 to 4.7 Tg (1996, and then declined to 2.8 Tg (2012. Urea and ammonium bicarbonate (ABC dominated this category of emissions, and a decline in ABC application led to the decrease in emissions that took place from the mid-1990s onwards. High emissions were concentrated in eastern and southwestern China. Seasonally, peak NH3 emissions occurred in spring and summer. The inventories had a monthly temporal resolution and a spatial

  6. Ammonia emission from aviary housing systems for laying hens. Inventory, characteristics and solutions.

    NARCIS (Netherlands)

    Groot Koerkamp, P.W.G.

    1998-01-01

    The development and practical application of welfare friendly aviary housing systems for laying hens, that generally emit more ammonia per hen than battery cage housing systems, would conflict with the Dutch policy to substantially reduce the total emission of ammonia from animal husbandry.This thes

  7. Comparison of models used for national agricultural ammonia emission inventories in Europe

    DEFF Research Database (Denmark)

    Reidy, B; Webb, J; Misselbrook, T H

    2009-01-01

    Six N-flow models, used to calculate national ammonia (NH3) emissions from agriculture in different European countries, were compared using standard data sets. Scenarios for litter-based systems were run separately for beef cattle and for broilers, with three different levels of model standardisa......Six N-flow models, used to calculate national ammonia (NH3) emissions from agriculture in different European countries, were compared using standard data sets. Scenarios for litter-based systems were run separately for beef cattle and for broilers, with three different levels of model...... of total ammoniacal-N (TAN) (±6% of the mean total), but large differences in NH3 emissions (±24% of the mean). These differences arose from the different approaches to TAN immobilization in litter, other N losses and mineralization in the models. As a result of those differences estimates of TAN available......:N ratio in manure, there would be advantages to include C flows in mass-flow models. This would also provide an integrated model for the estimation of emissions of methane, non-methane VOCs and carbon dioxide. Estimation of these would also enable an estimate of mass loss, calculation of the N and TAN...

  8. High resolution inventory of re-estimating ammonia emissions from agricultural fertilizer in China from 1978 to 2008

    Directory of Open Access Journals (Sweden)

    P. Xu

    2015-09-01

    Full Text Available The quantification of ammonia (NH3 emissions is essential to the more accurate quantification of atmospheric nitrogen deposition, improved air quality and the assessment of ammonia-related agricultural policy and climate mitigation strategies. The quantity, geographic distribution and historical trends of these emissions remain largely uncertain. In this paper, a new Chinese agricultural fertilizer NH3 (CAF_NH3 emissions inventory has been compiled that exhibits the following improvements: (1 a 1 km × 1 km gridded map on the county level was developed for 2008, (2 a combined bottom-up and top-down method was used for the local correction of emission factors (EFs and parameters, (3 the spatial and temporal patterns of historical time trends for 1978–2008 were estimated and the uncertainties were quantified for the inventories, and (4 a sensitivity test was performed in which a province-level disaggregated map was compared with CAF_NH3 emissions for 2008. The total CAF_NH3 emissions for 2008 were 8.4 Tg NH3 yr−1 (a 6.6–9.8 Tg interquartile range. From 1978 to 2008, annual NH3 emissions fluctuated with three peaks (1987, 1996 and 2005, and total emissions increased from 3.2 to 8.4 Tg at an annual rate of 3.0 %. During the study period, the contribution of livestock manure spreading increased from 37.0 to 45.5 % because of changing fertilization practices and the rapid increase in egg, milk and meat consumption. The average contribution of synthetic fertilizer, which has a positive effect on crop yields, was approximately 38.3 % (minimum: 33.4 %; maximum: 42.7 %. With rapid urbanization causing a decline in the rural population, the contribution of the rural excrement sector varied widely between 20.3 and 8.5 %. The average contributions of cake fertilizer and straw returning were approximately 3.8 and 4.5 %, respectively, thus small and stable. Collectively, the CAF_NH3 emissions reflect the nation's agricultural policy to a certain extent

  9. High resolution inventory of re-estimating ammonia emissions from agricultural fertilizer in China from 1978 to 2008

    Science.gov (United States)

    Xu, P.; Lin, Y. H.; Liao, Y. J.; Zhao, C. X.; Wang, G. S.; Luan, S. J.

    2015-09-01

    The quantification of ammonia (NH3) emissions is essential to the more accurate quantification of atmospheric nitrogen deposition, improved air quality and the assessment of ammonia-related agricultural policy and climate mitigation strategies. The quantity, geographic distribution and historical trends of these emissions remain largely uncertain. In this paper, a new Chinese agricultural fertilizer NH3 (CAF_NH3) emissions inventory has been compiled that exhibits the following improvements: (1) a 1 km × 1 km gridded map on the county level was developed for 2008, (2) a combined bottom-up and top-down method was used for the local correction of emission factors (EFs) and parameters, (3) the spatial and temporal patterns of historical time trends for 1978-2008 were estimated and the uncertainties were quantified for the inventories, and (4) a sensitivity test was performed in which a province-level disaggregated map was compared with CAF_NH3 emissions for 2008. The total CAF_NH3 emissions for 2008 were 8.4 Tg NH3 yr-1 (a 6.6-9.8 Tg interquartile range). From 1978 to 2008, annual NH3 emissions fluctuated with three peaks (1987, 1996 and 2005), and total emissions increased from 3.2 to 8.4 Tg at an annual rate of 3.0 %. During the study period, the contribution of livestock manure spreading increased from 37.0 to 45.5 % because of changing fertilization practices and the rapid increase in egg, milk and meat consumption. The average contribution of synthetic fertilizer, which has a positive effect on crop yields, was approximately 38.3 % (minimum: 33.4 %; maximum: 42.7 %). With rapid urbanization causing a decline in the rural population, the contribution of the rural excrement sector varied widely between 20.3 and 8.5 %. The average contributions of cake fertilizer and straw returning were approximately 3.8 and 4.5 %, respectively, thus small and stable. Collectively, the CAF_NH3 emissions reflect the nation's agricultural policy to a certain extent. An effective

  10. Ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2012-01-01

    The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the la......The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries...

  11. A comprehensive ammonia emission inventory with high-resolution and its evaluation in the Beijing-Tianjin-Hebei (BTH) region, China

    Science.gov (United States)

    Zhou, Ying; Shuiyuan Cheng; Lang, Jianlei; Chen, Dongsheng; Zhao, Beibei; Liu, Chao; Xu, Ran; Li, Tingting

    2015-04-01

    A comprehensive ammonia (NH3) emission inventory for the Beijing-Tianjin-Hebei (BTH) region was developed based on the updated source-specific emission factors (EFs) and the county-level activity data obtained from a full-coverage investigation launched in the BTH region for the first time. The NH3 emission inventory within 1 km × 1 km grid was generated using source-based spatial surrogates with geographical information system (GIS) technology. The total NH3 emission was 1573.7 Gg for the year 2010. The contributions from livestock, farmland, human, biomass burning, chemical industry, fuel combustion, waste disposal and on-road mobile source were approximately 56.6%, 28.6%, 7.2%, 3.4%, 1.1%, 1.3%, 1.0% and 0.8%, respectively. Among different cities, Shijiazhang, Handan, Xingtai, Tangshan and Cangzhou had higher NH3 emissions. Statistical analysis aiming at county-level emission of 180 counties in BTH indicated that the NH3 emission in most of the counties were less than 16 Gg. The maximum value of the county level emission was approximately 25.5 Gg. Higher NH3 emission was concentrated in the areas with more rural and agricultural activity. Monthly, higher NH3 emission occurred during the period from April to September, which could be attributed to the temperature and timing of planting practice. The validity of the estimated emissions were further evaluated from multiple perspectives covering (1) uncertainty analysis based on Monte Carlo simulation, (2) comparison with other studies, (3) quantitative analysis of improvement in spatial resolution of activity data, and (4) verification based on a comparison of the simulated and observed surface concentrations of ammonium. The detailed and validated ammonia emission inventory could provide valuable information for understanding air pollution formation mechanisms and help guide decision-making with respect to control strategies.

  12. 上海市工业氨排放清单研究%Study on Inventory List of Ammonia Industrial Emission in Shanghai

    Institute of Scientific and Technical Information of China (English)

    郑晓红; 李芳; 刘必寅

    2016-01-01

    In order to improve the accuracy of ammonia emission inventory list, the industrial emission source and its total emissions in Shanghai had been compiled statistics from the updated information of all kinds of emission source and the emission load calculated by different quantitative methods.The result showed that the main ammonia industrial emission sources in Shanghai were sewage treatment, solid waste disposal and oil refi-ning, accounting for 59.81%, 20.85%and 7.83%of the whole city ammonia industrial emissions respectively. The control of the odor pollutants such as ammonia may focus on these three industries.%为提高上海市氨排放清单的准确性,在资料更新的基础上,通过调查收集各类排放源信息和采用不同定量化方法获得排放量,对上海市氨工业排放源清单及其排放总量汇总统计。结果表明,该市工业源氨排放以城镇污水处理、固废处理、炼油行业为主,分别占全市工业源氨排放量的59.81%、20.85%和7.83%。这3大行业生产过程中氨等恶臭污染物的排放控制是上海市工业氨减排的重要方向。

  13. An ecoregion-specific ammonia emissions inventory of Ontario dairy farming: Mitigation potential of diet and manure management practices

    Science.gov (United States)

    Chai, Lilong; Kröbel, Roland; MacDonald, Douglas; Bittman, Shabtai; Beauchemin, Karen A.; Janzen, H. Henry; McGinn, Sean M.; Vanderzaag, Andrew

    2016-02-01

    The Canadian ammonia (NH3) emissions model and a survey of dairy farm practices were used to quantify effects of management on emissions from dairy farms in Ontario Canada. Total NH3 emissions from dairy farming were 21 Gg NH3-N yr-1 for the four ecoregions of the province. Annual emission rates ranged from 12.8 (for calves in ecoregions of Manitoulin-Lake Simcoe-Frontenac) to 50 kg NH3-N animal-1 yr-1 (for lactating cows in ecoregions of St. Lawrence Lowlands) (mean of 27 kg NH3-N animal-1 yr-1). The St. Lawrence Lowlands ecoregion had the highest emission rate because more dairy manure was managed as solid manure in that ecoregion. Total dairy cattle N intake (diet-N) was 81 Gg N yr-1, 23% of which was retained in animal products (e.g., milk, meat, and fetus), 47% was returned to the land, and 30% was emitted as gas (i.e., NH3-N, N2O-N, NO-N, and N2-N) and nitrate-N leaching/runoff. Ammonia volatilization constituted the largest loss of diet-N (26%), as well as manure-N (34%). Reducing the fraction of solid manure by 50% has the potential to mitigate NH3 emissions by 18% in Ontario ecoregions.

  14. Comparison of models used for national agricultural ammonia emission inventories in Europe: Litter-based manure systems

    Science.gov (United States)

    Reidy, B.; Webb, J.; Misselbrook, T. H.; Menzi, H.; Luesink, H. H.; Hutchings, N. J.; Eurich-Menden, B.; Döhler, H.; Dämmgen, U.

    Six N-flow models, used to calculate national ammonia (NH 3) emissions from agriculture in different European countries, were compared using standard data sets. Scenarios for litter-based systems were run separately for beef cattle and for broilers, with three different levels of model standardisation: (a) standardized inputs to all models (FF scenario); (b) standard N excretion, but national values for emission factors (EFs) (FN scenario); (c) national values for N excretion and EFs (NN scenario). Results of the FF scenario for beef cattle produced very similar estimates of total losses of total ammoniacal-N (TAN) (±6% of the mean total), but large differences in NH 3 emissions (±24% of the mean). These differences arose from the different approaches to TAN immobilization in litter, other N losses and mineralization in the models. As a result of those differences estimates of TAN available at spreading differed by a factor of almost 3. Results of the FF scenario for broilers produced a range of estimates of total changes in TAN (±9% of the mean total), and larger differences in the estimate of NH 3 emissions (±17% of the mean). The different approaches among the models to TAN immobilization, other N losses and mineralization, produced estimates of TAN available at spreading which differed by a factor of almost 1.7. The differences in estimates of NH 3 emissions decreased as estimates of immobilization and other N losses increased. Since immobilization and denitrification depend also on the C:N ratio in manure, there would be advantages to include C flows in mass-flow models. This would also provide an integrated model for the estimation of emissions of methane, non-methane VOCs and carbon dioxide. Estimation of these would also enable an estimate of mass loss, calculation of the N and TAN concentrations in litter-based manures and further validation of model outputs.

  15. Global Seabird Ammonia Emissions

    Science.gov (United States)

    Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F. H.; Braban, C. F.; Tang, Y. S.; Trathan, P.; Wanless, S.; Sutton, M. A.

    2010-12-01

    Seabird colonies represent a major source of atmospheric ammonia (NH3) in remote coastal and marine systems in temperate, tropical and polar regions. Previous studies have shown that NH3 emissions from Scottish seabird colonies were substantial - of similar magnitude to the most intensive agricultural point source emissions. The UK data were used to model global seabird NH3 emissions and suggested that penguins are a major source of emissions on and around the Antarctic continent. The largest seabird colonies are in the order of millions of seabirds. Due to the isolation of these colonies from anthropogenic nitrogen sources, they may play a major role in the nitrogen cycle within these ecosystems. A global seabird database was constructed and used in conjunction with a species-specific seabird bioenergetics model to map the locations of NH3 emissions from seabird colonies. The accuracy of the modelled emissions was validated with field data of NH3 emissions measured at key seabird colonies in different climatic regions of the world: temperate (Isle of May, Scotland), tropical (Ascension Island) and polar (Signy Island, South Georgia). The field data indicated good agreement between modelled and measured NH3 emissions. The measured NH3 emissions also showed the variability of emission with climate. Climate dependence of seabird NH3 emissions may have further implications under a changing global climate. Seabird colonies represent NH3 emission ‘hotspots’, often far from anthropogenic sources, and are likely to be the major source of nitrogen input to these remote coastal ecosystems. The direct manuring by seabirds at colony locations may strongly influence species richness and biodiversity. The subsequent volatilisation and deposition of NH3 increases the spatial extent of seabird influence on nitrogen cycling in their local ecosystem. As many seabird populations are fluctuating due to changing food supply, climate change or anthropogenic pressures, these factors

  16. Ammonia emissions from seabird colonies

    Science.gov (United States)

    Blackall, Trevor D.; Wilson, Linda J.; Theobald, Mark R.; Milford, Celia; Nemitz, Eiko; Bull, Jennifer; Bacon, Philip J.; Hamer, Keith C.; Wanless, Sarah; Sutton, Mark A.

    2007-05-01

    Ammonia emissions were measured from two entire seabird colonies with contrasting species assemblages, to ascertain the ammonia volatilisation potentials among seabird species in relation to their nesting behaviour. Emissions were calculated from downwind plume measurements of ammonia concentration using both inverse dispersion and tracer ratio methods. Measured colony emissions ranged 1-90 kg NH3 hour-1, and equated to 16 and 36% volatilization of excreted nitrogen for colonies dominated by ground/burrow nesting and bare rock nesting birds, respectively. The results were applied in a bioenergetics model with a global seabird database. Seabird colonies are found to represent the largest point sources of ammonia globally (up to ~6 Gg NH3 colony-1 year-1). Moreover the largest emissions occur mainly in remote environments with otherwise low NH3 emissions. These ammonia ``hot spots'' explain significant perturbations of the nitrogen cycle in these regions and add ~20% to oceanic ammonia emissions south of latitude 45°S.

  17. National Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Emission Inventory contains measured, modeled, and estimated data for emissions of all known source categories in the US (stationary sources, fires,...

  18. Uncertainties in emission inventories

    NARCIS (Netherlands)

    Aardenne, van J.A.

    2002-01-01

    Emission inventories provide information about the amount of a pollutant that is emitted to the atmosphere as a result of a specific anthropogenic or natural process at a given time or place. Emission inventories can be used for either policy or scientific purposes. For policy purpose

  19. National Emission Inventory (NEI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data exchange allows states to submit data to the US Environmental Protection Agency's National Emissions Inventory (NEI). NEI is a national database of air...

  20. Reducing ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2011-01-01

    The NEC directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the largest reductions since 1990...

  1. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  2. Reducing ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2011-01-01

    The NEC directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the largest reductions since 1990...... to the high expectations at the outset. Despite this, the paper concludes that Denmark is likely to reduce emission by 50% from 1990 to 2020 and reach the likely 2020 NEC ceiling....

  3. Danish emission inventory for agriculture. Inventories 1985 - 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hjorth Mikkelsen, M.; Albrektsen, R.; Gyldenkaerne, S.

    2011-02-15

    By regulations given in international conventions Denmark is obliged to work out an annual emission inventory and document the methodology. The National Environmental Research Institute (NERI) at Aarhus University (AU) in Denmark is responsible for calculating and reporting the emissions. This report contains a description of the emissions from the agricultural sector from 1985 to 2009. Furthermore, the report includes a detailed description of methods and data used to calculate the emissions, which is based on national methodologies as well as international guidelines. For the Danish emissions calculations and data management an Integrated Database model for Agricultural emissions (IDA) is used. The emission from the agricultural sector includes emission of the greenhouse gases methane (CH{sub 4}), nitrous oxide (N{sub 2}O), ammonia (NH{sub 3}), particulate matter (PM), non-methane volatile organic compounds (NMVOC) and other pollutants related to the field burning of agricultural residue such as NO{sub x}, CO{sub 2}, CO, SO{sub 2}, heavy metals, dioxin and PAH. The ammonia emission from 1985 to 2009 has decreased from 119 300 tonnes of NH{sub 3} to 73 800 tonnes NH{sub 3}, corresponding to a 38 % reduction. The emission of greenhouse gases has decreased by 25 % from 12.9 M tonnes CO{sub 2} equivalents to 9.6 M tonnes CO{sub 2} equivalents from 1985 to 2009. Improvements in feed efficiency and utilisation of nitrogen in livestock manure are the most important reasons for the reduction of both the ammonia and greenhouse gas emissions. (Author)

  4. Emission Inventory for Fugitive Emissions in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2007. The inventory of fugitive emissions includes CO2, CH4, N2O, NOx, CO, NMVOC, SO2, dioxin, PAH and particulate matter. In 2007 the total Danish emission of greenhouse...

  5. Ammonia in power plant emission

    Science.gov (United States)

    Hammerich, Mads; Henningsen, J. O.; Olafsson, Ari

    1990-08-01

    Ammonia monitoring is needed in most schemes for denitrification of power plant emission. In the PALAMON system we use a 500 MHz tunable, single mode, single line, CO2 laser as light source for a low pressure, high temperature, photoacoustic cell. With this cell we can resolve the sR(5,O) line of the ammonia spectrum, and suppress the interfering C02(9R30) absorption line down to a lppm NH3 detection limit. The validity of the measured ammonia concentrations is strongly dependent on details of the sampling system and on the reliability of the calibration routines. In particular calibration with certified mixtures of NH3:N2 has proved insufficient due to the multiple and long time constants caused by adsorption of ammonia to different materials in the system. Presence of water vapor in the gas greatly reduces these time constants. Therefore a number of methods for simple production of moist calibration gases from macroscopic amounts of NH3 are applied. The calibrations are translated to response from an easily managable absorber in order to allow automated recalibration of the photoacoustic response. Data from a field test of the system, and calibration data will be presented.

  6. Danish emission inventories for agriculture

    DEFF Research Database (Denmark)

    Mikkelsen, Mette Hjorth; Albrektsen, Rikke; Gyldenkærne, Steen

    . This report contains a description of the emissions from the agricultural sector from 1985 to 2009. Furthermore, the report includes a detailed description of methods and data used to calculate the emissions, which is based on national methodologies as well as international guidelines. For the Danish...... emissions calculations and data management an Integrated Database model for Agricultural emissions (IDA) is used. The emission from the agricultural sector includes emission of the greenhouse gases methane (CH4), nitrous oxide (N2O), ammonia (NH3), particulate matter (PM), non-methane volatile organic...... compounds (NMVOC) and other pollutants related to the field burning of agricultural residue such as NOx, CO2, CO, SO2, heavy metals, dioxin and PAH. The ammonia emission from 1985 to 2009 has decreased from 119 300 tonnes of NH3 to 73 800 tonnes NH3, corresponding to a 38 % reduction. The emission...

  7. Emission inventory; Inventaire des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Fontelle, J.P. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1997-12-31

    Statistics on air pollutant (sulfur dioxide, nitrogen oxides and ammonium) emissions, acid equivalent emissions and their evolution since 1990 in the various countries of Europe and the USA, are presented. Emission data from the industrial, agricultural, transportation and power sectors are given, and comparisons are carried out between countries based on Gnp and population, pollution import/export fluxes and compliance to the previous emission reduction objectives

  8. Carbon emissions Inventory Games

    OpenAIRE

    Al-Emadi, Eiman Ali

    2016-01-01

    Carbon emissions reduction has been the center of attention in many organizations during the past few decades. Many international entities developed rules and regulations to monitor and control carbon emissions especially under supply chain context. Furthermore, researchers investigated techniques and methods on how reduce carbon emissions under operational adjustment which can be done by cooperation or coordination. The main contribution of this thesis is to measure to what extend cooperatio...

  9. Danish emission inventory for particular matter (PM)

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Winther, M.; Illerup, J.B.; Hjort Mikkelsen, M.

    2003-11-01

    The first Danish emission inventory that was reported in 2002 was a provisional-estimate based on data presently available. This report documents methodology, emission factors and references used for an improved Danish emission inventory for particulate matter. Further results of the improved emission inventory for the year 2000 are shown. The particulate matter emission inventory includes TSP, PM,, and PM, The report covers emission inventories for transport and stationary combustion. An appendix covering emissions from agriculture is also included. For the transport sector, both exhaust and non-exhaust emission such as tyre and break wear and road abrasion are included. (au)

  10. Modelling the spatial distribution of ammonia emissions in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, S. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Institute of Geography, School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP (United Kingdom); IVL Swedish Environmental Research Institute Ltd, P.O. Box 5302, SE-400 14 Gothenburg (Sweden)], E-mail: sofie.hellsten@ivl.se; Dragosits, U. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Place, C.J. [Institute of Geography, School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP (United Kingdom); Vieno, M. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Institute of Atmospheric and Environmental Science, School of GeoSciences, University of Edinburgh, Crew Building, The King' s buildings, West Mains Road, Edinburgh EH9 3JN (United Kingdom); Dore, A.J. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Misselbrook, T.H. [Institute of Grassland and Environmental Research, North Wyke, Okehampton, Exeter EX 2SB (United Kingdom); Tang, Y.S.; Sutton, M.A. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom)

    2008-08-15

    Ammonia emissions (NH{sub 3}) are characterised by a high spatial variability at a local scale. When modelling the spatial distribution of NH{sub 3} emissions, it is important to provide robust emission estimates, since the model output is used to assess potential environmental impacts, e.g. exceedance of critical loads. The aim of this study was to provide a new, updated spatial NH{sub 3} emission inventory for the UK for the year 2000, based on an improved modelling approach and the use of updated input datasets. The AENEID model distributes NH{sub 3} emissions from a range of agricultural activities, such as grazing and housing of livestock, storage and spreading of manures, and fertilizer application, at a 1-km grid resolution over the most suitable landcover types. The results of the emission calculation for the year 2000 are analysed and the methodology is compared with a previous spatial emission inventory for 1996. - It is important to provide robust estimates of the spatial distribution of ammonia emissions, since the model output is used to assess potential environmental impacts, e.g. through the exceedance of critical loads.

  11. Air Emission Inventory for the INEEL -- 1999 Emission Report

    Energy Technology Data Exchange (ETDEWEB)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  12. 40 CFR 52.348 - Emission inventories.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Emission inventories. 52.348 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.348 Emission inventories. (a) The Governor of the State of Colorado submitted the 1990 carbon monoxide base year emission inventories for...

  13. 40 CFR 52.2309 - Emissions inventories.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Emissions inventories. 52.2309 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2309 Emissions inventories. (a) The Governor of the State of Texas submitted the 1990 base year emission inventories for the...

  14. 40 CFR 52.993 - Emissions inventories.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Emissions inventories. 52.993 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.993 Emissions inventories. (a) The Governor of the State of Louisiana submitted the 1990 base year emission inventories for the Baton...

  15. 40 CFR 52.384 - Emission inventories.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Emission inventories. 52.384 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Connecticut § 52.384 Emission inventories. (a) The Governor's designee for the State of Connecticut submitted the 1990 base year emission inventories for...

  16. 40 CFR 52.2350 - Emission inventories.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Emission inventories. 52.2350 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Utah § 52.2350 Emission inventories. (a) The Governor of the State of Utah submitted the 1990 base year emission inventory of ozone precursors,...

  17. 40 CFR 52.1036 - Emission inventories.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Emission inventories. 52.1036 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Maine § 52.1036 Emission inventories. (a) The Governor's designee for the State of Maine submitted 1990 base year emission inventories for the Knox...

  18. 40 CFR 52.1125 - Emission inventories.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Emission inventories. 52.1125 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Massachusetts § 52.1125 Emission inventories... emission inventories for the Springfield nonattainment area and the Massachusetts portion of the...

  19. Modelling of ammonia emissions from dairy cow houses

    OpenAIRE

    Monteny, G.J.

    2000-01-01

    Dairy cow husbandry contributes to environmental acidification through the emission of ammonia. In-depth knowledge on the processes and variable factors that play a role in the emission of ammonia from dairy cow houses benefits the production of emission data, the development of low emission housing systems, and evaluation of emission levels in a farming system approach. A mechanistic simulation model for the ammonia emission from dairy cow houses was developed to facilitate this.An ammonia p...

  20. 40 CFR 52.1533 - Emission inventories.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Emission inventories. 52.1533 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Hampshire § 52.1533 Emission inventories... inventory for the entire state on January 26, 1993 as a revision to the State Implementation Plan...

  1. 40 CFR 52.2086 - Emission inventories.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Emission inventories. 52.2086 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Rhode Island § 52.2086 Emission inventories... inventory for the Providence ozone nonattainment area on January 12, 1993 as a revision to the...

  2. Annual Danish Emissions Inventory Report to UNECE

    DEFF Research Database (Denmark)

    Illerup, J. B.; Nielsen, M.; Winther, M.;

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2004. The report contains information on Denmark's emission inventories regarding emissions of (1) SOX......(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2002. Further, the report contains information on background data for emissions inventory...

  3. Comparison of ammonia emissions determined using different sampling methods

    Science.gov (United States)

    Dynamic, flow-through flux chambers are sometimes used to estimate ammonia emissions from livestock operations; however, ammonia emissions from the surfaces are affected by many factors which can be affected by the chamber. Ammonia emissions estimated using environmental flow-through chambers may be...

  4. 40 CFR 52.1391 - Emission inventories.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Emission inventories. 52.1391 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Montana § 52.1391 Emission inventories. (a) The Governor of the State of Montana submitted the 1990 carbon monoxide base year emission...

  5. Ammonia emission from crop residues : quantification of ammonia volatilization based on crop residue properties

    NARCIS (Netherlands)

    Ruijter, de F.J.; Huijsmans, J.F.M.

    2012-01-01

    This paper gives an overview of available literature data on ammonia volatilization from crop residues. From these data, a relation is derived for the ammonia emission depending on the N-content of crop residue.

  6. Study of Ammonia Emissions in a Ventilated Pig Pen

    DEFF Research Database (Denmark)

    Rong, Li

    Pig productions cause a wide emission of odors, such as ammonia (NH3), hydrogen sulfide (H2S), and methane (CH4). Ammonia is one of the most important emissions for evaluating the air quality either in animal buildings or atmospheric environment. In studies of ammonia emission from animal buildings...... solution temperatures. The results show that the diffusive ceiling ventilation system can provide a relative low velocity in the pig pen and decrease ammonia emissions from the pig pen, but this ventilation system causes high ammonia concentration distribution in the animal occupied zone. Further, our...... reported in literature, little effort has been made to investigate the accuracy of current Henry’s law constant for modeling ammonia mass transfer process and study ammonia emissions in a full scale pig pen from fluid dynamics by CFD simulations. This will be the main objectives of this study. The ammonia...

  7. Non-agricultural ammonia emissions in urban China

    Science.gov (United States)

    Chang, Y. H.

    2014-03-01

    The non-agricultural ammonia (NH3) emissions in cities have received little attention but could rival agricultural sources in term of the efficiency in PM formation. The starting point for finding credible solutions is to comprehensively establish a city-specific Non-agricultural Ammonia Emission Inventory (NAEI) and identify the largest sources where efforts can be directed to deliver the largest impact. In this paper, I present a NAEI of 113 national key cities targeted on environmental protection in China in 2010, which for the first time covers NH3 emissions from pets, infants, smokers, green land, and household products. Results show that totally 210 478 Mg, the NH3 emissions from traffic, fuel combustion, waste disposal, pets, green land, human, and household products are 67 671 Mg, 56 275 Mg, 44 289 Mg, 23 355 Mg, 7509 Mg, 7312 Mg, and 4069 Mg, respectively. The NH3 emission intensity from the municipal districts ranges from 0.08 to 3.13 Mg km-2 yr-1, with a average of 0.84 Mg km-2 yr-1. The high NH3 emission intensities in Beijing-Tianjin-Hebei region, Yangtze River Delta region and Pearl River Delta region support the view that non-agricultural NH3 sources play a key role in city-scale NH3 emissions and thus have potentially important implications for secondary PM formation (ammonium-sulfate-nitrate system) in urban agglomeration of China. Therefore, in addition to current SO2 and NOx controls, China also needs to allocate more scientific, technical, and legal resources on controlling non-agricultural NH3 emissions in the future.

  8. Annual Danish emissions inventory report to UNECE. Inventory 1990 - 2002

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J.B.; Nielsen, M.; Winther, M.; Hjort Mikkelsen, M.; Lyck, E.; Hoffmann, L.; Fauser, P.

    2004-05-01

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2004. The report contains information on Denmark's emission inventories regarding emissions of (1) SOx for the years 1980-2002, (2) NOx, CO, NMVOC and NH{sub 3} for the years 1985-2002; (3) Particulate matter: TSP, PM10, PM2.5 for the years 2000-2002, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2002, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2002. Furthermore, the report contains information on background data for emissions inventory. (au)

  9. Mobile Source Emissions Regulatory Compliance Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road...

  10. Mobile source emissions inventory development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fang, K.Y.; De Paul, F.T.; Heavisides, T.; Wagner, D.

    1991-03-01

    The study was undertaken to develop a methodology for preparing a 5km by 5km areal gridded mobile source emissions inventory for areas of Illinois which are in nonattainment status with regard to National Ambient Air Quality Standards. A pilot emissions inventory was developed by linking the USEPA mobile source emissions program (MOBILE4) with existing traffic data from the Illinois Department of Transportation's (IDOT) Highway Record Data Bank (HRDB), the Chicago Area Transportation Study (CATS) and Illinois Department of Energy and Natural Resources' (ENR) Geographic Information System (GIS). The methodology developed here was applied to one pollutant in one test case county in Illinois. Hydrocarbon emissions from mobile sources in Kane county are the focus of the study. Vehicle type, vehicle age, and Vehicle Miles of Travel (VMT) distributions were obtained from information provided in the 1982 Illinois State Implementation Plan (SIP). Among the products of the project is a preliminary 25-sq km gridded mobile source hydrocarbon emissions inventory for Kane county. Numerical results as well as a color correlated overview map of the county-wide gridded emissions inventory are provided in the report. Recommendations for improving the methodology and further developing gridded mobile source emission inventories for other Illinois counties are also provided.

  11. Danish emission inventories for stationary combustion plants. Inventories until 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, M.; Hjelgaard, K.

    2010-10-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, NH{sub 3}, particulate matter, heavy metals, dioxins, HCB and PAH. The CO{sub 2} emission in 2008 was 16 % lower than in 1990. However, fluctuations in the emission level are large as a result of electricity import/export. The emission of CH{sub 4} has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. However, the emission has decreased in recent years due to structural changes in the Danish electricity market. The N{sub 2}O emission was higher in 2008 than in 1990 but the fluctuations in the time-series are significant. A considerable decrease of the SO{sub 2}, NO{sub x} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants. (Author)

  12. Ammonia emission time profiles based on manure transport data improve ammonia modelling across north western Europe

    Science.gov (United States)

    Hendriks, C.; Kranenburg, R.; Kuenen, J. J. P.; Van den Bril, B.; Verguts, V.; Schaap, M.

    2016-04-01

    Accurate modelling of mitigation measures for nitrogen deposition and secondary inorganic aerosol (SIA) episodes requires a detailed representation of emission patterns from agriculture. In this study the meteorological influence on the temporal variability of ammonia emissions from livestock housing and application of manure and fertilizer are included in the chemistry transport model LOTOS-EUROS. For manure application, manure transport data from Flanders (Belgium) were used as a proxy to derive the emission variability. Using improved ammonia emission variability strongly improves model performance for ammonia, mainly by a better representation of the spring maximum. The impact on model performance for SIA was negligible as explained by the limited, ammonia rich region in which the emission variability was updated. The contribution of Flemish agriculture to modelled annual mean ammonia and SIA concentrations in Flanders were quantified at respectively 7-8 and 1-2 μg/m3. A scenario study was performed to investigate the effects of reducing ammonia emissions from manure application during PM episodes by 75%, yielding a maximum reduction in modelled SIA levels of 1-3 μg/m3 during episodes. Year-to-year emission variability and a soil module to explicitly model the emission process from manure and fertilizer application are needed to further improve the modelling of the ammonia budget.

  13. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  14. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... combustion of wood in residential plants and the increased emission from lean-burn gas engines. The PCDD/F emission decreased since 1990 due to flue gas cleaning on waste incineration plants....

  15. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  16. Ammonia and methane emissions from two naturally ventilated dairy cattle buildings and the influence of climatic factors on ammonia emissions

    Science.gov (United States)

    Wu, Wentao; Zhang, Guoqiang; Kai, Peter

    2012-12-01

    Based on the requirement of the international conventions, there is a pressing need for inventory of NH3, CH4, CO2 and N2O emissions from livestock buildings. The main aim of this study was to quantify the gas emissions and investigate the influence of the climatic factors on ammonia emissions. The measurements were carried out in two naturally ventilated dairy cattle buildings with different layouts, floor types and manure management systems during three periods covering winter and summer time. Air temperature and the three dimensional air velocities inside and outside the buildings were recorded over the course of summer period. Emission rates were determined by CO2 production model. The results showed that the internal concentrations of NH3, CH4 and CO2 were increased or decreased simultaneously. Low concentration of N2O was measured outside and inside the buildings; the difference of the concentrations were also very low. The variation of CH4 and CO2 concentrations showed a strong correlation. The NH3 emission rates varied from 32 to 77 g HPU-1 d-1 in building 1 and varied from 18 to 30 g HPU-1 d-1 in building 2. The average emission of CH4 was 290 and 230 g HPU-1 d-1 from building 1 and 2, respectively. Diurnal pattern was found for NH3 and CH4 emission rates. From multiple linear regression models, there was a significant linear relationship between NH3 emission rates and climatic factors including the external wind speed as well as the air temperature (P 0.05).

  17. OPIC Greenhouse Gas Emissions Inventory

    Data.gov (United States)

    Overseas Private Investment Corporation — Independent analysis details quantifying the greenhouse gas ("GHG") emissions directly attributable to projects to which the Overseas Private Investment Corporation...

  18. Reactive nitrogen in atmospheric emission inventories – a review

    Directory of Open Access Journals (Sweden)

    S. Reis

    2009-05-01

    Full Text Available Excess reactive Nitrogen (Nr has become one of the most pressing environmental problems leading to air pollution, acidification and eutrophication of ecosystems, biodiversity impacts, leaching of nitrates into groundwater and global warming. This paper investigates how current inventories cover emissions of Nr to the atmosphere in Europe, the United States of America, and The People's Republic of China. The focus is on anthropogenic sources, assessing the state-of-the-art of quantifying emissions of Ammonia (NH3, Nitrogen Oxides (NOx and Nitrous Oxide (N2O, the different purposes for which inventories are compiled, and to which extent current inventories meet the needs of atmospheric dispersion modelling. The paper concludes with a discussion of uncertainties involved and a brief outlook on emerging trends in the three regions investigated is conducted.

    Key issues are substantial differences in the overall magnitude, but as well in the relative sectoral contribution of emissions in the inventories that have been assessed. While these can be explained by the use of different methodologies and underlying data (e.g. emission factors or activity rates, they may lead to quite different results when using the emission datasets to model ambient air quality or the deposition with atmospheric dispersion models. Hence, differences and uncertainties in emission inventories are not merely of academic interest, but can have direct policy implications when the development of policy actions is based on these model results.

    The robustness of emission estimates varies greatly between substances, regions and emission source sectors. This has implications for the direction of future research needs and indicates how existing gaps between modelled and measured concentration or deposition rates could be most efficiently addressed.

    The observed current trends in emissions display decreasing NO

  19. Evaluating Bay Area Methane Emission Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Marc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jeong, Seongeun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    As a regulatory agency, evaluating and improving estimates of methane (CH4) emissions from the San Francisco Bay Area is an area of interest to the Bay Area Air Quality Management District (BAAQMD). Currently, regional, state, and federal agencies generally estimate methane emissions using bottom-up inventory methods that rely on a combination of activity data, emission factors, biogeochemical models and other information. Recent atmospheric top-down measurement estimates of methane emissions for the US as a whole (e.g., Miller et al., 2013) and in California (e.g., Jeong et al., 2013; Peischl et al., 2013) have shown inventories underestimate total methane emissions by ~ 50% in many areas of California, including the SF Bay Area (Fairley and Fischer, 2015). The goal of this research is to provide information to help improve methane emission estimates for the San Francisco Bay Area. The research effort builds upon our previous work that produced methane emission maps for each of the major source sectors as part of the California Greenhouse Gas Emissions Measurement (CALGEM) project (http://calgem.lbl.gov/prior_emission.html; Jeong et al., 2012; Jeong et al., 2013; Jeong et al., 2014). Working with BAAQMD, we evaluate the existing inventory in light of recently published literature and revise the CALGEM CH4 emission maps to provide better specificity for BAAQMD. We also suggest further research that will improve emission estimates. To accomplish the goals, we reviewed the current BAAQMD inventory, and compared its method with those from the state inventory from the California Air Resources Board (CARB), the CALGEM inventory, and recent published literature. We also updated activity data (e.g., livestock statistics) to reflect recent changes and to better represent spatial information. Then, we produced spatially explicit CH4 emission estimates on the 1-km modeling grid used by BAAQMD. We present the detailed activity data, methods and derived emission maps by sector

  20. Modeling of ammonia emission in the USA and EU countries using an artificial neural network approach.

    Science.gov (United States)

    Stamenković, Lidija J; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V

    2015-12-01

    Ammonia emissions at the national level are frequently estimated by applying the emission inventory approach, which includes the use of emission factors, which are difficult and expensive to determine. Emission factors are therefore the subject of estimation, and as such they contribute to inherent uncertainties in the estimation of ammonia emissions. This paper presents an alternative approach for the prediction of ammonia emissions at the national level based on artificial neural networks and broadly available sustainability and economical/agricultural indicators as model inputs. The Multilayer Perceptron (MLP) architecture was optimized using a trial-and-error procedure, including the number of hidden neurons, activation function, and a back-propagation algorithm. Principal component analysis (PCA) was applied to reduce mutual correlation between the inputs. The obtained results demonstrate that the MLP model created using the PCA transformed inputs (PCA-MLP) provides a more accurate prediction than the MLP model based on the original inputs. In the validation stage, the MLP and PCA-MLP models were tested for ammonia emission predictions for up to 2 years and compared with a principal component regression model. Among the three models, the PCA-MLP demonstrated the best performance, providing predictions for the USA and the majority of EU countries with a relative error of less than 20%.

  1. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3)

    Science.gov (United States)

    We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to optimizeammonia (NH3China by inversion of 2005–2008 network data for NH+4 wet deposition fluxes. Optimized emissions are derive...

  2. Dioxin air emission inventory 1990-2004

    Energy Technology Data Exchange (ETDEWEB)

    Capral Henriksen, T.; Illerup, J.B.; Nielsen, Ole-Kenneth [DMU, Dept. of Policy Analysis (Denmark)

    2006-12-15

    The present Danish dioxin air emission inventory shows that the emission has been reduced from 68.6 g I-TEQ in 1990 to 22.0 g I-TEQ in 2004, or about 68% over this period. Most of the significant reductions have been achieved in the industrial sector, where emissions have been reduced from 14.67 g I-TEQ in 1990 to 0.17 g I-TEQ in 2004; a reduction of almost 99%. Lower emissions from steel and aluminium reclamation industries form the major part of the reduction within industry. Emissions from waste incineration reduced from 32.5 g I-TEQ in 1990 to 2.1 g ITEQ in 2004; which is approx. 94%. This is due to installation of dioxin abatement equipment in incineration plants. The most important source of emission in 2004 is residential wood combustion, at 8.5 g I-TEQ, or around 40% of the total emission. In 2004, accidental fires, which are estimated to emit 6.1 g I-TEQ/year, are the second most important source, contributing with around 28% of the total emission. The present dioxin emission inventory for Denmark shows how emissions in 2004 come from sources other than waste incineration plants and industry, which were the largest sources in 1990. (au)

  3. Evaluating Global Emission Inventories of Biogenic Bromocarbons

    Science.gov (United States)

    Hossaini, Ryan; Mantle, H.; Chipperfield, M. P.; Montzka, S. A.; Hamer, P.; Ziska, F.; Quack, B.; Kruger, K.; Tegtmeier, S.; Atlas, E.; Sala, S.; Engel, A.; Bonisch, H.; Keber, T.; Oram, D.; Mills, G.; Ordonez, C.; Saiz-Lopez, A.; Warwick, N.; Liang, Q.; Feng, W.; Moore, F.; Miller, F.; Marecal, V.; Richards, N. A. D.; Dorf, M.; Pfeilsticker, K.

    2013-01-01

    Emissions of halogenated very short-lived substances (VSLS) are poorly constrained. However, their inclusion in global models is required to simulate a realistic inorganic bromine (Bry) loading in both the troposphere, where bromine chemistry perturbs global oxidizing capacity, and in the stratosphere, where it is a major sink for ozone (O3). We have performed simulations using a 3-D chemical transport model (CTM) including three top-down and a single bottom-up derived emission inventory of the major brominated VSLS bromoform (CHBr3) and dibromomethane (CH2Br2). We perform the first concerted evaluation of these inventories, comparing both the magnitude and spatial distribution of emissions. For a quantitative evaluation of each inventory, model output is compared with independent long-term observations at National Oceanic and Atmospheric Administration (NOAA) ground-based stations and with aircraft observations made during the NSF (National Science Foundation) HIAPER Pole-to-Pole Observations (HIPPO) project. For CHBr3, the mean absolute deviation between model and surface observation ranges from 0.22 (38 %) to 0.78 (115 %) parts per trillion (ppt) in the tropics, depending on emission inventory. For CH2Br2, the range is 0.17 (24 %) to 1.25 (167 %) ppt. We also use aircraft observations made during the 2011 Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) campaign, in the tropical western Pacific. Here, the performance of the various inventories also varies significantly, but overall the CTM is able to reproduce observed CHBr3 well in the free troposphere using an inventory based on observed sea-to-air fluxes. Finally, we identify the range of uncertainty associated with these VSLS emission inventories on stratospheric bromine loading due to VSLS (Br(VSLS/y)). Our simulations show Br(VSLS/y) ranges from approximately 4.0 to 8.0 ppt depending on the inventory. We report an optimized estimate at the lower end of this range (approximately 4 ppt

  4. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  5. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  6. Calendar Year 2016 Stationary Source Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    The City of Albuquerque (COA) Environmental Health Department Air Quality Program has issued stationary source permits and registrations the Department of Energy/Sandia Field Office for operations at the Sandia National Laboratories/New Mexico. This emission inventory report meets the annual reporting compliance requirements for calendar year (CY) 2016 as required by the COA.

  7. Emission inventory for fugitive emissions from fuel in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2013. The inventory of fugitive emissions includes CO2, CH4, N2O, SO2, NOx, NMVOC, CO, particulate matter, Black carbon, heavy metals, dioxin and PAHs. In 2013 the total...... Danish emission of greenhouse gasses was 54 584 Gg CO2 equivalents. Fugitive emissions from fuels account for 387 Gg CO2 equivalents or approximately 1 %. The major part of the fugitive emissions are emitted as CO2 (61 %) mainly from flaring in upstream oil and gas production. The major source...... of fugitive CH4 emission is production of oil and gas in the North Sea, refining of oil and loading of oil onto ships both offshore and onshore. The fugitive emissions of NMVOC originate for the major part from oil and gas production, loading of ships, transmission and distribution of oil, and to a less...

  8. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3)

    Science.gov (United States)

    We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to optimizeammonia (NH3European Union, and China by inversion of 2005–2008 network data for NH+4 wet deposition fluxes. Optimized emissions are derive...

  9. Arctic shipping emissions inventories and future scenarios

    Directory of Open Access Journals (Sweden)

    J. J. Corbett

    2010-10-01

    Full Text Available This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050 scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow, aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  10. Aircraft Emission Inventories of The Second Generation

    Science.gov (United States)

    Brunner, Ing. B.; Pabst, H.; Döpelheuer, Ing. A.; Plohr, M.

    Higher requirements of science and politics forced an additional temporal and bet- ter local allocation of air traffic and their emissions. Within the last years a pro- gram (FATE: Four-dimensional calculation of Aircraft Trajectories and Emissions) has been developed in the DLR Institute of Transport Research, which is able to pro- duce air traffic movements and emissions inventories with a four-dimensional reso- lution. To calculate an emission inventory FATE adapts fuel and emission profiles which were generated by the DLR Institute of Propulsion Technology to the real air traffic movements data. The emission profiles were calculated for each aircraft/engine- combination and include NOX, SOX, CO, UHC, and SOOT data. The results have been obtained with detailed variable reference calculation procedures. At the moment the most common resolutions are 1x1x1kmx1h or 0.5x0.5x1kmx1h (longitude and latitude in degree, one kilometre in height and one hour in time). The values for the flown distance, the fuel used up and the time needed, as well as the emitted gasses and particulate matter are indicated for each time coded air cell. The three- dimensional position calculation is the standard mode of this program. The possibility of time coding and emission allocation can be used -each separately or in conjunction- as an additional feature. This new calculation method replaces the simple great circle calculation (a great circle is the shortest way from point A to B on a spherical sur- face) of the first generation of air traffic inventories by flight trajectory calculation on waypoint basis using equations of spherical trigonometry. Selected work results shall give an impression of the versatility and the applica- tion possibilities of FATE. Depending on the request of the scientific research the various modes of the program have been used for: a) deviation from great circle without time and emission calculation, b) four-dimensional global inventory with a 2,8x2,8x1kmx2h

  11. The Role of Global Emission Inventory of Carbonaceous Emissions

    Science.gov (United States)

    Fatima, H.; Sharma, O. P.; Updhyaya, H.

    2010-12-01

    Aerosols - liquid or solid particles suspended in the air - are important constituents of the global atmosphere. They have a direct effect on climate by scattering and/or absorbing solar radiation modifying the radiative balance of the atmosphere and indirect effect by acting as condensation nuclei, their increase in number concentration may give rise to increased number of cloud condensation nuclei, which might increase the droplet concentration with relatively smaller size droplets for fixed liquid water content, making clouds more reflective (Twomey, 1977). Recent measurements show that atmospheric black carbon (BC) and organic carbon (OC) aerosol particles frequently contribute significantly to the total aerosol mass (Novakov et al. 1997). BC is emitted as primary particles from incomplete combustion process, such as fossil fuel and biomass burning, and therefore much atmospheric BC is of anthropogenic origin. OC is emitted as both primary particles and by secondary production from gaseous compounds via condensation or gas phase oxidation of hydrocarbons. Primary organic aerosols come from both anthropogenic sources (fossil fuel and biomass burning) and from natural sources (such as debris, pollen, spores, and algae). Carbonaceous aerosols make up a large but highly variable fraction of the atmospheric aerosol. Black carbon aerosols absorb the solar radiation and induce positive forcing whereas organic matter aerosols reflect solar radiation and produce negative forcing. Various emission inventories have been developed for carbonaceous aerosols. Detailed emission inventories for both BC and OC have been developed (e.g., Penner et al., 1993; Cooke and Wilson, 1996; Liousse et al., 1996; Cooke et al., 1999, Bond et al. 2004) that consider both fossil fuel and biomass components. The inventories of biomass- burning BC and OC particles are more difficult to constrain than fossil fuel emissions, owing to the paucity of data. In the present study we have compared the

  12. Arctic shipping emissions inventories and future scenarios

    Directory of Open Access Journals (Sweden)

    J. J. Corbett

    2010-04-01

    Full Text Available The Arctic is a sensitive region in terms of climate change and a rich natural resource for global economic activity. Arctic shipping is an important contributor to the region's anthropogenic air emissions, including black carbon – a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow. These emissions are projected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. To understand the impacts of these increased emissions, scientists and modelers require high-resolution, geospatial emissions inventories that can be used for regional assessment modeling. This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050 scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. Short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing; a first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing due to Arctic ships by at least 17% compared to warming from these vessels' CO2 emissions (~42 000 gigagrams. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  13. Greenhouse gas emission inventory for Senegal, 1991.

    Science.gov (United States)

    Sokona, Y

    1995-01-01

    The first greenhouse gas (GHG) emission estimates for Senegal, for the year 1991, were produced according to the draft IPCC/OECD guidelines for national inventories of GHGs. Despite certain discrepancies, nonavailability of data, the quality of some of the data collected, and the methodology, the estimates provide a provisional basis for Senegal to fulfill its obligations under the UN Framework Convention on Climate Change. This inventory reveals that GHG emissions in Senegal, like those in many developing countries, can mainly be attributed to the use of biomass for energy, land-use change and forestry, and savanna burning. Taking into account the direct global warming potential of the main GHGs (CO2, CH4, and N2O), Senegal's emissions are estimated at 17.6 Tg ECO2. The major gases emitted are CO2 (61% of GHG emissions), followed by CH4 (35%) and N2O (4%). Energy accounts for 45% of total emissions (12% from fossil energy and 33% from traditional biomass energy); land-use change and forests, 18%; agriculture, 24%; waste, 12%; and industry, 1%.

  14. Managing Ammonia Emissions From Screwworm Larval Rearing Media.

    Science.gov (United States)

    Sagel, Agustin; Phillips, Pamela; Chaudhury, Muhammad; Skoda, Steven

    2016-02-01

    Mass production, sterilization, and release of screwworms (Cochliomyia hominivorax (Coquerel)) that were competitive in the field significantly contributed to the successful application of the sterile insect technique for eradication of screwworms from continental North America. Metabolic byproducts resulting from protein-rich diets required for larval screwworms lead to ammonia liberation, sometimes at high levels, within the mass rearing facility. Until recently a sodium polyacrylate gel bulking agent was used for the larval media and adsorbed much of the ammonia. A need to replace the gel with an environmentally "friendly" bulking agent, while not increasing ammonia levels in the rearing facility, led to a series of experiments with the objective of developing procedures to reduce ammonia emissions from the larval media bulked with cellulose fiber. Additives of ammonia-converting bacteria, potassium permanganate, and Yucca schidigera Roezl ex Otrgies powder extract, previously reported to reduce ammonia levels in organic environments, were evaluated. Ammonia-converting bacteria did not have a positive effect. Addition of Y. schidigera powder extract (∼1% of total volume), potassium permanganate (∼250 ppm), and a combination of these two additives (at these same concentrations) kept ammonia at equivalent levels as when larval media was bulked with gel. Potassium permanganate also had sufficient antimicrobial properties that the use of formaldehyde in the diet was not necessary. Further testing is needed, at a mass rearing level, before full implementation into the screwworm eradication program.

  15. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  16. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  17. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    Energy Technology Data Exchange (ETDEWEB)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  18. Danish emission inventory for hexachlorobenzene and polychlorinated biphenyls

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten;

    This report documents the improved air emission inventories for hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs). The emission inventories now include all sources covered by the EMEP/EEA Guidebook. The completeness and accuracy of the inventories for these pollutants have been...

  19. Inventory of Ammonia Emissions from Livestock Production in Los Lagos and Los Ríos Regions, Chile Inventario de Emisiones de Amoníaco de la Producción Pecuaria de las Regiones de Los Lagos y de Los Ríos, Chile

    Directory of Open Access Journals (Sweden)

    Josué Martínez-Lagos

    2010-03-01

    Full Text Available This paper presents the first inventory of ammonia emissions from livestock production in Los Lagos and Los Ríos Regions of Chile. The inventory was focused in this area because is where cattle production is concentrated. This study aimed to quantify the amount of N losses due to ammonia volatilization from livestock production in these regions of the country, and to provide its spatial representation identifying their main sources. Calculations have been carried out for 1997 and 2007, and also projections to 2017 and 2027 were obtained. Calculated emissions were 6097 and 6206 t NH3-N for 1997 and 2007, respectively. Major sources of NH3-N emissions were cattle accounting for more than 85%, followed by horses and pigs. Farm management practices as grazing, housing, manure storage and land spreading of manure accounted for 87%, 9%, 3%, and 2%, respectively, of total annual emissions. Projections suggest that emissions could increase up to 6344 and 6516 t NH3-N for 2017 and 2027, respectively. Emissions are much lower than those reported for developed European countries. However, intensification of cattle production systems may lead to an increase of ammonia emissions which could impact the temperate forest of Southern Chile characterized by low nutrient fluxes.Este artículo presenta el primer inventario de emisiones de amoníaco de la producción pecuaria de las Regiones de Los Lagos y Los Ríos de Chile, porque esta área concentra la producción chilena de ganado bovino. Este estudio tuvo como objetivos cuantificar las pérdidas de N por volatilización de amoníaco emitidas desde la producción animal en estas regiones del país, y proveer su representación espacial identificando las principales fuentes de emisión. Los cálculos fueron realizados para 1997 y 2007; y desde el año base se proyectaron emisiones para los años 2017 y 2027. Las emisiones calculadas fueron 6097 y 6206 t NH3-N para 1997 y 2007, respectivamente. Las principales

  20. Veracruz State Preliminary Greenhouse Gases Emissions Inventory

    Science.gov (United States)

    Welsh Rodriguez, C.; Rodriquez Viqueira, L.; Guzman Rojas, S.

    2007-05-01

    At recent years, the international organisms such as United Nations, has discussed that the temperature has increased slightly and the pattern of precipitations has changed in different parts of the world, which cause either extreme droughts or floods and that the extreme events have increased. These are some of the risks of global climate change because of the increase of gas concentration in the atmosphere such as carbon dioxides, nitrogen oxides and methane - which increase the greenhouse effect. Facing the consequences that could emerge because of the global temperature grown, there is a genuine necessity in different sectors of reduction the greenhouse gases and reduced the adverse impacts of climate change. To solve that, many worldwide conventions have been realized (Rio de Janeiro, Kyoto, Montreal) where different countries have established political compromises to stabilize their emissions of greenhouse gases. The mitigation and adaptation policies merge as a response to the effects that the global climate change could have, on the humans as well as the environment. That is the reason to provide the analysis of the areas and geographic zones of the country that present major vulnerability to the climate change. The development of an inventory of emissions that identifies and quantifies the principal sources of greenhouse gases of a country, and also of a region is basic to any study about climate change, also to develop specific political programs that allow to preserve and even improve a quality of the atmospheric environment, and maybe to incorporate to international mechanisms such as the emissions market. To estimate emissions in a systematic and consistent way on a regional, national and international level is a requirement to evaluate the feasibility and the cost-benefit of instrumented possible mitigation strategies and to adopt politics and technologies to reduce emissions. Mexico has two national inventories of emissions, 1990 and 1995, now it is

  1. Inventorying emissions from nature in Europe

    Science.gov (United States)

    Simpson, David; Winiwarter, Wilfried; BöRjesson, Gunnar; Cinderby, Steve; Ferreiro, Antonio; Guenther, Alex; Hewitt, C. Nicholas; Janson, Robert; Khalil, M. Aslam K.; Owen, Susan; Pierce, Tom E.; Puxbaum, Hans; Shearer, Martha; Skiba, Ute; Steinbrecher, Rainer; Tarrasón, Leonor; Äquist, Mats G.

    1999-04-01

    As part of the work of the Economic Commission for Europe of the United Nations Task Force on Emission Inventories, a new set of guidelines has been developed for assessing the emissions of sulphur, nitrogen oxides, NH3, CH4, and nonmethane volatile organic compounds (NMVOC) from biogenic and other natural sources in Europe. This paper gives the background to these guidelines, describes the sources, and gives our recommended methodologies for estimating emissions. We have assembled land use and other statistics from European or national compilations and present emission estimates for the various natural/biogenic source categories based on these. Total emissions from nature derived here amount to ˜1.1 Tg S yr-1, 6-8 Tg CH4 yr-1, 70 Gg NH3 (as N) yr-1, and 13 Tg NMVOC yr-1. Estimates of biogenic NOx emissions cover a wide range, from 140 to 1500 Gg NOx (as N) yr-1. In terms of relative contribution to total European emissions for different pollutants, then NMVOC from forests and vegetation are clearly the most important emissions source. Biogenic NOx emissions (although heavily influenced by nitrogen inputs from anthropogenic activities) are very important if the higher estimates are reliable. CH4 from wetlands and sulphur from volcanoes are also significant emissions in the European budgets. On a global scale, European biogenic emissions are not significant, a consequence of the climate and size (7% of global land area) of Europe and of the destruction of natural ecosystems since prehistoric times. However, for assessing local budgets and for photochemical oxidant modeling, natural/biogenic emissions can play an important role. The most important contributor in this regard is undoubtedly forest VOC emissions, although this paper also indicates that NMVOC emissions from nonforested areas also need to be further evaluated. This paper was originally conceived as a contribution to the collection of papers arising as a result of the Workshop on Biogenic Hydrocarbons in

  2. Ammonia emissions from cattle urine and dung excreted on pasture

    DEFF Research Database (Denmark)

    Laubach, J; Taghizadeh-Toosi, Arezoo; Gibbs, S J;

    2013-01-01

    Twelve cattle were kept for three days in a circular area of 16 m radius on short pasture and fed with freshly-cut pasture. Ammonia (NH3) emissions from the urine and dung excreted by the cattle were measured with a micrometeorological mass-balance method, during the cattle presence and for 10 su...

  3. Net summertime emission of ammonia from corn and triticale fields

    Science.gov (United States)

    Richter, Undine; Smith, Jeremy; Brümmer, Christian

    2016-04-01

    Recent advancements in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we used a quantum cascade laser (QCL) absorption spectrometer to continuously measure high-frequency concentrations of ammonia and the net exchange between an agricultural site and the atmosphere based on the eddy-covariance approach. The footprint was split into two main sectors, one planted with corn (Zea mays) and the other one with triticale. Ammonia concentrations were highly variable between 2 and almost 100 ppb with an average value of 8.1 ppb during the observation period from April to September 2015. While both deposition and emission of ammonia was observed, the total campaign exchange resulted in a loss of 3.3 kg NH3-N ha-1. Highest average emission fluxes of 65 ng N m-2 s-1 were recorded after fertilization at the beginning of the campaign in April and May. Afterwards the exchange of ammonia with the atmosphere decreased considerably, but the site remained on average a consistent source with sporadic lower peaks and an average flux of 13 ng N m-2 s-1. While management in the form of fertilization was the main driver for ammonia concentration and exchange at the site, biophysical controls from temperature, wind regime, and surface wetness are also presented.

  4. Ammonia and methane emissions from cattle and dairy feedlots in Colorado

    Science.gov (United States)

    Golston, L.; Pan, D.; Stanton, L. G.; Tao, L.; Sun, K.; Zondlo, M. A.

    2014-12-01

    Concentrated animal feeding operations (CAFOs) are recognized as a major contributor of both methane and ammonia to the atmosphere. Ammonia is released by volatilization of urea and nitrogen containing wastes from the feedlot surface and waste management systems, while methane is produced from enteric fermentation and primarily exhaled into the atmosphere. Our objective was to survey plumes downwind of open lot feedyards near Greeley, Colorado and surrounding areas, to quantify the spatial and temporal variability of agricultural emissions in this area. Research was conducted during the month-long NASA DISCOVER-AQ campaign in July-August 2014, with over 4000 km of on-road measurements. Methane and ammonia concentrations were measured using open-path laser spectroscopy, along with water vapor, carbon monoxide, and carbon dioxide on a roof-mounted, mobile platform. The open-path design enables high resolution measurements of ammonia with minimized sampling issues. Concurrent measurements during the campaign by other groups on stationary and aircraft platforms help characterize the meteorological conditions and atmospheric chemistry. We present measurements from 65 of the 67 registered CAFOs in Weld County, which contain up to 660,000 cattle-equivalent animals units. The ammonia to methane enhancement ratio, ΔNH3:ΔCH4, was positively skewed with a median of 0.14 ± 0.04 ppmv/ppmv, consistent with our previous measurements during DISCOVER-AQ California. Due to the much greater variability of ammonia compared to methane, the emissions ratio is used to provide an estimate of feedyard ammonia emissions, with results divided for cattle, dairy, and sheep. Using the most recent emissions estimates of methane, we calculated a total of ≈28.8 TgNH3/yr released globally from feedlots alone, nearly as large as the IPCC's estimate of 30.4 Tg/yr from all agriculture sources. This discrepancy suggests feedyard ammonia is underrepresented in current inventories and models, and

  5. Ammonia emissions in agriculture: Proceedings of the First international ammonia conference 19-21 March 2007, Ede, The Netherlands

    NARCIS (Netherlands)

    Monteny, G.J.; Hartung, J.

    2007-01-01

    Ammonia emissions is an important topic in many countries with animal production, since it contributes to environmental and health problems. Strategies and measures to reduce ammonia emission are getting increasing attention in national and international legislation. The focus of this publication is

  6. Quality of emission inventory data: a European perspective

    NARCIS (Netherlands)

    Pulles, M.P.J.

    1998-01-01

    Emission inventories have been, and still are being, compiled within a broad range of national and international activities. The quality of the data in the inventories however is often not defined or not known. This paper concentrates on this aspect of European scale inventories and will present som

  7. Ammonia emissions from livestock industries in Canada: Feasibility of abatement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Carew, Richard, E-mail: richard.carew@agr.gc.c [Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, 4200 Highway 97, P.O. Box 5000, Summerland, British Columbia, VOH1Z0 (Canada)

    2010-08-15

    An updated national ammonia (NH{sub 3}) emissions inventory was employed to study the relationship between NH{sub 3} emissions and livestock industries in Canada. Emissions from animal agriculture accounted for 322 kilotonnes (kt) or 64% of Canadian NH{sub 3} emissions in 2002. Cattle and swine accounted for the bulk of livestock emissions. The provinces of Alberta, Ontario, Quebec, and Saskatchewan accounted for 28.1%, 22.0%, 18.7%, and 13.1% of total livestock emissions, respectively. Emissions from Ontario and Quebec were attributed to the intensive production of dairy, hogs and poultry. Dairy cattle emissions per hectolitre of milk were higher in Ontario and Quebec than in other provinces, while swine emissions per livestock unit were higher than either beef or dairy cattle. A review of the abatement literature indicated diet manipulation to improve N efficiency and land spreading methods are very effective techniques to lower NH{sub 3} emissions. Future research is required to evaluate the feasibility of biofilters and feces/urine separation methods. - Livestock NH{sub 3} emissions are higher in areas characterized by intensive livestock production with diet manipulation and land spreading offering the greatest potential for NH{sub 3} abatement options.

  8. Gridded National Inventory of U.S. Methane Emissions.

    Science.gov (United States)

    Maasakkers, Joannes D; Jacob, Daniel J; Sulprizio, Melissa P; Turner, Alexander J; Weitz, Melissa; Wirth, Tom; Hight, Cate; DeFigueiredo, Mark; Desai, Mausami; Schmeltz, Rachel; Hockstad, Leif; Bloom, Anthony A; Bowman, Kevin W; Jeong, Seongeun; Fischer, Marc L

    2016-12-06

    We present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scale-dependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.

  9. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  10. Carbon footprint and ammonia emissions of California beef production systems.

    Science.gov (United States)

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions

  11. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Science.gov (United States)

    2010-09-20

    ... ADMINISTRATION Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal... Supplier Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on... Supplier GHG Emissions Inventory pilot, and whether it will have practical utility; whether our estimate...

  12. New Maser Emission from Nonmetastable Ammonia in NGC 7538

    CERN Document Server

    Hoffman, Ian M

    2011-01-01

    We present the first interferometric observations at 18.5 GHz of IRS 1 in NGC 7538. These observations include images of the nonmetastable ^{14}NH_3 (9,6) masers with a synthesized beam of 2 arcseconds and images of the continuum emission with a synthesized beam of 150 milliarcseconds. Of the maser emission, the previously known feature near v_LSR = -60 km/s is spectrally resolved into at least two components and we observe several new maser emission features near v_LSR = -57 km/s. The new maser emission near -57 km/s lies 250 +/- 90 milliarcseconds northwest of the maser emission near -60 km/s. All of the masers are angularly unresolved indicating brightness temperatures T_B > 2000 K. We are also able to conclusively associate the ammonia masers with the position of IRS 1. The excitation of these rare ammonia masers is discussed in the context of the rich maser environment of IRS 1.

  13. Emission inventory for the road transport sector in Sardinia (Italy)

    Science.gov (United States)

    Bellasio, R.; Bianconi, R.; Corda, G.; Cucca, P.

    Atmospheric emission inventories are important tools for studying air quality and to set up possible remediation plans in areas characterised by nonattainment of the limit values established by legislation. In industrialised countries a considerable fraction of the emissions is due to road traffic, in particular in urban areas. For this reason emissions from road traffic must be estimated as accurately as possible, a task that can be performed, for the European vehicle fleet, thanks to the availability of the COPERT III methodology. This methodology is powerful and accurate, even if its algorithms can be difficult to apply in a regional emission inventory; moreover the collection of the necessary input data requires a lot of resources and time. This paper describes the road traffic emission inventory estimated for Region Sardinia (Italy) with a bottom-up approach. The estimation has been done by means of a software tool (EMITRA—EMIssions from road TRAnsport) which implements the COPERT III methodology. The resulting emission inventory has been compared against another emission inventory for Sardinia and against emission inventories for other Italian regions, to evaluate its reliability.

  14. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  15. A high-resolution vehicle emission inventory for China

    Science.gov (United States)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  16. Ammonia Emissions from agricultural fertilizer in China: From 1978 to 2008

    Science.gov (United States)

    Xu, P.

    2015-12-01

    The quantification of ammonia (NH3) emissions is essential to the more accurate quantification of atmospheric nitrogen deposition, improved air quality and the assessment of ammonia-related agricultural policy and climate mitigation strategies. Chinese agricultural fertilizer (CAF), which is widely used in China, is the nation's largest source of NH3 emissions. The quantity, geographic distribution and historical trends of these emissions remain largely uncertain. In this paper, a new CAF NH3 (CAF_NH3) emissions inventory has been compiled that exhibits the following improvements: (1) a 1 ´1 km gridded map on the county level was developed for 2008; (2) a combined bottom-up and top-down method was used for the local correction of emission factors (EFs) and parameters; (3) time trends were derived for 1978-2008 in which the spatial and temporal patterns and the uncertainties associated with the inventory were quantified; and (4) a sensitivity test was performed in which a province-level disaggregated map was compared with CAF_NH3 emissions for 2008. The total CAF_NH3 emissions for 2008 were 8.4 TgNH3·yr-1 (a 6.6-9.8 Tg interquartile range). From 1978 to 2008, annual NH3 emissions fluctuated with three peaks (1987, 1996 and 2005), and total emissions increased from 3.2 to 8.4 Tg at an annual rate of 3.0%. During the study period, the contribution of livestock manure spreading increased from 37.0% to 45.5% because of changing fertilization practices and the rapid increase in egg, milk and meat consumption. The average contribution of synthetic fertilizer, which has a positive effect on crop yields, was approximately 38.3% (minimum: 33.4%; maximum: 42.7%). With rapid urbanization causing a decline in the rural population, the contribution of the rural excrement sector varied widely between 20.3% and 8.5%. The average contributions of cake fertilizer and straw returning were approximately 3.8% and 4.5%, respectively, thus small and stable. Collectively, the CAF NH3

  17. Danish Emission Inventory for Waste Incineration and Other Waste

    DEFF Research Database (Denmark)

    Hjelgaard, Katja

    2013-01-01

    This report contains detailed methodological issues, activity data, emission factors, uncertainties and references for waste incineration without energy recovery and other waste source categories of the Danish emission inventories 2013. The emissions are calculated for the years 1980-2011 according...

  18. [Study on Ammonia Emission Rules in a Dairy Feedlot Based on Laser Spectroscopy Detection Method].

    Science.gov (United States)

    He, Ying; Zhang, Yu-jun; You, Kun; Wang, Li-ming; Gao, Yan-wei; Xu, Jin-feng; Gao, Zhi-ling; Ma, Wen-qi

    2016-03-01

    It needs on-line monitoring of ammonia concentration on dairy feedlot to disclose ammonia emissions characteristics accurately for reducing ammonia emissions and improving the ecological environment. The on-line monitoring system for ammonia concentration has been designed based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology combining with long open-path technology, then the study has been carried out with inverse dispersion technique and the system. The ammonia concentration in-situ has been detected and ammonia emission rules have been analyzed on a dairy feedlot in Baoding in autumn and winter of 2013. The monitoring indicated that the peak of ammonia concentration was 6.11 x 10(-6) in autumn, and that was 6.56 x 10(-6) in winter. The concentration results show that the variation of ammonia concentration had an obvious diurnal periodicity, and the general characteristic of diurnal variation was that the concentration was low in the daytime and was high at night. The ammonia emissions characteristic was obtained with inverse dispersion model that the peak of ammonia emissions velocity appeared at noon. The emission velocity was from 1.48 kg/head/hr to 130.6 kg/head/hr in autumn, and it was from 0.004 5 kg/head/hr to 43.32 kg/head/hr in winter which was lower than that in autumn. The results demonstrated ammonia emissions had certain seasonal differences in dairy feedlot scale. In conclusion, the ammonia concentration was detected with optical technology, and the ammonia emissions results were acquired by inverse dispersion model analysis with large range, high sensitivity, quick response without gas sampling. Thus, it's an effective method for ammonia emissions monitoring in dairy feedlot that provides technical support for scientific breeding.

  19. Managing ammonia emissions from livestock production in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Webb, J. [ADAS Research, Woodthorne, Wergs Road, Wolverhampton WV6 8TQ (United Kingdom)]. E-mail: jim.webb@adas.co.uk; Menzi, H. [Swiss College of Agriculture, Laenggasse 85, CH-3052 Zollikofen (Switzerland); Pain, B.F. [Institute of Grassland and Environmental Research, North Wyke, Okehampton, Devon EX20 2SB (United Kingdom); Misselbrook, T.H. [Institute of Grassland and Environmental Research, North Wyke, Okehampton, Devon EX20 2SB (United Kingdom); Daemmgen, U. [Federal Agricultural Research Centre, Institute of Agroecology, Bundesallee 50, 38116 Braunschweig (Germany); Hendriks, H. [National Reference Centre, Ministry of Agriculture, Nature and Food Quality, Ede (Netherlands); Doehler, H. [KTBL, Bartningstrasse 49, D-64289 Darmstadt (Germany)

    2005-06-15

    Around 75% of European ammonia (NH{sub 3}) emissions come from livestock production. Emissions occur at all stages of manure management: from buildings housing livestock; during manure storage; following manure application to land; and from urine deposited by livestock on pastures during grazing. Ammoniacal nitrogen (total ammoniacal-nitrogen, TAN) in livestock excreta is the main source of NH{sub 3}. At each stage of manure management TAN may be lost, mainly as NH{sub 3}, and the remainder passed to the next stage. Hence, measures to reduce NH{sub 3} emissions at the various stages of manure management are interdependent, and the accumulative reduction achieved by combinations of measures is not simply additive. This TAN-flow concept enables rapid and easy estimation of the consequences of NH{sub 3} abatement at one stage of manure management (upstream) on NH{sub 3} emissions at later stages (downstream), and gives unbiased assessment of the most cost-effective measures. We conclude that rapid incorporation of manures into arable land is one of the most cost-effective measures to reduce NH{sub 3} emissions, while covering manure stores and applying slurry by band spreader or injection are more cost-effective than measures to reduce emissions from buildings. These measures are likely to rank highly in most European countries. - Reducing NH{sub 3} emissions following spreading of manures to land ranks highly because of the large abatement potential and relatively small cost.

  20. The global distribution of ammonia emissions from seabird colonies

    Science.gov (United States)

    Riddick, S. N.; Dragosits, U.; Blackall, T. D.; Daunt, F.; Wanless, S.; Sutton, M. A.

    2012-08-01

    Seabird colonies represent a significant source of atmospheric ammonia (NH3) in remote maritime systems, producing a source of nitrogen that may encourage plant growth, alter terrestrial plant community composition and affect the surrounding marine ecosystem. To investigate seabird NH3 emissions on a global scale, we developed a contemporary seabird database including a total seabird population of 261 million breeding pairs. We used this in conjunction with a bioenergetics model to estimate the mass of nitrogen excreted by all seabirds at each breeding colony. The results combined with the findings of mid-latitude field studies of volatilization rates estimate the global distribution of NH3 emissions from seabird colonies on an annual basis. The largest uncertainty in our emission estimate concerns the potential temperature dependence of NH3 emission. To investigate this we calculated and compared temperature independent emission estimates with a maximum feasible temperature dependent emission, based on the thermodynamic dissociation and solubility equilibria. Using the temperature independent approach, we estimate global NH3 emissions from seabird colonies at 404 Gg NH3 per year. By comparison, since most seabirds are located in relatively cold circumpolar locations, the thermodynamically dependent estimate is 136 Gg NH3 per year. Actual global emissions are expected to be within these bounds, as other factors, such as non-linear interactions with water availability and surface infiltration, moderate the theoretical temperature response. Combining sources of error from temperature (±49%), seabird population estimates (±36%), variation in diet composition (±23%) and non-breeder attendance (±13%), gives a mid estimate with an overall uncertainty range of NH3 emission from seabird colonies of 270 [97-442] Gg NH3 per year. These emissions are environmentally relevant as they primarily occur as "hot-spots" in otherwise pristine environments with low anthropogenic

  1. Development of a United States-Mexico Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study.

    Science.gov (United States)

    Kuhns, Hampden; Knipping, Eladio M; Vukovich, Jeffrey M

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions

  2. Ammonia emissions from cattle urine and dung excreted on pasture

    Directory of Open Access Journals (Sweden)

    J. Laubach

    2013-01-01

    Full Text Available Twelve cattle were kept for three days in a circular area of 16 m radius on short pasture and fed with freshly-cut pasture. Ammonia (NH3 emissions from the urine and dung excreted by the cattle were measured with a micrometeorological mass-balance method, during the cattle presence and for 10 subsequent days. Daily-integrated emission rates peaked on Day 3 of the experiment (last day of cattle presence and declined steadily for five days thereafter. Urine patches were the dominant sources for these emissions. On Day 9, a secondary emissions peak occurred, with dung pats likely to be the main sources. This interpretation is based on simultaneous observations of the pH evolution in urine patches and dung pats created next to the circular plot. Feed and dung samples were analysed to estimate the amounts of nitrogen (N ingested and excreted. Total N volatilised as NH3 was 19.8 (± 0.9% of N intake and 22.4 (± 1.3% of N excreted. The bimodal shape of the emissions time series allowed to infer separate estimates for volatilisation from urine and dung, respectively, with the result that urine accounted for 88.6 (± 2.6% of the total NH3 emissions. The emissions from urine represented 25.5 (± 2.0% of the excreted urine-N, while the emissions from dung amounted to 11.6 (± 2.7% of the deposited dung-N. Emissions from dung may have continued after Day 13 but were not resolved by the measurement technique. A simple resistance model shows that the magnitude of the emissions from dung is controlled by the resistance of the dung crust.

  3. A biogenic volatile organic compounds emission inventory for Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-hui; BAI Yu-hua; ZHANG Shu-yu

    2005-01-01

    The first detailed inventory for volatile organic compounds(VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic information system (GIS), remote sensing(RS) data and field measurement data, such as digitized land-use data, normalized difference vegetation index (NDVl) and temperature data from direct real-time measurement. The inventory has a spatial resolution of 5 km × 5 km and a time resolution of 1 h.Urban, agriculture, and natural land-use distributions in Yunnan Province were combined with biomass factors for each land-use category to produce a spatially resolved biomass inventory. A biogenic emission inventory was developed by combining the biomass inventory with hourly emission rates for tree, shrub and ground cover species of the study area. Correcting for environmental factors, including light intensity and temperature, a value of 1.1 × 1012 gC for total annual biogenic VOC emissions from Yunnan Province, including 6.1 × 1011 gCfor isoprene, 2.1 × 1011 gC for monoterpenes, and 2.6 × 1011 gC for OVOC was obtained. The highest VOC emissions occurred in the northwestern, southwestern and north region of Yunnan Province. Some uncertainties were also discussed in this study.

  4. Developing particle emission inventories using remote sensing (PEIRS).

    Science.gov (United States)

    Tang, Chia-Hsi; Coull, Brent A; Schwartz, Joel; Lyapustin, Alexei I; Di, Qian; Koutrakis, Petros

    2017-01-01

    Information regarding the magnitude and distribution of PM2.5 emissions is crucial in establishing effective PM regulations and assessing the associated risk to human health and the ecosystem. At present, emission data is obtained from measured or estimated emission factors of various source types. Collecting such information for every known source is costly and time-consuming. For this reason, emission inventories are reported periodically and unknown or smaller sources are often omitted or aggregated at large spatial scale. To address these limitations, we have developed and evaluated a novel method that uses remote sensing data to construct spatially resolved emission inventories for PM2.5. This approach enables us to account for all sources within a fixed area, which renders source classification unnecessary. We applied this method to predict emissions in the northeastern United States during the period 2002-2013 using high-resolution 1 km × 1 km aerosol optical depth (AOD). Emission estimates moderately agreed with the EPA National Emission Inventory (R(2) = 0.66-0.71, CV = 17.7-20%). Predicted emissions are found to correlate with land use parameters, suggesting that our method can capture emissions from land-use-related sources. In addition, we distinguished small-scale intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this study demonstrates the great potential of remote sensing data to predict particle source emissions cost-effectively.

  5. Danish emission inventories for stationary combustion plants. Inventories until year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Nielsen, Malene; Boll Illerup, J.

    2007-04-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. A considerable decrease of the SO2, NOX and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The emission of CH4 has increased due to increased use of lean-burn gas engines in CHP plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. The dioxin emission decreased due to flue gas cleaning on waste incineration plants. Uncertainties for the emissions and trends have been estimated. (au)

  6. Source Attribution of Methane Emissions in Northeastern Colorado Using Ammonia to Methane Emission Ratios

    Science.gov (United States)

    Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; Perring, A. E.; Robinson, E. S.; Holloway, M.; Trainer, M.

    2015-12-01

    Due to recent advances in extraction technology, oil and natural gas extraction and processing in the Denver-Julesburg basin has increased substantially in the past decade. Northeastern Colorado is also home to over 250 concentrated animal feeding operations (CAFOs), capable of hosting over 2 million head of ruminant livestock (cattle and sheep). Because of methane's high Global Warming Potential, quantification and attribution of methane emissions from oil and gas development and agricultural activity are important for guiding greenhouse gas emission policy. However, due to the co-location of these different sources, top-down measurements of methane are often unable to attribute emissions to a specific source or sector. In this work, we evaluate the ammonia:methane emission ratio directly downwind of CAFOs using a mobile laboratory. Several CAFOs were chosen for periodic study over a 12-month period to identify diurnal and seasonal variation in the emission ratio as well as differences due to livestock type. Using this knowledge of the agricultural ammonia:methane emission ratio, aircraft measurements of ammonia and methane over oil and gas basins in the western US during the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in March and April 2015 can be used for source attribution of methane emissions.

  7. GHG emission estimates for road transport in national GHG inventories

    NARCIS (Netherlands)

    Pulles, M.P.J.; Yang, H.

    2011-01-01

    The annual reporting procedures of the United Nations Framework Convention on Climate Change (UNFCCC) have now produced greenhouse gas (GHG) emission inventories from 40 so-called Annex I countries for 18 years. This article analyses a subset of these data: emissions from road transport. The article

  8. Compilation of a global inventory of emissions of nitrous oxide.

    NARCIS (Netherlands)

    Bouwman, A.F.

    1995-01-01

    A global inventory with 1°x1° resolution was compiled of emissions of nitrous oxide (N 2 O) to the atmosphere, including emissions from soils under natural vegetation, fertilized agricultural land, grasslands and animal excreta, biomass burning, forest clearing, oceans, fossil fuel and bi

  9. Danish emission inventories for road transport and other mobile sources

    DEFF Research Database (Denmark)

    Winther, Morten

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results are shown for CO2, CH4, N2O, SO2, NOX, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH. From 1990-2006 the fuel use and CO2 emissions for road transport...

  10. National inventory report. Greenhouse gas emissions 1990-2009

    Energy Technology Data Exchange (ETDEWEB)

    2011-05-15

    Emissions of the following greenhouse gases are covered in this report: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluoro carbons (PFCs), hydro fluorocarbons (HFCs) and sulphur hexafluoride (SF{sub 6}). In addition, the inventory includes calculations of emissions of the precursors NO{sub x}, NMVOC, and CO, as well as for SO{sub 2}. Indirect CO{sub 2} emissions originating from the fossil part of CH{sub 4} and NMVOC are calculated according to the reporting guidelines to the UNFCCC, and accounted for in the inventory. (AG)

  11. National inventory report. Greenhouse gas emissions 1990-2010

    Energy Technology Data Exchange (ETDEWEB)

    Kolshus, Hans H.; Gjerald, Eilev; Hoem, Britta; Ramberg, Simen Helgesen; Haugland, Hege; Valved, Hilde; Nelson, George Nicholas; Asphjell, Torgrim; Christophersen, Oeyvind; Gaustad, Alice; Rubaek, Birgitte; Hvalryg, Marte Monsen

    2012-07-01

    Emissions of the following greenhouse gases are covered in this report: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluoro carbons (PFCs), hydro fluorocarbons (HFCs) and sulphur hexafluoride (SF{sub 6}). In addition, the inventory includes calculations of emissions of the precursors NO{sub x}, NMVOC, and CO, as well as for SO{sub 2}. Indirect CO{sub 2} emissions originating from the fossil part of CH{sub 4} and NMVOC are calculated according to the reporting guidelines to the UNFCCC, and accounted for in the inventory.(eb)

  12. Inventory of primary particulates emissions; Inventaire des emissions de particules primaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    CITEPA carried out a national inventory on particulate emissions. This report presents the results of this study for a great number of sectors and it covers a larger number of sources than the previous CITEPA inventories on particles and some other inventories carried out by International organisms (TNO, IIASA). In particular, at the present time, fugitive dust emissions for some sources are rarely taken into account in inventories because of poor knowledge and they are still the subject of researches in order to validate the emission results. (author)

  13. Danish emission inventories for road transport and other mobile sources

    DEFF Research Database (Denmark)

    Winther, Morten

    This report explains the parts of the Danish emission inventories related to road transport and other mobile sources. Emission results are shown for CO2, CH4, N2O, SO2, NOX, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH. From 1990-2010 the fuel consumption and CO2 emissions...... for road transport increased by 30 %, and CH4 emissions have decreased by 74 %. A N2O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2010 emission decrease for NOX, NMVOC, CO and particulates (exhaust only: Size is below PM2.5) -52, -84......, -81, and -65 %, respectively, due to the introduction of vehicles complying with gradually stricter emission standards. For SO2 the emission drop 99 % (due to reduced sulphur content in the diesel fuel), whereas the NH3 emissions increased by 2232 % (due to the introduction of catalyst cars...

  14. Effect of urease inhibitor application rate and rainfall on ammonia emissions from beef manure

    Science.gov (United States)

    Social, economic, and environmental factors have prompted the desire to reduce global atmospheric ammonia emissions. A research project was conducted to assess the efficacy of the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) for reducing ammonia emissions from simulated open-lot beef...

  15. Ammonia emission and nutrient load in outdoor runs of laying hens

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Hol, J.M.G.; Beurskens, A.G.C.

    2006-01-01

    Ammonia emission and nutrient load in outdoor runs of laying hens were measured at a commercial farm with an outdoor run for 3000 hens, and at an experimental farm with two outdoor runs, each for approximately 250 hens. Ammonia emission was recorded at 5, 10,15 and 20 m from the hen house, using the

  16. Using passive flux samplers to determine the ammonia emission from mechanically ventilated animal houses

    NARCIS (Netherlands)

    Mosquera Losada, J.; Ogink, N.W.M.; Scholtens, R.

    2003-01-01

    Ammonia emissions from animal houses are an important environmental issue in the Netherlands. The current technique in the Netherlands to measure ammonia emissions in mechanically ventilated animal houses is the chemiluminescence method (using a NOx monitor after conversion of NH3 to NO). During cam

  17. An Emission Inventory of Polycyclic Aromatic Hydrocarbons in China

    Science.gov (United States)

    Mu, Xilong; Zhu, Xianlei; Wang, Xuesong

    2015-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are among the most dangerous compounds due to their high carcinogenic and mutagenic character. Emission inventory provides the primary data to account for the sources of ambient PAHs and server as a necessary database for effective PAHs pollution control. China is experiencing fast economic growth and large energy consumption, which might result in a large amount of PAHs anthropogenic emissions. Therefore, based on the previous studies and combined recently field emission measurements as well as socio-economic activity data, the development of a nationwide PAHs emission inventory is needed. In this work, the emission inventory of 16 PAHs listed as U.S. Environmental Protection Agency priority pollutants in China in the year 2012 is compiled. The emission amounts of PAHs were estimated as annual rates of emission-related activities multiplied by respective emission factors. The activities such as fuel consumption, including fossil fuel and biofuel, and socio-economic statistics were obtained from yearbook released by Chinese central government and/or provincial governments, as well as related industry reports. Emission factors were derived from the related literature. Recently reported emission factors from local measurements were used. The total emissions of PAHs were 120611 ton in 2012. In China, PAHs were emitted predominantly from domestic combustion of coal and biofuel, coking industry and motor vehicles, accounting for 72% of the total amount. PAHs emission profiles were significantly different between China and the other countries. The emission profile in China featured a relatively higher portion of high molecular weight species with carcinogenic potential due to large contributions of domestic combustion and coking industry. Domestic combustion of straw, coal and firewood emitted 19464 ton, 8831 ton, and 5062 ton of PAHs, respectively, which were much higher than those in other countries. Emission per capita showed

  18. Ammonia emissions from non-agricultural sources in the UK

    Science.gov (United States)

    Sutton, M. A.; Dragosits, U.; Tang, Y. S.; Fowler, D.

    A detailed literature review has been undertaken of the magnitude of non-agricultural sources of ammonia (NH 3) in the United Kingdom. Key elements of the work included estimation of nitrogen (N) excreted by different sources (birds, animals, babies, human sweat), review of miscellaneous combustion sources, as well as identification of industrial sources and use of NH 3 as a solvent. Overall the total non-agricultural emission of NH 3 from the UK in 1996 is estimated here as 54 (27-106) kt NH 3-N yr -1, although this includes 11 (6-23) kt yr -1 from agriculture related sources (sewage sludge spreading, biomass burning and agro-industry). Compared with previous estimates for 1990, component source magnitudes have changed both because of revised average emissions per source unit (emission factors) and changes in the source activity between 1990 and 1996. Sources with larger average emission factors than before include horses, wild animals and sea bird colonies, industry, sugar beet processing, household products and non-agricultural fertilizer use, with the last three sources being included for the first time. Sources with smaller emission factors than before include: land spreading of sewage sludge, direct human emissions (sweat, breath, smoking, infants), pets (cats and dogs) and fertilizer manufacture. Between 1990 and 1996 source activities increased for sewage spreading (due to reduced dumping at sea) and transport (due to increased use of catalytic converters), but decreased for coal combustion. Combined with the current UK estimates of agricultural NH 3 emissions of 229 kt N yr -1 (1996), total UK NH 3 emissions are estimated at 283 kt N yr -1. Allowing for an import of reduced nitrogen (NH x) of 30 kt N yr -1 and deposition of 230 kt N yr -1, these figures imply an export of 83 kt NH 3-N yr -1. Although export is larger than previously estimated, due to the larger contribution of non-agricultural NH 3 emissions, it is still insufficient to balance the UK

  19. Danish emission inventories for road transport and other mobile sources

    DEFF Research Database (Denmark)

    Winther, M.

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results for CO2, CH4, N2O, SO2, NOX, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH are shown from 1985 to 2002. In this period the fuel use and CO2 emissions...... gasoline catalyst cars. For other mobile sources the fuel use, CO2 and NOX emissions have decreased with 15% from 1985 to 2002, and the PM emission decline is in the order of 13%. For SO2 the emission drop is 74% from 1985 to 2002, due to gradually lower fuel sulphur contents. In the same period...

  20. Duri Indonesia air emission inventory and dispersion modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Soetjiptono, T.E.; Nugraha, S.; VanDerZanden, D.F. [and others

    1996-11-01

    The Caltex Pacific Indonesia production field located in Duri, Indonesia, is the world`s largest steam flood. Because of the large scale of these operations, there is an interest in understanding the emissions into the atmosphere from the various sources in the field as well as the possible impact on the air quality resulting from these emissions. To be proactive and to fulfill this need, a study was done to inventory emissions from the facilities in the field and to use air dispersion models to estimate impacts on the air quality using the inventory results. This paper will discuss methods and procedures used in & study to quantify the emissions from the following sources in the Duri field: process vents, production impoundments and wastewater canals, roads, fugitive emissions, storage links, and combustion sources. Emissions of the following pounds were addressed in the study: non-methane hydrocarbons (NMHC) and aromatic hydrocarbons (BTEX), hydrogen sulfide, nitrogen oxides, sulfur oxides, particulate matter (PM), and carbon monoxide. Because of the diverse nature of the sources in the field, a wide range of emission estimating procedures were used including direct measurement methods, empirical methods based on mass transfer principles, and standard emission factors or procedures available from the United States Environmental Protection Agency (U.S. EPA). To quantify and track the emissions data generated, a computerized emissions inventory was developed. This paper will also discuss the dispersion modeling methods that were used to estimate the ground level concentrations in the surrounding areas using the data developed in the emission inventory. These discussions are based upon the results of a preliminary study which is limited to a portion of the Duri production field.

  1. Application of the emission inventory model TEAM: Uncertainties in dioxin emission estimates for central Europe

    NARCIS (Netherlands)

    Pulles, M.P.J.; Kok, H.; Quass, U.

    2006-01-01

    This study uses an improved emission inventory model to assess the uncertainties in emissions of dioxins and furans associated with both knowledge on the exact technologies and processes used, and with the uncertainties of both activity data and emission factors. The annual total emissions for the y

  2. PM2.5 pollution is substantially affected by ammonia emissions in China.

    Science.gov (United States)

    Wu, Yiyun; Gu, Baojing; Erisman, Jan Willem; Reis, Stefan; Fang, Yuanyuan; Lu, Xuehe; Zhang, Xiuming

    2016-11-01

    Urban air quality in China has been declining substantially in recent years due to severe haze episodes. The reduction of sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions since 2013 does not yet appear to yield substantial benefits for haze mitigation. As the reductions of those key precursors to secondary aerosol formation appears not to sufficient, other crucial factors need to be considered for the design of effective air pollution control strategies. Here we argue that ammonia (NH3) plays a - so far - underestimated role in the formation of secondary inorganic aerosols, a main component of urban fine particulate matter (PM2.5) concentrations in China. By analyzing in situ concentration data observed in major cities alongside gridded emission data obtained from remote sensing and inventories, we find that emissions of NH3 have a more robust association with the spatiotemporal variation of PM2.5 levels than emissions of SO2 and NOx. As a consequence, we argue that urban PM2.5 pollution in China in many locations is substantially affected by NH3 emissions. We highlight that more efforts should be directed to the reduction of NH3 emissions that help mitigate PM2.5 pollution more efficiently than other PM2.5 precursors. Such efforts will yield substantial co-benefits by improving nitrogen use efficiency in farming systems. As a consequence, such integrated strategies would not only improve urban air quality, but also contribute to China's food-security goals, prevent further biodiversity loss, reduce greenhouse gas emissions and lead to economic savings.

  3. African anthropogenic combustion emission inventory: specificities and uncertainties

    Science.gov (United States)

    Sekou, K.; Liousse, C.; Eric-michel, A.; Veronique, Y.; Thierno, D.; Roblou, L.; Toure, E. N.; Julien, B.

    2015-12-01

    Fossil fuel and biofuel emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to the growth of African cities. In addition, African large savannah fires occur each year during the dry season, mainly for socio-economical purposes. In this study, we will present the most recent developments of African anthropogenic combustion emission inventories, stressing African specificities. (1)A regional fossil fuel and biofuel inventory for gases and particulates will be presented for Africa at a resolution of 0.25° x 0.25° from 1990 to 2012. For this purpose, the original database of Liousse et al. (2014) has been used after modification for emission factors and for updated regional fuel consumption including new emitter categories (waste burning, flaring) and new activity sectors (i.e. disaggregation of transport into sub-sectors including two wheel ). In terms of emission factors, new measured values will be presented and compared to litterature with a focus on aerosols. They result from measurement campaigns organized in the frame of DACCIWA European program for each kind of African specific anthropogenic sources in 2015, in Abidjan (Ivory Coast), Cotonou (Benin) and in Laboratoire d'Aérologie combustion chamber. Finally, a more detailed spatial distribution of emissions will be proposed at a country level to better take into account road distributions and population densities. (2) Large uncertainties still remain in biomass burning emission inventories estimates, especially over Africa between different datasets such as GFED and AMMABB. Sensitivity tests will be presented to investigate uncertainties in the emission inventories, applying methodologies used for AMMABB and GFED inventories respectively. Then, the relative importance of each sources (fossil fuel, biofuel and biomass burning inventories) on the budgets of carbon monoxide, nitrogen oxides, sulfur dioxide, black and organic carbon, and volatile

  4. Measurement of Ammonia Emission Following Surface Application of Urea Fertilizer from Irrigated Paddy Rice Fields

    Institute of Scientific and Technical Information of China (English)

    Md.Toufiq Iqbal; TIAN Guang-ming; LIANG Xin-qiang; Fatima Rukshana

    2005-01-01

    Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission thatwas measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g/day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the ricegrowing season. These magnitudes of loss of N appear to be most important for environmental point of view.

  5. Global Commercial Aviation Emissions Inventory for 2004

    Science.gov (United States)

    Wilkerson, J.; Balasubramanian, S.; Malwitz, A.; Wayson, R.; Fleming, G.; Jacobson, M. Z.; Naiman, A.; Lele, S.

    2008-12-01

    In 2004, the global commercial aircraft fleet included more than 13,000 aircraft flying over 30 billion km, burning more than 100 million tons of fuel. All this activity incurs substantial amounts of fossil-fuel combustion products at the cruise altitude within the upper troposphere and lower stratosphere that could potentially affect the atmospheric composition and climate. These emissions; such as CO, CO2, PM, NOx, SOx, are not distributed uniformly over the earth, so understanding the temporal and spatial distributions is an important component for modeling aviation climate impacts. Previous studies for specific years have shown that nearly all activity occurs in the northern hemisphere, and most is within mid-latitudes. Simply scaling older data by the annual global industry growth of 3-5 percent may provide emission trends which are not representative of geographically varying growth in aviation sector that has been noted over the past years. India, for example, increased its domestic aviation activity recently by 46 percent in one year. Therefore, it is important that aircraft emissions are best characterized and represented in the atmospheric models for impacts analysis. Data containing all global commercial flights for 2004 was computed using the Federal Aviation Administration's Aviation Environmental Design Tool (AEDT) and provided by the Volpe National Transportation Systems Center. The following is a summary of this data which illustrates the global aviation footprint for 2004, and provides temporal and three-dimensional spatial distribution statistics of several emissions constituents.

  6. 10 CFR 300.6 - Emissions inventories.

    Science.gov (United States)

    2010-01-01

    ... DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.6... chlorofluorocarbons and other greenhouse gases with quantifiable climate forcing effects as long as DOE has... categories of gases listed in the definition of “greenhouse gases” in § 300.2, indirect emissions......

  7. Ammonia emissions from outdoor concrete yards used by livestock—quantification and mitigation

    Science.gov (United States)

    Misselbrook, T. H.; Webb, J.; Gilhespy, S. L.

    Outdoor concrete yards are commonly found on UK livestock farms, and, to a lesser extent, elsewhere in Europe, and represent a potentially significant source of ammonia (NH 3) emissions to the atmosphere. This study provided further measurements from a larger sample than previously made, to improve the robustness of the estimate of total NH 3 emission for inclusion in the UK NH 3 emission inventory. In addition, an assessment was made of a number of potential mitigation strategies. Measurements were made using the equilibrium concentration technique, employing small dynamic chambers and passive diffusion samplers, from 20 yards used by livestock on commercial farms. Mean emission rates (±standard error) were 0.31±0.07, 0.23±0.12, 0.19±0.05 and 0.18±0.09 g NH 3-N m -2 h -1 (0.70±0.21, 0.53±0.34, 0.76±0.22 and 0.18±0.14 g NH 3-N animal -1 h -1) for dairy cow-collecting yards, dairy cow-feeding yards, beef-feeding yards and sheep-feeding/handling areas, respectively, with mean respective livestock densities of 0.3, 0.5, 0.2 and 1.1 animals per m 2. There was a significant effect of season, with lower emission rates in the winter. There was a significant, albeit poor, positive linear relationship between emission rate and ambient air temperature ( r2=0.22) and between emission rate and total ammoniacal N content on the yard surface ( r2=0.14), but not with ambient wind speed. Pooling data from the present study with that from previous studies gave mean emission factors of 0.47±0.09, 0.98±0.39 and 0.13±0.09 g NH 3-N animal -1 h -1 for yards used by dairy cattle, beef cattle and sheep, respectively. Inclusion of these values, together with survey data on yard use, gave a total annual UK emission of approximately 25 kt NH 3 (95% confidence interval of 12-40 kt NH 3), representing almost 10% of total NH 3 emission from UK agriculture. In controlled studies, pressure washing and the use of a urease inhibitor in addition to yard scraping were found to be

  8. Danish emission inventories for stationary combustion plants. Inventories until year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, M.; Hjelgaard, K.

    2009-10-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO{sub 2} emission in 2007 was 10% lower than in 1990. However fluctuations in the emission level are large as a result of electricity import/export. The emission of CH{sub 4} has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. However the emission has decreased in recent years due to structural changes in the Danish electricity market. The N{sub 2}O emission was higher in 2007 than in 1990 but the fluctuations in the timeseries are significant. A considerable decrease of the SO{sub 2}, NO{sub x} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants. (author)

  9. Danish emission inventories for stationary combustion plants. Inventories until year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Illerup, Jytte B.

    2006-01-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption in stationary combustion has increased by 25% - the fossil fuel consumption, however, only by 18%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable decrease of the SO{sub 2}, NO{sub x} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The greenhouse gas emission has increased by 11% since 1990 mainly due to increasing export of electricity. The emission of CH{sub 4} has increased due to increased use of lean-burn gas engines in CHP plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated. (au)

  10. Danish emission inventories for stationary combustion plants. Inventories until year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Boll Illerup, J.

    2004-12-01

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub X}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable decrease of the SO{sub 2}, NO{sub X} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The greenhouse gas emission has decreased 1,3% since 1990. The emission of CH{sub 4}, however, has increased due to increased use of lean-burn gas engines in CHP plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated. (au)

  11. COMPILATION OF REGIONAL TO GLOBAL INVENTORIES OF ANTHROPOGENIC EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    BENKOVITZ,C.M.

    2002-11-01

    The mathematical modeling of the transport and transformation of trace species in the atmosphere is one of the scientific tools currently used to assess atmospheric chemistry, air quality, and climatic conditions. From the scientific but also from the management perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal, and species resolution are required. There are two general methodologies used to estimate regional to global emissions: bottom-up and top-down (also known as inverse modeling). Bottom-up methodologies to estimate industrial emissions are based on activity data, emission factors (amount of emissions per unit activity), and for some inventories additional parameters (such as sulfur content of fuels). Generally these emissions estimates must be given finer sectoral, spatial (usually gridded), temporal, and for some inventories species resolution. Temporal and spatial resolution are obtained via the use of surrogate information, such as population, land use, traffic counts, etc. which already exists in or can directly be converted to gridded form. Speciation factors have been and are being developed to speciate inventories of NO{sub x}, particulate matter, and hydrocarbons. Top-down (inverse modeling) methodologies directly invert air quality measurements in terms of poorly known but critical parameters to constrain the emissions needed to explain these measurements; values of these parameters are usually computed using atmospheric transport models. Currently there are several strong limitations of inverse modeling, but the continued evolution of top-down estimates will be facilitated by the development of denser monitoring networks and by the massive amounts of data from satellite observations.

  12. Estonian greenhouse gas emissions inventory report

    Energy Technology Data Exchange (ETDEWEB)

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V. [Inst. of Ecology, Tallinn (Estonia); Martins, A.; Pesur, A. [Inst. of Energy Research, Tallinn (Estonia); Roostalu, H.; Tullus, H. [Estonian Agricultural Univ., Tartu (Estonia)

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  13. Emission inventory estimation of an intercity bus terminal.

    Science.gov (United States)

    Qiu, Zhaowen; Li, Xiaoxia; Hao, Yanzhao; Deng, Shunxi; Gao, H Oliver

    2016-06-01

    Intercity bus terminals are hotspots of air pollution due to concentrated activities of diesel buses. In order to evaluate the bus terminals' impact on air quality, it is necessary to estimate the associated mobile emission inventories. Since the vehicles' operating condition at the bus terminal varies significantly, conventional calculation of the emissions based on average emission factors suffers the loss of accuracy. In this study, we examined a typical intercity bus terminal-the Southern City Bus Station of Xi'an, China-using a multi-scale emission model-(US EPA's MOVES model)-to quantity the vehicle emission inventory. A representative operating cycle for buses within the station is constructed. The emission inventory was then estimated using detailed inputs including vehicle ages, operating speeds, operating schedules, and operating mode distribution, as well as meteorological data (temperature and humidity). Five functional areas (bus yard, platforms, disembarking area, bus travel routes within the station, and bus entrance/exit routes) at the terminal were identified, and the bus operation cycle was established using the micro-trip cycle construction method. Results of our case study showed that switching to compressed natural gas (CNG) from diesel fuel could reduce PM2.5 and CO emissions by 85.64 and 6.21 %, respectively, in the microenvironment of the bus terminal. When CNG is used, tail pipe exhaust PM2.5 emission is significantly reduced, even less than brake wear PM2.5. The estimated bus operating cycles can also offer researchers and policy makers important information for emission evaluation in the planning and design of any typical intercity bus terminals of a similar scale.

  14. The annual ammonia budget of fertilised cut grassland - Part 1: Micrometeorological flux measurements and emissions after slurry application

    Science.gov (United States)

    Spirig, C.; Flechard, C. R.; Ammann, C.; Neftel, A.

    2010-02-01

    Two commercial ammonia (NH3) analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland) by application of the aerodynamic gradient method. The measurements from July 2006 to October 2007 covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during unstable and near-neutral conditions was 20% and the detection limit was 10 ng NH3 m-2 s-1. Hence the flux measurements are considered sufficiently accurate for studying typical NH3 deposition rates over growing vegetation. Quantifying the overall emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during broadspreading of liquid manure. The emissions were also calculated with a mass balance method yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN) varied between 4 and 19%, which is roughly a factor of three lower than the values for broadspreading of liquid manure in emission inventories. The comparatively low emission factors appear to be a consequence of the low dry matter content of the applied slurry and soil properties favouring ammonium adsorption.

  15. Reducing ammonia emission from agriculture using the BATNEEC approach in Denmark

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2012-01-01

    This article looks at how the Best Available Technology Not Entailing Excessive Costs (BATNEEC) can be implemented in practice using the ammonia regulation in Denmark as an example. The reductions of ammonia emissions in Denmark have been achieved mainly through command and control measures. The ...

  16. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    for stationary combustion plants and the corresponding improved emission inventories for the following HMs: Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn). The report presents data for the year 2009 and time series for 1990......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...... combustion, waste incineration, residual oil combustion and in 2009 also combustion of biomass. The emission from waste incineration plants has decreased profoundly also in recent years due to installation and improved performance of flue gas cleaning devices. The emission from power plants have also...

  17. Danish Emission Inventory for Solvent Use in Industries and Household

    DEFF Research Database (Denmark)

    Fauser, Patrik

    activities and consumer products. Emissions are calculated based on detailed information on chemical use, mainly derived from Statistics Denmark and the Nordic database: Substances in Preparations in the Nordic Countries (SPIN) and from communication with industries and related institutions in Europe......This report presents the Danish emission inventory for Non-Methane Volatile Organic Compounds (NMVOC), N2O and CO2 from the use of solvents in industries and households. The methodology, data sources, activity data, emission factors and emissions are presented for 1985 to 2007 and uncertainties, QA...... to CO2 emissions but they are fundamental in relation to many human and environmental health issues and to longrange transport of chemical active species. Use and emission patterns of NMVOCs are diverse and complex, as many chemicals are categorised as NMVOCs and are present in many different industrial...

  18. Towards a comprehensive emission inventory of terpenoids from boreal ecosystems

    Science.gov (United States)

    Tarvainen, V.; Hakola, H.; Rinne, J.; Hellén, H.; Haapanala, S.

    2007-07-01

    The biogenic volatile organic compound emissions in the south boreal, middle boreal and north boreal vegetation zones in Finland were calculated utilizing satellite land cover information and actual meteorological data in a BEIS-type canopy emission model. The sesquiterpene emissions from the boreal forest were estimated for the first time, and the inventory was further complemented by the inclusion of wetland isoprene emissions from open fens. Recently published results from emission measurements carried out in various parts of the boreal region were utilized in the compilation of the standard emission potentials and monoterpene emission spectra for the deciduous and coniferous forest categories and wetlands. The average annual isoprene emission fluxes from forests were 73, 56 and 45, and those of monoterpenes 657, 567 and 342 kg per km2 of forest area in the south boreal, middle boreal and north boreal vegetation zones, respectively. The average annual sesquiterpene fluxes were of the same order of magnitude as isoprene, being 54, 46 and 26 kg per km2 of forest area in the south boreal, middle boreal and north boreal vegetation zones, respectively. The isoprene emissions from wetlands were significant, contributing 3%, 18% and 31% of the annual isoprene emissions in the south boreal, middle boreal and north boreal vegetation zones, respectively. Throughout the boreal region, the main emitted monoterpenes were α-pinene and Δ3-carene, with significant contributions from β-pinene and sabinene in summer and autumn. Due to the new seasonal emission potentials of the coniferous species introduced in this work, the overwhelming role of spruce as the main isoprene and monoterpene emitter in the boreal forest is subdued. The new emission inventory also accentuates the role of the boreal deciduous trees as terpenoid emitters in the late summer months.

  19. The European Dioxin Emission Inventory. Stage II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Quass, U.; Fermann, M.; Broeker, G.

    2001-07-01

    For Stage II of the European Dioxin Project the following objectives were set: - Amendment of existing emission data collected for most relevant emission sources in order to reduce uncertainties of emission estimates. Collecting first emission data from countries not yet performing dioxin emission measurement programs. Extending the inventory of dioxin emissions to ambient air produced in Stage I by a complementary study on emissions to land and water. Extending the regional scope of data collection to countries in Central Europe. The report of Stage II of the European Dioxin Project is presented in 3 Volumes. Volume 1 contains an overview on the background and approach of different activities carried out and on the results obtained. These results are put into a broader view regarding the dioxin reduction measures in Europe leading to conclusions and recommendation for future work. Volume 2 of the report contains a detailed presentation of the sub-projects carried out. The chapters of Volume 2 are structured in a similar manner and start with a short summary in order to allow for a fast cross-reading. In the case of the desk-top studies an overview of the main results or statements is given. Regarding emission measurements details on the experimental set-up and the facilities being investigated are presented. Volume 3 contains a re-evaluation of the dioxin emission inventory presented for the most relevant sources types in the Stage I report. New data gathered from the projects of Stage II as well as from independent activities in the European countries are considered for a revision of the 1995 emission estimates. Additionally, based on current trends and activities the PCDD/F emissions for the years 2000 and 2005 are estimated. Finally, an attempt is made to evaluate the PCDD/F emission reduction rates which might be possible to achieve by the year 2005 compared to 1985. (orig.)

  20. Uncertainties in the Norwegian greenhouse gas emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Flugsrud, Ketil; Hoem, Britta

    2011-11-15

    The national greenhouse gas (GHG) emission inventory is compiled from estimates based on emission factors and activity data and from direct measurements by plants. All these data and parameters will contribute to the overall inventory uncertainty. The uncertainties and probability distributions of the inventory input parameters have been assessed based on available data and expert judgements.Finally, the level and trend uncertainties of the national GHG emission inventory have been estimated using Monte Carlo simulation. The methods used in the analysis correspond to an IPCC tier 2 method, as described in the IPCC Good Practice Guidance (IPCC 2000) (IPCC 2000). Analyses have been made both excluding and including the sector LULUCF (land use, land-use change and forestry). The uncertainty analysis performed in 2011 is an update of the uncertainty analyses performed for the greenhouse gas inventory in 2006 and 2000. During the project we have been in contact with experts, and have collected information about uncertainty from them. Main focus has been on the source categories where changes have occured since the last uncertainty analysis was performed in 2006. This includes new methodology for several source categories (for example for solvents and road traffic) as well as revised uncertainty estimates. For the installations included in the emission trading system, new information from the annual ETS reports about uncertainty in activity data and CO2 emission factor (and N2O emission factor for nitric acid production) has been used. This has improved the quality of the uncertainty estimates for the energy and manufacturing sectors. The results show that the uncertainty level in the total calculated greenhouse gas emissions for 2009 is around 4 per cent. When including the LULUCF sector, the total uncertainty is around 17 per cent in 2009. The uncertainty estimate is lower now than previous analyses have shown. This is partly due to a considerable work made to improve

  1. New national emission inventory for navigation in Denmark

    Science.gov (United States)

    Winther, Morten

    This article explains the new emission inventory for navigation in Denmark, covering national sea transport, fisheries and international sea transport. For national sea transport, the new Danish inventory distinguishes between regional ferries, local ferries and other national sea transport. Detailed traffic and technical data lie behind the fleet activity-based fuel consumption and emission calculations for regional ferries. For local ferries and other national sea transport, the new inventory is partly fleet activity based; fuel consumption estimates are calculated for single years, and full fuel consumption coverage is established in a time series by means of appropriate assumptions. For fisheries and international sea transport, the new inventory remains fuel based, using fuel sales data from the Danish Energy Authority (DEA). The new Danish inventory uses specific fuel consumption (sfc) and NO x emission factors as a function of engine type and production year. These factors, which are used directly for regional ferries and, for the remaining navigation categories, are derived by means of appropriate assumptions, serve as a major inventory improvement, necessary for making proper emission trend assessments. International sea transport is the most important fuel consumption and emission source for navigation, and the contributions are large even compared with the overall Danish totals. If the contributions from international sea transport were included in the Danish all-sector totals, the extra contributions in 2005 from fuel consumption (and CO 2), NO x and SO 2 would be 5%, 34% and 167%, respectively. The 1990-2005 changes in fuel consumption as well as NO x and SO 2 emissions for national sea transport (-45, -45, -81), fisheries (-18, 6, -18) and international sea transport (-14, 1, -14) reflect changes in fleet activity/fuel consumption and emission factors. The 2006-2020 emission forecasts demonstrate a need for stricter fuel quality and NO x emission

  2. Danish emission inventories for road transport and other mobile sources. Inventories until year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M. [DMU, Dept. of Policy Analysis (Denmark)

    2007-01-15

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH are shown from 1985 to 2004. In this period the fuel use and CO{sub 2} emissions for road transport have increased by 48%. The emission decreases for PM (exhaust only), CO, NO{sub X} and NMVOC are 35, 58, 34 and 66% respectively, due to the introduction of vehicles complying with gradually stricter emission standards. A N{sub 2}O emission increase of 301% is related to the high emissions from gasoline catalyst cars. For other mobile sources the fuel use and CO{sub 2} emissions have decreased by 15% from 1985 to 2004. The PM, NO{sub x} and NMVOC emission declines are 46, 14 and 10%, respectively. For SO{sub 2} the emission drop is 74% from 1985 to 2004, due to gradually lower fuel sulphur contents. For CO the 1985 and 2004 emissions are the same. Uncertainties for the emissions and trends have been estimated. (au)

  3. Model-predicted ammonia emission from two broiler houses with different rearing systems

    Directory of Open Access Journals (Sweden)

    Nilsa Duarte Silva Lima

    2015-10-01

    Full Text Available Ammonia (NH3 emissions from broiler production can affect human and animal health and may cause acidification and eutrophication of the surrounding environment. This study aimed to estimate ammonia emissions from broiler litter in two systems of forced ventilation, the tunnel ventilation (TV and the dark house (DH. The experiment was carried out on eight commercial broiler houses, and the age of the birds (day, d, pH and litter temperature were recorded. Broilers were reared on built-up wood shaving litter using an average flock density of 14 bird m–2. Temperature and relative humidity inside the broiler houses were recorded in the morning during the grow-out period. A factorial experimental design was adopted, with two types of houses, four replicates and two flocks with two replicates each. A deterministic model was used to predict ammonia emissions using the litter pH and temperature, and the day of grow-out. The highest litter temperature and pH were found at 42 d of growth in both housing systems. Mean ambient air temperature and relative humidity did not differ in either system. Mean model predicted ammonia emission was higher in the DH rearing system (5200 mg NH3 m−2h−1 at 42 d than in the TV system (2700 mg NH3m−2 h−1 at 42 d. TV presented the lowest mean litter temperature and pH at 42 d of growth. In the last week of the broilers’ grow-out cycle, estimated ammonia emissions inside DH reached 5700 mg m−2h−1 in one of the flocks. Ammonia emissions were higher inside DH, and they did not differ between flocks. Assuming a broiler market weight in Brazil of close to 2 kg, ammonia emissions were equivalent to 12 g NH3 bird-marketed−1. Model-predicted ammonia emissions provided comprehensible estimations and might be used in abatement strategies for NH3 emission.

  4. Update and improvement of the global krypton-85 emission inventory.

    Science.gov (United States)

    Ahlswede, Jochen; Hebel, Simon; Ross, J Ole; Schoetter, Robert; Kalinowski, Martin B

    2013-01-01

    Krypton-85 is mainly produced in nuclear reactors by fission of uranium and plutonium and released during chopping and dissolution of spent fuel rods in nuclear reprocessing facilities. As noble gas it is suited as a passive tracer for evaluation of atmospheric transport models. Furthermore, research is ongoing to assess its quality as an indicator for clandestine reprocessing activities. This paper continues previous efforts to compile a comprehensive historic emission inventory for krypton-85. Reprocessing facilities are the by far largest emitters of krypton-85. Information on sources and calculations used to derive the annual krypton-85 emission is provided for all known reprocessing facilities in the world. In addition, the emission characteristics of two plants, Tokai (Japan) and La Hague (France), are analysed in detail using emission data with high temporal resolution. Other types of krypton-85 sources are power reactors, naval reactors and isotope production facilities. These sources contribute only little or negligible amounts of krypton-85 compared to the large reprocessing facilities. Taking the decay of krypton-85 into account, the global atmospheric inventory is estimated to about 5500 PBq at the end of 2009. The correctness if the inventory has been proven by meteorological simulations and its error is assumed to be in the range of a few percent.

  5. Effect of urinations on the ammonia emission from group-housing systems for sows with straw bedding: Model assessment

    NARCIS (Netherlands)

    Groenestein, C.M.; Monteny, G.J.; Aarnink, A.J.A.; Metz, J.H.M.

    2007-01-01

    A model was developed as a tool for designing straw-bedded sow group-housing systems with low ammonia emission. Using mechanistic and empirical relationships it calculates the total ammonia emission by integrating ammonia volatilisations from all the urine pools in the house. The reference data were

  6. The sectoral trends of multigas emissions inventory of India

    DEFF Research Database (Denmark)

    Garg, A.; Shukla, P.R.; Kapshe, M.

    2006-01-01

    This paper provides the trends of greenhouse gas (GHG) and local air pollutant emissions of India for 1985-2005. The GHGs covered are six Kyoto gases, namely carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs) and sulfur hexafluoride (SF6......). The local air pollutants are sulfur dioxide (SO2), nitrogen oxides (NOX), carbon monoxide (CO) and total suspended particulates (TSP). These estimates incorporate some of the most recent scientific assessments for India. The multigas emissions have varied sectoral and fuel-based dominance, as well......, exploring co-benefits Of CO2 and SO2 mitigation, and technology and development pathway dependence of emissions. The'present inventory assessment is a pointer to the future emission pathways for India wherein local air pollutant and GHG emissions, although connected, may not move in synchronization...

  7. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  8. Sensitivity analysis of mechanistic models for estimating ammonia emission from dairy cow urine puddles

    NARCIS (Netherlands)

    Snoek, J.W.; Stigter, J.D.; Ogink, N.W.M.; Groot Koerkamp, P.W.G.

    2014-01-01

    Ammonia (NH3) emission can cause acidification and eutrophication of the environment, is an indirect source of nitrous oxide, and is a precursor of fine dust. The current mechanistic NH3 emission base model for explaining and predicting NH3 emissions from dairy cow houses with cubicles, a floor and

  9. Danish emission inventories for road transport and other mobile sources. Inventories until the year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.

    2012-08-15

    This report explains the parts of the Danish emission inventories related to road transport and other mobile sources. Emission results are shown for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH. From 1990-2010 the fuel consumption and CO{sub 2} emissions for road transport increased by 30 %, and CH{sub 4} emissions have decreased by 74 %. A N{sub 2}O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2010 emission decrease for NO{sub X}, NMVOC, CO and particulates (exhaust only: Size is below PM{sub 2.5}) -52, -84, -81, and -65 %, respectively, due to the introduction of vehicles complying with gradually stricter emission standards. For SO{sub 2} the emission drop 99 % (due to reduced sulphur content in the diesel fuel), whereas the NH{sub 3} emissions increased by 2232 % (due to the introduction of catalyst cars). For other mobile sources the calculated emission changes for CO{sub 2} (and fuel use), CH{sub 4} and N{sub 2}O were -2, 5 and -1 %, from 1990 to 2010. The emissions of SO{sub 2}, particulates (all size fractions), NO{sub X}, NMVOC and CO decreased by 88, 65, 17, 28 and 2 % from 1985 to 2010. For NH{sub 3} the emissions increased by 17 % in the same time period. Uncertainties for the emissions and trends were estimated. (Author)

  10. Developing Shipping Emissions Assessments, Inventories and Scenarios (Invited)

    Science.gov (United States)

    Corbett, J. J.

    2010-12-01

    Inventories of shipping have been important contributions to scientific understanding of regional pollution and transboundary transport. These inventories have also been used to evaluate global scale environmental and climate effects and trends. However, these inventories also inform policy making decisions and this role is increasingly occurring within the timescale of scientific assessment. Shipping exhibits a growth trend for uncontrolled pollutants that is highly coupled to economic activity, and historically increasing faster than many other anthropogenic sources on a global and regional scale. Shipping emissions are being regulated asymmetrically in various dimensions. Some pollutants are being controlled more than others, some regions are subject to stricter controls, and correlated changes in operations are affecting unregulated pollutant emissions. Shipping inventories require more than current assessments, including historic and future scenarios. Generally conceived as sets of business-as-usual (BAU) and high-growth scenarios, ship inventories now also need regulatory control pathways and maximum feasible reduction (MFR) scenarios. In this context, shipping inventories also present other challenges to both scientists and policymakers. Systemic bias can occur in non-shipping assessments when emissions along well-traveled shipping lanes are ignored by far offshore scientific studies, even some campaigns that control very carefully the potential influence of the shipping platforms for their measurements. Examples where shipping may contribute understood and potential biases include: a. Health impacts from transboundary pollution b. Ozone trends over the Pacific c. Sulfur emissions from biogenic sources in Northern hemisphere d. Acidification of coastal waters (potential) e. Arctic impacts on snow and ice Other challenges exist. The fuels and technology used by ships are unique from other transportation, from other stationary sources - and these are changing

  11. Danish emission inventories for road transport and other mobile sources. Inventories until year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.

    2008-09-15

    This report explains the parts of the Danish inventories related to road transport and other mobile sources. Emission results are shown for CO{sub 2}, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub X}, NMVOC, CO, particulate matter (PM), heavy metals, dioxins and PAH. From 1990-2006 the fuel use and CO{sub 2} emissions for road transport have increased by 36 %, and CH{sub 4} emissions have decreased by 51 %. A N{sub 2}O emission increase of 29 % is related to the relatively high emissions from older gasoline catalyst cars. The 1985-2006 emission decreases for PM (exhaust only), CO, NO{sub X} and NMVOC are 30, 69, 28 and 71 % respectively, due to the introduction of vehicles complying with gradually stricter emission standards. For SO{sub 2} the emission drop is 99% (due to reduced sulphur content in the diesel fuel), whereas the NH{sub 3} emissions increase by 3065% (due to the introduction of catalyst cars). For other mobile sources the calculated emission changes for CO{sub 2} (and fuel use), CH{sub 4} and N{sub 2}O are -10, 5 and -11%, from 1990 to 2006. The emissions of SO{sub 2}, particulates (all size fractions), NO{sub X}, NMVOC and CO have decreased by 88, 56, 14, 12 and 9% from 1985 to 2006. For NH{sub 3} the emissions have increased by 8% in the same time period. Uncertainties for the emissions and trends have been estimated. (au)

  12. Atmospheric ammonia over China: emission estimates and impacts on air quality

    Science.gov (United States)

    Zhang, Lin; Zhao, Yuanhong; Chen, Youfan; Henze, Daven

    2016-04-01

    Ammonia (NH3) in the atmosphere is an important precursor of inorganic aerosols, and its deposition through wet and dry processes can cause adverse effects on ecosystems. The ammonia emissions over China are particularly large due to intensive agricultural activities, yet our current estimates of Chinese ammonia emissions and associated consequences on air quality are subject to large errors. Here we use the GEOS-Chem chemical transport model and its adjoint model to better quantify this issue. The TES satellite observations of ammonia concentrations and surface measurements of wet deposition fluxes are assimilated into the model to constrain the ammonia emissions over China. Optimized emissions show a strong seasonal variability with emissions in summer a factor of 3 higher than winter. We improve the bottom-up estimate of Chinese ammonia emissions from fertilizer use by using more practical feritilizer application rates for different crop types, which explains most of the discrepancies between our top-down estimates and prior emission estimates. We further use the GEOS-Chem adjoint at 0.25x0.3125 degree resolution to examine the sources contributing to the PM2.5 air pollution over North China. We show that wintertime PM2.5 over Beijing is largely contributed by residential and industrial sources, and ammonia emissions from agriculture activities. PM2.5 concentrations over North China are particularly sensitive to NH3 emissions in cold seasons due to strong nitrate formation. By converting shorted-lived nitric acid to aerosol nitrate, NH3 significantly promotes the regional transport influences of PM2.5 sources.

  13. Mapping Atmospheric Ammonia Emissions Using a Mobile Quantum Cascade Laser-based Open-path Sensor

    Science.gov (United States)

    Sun, K.; Tao, L.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.

    2012-12-01

    Ammonia (NH3) is a key precursor to atmospheric fine particulate matter, with strong implications for regional air quality and global climate change. Despite the importance of atmospheric ammonia, its spatial/temporal variation is poorly characterized, and the knowledge of its sources, sinks, and transport is severely limited. Existing measurements suggest that traffic exhaust may provide significant amounts of ammonia in urban areas, which cause greater impacts on particulate matter formation and urban air quality. To capture the spatial and temporal variation of ammonia emissions, a portable, low power sensor with high time resolution is necessary. We have developed a portable open-path ammonia sensor with a detection limit of 0.5 ppbv ammonia for 1 s measurements. The sensor has a power consumption of about 60 W and is capable of running on a car battery continuously for 24 hours. An additional laser has been coupled to the sensor to yield concurrent N2O and CO measurements as tracers for determining various sources. The overall sensor prototype fits on a 60 cm × 20 cm aluminum breadboard. Roadside measurements indicated NH3/CO emission ratios of 4.1±5.4 ppbv/ppmv from a fleet of 320 vehicles, which agree with existing on-ramp measurements. Urban measurements in the Baltimore and Washington, DC metropolitan areas have shown significant ammonia mixing ratios concurrent with carbon monoxide levels from the morning and evening rush hours. On-road measurements of our open-path sensor have also been performed continuously from the Midwest to Princeton, NJ including urban areas such as Pittsburgh, tunnels, and relatively clean conditions. The emission ratios of ammonia against CO and/or CO2 help identify the sources and amounts of both urban and agricultural ammonia emissions. Preliminary data from both spatial mapping, monitoring, and vehicle exhaust measurements suggest that urban ammonia emissions from fossil fuel combustion are significant and may provide an

  14. Effect of nitrapyrin on emission of nitrous oxide from soil fertilized with anhydrous ammonia

    Science.gov (United States)

    Bremner, J. M.; Breitenbeck, G. A.; Blackmer, A. M.

    1981-04-01

    Field studies using a chamber technique to measure emissions of nitrous oxide (N2O) showed that the N2O emissions induced by fertilization of soil with anhydrous ammonia (180 kg N ha-1) were markedly reduced by addition of nitrapyrin [2-chloro-6-(trichloromethyl)-pyridine] to this fertilizer. The emission of N2O induced by application of anhydrous ammonia in the fall was reduced 63% by addition of nitrapyrin at the rate of 0.56 kg ha-1. The corresponding reduction when nitrapyrin was added to anhydrous ammonia applied in the spring was 87%. These observations indicate that nitrapyrin has potential value for reduction of the N2O emissions induced by nitrogen fertilization of soils and the possible adverse effects of these emissions on our climate.

  15. [Progress in research of urban greenhouse gas emission inventory].

    Science.gov (United States)

    Chen, Cao-Cao; Liu, Chun-Lan; Tian, Gang; Wang, Hai-Hua; Li, Zheng

    2010-11-01

    Urban areas carry main responsibility for consuming massive energy sources and make great contribution to global anthropogenic greenhouse gas emissions. City and local governments are seen to have a key role in climate mitigation. Hence,one of the important work concerns accounting for city greenhouse gas (GHG) emissions, because it plays significant role in setting reduction targets and evaluating success of local measures. However, open system architectures like city face many challenges for greenhouse gas accounting. Based on the review in details the methodology and case study, our study focuses on the difference and interconnection between country and city GHG accounts,and uncertainty of accounts. Further, we propose the valuable experience in order to improve domestic research on city GHG emission inventory.

  16. Development of biogenic VOC emission inventories for the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, V.

    2008-07-01

    The volatile organic compounds (VOCs) emitted by vegetation, especially forests, can affect local and regional atmospheric photochemistry through their reactions with atmospheric oxidants. Their reaction products may also participate in the formation and growth of new particles which affect the radiation balance of the atmosphere, and thus climate, by scattering and absorbing shortwave and longwave radiation and by modifying the radiative properties, amount and lifetime of clouds. Globally, anthropogenic VOC emissions are far surpassed by the biogenic ones, making biogenic emission inventories an integral element in the development of efficient air quality and climate strategies. The inventories are typically constructed based on landcover information, measured emissions of different plants or vegetation types, and empirical dependencies of the emissions on environmental variables such as temperature and light. This thesis is focused on the VOC emissions from the boreal forest, the largest terrestrial biome with characteristic vegetation patterns and strong seasonality. The isoprene, monoterpene and sesquiterpene emissions of the most prevalent boreal tree species in Finland, Scots pine, have been measured and their seasonal variation and dependence on temperature and light have been studied. The measured emission data and other available observations of the emissions of the principal boreal trees have been used in a biogenic emission model developed for the boreal forests in Finland. The model utilizes satellite landcover information, Finnish forest classification and hourly meteorological data to calculate isoprene, monoterpene, sesquiterpene and other VOC emissions over the growing season. The principal compounds emitted by Scots pine are DELTA3-carene and alpha-pinene in the south boreal zone and alpha- and beta-pinene in the north boreal zone. The monoterpene emissions are dependent on temperature and have a clear seasonal cycle with high emissions in spring

  17. Reduction of ammonia emissions from dairy cattle cubicle houses via improved management - or design - bases strategies

    NARCIS (Netherlands)

    Mendes, Luciano; Pieters, Jan G.; Snoek, J.W.; Ogink, N.W.M.; Brusselman, E.; Demeyer, P.

    2017-01-01

    Given the current scarcity of empirical data on ammonia (NH3) emissions from dairy cattle under different management-
    based mitigation techniques, a modeling approach to assess potentialNH3 emission reduction factors is
    needed. This paper introduces a process-based model that estimates NH3 e

  18. Spatial and temporal variations in ammonia emissions - a freely accessible model code for Europe

    DEFF Research Database (Denmark)

    Skjøth, Carsten Ambelas; Geels, Camilla; Berge, H.;

    2011-01-01

    demonstrates how local climate and local management can be accounted for in CTMs by applying a modular approach for deriving data as input to a dynamic ammonia emission model for Europe. Default data are obtained from information in the RAINS system, and it is demonstrated how this dynamic emission model based...

  19. Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores

    NARCIS (Netherlands)

    Sommer, S.G.; Zhang, G.Q.; Bannink, A.; Chadwick, D.; Misselbrook, T.; Harrison, R.; Hutchings, N.J.; Menzi, H.; Monteny, G.J.; Oenema, O.; Webb, J.

    2006-01-01

    Livestock excreta and manure stored in housing, in manure stores, in beef feedlots, or cattle hardstandings are the most important sources of ammonia (NH3) in the atmosphere. There is a need to quantify the emission, to assess the effect of emission on NH3 and ammonium (NH4+) deposition to ecosystem

  20. Ammonia emissions from the composting of different organic wastes : dependency on process temperature

    OpenAIRE

    Pagans i Miró, Estel·la; Barrena Gómez, Raquel; Font Segura, Xavier; Sánchez Ferrer, Antoni

    2006-01-01

    Ammonia emissions were quantified for the laboratory-scale composting of three typical organic wastes with medium nitrogen content: organic fraction of municipal solid wastes, raw sludge and anaerobically digested sludge; and the composting of two wastes with high nitrogen content: animal by-products from slaughterhouses and partially hydrolysed hair from the leather industry. All the wastes were mixed with the proper amount of bulking agent. Ammonia emitted in the composting of the five wast...

  1. New developments in emissions inventory activity along the northern border region of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, W.R.; Dickson, R.J.; Creelman, L.W. [Radian International LLC, Sacramento, CA (United States)] [and others

    1996-12-31

    The development and evaluation of emissions data for sources located along the Mexico/US border have accelerated over the past few years. This paper examines several new activities in emissions inventory development for the northern border of Mexico. Reviewed in this paper are the following recent developments that will lead to improved inventories for Mexico: development of inventory educational materials; creation of inventory manuals; estimation of emissions for unique sources; emissions-related studies; and identification of key research needs for Mexico inventories. Some of these activities are building a greater capacity in Mexico to construct emissions estimates. These topics are reviewed from the perspective of improving Mexico emissions inventories and emissions estimation capabilities.

  2. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    Science.gov (United States)

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  3. Land cover change mapping using MODIS time series to improve emissions inventories

    Science.gov (United States)

    López-Saldaña, Gerardo; Quaife, Tristan; Clifford, Debbie

    2016-04-01

    MELODIES is an FP7 funded project to develop innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A land cover product was created for 2003 to 2015 and a bayesian approach was created to identified land cover changes. We will present the results of the time series development and the first exercises when creating the land cover and land cover changes products.

  4. Impact of Physical-Chemical Properties on Ammonia Emissions of Dairy Manure

    Science.gov (United States)

    Koirala, K.

    2015-12-01

    Ammonia emission is a major concern due to its adverse effects on animal and human health. Ionic strength and suspended solids play key roles in the ammonia volatilization process. These two parameters, however, are usually lumped together in form of totalsolids. The objective of this study was to separate the contribution of suspended solids (SS) from that of ionic strength (IS) on ammonia volatilization in liquid dairy manure. A two-way factorial experiment was conducted to simultaneously test the effects of IS and SS on ammonium dissociation: a key element of the ammonia volatilization process. The fraction of ammonia (β) in total ammoniacal nitrogen (TAN) was experimentally determined in a convective emission chamber, for each level of SS and IS, at a constant wind speed of 1.5 m s-1, and air and liquid temperature of 25°C. The two way analysis of variance showed a significant effect of SS concentration (p = 0.04) on fraction of ammonia in the liquid dairy manure, while the effect of ionic strength was marginal (p = 0.05). The highest dissociation of ammonium was observed in manure with the lowest SS concentration (0%) and the lowest ionic strength (0.10 mol L-1). Significant increases in suspended solids concentration and ionic strength were necessary to influence the ammonium dissociation in dairy manure. Results revealed that substantially high content of suspended solids (> 3.0%) or relatively high dilution of manure with water (30%) were necessary for these two parameters to play significant rolesin the ammonia volatilization mechanism in liquid dairy manure. Results also showed that the β was more sensitive to the changes in suspended solids concentration than in the changes in ionic strength within the ranges of SS and IS examined in this study.Overall, the SS and IS effects on ammonium dissociation (and by extension on ammonia volatilization process) were thus found negligible within the normal ranges of liquid dairy manure characteristics.

  5. Artificial neural networks for modeling ammonia emissions released from sewage sludge composting

    Science.gov (United States)

    Boniecki, P.; Dach, J.; Pilarski, K.; Piekarska-Boniecka, H.

    2012-09-01

    The project was designed to develop, test and validate an original Neural Model describing ammonia emissions generated in composting sewage sludge. The composting mix was to include the addition of such selected structural ingredients as cereal straw, sawdust and tree bark. All created neural models contain 7 input variables (chemical and physical parameters of composting) and 1 output (ammonia emission). The α data file was subdivided into three subfiles: the learning file (ZU) containing 330 cases, the validation file (ZW) containing 110 cases and the test file (ZT) containing 110 cases. The standard deviation ratios (for all 4 created networks) ranged from 0.193 to 0.218. For all of the selected models, the correlation coefficient reached the high values of 0.972-0.981. The results show that he predictive neural model describing ammonia emissions from composted sewage sludge is well suited for assessing such emissions. The sensitivity analysis of the model for the input of variables of the process in question has shown that the key parameters describing ammonia emissions released in composting sewage sludge are pH and the carbon to nitrogen ratio (C:N).

  6. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    Science.gov (United States)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  7. Building the Fire Energetics and Emissions Research (FEER) Smoke Emissions Inventory Version 1.0

    Science.gov (United States)

    Ellison, Luke; Ichoku, Charles; Zhang, Feng; Wang, Jun

    2014-01-01

    The Fire Energetics and Emissions Research (FEER) group's new coefficient of emission global gridded product at 1x1 resolution that directly relates fire readiative energy (FRE) to smoke aerosol release, FEERv1.0 Ce, made its public debut in August 2013. Since then, steps have been taken to generate corresponding maps and totals of total particulate matter (PM) emissions using different sources of FRE, and subsequently to simulate the resulting PM(sub 2.5) in the WRF-Chem 3.5 model using emission rates from FEERv1.0 as well as other standard biomass burning emission inventories. An flowchart of the FEER algorithm to calculate Ce is outlined here along with a display of the resulting emissions of total PM globally and also regionally. The modeling results from the WRF-Chem3.5 simulations are also shown.

  8. Annual Danish Informative Inventory Report to UNECE. Emission inventories from the base year of the protocols to year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M. (and others)

    2012-05-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2012. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub X} for the years 1980-2010 (2) NO{sub X} CO NMVOC and NH{sub 3} for the years 1985-2010 (3) Particulate matter: TSP PM{sub 10} PM{sub 2.5} for the years 2000-2010 (L) Heavy Metals: Pb Cd Hg As Cr Cu Ni Se and Zn for the years 1990-2010 (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene benzo(b)fluoranthene benzo(k)fluoranthene and indeno(1 2 3-cd)pyrene PCDD/F and HCB for the years 1990-2010. Further the report contains information on background data for emissions inventory. (Author)

  9. Annual Danish informative inventory report to UNECE. Emission inventories from the base year of the protocols to year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Hoffmann, L.; Nielsen, Malene.; Gyldenkaerne, S.; Fauser, P.; Plejdrup, M.S.; Albrektsen, R.; Hjelgaard, K.

    2010-03-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2010. The report contains information on Denmark's emission inventories regarding emissions of (1) SOX for the years 1980-2008, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2008, (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2008, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2008, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3- cd)pyrene for the years 1990-2008 and (6) Dioxin and HCB. Further, the report contains information on background data for emissions inventory. (author)

  10. Annual Danish informative inventory report to UNECE. Emission inventories from the base year of the protocols to year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Hoffmann, L.; Nielsen, M.; Gyldenkaerne, S.; Fauser, P.; Plejdrup, M.S.; Albrektsen, R.; Hjelgaard, K.

    2009-04-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2009. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub X} for the years 1980-2007, (2) NO{sub X}, CO, NMVOC and NH{sub 3} for the years 1985-2007, (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2007, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2007, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2007 and (6) Dioxin and HCB. Further, the report contains information on background data for emissions inventory. (au)

  11. Annual Danish emission inventory report to UNECE. Inventories from the base year of the protocols to year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Boll Illerup, J.; Nielsen, O.-K.; Winther, M.; Hjorth Mikkelsen, M.; Hoffmann, L.; Nielsen, Malene; Gyldenkaerne, S.; Fauser, P.; Tranekjaer Jensen, M.; Gundorph Bruun, H.

    2007-07-01

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2007. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2005, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2005; (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2005, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2005, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2005. Further, the report contains information on background data for emissions inventory. (au)

  12. Annual Danish emission inventory report o UNECE. Inventories from the base year of the protocols to year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J.B.; Nielsen, Ole-Kenneth; Winther, Morten; Hjort Mikkensen, M.; Hoffmann, L.; Gyldenkaerne, S.; Fauser, P.

    2006-12-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2006. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2004, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2004; (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2004, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2004, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2004. Further, the report contains information on background data for emissions inventory. (au)

  13. Annual Danish emission inventory report to UNECE. Inventories from the base year of the protocols to year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Hoffmann, L.; Nielsen, Malene; Gyldenkaerne, S.; Fauser, P.; Tranekjaer Jensen, M.; Plejdrup, M.S.; Boll Illerup, J.

    2008-06-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2008. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub X} for the years 1980-2006, (2) NO{sub X}, CO, NMVOC and NH{sub 3} for the years 1985-2006; (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2006, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2006, and (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2006. Further, the report contains information on background data for emissions inventory. (au)

  14. Annual Danish emission inventory report to UNECE. Inventories from the base year of the protocols to year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J.B.; Nielsen, Malene; Winther, Morten; Hjorth Mikkelsen, M.; Hoffmann, L.; Gyldenkaerne, S.; Fauser, P.; Nielsen, O.K.

    2005-12-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2005. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2003, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2003; (3) Particulate matter: TSP, PM10, PM2.5 for the years 2000-2003, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2003, and(5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2003. Further, the report contains information on background data for emissions inventory. (au)

  15. Annual Danish informative inventory report to UNECE. Emission inventories from the base year of the protocols to year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Hoffmann, L.; Nielsen, Malene; Gyldenkaerne, S.; Fauser, P.; Plejdrup, M.S.; Albrektsen, R.; Hjelgaard, K.; Bruun, H.G.

    2011-04-15

    This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2011. The report contains information on Denmark's emission inventories regarding emissions of (1) SO{sub x} for the years 1980-2009, (2) NO{sub x}, CO, NMVOC and NH{sub 3} for the years 1985-2009, (3) Particulate matter: TSP, PM{sub 10}, PM{sub 2.5} for the years 2000-2009, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2009, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene for the years 1990-2009 and (6) Dioxin and HCB. Further, the report contains information on background data for emissions inventory. (Author)

  16. Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories

    Science.gov (United States)

    Warneke, C.; de Gouw, J. A.; Del Negro, L.; Brioude, J.; McKeen, S.; Stark, H.; Kuster, W. C.; Goldan, P. D.; Trainer, M.; Fehsenfeld, F. C.; Wiedinmyer, C.; Guenther, A. B.; Hansel, A.; Wisthaler, A.; Atlas, E.; Holloway, J. S.; Ryerson, T. B.; Peischl, J.; Huey, L. G.; Hanks, A. T. Case

    2010-04-01

    During the NOAA Southern Oxidant Study 1999 (SOS1999), Texas Air Quality Study 2000 (TexAQS2000), International Consortium for Atmospheric Research on Transport and Transformation (ICARTT2004), and Texas Air Quality Study 2006 (TexAQS2006) campaigns, airborne measurements of isoprene and monoterpenes were made in the eastern United States and in Texas, and the results are used to evaluate the biogenic emission inventories BEIS3.12, BEIS3.13, MEGAN2, and WM2001. Two methods are used for the evaluation. First, the emissions are directly estimated from the ambient isoprene and monoterpene measurements assuming a well-mixed boundary layer and are compared with the emissions from the inventories extracted along the flight tracks. Second, BEIS3.12 is incorporated into the detailed transport model FLEXPART, which allows the isoprene and monoterpene mixing ratios to be calculated and compared to the measurements. The overall agreement for all inventories is within a factor of 2 and the two methods give consistent results. MEGAN2 is in most cases higher, and BEIS3.12 and BEIS3.13 lower than the emissions determined from the measurements. Regions with clear discrepancies are identified. For example, an isoprene hot spot to the northwest of Houston, Texas, was expected from BEIS3 but not observed in the measurements. Interannual differences in emissions of about a factor of 2 were observed in Texas between 2000 and 2006.

  17. Ammonia emissions from pig houses in The Netherlands, Denmark and France

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Aarnink, A.J.A.; Rom, H.B.; Dourmad, J.Y.

    1999-01-01

    In recent decades pig production has been intensified in most European countries. This has resulted in a surplus of manure and a serious concern about the effect of ammonia emissions on environmental acidification and the pollution of ground and surface water. In the Netherlands, Denmark and France

  18. Improved passive flux samplers for measuring ammonia emissions from animal houses, part 1: Basic principles

    NARCIS (Netherlands)

    Scholtens, R.; Hol, J.M.G.; Wagemans, M.J.M.; Phillips, V.R.

    2003-01-01

    At present, precise, expensive and laborious methods with a high resolution in time are needed, to determine ammonia emission rates from animal houses. The high costs for equipment, maintenance and labour limit the number of sites that can be measured. This study examines a new, simpler concept for

  19. Manure ammonia and greenhouse gas emissions from beef cattle fed condensed tannins

    Science.gov (United States)

    A study was conducted to determine the effects of three levels of condensed tannins fed to 27 beef feed yard steers on ammonia and GHG emissions from manure. Condensed tannins were fed at rates of 0, 0.5 and 1.0 percent on a dry matter basis. Manure and urine were collected from two periods over 6 d...

  20. Ammonia and greenhouse gas emissions from constructed wetlands treating swine wastewater

    Science.gov (United States)

    Ammonia and greenhouse gas emissions from marsh-pond-marsh constructed wetlands treating swine wastewater were measured with closed-chamber technique using a photoacoustic multigas analyzer. Theory behind the technique was discussed and the technique was demonstrated with actual field data. Nitrous ...

  1. Emissions of sulfur-containing odorants, ammonia, and methane from pig slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Adamsen, Anders Peter S.; Nørgaard, Jan Værum

    2010-01-01

    Supplementation of benzoic acid to pig diets reduces the pH of urine and may thereby affect emissions of ammonia and other gases from slurry, including sulfur-containing compounds that are expected to play a role in odor emission. Over a period of 112 d, we investigated hydrogen sulfide (H2S...... from the slurry of the control treatment, which came from pigs fed according to Danish recommendations for amino acids and minerals. The emission patterns of volatile S compounds suggested an intense cycling between pools of organic S in the slurries, with urinary sulfate as the main source. Diet...... and benzoic acid treatments, which caused a significant increase in emissions of especially MT, but also of DMDS. In conclusion, addition of 2% benzoic acid to pig diets effectively reduced ammonia volatilization, but interactions with dietary S may increase odor problems....

  2. DETERMINATION OF AMMONIA MASS EMISSION FLUX FROM HOG WASTE EFFLUENT SPRAYING OPERATION USING OPEN PATH TUNABLE DIODE LASER SPECTROSCOPY WITH VERTICAL RADIAL PLUME MAPPING ANALYSIS

    Science.gov (United States)

    Emission of ammonia from concentrated animal feeding operations represents an increasingly important environmental issue. Determination of total ammonia mass emission flux from extended area sources such as waste lagoons and waste effluent spraying operations can be evaluated usi...

  3. National Emissions Inventory Vehicle Miles Traveled, U.S., 2011, EPA/OAR/OAQPS/AQAD

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web service layer depicts gridded Vehicle Miles Traveled (VMT) for 2011 from the National Emission Inventory (NEI). The default 2011 National Emissions...

  4. Compilation and analyses of emissions inventories for the NOAA atmospheric chemistry project. Progress report, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen for circa 1985 and 1990 and non-methane volatile organic compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity of the International Global Atmospheric Chemistry program. Global emissions of NOx for 1985 are estimated to be 21 Tg N/yr, with approximately 84% originating in the Northern Hemisphere. The global emissions for 1990 are 31 Tg N/yr for NOx and 173 Gg NMVOC/yr. Ongoing research activities for this project continue to address emissions of both NOx and NMVOCs. Future tasks include: evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates; derivation of quantitative uncertainty estimates for the emission values; and development of emissions estimates for 1995.

  5. Emissions, sinks and gas to particle conversion of amines and ammonia

    Science.gov (United States)

    Lee, S.

    2015-12-01

    Nitrogen-containing base compounds, amines and ammonia, play important roles in formation of secondary aerosols in the atmosphere, but their sources, sinks and atmospheric transformation processes are not well understood. Also, there are very limited analytical methods that are capable of measuring pptv or sub-pptv level of amines and ammonia. We have developed a chemical ionization mass spectrometer (CIMS) that can detect amines and ammonia at the pptv and sub-pptv level with a 1 min of integration time. Here, we report ambient measurements of amines and ammonia made in a moderately polluted continental site (Kent, Ohio) and in a rural Southeastern U.S. forest (Centreville, Alabama). Our finding indicate that there are much more abundant gas phase amines (C1-C6) and ammonia in the polluted site than in the rural forest, highlighting the importance of constraining anthropogenic emission sources of amines. At both locations, concentrations of these base compounds show clear temperature dependence, indicating strong gas-to-particle conversion processes. Compared to ammonia, amines can partition into aerosol phases even more effectively due to lower saturation vapor pressures. Measurements in the clean rural forest show that transported biomass burning plumes are the major source of amines. These nitrogen-containing compounds effectively undergo wet deposition in the atmosphere due to high solubilities.

  6. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    Science.gov (United States)

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS.

  7. New Maser Emission from Nonmetastable Ammonia in NGC 7538. IV. Coincident Masers in Adjacent States of Para-ammonia

    CERN Document Server

    Hoffman, Ian M

    2014-01-01

    We present the first detection of para-ammonia masers in NGC 7538: multiple epochs of observation of the 14NH3 (J,K) = (10,8) and (9,8) lines. We detect both thermal absorption and nonthermal emission in the (10,8) and (9,8) transitions and the absence of a maser in the (11,8) transition. The (9,8) maser is observed to increase in intensity by 40% over six months. Using interferometric observations with a synthesized beam of 0.25", we find that the (10,8) and (9,8) masers originate at the same sky position near IRS1. With strong evidence that the (10,8) and (9,8) masers arise in the same volume, we discuss the application of pumping models for the simultaneous excitation of nonmetastable (J > K) para-ammonia states having the same value of K and consecutive values of J. We also present detections of thermal absorption in rotational states ranging in energy from E/k_B ~ 200 K to 2000 K, and several non-detections in higher-energy states. In particular, we describe the populations in eight adjacent rotational s...

  8. Comparison of VOC and ammonia emissions from individual PVC materials, adhesives and from complete structures.

    Science.gov (United States)

    Järnström, H; Saarela, K; Kalliokoski, P; Pasanen, A-L

    2008-04-01

    Emission rates of volatile organic compounds (VOCs) and ammonia measured from six PVC materials and four adhesives in the laboratory were compared to the emission rates measured on site from complete structures. Significantly higher specific emission rates (SERs) were generally measured from the complete structures than from individual materials. There were large differences between different PVC materials in their permeability for VOCs originating from the underlying structure. Glycol ethers and esters from adhesives used in the installation contributed to the emissions from the PVC covered structure. Emissions of 2-ethylhexanol and TXIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were common. High ammonia SERs were measured from single adhesives but their contribution to the emissions from the complete structure did not appear as obvious as for VOCs. The results indicate that three factors affected the VOC emissions from the PVC flooring on a structure: 1) the permeability of the PVC product for VOCs, 2) the VOC emission from the adhesive used, and 3) the VOC emission from the backside of the PVC product.

  9. Ammonia emissions from deciduous forest after leaf fall

    DEFF Research Database (Denmark)

    Hansen, Kristina; Sørensen, Lise Lotte; Hertel, Ole

    2013-01-01

    therefore conclude that emissions from deciduous forests are important to include in model calculations of atmospheric NH3 for forest ecosystems. Finally, diurnal variations in the measured NH3 concentrations were related to meteorological conditions, forest phenology and the spatial distribution of local...

  10. Improving the City-scale Emission Inventory of Anthropogenic Air Pollutants: A Case Study of Nanjing

    Science.gov (United States)

    Qiu, L.; Zhao, Y.; Xu, R.; Xie, F.; Wang, H.; Qin, H.; Wu, X.; Zhang, J.

    2014-12-01

    To evaluate the improvement of city-scale emission inventory, a high-resolution emission inventory of air pollutants for Nanjing is first developed combining detailed source information, and then justified through quantitative analysis with observations. The best available domestic emission factors and unit-/facility-based activity level data were compiled based on a thorough field survey on major emission sources. Totally 1089 individual emission sources were identified as point sources and all the emission-related parameters including burner type, combustion technology, fuel quality, and removal efficiency of pollution control devices, are carefully investigated and analyzed. Some new data such as detailed information of city fueling-gas stations, construction sites, monthly activity level, data from continuous emission monitoring systems and traffic flow information were combined to improve spatiotemporal distribution of this inventory. For SO2, NOX and CO, good spatial correlations were found between ground observation (9 state controlling air sampling sites in Nanjing) and city-scale emission inventory (R2=0.34, 0.38 and 0.74, respectively). For TSP, PM10 and PM2.5, however, poorer correlation was found due to relatively weaker accuracy in emission estimation and spatial distribution of road dust. The mixing ratios between specific pollutants including OC/EC, BC/CO and CO2/CO, are well correlated between those from ground observation and emission. Compared to MEIC (Multi-resolution Emission Inventory for China), there is a better spatial consistence between this city-scale emission inventory and NO2 measured by OMI (Ozone Monitoring Instrument). In particular, the city-scale emission inventory still correlated well with satellite observations (R2=0.28) while the regional emission inventory showed little correlation with satellite observations (R2=0.09) when grids containing power plants are excluded. It thus confirms the improvement of city-scale emission

  11. Recent reduction in NO x emissions over China: synthesis of satellite observations and emission inventories

    Science.gov (United States)

    Liu, Fei; Zhang, Qiang; van der A, Ronald J.; Zheng, Bo; Tong, Dan; Yan, Liu; Zheng, Yixuan; He, Kebin

    2016-11-01

    Tropospheric nitrogen dioxide (NO2) column densities detected from space are widely used to infer trends in terrestrial nitrogen oxide (NO x ) emissions. We study changes in NO2 column densities using the Ozone Monitoring Instrument (OMI) over China from 2005 to 2015 and compare them with the bottom-up inventory to examine NO x emission trends and their driving forces. From OMI measurements we detect the peak of NO2 column densities at a national level in the year 2011, with average NO2 column densities deceasing by 32% from 2011 to 2015 and corresponding to a simultaneous decline of 21% in bottom-up emission estimates. A significant variation in the peak year of NO2 column densities over regions is observed. Because of the reasonable agreement between the peak year of NO2 columns and the start of deployment of denitration devices, we conclude that power plants are the primary contributor to the NO2 decline, which is further supported by the emission reduction of 56% from the power sector in the bottom-up emission inventory associated with the penetration of selective catalytic reduction (SCR) increasing from 18% to 86% during 2011-2015. Meanwhile, regulations for vehicles also make a significant contribution to NO x emission reductions, in particular for a few urbanized regions (e.g., Beijing and Shanghai), where they implemented strict regulations for vehicle emissions years before the national schedule for SCR installations and thus reached their NO2 peak 2-3 years ahead of the deployment of denitration devices for power plants.

  12. Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China

    Science.gov (United States)

    Zheng, Bo; Zhang, Qiang; Tong, Dan; Chen, Chuchu; Hong, Chaopeng; Li, Meng; Geng, Guannan; Lei, Yu; Huo, Hong; He, Kebin

    2017-01-01

    Gridded emission inventories are essential inputs for chemical transport models and climate models. Spatial proxies are applied to allocate emissions from regional totals to spatially resolved grids when the exact locations of emissions are absent, with additional uncertainties arising due to the spatial mismatch between the locations of emissions and spatial proxies. In this study, we investigate the impact of spatial proxies on the accuracy of gridded emission inventories at different spatial resolutions by comparing gridded emissions developed from different spatial proxies (proxy-based inventory) with a highly spatially disaggregated bottom-up emission inventory developed from the extensive use of locations of emitting facilities (bottom-up inventory) in Hebei Province, China. We find that proxy-based inventories are generally comparable to bottom-up inventories for grid sizes larger than 0.25° because spatial errors are largely diminished at coarse resolutions. However, for gridded emissions with finer resolutions, large positive biases in urban centers and negative biases in suburban and rural regions are identified in proxy-based inventories and are then propagated into significant biases in urban-scale chemical transport modeling. Compared to bottom-up inventories, the use of proxy-based emissions exhibits similar modeling results, with biases varying from 3 to 13 % when predicting surface concentrations of different pollutants at 36 km resolution and an additional 8-73 % at 4 km resolution. The resolution dependence of uncertainties in proxy-based gridded inventories can be explained by the decoupling of emission facility locations from spatial surrogates, especially because industry facilities tend to be located away from urban centers. This distance results in a divergence between emission distributions and the allocation of proxies on smaller grids. The decoupling effects are weakened when the grid size increases to cover both urban and rural regions

  13. Potential ammonia emissions from straw, slurry pit and concrete floor in a group housing system for sows

    NARCIS (Netherlands)

    Groenestein, C.M.; Hartog, den L.A.; Metz, J.H.M.

    2006-01-01

    To assess the contribution of straw bedding, concrete floors, slats, and slurry in the pits to ammonia emission in a straw-bedded group-housing system for sows, the ammonia volatilisation response of urination on the potential emitting surfaces from a sow house was studied under laboratory condition

  14. Maatregelen ter vermindering van fijnstofemissie uit de pluimveehouderij; invloed lichtschema op fijnstof- en ammoniakemissie uit vleeskuikenstallen = Measures to reduce fine dust emissions from poultry housings; influence light schedules on dust and ammonia emission from broiler houses

    NARCIS (Netherlands)

    Harn, van J.; Mosquera Losada, J.; Aarnink, A.J.A.

    2009-01-01

    The influence of light schedules and light intensity on fine dust and ammonia emission from broiler houses were studied. No significant effects of light schedule and light intensity were found on fine dust and ammonia emission from broilers

  15. COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.

    Energy Technology Data Exchange (ETDEWEB)

    BENKOVITZ,C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC

  16. Ammonia and Methane Dairy Emission Plumes in the San Joaquin Valley of California from Individual Feedlot to Regional Scales

    Science.gov (United States)

    Miller, David J.; Sun, Kang; Pan, Da; Zondlo, Mark A.; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sachse, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy J.

    2015-01-01

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 +/- 0.03 ppmv ppmv-1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20-30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. Our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.

  17. The application of inverse-dispersion and gradient methods to estimate ammonia emissions from a penguin colony

    Science.gov (United States)

    Theobald, Mark R.; Crittenden, Peter D.; Tang, Y. Sim; Sutton, Mark A.

    2013-12-01

    Penguin colonies represent some of the most concentrated sources of ammonia emissions to the atmosphere in the world. The ammonia emitted into the atmosphere can have a large influence on the nitrogen cycling of ecosystems near the colonies. However, despite the ecological importance of the emissions, no measurements of ammonia emissions from penguin colonies have been made. The objective of this work was to determine the ammonia emission rate of a penguin colony using inverse-dispersion modelling and gradient methods. We measured meteorological variables and mean atmospheric concentrations of ammonia at seven locations near a colony of Adélie penguins in Antarctica to provide input data for inverse-dispersion modelling. Three different atmospheric dispersion models (ADMS, LADD and a Lagrangian stochastic model) were used to provide a robust emission estimate. The Lagrangian stochastic model was applied both in ‘forwards’ and ‘backwards’ mode to compare the difference between the two approaches. In addition, the aerodynamic gradient method was applied using vertical profiles of mean ammonia concentrations measured near the centre of the colony. The emission estimates derived from the simulations of the three dispersion models and the aerodynamic gradient method agreed quite well, giving a mean emission of 1.1 g ammonia per breeding pair per day (95% confidence interval: 0.4-2.5 g ammonia per breeding pair per day). This emission rate represents a volatilisation of 1.9% of the estimated nitrogen excretion of the penguins, which agrees well with that estimated from a temperature-dependent bioenergetics model. We found that, in this study, the Lagrangian stochastic model seemed to give more reliable emission estimates in ‘forwards’ mode than in ‘backwards’ mode due to the assumptions made.

  18. Changing speed-VMT distributions: the effects on emissions inventories and conformity.

    Science.gov (United States)

    Nanzetta, K; Niemeier, D; Utts, J M

    2000-03-01

    The emissions factor modeling component of the motor vehicle emissions inventory (MVEI) modeling suite is currently being revised by the California Air Resources Board (CARB). One of the proposed changes in modeling philosophy is a shift from using link-based travel activity data to trip-based travel data for preparing mobile emissions inventories. Also as part of the revisions, new speed correction factors (SCFs) will be developed by CARB for the revised model. The new SCFs will be derived from vehicle emissions on 15 new driving cycles, each constructed to represent a typical trip at a specific average speed. This paper discusses how the new SCFs will affect transportation conformity and emissions inventory development, and evaluates the differences in total emissions produced by trip-based and link-based distributions of speed and vehicle miles of travel (VMT). We simulated both link-based and trip-based speed-VMT distributions using travel data from the Sacramento and San Diego travel demand models. On the basis of the simulation results, there is reason to expect that mobile emissions inventories constructed using the proposed trip-based philosophy will differ markedly from those constructed in the current manner. Noting that results may vary by region, increases are expected in the CO and HC inventory levels, with concomitant decreases in the NOx mobile emissions inventories.

  19. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions.

  20. Gridded emission inventory of short-chain chlorinated paraffins and its validation in China.

    Science.gov (United States)

    Jiang, Wanyanhan; Huang, Tao; Mao, Xiaoxuan; Wang, Li; Zhao, Yuan; Jia, Chenhui; Wang, Yanan; Gao, Hong; Ma, Jianmin

    2017-01-01

    China produces approximately 20%-30% of the total global chlorinated paraffins (CPs). The establishment of a short-chain CP (SCCP) emission inventory is a significant step toward risk assessment and regulation of SCCPs in China and throughout the globe. This study developed a gridded SCCPs emission inventory with a 1/4° longitude by 1/4° latitude resolution from 2008 to 2012 for China, which was based on the total annual CPs emissions for the nation. The total national SCCPs emission during this 5-year period was 5651.5 tons. An additive in metal cutting fluids was a major emission source in China, contributing 2680.2 tons to the total atmospheric emissions of SCCPs from 2008 to 2012, followed by the production of CPs (2281.8 tons), plasticizers (514.3 tons), flame retardants (108.6 tons), and net import (66.6 tons). Most of these emission sources are located along the eastern seaboard of China and southern China. A coupled atmospheric transport model was employed to simulate environmental contamination by SCCPs using the gridded emission inventory of SCCPs from 2008 to 2012 as the model initial conditions. Simulated atmospheric and soil concentrations were compared with field monitoring data to validate the emission inventory. The results showed good consistency between modeled and field sampling data, supporting the reliability and credibility of the gridded SCCPs emission inventory that was developed in the present study.

  1. Effect of nitrogen fertilization and residue management practices on ammonia emissions from subtropical sugarcane production

    Science.gov (United States)

    mudi, Sanku Datta; Wang, Jim J.; Dodla, Syam Kumar; Arceneaux, Allen; Viator, H. P.

    2016-08-01

    Ammonia (NH3) emission from soil is a loss of nitrogen (N) nutrient for plant production as well as an issue of air quality, due to the fact that it is an active precursor of airborne particulate matters. Ammonia also acts as a secondary source of nitrous oxide (N2O) emission when present in the soil. In this study, the impacts of different sources of N fertilizers and harvest residue management schemes on NH3 emissions from sugarcane production were evaluated based on an active chamber method. The field experiment plots consisting of two sources of N fertilizer (urea and urea ammonium nitrate (UAN)) and two common residue management practices, namely residue retained (RR) and residue burned (RB), were established on a Commerce silt loam. The NH3 volatilized following N fertilizer application was collected in an impinger containing diluted citric acid and was subsequently analyzed using ion chromatography. The NH3 loss was primarily found within 3-4 weeks after N application. Average seasonal soil NH3 flux was significantly greater in urea plots with NH3-N emission factor (EF) twice or more than in UAN plots (2.4-5.6% vs. 1.2-1.7%). The RR residue management scheme had much higher NH3 volatilization than the RB treatment regardless of N fertilizer sources, corresponding to generally higher soil moisture levels in the former. Ammonia-N emissions in N fertilizer-treated sugarcane fields increased with increasing soil water-filled pore space (WFPS) up to 45-55% observed in the field. Both N fertilizer sources and residue management approaches significantly affected NH3 emissions.

  2. A process-based model for ammonia emission from urine patches, GAG (Generation of Ammonia from Grazing): description and sensitivity analysis

    DEFF Research Database (Denmark)

    Móring, Andrea; Vieno, Massimo; M. Doherty, Ruth;

    2016-01-01

    content of the soil under a urine patch and also soil pH dynamics. The model tests suggest that ammonia volatilization from a urine patch can be affected by the possible restart of urea hydrolysis after a rain event as well as CO2 emission from the soil. The vital role of temperature in NH3 exchange...

  3. A process-based model for ammonia emission from urine patches, GAG (Generation of Ammonia from Grazing): description and sensitivity analysis

    Science.gov (United States)

    Móring, Andrea; Vieno, Massimo; Doherty, Ruth M.; Laubach, Johannes; Taghizadeh-Toosi, Arezoo; Sutton, Mark A.

    2016-03-01

    In this paper a new process-based, weather-driven model for ammonia (NH3) emission from a urine patch has been developed and its sensitivity to various factors assessed. The GAG model (Generation of Ammonia from Grazing) is capable of simulating the TAN (total ammoniacal nitrogen) and the water content of the soil under a urine patch and also soil pH dynamics. The model tests suggest that ammonia volatilization from a urine patch can be affected by the possible restart of urea hydrolysis after a rain event as well as CO2 emission from the soil. The vital role of temperature in NH3 exchange is supported by our model results; however, the GAG model provides only a modest overall temperature dependence in total NH3 emission compared with the literature. This, according to our findings, can be explained by the higher sensitivity to temperature close to urine application than in the later stages and may depend on interactions with other nitrogen cycling processes. In addition, we found that wind speed and relative humidity are also significant influencing factors. Considering that all the input parameters can be obtained for larger scales, GAG is potentially suitable for field and regional scale application, serving as a tool for further investigation of the effects of climate change on ammonia emissions and deposition.

  4. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment

    NARCIS (Netherlands)

    Yong, Y.; Velthof, G.L.; Oenema, O.

    2015-01-01

    Livestock manure contributes considerably to global emissions of ammonia (NH3) and greenhouse gases (GHG), especially methane (CH4) and nitrous oxide (N2O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we

  5. Measurement method for urine puddle depth in dairy cow houses as input variable for ammonia emission modelling

    NARCIS (Netherlands)

    Snoek, J.W.; Stigter, J.D.; Ogink, Nico; Groot Koerkamp, P.W.G.

    2015-01-01

    Dairy cow houses are a major contributor to ammonia (NH3) emission in many European countries. To understand and predict NH3 emissions from cubicle dairy cow houses a mechanistic model was developed and a sensitivity analysis was performed to assess the contribution to NH3 emission of each input var

  6. Development and validation of a lead emission inventory for the Greater Cairo area

    Directory of Open Access Journals (Sweden)

    Zeinab Safar

    2014-09-01

    Full Text Available Studies that investigate the environmental health risks to Cairo residents invariably conclude that lead is one of the area’s major health hazards. The Cairo Air Improvement Project (CAIP, which was implemented by a team led by Chemonics International, funded by USAID in partnership with the Egyptian Environmental Affairs Agency (EEAA, started developing a lead emission inventory for the greater Cairo (GC area in 1998. The inventory contains a list by major source of the annual lead emissions in the GC area. Uses of the inventory and associated database include developing effective regulatory and control strategies, assessing emissions trends, and conducting modeling exercises. This paper describes the development of the current lead emissions inventory (1999–2010, along with an approach to develop site specific emission factors and measurements to validate the inventory. This paper discusses the major sources of lead in the GC area, which include lead smelters, Mazout (heavy fuel oil combustion, lead manufacturing batteries factories, copper foundries, and cement factories. Included will be the trend in the lead emissions inventory with regard to the production capacity of each source category. In addition, the lead ambient measurements from 1999 through 2010 are described and compared with the results of Source Attribution Studies (SAS conducted in 1999, 2002, and 2010. Due to EEAA/CAIP efforts, a remarkable decrease in more than 90% in lead emissions was attained for 2007.

  7. Effects of Different Concentrations of Ammonia Nitrogen on N2O Emission in the Process of Partial Nitrification

    Institute of Scientific and Technical Information of China (English)

    TIAN; Lin; KONG; Qiang; ZHANG; Jian; MIAO; Ming-sheng

    2012-01-01

    [Objective] The study aimed to discuss the effects of different concentrations of ammonia nitrogen on N2O emission in the process of partial nitrification. [Method] By using a sequencing batch biofilm reactor (SBBR) under intermittent aeration, the influences of various concentrations of influent ammonia nitrogen on nitrous oxide (N2O) emission from partial nitrification were analyzed. [Result] When the concentration of influent ammonia nitrogen varied from 200 to 400 mg/L, the changing trends of DO and ORP value were consistent during the process of partial nitrification, and the concentration ratio of NO-2-N to NH+4-N in effluent water reached 1∶1, with lower NO-3-N level. In addition, ammonia nitrogen concentration in the influent had significant effects on N2O emission in the process of partial nitrification, that is, the higher the ammonia nitrogen concentration, the more the N2O emission. When ammonia nitrogen concentration was 400 mg/L, N2O emission was up to about 37 mg. [Conclusion] N2O emission in the process of partial nitrification might be related to the concentrations of NH+4 and NO-2.

  8. Effects of Different Concentrations of Ammonia Nitrogen on N_2O Emission in the Process of Partial Nitrification

    Institute of Scientific and Technical Information of China (English)

    TIAN; Lin; KONG; Qiang; ZHANG; Jian; MIAO; Ming-sheng

    2012-01-01

    [Objective] The study aimed to discuss the effects of different concentrations of ammonia nitrogen on N2O emission in the process of partial nitrification. [Method] By using a sequencing batch biofilm reactor (SBBR) under intermittent aeration, the influences of various concentrations of influent ammonia nitrogen on nitrous oxide (N2O) emission from partial nitrification were analyzed. [Result] When the concentration of influent ammonia nitrogen varied from 200 to 400 mg/L, the changing trends of DO and ORP value were consistent during the process of partial nitrification, and the concentration ratio of NO-2-N to NH+4-N in effluent water reached 1∶1, with lower NO-3-N level. In addition, ammonia nitrogen concentration in the influent had significant effects on N2O emission in the process of partial nitrification, that is, the higher the ammonia nitrogen concentration, the more the N2O emission. When ammonia nitrogen concentration was 400 mg/L, N2O emission was up to about 37 mg. [Conclusion] N2O emission in the process of partial nitrification might be related to the concentrations of NH+4 and NO-2.

  9. National Emissions Inventory Vehicle Miles Traveled, U.S., 2014, EPA/OAR/OAQPS/AQAD

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web service contains layers that depict gridded Vehicle Miles Traveled (VMT) for 2014 from the National Emission Inventory (NEI). The default 2014 National...

  10. National Emissions Inventory (NEI) 2005 Point Facility Data for the US (US EPA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service displays 2005 USEPA National Emissions Inventory (NEI) point facility information for the United States. The map service was created for inclusion...

  11. National Emissions Inventory (NEI) 2011 Point Facility Data for the US (US EPA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service displays 2011 USEPA National Emissions Inventory (NEI) point facility information for the United States. The map service was created for inclusion...

  12. Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine

    DEFF Research Database (Denmark)

    Westlye, Fredrik Ree; Ivarsson, Anders; Schramm, Jesper

    2013-01-01

    This study concerns nitrogen based emissions from a hydrogen enriched ammonia fueled SI engine. These emissions deserve special attention as their formation may differ from conventional HC combustion due to the nitrogen content in the fuel. A range of experiments are conducted with a single cylin...... by the compression ratio. However, levels are lower than required in order to eliminate all NOx emissions with a SCR catalyst. © 2013 Elsevier Ltd. All rights reserved....... cylinder 0.612 l CFR engine with a compression ratio varying from 7 to 15 using a fuel composition of 80 vol% NH3 and 20 vol% H2. Wet exhaust samples are analysed with an FT-IR. Emission measurements reveal that nitric oxide stem from other reaction paths than the dissociation of molecular nitrogen...

  13. Review, improvement and harmonisation of the Nordic particulate matter air emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Boll Illerup, J. (Aarhus Univ. National Environmental Research Institute (NERI) (Denmark)); Kindbom, K.; Sjodin, AA. (Swedish Environmental Research Institute (IVL) (Sweden)); Saarinen, K.; Mikkola-Pusa, J. (Finlands Miljoecentral (SYKE) (Finland)); Aasestad, K. (Statistisk Sentralbyraa (SSB) (Norway)); Hallsdottir, B. (Environmental and Food Agency Iceland (IS)); Makela, K. (Technical Research Centre of Finland (VTT) (Finland))

    2010-12-15

    In this study the Nordic particulate matter (PM) emission inventories are compared and for the most important sources - residential wood burning and road transport - a quality analysis is carried out based on PM measurements conducted and models used in the Nordic countries. All the institutions in charge of the work on emission inventories in the Nordic countries have participated in this project together with researchers performing PM measurements in the residential and transport sectors in the Nordic countries in order to increase the quality of the PM national inventories. The ratio between the reported emissions of PM{sub 10} and PM{sub 2.5} was calculated for each country. Norway has the largest share of PM{sub 2.5} compared to PM{sub 10} (88 %), whereas Finland has the lowest (66 %). Denmark and Sweden are right in the middle with 73 and 76 %, respectively. The completeness of the inventories was assessed with particular emphasis on the categories where emissions were reported by one or more countries, while the other categories reported notation keys. It is found that the PM emission inventories generally are complete and that the sources reported as not estimated only are expected to have minor contributions to the total PM emissions. The variability of emission factors for residential wood combustion is discussed and it is illustrated that the emission factors can vary by several orders of magnitude. (Author)

  14. Modeling Ozone in the Eastern United States Using a Fuel-Based Mobile Source Emissions Inventory

    Science.gov (United States)

    Mcdonald, B. C.; Ahmadov, R.; McKeen, S. A.; Kim, S. W.; Frost, G. J.; Trainer, M.

    2015-12-01

    A fuel-based mobile source emissions inventory of nitrogen oxides (NOx) and carbon monoxide (CO) is developed for the continental US. Emissions are mapped for the year 2013, including emissions from on-road gasoline and diesel vehicles, and off-road engines. We find that mobile source emissions of NOx in the National Emissions Inventory 2011 (NEI11) are 50-60% higher than results from this study; mobile sources contribute around half of total US anthropogenic NOx emissions. We model chemistry and transport of emissions from the NEI11 and our fuel-based inventory during the Southeast Nexus (SENEX) Study period in the summer of 2013, using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. In the Eastern US, there is a consistent over-prediction of tropospheric ozone (O3) levels when simulating emissions from the NEI11, with the largest biases located in the Southeastern US. Using our fuel-based inventory, we test O3 sensitivity to lower NOx emissions. We highlight results in the Southeast, a region with significant interactions between anthropogenic and biogenic emissions of ozone precursors. Model results of NOy, CO, and O3 are compared with aircraft measurements made during SENEX.

  15. 77 FR 11533 - Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2010; Notice of Availability and...

    Science.gov (United States)

    2012-02-27

    ... Framework Convention on Climate Change (UNFCCC) reporting guidelines. The Inventory of U.S. Greenhouse Gas... AGENCY Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2010; Notice of Availability and... availability and request for comments. SUMMARY: The Draft Inventory of U.S. Greenhouse Gas Emissions and...

  16. Comparing emission inventories and model-ready emission datasets between Europe and North America for the AQMEII project

    NARCIS (Netherlands)

    Pouliot, G.; Pierce, T.; Denier van der Gon, H.; Schaap, M.; Moran, M.; Nopmongcol, U.

    2012-01-01

    This paper highlights the similarities and differences in how emission inventories and datasets were developed and processed across North America and Europe for the Air Quality Model Evaluation International Initiative (AQMEII) project and then characterizes the emissions for the two domains. We foc

  17. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    NARCIS (Netherlands)

    Steenhuisen, Frits

    2015-01-01

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important se

  18. The effect of climate and climate change on ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Skjøth, Carsten Ambelas; Geels, Camilla

    2013-01-01

    to a standard Danish pig stable with 1000 animals and display how emissions from this source would vary geographically throughout central and northern Europe and from year to year. In view of future climate changes, we also evaluate the potential future changes in emission by including temperature projections...... from an ensemble of climate models. The results point towards four overall issues. (1) Emissions can easily vary by 20% for different geographical locations within a country due to overall variations in climate. The largest uncertainties are seen for large countries such as the UK, Germany and France....... (2) Annual variations in overall climate can at specific locations cause uncertainties in the range of 20 %. (3) Climate change may increase emissions by 0–40% in central to northern Europe. (4) Gradients in existing emission inventories that are seen between neighbour countries (e.g. between the UK...

  19. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    Science.gov (United States)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  20. Review, improvement and harmonisation of the Nordic particulate matter air emission inventories

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Illerup, Jytte Boll; Kindbom, Karin;

    In this study the Nordic particulate matter (PM) emission inventories are compared and for the most important sources - residential wood burning and road transport - a quality analysis is carried out based on PM measurements conducted and models used in the Nordic countries. All the institutions...... in charge of the work on emission inventories in the Nordic countries have participated in this project together with researchers performing PM measurements in the residential and transport sectors in the Nordic countries in order to increase the quality of the PM national inventories. The ratio between...... the reported emissions of PM10 and PM2.5 was calculated for each country. Norway has the largest share of PM2.5 compared to PM10 (88 %), whereas Finland has the lowest (66 %). Denmark and Sweden are right in the middle with 73 and 76 %, respectively. The completeness of the inventories was assessed...

  1. Ammonia emissions, transport, and deposition downwind of agricultural areas at local to regional scales

    Science.gov (United States)

    Zondlo, Mark; Pan, Da; Golston, Levi; Sun, Kang; Tao, Lei

    2016-04-01

    Ammonia (NH3) emissions from agricultural areas show extreme spatiotemporal variations, yet agricultural emissions dominate the global NH3 budget and ammoniated aerosols are a dominant component of unhealthy fine particulate matter. The emissions of NH3 and their deposition near and downwind of agricultural areas is complex. As part of a multi-year field intensive along the Colorado Front Range (including the NASA DISCOVER-AQ and NSF FRAPPE field experiments), we have examined temporal emissions of NH3 from feedlots, regional transport of ammonia and ammoniated aerosols from the plains to relatively pristine regions in Rocky Mountain National Park, and dry deposition and re-emission of grassland NH3 in the park. Eddy covariance measurements at feedlots and natural grasslands in the mountains were conducted with newly-developed open-path, eddy covariance laser-based sensors for NH3 (0.7 ng NH3/m2/s detection limit at 10 Hz). These measurements were coupled with other NH3/NHx measurements from mobile laboratories, aircraft, and satellite to examine the transport of NH3 from agricultural areas to cleaner regions downwind. At the farm level, eddy covariance NH3 fluxes showed a strong diurnal component correlated with temperature regardless of the season but with higher absolute emissions in summer than winter. While farm-to-farm variability (N=62 feedlots) was high, similar diurnal trends were observed at all sites regardless of individual farm type (dairy, beef, sheep, poultry, pig). Deposition at scales of several km showed relatively small deposition (10% loss) based upon NH3/CH4 tracer correlations, though the NH3 concentrations were so elevated (up to ppmv) that these losses should not be neglected when considering near-farm deposition. Ammonia was efficiently transported at least 150 km during upslope events to the Colorado Front Range (ele. 3000-4000 m) based upon aircraft, mobile laboratory, and model measurements. The gas phase lifetime of NH3 was estimated to

  2. Ammonia emissions from an anaerobic digestion plant estimated using atmospheric measurements and dispersion modelling.

    Science.gov (United States)

    Bell, Michael W; Tang, Y Sim; Dragosits, Ulrike; Flechard, Chris R; Ward, Paul; Braban, Christine F

    2016-10-01

    Anaerobic digestion (AD) is becoming increasingly implemented within organic waste treatment operations. The storage and processing of large volumes of organic wastes through AD has been identified as a significant source of ammonia (NH3) emissions, however the totality of ammonia emissions from an AD plant have not been previously quantified. The emissions from an AD plant processing food waste were estimated through integrating ambient NH3 concentration measurements, atmospheric dispersion modelling, and comparison with published emission factors (EFs). Two dispersion models (ADMS and a backwards Lagrangian stochastic (bLS) model) were applied to calculate emission estimates. The bLS model (WindTrax) was used to back-calculate a total (top-down) emission rate for the AD plant from a point of continuous NH3 measurement downwind from the plant. The back-calculated emission rates were then input to the ADMS forward dispersion model to make predictions of air NH3 concentrations around the site, and evaluated against weekly passive sampler NH3 measurements. As an alternative approach emission rates from individual sources within the plant were initially estimated by applying literature EFs to the available site parameters concerning the chemical composition of waste materials, room air concentrations, ventilation rates, etc. The individual emission rates were input to ADMS and later tuned by fitting the simulated ambient concentrations to the observed (passive sampler) concentration field, which gave an excellent match to measurements after an iterative process. The total emission from the AD plant thus estimated by a bottom-up approach was 16.8±1.8mgs(-1), which was significantly higher than the back-calculated top-down estimate (7.4±0.78mgs(-1)). The bottom-up approach offered a more realistic treatment of the source distribution within the plant area, while the complexity of the site was not ideally suited to the bLS method, thus the bottom-up method is believed

  3. Towards a climate-dependent paradigm of ammonia emission and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Tang, Y.S.; Braban, C.F.; Vieno, M.; Dore, A.J.; Mitchell, R.F.; Wanless, S.; Daunt, F.; Fowler, D. [NERC Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik EH26 0QB (United Kingdom); Blackall, T.D. [Department of Geography, Strand Campus, Kings College London, London WC2R 2LS (United Kingdom); Theobald, M.R. [Higher Technical School of Agricultural Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Milford, C. [Izana Atmospheric Research Center, Meteorological State Agency of Spain (AEMET), Santa Cruz de Tenerife 38071 (Spain); Flechard, C.R. [INRA, Agrocampus Ouest, UMR 1069 SAS, 65 rue de St. Brieuc, 35042 Rennes Cedex (France); Loubet, B.; Massad, R.; Cellier, P.; Personne, E. [UMR INRA-AgroParisTech Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Coheur, P.F.; Clarisse, L.; Van Damme, M.; Ngadi, Y. [Spectroscopie de l' atmosphere, Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), 50 avenue F. D. Roosevelt, 1050 Brussels (Belgium); Clerbaux, C. [Universite Paris 06, Universite Versailles-St. Quentin, UMR8190, CNRS/INSU, LATMOS-IPSL, Paris (France); Geels, C.; Hertel, O. [Department of Environmental Science, Aarhus University, P.O. Box 358, Frederiksborgvej 399, 4000 Roskilde (Denmark); Ambelas Skjoeth, C. [National Pollen and Aerobiology Research Unit, University of Worcester, Henwick Grove, Worcester WR2 6AJ (United Kingdom); Wichink Kruit, R.J. [TNO, Climate, Air and Sustainability, P.O. Box 80015, 3508 TA Utrecht (Netherlands); Pinder, R.W.; Bash, J.O.; Walker, J.T. [US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, 109 T.W. Alexander Drive, Durham, NC 27711 (United States); Simpson, D. [Norwegian Meteorological Institute, EMEP MSC-W, P.O. Box 43-Blindern, 0313 Oslo (Norway); Horvath, L. [Plant Ecology Research Group of Hungarian Academy of Sciences, Institute of Botany and Ecophysiology, Szent Istvan University, Pater K. utca 1, 2100 Goedoello (Hungary); Misselbrook, T.H. [Rothamsted Research, Sustainable Soils and Grassland Systems, North Wyke, Okehampton EX20 2SB (United Kingdom); Bleeker, A. [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Dentener, F. [European Commission, DG Joint Research Centre, via Enrico Fermi 2749, 21027 Ispra (Italy); De Vries, W. [Alterra, Wageningen University and Research Centre, Droevendaalsesteeg 4, 6708 PB Wageningen (Netherlands)

    2013-07-15

    Existing descriptions of bi-directional ammonia (NH3) land-atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission-deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5{sup o}C warming would increase emissions by 42 per cent (28-67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45-85) Tg N in 2008 to reach 132 (89-179) Tg by 2100.

  4. Estimating farm-gate ammonia emissions from major animal production systems in China

    Science.gov (United States)

    Gao, Zhiling; Ma, Wenqi; Zhu, Gaodi; Roelcke, Marco

    2013-11-01

    Ammonia (NH3) emissions from livestock production in China are an important contributor to the global NH3 budget. In this study, by estimating total nitrogen (N) intake based on herd structures and excreted N, a mass balance model was used to estimate NH3 losses from animal housing and manure storage facilities of dairy cattle, beef cattle, pigs, broiler and layer productions within animal farm gate and their corresponding NH3 emission intensities on the basis of animal products, N and protein in animal products. In 2009, NH3 emissions from pigs, layers, beef and dairy cattle and broiler production systems in China were 1.23, 0.52, 0.24, 0.21 and 0.09 million tons, respectively. The NH3 emission intensities were 26.6 g NH3-N kg-1 of pork, 28.1 g NH3-N kg-1 of layer eggs, 39.4 g NH3-N kg-1 of beef meat, 6.0 g NH3-N kg-1 of dairy milk and 4.6 g NH3-N kg-1 of chicken meat, or 1260 (pigs), 1514 (layers), 1297 (beef), 1107 (dairy) and 123 g NH3-N (broilers) kg-1 N in animal products. Of the sectors of NH3 emission, manure storage facilities and farmyard manure (FYM) in animal housing were the major contributors to the total NH3 emissions except for layers; housing emissions from slurry were also major contributors for dairy and pig production.

  5. Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis

    Science.gov (United States)

    Paliwal, Umed; Sharma, Mukesh; Burkhart, John F.

    2016-10-01

    Black carbon (BC) emissions from India for the year 2011 are estimated to be 901.11 ± 151.56 Gg yr-1 based on a new ground-up, GIS-based inventory. The grid-based, spatially resolved emission inventory includes, in addition to conventional sources, emissions from kerosene lamps, forest fires, diesel-powered irrigation pumps and electricity generators at mobile towers. The emissions have been estimated at district level and were spatially distributed onto grids at a resolution of 40 × 40 km2. The uncertainty in emissions has been estimated using a Monte Carlo simulation by considering the variability in activity data and emission factors. Monthly variation of BC emissions has also been estimated to account for the seasonal variability. To the total BC emissions, domestic fuels contributed most significantly (47 %), followed by industry (22 %), transport (17 %), open burning (12 %) and others (2 %). The spatial and seasonal resolution of the inventory will be useful for modeling BC transport in the atmosphere for air quality, global warming and other process-level studies that require greater temporal resolution than traditional inventories.

  6. Urease inhibitor for reducing ammonia emissions from an open-lot beef cattle feedyard in the Texas High Plains

    Science.gov (United States)

    Reduction of ammonia (NH3) emissions from animal feeding operations is important from the perspective of environmental policy and its impact on agriculture. In laboratory studies, urease inhibitors have been effective in reducing NH3 emissions from beef cattle manure, however there has been little t...

  7. Overview and assessment of techniques to measure ammonia emissions from animal houses : the case of the Netherlands

    NARCIS (Netherlands)

    Mosquera Losada, J.; Monteny, G.J.; Erisman, J.W.

    2005-01-01

    In order to comply with the ammonia (NH3) emission reduction assigned to the Netherlands development of new measures are needed, which should be supported by fast and accurate measurements to arrive at new estimates of the NH3 emission from each agricultural source. This paper gives an overview of t

  8. Development of emission factors and emission inventories for motorcycles and light duty vehicles in the urban region in Vietnam.

    Science.gov (United States)

    Tung, H D; Tong, H Y; Hung, W T; Anh, N T N

    2011-06-15

    This paper reports on a 2-year emissions monitoring program launched by the Centre for Environmental Monitoring of the Vietnam Environment Administration which aimed at determining emission factors and emission inventories for two typical types of vehicle in Hanoi, Vietnam. The program involves four major activities. A database for motorcycles and light duty vehicles (LDV) in Hanoi was first compiled through a questionnaire survey. Then, two typical driving cycles were developed for the first time for motorcycles and LDVs in Hanoi. Based on this database and the developed driving cycles for Hanoi, a sample of 12 representative test vehicles were selected to determine vehicle specific fuel consumption and emission factors (CO, HC, NOx and CO(2)). This set of emission factors were developed for the first time in Hanoi with due considerations of local driving characteristics. In particular, it was found that the emission factors derived from Economic Commission for Europe (ECE) driving cycles and adopted in some previous studies were generally overestimated. Eventually, emission inventories for motorcycles and LDVs were derived by combining the vehicle population data, the developed vehicle specific emission factors and vehicle kilometre travelled (VKT) information from the survey. The inventory suggested that motorcycles contributed most to CO, HC and NOx emissions while LDVs appeared to be more fuel consuming.

  9. ESTIMATING UNCERTAINTY OF EMISSIONS INVENTORIES: WHAT HAS BEEN DONE/WHAT NEEDS TO BE DONE.

    Energy Technology Data Exchange (ETDEWEB)

    BENKOVITZ,C.M.

    1998-10-01

    Developing scientifically defensible quantitative estimates of the uncertainty of atmospheric emissions inventories has been a ''gleam in researchers' eyes'' since atmospheric chemical transport and transformation models (CTMs) started to be used to study ''air pollution''. Originally, the compilation of these inventories was done as part of the development and application of the models by researchers whose expertise usually did not include the ''art'' of emissions estimations. In general, the smaller the effort spent on compiling the inventories the more effort could be placed on the model development, application and analysis. Yet model results are intimately tied to the accuracy of the emissions data; no model, however accurately the atmospheric physical and chemical processes are represented, will give reliable representation of air concentrations if the emissions data are flawed.

  10. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010

    Science.gov (United States)

    Peng, Shushi; Piao, Shilong; Bousquet, Philippe; Ciais, Philippe; Li, Bengang; Lin, Xin; Tao, Shu; Wang, Zhiping; Zhang, Yuan; Zhou, Feng

    2016-11-01

    Methane (CH4) has a 28-fold greater global warming potential than CO2 over 100 years. Atmospheric CH4 concentration has tripled since 1750. Anthropogenic CH4 emissions from China have been growing rapidly in the past decades and contribute more than 10 % of global anthropogenic CH4 emissions with large uncertainties in existing global inventories, generally limited to country-scale statistics. To date, a long-term CH4 emission inventory including the major sources sectors and based on province-level emission factors is still lacking. In this study, we produced a detailed annual bottom-up inventory of anthropogenic CH4 emissions from the eight major source sectors in China for the period 1980-2010. In the past 3 decades, the total CH4 emissions increased from 24.4 [18.6-30.5] Tg CH4 yr-1 in 1980 (mean [minimum-maximum of 95 % confidence interval]) to 44.9 [36.6-56.4] Tg CH4 yr-1 in 2010. Most of this increase took place in the 2000s decade with averaged yearly emissions of 38.5 [30.6-48.3] Tg CH4 yr-1. This fast increase of the total CH4 emissions after 2000 is mainly driven by CH4 emissions from coal exploitation. The largest contribution to total CH4 emissions also shifted from rice cultivation in 1980 to coal exploitation in 2010. The total emissions inferred in this work compare well with the EPA inventory but appear to be 36 and 18 % lower than the EDGAR4.2 inventory and the estimates using the same method but IPCC default emission factors, respectively. The uncertainty of our inventory is investigated using emission factors collected from state-of-the-art published literatures. We also distributed province-scale emissions into 0.1° × 0.1° maps using socioeconomic activity data. This new inventory could help understanding CH4 budgets at regional scale and guiding CH4 mitigation policies in China.

  11. 40 CFR 52.2036 - 1990 base year emission inventory.

    Science.gov (United States)

    2010-07-01

    ...—Fairless Hills 1990 VOC and NOX emissions for six emission units (no. 3 blast furnace, no.1 open hearth.... 1 open hearth furnace are 6.9 TPY and 455.5 TPY, respectively. The VOC and NOX emissions from the...

  12. Towards a climate-dependent paradigm of ammonia emission and deposition

    Science.gov (United States)

    Sutton, Mark A.; Reis, Stefan; Riddick, Stuart N.; Dragosits, Ulrike; Nemitz, Eiko; Theobald, Mark R.; Tang, Y. Sim; Braban, Christine F.; Vieno, Massimo; Dore, Anthony J.; Mitchell, Robert F.; Wanless, Sarah; Daunt, Francis; Fowler, David; Blackall, Trevor D.; Milford, Celia; Flechard, Chris R.; Loubet, Benjamin; Massad, Raia; Cellier, Pierre; Personne, Erwan; Coheur, Pierre F.; Clarisse, Lieven; Van Damme, Martin; Ngadi, Yasmine; Clerbaux, Cathy; Skjøth, Carsten Ambelas; Geels, Camilla; Hertel, Ole; Wichink Kruit, Roy J.; Pinder, Robert W.; Bash, Jesse O.; Walker, John T.; Simpson, David; Horváth, László; Misselbrook, Tom H.; Bleeker, Albert; Dentener, Frank; de Vries, Wim

    2013-01-01

    Existing descriptions of bi-directional ammonia (NH3) land–atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission–deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28–67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45–85) Tg N in 2008 to reach 132 (89–179) Tg by 2100. PMID:23713128

  13. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering

    Science.gov (United States)

    Chadwick, D. R.

    The effect of compaction and covering during storage of beef cattle ( Bos taurus) farmyard manure (FYM) on ammonia (NH 3), nitrous oxide (N 2O) and methane (CH 4) emissions was determined. Gaseous emission measurements were made over three separate storage periods of between 90 and 109 days. The effect of the different storage treatments on manure chemical composition was also determined. Compaction was carried out as the manure was put into store and the compacted manures covered with plastic sheeting. Compaction and covering significantly reduced NH 3 emissions from manure by over 90% during the first summer storage period (Ppersistent rainfall during heap establishment and the following week appeared to reduce NH 3 emissions markedly. The low ammonium-N content of the FYM in the third storage period may have reduced the risk of NH 3 emission and reduced the relative effect of the compaction/covering treatment. Compaction and covering also significantly reduced N 2O emissions from cattle FYM (Pbenefits are that N and K are retained in the manure heap for agronomic benefit.

  14. Development of a stationary carbon emission inventory for Shanghai using pollution source census data

    Science.gov (United States)

    Li, Xianzhe; Jiang, Ping; Zhang, Yan; Ma, Weichun

    2016-12-01

    This study utilizes 521,631 activity data points from the 2007 Shanghai Pollution Source Census to compile a stationary carbon emission inventory for Shanghai. The inventory generated from our dataset shows that a large portion of Shanghai's total energy use consists of coal-oriented energy consumption. The electricity and heat production industries, iron and steel mills, and the petroleum refining industry are the main carbon emitters. In addition, most of these industries are located in Baoshan District, which is Shanghai's largest contributor of carbon emissions. Policy makers can use the enterpriselevel carbon emission inventory and the method designed in this study to construct sound carbon emission reduction policies. The carbon trading scheme to be established in Shanghai based on the developed carbon inventory is also introduced in this paper with the aim of promoting the monitoring, reporting and verification of carbon trading. Moreover, we believe that it might be useful to consider the participation of industries, such as those for food processing, beverage, and tobacco, in Shanghai's carbon trading scheme. Based on the results contained herein, we recommend establishing a comprehensive carbon emission inventory by inputting data from the pollution source census used in this study.

  15. A comprehensive approach for the evaluation and comparison of emission inventories in Madrid

    Science.gov (United States)

    Vedrenne, Michel; Borge, Rafael; Lumbreras, Julio; Rodríguez, María Encarnación; de la Paz, David; Pérez, Javier; Manuel de Andrés, Juan; Quaassdorff, Christina

    2016-11-01

    Emission inventories provide a description of the polluting activities that occur across a specific geographic domain, and are widely used as input for air quality modelling for the assessment of compliance with environmental legislation. The spatial scale to which these inventories are referred has an influence in the representativeness of the emission estimates, as these are underpinned by a number of considerations and data with different levels of granularity. This study proposes a comprehensive framework for the evaluation of emission inventories that allows identifying methodological issues by examining differences in performance to a chemical transport model (CTM) when such inventories are used as input. To demonstrate the approach, a comparison between the national and regional emissions inventories for the Autonomous Community of Madrid (ACM) was carried out (NEI and REI respectively). The analysis revealed discrepancies in compilation methodologies for the domestic sector (SNAP 02), industrial combustion (SNAP 03), road traffic (SNAP 07) and other mobile sources (SNAP 08); most of the differences were originally caused by taking into account different activity variables, fuel mixes, and spatial disaggregation and allocation proxies. The granularity of the base data (statistics, fuel consumption, facilities, etc.) proved to be an essential limiting factor, which means that whenever bottom-up approaches were followed, the description of emission sectors tended to be more accurate.

  16. Reducing ammonia emissions from laying-hen houses through dietary manipulation.

    Science.gov (United States)

    Li, Hong; Xin, Hongwei; Burns, Robert T; Roberts, Stacey A; Li, Shuhai; Kliebenstein, James; Bregendahl, Kristjan

    2012-02-01

    Feed additives can change the microbiological environment of the animal digestive track, nutrient composition of feces, and its gaseous emissions. This 2-yr field study involving commercial laying-hen houses in central Iowa was conducted to assess the effects of feeding diets containing EcoCal and corn-dried distillers grain with solubles (DDGS) on ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gas (CO2, CH4, and N2O) emissions. Three high-rise layer houses (256,600 W-36 hens per house) received standard industry diet (Control), a diet containing 7% EcoCal (EcoCal) or a diet containing 10% DDGS (DDGS). Gaseous emissions were continuously monitored during the period of December 2007 to December 2009, covering the full production cycle. The 24-month test results revealed that mean NH3 emission rates were 0.58 +/- 0.05, 0.82 +/- 0.04, and 0.96 +/- 0.05 g/hen/day for the EcoCal, DDGS, and Control diet, respectively. Namely, compared to the Control diet, the EcoCal and DDGS diets reduced NH3 emission by an average of 39.2% and 14.3%, respectively. The concurrent H2S emission rates were 5.39 +/- 0.46, 1.91 +/- 0.13, and 1.79 +/- 0.16 mg/ hen/day for the EcoCal, DDGS, and Control diet, respectively. CO2 emission rates were similar for the three diets, 87.3 +/- 1.37, 87.4 +/- 1.26, and 89.6 +/- 1.6 g/hen/day for EcoCal, DDGS, and Control, respectively (P = 0.45). The DDGS and EcoCal houses tended to emit less CH4 than the Control house (0.16 and 0.12 vs. 0.20 g/hen/day) during the monitored summer season. The efficacy of NH3 emission reduction by the EcoCal diet decreased with increasing outside temperature, varying from 72.2% in February 2009 to -7.10% in September 2008. Manure of the EcoCal diet contained 68% higher ammonia nitrogen (NH3-N) and 4.7 times higher sulfur content than that of the Control diet. Manure pH values were 8.0, 8.9, and 9.3 for EcoCal, DDGS, and Control diets, respectively. This extensive field study verifies that dietary manipulation

  17. Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia

    Science.gov (United States)

    Amnuaylojaroen, T.; Barth, M. C.; Emmons, L. K.; Carmichael, G. R.; Kreasuwun, J.; Prasitwattanaseree, S.; Chantara, S.

    2014-12-01

    In order to improve our understanding of air quality in Southeast Asia, the anthropogenic emissions inventory must be well represented. In this work, we apply different anthropogenic emission inventories in the Weather Research and Forecasting Model with Chemistry (WRF-Chem) version 3.3 using Model for Ozone and Related Chemical Tracers (MOZART) gas-phase chemistry and Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) aerosols to examine the differences in predicted carbon monoxide (CO) and ozone (O3) surface mixing ratios for Southeast Asia in March and December 2008. The anthropogenic emission inventories include the Reanalysis of the TROpospheric chemical composition (RETRO), the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), the MACCity emissions (adapted from the Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment projects), the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) emissions, and a combination of MACCity and SEAC4RS emissions. Biomass-burning emissions are from the Fire Inventory from the National Center for Atmospheric Research (NCAR) (FINNv1) model. WRF-Chem reasonably predicts the 2 m temperature, 10 m wind, and precipitation. In general, surface CO is underpredicted by WRF-Chem while surface O3 is overpredicted. The NO2 tropospheric column predicted by WRF-Chem has the same magnitude as observations, but tends to underpredict the NO2 column over the equatorial ocean and near Indonesia. Simulations using different anthropogenic emissions produce only a slight variability of O3 and CO mixing ratios, while biomass-burning emissions add more variability. The different anthropogenic emissions differ by up to 30% in CO emissions, but O3 and CO mixing ratios averaged over the land areas of the model domain differ by ~4.5% and ~8%, respectively, among the simulations. Biomass-burning emissions create a substantial increase for both O3 and CO by ~29% and ~16

  18. A global inventory of aircraft NO{sub x} emissions (ANCAT/EC 2). A revised inventory (1996) by the ECAC/ANCAT and EC working group

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, R.M. [Great Minister House, London (United Kingdom). Dept. of Transfert London

    1997-12-31

    Results of the ANCAT/EC 2 inventory produced by the European ANCAT/EC emissions inventory group is reported. The base year inventory has been completed and is currently being written up for report publication. The ANCAT/EC 2 inventory in the base year, 1991/92, has accounted for a total fuel burn of 132.5 Tg/yr and a NO{sub x} mass of 1.82 Tg/yr. The civil subsonic fleet average emissions index is EI NO{sub x} 13.9. The inventory has accounted for 80% of the IEA refined jet fuel total for 1992. The forecast 2015 inventory accounts for 289.4 Tg/yr fuel and 3.48 Tg/yr NO{sub x}, increases of 118% and 91% respectively. Both datasets will be reported fully in the next few months. (author) 5 refs.

  19. Effects of acidifying pig diets on emissions of ammonia, methane and sulfur from slurry during storage

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Nørgaard, Jan Værum; Poulsen, Hanne Damgaard

    2014-01-01

    Ammonia (NH3) volatilization from intensive livestock production is a threat to natural ecosystems. This study investigated pig diet manipulation by 1% (w/w) benzoic acid (BA) amendment and lowering of dietary electrolyte balance through substituting 1.4% (w/w) CaCO3 with 2.0% (w/w) CaCl2. Urine...... conditions of restricted S feeding. Methane emissions were increased by 73% in diets with CaCl2. An initial delay in methane (CH4) emissions was investigated in a separate experiment with manipulation of pH (5.4, 6.7 or 8.8) and inoculation with adapted pig slurry (0, 4, 11, or 19%), which showed...

  20. Measurements of ammonia emissions from spreading of manure using gradient FTIR techniques

    DEFF Research Database (Denmark)

    Galle, B.; Klemedtsson, L.; Bergqvist, B.

    2000-01-01

    Emissions of biogenic trace gases from soils and plants often show strong spatial and temporal variation. Thus, there is a need for the development of area-integrating measurement techniques with good time resolution. The present paper describes area-integrated measurements of ammonia emissions...... after spreading of pig slurry on a wheat field, based on flux-gradient measurements using Fourier transform infrared (FTIR) spectroscopy. Two methods are described; the aerodynamic method where the flux is derived from measured micrometeorological parameters, and a tracer method where the flux...... is derived from simultaneous measurements of a tracer gas released over the area under study. Although not ideal in the actual measurement situation, this latter method has a potential for use on more local sources with less restrictions on micrometeorological conditions, and is thus included for validation...

  1. Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia

    Directory of Open Access Journals (Sweden)

    T. Amnuaylojaroen

    2014-04-01

    Full Text Available In order to improve our understanding of air quality in Southeast Asia, the anthropogenic emissions inventory must be well represented. In this work, we apply different anthropogenic emission inventories in the Weather Research and Forecasting Model with Chemistry (WRF-Chem version 3.3 using MOZART gas-phase chemistry and GOCART aerosols to examine the differences in predicted carbon monoxide (CO and ozone (O3 surface mixing ratios for Southeast Asia in March and December 2008. The anthropogenic emission inventories include the Reanalysis of the TROpospheric chemical composition (RETRO, the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B, the MACCity emissions (adapted from the Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment projects, the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS emissions, and a combination of MACCity and SEAC4RS emissions. Biomass burning emissions are from the Fire Inventory from NCAR (FINNv1 model. WRF-chem reasonably predicts the 2 m temperature, 10 m wind, and precipitation. In general, surface CO is underpredicted by WRF-Chem while surface O3 is overpredicted. The NO2 tropospheric column predicted by WRF-Chem has the same magnitude as observations, but tends to underpredict NO2 column over the equatorial ocean and near Indonesia. Simulations using different anthropogenic emissions produce only a slight variability of O3 and CO mixing ratios, while biomass burning emissions add more variability. The different anthropogenic emissions differ by up to 20% in CO emissions, but O3 and CO mixing ratios differ by ~4.5% and ~8%, respectively, among the simulations. Biomass burning emissions create a substantial increase for both O3 and CO by ~29% and ~16%, respectively, when comparing the March biomass burning period to December with low biomass burning emissions. The simulations show that none of the anthropogenic emission inventories are

  2. Atmospheric Ammonia Emissions and a Nitrogen Mass Balance for a Dairy

    Science.gov (United States)

    Rumburg, B. P.; Mount, G. H.; Filipy, J. M.; Lamb, B.; Yonge, D.; Wetherelt, S.

    2003-12-01

    Atmospheric ammonia (NH3) emissions have many impacts on the environment and human health. Environmental NH3 impacts include terrestrial and aquatic eutrophication, soil acidification, and aerosol formation. Aerosols affect global radiative transfer and have been linked to human health effects. The global emissions of NH3 are estimated to be 45 Tg N yr-1 (Dentener and Crutzen, 1994) with most of the emissions coming from domestic animals. The largest per animal emission come from dairy cows at 33 kg N animal{-1} year{-1} versus 10 kg N animal{-1} {-1} for cattle. On a global scale the emissions uncertainty is about 25%, but local emissions are highly uncertain (Bouwman et al., 1997). Local emissions determination is required for proper treatment in air pollution models. The main sources of emission from dairies are the cow stalls where urea and manure react to form NH3, the storage lagoons where NH3 is the end product of microbial degradation and the disposal of the waste. There have been numerous studies of NH3 emissions in Europe but farming practices are quite different in Europe than in the U.S.. The impact of these differences on emissions is unknown. We have been studying the NH3 emissions from the Washington State University dairy for three years to develop a detailed emission model for use in a regional air pollution model. NH3 is measured using a short-path spectroscopic absorption near 200 nm with a sensitivity of a few ppbv and a time resolution of a few seconds. The open air short-path method is advantageous because it is self calibrating and avoids inlet wall adherence which is a major problem for most NH3 measurement techniques. A SF6 tracer technique has been used to measure fluxes from the three main emission sources: the cow stalls, anaerobic lagoon and the waste application to grass fields using a sprinkler system. Estimated yearly emissions from each source will be compared to a nitrogen mass balance model for the dairy.

  3. Ammonia Emission and Deposition in Scotland and Its Potential Environmental Impacts

    Directory of Open Access Journals (Sweden)

    M.A. Sutton

    2004-01-01

    Full Text Available The main source of atmospheric ammonia (NH3 in Scotland is livestock agriculture, which accounts for 85% of emissions. The local magnitude of emissions therefore depends on livestock density, type, and management, with major differences occurring in various parts of Scotland. Local differences in agricultural activities therefore result in a wide range of NH3 emissions, ranging from less than 0.2 kg N ha−1 year−1 in remote areas of the Scottish Highlands to over 100 kg N ha−1 year−1 in areas with intensive poultry farming. Scotland can be divided loosely into upland and lowland areas, with NH3 emission being less than and more than 5 kg N ha−1 year−1, respectively.Many semi-natural ecosystems in Scotland are vulnerable to nitrogen deposition, including bogs, moorlands, and the woodland ground flora. Because NH3 emissions occur in the rural environment, the local deposition to sensitive ecosystems may be large, making it essential to assess the spatial distribution of NH3 emissions and deposition. A spatial model is applied here to map NH3 emissions and these estimates are applied in atmospheric dispersion and deposition models to estimate atmospheric concentrations of NH3 and NH4+, dry deposition of NH3, and wet deposition of NHx. Although there is a high level of local variability, modelled NH3 concentrations show good agreement with the National Ammonia Monitoring Network, while wet deposition is largest at high altitude sites in the south and west of Scotland. Comparison of the modelled NHx deposition fields with estimated thresholds for environmental effects (“critical loads” shows that thresholds are exceeded across most of lowland Scotland and the Southern Uplands. Only in the cleanest parts of the north and west is nitrogen deposition not a cause for concern. Given that the most intense effects occur within a few kilometres of sources, it is suggested that local spatial abatement policies would be a useful complement to

  4. Ammonia emission and deposition in Scotland and its potential environmental impacts.

    Science.gov (United States)

    Sutton, M A; Dragosits, U; Hellsten, S; Place, C J; Dore, A J; Tang, Y S; van Dijk, N; Love, L; Fournier, N; Vieno, M; Weston, K J; Smith, R I; Coyle, M; Roy, D; Hall, J; Fowler, D

    2004-09-02

    The main source of atmospheric ammonia (NH3) in Scotland is livestock agriculture, which accounts for 85% of emissions. The local magnitude of emissions therefore depends on livestock density, type, and management, with major differences occurring in various parts of Scotland. Local differences in agricultural activities therefore result in a wide range of NH3 emissions, ranging from less than 0.2 kg N ha(-1) year(-1) in remote areas of the Scottish Highlands to over 100 kg N ha(-1) year-1 in areas with intensive poultry farming. Scotland can be divided loosely into upland and lowland areas, with NH3 emission being less than and more than 5 kg N ha(-1) year(-1), respectively. Many semi-natural ecosystems in Scotland are vulnerable to nitrogen deposition, including bogs, moorlands, and the woodland ground flora. Because NH3 emissions occur in the rural environment, the local deposition to sensitive ecosystems may be large, making it essential to assess the spatial distribution of NH3 emissions and deposition. A spatial model is applied here to map NH3 emissions and these estimates are applied in atmospheric dispersion and deposition models to estimate atmospheric concentrations of NH3 and NH4+, dry deposition of NH3, and wet deposition of NHx. Although there is a high level of local variability, modelled NH3 concentrations show good agreement with the National Ammonia Monitoring Network, while wet deposition is largest at high altitude sites in the south and west of Scotland. Comparison of the modelled NHx deposition fields with estimated thresholds for environmental effects ("critical loads") shows that thresholds are exceeded across most of lowland Scotland and the Southern Uplands. Only in the cleanest parts of the north and west is nitrogen deposition not a cause for concern. Given that the most intense effects occur within a few kilometres of sources, it is suggested that local spatial abatement policies would be a useful complement to traditional policies that

  5. The effect of biofuel production on swine farm methane and ammonia emissions.

    Science.gov (United States)

    Harper, Lowry A; Flesch, Thomas K; Weaver, Kim H; Wilson, John D

    2010-01-01

    Methane (CH) and ammonia (NH3) are emitted to the atmosphere during anaerobic processing of organic matter, and both gases have detrimental environmental effects. Methane conversion to biofuel production has been suggested to reduce CH4 emissions from animal manure processing systems. The purpose of this research is to evaluate the change in CH4 and NH3 emissions in an animal feeding operation due to biofuel production from the animal manure. Gas emissions were measured from swine farms differing only in their manure-management treatment systems (conventional vs. biofuel). By removing organic matter (i.e., carbon) from the biofuel farms' manure-processing lagoons, average annual CH4 emissions were decreased by 47% compared with the conventional farm. This represents a net 44% decrease in global warming potential (CO2 equivalent) by gases emitted from the biofuel farms compared with conventional farms. However, because of the reduction of methanogenesis and its reduced effect on the chemical conversion of ammonium (NH4+) to dinitrogen (N2) gas, NH3 emissions in the biofuel farms increased by 46% over the conventional farms. These studies show that what is considered an environmentally friendly technology had mixed results and that all components of a system should be studied when making changes to existing systems.

  6. Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions.

    Science.gov (United States)

    Paulot, Fabien; Jacob, Daniel J

    2014-01-21

    We use a model of agricultural sources of ammonia (NH3) coupled to a chemical transport model to estimate the impact of U.S. food export on particulate matter concentrations (PM2.5). We find that food export accounts for 11% of total U.S. NH3 emissions (13% of agricultural emissions) and that it increases the population-weighted exposure of the U.S. population to PM2.5 by 0.36 μg m(-3) on average. Our estimate is sensitive to the proper representation of the impact of NH3 on ammonium nitrate, which reflects the interplay between agricultural (NH3) and combustion emissions (NO, SO2). Eliminating NH3 emissions from food export would achieve greater health benefits than the reduction of the National Ambient Air Quality Standards for PM2.5 from 15 to 12 μg m(-3). Valuation of the increased premature mortality associated with PM2.5 from food export (36 billion US$ (2006) per year) amounts to 50% of the gross food export value. Livestock operations in densely populated areas have particularly large health costs. Decreasing SO2 and NOx emissions will indirectly reduce health impact of food export as an ancillary benefit.

  7. Verification of the Danish emission inventory data by national and international data comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Fauser, P.; Thomsen, Marianne; Nielsen, Ole-Kenneth; Winther, M.; Gyldenkaerne, S.; Hoffmann, L.; Lyck, E.; Boll Illerup, J.

    2007-08-15

    Danish emission intensity values, activity values and implied emission factors for identified key source categories are compared with corresponding values for the EU-15 countries (excluding Luxemburg). The emission values for all countries are based on national greenhouse gas inventories for the years 1990 (base year), 1997 and 2003 provided by the UNFCCC. The comparison is based on a proposed verification procedure that is designed for identifying emission indicators and evaluating data consistency and reliability for the energy and industry sectors. For all sectors the method gives good possibility for checking emission levels and consistency in time trends. (au)

  8. A high-resolution regional emission inventory of atmospheric mercury and its comparison with multi-scale inventories: a case study of Jiangsu, China

    Science.gov (United States)

    Zhong, Hui; Zhao, Yu; Muntean, Marilena; Zhang, Lei; Zhang, Jie

    2016-12-01

    A better understanding of the discrepancies in multi-scale inventories could give an insight into their approaches and limitations as well as provide indications for further improvements; international, national, and plant-by-plant data are primarily obtained to compile those inventories. In this study we develop a high-resolution inventory of Hg emissions at 0.05° × 0.05° for Jiangsu, China, using a bottom-up approach and then compare the results with available global/national inventories. With detailed information on individual sources and the updated emission factors from field measurements applied, the annual Hg emissions of anthropogenic origin in Jiangsu in 2010 are estimated at 39 105 kg, of which 51, 47, and 2 % were Hg0, Hg2+, and Hgp, respectively. This provincial inventory is thoroughly compared to three downscaled national inventories (NJU, THU, and BNU) and two global ones (AMAP/UNEP and EDGARv4.tox2). Attributed to varied methods and data sources, clear information gaps exist in multi-scale inventories, leading to differences in the emission levels, speciation, and spatial distributions of atmospheric Hg. The total emissions in the provincial inventory are 28, 7, 19, 22, and 70 % larger than NJU, THU, BNU, AMAP/UNEP, and EDGARv4.tox2, respectively. For major sectors, including power generation, cement, iron and steel, and other coal combustion, the Hg contents (HgC) in coals/raw materials, abatement rates of air pollution control devices (APCDs) and activity levels are identified as the crucial parameters responsible for the differences in estimated emissions between inventories. Regarding speciated emissions, a larger fraction of Hg2+ is found in the provincial inventory than national and global inventories, resulting mainly from the results by the most recent domestic studies in which enhanced Hg2+ were measured for cement and iron and steel plants. Inconsistent information on large power and industrial plants is the main source of differences in

  9. Evaluating policy-relevant emission inventories for transportation and electricity (Invited)

    Science.gov (United States)

    Holloway, T.; Meier, P.; Bickford, E. E.

    2013-12-01

    We explore the challenges and opportunities in evaluating bottom-up emission inventories for transportation and electricity. These anthropogenic emissions respond in complex ways to technology and activity changes. Thus, it is essential that inventories capture historic emissions consistent with observations, as well as future emissions consistent with policy scenarios. For transportation, we focus on freight-related trucking emissions, represented by the Wisconsin Inventory for Freight Emissions (WIFE), developed with activity data from the U.S. Federal Highway Administration Freight Analysis Framework and emission factors from the EPA MOVES model. Because WIFE is linked to commodity flows and roadway speeds, it offers a useful data set to evaluate policy changes such as truck-to-rail modal shifts and alternative fuel choices. However, the value of the inventory in assessing these scenarios depends on its skill in calculating frieght-related emissions. Satellite data of nitrogen dioxide (NO2) from the OMI instrument aboard the NASA Aura satellite is used to evaluate truck and rail NOx emissions, especially on rural highways away from ground-based monitors. For electricity, we use the MyPower electricity dispatch model to calculate emissions and power generation in response to policy and technology changes. These include renewable portfolio standards, conservation, increased natural gas, and response to building demand. To evaluate MyPower, we compare with the Clean Air Markets database, and 2007 calculated daily afternoon emissions with satellite-derived NO2 from OMI. Drawing on the results of these studies, we discuss strategies to meet the information demands of both historically correct air quality inputs and future-relevant policy scenarios.

  10. MIX: a mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects

    Science.gov (United States)

    Li, M.; Zhang, Q.; Kurokawa, J.; Woo, J.-H.; He, K. B.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D. G.; Carmichael, G. R.; Cheng, Y. F.; Hong, C. P.; Huo, H.; Jiang, X. J.; Kang, S. C.; Liu, F.; Su, H.; Zheng, B.

    2015-12-01

    An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) projects by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 30 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best-available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. We estimate the total Asian emissions of ten species in 2010 as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds), 28.8 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC and 17.3 Pg CO2. Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006-2010 are estimated as follows: -8.0 % for SO2, +19 % for NOx, +4 % for CO, +15 % for NMVOC, +2 % for NH3, -3 % for PM10, -2 % for PM2.5, +6 % for BC, +2 % for OC and +20 % for CO2. Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach. Monthly gridded emissions at a spatial resolution of 0.25° × 0.25° are developed and can be accessed from http://www.meicmodel.org/dataset-mix.

  11. MIX: a mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects

    Directory of Open Access Journals (Sweden)

    M. Li

    2015-12-01

    Full Text Available An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP projects by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 30 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best-available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. We estimate the total Asian emissions of ten species in 2010 as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds, 28.8 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC and 17.3 Pg CO2. Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006–2010 are estimated as follows: −8.0 % for SO2, +19 % for NOx, +4 % for CO, +15 % for NMVOC, +2 % for NH3, −3 % for PM10, −2 % for PM2.5, +6 % for BC, +2 % for OC and +20 % for CO2. Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach. Monthly gridded emissions at a spatial resolution of 0.25° × 0.25° are developed and can be accessed from http://www.meicmodel.org/dataset-mix.

  12. Estimating uncertainty of emissions inventories: What has been done/what needs to be done

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M.

    1998-10-01

    Developing scientifically defensible quantitative estimates of the uncertainty of atmospheric emissions inventories has been a gleam in researchers eyes since atmospheric chemical transport and transformation models (CTMs) started to be used to study air pollution. Originally, the compilation of these inventories was done as part of the development and application of the models by researchers whose expertise usually did not include the art of emissions estimations. In general, the smaller the effort spent on compiling the inventories the more effort could be placed on the model development, application and analysis. Yet model results are intimately tied to the accuracy of the emissions data; no model, however accurately the atmospheric physical and chemical processes are represented, will give reliable representation of air concentrations if the emissions data are flawed. The author briefly summarizes some of the work done to develop quantitative estimates of the uncertainty of emissions inventories. The author then presents what is needed to develop scientifically defensible quantitative estimates of the uncertainties of emissions data.

  13. Denmark's national inventory report 2010. Emission inventories 1990-2008 - submitted under the United Nations framework convention on climate change and the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Lyck, E.; Hjorth Mikkelsen, M. (and others)

    2010-05-15

    This report is Denmark's National Inventory Report 2010. The report contains information on Denmark's emission inventories for all years' from 1990 to 2008 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub x}, CO, NMVOC, SO{sub 2}. (Author)

  14. Denmark's national inventory report 2009. Emission inventories 1990-2007 - submitted under the United Nations framework convention on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Lyck, E.; Hjorth Mikkelsen, M. (and others)

    2009-04-15

    This report is Denmark's National Inventory Report 2009. The report contains information on Denmark's emission inventories for all years' from 1990 to 2007 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub X}, CO, NMVOC, SO{sub 2}. (au)

  15. Denmark's national inventory report 2011. Emission inventories 1990-2009 - submitted under the United Nations framework convention on climate change and the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Hjorth Mikkelsen, M.; Hoffmann, L. (and others)

    2011-05-15

    This report is Denmark's National Inventory Report 2011. The report contains information on Denmark's emission inventories for all years' from 1990 to 2009 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub x}, CO, NMVOC, SO{sub 2}. (Author)

  16. Denmark's national inventory report 2012. Emission inventories 1990-2010 - submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Hjorth Mikkelsen, M.; Hoffmann, L. (and others)

    2012-05-15

    This report is Denmark's National Inventory Report 2012. The report contains information on Denmark's emission inventories for all years' from 1990 to 2010 for CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}, NO{sub x}, CO, NMVOC, SO{sub 2}. (Author)

  17. Investigations for Heavy Metals and POPs Emission Inventory Improvement in Belarus

    Science.gov (United States)

    Kakareka, S.; Kukharchyk, T.

    2003-04-01

    Emission fluxes assessment acts as starting point of air pollution interpretation. The paper presents results of a 7-years activity on identification and estimation of heavy metals and POPs emission sources in Belarus, most of which are poorly inventoried. Methodology based on sources testing and emission factors has been used. The following heavy metals emission sources have been evaluated: stationary fuel combustion, ferrous industry, cement production, glass production, phosphate fertilizers production, road transport, other mobile sources and machinery, cremation, waste incineration. We can generalize that on the territory of Belarus stationary fuel combustion is the main source of emission of arsenic and nickel. Cement production is the main source of mercury, and an essential source of cadmium and lead. Electric arc furnace steel plant provides main part of zinc emissions, and significant share of cadmium and lead. In the 90s the steady reduction heavy metals emissions on the territory of Belarus occured. It especially typical for lead emissions - from in 798 tonnes in 1990 tonnes to 46 tonnes in 2000 because of prohibition of ethylated gasoline usage. As the result of POPs sources identification and estimation it was detected that main contribution into dioxin emission have non-industrial solid fuel combustion (firewood and peat), electric arc furnace and waste incineration. Firewood and peat combustion and mobile sources were revealed to make the largest contribution in PAH emissions in Belarus. Pesticides from POPs Protocol to Geneva Convention and Stockholm POPs Convention (such as DDT, lindane, hexachlorobenzene, toxaphen, endrin, dieldrine, mirex, heptachlor et. al.) are not used now in Belarus. But a large amount of them are stored in various burial sites and storage places which cause significant ecological problems due to pollutants infiltration and spills. Leakage from transformers and damaged capacitors were estimated as the main source of

  18. Dietary crude protein and tannin impact dairy manure chemistry and ammonia emissions from incubated soils.

    Science.gov (United States)

    Powell, J M; Aguerre, M J; Wattiaux, M A

    2011-01-01

    Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( soils were greater ( soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles.

  19. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure.

    Science.gov (United States)

    Wang, Jinzhi; Hu, Zhengyi; Xu, Xingkai; Jiang, Xia; Zheng, Binghui; Liu, Xiaoning; Pan, Xubin; Kardol, Paul

    2014-08-01

    Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH3), and greenhouse gases (GHG), including nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N2O, CH4, and CO2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg(-)(1) DM to 274.2, 30.4, and 314.0 mg kg(-1) DM, respectively. Earthworms and amendments significantly decreased N2O and CH4 emissions. Emission of CO2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH3 emission ranged from 3.0 to 8.1 g kg(-1) DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N2O, CH4, and NH3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer.

  20. Emissions of ammonia, carbon dioxide and particulate matter from cage-free layer houses in California

    Science.gov (United States)

    Lin, Xingjun; Zhang, Ruihong; Jiang, Shumei; El-Mashad, Hamed; Xin, Hongwei

    2017-03-01

    Cage-free housing systems have attracted considerable attention in the United States recently as they provide more space and other resources (such as litter area, perches, and nest boxes) for hens and are considered to be more favorable from the standpoint of hen welfare. This study was carried out to quantify emissions of aerial ammonia (NH3), carbon dioxide (CO2) and particulate matter (PM10 and PM2.5) from cage-free layer houses in California and compare the values with those for other types of layer houses. Two commercial cage-free houses with 38,000 hens each were monitored from March 1, 2012 to April 1, 2013. Results show that NH3 and CO2 concentrations in the houses were affected by ventilation rate, which was largely influenced by ambient air temperature. The PM10 and PM2.5 concentrations in the houses depended on the activity of birds, ventilation rate and relative humidity of the ambient air. The average emission rates of NH3, CO2, PM10 and PM2.5 were 0.29, 89.9, 0.163 and 0.020 g d-1 hen-1, respectively. The NH3 emission rate determined in this study was higher than those of aviary houses. The PM10 and PM2.5 emission rates were higher than those reported for high-rise layer houses.

  1. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  2. National Greenhouse Gas Emission Inventory (EV-GHG)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EV-GHG Mobile Source Data asset contains measured mobile source GHG emissions summary compliance information on light-duty vehicles, by model, for certification...

  3. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ding [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Wenying [Tsinghua Univ., Beijing (China)

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  4. A process-based model for ammonia emission from urine patches, GAG (Generation of Ammonia from Grazing): description, validation and sensitivity analysis

    DEFF Research Database (Denmark)

    Móring, A; Vieno, M.; Doherty, R M;

    2015-01-01

    In this paper a new process-based, weather-driven model for ammonia (NH3) emission from a urine patch has been developed and its sensitivity to various factors assessed. This model, the GAG model (Generation of Ammonia from Grazing) was developed as a part of a suite of weather-driven NH3 exchange...... models, as a necessary basis for assessing the effects of climate change on NH3 related atmospheric processes. GAG is capable of simulating the TAN (Total Ammoniacal Nitrogen) content, pH and the water content of the soil under a urine patch. To calculate the TAN budget, GAG takes into account urea...... hydrolysis as a TAN input and NH3 volatilization as a loss. In the water budget, in addition to the water content of urine, precipitation and evaporation are also considered. In the pH module we assumed that the main regulating processes are the dissociation and dissolution equilibria related to the two...

  5. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinzhi [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Zhengyi, E-mail: zhyhu@ucas.ac.cn [College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Xingkai [State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 (China); Jiang, Xia; Zheng, Binghui [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); Liu, Xiaoning [College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Pan, Xubin [Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100029 (China); Kardol, Paul [Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, S 90183 Umeå (Sweden)

    2014-08-15

    Highlights: • Earthworms significantly decreased emissions of N{sub 2}O and CH{sub 4}, but had a marginal effect on CO{sub 2} emission. • NH{sub 3}, N{sub 2}O, and CH{sub 4} emissions were significantly reduced by reed straw and zeolite, CO{sub 2} emission was increased by reed straw. • Combined pre-composting and vermicomposting with reed straw and zeolite would be recommended for disposal of duck manure. - Abstract: Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH{sub 3}), and greenhouse gases (GHG), including nitrous oxide (N{sub 2}O), methane (CH{sub 4}), and carbon dioxide (CO{sub 2}). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH{sub 3} and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH{sub 3} and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N{sub 2}O, CH{sub 4}, and CO{sub 2} emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg{sup −1} DM to 274.2, 30.4, and 314.0 mg kg{sup −1} DM, respectively. Earthworms and amendments significantly decreased N{sub 2}O and CH{sub 4} emissions. Emission of CO{sub 2} was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH{sub 3} emission ranged from 3.0 to 8.1 g kg{sup −1} DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N{sub 2}O, CH{sub 4}, and NH{sub 3} from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer.

  6. Ammonia Emissions from the Agriculture Sector of Argentina in a Context of Changing Technologies and Practices

    Science.gov (United States)

    Dawidowski, L. E.

    2015-12-01

    Agriculture is a key sector of the Argentinean economy, accounting for 6 to 8 5% of the GDP in the last ten years. Argentina switched in the 90´s from an articulated co-evolution between extensive livestock and crop farming, with annual rotation of crops and livestock, to intensive decoupled practices. Under these new production schemes, ecosystems were supplied with more nutrients, generating increasing levels of wastes. Other changes have also occurred, associated with the shift of the agricultural frontier and the consequent reduction in the cattle stock. In addition, changes related to climate through the strong increase in rainfall in the 80s and 90s in the west Pampas, helped to boost agricultural development. The agriculture sector accounts for practically all NH3 emissions in Argentina, however no inventory has been thus far available. To bridge this gap and particularly to have accurate input information to run coupled atmospheric chemistry models for secondary inorganic aerosols, we estimated 2000-2012 NH3 emissions, both at national and spatially disaggregated levels. Of particular interest for us was also temporal disaggregation as crops growing and temperature exhibit strong seasonal variability. As no NH3 inventory was available we also estimated related N2O emissions to verify our estimates with those of national GHG emission inventory (NEI). National NH3 emissions in 2012 amounted to 309.9 Gg, use of fertilizers accounted for 43.6%, manure management 18,9%, manure in pasture 36,0% and agricultural waste burning 1.5%. Our N2O estimates are in good agreement with the GHG-NEI. NH3 estimates in the EDGAR database for 2008 are 84.0% higher than ours for this year, and exhibit more significant differences per category, namely 113,6% higher for use of fertilizers and about 500% higher for agricultural waste burning. Urea dominates national NH3 emissions, accounting for 32,8% of the total and its use for wheat and corn crops dominates the trend.

  7. Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements

    Directory of Open Access Journals (Sweden)

    H. Petetin

    2014-11-01

    Full Text Available High uncertainties affect black carbon (BC emissions and, despite its important impact on air pollution and climate, very few BC emissions evaluations are found in the literature. This paper presents a novel approach, based on airborne measurements across the Paris plume, developed in order to evaluate BC and NOx emissions at the scale of a whole agglomeration. The methodology consists in integrating, for each transect, across the plume observed and simulated concentrations above background. This allows minimizing several error sources in the model (e.g. representativeness, chemistry, plume lateral dispersion. The procedure is applied with the CHIMERE chemistry-transport model to three inventories – the EMEP inventory, and the so-called TNO and TNO-MP inventories – over the month of July 2009. Various systematic uncertainty sources both in the model (e.g. boundary layer height, vertical mixing, deposition and in observations (e.g. BC nature are discussed and quantified, notably though sensitivity tests. A statistically significant (but moderate overestimation is obtained on the TNO BC emissions and on EMEP and TNO-MP NOx emissions, as well as on the BC/NOx emission ratio in TNO-MP. The benefit of the airborne approach is discussed through a comparison with the BC/NOx ratio at a ground site in Paris, which additionally suggests potential error compensations in the BC emissions spatial distribution over the agglomeration.

  8. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting.

    Science.gov (United States)

    Agyarko-Mintah, Eunice; Cowie, Annette; Van Zwieten, Lukas; Singh, Bhupinder Pal; Smillie, Robert; Harden, Steven; Fornasier, Flavio

    2017-03-01

    The poultry industry produces abundant quantities of nutrient-rich litter, much of which is composted before use as a soil amendment. However, a large proportion of nitrogen (N) in poultry litter is lost via volatilisation during composting, with negative environmental and economic consequences. This study examined the effect of incorporating biochar during composting of poultry litter on ammonia (NH3) volatilisation and N retention. Biochars produced at 550°C from greenwaste (GWB) and poultry litter (PLB) feedstocks were co-composted with a mixture of raw poultry litter and sugarcane straw [carbon (C):N ratio 10:1] in compost bins. Ammonia emissions accounted for 17% of the total N (TN) lost from the control and 12-14% from the biochar-amended compost. The TN emitted as NH3, as a percentage of initial TN, was significantly lower (Plitter: decrease of NH3 volatilisation, decrease in NH3 toxicity towards microorganisms, and improved N retention, thus enhancing the fertiliser value of the composted litter. It is suggested that the latter benefit is linked to a beneficial modification of the microbial environment.

  9. Emission, transmission, deposition and environmental effects of ammonia from agricultural sources

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, J.W. [ECN Clean Fossil Fuels, Petten (Netherlands); Dammgen, U. [Federal Agricultural Research Centre, Institute of Agroecology, Braunschweig (Germany)

    2005-05-01

    Air pollution in Europe has been regarded as a severe problem for several decades, the adverse effects being: the influence on the physical properties of the atmosphere itself, in particular its energy balance (global warming), and visibility; the influence on atmospheric chemistry (formation and destruction of both ground level and stratospheric ozone); the input of chemicals into terrestrial and aquatic ecosystems causing acidification and eutrophication leading to forest decline as well as changes in ecosystem structure and function; the effects on human health and welfare (the respiratory system). Since the sulfur dioxide problem seems to have been solved to a large extent in most countries in Western Europe, atmospheric nitrogen compounds are considered a major source of acidification. As most natural and near-natural ecosystems have developed with nitrogen as a limiting factor, increased inputs of reactive atmospheric nitrogen cause changes in their structure, function and nutrient dynamics. These effects are attributed to surplus nutrition (eutrophication) of the respective systems as the result of increased nitrogen inputs. At first it seemed logical to connect them with sources similar to those for sulfur (power plants, combustion engines, domestic heating); however, it soon became clear that reduced nitrogen (ammonia and ammonium in particulates) also plays a major role. This review is to collate the present state of knowledge with regard to ammonia emissions, its atmospheric transport and chemistry as well as its deposition and the resulting effects. It restricts itself to a description of the situation in Europe.

  10. Verification of the Danish 1990, 2000 and 2010 emission inventory data

    DEFF Research Database (Denmark)

    Fauser, Patrik; Nielsen, Malene; Winther, Morten;

    is made with data for energy consumption (Eurostat), agricultural statistics (Eurostat), industrial processes (UN) and waste disposal (OECD). Verification in this approach is a combination of qualitative and quantitative assessments and can assist to identify sectors and categories that require more......Danish emission values, implied emission factors and activity data for the national greenhouse gas inventory are assessed according to an updated verification procedure. Focus is on 25 identified key categories, represented by 29 verification categories, and 28 Annex II indicators covering energy......, agriculture, industry and waste. The data are based on the national greenhouse gas inventories for the years 1990 (base year), 2000 and 2010, as reported in 2012, and provided by the UNFCCC and EU. Inter-country comparison and time series consistency check of emissions and implied emission factors is made...

  11. Inventory and forecasting of maritime emissions in the Belgian sea territory, an activity-based emission model

    Science.gov (United States)

    Schrooten, Liesbeth; De Vlieger, Ina; Int Panis, Luc; Styns, Karel; Torfs, Rudi

    Air quality policy has focussed on land-based emissions for decades. In recent years, it has become increasingly clear that emissions from sea-going vessels can no longer be ignored. There is a growing need for detailed emission inventories to evaluate the impact of this transport mode on air quality and health. In this paper we present MOPSEA, an activity-based emission model to determine emissions from sea-going vessels. The model considers shipping activities of sea-going vessels on Belgian territory, combined with individual vessel characteristics. We apply this model to study the effects of recent international efforts to reduce emissions from sea-going vessels in Belgian territorial waters for the current fleet and for two scenarios up to 2010. The emission model for Belgium, based on different vessel operating areas, reveals that most maritime emissions from the main engines will increase. CO 2 emissions will increase by 2-9% over the 2004-2010 period due to an increase in shipping activity. NO X emissions are projected to rise between 1% and 8% because the increase in activity offsets the reductions from the international maritime organisation (IMO) and European regulations. In contrast, SO 2 emissions will decrease by at least 50% in 6 years time. The switch of auxiliaries from heavy fuel oil to diesel oil at berth results in a large emission reduction (33%) for PM and small reductions for CO 2, NO X, CO and HC (4-5%). The choice between a bottom-up versus top-down approach can have important implications for the allocation of maritime emissions. The MOPSEA bottom-up model allocates only 0.7 Mton CO 2 to Belgium, compared to 24.2 Mton CO 2 based on bunker fuel inventories.

  12. Water emission inventory for the Federal Republic of Germany; Emissionsinventar Wasser fuer die Bundesrepublik Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, E.; Hillenbrand, T.; Marscheider-Weidemann, F.; Schempp, C. [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Fuchs, S.; Scherer, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Siedlungswasserwirtschaft; Luettgert, M. [RISA Sicherheitsanalysen GmbH, Berlin (Germany)

    2000-11-01

    Within the frame of this project, a concept for setting up exemplary emission inventories for water was put forward. An overview is given of the international activities on emission inventories and the status of national emission inventories. Based on the data situation in Germany, it was necessary to include both plant-specific, aggregated and calculated data of the point sources in the inventories. Due to their increasing significance, diffuse material emissions into water were also taken into account. Based on the conceptual work, exemplary emission inventories were compiled for nitrogen, phosphorous and adsorbable organic combined halides (AOX) as well as the heavy metals arsenic, cadmium, chrome, copper, mercury, nickel, lead and zinc. These were evaluated according to the areas of origin (sectors) or the emission paths as well as according to the large river basins Danube, Rhine, Ems, Weser, Elbe, Oder, North Sea and Baltic Sea. In addition, lists of the ten largest industrial direct dischargers were compiled. (orig.) [German] Im Rahmen dieses Vorhabens wurde ein Konzept fuer die Erstellung von beispielhaften Emissionsinventaren fuer Gewaesser erarbeitet. Es wird ein Ueberblick ueber die internationalen Aktivitaeten zu Emissionsinventaren und den Stand beim Aufbau von nationalen Emissionsinventaren gegeben. Auf Grund der Datensituation in Deutschland war es erforderlich, dass sowohl anlagenspezifische als auch aggregierte sowie berechnete Daten der Punktquellen in die Inventare einbezogen wurden. Wegen ihrer zunehmenden Bedeutung werden die diffusen Stoffeintraege in die Gewaesser ebenfalls beruecksichtigt. Aufbauend auf den konzeptionellen Arbeiten wurden beispielhafte Emissionsinventare fuer Stickstoff, Phosphor und adsorbierbare organisch gebundene Halogene (AOX) sowie die Schwermetalle Arsen, Cadmium, Chrom, Kupfer, Quecksilber, Nickel, Blei und Zink zusammengestellt. Die Auswertung erfolgte sowohl nach den Herkunftsbereichen (Branchen) bzw. den

  13. Emission inventory of criteria pollutants Costa Rica in 2011

    Directory of Open Access Journals (Sweden)

    Jorge Herrera

    2014-12-01

    Full Text Available Criteria pollutant emissions were determined in Costa Rica in 2011, from the application of emission factors, measurement sources, the application of mechanistic models and material balance. A total of 1,898,591 tons of criteria pollutants which were recorded, mobile sources are the main contributions with nearly 61%, followed by the area and stationary sources, with 21 and 18 % respectively. The most abundant pollutant in weight, anthropogenically generated during 2011 was the carbon monoxide ( CO , issuing into the atmosphere about 856 264 tonnes per year, mainly for mobile sources; next in order of importance emissions of total organic gases (GOT with more than 434 777 tonnes per year, with mobile sources which generate 40 %.

  14. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    Science.gov (United States)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  15. “Summary of the Emission Inventories compiled for the AQMEII phase 2 Simulations”

    Science.gov (United States)

    We present a summary of the emission inventories from the US, Canada, and Mexico developed for the second phase of the Air Quality Model Evaluation International Initiative (AQMEII). Activities in this second phase are focused on the application and evaluation of coupled meteorol...

  16. Greenhouse Gas Emissions in the Netherlands 1990-2001. National Inventory Report 2003

    NARCIS (Netherlands)

    Olivier JGJ; Brandes LJ; Peters JAHW; Coenen PWHG; Vreuls HHJ; KMD; IMP

    2003-01-01

    This report documents the 2003 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the United Nation's Framework Convention on Climate Change (UNFCCC) and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed tr

  17. Study on the Influence of Velocity, Turbulence Intensity and Temperature on Ammonia Emission Rate in a Wind Tunnel

    DEFF Research Database (Denmark)

    Rong, Li; Nielsen, Peter V.; Zhang, Guoqiang

    2009-01-01

    Odor emissions from manure in livestock buildings are an important issue which concerns the human health and air quality as well as animals. Ammonia is one of the most important odors in pig houses. The objective of this paper is to investigate the influence of local velocity, turbulence intensit...

  18. The effect of heat fluxes on ammonia emission from swine waste lagoon based on neural network analyses

    Science.gov (United States)

    Understanding factors that affect ammonia emissions from swine waste lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes)...

  19. Ammonia and nitrous oxide emissions following field-application of manure: state of the art measurements in the Netherlands

    NARCIS (Netherlands)

    Huijsmans, J.F.M.; Schils, R.L.M.

    2009-01-01

    Manure application to grassland and arable land is an important source of ammonia and nitrous oxide losses. For both gasses, national and international policies have been developed with the objective of reducing the emissions. Since the early 1990s, measurements have been carried out in The Netherla

  20. Validation of CFD simulation for ammonia emissions from an aqueous solution Submitted to Computers and Electronics in Agriculture

    DEFF Research Database (Denmark)

    Rong, Li; Elhadidi, B; Khalifa, H E

    2011-01-01

    as boundary condition for CFD prediction of ammonia emission. The accuracy of CFD simulation depends on many factors. In this study, the effects of appropriate geometry model, inlet turbulent parameters and three turbulence models (low-Reynolds number k–ε model, renormalization group k–ε model and Shear...

  1. Improved road traffic emission inventories by adding mean speed distributions

    NARCIS (Netherlands)

    Smit, R.; Poelman, M.; Schrijver, J.

    2008-01-01

    Does consideration of average speed distributions on roads-as compared to single mean speed-lead to different results in emission modelling of large road networks? To address this question, a post-processing method is developed to predict mean speed distributions using available traffic data from a

  2. [¹³N]Ammonia positron emission tomographic/computed tomographic imaging targeting glutamine synthetase expression in prostate cancer.

    Science.gov (United States)

    Shi, Xinchong; Zhang, Xiangsong; Yi, Chang; Liu, Yubo; He, Qiao

    2014-01-01

    The purpose of this study was to investigate the expression of glutamine synthetase (GS) in prostate cancer (PCa) and the utility of [¹³N]ammonia positron emission tomography/computed tomography (PET/CT) in the imaging of PCa. The uptake ratio of [¹³N]ammonia and the expression of GS in PC3 and DU145 cells was measured. Thirty-four patients with suspected PCa underwent [¹³N]ammonia PET/CT imaging, and immunohistochemistry staining of GS was performed. The uptake of [¹³N]ammonia in PC3 and DU145 cells elevated along with the decrease in glutamine in medium. The expression of GS messenger ribonucleic acid and protein also increased when glutamine was deprived. In biopsy samples, the GS expression scores were significantly higher in PCa tissue than in benign tissues (p glutamine. GS is the main reason for the uptake of [¹³N]ammonia, and [¹³N]ammonia is a useful tracer for PCa imaging.

  3. Constraining atmospheric ammonia emissions through new observations with an open-path, laser-based sensor

    Science.gov (United States)

    Sun, Kang

    As the third most abundant nitrogen species in the atmosphere, ammonia (NH3) is a key component of the global nitrogen cycle. Since the industrial revolution, humans have more than doubled the emissions of NH3 to the atmosphere by industrial nitrogen fixation, revolutionizing agricultural practices, and burning fossil fuels. NH3 is a major precursor to fine particulate matter (PM2.5), which has adverse impacts on air quality and human health. The direct and indirect aerosol radiative forcings currently constitute the largest uncertainties for future climate change predictions. Gas and particle phase NH3 eventually deposits back to the Earth's surface as reactive nitrogen, leading to the exceedance of ecosystem critical loads and perturbation of ecosystem productivity. Large uncertainties still remain in estimating the magnitude and spatiotemporal patterns of NH3 emissions from all sources and over a range of scales. These uncertainties in emissions also propagate to the deposition of reactive nitrogen. To improve our understanding of NH3 emissions, observational constraints are needed from local to global scales. The first part of this thesis is to provide quality-controlled, reliable NH3 measurements in the field using an open-path, quantum cascade laser-based NH3 sensor. As the second and third part of my research, NH3 emissions were quantified from a cattle feedlot using eddy covariance (EC) flux measurements, and the similarities between NH3 turbulent fluxes and those of other scalars (temperature, water vapor, and CO2) were investigated. The fourth part involves applying a mobile laboratory equipped with the open-path NH3 sensor and other important chemical/meteorological measurements to quantify fleet-integrated NH3 emissions from on-road vehicles. In the fifth part, the on-road measurements were extended to multiple major urban areas in both the US and China in the context of five observation campaigns. The results significantly improved current urban NH3

  4. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jianlei, E-mail: su@unimelb.edu.au [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Bai, Mei [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Shen, Jianlin [Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Griffith, David W.T. [Department of Chemistry, University of Wollongong, NSW 2522 (Australia); Denmead, Owen T. [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Hill, Julian [Ternes Agricultural Consulting Pty Ltd, Upwey, VIC 3158 (Australia); Lam, Shu Kee; Mosier, Arvin R. [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Chen, Deli, E-mail: delichen@unimelb.edu.au [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia)

    2016-09-15

    Beef cattle feedlots are a major source of ammonia (NH{sub 3}) emissions from livestock industries. We investigated the effects of lignite surface applications on NH{sub 3} and nitrous oxide (N{sub 2}O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6 kg m{sup −2}, were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH{sub 3} and N{sub 2}O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH{sub 3} analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH{sub 3} and N{sub 2}O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240 g N head{sup −1} day{sup −1}) was lost via NH{sub 3} volatilization from the control pen, while lignite application decreased NH{sub 3} volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH{sub 3} emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14 g N{sub 2}O-N head{sup −1} day{sup −1} (< 0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N{sub 2}O emissions by 40 and 57%, to 0.14 and 0.22 g N{sub 2}O-N head{sup −1} day{sup −1}, for Phase 1 and Phase 2, respectively. The increase in N{sub 2}O emissions resulting from lignite application was counteracted by the lower indirect N{sub 2}O emission due to decreased NH{sub 3} volatilization. Using 1% as a default emission factor of deposited NH{sub 3} for indirect N{sub 2}O emissions, the application of lignite decreased total N{sub 2}O emissions. - Graphical abstract: Lignite application substantially decreased NH{sub 3} emissions from cattle feedlots and increased

  5. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    Science.gov (United States)

    Zhao, B.; Wang, P.; Ma, J. Z.; Zhu, S.; Pozzer, A.; Li, W.

    2012-01-01

    Huabei, located between 32° N and 42° N, is part of eastern China and includes administratively the Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC). Our estimates are based on data from the statistical yearbooks of the state, provinces and local districts, including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2), 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC. For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2), 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and straw burning sectors, and large industrial point sources, which include 345 sets of power plants, iron and steel plants, cement plants, and chemical plants. The

  6. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2012-01-01

    Full Text Available Huabei, located between 32° N and 42° N, is part of eastern China and includes administratively the Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC.

    Our estimates are based on data from the statistical yearbooks of the state, provinces and local districts, including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2, 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC.

    For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2, 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into industrial, civil, traffic, and

  7. Gridded atmospheric emission inventory of 2,3,7,8-TCDD in China

    Science.gov (United States)

    Huang, Tao; Tian, Chongguo; Zhang, Kai; Gao, Hong; Li, Yi-Fan; Ma, Jianmin

    2015-05-01

    Establishment of the dioxins emission inventory has been considered as a crucial step toward risk assessment and elimination of dioxins contaminations. Based on a total dioxin emission inventory in China from different emission categories in 2004, this study created a gridded emission inventory of 2,3,7,8-TCDD, the most toxic congener in dioxins, in China in 2009 with a 1/4° longitude by 1/4° latitude resolution. It was estimated that annually total 371 ± 53 g (average ± standard deviation) of 2,3,7,8-TCDD was released into the atmosphere in 2009 over China, increasing approximately by 37% compared with its emission in 2004. Differing from most developed countries where municipal waste incinerations were regarded as a major atmospheric emission source, in China ferrous and non-ferrous metal production made the largest contribution to 2,3,7,8-TCDD air emission (138 ± 16 g), followed by waste incineration (109 ± 12 g), power and heating generation (62 ± 9 g), and production of mineral products (47 ± 8 g). The rest of sources contributed approximately 3% to the total 2,3,7,8-TCDD emission in 2009. Iron and steel industries are mainly located in Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions, whereas waste incinerators are mainly located in Pearl River Delta (PRD) region. Higher 2,3,7,8-TCDD emissions were found in these three regions. While the BTH, YRD, and PRD accounted for only about 4% of total land area of China, they contributed approximately 14%, 15%, and 5% to the total 2,3,7,8-TCDD emission in 2009 in China, respectively.

  8. Energy-Dominated Local Carbon Emissions in Beijing 2007: Inventory and Input-Output Analysis

    Directory of Open Access Journals (Sweden)

    Shan Guo

    2012-01-01

    Full Text Available For greenhouse gas (GHG emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E + 08 t CO2-eq, of which energy-related CO2 emissions comprise 90.49%, non-energy-related CO2 emissions 6.35%, CH4 emissions 2.33%, and N2O emissions 0.83%, respectively. In terms of energy-related CO2 emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry holds the top local emissions embodied in final demand of 1.86E + 07 t CO2-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals. The GHG emissions embodied in Beijing's exports are 4.90E + 07 t CO2-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers.

  9. Growth promoting technologies reduce greenhouse gas, alcohol, and ammonia emissions from feedlot cattle.

    Science.gov (United States)

    Stackhouse-Lawson, K R; Calvo, M S; Place, S E; Armitage, T L; Pan, Y; Zhao, Y; Mitloehner, F M

    2013-11-01

    Increased animal productivity has the potential to reduce the environmental impact per unit of consumable product and is believed to be the most promising and sustainable mitigation technique to meet increasing demand for high quality protein. The feedlot industry uses ionophores, antibiotics, growth implants, and β2-adrenergic agonists to improve health and growth performance of cattle. These technologies not only increase productivity but also alter microbes in the rumen and increase nitrogen retention in the animal, which may lead to changes in greenhouse gas (GHG), volatile organic compound (VOC), and ammonia (NH3) emissions from feedlot cattle. The present study investigated GHG, VOC, and NH3 emissions from 160 Angus crossbred steers. Steers were blocked by weight in a randomized block design and assigned to 16 pens of 10 animals each. Treatments applied were 1) control (CON; no technology application), 2) monensin and tylosin phosphate (MON), 3) monensin, tylosin phosphate, and growth implant (IMP), and 4) monensin, tylosin phosphate, growth implant, and zilpaterol hydrochloride (fed during the last 20 d of the feeding period; BAA). Cattle were on feed for an average of 107 d. Performance variables (DMI, BW, ADG, and G:F) and carcass traits (HCW, dressing percent, KPH, LM area, fat thickness, marbling score, yield grade, and quality grade) were measured. Gaseous emissions were measured during the last 10 d of the feeding period when animals were housed in 4 totally enclosed identical cattle pen enclosures. To quantify gaseous emissions a 4×4 Latin square design (n=4) was used. Gaseous emissions were analyzed using Proc Mixed in SAS and reported in grams per kilogram HCW per day and grams per kilogram per animal per hour. Treatment with IMP and BAA increased (PMethane emissions were similar for CON and IMP treated cattle. Nitrous oxide emissions were similar across CON, MON, and IMP treated cattle and were higher in BAA treated cattle (Papplication of growth

  10. Emissions inventory report summary for Los Alamos National Laboratory for calendar year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2009-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory’s potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2008. LANL’s 2008 emissions are well below the emission limits in the Title V Operating Permit.

  11. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    M. Stockton

    2005-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), ''Notice of Intent and Emissions Inventory Requirements''. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. This Title V Operating Permit (Permit No. P-100) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2004. LANL's 2004 emissions are well below the emission limits in the Title V Operating Permit.

  12. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Environmental Stewardship Group

    2010-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2009. LANL's 2009 emissions are well below the emission limits in the Title V Operating Permit.

  13. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2007-09-28

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. Modification Number 1 to this Title V Operating Permit was issued on June 15, 2006 (Permit No P-100M1) and includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2006. LANL's 2006 emissions are well below the emission limits in the Title V Operating Permit.

  14. Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China

    Science.gov (United States)

    Chen, Hui; Meng, Jing

    2017-03-01

    Air pollution, causing significantly adverse health impacts and severe environmental problems, has raised great concerns in China in the past few decades. Guangdong Province faces major challenges to address the regional air pollution problem due to the lack of an emissions inventory. To fill this gap, an emissions inventory of primary fine particles (PM2.5) is compiled for the year 2012, and the key precursors (sulfur dioxide, nitrogen oxides) are identified. Furthermore, policy packages are simulated during the period of 2012‒2030 to investigate the potential mitigation effect. The results show that in 2012, SO2, NO x , and PM2.5 emissions in Guangdong Province were as high as (951.7, 1363.6, and 294.9) kt, respectively. Industrial production processes are the largest source of SO2 and PM2.5 emissions, and transport is the top contributor of NO x emissions. Both the baseline scenario and policy scenario are constructed based on projected energy growth and policy designs. Under the baseline scenario, SO2, NO x , and PM2.5 emissions will almost double in 2030 without proper emissions control policies. The suggested policies are categorized into end-of- pipe control in power plants (ECP), end-of-pipe control in industrial processes (ECI), fuel improvement (FI), energy efficiency improvement (EEI), substitution-pattern development (SPD), and energy saving options (ESO). With the implementation of all these policies, SO2, NO x , and PM2.5 emissions are projected to drop to (303.1, 585.4, and 102.4) kt, respectively, in 2030. This inventory and simulated results will provide deeper insights for policy makers to understand the present situation and the evolution of key emissions in Guangdong Province.

  15. Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China

    Science.gov (United States)

    Chen, Hui; Meng, Jing

    2016-03-01

    Air pollution, causing significantly adverse health impacts and severe environmental problems, has raised great concerns in China in the past few decades. Guangdong Province faces major challenges to address the regional air pollution problem due to the lack of an emissions inventory. To fill this gap, an emissions inventory of primary fine particles (PM2.5) is compiled for the year 2012, and the key precursors (sulfur dioxide, nitrogen oxides) are identified. Furthermore, policy packages are simulated during the period of 2012-2030 to investigate the potential mitigation effect. The results show that in 2012, SO2, NO x , and PM2.5 emissions in Guangdong Province were as high as (951.7, 1363.6, and 294.9) kt, respectively. Industrial production processes are the largest source of SO2 and PM2.5 emissions, and transport is the top contributor of NO x emissions. Both the baseline scenario and policy scenario are constructed based on projected energy growth and policy designs. Under the baseline scenario, SO2, NO x , and PM2.5 emissions will almost double in 2030 without proper emissions control policies. The suggested policies are categorized into end-of-pipe control in power plants (ECP), end-of-pipe control in industrial processes (ECI), fuel improvement (FI), energy efficiency improvement (EEI), substitution-pattern development (SPD), and energy saving options (ESO). With the implementation of all these policies, SO2, NO x , and PM2.5 emissions are projected to drop to (303.1, 585.4, and 102.4) kt, respectively, in 2030. This inventory and simulated results will provide deeper insights for policy makers to understand the present situation and the evolution of key emissions in Guangdong Province.

  16. High resolution inventory of GHG emissions of the road transport sector in Argentina

    Science.gov (United States)

    Puliafito, Salvador Enrique; Allende, David; Pinto, Sebastián; Castesana, Paula

    2015-01-01

    Air quality models require the use of extensive background information, such as land use and topography maps, meteorological data and emission inventories of pollutant sources. This challenge increases when considering the vehicular sources. The available international databases have uneven resolution for all countries including some areas with low spatial resolution associated with large districts (several hundred km). A simple procedure is proposed in order to develop an inventory of emissions with high resolution (9 km) for the transport sector based on a geographic information system using readily available information applied to Argentina. The basic variable used is the vehicle activity (vehicle - km transported) estimated from fuel consumption and fuel efficiency. This information is distributed to a spatial grid according to a road hierarchy and segment length assigned to each street within the cell. Information on fuel is obtained from district consumption, but weighted using the DMSP-OLS satellite "Earth at night" image. The uncertainty of vehicle estimation and emission calculations was tested using sensitivity Montecarlo analysis. The resulting inventory is calibrated using annual average daily traffic counts in around 850 measuring points all over the country leading to an uncertainty of 20%. Uncertainties in the emissions calculation at pixel level can be estimated to be less than 12%. Comparison with international databases showed a better spatial distribution of greenhouse gases (GHG) emissions in the transport sector, but similar total national values.

  17. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    Science.gov (United States)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    Biomass burning injects many different gases and aerosols into the atmosphere that could have a harmful effect on air quality, climate, and human health. In this study, a comprehensive biomass burning emission inventory including domestic and in-field straw burning, firewood burning, livestock excrement burning, and forest and grassland fires is presented, which was developed for mainland China in 2012 based on county-level activity data, satellite data, and updated source-specific emission factors (EFs). The emission inventory within a 1 × 1 km2 grid was generated using geographical information system (GIS) technology according to source-based spatial surrogates. A range of key information related to emission estimation (e.g. province-specific proportion of domestic and in-field straw burning, detailed firewood burning quantities, uneven temporal distribution coefficient) was obtained from field investigation, systematic combing of the latest research, and regression analysis of statistical data. The established emission inventory includes the major precursors of complex pollution, greenhouse gases, and heavy metal released from biomass burning. The results show that the emissions of SO2, NOx, PM10, PM2.5, NMVOC, NH3, CO, EC, OC, CO2, CH4, and Hg in 2012 are 336.8 Gg, 990.7 Gg, 3728.3 Gg, 3526.7 Gg, 3474.2 Gg, 401.2 Gg, 34 380.4 Gg, 369.7 Gg, 1189.5 Gg, 675 299.0 Gg, 2092.4 Gg, and 4.12 Mg, respectively. Domestic straw burning, in-field straw burning, and firewood burning are identified as the dominant biomass burning sources. The largest contributing source is different for various pollutants. Domestic straw burning is the largest source of biomass burning emissions for all the pollutants considered, except for NH3, EC (firewood), and NOx (in-field straw). Corn, rice, and wheat represent the major crop straws. The combined emission of these three straw types accounts for 80 % of the total straw-burned emissions for each specific pollutant mentioned in this study

  18. Aircraft emission inventories for scheduled air traffic for the 1976-92 time period. Historical trends

    Energy Technology Data Exchange (ETDEWEB)

    Baughcum, S.L.; Henderson, S.C.; Tritz, T.G. [Boeing Co., Seattle, WA (United States)

    1997-12-31

    Emission inventories of fuel burned, NO{sub x}, CO, and hydrocarbons have been calculated for scheduled air traffic in 1976, 1984, 1990 and 1992 on a 1 deg latitude x 1 deg longitude x 1 km pressure altitude grid. Using this database, the seasonal variation and historical trends in aircraft emissions have been calculated for selected geographical regions (e.g., North Atlantic, Europe, North America, North Pacific). The trend in emissions is a combination of the effects of passenger demand growth, improved aircraft efficiency, changes in combustor characteristics, and aircraft size. (author) 8 refs.

  19. Modelling of pesticide emissions for Life Cycle Inventory analysis: Model development, applications and implications

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes

    good emission inventories. Recent LCA studies of agricultural products that take toxicity impacts into account show that pesticide emissions considerably contribute to toxicity impacts. At the same time, such conclusions are derived using a simplified approach to quantify pesticide emissions....... Differences in impacts between cul-tivation in current and future climatic conditions were concluded to be mainly driven by differences in grain yield. The use of economic allocation was found to be a key issue, since the price levels of 2050 can’t be predicted with any reasonable certainty. Although Pest...

  20. Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling

    Science.gov (United States)

    Henne, Stephan; Brunner, Dominik; Oney, Brian; Leuenberger, Markus; Eugster, Werner; Bamberger, Ines; Meinhardt, Frank; Steinbacher, Martin; Emmenegger, Lukas

    2016-03-01

    Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH4) from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI) as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH4 emissions to be 196 ± 18 Gg yr-1 for the year 2013 (1σ uncertainty). This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr-1 as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter), and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH4 source categories in Switzerland are agriculture (78 %), waste handling (15 %) and natural gas distribution and combustion (6 %). The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH4 emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH4 in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr-1 reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr-1 implied by the EDGARv4.2 inventory for

  1. Top-down estimate of anthropogenic emission inventories in Houston using a 4D-VAR mesoscale inverse modeling technique

    Science.gov (United States)

    Trainer, M.; Brioude, J.; Kim, S.; Frost, G. J.; Angevine, W. M.; Ahmadov, R.; Lee, S.; McKeen, S. A.; Holloway, J. R.; Ryerson, T. B.; Peischl, J.; Warneke, C.; de Gouw, J. A.; Parrish, D. D.; Fehsenfeld, F. C.; Gurney, K. R.

    2010-12-01

    The 2006 Texas Air Quality Study (TexAQS 2006), an intensive field campaign, took place in eastern Texas in August-October 2006. Several flights of the NOAA WP-3 research aircraft were dedicated to characterizing anthropogenic emissions over Houston. We present a method that uses the FLEXPART Lagrangian particle dispersion model in combination with the WRF mesoscale model to assess and improve existing emission inventories. We used a 4-dimensional variational (4D-VAR) inverse modeling technique based on a least-squares method to improve the spatial and temporal distribution of CO, NOx and SO2 emissions predicted by the 4-km-resolution US EPA National Emission Inventory (NEI) for 1999 and 2005. Differences between the a priori and a posteriori inventories are discussed. Furthermore, a new method has been developed to calculate an emission inventory for an anthropogenic pollutant without a prior emission estimate. This method employs coefficients of the multivariate regressions between mixing ratios of the pollutant with those of CO and NOx measured by the aircraft in conjunction with CO and NOx emission inventories. We demonstrate the validity of this technique by constructing an anthropogenic emission inventory of CO2 in the Houston area and comparing it to the Vulcan inventory.

  2. Inventories of N2O and NO emissions from European forest soils

    DEFF Research Database (Denmark)

    Kesik, M.; Ambus, Per; Baritz, R.;

    2005-01-01

    inventory we linked the model to a detailed, regionally and temporally resolved database, comprising climatic properties (daily resolution), and soil parameters, and information on forest areas and types for the years 1990, 1995 and 2000. Our calculations show that N trace gas fluxes from forest soils may.......9 kt N yr(-1) for N2O, for year 2000 meteorology. The results show that process-oriented models coupled to a GIS are useful tools for the calculation of regional, national, or global inventories of biogenic N trace gas emissions from soils. This work represents the most comprehensive effort to date...

  3. Emission Inventories of Carbon-containing Greenhouse Gases in and Technological Measures for Their Abatement

    Institute of Scientific and Technical Information of China (English)

    Zhuang Yahui; Zhang Hongxun; Wang Xiaoke; Li Changsheng

    2004-01-01

    The report summarizes surveys on carbon inventories and initiatives on sustainable carbon cycling taken by the Research Center for EcoEnvironmental Sciences, where the authors work/worked. The first part of the report, which appeared in the preceding issue of this journal, deals with the concept of sustainable carbon cycling, the historic evolution of carbon cycling processes in China, carbon pool enhancement, value addition,carbon sequestration and carbon balance. This very paper, as the second part of the report, covers the results of carbon dynamics modeling, emission inventories of various carbon-containing greenhouse gases and their potential abatement measures.

  4. Anticipated changes in the emissions of green-house gases and ammonia from pork production due to shifts from fattening of barrows towards fattening of boars

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Berk, Andreas; Otten, Caroline

    2013-01-01

    Greenhouse gases and of ammonia emissions from pork production will change when fattening of barrows switches towards to fattening of (intact) boars. The results of an accurate feeding experiment allow for the differentiation of the effects on emissions of gender (differentiating in boars, barrows...... effect of increased numbers of animals produced. The fattening of intact boars as compared to barrows is associated with a reduction of emissions of greenhouse gases and of ammonia per animal. For ammonia, all scenarios result in reduced emissions, most markedly when this shift is combined with increased...... weight gains. To a lesser extent, this also applies to nitric and nitrous oxide emissions. Methane emissions are less affected; increased weight gains result in increased emissions. As the greenhouse gas balance is dominated by methane emissions, the overall emission of greenhouse gases (expressed as CO2...

  5. A high-resolution emission inventory of primary pollutants for the Huabei region, China

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2011-07-01

    Full Text Available Huabei is a part of eastern China located between 32° N and 42° N latitude. Administratively it is a region including Beijing and Tianjin Municipalities, Hebei and Shanxi Provinces, and Inner-Mongolia Autonomous Region. Over the past decades, the region has experienced dramatic changes in air quality and climate, and has become a major focus of environmental research in China. Here we present a new inventory of air pollutant emissions in Huabei for the year 2003 developed as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China (IPAC-NC.

    Our estimates are based on the data from the statistical yearbooks of state and provinces as well as local districts including major sectors and activities of power generation, industrial energy consumption, industrial processing, civil energy consumption, crop straw burning, oil and solvent evaporation, manure, and motor vehicles. The emission factors are selected from a variety of literature and those from local measurements in China are used whenever available. The estimated total emissions in the Huabei administrative region in 2003 are 4.73 Tg SO2, 2.72 Tg NOx (in equivalent NO2, 1.77 Tg VOC, 24.14 Tg CO, 2.03 Tg NH3, 4.57 Tg PM10, 2.42 Tg PM2.5, 0.21 Tg EC, and 0.46 Tg OC.

    For model convenience, we consider a larger Huabei region with Shandong, Henan and Liaoning Provinces included in our inventory. The estimated total emissions in the larger Huabei region in 2003 are: 9.55 Tg SO2, 5.27 Tg NOx (in equivalent NO2, 3.82 Tg VOC, 46.59 Tg CO, 5.36 Tg NH3, 10.74 Tg PM10, 5.62 Tg PM2.5, 0.41 Tg EC, and 0.99 Tg OC. The estimated emission rates are projected into grid cells at a horizontal resolution of 0.1° latitude by 0.1° longitude. Our gridded emission inventory consists of area sources, which are classified into

  6. Simulating ozone concentrations using precursor emission inventories in Delhi - National Capital Region of India

    Science.gov (United States)

    Sharma, Sumit; Khare, Mukesh

    2017-02-01

    This study simulates ground level ozone concentrations in a heavily populated and polluted National Capital Region (NCR- Delhi) in India. Multi-sectoral emission inventories of ozone precursors are prepared at a high resolution of 4 × 4 km2 for the whole region covering the capital city of Delhi along with other surrounding towns and rural regions in NCR. Emission inventories show that transport sector accounts for 55% of the total NOx emissions, followed by power plants (23%) and diesel generator sets (7%). In NMVOC inventories, transport sector again accounts for 33%, followed by evaporative emissions released from solvent use and fuel handling activities (30%), and agricultural residue burning (28%). Refuse burning contributes to 73% of CO emissions mainly due to incomplete combustion, followed by agricultural residue burning (14%). These emissions are spatially and temporally distributed across the study domain and are fed into the WRF-CMAQ models to predict ozone concentrations for the year 2012. Model validations are carried out with the observed values at different monitoring stations in Delhi. The performance of the models over various metrics used for evaluation was found to be satisfactory. Summers and post-monsoon seasons were better simulated than monsoon and winter seasons. Simulations have shown higher concentrations of ozone formation during summers and lesser during winters and monsoon seasons, mainly due to varying solar radiation affecting photo-chemical activities. Ozone concentrations are observed lower at those locations where NOx emissions are higher, and concentrations increase close to the boundary of study domain when compared to the center of Delhi city. Downwind regions to Delhi are influenced by the ozone formed due to plume of precursor emissions released from Delhi. Considering significant background contributions, regional scale controls are required for reducing ozone in NCR.

  7. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    Science.gov (United States)

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  8. Emission inventory of primary air pollutants in 2010 from industrial processes in Turkey.

    Science.gov (United States)

    Alyuz, Ummugulsum; Alp, Kadir

    2014-08-01

    The broad objective of this study was to develop CO2, PM, SOx, CO, NOx, VOC, NH3 and N2O emission inventory of organic and inorganic chemicals, mineral products, metallurgical, petroleum refining, wood products, food industries of Turkey for 2010 for both co]ntrolled and uncontrolled conditions. In this study, industries were investigated in 7 main categories and 53 sub-sectors and a representative number of pollutants per sub-sector were considered. Each industry was evaluated in terms of emitted emissions only from industrial processes, and fuel combustion activities were excluded (except cement industry). The study employed an approach designed in four stages; identification of key categories; activity data & emission factor search; emission factor analyzing; calculation of emissions. Emission factor analyzing required aggregate and firm analysis of sectors and sub-sectors and deeper insights into underlying specific production methods used in the industry to decide on the most representative emission factor. Industry specific abatement technologies were considered by using open-source documents and industry specific reports. Regarding results of this study, mineral industry and iron & steel industry were determined as important contributors of industrial emissions in Turkey in 2010. Respectively, organic chemicals, petroleum refining, and pulp & paper industries had serious contributions to Turkey's air pollutant emission inventory from industrial processes. The results showed that calculated CO2 emissions for year 2010 was 55,124,263 t, also other emissions were 48,853 t PM, 24,533 t SOx, 79,943 t NOx, 31,908 t VOC, 454 t NH3 and 2264 t N2O under controlled conditions.

  9. A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions

    Science.gov (United States)

    Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.

    2015-12-01

    A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.

  10. Evaluation of national emissions inventories of anthropogenic air pollutants for Brunei Darussalam

    Science.gov (United States)

    Dotse, Sam-Quarcoo; Dagar, Lalit; Petra, Mohammad Iskandar; De Silva, Liyanage C.

    2016-05-01

    Haze and other air pollution related problems are getting more significant in Brunei Darussalam but till date there is absence of comprehensive national emission inventory for Brunei Darussalam. Although there are few regional and global inventories available for Brunei Darussalam, large variations in the emission estimates exist in these datasets. Therefore, there is an important need for an updated inventory, based on data available from government and other sources. This study presents a sector-wise anthropogenic emission estimates and trends (2001-2012) for the pollutants CO2, CH4, N2O, NOX, NMVOC, CO, SOX, and PM10. The results suggest no significant contributions from residential sector (road transport is the main contributor for most of the pollutants. CO2 is largely emitted by power plants (∼72% in 2001 and∼ 62% in 2012) and the main source of CH4 is Solid waste disposal and wastewater handling (∼92%). There were also significant contributions from industrial processes and solvent use to NMVOC and PM10 emissions (∼74% and ∼45% respectively).

  11. The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Anton, Assumpció; Bengoa, Xavier;

    2015-01-01

    Pesticides are applied to agricultural fields to optimise crop yield and their global use is substantial. Their consideration in life cycle assessment (LCA) is affected by important inconsistencies between the emission inventory and impact assessment phases of LCA. A clear definition of the delin......Pesticides are applied to agricultural fields to optimise crop yield and their global use is substantial. Their consideration in life cycle assessment (LCA) is affected by important inconsistencies between the emission inventory and impact assessment phases of LCA. A clear definition...... of the delineation between the product system model (life cycle inventory—LCI, technosphere) and the natural environment (life cycle impact assessment—LCIA, ecosphere) is missing and could be established via consensus building.A workshop held in 2013 in Glasgow, UK, had the goal of establishing consensus...... and creating clear guidelines in the following topics: (1) boundary between emission inventory and impact characterisation model, (2) spatial dimensions and the time periods assumed for the application of substances to open agricultural fields or in greenhouses and (3) emissions to the natural environment...

  12. Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port

    Science.gov (United States)

    Song, Su

    2014-01-01

    This study estimated both the in-port ship emissions inventory (CO2, CH4, N2O, PM10, PM2.5, NOx, SOx, CO, and HC) and the emission associated social cost in Yangshan port of Shanghai. A sophisticated activity-based methodology, supported by the ship-by-ship and real-time data from the modern automatic identification system (AIS), was introduced to obtain accurate estimates of ship emissions. The detailed spatial and temporal emission inventories can be used as input for air quality dispersion modeling in the port and vicinities. The social cost of the emission impact on the Yangshan port coastal regions was then assessed based on the emissions inventories. The social cost covers the impact on human health, the environment, and the climate of the coastal community. Finally, the ship emissions was combined with port's basic operation profiles, i.e. container throughput, ship calls, and port revenue, in an attempt to assess the port's “eco-efficiency”, which indicates the port performance with social-economic and environmental concerns. This study filled the gap of previous studies by providing the AIS-supported activity-based emission inventory to facilitate the social cost-benefit analysis for the emission abatement policies. The result shows that i) the amount of in-port ship emissions of CO2, CH4, N2O, PM10, PM2.5, NOx, SOx, CO, and HC in Yangshan port area was 578,444 tons, 10 tons, 33 tons, 1078 tons (PM10, inducing PM2.5), 859 tons (PM2.5 only), 10,758 tons, 5623 tons, 1136 tons, and 519 tons, respectively, with ii) a total social cost of 287 million; iii) the values of the three parameters of the port eco-efficiency performance were 36,528 per 1,000 TEU throughput, 43,993 per ship call, and 44 million per billion US$ port revenue (4.4% of port revenue), respectively in 2009.

  13. Impact of an improved Cuban emissions inventory on air quality simulations

    Science.gov (United States)

    Sanchez Gacita, M.; Alonso, M. F.; Longo, K. M.; de Freitas, S. R.

    2010-12-01

    The energy sector in the Central America and Caribbean regions is primarily fossil fuel based and one of the major sources of air pollution in the region. In Cuba, energy production is responsible for 99% of SO2 emissions, 98% of NOX and 94% of CO, with emissions in 2000 of 588.59 Gg, 149.57 Gg and 536.42 Gg, respectively, according to the Cuban National Inventory - CNI. Electric power generation plants, the most important sub-sector, are highlighted as point sources of high emissions, in particular, SO2. Global inventories are shown to be inaccurate for Cuba. RETRO has non-zero data for just one cell, over the city of Havana. EDGAR has deficiencies in its geographical distribution, with no emissions over the city of Havana, and the distribution of emissions by sectors is unrealistic according to the CNI: for instance, in the case of SO2, it distributes emissions nearly equally between electricity generation and the remaining sectors, which is inaccurate. More importantly, emissions are overestimated, with the notable exception of SO2 and NMVOC. The most important reasons are the particularities of Cuba, including the extensive employ of fossil fuels with little refining and high sulfur content in energy production and industrial processes such as asphalt production, and the use of low efficiency technologies. This work presents an improved emissions inventory with CNI data and detailed emissions for all major power generation plants. The impact of this improvement was assessed through numerical air quality simulations of the transport and transformation of these emissions from a regional perspective, conducted with the CCATT-BRAMS 3D atmospheric chemical transport model, developed and maintained by INPE, Brazil. Boundary conditions were supplied by global model MOCAGE with chemistry scheme RELACS. Simulations with the new inventory were conducted with CATT-BRAMS using chemical mechanism RELACS, incorporated as part of this work, for two months (January and August

  14. GHG emissions inventory for on-road transportation in the town of Sassari (Sardinia, Italy)

    Science.gov (United States)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2016-04-01

    The IPCC Fifth Assessment Report (AR5) accounts an increase of the total annual anthropogenic GHG emissions between 2000 and 2010 that directly came from the transport sector. In 2010, 14% of GHG emissions were released by transport and fossil-fuel-related CO2 emissions reached about 32 GtCO2 per year. The report also considers adaptation and mitigation as complementary strategies for reducing the risks of climate change for sustainable development of urban areas. This paper describes the on-road traffic emission estimated in the framework of a Sardinian regional project [1] for the town of Sassari (Sardinia, Italy), one of the Sardinian areas where the fuel consumption for on-road transportation purposes is higher [2]. The GHG emissions have been accounted (a) by a calculation-based methodology founded on a linear relationship between source activity and emission, and (b) by the COPERT IV methodology through the EMITRA (EMIssions from road TRAnsport) software tool [3]. Inventory data for annual fossil fuel consumption associated with on-road transportation (diesel, gasoline, gas) have been collected through the Dogane service, the ATP and ARST public transport services and vehicle fleet data are available from the Public Vehicle Database (PRA), using 2010 as baseline year. During this period, the estimated CO2 emissions accounts for more than 180,000 tCO2. The calculation of emissions due to on-road transport quantitatively estimates CO2 and other GHG emissions and represents a useful baseline to identify possible adaptation and mitigation strategies to face the climate change risks at municipal level. Acknowledgements This research was funded by the Sardinian Regional Project "Development, functional checking and setup of an integrated system for the quantification of CO2 net exchange and for the evaluation of mitigation strategies at urban and territorial scale", (Legge Regionale 7 agosto 2007, No. 7). References [1] Sanna L., Ferrara R., Zara P. & Duce P. (2014

  15. Ship Emission Inventories in Estuary of the Yangtze River Using Terrestrial AIS Data

    Directory of Open Access Journals (Sweden)

    Xin Yao

    2016-12-01

    Full Text Available Estuary forms a transition zone between inland river and open sea. In China, the estuary of the Yangtze River plays a vital role in connecting the inland and oversea shipping, and witnesses heavy vessel traffic in the recent decades. Nowadays, more attentions have been directed to the issue of ship pollution in busy waterways. In order to investigate the ship emission inventory, this paper presents an Automatic Identification System(AIS based method. AIS data is the realistic data of vessel traffic including dynamic information (position, speed, course, etc. and static information (ship type, dimensions, name, etc.. According to ship dimensions, the power of engines is estimated for different ship types. By using AIS based bottom-up approach, ship emission inventories and shares of air pollutants and GHGs (Greenhouse gases are developed. Spatial distribution of ship emissions is illustrated in the form of heat map. As a case study, the emission inventories are analyzed using AIS data of 2010 in the estuary, and following results are made:(1 shares of the emission are cruise ships 6.59%, bulk carriers 5.16%, container ships 52.96%, tankers 15.16%, fishing ships 9.16%, other ships 10.97%; (2 CO2 is the dominant part of the emission. (3 Areas of highest emission intensity are generally clustered around the South Channel, the North Channel and ports in the vicinity. The proposed method is promising because it is derived from the AIS data which contains not only real data of individual ship but also vessel traffic situation in the study area. It can server as a reference for other researchers and policy makers working in this field.

  16. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-01

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.

  17. Compilation and analyses of emissions inventories for NOAA`s atmospheric chemistry project. Progress report, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M.; Mubaraki, M.A.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories.

  18. NICKEL SPECIES EMISSION INVENTORY FOR OIL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Richard L. Schulz; Donald L. Toman; Carolyn M. Nyberg

    2004-01-01

    Representative duplicate fly ash samples were obtained from the stacks of 400-MW and 385-MW utility boilers (Unit A and Unit B, respectively) using a modified U.S. Environmental Protection Agency (EPA) Method 17 sampling train assembly as they burned .0.9 and 0.3 wt% S residual oils, respectively, during routine power plant operations. Residual oil fly ash (ROFA) samples were analyzed for nickel (Ni) concentrations and speciation using inductively coupled plasma-atomic emission spectroscopy, x-ray absorption fine structure (XAFS) spectroscopy, x-ray diffraction (XRD), and a water-soluble Ni extraction method. ROFA water extraction residues were also analyzed for Ni speciation using XAFS and XRD. Total Ni concentrations in the ROFAs were similar, ranging from 1.3 to 1.5 wt%; however, stack gas Ni concentrations in the Unit A were {approx}990 {micro}g/Nm{sup 3} compared to {approx}620 {micro}g/Nm{sup 3} for Unit B because of the greater residual oil feed rates employed at Unit A to attain higher load (i.e., MW) conditions with a lower heating value oil. Ni speciation analysis results indicate that ROFAs from Unit A contain about 3 wt% NiSO{sub 4} {center_dot} xH{sub 2}O (where x is assumed to be 6 for calculation purposes) and a Ni-containing spinel compound, similar in composition to (Mg,Ni)(Al,Fe){sub 2}O{sub 4}. ROFAs from Unit B contain on average 2.0 wt% NiSO{sub 4} {center_dot} 6H{sub 2}O and 1.1 wt% NiO. XAFS and XRD analyses did not detect any nickel sulfide compounds, including nickel subsulfide (Ni{sub 3}S{sub 2}) (XAFS detection limit is 5% of the total Ni concentration). In addition, XAFS measurements indicated that inorganic sulfate and organic thiophene species account for >97% of the total sulfur in the ROFAs. The presence of NiSO{sub 4} {center_dot} xH{sub 2}O and nickel oxide compound mixtures and lack of carcinogenic Ni{sub 3}S{sub 2} or nickel sulfide compounds (e.g., NiS, NiS{sub 2}) in ROFAs stack-sampled from 400- and 385-MW boilers are contrary

  19. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    Directory of Open Access Journals (Sweden)

    F. Paulot

    2015-09-01

    Full Text Available We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL atmospheric model (AM3. Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 % or in the uptake of nitric acid on dust (13 %. Our best estimate for present-day fine nitrate optical depth at 550 nm is 0.006 (0.005–0.008. We only find a modest increase of nitrate optical depth (2 (−40 % and ammonia (+38 % from 2010 to 2050. Nitrate burden is projected to increase in the tropics and in the free troposphere, but to decrease at the surface in the midlatitudes because of lower nitric acid concentrations. Our results suggest that better constraints on the heterogeneous chemistry of nitric acid on dust, on tropical ammonia emissions, and on the transport of ammonia to the free troposphere are needed to improve projections of aerosol optical depth.

  20. A methodology for elemental and organic carbon emission inventory and results for Lombardy region, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Caserini, Stefano [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Galante, Silvia, E-mail: silvia1.galante@polimi.it [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Ozgen, Senem; Cucco, Sara; Gregorio, Katia de [Politecnico di Milano, DICA Environmental Engineering Section, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Moretti, Marco [Environmental Protection Agency of Lombardia Region, ARPA, 20124 Milano (Italy)

    2013-04-15

    This paper presents a methodology and its application for the compilation of elemental carbon (EC) and organic carbon (OC) emission inventories. The methodology consists of the estimation of EC and OC emissions from available total suspended particulate matter (TSP) emission inventory data using EC and OC abundances in TSP derived from an extensive literature review, by taking into account the local technological context. In particular, the method is applied to the 2008 emissions of Lombardy region, Italy, considering 148 different activities and 30 types of fuels, typical of Western Europe. The abundances estimated in this study may provide a useful basis to assess the emissions also in other emission contexts with similar prevailing sources and technologies. The dominant sources of EC and OC in Lombardy are diesel vehicles for EC and the residential wood combustion (RWC) for OC which together account for about 83% of the total emissions of both pollutants. The EC and OC emissions from industrial processes and other fuel (e.g., gasoline, kerosene and LPG) combustion are significantly lower, while non-combustion sources give an almost negligible contribution. Total EC + OC contribution to regional greenhouse gas emissions is positive for every sector assuming whichever GWP100 value within the range proposed in literature. An uncertainty assessment is performed through a Monte Carlo simulation for RWC, showing a large uncertainty range (280% of the mean value for EC and 70% for OC), whereas for road transport a qualitative analysis identified a narrower range of uncertainty. - Highlights: ► Diesel and wood combustion contribute to more than 80% of total EC and OC. ► More than 50% of EC emissions come from road transport. ► Monte Carlo method is used to assess the uncertainty of wood combustion emissions. ► Residential wood combustion is the main source of uncertainty of EC OC inventory. ► In terms of CO{sub 2}eq, EC and OC correspond to 3% of CO{sub 2

  1. Methane and nitrous oxide emissions in The Netherlands: ambient measurements support the national inventories

    Directory of Open Access Journals (Sweden)

    R. E. M. Neubert

    2009-12-01

    Full Text Available We present net emission estimates of CH4 and N2O of The Netherlands based on measurements conducted during the period of May 2006 to April 2009 at station Lutjewad, The Netherlands (6°21' E, 53°24' N, 1 m a.s.l.. 222Radon mixing ratios were applied as an indicator for vertical mixing and long-range air mass transport and used to calculate the net surface fluxes from atmospheric mixing ratios of CH4 and N2O. Our study shows that our measurement site Lutjewad is well-suited to measure emissions from The Netherlands and validation of the national inventories using the 222Radon flux method. Since this study is purely observation-based it is independent from inventories or atmospheric models. Our results are compared to the national inventories as reported to the UNFCCC. We found net emissions of: (15.2±5.3 t km−2 a−1 for CH4 and (0.9±0.3 t km−2 a−1 for N2O. These values are lower than the inventory-based emissions (2006-2008 averages of (18.3±3.3 t km−2 a−1 for CH4, and (1.3±0.6 t km−2 a−1 for N2O, but the differences are insignificant.

  2. Methane and nitrous oxide emissions in The Netherlands: ambient measurements support the national inventories

    Directory of Open Access Journals (Sweden)

    S. van der Laan

    2009-09-01

    Full Text Available We present net emission estimates of CH4 and N2O of The Netherlands based on measurements conducted during the period of May 2006 to April 2009 at station Lutjewad, The Netherlands (6° 21' E, 53° 24' N, 1 m a.s.l.. 222Radon mixing ratios were applied as an indicator for vertical mixing and long-range air mass transport and used to calculate the net surface fluxes from atmospheric mixing ratios of CH4 and N2O. Our study shows that our measurement site Lutjewad is well-suited to measure emissions from The Netherlands and validation of the national inventories using the 222Radon flux method. Since this study is purely observation-based it is independent from inventories or atmospheric models. Our results are compared to the national inventories as reported to the UNFCCC. We found net emissions of: (15.2±5.3 t km-2 a-1 for CH4 and (0.9±0.3 t km-2 a-1 for N2O. These values are lower than the inventory-based emissions (2006–2008 averages of (18.3±3.3 t km-2 a-1 for CH4, and (1.3±0.6 t km-2 a-1 for N2O, but the differences are insignificant.

  3. Forest carbon accounting methods and the consequences of forest bioenergy for national greenhouse gas emissions inventories

    OpenAIRE

    McKechnie, Jon; Colombo, Steve; Heather L. MacLean

    2014-01-01

    While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international...

  4. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004

    Science.gov (United States)

    Zhang, Yanxu; Tao, Shu

    The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y -1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y -1), India (90 Gg y -1) and United States (32 Gg y -1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km -2 y in the Falkland Islands to 360 kg km -2 y in Singapore with a global mean value of 3.98 kg km -2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.

  5. Comparison of Techniques to Estimate Ammonia Emissions at Cattle Feedlots Using Time-Averaged and Instantaneous Concentration Measurements

    Science.gov (United States)

    Shonkwiler, K. B.; Ham, J. M.; Williams, C. M.

    2013-12-01

    Ammonia (NH3) that volatilizes from confined animal feeding operations (CAFOs) can form aerosols that travel long distances where such aerosols can deposit in sensitive regions, potentially causing harm to local ecosystems. However, quantifying the emissions of ammonia from CAFOs through direct measurement is very difficult and costly to perform. A system was therefore developed at Colorado State University for conditionally sampling NH3 concentrations based on weather parameters measured using inexpensive equipment. These systems use passive diffusive cartridges (Radiello, Sigma-Aldrich, St. Louis, MO, USA) that provide time-averaged concentrations representative of a two-week deployment period. The samplers are exposed by a robotic mechanism so they are only deployed when wind is from the direction of the CAFO at 1.4 m/s or greater. These concentration data, along with other weather variables measured during each sampler deployment period, can then be used in a simple inverse model (FIDES, UMR Environnement et Grandes Cultures, Thiverval-Grignon, France) to estimate emissions. There are not yet any direct comparisons of the modeled emissions derived from time-averaged concentration data to modeled emissions from more sophisticated backward Lagrangian stochastic (bLs) techniques that utilize instantaneous measurements of NH3 concentration. In the summer and autumn of 2013, a suite of robotic passive sampler systems were deployed at a 25,000-head cattle feedlot at the same time as an open-path infrared (IR) diode laser (GasFinder2, Boreal Laser Inc., Edmonton, Alberta, Canada) which continuously measured ammonia concentrations instantaneously over a 225-m path. This particular laser is utilized in agricultural settings, and in combination with a bLs model (WindTrax, Thunder Beach Scientific, Inc., Halifax, Nova Scotia, Canada), has become a common method for estimating NH3 emissions from a variety of agricultural and industrial operations. This study will first

  6. Finnish 2002 inventory of HFC, PFC and SF{sub 6} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Oinonen, T.

    2004-07-01

    Year 2002 was exceptional in the history of Finnish HFC, PFC and SF6 (F-gases for short) use. For the first time in a 10 year period, emissions fell from previous year. High uncertainty of the 2001 estimate prevents reliable quantification of the magnitude of this decrease, but simulation results suggest that the decrease may have been around 10%. The 2002 level of F-gases emissions was 530 Gg CO{sub 2}-equivalent. This figure corresponds to 0.6% of total Finnish greenhouse gas emissions.The inventory of F-gases was improved in 2003 by extending the coverage of the survey used to gather data. The number of respondents surveyed was quadrupled to some 1 000 individuals, and more than 750 of these responded. This improvement had an effect of bringing down the inventory uncertainty (measured by the width of the 95 % certainty range) from 400 Gg CO{sub 2}-eq. in 2001 to 140 Gg CO{sub 2}-eq. in 2002. Best efforts were made to ensure the accuracy, transparency, consistency, completeness and comparability of the inventory, as mandated in the guidelines of the United Nations Framework Convention on Climate Change. Although reporting to the UNFCCC is the primary purpose of this document, it is hoped that the information contained within is of use also in formulating strategies to combat climate change both in Finland and in European Union. (orig.)

  7. Verifying the UK N_{2}O emission inventory with tall tower measurements

    Science.gov (United States)

    Carnell, Ed; Meneguz, Elena; Skiba, Ute; Misselbrook, Tom; Cardenas, Laura; Arnold, Tim; Manning, Alistair; Dragosits, Ulli

    2016-04-01

    Nitrous oxide (N2O) is a key greenhouse gas (GHG), with a global warming potential ˜300 times greater than that of CO2. N2O is emitted from a variety of sources, predominantly from agriculture. Annual UK emission estimates are reported, to comply with government commitments under the United Nations Framework Convention on Climate Change (UNFCCC). The UK N2O inventory follows internationally agreed protocols and emission estimates are derived by applying emission factors to estimates of (anthropogenic) emission sources. This approach is useful for comparing anthropogenic emissions from different countries, but does not capture regional differences and inter-annual variability associated with environmental factors (such as climate and soils) and agricultural management. In recent years, the UK inventory approach has been refined to include regional information into its emissions estimates (e.g. agricultural management data), in an attempt to reduce uncertainty. This study attempts to assess the difference between current published inventory methodology (default IPCC methodology) and a revised approach, which incorporates the latest thinking, using data from recent work. For 2013, emission estimates made using the revised approach were 30 % lower than those made using default IPCC methodology, due to the use of lower emission factors suggested by recent projects (www.ghgplatform.org.uk, Defra projects: AC0116, AC0213 and MinNO). The 2013 emissions estimates were disaggregated on a monthly basis using agricultural management (e.g. sowing dates), climate data and soil properties. The temporally disaggregated emission maps were used as input to the Met Office atmospheric dispersion model NAME, for comparison with measured N2O concentrations, at three observation stations (Tacolneston, E England; Ridge Hill, W England; Mace Head, W Ireland) in the UK DECC network (Deriving Emissions linked to Climate Change). The Mace Head site, situated on the west coast of Ireland, was

  8. An approach to a black carbon emission inventory for Mexico by two methods.

    Science.gov (United States)

    Cruz-Núñez, Xochitl

    2014-05-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon=elemental carbon. Results show that black carbon emissions are in interval 53-473Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality.

  9. Emission inventory and provincial distribution of short-chain chlorinated paraffins in China.

    Science.gov (United States)

    Zhang, Boya; Zhao, Bu; Xu, Chun; Zhang, Jianbo

    2017-03-01

    Chlorinated paraffins (CPs) are used as flame retardants, plasticizers, and metalworking fluids, which have varying contents of toxic short-chain chlorinated paraffins (SCCPs). Based on the study of several relevant production and consumption sectors, this paper classifies the consumption of CPs among sectors and provides an emission inventory and the provincial emission distribution of SCCPs in China in 2010-2014 based on the consumption patterns and emission factors of each sector. The total emissions of SCCPs in China in 2014 were 3083.88tons, with emissions to the atmosphere and water accounting for 894.81tons and 2189.07tons, respectively. The largest emission source was from metalworking fluids, with total emissions of 2459.12tons, of which 756.65tons went to the atmosphere and 1702.47tons to water. Our results show that SCCP emissions were mainly concentrated in the eastern, more developed regions and that Jiangsu Province was the biggest producer in China, with total emissions of 1853.06tons, of which 562.61tons were to the atmosphere and 1290.46tons to water.

  10. Development of a high temporal-spatial resolution vehicle emission inventory based on NRT traffic data and its impact on air pollution in Beijing – Part 1: Development and evaluation of vehicle emission inventory

    Directory of Open Access Journals (Sweden)

    B. Y. Jing

    2015-10-01

    Full Text Available As the ownership of vehicles and frequency of utilization increase, vehicle emissions have become an important source of air pollution in Chinese cities. An accurate emission inventory for on-road vehicles is necessary for numerical air quality simulation and the assessment of implementation strategies. This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT model and near real time (NRT traffic data on road segments to develop a high temporal-spatial resolution vehicle emission inventory (HTSVE for the urban Beijing area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg, respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Additionally, the on-road vehicle emission inventory model and control effect assessment system in Beijing, a vehicle emission inventory model, was established based on this study in a companion paper (He et al., 2015.

  11. Development of a high temporal-spatial resolution vehicle emission inventory based on NRT traffic data and its impact on air pollution in Beijing - Part 1: Development and evaluation of vehicle emission inventory

    Science.gov (United States)

    Jing, B. Y.; Wu, L.; Mao, H. J.; Gong, S. L.; He, J. J.; Zou, C.; Song, G. H.; Li, X. Y.; Wu, Z.

    2015-10-01

    As the ownership of vehicles and frequency of utilization increase, vehicle emissions have become an important source of air pollution in Chinese cities. An accurate emission inventory for on-road vehicles is necessary for numerical air quality simulation and the assessment of implementation strategies. This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near real time (NRT) traffic data on road segments to develop a high temporal-spatial resolution vehicle emission inventory (HTSVE) for the urban Beijing area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg, respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Additionally, the on-road vehicle emission inventory model and control effect assessment system in Beijing, a vehicle emission inventory model, was established based on this study in a companion paper (He et al., 2015).

  12. Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties

    Directory of Open Access Journals (Sweden)

    T. Keenan

    2009-03-01

    Full Text Available Large uncertainties exist in our knowledge of regional emissions of non-methane biogenic volatile organic compounds (BVOC. We address these uncertainties through a two-pronged approach by compiling a state of the art database of the emissions potentials for 80 European forest species, and by a model assessment and inter-comparison, both at the local and regional scale, under present and projected future climatic conditions. We coupled three contrasting isoprenoid models with the ecophysiological forest model GOTILWA+ to explore the interactive effects of climate, vegetation distribution, and productivity, on leaf and ecosystem isoprenoid emissions, and to consider model behaviour in present climate and under projected future climate change conditions. Hourly, daily and annual isoprene emissions as simulated by the models were evaluated against flux measurements. The validation highlighted a general model capacity to capture gross fluxes but inefficiencies in capturing short term variability. A regional inventory of isoprenoid emissions for European forests was created using each of the three modelling approaches. The models agreed on an average European emissions budget of 1.03 TgC a−1 for isoprene and 0.97 TgC a−1 for monoterpenes for the period 1960–1990, which was dominated by a few species with largest aerial coverage. Species contribution to total emissions depended both on species emission potential and geographical distribution. For projected future climate conditions, however, emissions budgets proved highly model dependent, illustrating the current uncertainty associated with isoprenoid emissions responses to potential future conditions. These results suggest that current model estimates of isoprenoid emissions concur well, but future estimates are highly uncertain. We conclude that development of reliable models is highly urgent, but for the time being, future BVOC emission scenario estimates should consider

  13. The potential for tree planting strategies to reduce local and regional ecosystem impacts of agricultural ammonia emissions.

    Science.gov (United States)

    Bealey, W J; Dore, A J; Dragosits, U; Reis, S; Reay, D S; Sutton, M A

    2016-01-01

    Trees are very effective at capturing both gaseous and particulate pollutants from the atmosphere. But while studies have often focussed on PM and NOx in the urban environment, little research has been carried out on the tree effect of capturing gaseous emissions of ammonia in the rural landscape. To examine the removal or scavenging of ammonia by trees a long-range atmospheric model (FRAME) was used to compare two strategies that could be used in emission reduction policies anywhere in the world where nitrogen pollution from agriculture is a problem. One strategy was to reduce the emission source strength of livestock management systems by implementing two 'tree-capture' systems scenarios - tree belts downwind of housing and managing livestock under trees. This emission reduction can be described as an 'on-farm' emission reduction policy, as ammonia is 'stopped' from dispersion outside the farm boundaries. The second strategy was to apply an afforestation policy targeting areas of high ammonia emission through two planting scenarios of increasing afforestation by 25% and 50%. Both strategies use trees with the aim of intercepting NH3 emissions to protect semi-natural areas. Scenarios for on-farm emission reductions showed national reductions in nitrogen deposition to semi-natural areas of 0.14% (0.2 kt N-NHx) to 2.2% (3.15 kt N-NHx). Scenarios mitigating emissions from cattle and pig housing gave the highest reductions. The afforestation strategy showed national reductions of 6% (8.4 kt N-NHx) to 11% (15.7 kt N-NHx) for 25% and 50% afforestation scenarios respectively. Increased capture by the planted trees also showed an added benefit of reducing long range effects including a decrease in wet deposition up to 3.7 kt N-NHx (4.6%) and a decrease in export from the UK up to 8.3 kt N-NHx (6.8%).

  14. Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data

    Science.gov (United States)

    Kemball-Cook, Susan; Yarwood, Greg; Johnson, Jeremiah; Dornblaser, Bright; Estes, Mark

    2015-09-01

    The purpose of this study was to assess the accuracy of NOx emissions in the Texas Commission on Environmental Quality's (TCEQ) State Implementation Plan (SIP) modeling inventories of the southeastern U.S. We used retrieved satellite tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) together with NO2 columns from the Comprehensive Air Quality Model with Extensions (CAMx) to make top-down NOx emissions estimates using the mass balance method. Two different top-down NOx emissions estimates were developed using the KNMI DOMINO v2.0 and NASA SP2 retrievals of OMI NO2 columns. Differences in the top-down NOx emissions estimates made with these two operational products derived from the same OMI radiance data were sufficiently large that they could not be used to constrain the TCEQ NOx emissions in the southeast. The fact that the two available operational NO2 column retrievals give such different top-down NOx emissions results is important because these retrievals are increasingly being used to diagnose air quality problems and to inform efforts to solve them. These results reflect the fact that NO2 column retrievals are a blend of measurements and modeled data and should be used with caution in analyses that will inform policy development. This study illustrates both benefits and challenges of using satellite NO2 data for air quality management applications. Comparison with OMI NO2 columns pointed the way toward improvements in the CAMx simulation of the upper troposphere, but further refinement of both regional air quality models and the NO2 column retrievals is needed before the mass balance and other emission inversion methods can be used to successfully constrain NOx emission inventories used in U.S. regulatory modeling.

  15. Regional Air Quality in central México and emissions inventories

    Science.gov (United States)

    Gerardo Ruiz-Suarez, Luis; Torres-Jardón, Ricardo; Agustín García-Reynoso, José; Santos García-Yee, José; Barrera-Huertas, Hugo; Alejandro Torres-Jaramillo, Jorge; Robles-Roldán, Miguel Angel; Gutierrez López, Wilfrido; García-Espinoza, Manuel; Castro-Romero, Telma

    2014-05-01

    Four air quality field campaigns, from 2009 to 2012, during March-April were carried out in several sites in urban, rural and semi-rural sites in Central México. One of the sites was in the Chalco Gap southeast of MCMA (2011), another in the state of Morelos (2011), other two in the state of Puebla (2009 and 2012). All these sites are South and East of the Mexico Basin. The main object of those campaigns was to document regional air quality, mainly in rural and periurban sites, including the photochemical age of regional polluted plumes as they were transported away from the main metropolitan areas within the region. In this paper, we focus on comparisons between observed CO/NOx, and CO/SO2 ratios with those from the National Emissions Inventory and form local inventories reported in state air quality management programs. Comparisons were made with data between 05:00 to 08:00 h to minimize effects photochemical activity and the fast evolution of MLH occurring between 08:00 and 09:00 due to high insolation. Comparisons among observed ratios show a fairly consistent ratio, whereas ratios from emissions inventory are widely variable and only in few sites compare reasonable well with observed ones, indicating the need for homologation of emissions inventories in the country. Also Ozone, CO, NOx and NOy observed time series are compared with WRF-Chem model results for the same campaign periods to evaluate its performance outside MCMA. In addition, observed surface wind speeds and early morning MLH obtained with a tethered balloon are also compared with modeled values to help understanding discrepancies in the trace gases comparisons.

  16. Greenhouse Gas Emissions in the Netherlands 1990-2011. National Inventory Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Zijlema, P.J. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Arets, E.J.M.M. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Van den Berghe, A.C.W.M. [Rijkswaterstaat, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Brandt, A.T. [Dutch Emissions Authority NEa, P.O. Box 91503, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [PBL Netherlands Environmental Assessment Agency, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Van der Maas, C.W.M.; Te Biesebeek, J.D.; Van der Hoek, K.W.; Te Molder, R.; Montfoort, J.A.; Peek, C.J.; Vonk, J. [National Institute of Public Health and Environmental Protection RIVM, Bilthoven (Netherlands)

    2013-04-15

    Total greenhouse gas emissions from The Netherlands in 2011 decreased by approximately 7 per cent compared with 2010 emissions. This decrease is mainly the result of decreased fuel combustion in the Energy sector (less electricity production) and in the petrochemical industry. Fuel use for space heating decreased due to the mild winter compared with the very cold 2010 winter. In 2011, total direct greenhouse gas emissions (excluding emissions from LULUCF (land use, land use change and forestry) in The Netherlands amounted to 194.4 Tg CO2 eq. This is approximately 9 per cent below the emissions in the base year 2 (213.2 Tg CO2 eq). This report documents the Netherlands' 2012 annual submission of its greenhouse gas emissions inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  17. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C.W.M.; Zijlema, P.J.; Van den Berghe, A.C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J.D.; Brandt, A.T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J.A.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  18. Greenhouse Gas Emissions in the Netherlands 1990-2010. National Inventory Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C.W.M.; Zijlema, P.J.; Van den Berghe, A.C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J.D.; Brandt, A.T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J.A.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  19. A Commercial Aircraft Fuel Burn and Emissions Inventory for 2005–2011

    Directory of Open Access Journals (Sweden)

    Donata K. Wasiuk

    2016-06-01

    Full Text Available The commercial aircraft fuel burn and emission estimates of CO2, CO, H2O, hydrocarbons, NOx and SOx for 2005–2011 are given as the 4-D Aircraft Fuel Burn and Emissions Inventory. On average, the annual fuel burn and emissions of CO2, H2O, NOx, and SOx increased by 2%–3% for 2005–2011, however, annual CO and HC emissions decreased by 1.6% and 8.7%, respectively because of improving combustion efficiency in recent aircraft. Approximately 90% of the global annual aircraft NOx emissions were emitted in the NH between 2005 and 2011. Air traffic within the three main industrialised regions of the NH (Asia, Europe, and North America alone accounted for 80% of the global number of departures, resulting in 50% and 45% of the global aircraft CO2 and NOx emissions, respectively, during 2005–2011. The current Asian fleet appears to impact our climate strongly (in terms of CO2 and NOx when compared with the European and North American fleet. The changes in the geographical distribution and a gradual shift of the global aircraft NOx emissions as well as a subtle but steady change in regional emissions trends are shown in particular comparatively rising growth rates between 0 and 30°N and decreasing levels between 30 and 60°N.

  20. Spatially resolved flux measurements of NOX from London suggest significantly higher emissions than predicted by inventories

    OpenAIRE

    Vaughan, Adam R.; Lee, James D; Misztal, Pawel K.; Metzger, Stefan; Shaw, Marvin D.; Alastair C. Lewis; Purvis, Ruth M.; Carslaw, David C.; Allen H. Goldstein; Hewitt, C. Nicholas; Davison, Brian; Beevers, Sean D.; Karl, Thomas G.

    2016-01-01

    To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over Lo...

  1. Yield-scaled mitigation of ammonia emission from N fertilization: the Spanish case

    Science.gov (United States)

    Sanz-Cobena, A.; Lassaletta, L.; Estellés, F.; Del Prado, A.; Guardia, G.; Abalos, D.; Aguilera, E.; Pardo, G.; Vallejo, A.; Sutton, M. A.; Garnier, J.; Billen, G.

    2014-12-01

    Synthetic nitrogen (N) fertilizer and field application of livestock manure are the major sources of ammonia (NH3) volatilization. This N loss may decrease crop productivity and subsequent deposition promotes environmental problems associated with soil acidification and eutrophication. Mitigation measures may have associated side effects such as decreased crop productivity (e.g. if N fertilizer application is reduced), or the release of other reactive N compounds (e.g. N2O emissions if manure is incorporated). Here, we present a novel methodology to provide an integrated assessment of the best strategies to abate NH3 from N applications to crops. Using scenario analyses, we assessed the potential of 11 mitigation measures to reduce NH3 volatilization while accounting for their side effects on crop productivity, N use efficiency (NUE) and N surplus (used as an indicator of potential N losses by denitrification/nitrification and NO3- leaching/run-off). Spain, including its 48 provinces, was selected as a case study as it is the third major producer of agricultural goods in Europe, and also the European country with the highest increase in NH3 emissions from 1990 to 2011. Mitigation scenarios comprised of individual measures and combinations of strategies were evaluated at a country- and regional level. Compared to the reference situation of standard practices for the year 2008, implementation of the most effective region-specific mitigation strategy led to 63% NH3 mitigation at the country level. Implementation of a single strategy for all regions reduced NH3 by 57% at the highest. Strategies that involved combining mitigation measures produced the largest NH3 abatement in all cases, with an 80% reduction in some regions. Among the strategies analyzed, only suppression of urea application combined with manure incorporation and incorporation of N synthetic fertilizers other than urea showed a fully beneficial situation: yield-scaled NH3 emissions were reduced by 82

  2. [Inventories of atmospheric arsenic emissions from coal combustion in China, 2005].

    Science.gov (United States)

    Tian, He-Zhong; Qu, Yi-Ping

    2009-04-15

    Anthropogenic arsenic (As) emitted from coal combustion is one of key trace elements leading to negative air pollution and national economy loss. It is of great significance to estimate the atmospheric arsenic emission for proposing relevant laws or regulations and selecting proper pollution control technologies. The inventories of atmospheric arsenic emissions from coal combustion in China were evaluated by adopting the emission factor method based on fuel consumption. Arsenic emission sources were firstly classified into several categories by economic sectors, combustion types and pollution control technologies. Then, according to provincial coal consumption and averaged arsenic concentration in the feed fuel, the inventories of atmospheric arsenic emission from coal combustion in China in 2005 were established. Coal outputand consumption in China in 2005 were 2,119.8 and 2,099.8 Mt, respectively. The total emissions of arsenic released into the atmosphere in 2005 in China were estimated at about 1,564.4 t, and Shandong ranked the largest province with 144.4 t arsenic release, followed by Hunan (141.1 t), Hebei (108.5 t), Henan (77.7 t), and Jiangsu (77.0 t), which were mainly concentrated in the eastern and central provinces of China. The arsenic emissions were largely emitted by industry sector (818.8 t) and thermal power generation sector (303.4 t), contributing 52.3% and 19.4% of the totals, respectively. About 375.5 t arsenic was estimated to be released into the atmosphere in the form of gas phase in China in 2005, with a share of 24% of the totals. In general, arsenic pollution control from coal combustion should be highlighted for the power and industry sectors in the whole country. However, arsenic poisoning caused by residential coal burning should also be paid great attention in some areas such as Xinjiang, Gansu, Qinghai and Guishou.

  3. [Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].

    Science.gov (United States)

    Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang

    2011-05-01

    Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period.

  4. Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data

    Directory of Open Access Journals (Sweden)

    D. Stroppiana

    2010-12-01

    Full Text Available We compare five global inventories of monthly CO emissions named VGT, ATSR, MODIS, GFED3 and MOPITT based on remotely sensed active fires and/or burned area products for the year 2003. The objective is to highlight similarities and differences by focusing on the geographical and temporal distribution and on the emissions for three broad land cover classes (forest, savanna/grassland and agriculture. Globally, CO emissions for the year 2003 range between 365 Tg CO (GFED3 and 1422 Tg CO (VGT. Despite the large uncertainty in the total amounts, some common spatial patterns typical of biomass burning can be identified in the boreal forests of Siberia, in agricultural areas of Eastern Europe and Russia and in savanna ecosystems of South America, Africa and Australia. Regionally, the largest difference in terms of total amounts (CV > 100% and seasonality is observed at the northernmost latitudes, especially in North America and Siberia where VGT appears to overestimate the area affected by fires. On the contrary, Africa shows the best agreement both in terms of total annual amounts (CV = 31% and of seasonality despite some overestimation of emissions from forest and agriculture observed in the MODIS inventory. In Africa VGT provides the most reliable seasonality. Looking at the broad land cover types, the range of contribution to the global emissions of CO is 64–74%, 23–32% and 3–4% for forest, savanna/grassland and agriculture, respectively. These results suggest that there is still large uncertainty in global estimates of emissions and it increases if the comparison is carried by out taking into account the temporal (month and spatial (0.5° × 0.5° cell dimensions. Besides the area affected by fires, also vegetation characteristics and conditions at the time of burning should also be accurately parameterized since they can greatly influence the global estimates of CO emissions.

  5. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    Science.gov (United States)

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-07-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.

  6. Preliminary assessment of the emission levels of ammonia and hydrogen sulfide in different production modalities in poultry farms in Costa Rica

    Directory of Open Access Journals (Sweden)

    Jorge Herrera

    2013-12-01

    Full Text Available A characterization of the ammonia and hydrogen sulfide emissions generated by different production models in poultry farms of Costa Rica was carried out. It was found that egg production farms have the largest emissions since they mostly use management systems based on cages with pits which generates a high emission of ammonia (16 ppm. While the fattening farms had the lower emissions since they mostly use open systems, which are low ammonia emission models (6 ppm. There were no significant concentrations of hydrogen sulfide in the evaluated models, except when a mechanical removal of mounds of chicken manure, with several weeks of storage, took place. A peak of 163 ppm of hydrogen sulfide was observed during the process. The ammonia emissions were modeled for some farms using an atmospheric dispersion model, AERMOD (USEPA, to determine the impact in the surroundings. Using the results of the validated model, it was found that the ammonia concentrations around the farms met the local regulation for air quality. But in some cases is highly probable to exceed the odor threshold for ammonia, which is one of the main complaints of the population living around this kind of agricultural and livestock activities.

  7. Use of a moss biomonitoring method to compile emission inventories for small-scale industries.

    Science.gov (United States)

    Varela, Z; Aboal, J R; Carballeira, A; Real, C; Fernández, J A

    2014-06-30

    We used a method of detecting small-scale pollution sources (DSSP) that involves measurement of the concentrations of elements in moss tissues, with the following aims: (i) to determine any common qualitative patterns of contaminant emissions for individual industrial sectors, (ii) to compare any such patterns with previously described patterns, and (iii) to compile an inventory of the metals and metalloids emitted by the industries considered. Cluster analysis revealed that there were no common patterns of emission associated with the industrial sectors, probably because of differences in production processes and in the types of fuel and raw materials. However, when these variables were shared by different factories, the concentrations of the elements in moss tissues enabled the factories to be grouped according to their emissions. We compiled a list of the metals and metalloids emitted by the factories under study and found that the DSSP method was satisfactory for this purpose in most cases (53 of 56). The method appears to be a useful tool for compiling contaminant inventories; it may also be useful for determining the efficacy of technical improvements aimed at reducing the industrial emission of contaminants and could be incorporated in environmental monitoring and control programmes.

  8. EVALUATION OF AEROSOL EMISSIONS DOWNSTREAM OF AN AMMONIA-BASED SO2 SCRUBBER

    Energy Technology Data Exchange (ETDEWEB)

    Dennis L. Laudal

    2002-04-01

    Depending on the size and type of boiler, the 1990 Clean Air Act Amendments required specific reductions in SO{sub 2} emissions from coal-fired electric utilities. To meet these requirements, SO{sub 2} reduction strategies have included installing scrubbing technology, switching to a more expensive low-sulfur coal, or purchasing SO{sub 2} allowances. It is expected that over the next 10 years there will be an increase in the price of low-sulfur coals, but that higher-sulfur coal costs will remain the same. Technologies must be strongly considered that allow the use of high-sulfur fuels while at the same time meeting current and future SO{sub 2} emission limits. One such technology is the ammonia based flue gas desulfurization (FGD) (NH{sub 3}-based FGD) system manufactured by Marsulex Environmental Technologies (MET). The MET scrubber is a patented NH{sub 3}-based FGD process that efficiently converts SO{sub 2} (>95%) into a fertilizer product, ammonium sulfate ([NH{sub 4}]{sub 2}SO{sub 4}). A point of concern for the MET technology, as well as other FGD systems, is the emission of sulfuric acid/SO{sub 3} aerosols that could result in increased opacity at the stack. This is a direct result of firing high-sulfur fuels that naturally generate more SO{sub 3} than do low-sulfur coals. SO{sub 3} is formed during the coal combustion process. SO{sub 3} is converted to gaseous H{sub 2}SO{sub 4} by homogeneous condensation, leading to a submicron acid fume that is very difficult to capture in a dry electrostatic precipitator (ESP). The condensed acid can also combine with the fly ash in the duct and scale the duct wall, potentially resulting in corrosion of both metallic and nonmetallic surfaces. Therefore, SO{sub 3} in flue gas can have a significant impact on the performance of coal-fired utility boilers, air heaters, and ESPs. In addition to corrosion problems, excess SO{sub 3} emissions can result in plume opacity problems. Thus the Energy & Environmental Research

  9. Ammonia emission from a permanent grassland on volcanic soil after the treatment with dairy slurry and urea

    Science.gov (United States)

    Salazar, F.; Martínez-Lagos, J.; Alfaro, M.; Misselbrook, T.

    2014-10-01

    Ammonia (NH3) is an air pollutant largely emitted from agricultural activities including the application of livestock manures and fertilizers to grassland. This gas has been linked with important negative impacts on natural ecosystems. In southern Chile, the use of inorganic and organic fertilizers (e.g. slurries) has increased in cattle production systems over recent years, heightening the risk of N losses to the wider environment. The objectives of this study were to evaluate on permanent grasslands on a volcanic ash soil in southern Chile: 1) the N loss due to NH3 volatilization following surface application of dairy slurry and urea fertilizer; and 2) the effect of a urease inhibitor on NH3 emissions from urea fertilizer application. Small plot field experiments were conducted over spring, fall, winter and summer seasons, using a system of wind tunnels to measure ammonia emissions. Ammonia losses ranged from 1.8 (winter) to 26.0% (fall) and 3.1 (winter) to 20.5% (summer) of total N applied for urea and slurry, respectively. Based on the readily available N applied (ammoniacal N for dairy slurry and urea N for urea fertilizer), losses from dairy slurry were much greater, at 16.1 and 82.0%, for winter and summer, respectively. The use of a urease inhibitor proved to be an effective option to minimize the N loss due NH3 volatilization from urea fertilizer, with an average reduction of 71% across all seasons. The results of this and other recent studies regarding N losses suggest that ammonia volatilization is the main pathway of N loss from grassland systems in southern Chile on volcanic ash soils when urea and slurry are used as an N source. The use of good management practices, such as the inclusion of a urease inhibitor with urea fertilizer could have a beneficial impact on reducing N losses due NH3 volatilization and the environmental and economic impact of these emissions.

  10. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    Science.gov (United States)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  11. A process-based model for ammonia emission from urine patches, GAG (Generation of Ammonia from Grazing: description, validation and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    A. Móring

    2015-07-01

    Full Text Available In this paper a new process-based, weather-driven model for ammonia (NH3 emission from a urine patch has been developed and its sensitivity to various factors assessed. This model, the GAG model (Generation of Ammonia from Grazing was developed as a part of a suite of weather-driven NH3 exchange models, as a necessary basis for assessing the effects of climate change on NH3 related atmospheric processes. GAG is capable of simulating the TAN (Total Ammoniacal Nitrogen content, pH and the water content of the soil under a urine patch. To calculate the TAN budget, GAG takes into account urea hydrolysis as a TAN input and NH3 volatilization as a loss. In the water budget, in addition to the water content of urine, precipitation and evaporation are also considered. In the pH module we assumed that the main regulating processes are the dissociation and dissolution equilibria related to the two products of urea hydrolysis: ammonium and bicarbonate. Finally, in the NH3 exchange flux calculation we adapted a canopy compensation point model that accounts for exchange with soil pores and stomata as well as deposition to the leaf surface. We validated our model against measurements, and carried out a sensitivity analysis. The validation showed that the simulated parameters (NH3 exchange flux, soil pH, TAN budget and water budget are well captured by the model (r > 0.5 for every parameter at p 3 emission. In addition, our results suggested that more sophisticated simulation of CO2 emission in the model could potentially improve the modelling of pH. The sensitivity analysis highlighted the vital role of temperature in NH3 exchange; however, presumably due to the TAN limitation, the GAG model currently provides only a modest overall temperature dependence in total NH3 emission compared with the values in the literature. Since all the input parameters can be obtained for study at larger scales, GAG is potentially suitable for larger scale application, such as

  12. A new inventory for two-wheel vehicle emissions in West Africa for 2002

    Science.gov (United States)

    Assamoi, Eric-Michel; Liousse, Catherine

    2010-10-01

    Rather surprisingly, urban atmospheric particulate levels in West Africa compare with measured concentrations in Europe and Asia megacities (Liousse, C., Galy-Lacaux, C., Assamoi, E.-M., Ndiaye, A., Diop, B., Cachier, H., Doumbia, T., Gueye, P., Yoboue, V., Lacaux, J.-P., Guinot, B., Guillaume, B., Rosset, R., Castera, P., Gardrat, E., Zouiten, C., Jambert, C., Diouf, A., Koita, O., Baeza, A., Annesi-Maesano, I., Didier, A., Audry, S., Konare, A., 2009. Integrated Focus on West African Cities (Cotonou, Bamako, Dakar, Ouagadougou, Abidjan, Niamey): Emissions, Air Quality and Health Impacts of Gases and Aerosols. Third International AMMA Conference on Predictability of the West African Moosoon Weather, Climate and Impacts. Ouagadougou, Burkina Faso. July 20-24). This pollution mainly derives from road traffic emissions with, in some capitals (e.g. Cotonou), the strong contribution of two-wheel vehicles. Two key questions arise: are presently available emission inventories (e.g. Junker, C., Liousse, C., 2008. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997. Atmospheric Chemistry Physics, 8, 1-13; Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 1009, D14203, DOI:10.1029/2003JD003697) able to account for these emissions? And, if not, how can we remedy this? The aim of this paper is to develop a methodology to estimate emissions produced by two-wheel vehicles in West Africa for 2002 in a context where reliable information is hardly available. Fuel consumption ratios between two-wheel engines (in this work) and all vehicles issued from UN database ( http://data.un.org/Data.aspx?d=EDATA&f=cmID%3aMO%3btrID%3a1221) are as high as 169%, 264% and 628%, for Burkina Faso, Mali and Chad respectively, indicating that this global

  13. Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20.2.73 NMAC) for Calendar Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    M. Stockton

    2005-01-01

    Los Alamos National Laboratory is subject to annual emissions-reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. For calendar year 2003, the Technical Area 3 steam plant and the air curtain destructors were the primary sources of criteria air pollutants from the Laboratory, while the air curtain destructors and chemical use associated with research and development activities were the primary sources of volatile organic compounds and hazardous air pollutants. Emissions of beryllium and aluminum were reported for activities permitted under 20.2.72 NMAC. Hazardous air pollutant emissions were reported from chemical use as well as from all combustion sources. In addition, estimates of particulate matter with diameter less than 2.5 micrometers and ammonia were provided as requested by the New Mexico Environment Department, Air Quality Bureau.

  14. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity

    Energy Technology Data Exchange (ETDEWEB)

    Montelongo-Reyes, M.M.; Otazo-Sánchez, E.M.; Romo-Gómez, C.; Gordillo-Martínez, A.J.; Galindo-Castillo, E.

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO{sub 2} emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO{sub 2} sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO{sub 2} gas emissions were also significant, particularly SO{sub 2} (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. - Highlights: • First GHG & black carbon inventory for Mezquital Valley: Mexico City energy supplier • Energy industries caused the largest CO{sub 2} and SO{sub 2} emissions from residual fuel oil. • Diesel

  15. A New High-Resolution N2O Emission Inventory for China in 2008

    Science.gov (United States)

    Shang, Z.; Zhou, F.; Ciais, P.; Tao, S.; Piao, S.; Raymond, P. A.; He, C.; Li, B.; Wang, R.; Wang, X.; Peng, S.; Zeng, Z.; Chen, H.; Ying, N.; Hou, X.; Xu, P.

    2014-12-01

    The amount and geographic distribution of N2O emissions over China remain largely uncertain. Most of existing emission inventories use uniform emission factors (EFs) and the associated parameters and apply spatial proxies to downscale national or provincial data, resulting in the introduction of spatial bias. In this study, county-level and 0.1° × 0.1° gridded anthropogenic N2O emission inventories for China (PKU-N2O) in 2008 are developed based on high-resolution activity data and regional EFs and parameters. These new estimates are compared with estimates from EDGAR v4.2, GAINS-China, National Development and Reform Commission of China (NDRC), and with two sensitivity tests: one that uses high-resolution activity data but the default IPCC methodology (S1) and the other that uses regional EFs and parameters but starts from coarser-resolution activity data. The total N2O emissions are 2150 GgN2O/yr (interquartile range from 1174 to 2787 GgN2O/yr). Agriculture contributes 64% of the total, followed by energy (17%), indirect emissions (12%), wastes (5%), industry (2.8%), and wildfires (0.2%). Our national emission total is 17% greater than that of the EDGAR v4.2 global product sampled over China and is also greater than the GAINS-China, NDRC, and S1 estimates by 10%, 50%, and 17%, respectively. We also found that using uniform EFs and parameters or starting from national/provincial data causes systematic spatial biases compared to PKU-N2O. In addition, the considerable differences between the relative contributions of the six sectors across the six Agro-Climate Zones primarily reflect the different distributions of industrial activities and land use. Eastern China (8.7% area of China) is the largest contributor of N2O emissions and accounts for nearly 25% of the total. Spatial analysis also shows nonlinear relationships between N2O emission intensities and urbanization. Per-capita and per-GDP N2O emissions increase gradually with an increase in the urban

  16. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China

    Science.gov (United States)

    Zhao, Y.; Nielsen, C. P.; Lei, Y.; McElroy, M. B.; Hao, J.

    2011-03-01

    The uncertainties of a national, bottom-up inventory of Chinese emissions of anthropogenic SO2, NOx, and particulate matter (PM) of different size classes and carbonaceous species are comprehensively quantified, for the first time, using Monte Carlo simulation. The inventory is structured by seven dominant sectors: coal-fired electric power, cement, iron and steel, other industry (boiler combustion), other industry (non-combustion processes), transportation, and residential. For each parameter related to emission factors or activity-level calculations, the uncertainties, represented as probability distributions, are either statistically fitted using results of domestic field tests or, when these are lacking, estimated based on foreign or other domestic data. The uncertainties (i.e., 95% confidence intervals around the central estimates) of Chinese emissions of SO2, NOx, total PM, PM10, PM2.5, black carbon (BC), and organic carbon (OC) in 2005 are estimated to be -14%~13%, -13%~37%, -11%~38%, -14%~45%, -17%~54%, -25%~136%, and -40%~121%, respectively. Variations at activity levels (e.g., energy consumption or industrial production) are not the main source of emission uncertainties. Due to narrow classification of source types, large sample sizes, and relatively high data quality, the coal-fired power sector is estimated to have the smallest emission uncertainties for all species except BC and OC. Due to poorer source classifications and a wider range of estimated emission factors, considerable uncertainties of NOx and PM emissions from cement production and boiler combustion in other industries are found. The probability distributions of emission factors for biomass burning, the largest source of BC and OC, are fitted based on very limited domestic field measurements, and special caution should thus be taken interpreting these emission uncertainties. Although Monte Carlo simulation yields narrowed estimates of uncertainties compared to previous bottom-up emission

  17. Estimating Emissions of Ammonia and Methane from an Anaerobic Livestock Lagoon Using Micrometeorological Methods and Inverse Modeling

    Science.gov (United States)

    Shonkwiler, K. B.; Ham, J. M.; Williams, C.

    2012-12-01

    Evaluating the impact of increased carbon and nitrogen emissions on local air quality and regional bionetworks due to animal agricultural activity is of great interest to the public, political, economic and ecological welfare of areas within the scope of these practices. Globally, livestock operations account for 64% of annual anthropogenic emissions of ammonia (NH3) [1]. Concerning methane (CH4), anaerobic lagoons from commercial dairy operations contribute the second largest share of CH4 emissions from manure in the United States[1], and additionally are a local source of NH3 as well. Anaerobic lagoons are commonly used in commercial animal agriculture and as significant local sources of greenhouse gases (GHG), there is a strong need to quantify GHG emissions from these systems. In 2012 at a commercial dairy operation in Northern Colorado, USA, measurements of CH4 were made using eddy covariance (EC), while NH3 was estimated using a combination of real-time monitoring (cavity ring-down spectroscopy as well as time-integrated passive samplers). Methane emissions have been measured at this lagoon using EC since 2011, with fluxes ranging from 0.5 mg m-2 s-1 in early summer to >2 mg m-2 s-1 in late summer and early fall. Concentration data of both CH4 and NH3 were used to estimate emissions using a 2-dimensional inverse model based on solving the advection-diffusion equation[2]. In the case of the CH4-EC data, results from the inverse model were compared with the EC-derived flux estimates for enhanced parameterization of surface geometry within the lagoon environment. The model was then applied using measured NH3 concentrations to achieve emissions estimates. While NH3 fluxes from the lagoon tend to be much lower than those of CH4 by comparison, modeling emissions of NH3 from the simple geometry of a lagoon will assist in applying the model to more complex surfaces. [1] FAO, 2006. Livestock's long shadow: Environmental issues and options. Livestock, Environment, and

  18. Linkage of food consumption and export to ammonia emissions in Canada and the overriding implications for mitigation

    Science.gov (United States)

    Sheppard, S. C.; Bittman, S.

    2015-02-01

    Ammonia (NH3) emissions from agriculture to the atmosphere, along with emissions of other pollutants from a variety of sources, are of concern to agriculture worldwide. National emissions from agricultural sources in Canada are linked to domestic consumption and export demand for agricultural products. The onus to limit emissions is often directed to the producers, but the marketplace and consumer are also responsible for the environmental impact of their choices. This objective of this study was to quantitatively link agricultural NH3 emissions to per person consumption of food and protein and to agricultural exports from Canada. There are substantial differences in the NH3 emissions per unit consumed protein among the various food types. As a result, shifts in the Canadian diet have had a large impact on relative per person NH3 emissions. From 1981 to 2006, the total per person protein intake in the Canadian diet increased about 5%, but NH3 emission related to that diet decreased 20%. This is largely related to consumption of less beef, which has a high emission per unit of meat or protein, and more poultry and cereals which have much lower emissions. Although these changes in diet were not because of environmental concerns by the consumers, they had substantial effects on national-level emissions. These consumer driven effects may well exceed the possible effects of best management practices intended to address NH3 emissions at the producer level. Note that the Canadian population has increased 50% from 1981 to 2006 and meat and egg exports increased 570%, so that total emissions from food production in Canada have increased. Our results imply there will be further effects on national NH3 emissions because of dietary and export drivers that are generally outside the scope of agro-environmental policy.

  19. Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China

    Directory of Open Access Journals (Sweden)

    Y. Bo

    2008-12-01

    Full Text Available Multiyear emission inventories of anthropogenic NMVOCs in China for 1980–2005 were established based on time-varying statistical data, literature surveyed and model calculated emission factors, which were further gridded at a high spatial resolution of 40 km×40 km using the GIS methodology. Results show a continuous growth trend of China's historical NMVOCs emissions during the period of 1980–2005, with the emission increasing by 4.2 times at an annual average rate of 10.6% from 3.91 Tg in 1980 to 16.49 Tg in 2005. Vehicles, biomass burning, industrial processes, fossil fuel combustion, solvent utilization, and storage and transport generated 5.50 Tg, 3.84 Tg, 2.76 Tg, 1.98 Tg, 1.87 Tg, and 0.55 Tg of NMVOCs, respectively, in 2005. Motorcycles, biofuel burning, heavy duty vans, synthetic fibre production, biomass open burning, and industrial and commercial consumption were primary emission sources. Besides, source contributions of NMVOCs emissions showed remarkable annual variation. However, emissions of these sources had been continuously increasing, which coincided well with China's economic growth. Spatial distribution of NMVOCs emissions illustrates that high emissions mainly concentrates in developed regions of northern, eastern and southern coastal areas, which produced more emissions than the relatively underdeveloped western and inland regions. Particularly, southeastern, northern, and central China covering 35.2% of China's territory, generated 59.4% of the total emissions, while the populous capital cities covering merely 4.5% of China's territory, accounted for 24.9% of the national emissions. Annual variation of regional emission intensity shows that emissions concentrating in urban areas tended to transfer to rural areas year by year. Moreover, eastern, southern, central, and northeastern China were typical areas of high emission intensity and had a tendency of expanding to the northwestern China, which

  20. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity.

    Science.gov (United States)

    Montelongo-Reyes, M M; Otazo-Sánchez, E M; Romo-Gómez, C; Gordillo-Martínez, A J; Galindo-Castillo, E

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO2 emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO2 sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO2 gas emissions were also significant, particularly SO2 (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries.

  1. N-13 ammonia for the noninvasive evaluation of myocardial blood flow by positron emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.

    1979-01-01

    The kinetics and characteristics of nitrogen-13 labelled ammonia as an indicator of blood flow in the myocardium were evaluated in open-chest dogs. Its utility as an imaging agent was tested in animals and man. (PSB)

  2. The annual ammonia budget of fertilised cut grassland - Part 1: Micrometeorological flux measurements and emissions after slurry application

    Science.gov (United States)

    Spirig, C.; Flechard, C. R.; Ammann, C.; Neftel, A.

    2009-10-01

    Two commercial ammonia (NH3) analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland) by application of the aerodynamic gradient method (AGM). The semi-continuous measurements during 1.5 years covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during conditions of well established turbulence was 20% and the detection limit 10 ng NH3 m-2 s-1, hence sufficient for studying the background exchange of NH3. Quantifying emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during manure spreading in some parts of the experiments. The emissions were also calculated with a mass balance method (MBM) yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN) varied between 4 and 19%, which is lower than typical values for broadspreading of liquid manure. The comparatively low emission factors appear to be a consequence of the rather thin slurry applied here and soil properties favouring ammonium adsorption.

  3. The annual ammonia budget of fertilised cut grassland – Part 1: Micrometeorological flux measurements and emissions after slurry application

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2009-10-01

    Full Text Available Two commercial ammonia (NH3 analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland by application of the aerodynamic gradient method (AGM. The semi-continuous measurements during 1.5 years covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during conditions of well established turbulence was 20% and the detection limit 10 ng NH3 m−2 s−1, hence sufficient for studying the background exchange of NH3. Quantifying emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during manure spreading in some parts of the experiments. The emissions were also calculated with a mass balance method (MBM yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN varied between 4 and 19%, which is lower than typical values for broadspreading of liquid manure. The comparatively low emission factors appear to be a consequence of the rather thin slurry applied here and soil properties favouring ammonium adsorption.

  4. Compiling a multistate emissions inventory. [Fossil-Fuel Power Plant related air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C M

    1978-01-01

    The goal of the Multistate Atmospheric Power Production Pollution Study (MAP3S) is to develop and demonstrate an improved, verified capability of numerically simulating the present conditions and potential changes in pollutant concentration, atmospheric behavior, and precipitation chemistry that result, or will result, from pollutants released to the atmosphere by large-scale power production processes. Due to the multistate nature of the MAP3S area of interest, the emissions inventory project has been based on obtaining pertinent data gathered by other agencies, and computerizing, correlating, and updating such data. This paper describes the development of the project to date. Topics to be covered include the acquisition of both emissions and ancillary data, techniques developed for quality assurance and data updating, as well as descriptions of current and future plans in both upgrading and using the inventory. The MAP3S program is charged with studying the entire spectrum of atmospheric pollutants ascribed to fossil-fuel electric power production or that may interact in the atmosphere with power plant emissions. These pollutants include: sulfur oxides, sulfites, and sulfates; nitrogen oxides and their secondary reaction products, including oxidants; hydrocarbons, including polycyclic organic matter; trace inorganic elements; and particulates, which may contain any or all of the above substances and elemental carbon or soot.

  5. Global contrail coverage simulated by CAM5 with the inventory of 2006 global aircraft emissions

    Directory of Open Access Journals (Sweden)

    Cheryl Craig

    2012-04-01

    Full Text Available This paper documents the incorporation of an inventory of the AEDT (Aviation Environmental Design Tool global commercial aircraft emissions for the year of 2006 into the National Center for Atmospheric Research Community Earth System Model (CESM version 1. The original dataset reports aircraft emission mass of ten specieson an hourly basis which is converted to monthly emission mixing ratio tendencies as the released version of the dataset. We also describe how the released aircraft emission dataset is incorporated into CESM.A contrail parameterization is implemented in the CESM in which it isassumed that persistent contrails initially form when aircraft water vapor emissions experience a favorable atmospheric environment. Both aircraft emissions and ambient humidity are attributed to the formation of contrails. The ice water content of contrails is assumed to follow an empirical function of atmospheric temperature which determines the cloud fraction associated with contrails.Our modeling study indicates that the simulated global contrail coverage is sensitive to the vertical resolution of the GCMsin the upper troposphere and lower stratosphere because of modelassumptions about the vertical overlap structure of clouds.Futhermore, the extent of global contrail coverage simulated by CESM exhibits a seasonal cycle which is in broad agreement with observations.

  6. Evaluation of mobile emissions contributions to Mexico City's emissions inventory using on-road and cross-road emission measurements and ambient data

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2009-03-01

    Full Text Available Mobile emissions represent a significant fraction of the total anthropogenic emissions burden in the Mexico City Metropolitan Area (MCMA and, therefore, it is crucial to use top-down techniques informed by on-road exhaust measurements to evaluate and improve traditional bottom-up official emissions inventory (EI for the city. We present the measurements of on-road fleet-average emission factors obtained using the Aerodyne mobile laboratory in the MCMA in March 2006 as part of the MILAGRO/MCMA-2006 field campaign. A comparison of our on-road emission measurements with those obtained in 2003 using essentially the same measurement techniques and analysis methods indicates that, in the three year span, NO emission factors remain within the measured variability ranges whereas emission factors of aldehydes and aromatics species were reduced for all sampled driving conditions.

    We use a top-down fuel-based approach to evaluate the mobile emissions from the gasoline fleet estimated in the bottom-up official 2006 MCMA mobile sources. Within the range of measurement uncertainties, we found probable slight overpredictions of mean EI estimates on the order of 20–28% for CO and 14–20% for NO. However, we identify a probable EI underprediction of VOC mobile emissions between 1.4 and 1.9; although estimated benzene and toluene mobile emissions in the inventory seem to be well within the uncertainties of the corresponding emissions estimates. Aldehydes mobile emissions in the inventory, however, seem to be under predicted by factors of 3 for HCHO and 2 for CH3CHO. Our on-road measurement based estimate of annual emissions of organic mass from PM1 particles suggests a severe underprediction (larger than a factor of 4 of PM2.5 mobile emissions in the inventory.

    Analyses of ambient CO, NOx and CO/NOx concentration trends in the MCMA indicate that the early morning ambient CO

  7. Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Hotchkiss, E.; Fiebig, M.

    2010-10-01

    As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

  8. Uncertainties in the national inventory of methane emissions from rice cultivation: field measurements and modeling approaches

    Science.gov (United States)

    Zhang, Wen; Sun, Wenjuan; Li, Tingting

    2017-01-01

    Uncertainties in national inventories originate from a variety of sources, including methodological failures, errors, and insufficiency of supporting data. In this study, we analyzed these sources and their contribution to uncertainty in the national inventory of rice paddy methane emissions in China and compared the differences in the approaches used (e.g., direct measurements, simple regressions, and more complicated models). For the 495 field measurements we collected from the scientific literature, the area-weighted 95 % CI (confidence interval) ranged from 13.7 to 1115.4 kg CH4 ha-1, and the histogram distribution of the measurements agreed well with parameterized gamma distributions. For the models, we compared the performance of methods of different complexity (i.e., the CH4MOD model, representing a complicated method, and two less complex statistical regression models taken from literature) to evaluate the uncertainties associated with model performance as well as the quality and accessibility of the regional datasets. Comparisons revealed that the CH4MOD model may perform worse than the comparatively simple regression models when no sufficient input data for the model is available. As simulated by CH4MOD with data of irrigation, organic matter incorporation, and soil properties of rice paddies, the modeling methane fluxes varied from 17.2 to 708.3 kg CH4 ha-1, covering 63 % of the range of the field measurements. When applying the modeling approach to the 10 km × 10 km gridded dataset of the model input variables, the within-grid variations, made via the Monte Carlo method, were found to be 81.2-95.5 % of the grid means. Upscaling the grid estimates to the national inventory, the total methane emission from the rice paddies was 6.43 (3.79-9.77) Tg. The fallacy of CH4MOD contributed 56.6 % of the total uncertainty, with the remaining 43.4 % being attributed to errors and the scarcity of the spatial datasets of the model inputs. Our analysis reveals the

  9. Joint decisions on inventory replenishment and emission reduction investment under different emission regulations

    OpenAIRE

    Özlü, Haşim

    2013-01-01

    Ankara : The Department of Industrial Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 80-84. Carbon emission regulation policies have emerged as mechanisms to control firms’ carbon emissions. To meet regulatory requirements, firms can change their operations or invest in green technologies. In this thesis, we analyze a retailer’s joint decisi...

  10. Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique

    Science.gov (United States)

    Brioude, J.; Kim, S.-W.; Angevine, W. M.; Frost, G. J.; Lee, S.-H.; McKeen, S. A.; Trainer, M.; Fehsenfeld, F. C.; Holloway, J. S.; Ryerson, T. B.; Williams, E. J.; Petron, G.; Fast, J. D.

    2011-10-01

    Texas Air Quality Study field campaigns took place in eastern Texas in August-October of 2000 and 2006. Several flights of NOAA and NCAR research aircraft were dedicated to characterizing anthropogenic emissions over Houston. We present results from an inverse modeling technique that uses three atmospheric transport models and these aircraft observations to assess and improve existing emission inventories. We used inverse modeling techniques to improve the spatial and temporal emissions' distribution of CO, NOy, and SO2 predicted by the 4 km resolution U.S. Environmental Protection Agency (EPA) National Emission Inventory (NEI) for 2005. Differences between the prior and posterior inventories are discussed in detail. In September 2006, we found that the prior daytime CO emissions in the Houston urban area have to be reduced by 41% ± 8%. Over the Houston Ship Channel, where industrial emissions are predominant, the prior emissions have to be decreased by 43% ± 5% for CO and 51% ± 5% for NOy. Prior NOy emissions from other major ports around Houston also have to be reduced, probably owing to uncertain nearshore ship emissions in the EPA NEI inventory. Using the measurements from the two field campaigns, we assessed the emissions' variability between August 2000 and September 2006. Daytime CO emissions from the Houston urban area have decreased by 8% ± 3%, while the NOy emissions have increased by 20% ± 6%. In the Houston Ship Channel, daytime NOy emissions have increased by 13% ± 7%. Our results show qualitative consistencies with known changes in Houston emissions' sources.

  11. 40 CFR 51.35 - How can my state equalize the emission inventory effort from year to year?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false How can my state equalize the emission inventory effort from year to year? 51.35 Section 51.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Air Emissions...

  12. Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems.

    Science.gov (United States)

    Leytem, April B; Dungan, Robert S; Bjorneberg, David L; Koehn, Anita C

    2011-01-01

    Concentrated animal feeding operations emit trace gases such as ammonia (NH₃), methane (CH₄), carbon dioxide (CO₂), and nitrous oxide (N₂O). The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. The objective of this study was to determine the emission rates of NH₃, CH₄, CO₂, and N₂O from three source areas (open lots, wastewater pond, compost) on a commercial dairy located in southern Idaho. Gas concentrations and wind statistics were measured each month and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open lots were 0.13 kg NH₃, 0.49 kg CH₄, 28.1 kg CO₂, and 0.01 kg N₂O. Average emissions from the wastewater pond (g m(-2) d(-1)) were 2.0 g NH₃, 103 g CH₄, 637 g CO₂, and 0.49 g N₂O. Average emissions from the compost facility (g m(-2) d(-1)) were 1.6 g NH₃, 13.5 g CH₄, 516 g CO₂, and 0.90 g N₂O. The combined emissions of NH₃, CH₄, CO₂, and N₂O from the lots, wastewater pond and compost averaged 0.15, 1.4, 30.0, and 0.02 kg cow(-1) d(-1), respectively. The open lot areas generated the greatest emissions of NH₃, CO₂, and N₂O, contributing 78, 80, and 57%, respectively, to total farm emissions. Methane emissions were greatest from the lots in the spring (74% of total), after which the wastewater pond became the largest source of emissions (55% of total) for the remainder of the year. Data from this study can be used to develop trace gas emissions factors from open-lot dairies in southern Idaho and potentially other open-lot production systems in similar climatic regions.

  13. Analysis of the Emission Inventories and Model-Ready Emission Datasets of Europe and North America for Phase 2 of the AQMEII Project

    Science.gov (United States)

    This paper highlights the development of the emission inventories and emission processing for Europe (EU) and North America (NA) in the second phase of the Air Quality Model Evaluation International Initiative (AQMEII) project. The main purpose of the second phase of the AQMEII...

  14. International Assistance for Low-Emission Development Planning: Coordinated Low Emissions Assistance Network (CLEAN) Inventory of Activities and Tools--Preliminary Trends

    Energy Technology Data Exchange (ETDEWEB)

    Cox, S.; Benioff, R.

    2011-05-01

    The Coordinated Low Emissions Assistance Network (CLEAN) is a voluntary network of international practitioners supporting low-emission planning in developing countries. The network seeks to improve quality of support through sharing project information, tools, best practices and lessons, and by fostering harmonized assistance. CLEAN has developed an inventory to track and analyze international technical support and tools for low-carbon planning activities in developing countries. This paper presents a preliminary analysis of the inventory to help identify trends in assistance activities and tools available to support developing countries with low-emission planning.

  15. Growth and slaughter performance, nitrogen balance and ammonia emission from slurry in pigs fed high fibre diets

    Directory of Open Access Journals (Sweden)

    Gian Matteo Crovetto

    2010-01-01

    Full Text Available The aim of the work was to determine digestibility, nitrogen balance and ammonia emission from excreta, in the typical Italian heavy pig during the last phase of growth, when fed diets with a high fibre content. In comparison with a traditional control diet (C, two diets with 12 and 24% wheat bran (WB12 and WB24 and two other diets with 12 and 24% dried beet pulp (BP12 and BP24 were tested. Totally 76 Landrace x Large White fattening barrows, from 45 to 170 kg live weight distributed in 16 pens, were utilized in the trial. Thirty pigs were allocated to 6 metabolic cages in 5 consecutive periods in order to have 6 observations per treatment. For diets C, WB12 and WB24 daily weight gain (DWG, feed conversion ratio (FCR and slaughtering performances were also registered, on 20 pigs per dietary treatment. Growing and slaughter performances were similar for pigs fed C and WB12 diets, whilst diet WB24 determined a significant (P<0.05 decrease in performances (growth and feed conversion in the first period of fattening and a lower dressing percentage at slaughter (85.5, 84.4 and 82.5% for C, WB12 and WB24, respectively. Comparing the diets with the same level of inclusion of the fibrous feeds, WB diets had a lower OM and energy digestibility, while BP diets registered a lower protein but a higher fibre digestibility. Consistently with other experiments, BP diets determined an increase of faecal and a reduction of urinary N, as a percentage of the intake N, as well as a decrease of ammonia emission from the slurries (- 16.6 and -25.3% for BP12 and BP24, in comparison with C diet. For the WB diets the reduction of urinary N and the increase in faecal N were less marked and a reduction of ammonia emissions was not registered.

  16. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter

    KAUST Repository

    Phillips, F. A.

    2016-05-05

    Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU ≤ 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds. © CSIRO 2016.

  17. Spatial and temporal variation of emission inventories for historical anthropogenic NMVOCs in China

    Directory of Open Access Journals (Sweden)

    Y. Bo

    2008-06-01

    Full Text Available Multiyear emission inventories of anthropogenic NMVOCs in China for 1980–2005 were compiled based on time-varying statistical data, literature surveyed and model calculated emission factors, and were gridded at a high spatial resolution of 40 km×40 km using the GIS methodology. Chinese NMVOCs emissions had increased by 4.3 times at an annual average rate of 10.7% from 3.92 Tg in 1980 to 16.5 Tg in 2005. Vehicles, biomass burning, industrial processes, fossil fuel combustion, solvent utilization, and storage and transport generated 5.49 Tg, 3.91 Tg, 2.76 Tg, 1.98 Tg, 1.87 Tg, and 0.55 Tg of NMVOCs, respectively. Motorcycles, biofuel burning, heavy-duty vehicles, synthetic fibre production, biomass open burning, and industrial and commercial consumption were primary emission sources. Besides, from 1980 to 2005, vehicle emission increased notably from 6% to 33%, along with a slight increase for fossil fuel combustion from 9% to 12% and for industrial processes from 11% to 17%. Meanwhile, biomass burning emission decreased from 41% to 23%, along with the decrease of storage and transport and solvent utilization from 9% to 3% and from 28% to 11%, respectively. Varieties of NMVOCs emissions coincided well with China's economic growth. Conversions in economic structure and adjustment of fuel consumption structure in China during the period were the reasons for conspicuous variation of source contributions. The developed eastern and coastal regions produced more emissions than the relatively underdeveloped western and inland regions. Particularly, southeastern, northern, and central China covering 35% of China's territory, generated 59% of the total emissions, while the populous capital cities covering merely 4.5% of China's territory, accounted for 25% of the national emissions. Moreover, rural areas also experienced emission growth during the past two and a half decades, the reason of which was transfer of emission-intensive plants

  18. Inventory and treatment of compost maturation emissions in a municipal solid waste treatment facility.

    Science.gov (United States)

    Dorado, Antonio D; Husni, Shafik; Pascual, Guillem; Puigdellivol, Carles; Gabriel, David

    2014-02-01

    Emissions of volatile organic compounds (VOCs) from the compost maturation building in a municipal solid waste treatment facility were inventoried by solid phase microextraction and gas chromatography-mass spectrometry. A large diversity of chemical classes and compounds were found. The highest concentrations were found for n-butanol, methyl ethyl ketone and limonene (ppmv level). Also, a range of compounds exceeded their odor threshold evidencing that treatment was needed. Performance of a chemical scrubber followed by two parallel biofilters packed with an advanced packing material and treating an average airflow of 99,300 m(3) h(-1) was assessed in the treatment of the VOCs inventoried. Performance of the odor abatement system was evaluated in terms of removal efficiency by comparing inlet and outlet abundances. Outlet concentrations of selected VOCs permitted to identify critical odorants emitted to the atmosphere. In particular, limonene was found as the most critical VOC in the present study. Only six compounds from the odorant group were removed with efficiencies higher than 90%. Low removal efficiencies were found for most of the compounds present in the emission showing a significant relation with their chemical properties (functionality and solubility) and operational parameters (temperature, pH and inlet concentration). Interestingly, benzaldehyde and benzyl alcohol were found to be produced in the treatment system.

  19. Development of a vehicle emission inventory with high temporal-spatial resolution based on NRT traffic data and its impact on air pollution in Beijing - Part 1: Development and evaluation of vehicle emission inventory

    Science.gov (United States)

    Jing, Boyu; Wu, Lin; Mao, Hongjun; Gong, Sunning; He, Jianjun; Zou, Chao; Song, Guohua; Li, Xiaoyu; Wu, Zhong

    2016-03-01

    This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near-real-time traffic data on road segments to develop a vehicle emission inventory with high temporal-spatial resolution (HTSVE) for the Beijing urban area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Based on the results of this study, improved air quality simulation and the contribution of vehicle emissions to ambient pollutant concentration in Beijing have been investigated in a companion paper (He et al., 2016).

  20. What can we learn about ship emission inventories from measurements of air pollutants over the Mediterranean Sea?

    Directory of Open Access Journals (Sweden)

    E. Marmer

    2009-03-01

    Full Text Available Ship emission estimates diverge widely for all chemical compounds for several reasons: use of different methodologies (bottom-up or top-down, activity data and emission factors can easily result in a difference from a factor of 1.5 to two orders of magnitude. Despite these large discrepancies in existing ship emission inventories for air pollutants very little has been done to evaluate their consistency with atmospheric measurements at open sea. Combining three sets of observational data – ozone and black carbon measurements sampled at three coastal sites and on board of a Mediterranean cruise ship, as well as satellite observations of atmospheric NO2 column concentration over the same area – we assess the accuracy of the three most commonly used ship emission inventories, EDGAR FT (Olivier et al., 2005, emissions described by Eyring et al. (2005 and emissions reported by EMEP (Vestreng et al., 2007. Our tool is a global atmospheric chemistry transport model which simulates the chemical state of the Mediterranean atmosphere applying different ship emission inventories. The simulated contributions of ships to air pollutant levels in the Mediterranean atmosphere are significant but strongly depend on the inventory applied. Close to the major shipping routes relative contributions vary from 10 to 50% for black carbon and from 2 to 12% for ozone in the surface layer, as well as from 5 to 20% for nitrogen dioxide atmospheric column burden. The relative contributions are still significant over the North African coast, but less so over the South European coast. The observations poorly constrain the ship emission inventories in the Eastern Mediterranean where the influence of uncertain land based emissions, the model transport and wet deposition are at least as important as the signal from ships. In the Western Mediterranean, the regional EMEP emission inventory gives the best match with most measurements, followed by Eyring for NO2

  1. A Wildland Fire Emission Inventory for the Western United States -Uncertainty Across Spatial and Temporal Scales

    Science.gov (United States)

    Urbanski, S. P.; Hao, W.

    2010-12-01

    Emissions of trace gases and aerosols by biomass burning (BB) have a significant influence on the chemical composition of the atmosphere, air quality, and climate. BB emissions depend on a range of variables including burned area, fuels, meteorology, combustion completeness, and emission factors (EF). Emission algorithms provide BB emission inventories (EI) which serve as critical input for Chemical Transport Models (CTM) employed in atmospheric sciences in a wide array of studies. Many different BB EI are commonly used and agreement among these EI is often poor. In general, the sensitivity of the emission estimates to the algorithm components is not well characterized and the performance of most algorithms have not been examined across the scales they are used. Understanding the sensitivity of EI to algorithm component uncertainties is crucial for assessing their impact on CTM simulations. We examine the spatial and temporal sensitivity of BB emission estimates of CO to uncertainties in mapped fuel loading, fuel consumption, burned area and emission factors. The study focuses on wildland fire in the western United States(2003 - 2008). Two fuel loading maps and 2 fuel consumption models provided 4 fuel load consumption emission scenarios with identical burned area and meteorology. The burned area used in the study was mapped using a MODIS burn scar algorithm. The emission algorithm was run at 1-day and 1-km2. Each of the 4 EI was aggregated across multiple spatial (dx= 10 - 200km2) and temporal (dt= 5day - 1yr) scales to evaluate the algorithm sensitivity to scale. At each (dx, dt) the native scale EI of the 4 scenarios were averaged to provide a ‘best estimate’ EI. The uncertainty associated with fuel load consumption (Uflc) was taken as half the range of emissions predicted by the 4 scenarios at each (dx, dt). Estimated uncertainties for the burned area (Ua) and EF (Uef) were combined with Uflc to provide the CO emissions uncertainty (U). The sensitivity of U

  2. Biogenic VOCs emission inventory development of temperate grassland vegetation in Xilin River Basin,Inner Mongolia,China

    Institute of Scientific and Technical Information of China (English)

    HE Nian-peng; HAN Xing-guo; SUN Wei; Pan Qing-min

    2004-01-01

    Given the key role of biogenic volatile organic compounds(VOCs) to tropospheric chemistry and regional air quality, it is important to generate accurate VOCs emission inventories. However, only a less fraction of plant species, in temperate grassland of Inner Mongolia, has been characterized by quantitative measurements. A taxonomic methodology, which assigns VOCs measurements to unmeasured species, is an applicable and inexpensive alternation for extensive VOCs emission survey, although data are needed for additional plant families and genera to further validate the taxonomic approach in grassland vegetation. In this experiment, VOCs emission rates of 178 plant species were measured with a portable photoionization detector(PID). The results showed the most of genera and some families have consistent feature of their VOCs emission, especially for isoprene, and provide the basic premise of taxonomic methodology to develop VOCs emission inventories for temperate grassland. Then, the taxonomic methodology was introduced into assigning emission rate to other 96 species, which no measured emission rates available here. A systematical emission inventory of temperate grassland vegetation in Inner Mongolia was provided and further evidence that taxonomy relationship can serve as a useful guide for generalizing the emissions behavior of many, but not all, plant families and genera to grassland vegetation.

  3. Impact of dicyandiamide on emissions of nitrous oxide, nitric oxide and ammonia from agricultural field in the North China Plain.

    Science.gov (United States)

    Zhou, Yizhen; Zhang, Yuanyuan; Tian, Di; Mu, Yujing

    2016-02-01

    Nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) emissions from an agricultural field in the North China Plain were compared for three treatments during a whole maize growing period from 26 June to 11 October, 2012. Compared with the control treatment (without fertilization, designated as CK), remarkable pulse emissions of N2O, NO and NH3 were observed from the normal fertilization treatment (designated as NP) just after fertilization, whereas only N2O and NH3 pulse emissions were evident from the nitrification inhibitor treatment (designated as ND). The reduction proportions of N2O and NO emissions from the ND treatment compared to those from the NP treatment during the whole maize growing period were 31% and 100%, respectively. A measurable increase of NH3 emission from the ND treatment was found with a cumulative NH3 emission of 3.8 ± 1.2 kg N/ha, which was 1.4 times greater than that from the NP treatment (2.7 ± 0.7 kg N/ha).

  4. Impacts of flavanoid monomers and simple hydrolyzable tannins on ammonia emissions from dairy manure

    Science.gov (United States)

    Inhibition of ammonia production in manure provides for a healthier environment for dairy farmers working in confined quarters. The resulting conservation of urea provides for an enhanced nitrogen concentration, and thus, fertilizing capacity, of the manure. The use of a mixture of tannins from queb...

  5. Positron emission tomography of hepatic first-pass metabolism of ammonia in pig

    DEFF Research Database (Denmark)

    Keiding, S; Munk, O L; Roelsgaard, K;

    2001-01-01

    pigs were given positron-labelled ammonia, (13)NH(3), into the portal vein and into the vena cava as successive 2-min infusions followed by 22-min dynamic liver scanning. Vena cava infusion data were used to account for recirculation of tracer and metabolites following the portal vein infusion...

  6. A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models

    Directory of Open Access Journals (Sweden)

    M. Karl

    2009-06-01

    Full Text Available We present a new European plant-specific emission inventory for isoprene, monoterpenes, sesquiterpenes and oxygenated VOC (OVOC, on a spatial resolution of 0.089×0.089 degrees, for implementation in atmospheric transport models. The inventory incorporates more accurate data on foliar biomass densities from several litterfall databases that became available in the last years for the main tree species in Europe. A bioclimatic correction factor was introduced to correct the foliar biomass densities of trees and crops for the different plant growth conditions that can be found in Pan-Europe. Long-term seasonal variability of agriculture and forest emissions was taken into account by implementing a new growing season concept. The 2004–2005 averaged annual total biogenic volatile organic compound (BVOC emissions for the Pan-European domain are estimated to be about 12 Tg with a large contribution from the OVOC class of about 4.5 Tg and from monoterpenes of about 4 Tg. Annual isoprene emissions are found to be about 3.5 Tg, insensitive to the chosen emission algorithm. Emissions of OVOC were found to originate to a large extent from agriculture. Further experiments on crop emissions should be carried out to check the validity of the applied standard emission factors. The new inventory aims at a fully transparent and verifiable aggregation of detailed land use information and at the inclusion of plant-specific emission data. Though plant-specific land use data is available with relatively high accuracy, a lack of experimental biomass densities and emission data on terpenes, sesquiterpenes and oxygenated VOC, in particular for agricultural plants, currently limits the setup of a highly accurate plant-specific emission inventory.

  7. Assessment of China's virtual air pollution transport embodied in trade by a consumption-based emission inventory

    Science.gov (United States)

    Zhao, H. Y.; Zhang, Q.; Davis, S. J.; Guan, D.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2014-10-01

    High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities - a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15-23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers

  8. A new inversion method to calculate emission inventories without a prior at mesoscale: Application to the anthropogenic CO2 emission from Houston, Texas

    Science.gov (United States)

    Brioude, J.; Petron, G.; Frost, G. J.; Ahmadov, R.; Angevine, W. M.; Hsie, E.-Y.; Kim, S.-W.; Lee, S.-H.; McKeen, S. A.; Trainer, M.; Fehsenfeld, F. C.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Gurney, K. R.

    2012-03-01

    We developed a new inversion method to calculate an emission inventory for an anthropogenic pollutant without a prior emission estimate at mesoscale. This method employs slopes between mixing ratio enhancements of a given pollutant (CO2, for instance) with other co-emitted tracers in conjunction with the emission inventories of those tracers (CO, NOy, and SO2 are used in this example). The current application of this method employed in situ measurements onboard the NOAA WP-3 research aircraft during the 2006 Texas Air Quality Study (TexAQS 2006). We used 3 different transport models to estimate the uncertainties introduced by the transport models in the inversion. We demonstrated the validity of the new inversion method by calculating a 4 × 4 km2 emission inventory of anthropogenic CO2 in the Houston area in Texas, and comparing it to the 10 × 10 km2 Vulcan emission inventory for the same region. The calculated anthropogenic CO2 inventory for the Houston Ship Channel, home to numerous major industrial and port emission sources, showed excellent agreement with Vulcan. The daytime CO2 average flux from the Ship Channel is the largest urban CO2 flux reported in the literature. Compared to Vulcan, the daytime urban area CO2 emissions were higher by 37% ± 6%. Those differences can be explained by uncertainties in emission factors in Vulcan and by increased emissions from point sources and on-road emitters between 2002, the reference year in Vulcan, and 2006, the year that the TexAQS observations were made.

  9. Crowd-Sourcing Management Activity Data to Drive GHG Emission Inventories in the Land Use Sector

    Science.gov (United States)

    Paustian, K.; Herrick, J.

    2015-12-01

    Greenhouse gas (GHG) emissions from the land use sector constitute the largest source category for many countries in Africa. Enhancing C sequestration and reducing GHG emissions on managed lands in Africa has to potential to attract C financing to support adoption of more sustainable land management practices that, in addition to GHG mitigation, can provide co-benefits of more productive and climate-resilient agroecosystems. However, robust systems to measure and monitor C sequestration/GHG reductions are currently a significant barrier to attracting more C financing to land use-related mitigation efforts.Anthropogenic GHG emissions are driven by a variety of environmental factors, including climate and soil attributes, as well as human-activities in the form of land use and management practices. GHG emission inventories typically use empirical or process-based models of emission rates that are driven by environmental and management variables. While a lack of field-based flux and C stock measurements are a limiting factor for GHG estimation, we argue that an even greater limitation may be availabiity of data on the management activities that influence flux rates, particularly in developing countries in Africa. In most developed countries there is a well-developed infrastructure of agricultural statistics and practice surveys that can be used to drive model-based GHG emission estimations. However, this infrastructure is largely lacking in developing countries in Africa. While some activity data (e.g. land cover change) can be derived from remote sensing, many key data (e.g., N fertilizer practices, residue management, manuring) require input from the farmers themselves. The explosive growth in cellular technology, even in many of the poorest parts of Africa, suggests the potential for a new crowd-sourcing approach and direct engagement with farmers to 'leap-frog' the land resource information model of developed countries. Among the many benefits of this approach

  10. Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: II. Greenhouse gas emissions.

    Science.gov (United States)

    Wulf, S; Maeting, M; Clemens, J

    2002-01-01

    The aim of this study was to investigate the effect of different application techniques on greenhouse gas emission from co-fermented slurry. Ammonia (NH3), nitrous oxide (N2O), and methane (CH4) emissions were measured in two field experiments with four different application techniques on arable and grassland sites. To gather information about fermentation effects, unfermented slurry was also tested, but with trail hose application only. Co-fermented slurry was applied in April at a rate of 30 m3 ha(-1). Measurements were made every 4 h on the first day after application and were continued for 6 wk with gradually decreasing sampling frequency. Methane emissions were application and are discussed in the preceding paper. We evaluated the climatic relevance of the measured gas emissions from the different application techniques based on the comparison of CO2 equivalents. It was evident that NH3 emission reduction, which can be achieved by injection, is at least compensated by increased N2O emissions. Our results indicate that on arable land, trail hose application with immediate shallow incorporation, and on grassland, trail shoe application, bear the smallest risks of high greenhouse gas emissions when fertilizing with co-fermented slurry.

  11. Effect of Alum Additions to Poultry Litter on In-House Ammonia and Greenhouse Gas Concentrations and Emissions.

    Science.gov (United States)

    Eugene, Branly; Moore, Philip A; Li, Hong; Miles, Dana; Trabue, Steven; Burns, Robert; Buser, Michael

    2015-09-01

    Alum [Al(SO4) ·14HO] addition to poultry litter has been shown to reduce ammonia (NH) concentrations in poultry houses; however, its effects on greenhouse gas (GHG; NO, CH, and CO) emissions is unknown. The objectives of this study were to determine the effects of alum additions on (i) in-house NH and GHG concentrations, (ii) NH and GHG emissions, and (iii) litter chemical properties. Two identical broiler houses located in northwest Arkansas were used for this study: one house was a control and the other was treated with alum between each flock of birds. Ventilation rates were coupled with in-house NH and GHG measurements to determine emission rates. Overall, alum additions significantly reduced the daily average in-house NH concentration by 42% (8.9 vs. 15.4 μL L), and the overall NH emission rate was reduced by 47% (7.2 vs. 13.4 kg d house). The average cumulative NH emission for the three flocks was 330 kg house flock for the alum-treated house and 617 kg house flock for the control. Concentrations and emissions of nitrous oxide (NO) and methane (CH) from the alum-treated house were not significantly different than the untreated house. However, carbon dioxide (CO) emissions were significantly higher from the untreated house than the alum-treated house. Alum also significantly increased litter N content and reduced the C/N ratio. These results indicate that the addition of alum to poultry litter is not only an effective management practice for reducing in-house NH concentrations and emissions but also significantly reduces CO emissions from poultry facilities.

  12. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2010-11-01

    Full Text Available The uncertainties of a national, bottom-up inventory of Chinese emissions of anthropogenic SO2, NOx, and particulate matter (PM of different size classes and carbonaceous species are comprehensively quantified, for the first time, using Monte Carlo simulation. The inventory is structured by seven dominant sectors: coal-fired electric power, cement, iron and steel, other industry (boiler combustion, other industry (non-combustion processes, transportation, and residential. For each parameter related to emission factors or activity-level calculations, the uncertainties, represented as probability distributions, are either statistically fitted using results of domestic field tests or, when these are lacking, estimated based on foreign or other domestic data. The uncertainties (i.e., 95% confidence intervals around the central estimates of Chinese emissions of SO2, NOx, total PM, PM10, PM2.5, black carbon (BC, and organic carbon (OC in 2005 are estimated to be −14%~12%, −10%~36%, −10%~36%, −12%~42% −16%~52%, −23%~130%, and −37%~117%, respectively. Variations at activity levels (e.g., energy consumption or industrial production are not the main source of emission uncertainties. Due to narrow classification of source types, large sample sizes, and relatively high data quality, the coal-fired power sector is estimated to have the smallest emission uncertainties for all species except BC and OC. Due to poorer source classifications and a wider range of estimated emission factors, considerable uncertainties of NOx and PM emissions from cement production and boiler combustion in other industries are found. The probability distributions of emission factors for biomass burning, the largest source of BC and OC, are fitted based on very limited domestic field measurements, and special caution should thus be taken interpreting these emission uncertainties. Although Monte

  13. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment.

    Science.gov (United States)

    Hou, Yong; Velthof, Gerard L; Oenema, Oene

    2015-03-01

    Livestock manure contributes considerably to global emissions of ammonia (NH3 ) and greenhouse gases (GHG), especially methane (CH4 ) and nitrous oxide (N2 O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we present a meta-analysis and integrated assessment of the effects of mitigation measures on NH3 , CH4 and (direct and indirect) N2 O emissions from the whole manure management chain. We analysed the effects of mitigation technologies on NH3 , CH4 and N2 O emissions from individual sources statistically using results of 126 published studies. Whole-chain effects on NH3 and GHG emissions were assessed through scenario analysis. Significant NH3 reduction efficiencies were observed for (i) housing via lowering the dietary crude protein (CP) content (24-65%, compared to the reference situation), for (ii) external slurry storages via acidification (83%) and covers of straw (78%) or artificial films (98%), for (iii) solid manure storages via compaction and covering (61%, compared to composting), and for (iv) manure application through band spreading (55%, compared to surface application), incorporation (70%) and injection (80%). Acidification decreased CH4 emissions from stored slurry by 87%. Significant increases in N2 O emissions were found for straw-covered slurry storages (by two orders of magnitude) and manure injection (by 26-199%). These side-effects of straw covers and slurry injection on N2 O emission were relatively small when considering the total GHG emissions from the manure chain. Lowering the CP content of feed and acidifying slurry are strategies that consistently reduce NH3 and GHG emissions in the whole chain. Other strategies may reduce emissions of a specific gas or emissions source, by which there is a risk of unwanted trade-offs in the manure management chain. Proper farm-scale combinations of mitigation measures are important to minimize impacts of

  14. 城市温室气体清单研究%A Study on City Greenhouse Gas Emissions Inventory

    Institute of Scientific and Technical Information of China (English)

    蔡博峰

    2011-01-01

    介绍了国际上城市温室气体清单研究进展.分析了城市清单主流方法体系、模式以及编制原则、边界、范围,并且比较了城市清单和国家清单在方法体系及模式上的差异和其自身特点.重点分析了城市清单编制的"混合模式"和3个尺度范围.最后提出国内城市清单研究面临的困难和建议.%Greenhouse gas (GHG) emissions inventory is the fundamental data for low carbon city development.There are significant methodology differences between the national inventory and city inventory. The system and accounting model as well as principles, boundaries and scope of well accepted urban GHG inventory are introduced.Based on the characteristics of city, the mixed accounting model, boundaries, and the emission scope of city GHG inventory are analyzed. The difficulties and challenges in the study of the GHG inventory of cites in China are raised and suggestions proposed as well.

  15. What can we learn about ship emission inventories from measurements of air pollutants over the Mediterranean Sea?

    Directory of Open Access Journals (Sweden)

    E. Marmer

    2009-09-01

    Full Text Available Ship emission estimates diverge widely for all chemical compounds for several reasons: use of different methodologies (bottom-up or top-down, activity data and emission factors can easily result in a difference ranging from a factor of 1.5 to even an order of magnitude. Combining three sets of observational data – ozone and black carbon measurements sampled at three coastal sites and on board of a Mediterranean cruise ship, as well as satellite observations of atmospheric NO2 column concentration over the same area – we assess the accuracy of the three most commonly used ship emission inventories, EDGAR FT (Olivier et al., 2005, emissions described by Eyring et al. (2005 and emissions reported by EMEP (Vestreng et al., 2007. Our tool is a global atmospheric chemistry transport model which simulates the chemical state of the Mediterranean atmosphere applying different ship emission inventories. The simulated contributions of ships to air pollutant levels in the Mediterranean atmosphere are significant but strongly depend on the inventory applied. Close to the major shipping routes relative contributions vary from 10 to 50% for black carbon and from 2 to 12% for ozone in the surface layer, as well as from 5 to 20% for nitrogen dioxide atmospheric column burden. The relative contributions are still significant over the North African coast, but less so over the South European coast because densely populated regions with significant human activity contribute relatively more to air pollution than ships, even if these regions attract a lot of ship traffic. The observations poorly constrain the ship emission inventories in the Eastern Mediterranean where the influence of uncertain land based emissions, the model transport and wet deposition are at least as important as the signal from ships. In the Western Mediterranean, the regional EMEP emission inventory gives the best match with most measurements, followed by Eyring for NO2

  16. Implications of ammonia emissions for fine aerosol formation and visibility impairment. A case study from the Lower Fraser Valley, British Columbia

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1998-01-01

    of nitrogen and sulphur oxides over agricultural areas in the eastern and central valley with higher ammonia emissions favours subsequent ammonium nitrate and sulphate formation. This leads to higher fine mass concentrations and lowest visibility in the predominantly agricultural regions of the valley. (C...... ammonia and ammonium measurements to explain: (i) the observed temporal and spatial variability of fine inorganic aerosol composition and concentrations in the valley, and (ii) the severity and spatial variability of visibility degradation in the LFV. It is proposed here that advection of urban emissions...

  17. On the influence of temporal and spatial resolution of aircraft emission inventories for mesoscale modeling of pollutant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Franzkowiak, V.; Petry, H.; Ebel, A. [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1997-12-31

    The sensitivity of a mesoscale chemistry transport model to the temporal and spatial resolution of aircraft emission inventories is evaluated. A statistical analysis of air traffic in the North-Atlantic flight corridor is carried out showing a highly variable, fine structured spatial distribution and a pronounced daily variation. Sensitivity studies comparing different emission scenarios reveal a strong dependency to the emission time and location of both transport and response in chemical formation of subsequent products. The introduction of a pronounced daily variation leads to a 30% higher ozone production in comparison to uniformly distributed emissions. (author) 9 refs.

  18. Influence of updating global emission inventory of black carbon on evaluation of the climate and health impact

    Science.gov (United States)

    Wang, Rong; Tao, Shu; Balkanski, Yves; Ciais, Philippe

    2013-04-01

    Black carbon (BC) is an air component of particular concern in terms of air quality and climate change. Black carbon emissions are often estimated based on the fuel data and emission factors. However, large variations in emission factors reported in the literature have led to a high uncertainty in previous inventories. Here, we develop a new global 0.1°×0.1° BC emission inventory for 2007 with full uncertainty analysis based on updated source and emission factor databases. Two versions of LMDz-OR-INCA models, named as INCA and INCA-zA, are run to evaluate the new emission inventory. INCA is built up based on a regular grid system with a resolution of 1.27° in latitude and 2.50° in longitude, while INCA-zA is specially zoomed to 0.51°×0.66° (latitude×longitude) in Asia. By checking against field observations, we compare our inventory with ACCMIP, which is used by IPCC in the 5th assessment report, and also evaluate the influence of model resolutions. With the newly calculated BC air concentrations and the nested model, we estimate the direct radiative forcing of BC and the premature death and mortality rate induced by BC exposure with Asia emphasized. Global BC direct radiative forcing at TOA is estimated to be 0.41 W/m2 (0.2 - 0.8 as inter-quartile range), which is 17% higher than that derived from the inventory adopted by IPCC-AR5 (0.34 W/m2). The estimated premature deaths induced by inhalation exposure to anthropogenic BC (0.36 million in 2007) and the percentage of high risk population are higher than those previously estimated. Ninety percents of the global total anthropogenic PD occur in Asia with 0.18 and 0.08 million deaths in China and India, respectively.

  19. Temporal changes in abundance and composition of ammonia-oxidizing bacterial and archaeal communities in a drained peat soil in relation to N{sub 2}O emissions

    Energy Technology Data Exchange (ETDEWEB)

    Andert, Janet [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Microbiology; Max-Planck-Institute of Colloids and Interfaces, Potsdam (Germany); Wessen, Ella; Hallin, Sara [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Microbiology; Boerjesson, Gunnar [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil and Environment

    2011-12-15

    Boreal peat soils comprise about 3% of the terrestrial environments, and when drained, they become sources of the greenhouse gas nitrous oxide (N{sub 2}O). Ammonia oxidation can result in N{sub 2}O emissions, either directly or by fuelling denitrification, but we know little about the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in peat soils. Our aim was to determine temporal alterations in abundance and composition of these communities in a drained and forested peat soil in relation to N{sub 2}O emissions and ammonia oxidation activity. Materials and methods The peat was sampled at three different depths in the upper 0.5 m over a period of 9 months covering two summer and two winter samplings. Community composition and abundance were determined by T-RFLP and quantitative real-time PCR of the bacterial and archaeal amoA genes. Potential ammonia oxidation rates were measured using the chlorate inhibition technique, and in situ N{sub 2}O emission was determined using chambers. Results and discussion The soil parameters displayed little spatial and temporal heterogeneity, which probably explained why there were no depth-related effects on the abundance, composition, or activity of the ammonia oxidizers. In contrast to most terrestrial environments, the AOB dominated numerically over the AOA. Both groups changed in community composition between sampling occasions, although the AOB showed more significant seasonal signatures than the AOA. Temporal changes in abundance were only observed for the AOB, with a decrease in numbers from May to March. Such differences were not reflected by the activity or N{sub 2}O emissions. Conclusions The high ammonium concentrations in the peat soil likely favored the AOB over the AOA, and we hypothesize that they were more active than the AOA and therefore responded to climatic and environmental changes. However, other processes rather than ammonia oxidation were likely responsible for N{sub 2}O emissions at the site.

  20. Controlled-release urea commingled with rice seeds reduced emission of ammonia and nitrous oxide in rice paddy soil.

    Science.gov (United States)

    Yang, Yuechao; Zhang, Min; Li, Yuncong; Fan, Xiaohui; Geng, Yuqing

    2013-11-01

    Reduction of ammonia (NH) and nitrous oxide (NO) emission and enhanced nitrogen (N) fertilizer use efficiency have been investigated with different N fertilizer management and application methods for irrigated rice production. Few studies have examined NH and NO emissions from rice paddy soil when commingling controlled release urea with rice seeds. The objective of this study was to assess NH volatilization and NO emission from a novel controlled-release urea formulation (CRU-180) when commingled at the full application rate with seeds in a single application during the preparation of plant plugs at the nursery stage. The experiment was conducted as a factorial design with two fertilizer sources (conventional urea and CRU-180), four rates (0, 100, 200, and 300 kg N ha), and three replicates. The entire amount of CRU-180 was incorporated into each plug with germinated seed. The conventional urea was split into four applications based on the standard practice for fertilizer application. The CRU-180 treatments reduced the NH and NO concentration in the paddy flood water and paddy soil solution as compared with the conventional urea treatments. The percentage of applied N fertilizer emitted as NH volatilization and NO emission in the CRU-180 treatments was only about 10% of that from the conventional urea treatments at the same N application rate. The application of CRU-180 with seeds offers a novel N fertilizer management technique, a method to reduce environmental impacts associated with rice production and the cost of rice production.

  1. Diurnal odor, ammonia, hydrogen sulfide, and carbon dioxide emission profiles of confined swine grower/finisher rooms.

    Science.gov (United States)

    Sun, Gang; Guo, Huiqing; Peterson, Jonathan; Predicala, Bernardo; Laguë, Claude

    2008-11-01

    The objective of this study was to obtain diurnal variation profiles of odor and gas (ammonia [NH3], hydrogen sulfide [H2S], carbon dioxide [CO2]) concentrations and emission rate (OGCER) from confined swine grower/ finisher rooms under three typical weather conditions (warm, mild, and cold weather) in a year. Two grower/ finisher rooms, one with a fully slatted floor and the other with partially slatted floors, were measured for 2 consecutive days under each weather condition. The results revealed that the diurnal OGCER in the room with a fully slatted floor was 9.2-39.4% higher than that with a partially slatted floor; however, no significant differences in the diurnal OGCER were found between these two rooms, except for the NH3 concentrations in August, the NH3 and H2S concentrations and emissions in October, and odor concentrations and emissions in February (p > 0.05). The OGCER variations presented different diurnal patterns as affected by time of day, season, type of floor, ventilation rate, animal growth cycles, in-house manure storage, and weather conditions. Significant diurnal fluctuations in the OGCER (except for the odor concentrations and H2S emissions) were observed in August (p dispersion modeling to decrease the great incertitude of setback determination using randomly measured data.

  2. Seasonal odor, ammonia, hydrogen sulfide, and carbon dioxide concentrations and emissions from swine grower-finisher rooms.

    Science.gov (United States)

    Sun, Gang; Guo, Huiqing; Peterson, Jonathan

    2010-04-01

    Seasonal odor and gas (ammonia [NH3], hydrogen sulfide [H2S], and carbon dioxide [CO2]) concentrations and emission rates (OGCERs) from swine facilities are vital for providing accurate source emissions and reducing the uncertainty of setback distances on the basis of emission data. In this study, a repeated measurement experimental method and a split-block statistical model were used to obtain seasonal OGCER profiles from two types of swine grower-finisher rooms in Saskatchewan, Canada, over a 12-month period. The results indicate that the OGCERs were significantly affected by the sampling month and ambient temperature (P dispersion models to reduce uncertainties in setback calculations. It was also found that the seasonal OGCERs from the rooms with fully slatted floors were 6.3-40.6% higher than those with partially slatted floors. The seasonal OGCERs (except for the NH3 concentrations in October, November, and January; the CO2 concentrations in August; and the CO2 emission rates in December) between these two rooms for each measuring month did not differ significantly (P > 0.05). The measured gas concentrations were generally below the permissible exposure limits (PELs) established by the Occupational Safety and Health Administration (OSHA) throughout the year except for the NH3 concentrations in cold weather (December, January, and February).

  3. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1°×1°

    NARCIS (Netherlands)

    Olivier, J.G.J.; Bouwman, A.F.; Berdowski, J.J.M.; Veldt, C.; Bloos, J.P.J.; Visschedijk, A.J.H.; Maas, C.W.M. van der; Zandveld, P.Y.J.

    1999-01-01

    A set of global greenhouse gas emission inventories has been compiled per source category for the 1990 annual emissions of the direct greenhouse gases CO2, CH4 and N2O, as well as of the indirect greenhouse gases (ozone precursors) CO, NOx and NMVOC, and of SO2. The inventories are available by sect

  4. Lower Nitrous Oxide Emissions from Anhydrous Ammonia Application Prior to Soil Freezing in Late Fall Than Spring Pre-Plant Application.

    Science.gov (United States)

    Tenuta, Mario; Gao, Xiaopeng; Flaten, Donald N; Amiro, Brian D

    2016-07-01

    Fall application of anhydrous ammonia in Manitoba is common but its impact on nitrous oxide (NO) emissions is not well known. A 2-yr study compared application before freeze-up in late fall to spring pre-plant application of anhydrous ammonia on nitrous oxide (NO) emissions from a clay soil in the Red River Valley, Manitoba. Spring wheat ( L.) and corn ( L.) were grown on two 4-ha fields in 2011 and 2012, respectively. Field-scale flux of NO was measured using a flux-gradient micrometeorological approach. Late fall treatment did not induce NO emissions soon after application or in winter likely because soil was frozen. Application time did alter the temporal pattern of emissions with late fall and spring pre-plant applications significantly increasing median daily NO flux at spring thaw and early crop growing season, respectively. The majority of emissions occurred in early growing season resulting in cumulative emissions for the crop year being numerically 33% less for late fall than spring pre-plant application. Poor yield in the first year with late fall treatment occurred because of weed and volunteer growth with delayed planting. Results show late fall application of anhydrous ammonia before freeze-up increased NO emissions at thaw and decreased emissions for the early growing season compared to spring pre-plant application. However, improved nitrogen availability of late fall application to crops the following year is required when planting is delayed because of excessive moisture in spring.

  5. A Sub-category Disaggregated Greenhouse Gas Emission Inventory for the Bogota Region, Colombia

    Science.gov (United States)

    Pulido-Guio, A. D.; Rojas, A. M.; Ossma, L. J.; Jimenez-Pizarro, R.

    2012-12-01

    estimated at 22.96±1.25 (1-sigma) Tg of CO2 equivalent (10.46±0.93 Tg CO2-e from Cundinamarca and 12.51±0.83 Tg CO2-eq from Bogota). 63% of Cundinamarca's GHG emissions are due to road transportation, agricultural soil management, enteric fermentation and fuel use in the cement industry. The road transportation and waste disposal sectors share 62% of emissions in Bogota. These activity sectors are considered to be the main GHG mitigation assessment targets. The calculated per capita emissions, 1.7 ton CO2-eq/hab-year for Bogota and 4.4 ton CO2-eq/hab-year for Cundinamarca (excluding emissions due to land-use change), do not reflect the fact that Cundinamarca provides goods and services to the city of Bogota. A deeper analysis is thus required to quantitatively account for Bogota's urban metabolism, including GHG emissions associated with consumption patterns. It is expected that the developed and applied methodologies, and the systematic compilation of the gathered information, will facilitate the development of GHG inventories for other regions of Colombia.

  6. Search for Ammonia Radio Emission in Comet 9P/Tempel~1 after the Deep Impact Event

    Science.gov (United States)

    Tozzi, G. P.; Palagi, F.; Codella, C.; Poppi, S.; Crovisier, J.

    About 30 hours after the DI impact event, comet 9P/Tempel 1 has been observed with the 32 m dish of Medicina observatory (Bologna, Italy) to search for the NH_3 inversion transitions in the region around 24 GHz. The results show the presence of a line with S/N of about 6 and a FWHM equal to 1.35 km/s close to the NH_3(1,1) frequency. The cometary origin of the line seems sure, because the search for possible background sources of such a emission, performed a few days later along the same comet path, did not show any line at that frequency. Its identification is however dubious because of its too high outflow projected velocity and the too high ammonia production necessary to fit the line intensity. The frequency of the line is also close to a transition of methyl formate, a species already observed in comet Hale-Bopp and in hot cores. The outflow projected velocity would be smaller than in the case of the ammonia, but its abundance would be too high as well.

  7. Inventory of China's Energy-Related CO2 Emissions in 2008

    Energy Technology Data Exchange (ETDEWEB)

    Fridley, David; Zheng, Nina; Qin, Yining

    2011-03-31

    Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel

  8. Reduction of Carbon Dioxide Emissions from a SCGT/CC by Ammonia Solution Absorption – Preliminary Results

    Directory of Open Access Journals (Sweden)

    Lidia Lombardi

    2004-12-01

    Full Text Available The reduction of carbon dioxide from the flue gases of a semi-closed gas turbine combined cycle (SCGT/CC by means of absorption in ammonia aqueous solutions has been studied. The absorption system has been simulated by means of Aspen PlusTM. The main variables of the removal system have been varied in order to understand their influence on system performance. With reference to the SCGT/CC case study, the removal of CO2, considering a removal efficiency of 89%, dramatically decreases the overall cycle efficiency from 53 to 41%, with the main contribution to this decrease being due to the power consumption for flue gas compression up to the absorption unit pressure. CO2 specific emissions pass from 390 to 57 kg/MWh.

  9. The Norwegian Emission Inventory 2012. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond (ed.)

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF (land use, land-use change and forestry) is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2012) for documentation on this topic.This report replaces the previous documentation of the emission model (Sandmo 2011), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: Minor NOx emissions from production of rock wool, which previously not have been estimated, have been included, Some factors for estimation of N2O from agriculture have been altered

  10. Direct Top-down Estimates of Biomass Burning CO Emissions Using TES and MOPITT Versus Bottom-up GFED Inventory

    Science.gov (United States)

    Pechony, Olga; Shindell, Drew T.; Faluvegi, Greg

    2013-01-01

    In this study, we utilize near-simultaneous observations from two sets of multiple satellite sensors to segregate Tropospheric Emission Spectrometer (TES) and Measurements of Pollution in the Troposphere (MOPITT) CO observations over active fire sources from those made over clear background. Hence, we obtain direct estimates of biomass burning CO emissions without invoking inverse modeling as in traditional top-down methods. We find considerable differences between Global Fire Emissions Database (GFED) versions 2.1 and 3.1 and satellite-based emission estimates in many regions. Both inventories appear to greatly underestimate South and Southeast Asia emissions, for example. On global scales, however, CO emissions in both inventories and in the MOPITT-based analysis agree reasonably well, with the largest bias (30%) found in the Northern Hemisphere spring. In the Southern Hemisphere, there is a one-month shift between the GFED and MOPITT-based fire emissions peak. Afternoon tropical fire emissions retrieved from TES are about two times higher than the morning MOPITT retrievals. This appears to be both a real difference due to the diurnal fire activity variations, and a bias due to the scarcity of TES data.

  11. Modeling the effect of heat fluxes on ammonia and nitrous oxide emissions from an anaerobic swine waste treatment lagoon using artificial neural network

    Science.gov (United States)

    Understanding factors that affect ammonia and nitrous emissions from anaerobic swine waste treatment lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, s...

  12. The Norwegian Emission Inventory 2011. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2011b) for documentation on this topic. This report replaces the previous documentation of the emission model (Sandmo 2010), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: To define the different economic sectors in the Norwegian emission model, the standard industrial classification SIC2007 has replaced the previous SIC2002 (Appendix F) A new model for calculating emissions to air (HBEFA

  13. A new method for estimating greenhouse gases and ammonia emissions from livestock buildings

    Science.gov (United States)

    Barrancos, José; Briz, Susana; Nolasco, Dácil; Melián, Gladys; Padilla, Germán; Padrón, Eleazar; Fernández, Isabel; Pérez, Nemesio; Hernández, Pedro A.

    2013-08-01

    It is widely known that carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are the main greenhouse gases contributing to global climate change. Emission factors for the aforementioned gases have been proposed in order to calculate the contribution of livestock farming to global climate change. However, these emission factors depend on many additional factors such as the housing system, environmental conditions, etc., which implies some uncertainties in their estimation. Therefore, works that aim at improving experimental calculation of these emissions are crucial to provide reliable estimates of the emissions produced by livestock. The purpose of this work was to apply a new methodology inspired by the accumulation chamber method to estimate emission rates from livestock buildings. The work was based on measuring the increase of gas emissions inside the livestock building by means of the remote sensing technique Open-Path FTIR (OP-FTIR). Previously to the measurements, livestock building cattle was confined outside of the building. Utilization of fan ventilation system favoured the homogenization of air inside the building. This experiment proved that evolution of CH4 and CO2 concentrations inside the livestock building behaved like an accumulation chamber unlike the N2O which did not show such behaviour. Results showed CH4, CO2 and NH3 emissions of 167 ± 54,700 ± 200 and 1.3 ± 0.2 kg head-1 year-1, respectively. One of the main parameters affecting the estimated emission factors is the type of animal feeding. Therefore, it is essential to investigate the influence of food composition on CH4 and CO2 emission in a relative larger number of operating cattle buildings since the methodology herein proposed is an easy and cheap tool to study livestock emission factors and their variability.

  14. Tempo-spatial variation of emission inventories of speciated volatile organic compounds from on-road vehicles in China

    Directory of Open Access Journals (Sweden)

    H. Cai

    2009-05-01

    Full Text Available Emission inventories of sixty-nine speciated non-methane volatile organic compounds (NMVOC from on-road vehicles in China were estimated for the period of 1980–2005, using seven NMVOC emission profiles, which were summarized based on local and international measurements from published literatures dealing with specific vehicle categories running under particular modes.

    Results show an exponential growth trend of China's historical emissions of alkanes, alkenes, alkines, aromatics and carbonyls during the period of 1980–2005, increasing from 63.9, 39.3, 6.9, 36.8 and 24.1 thousand tons, respectively, in 1980 to 2781.4, 1244.9, 178.5, 1350.7 and 403.3 thousand tons, respectively, in 2005, which coincided well with China's economic growth. Emission inventories of alkenes, aromatics and carbonyls were gridded at a high resolution of 40 km×40 km for air quality simulation and health risk evaluation, using the geographic information system (GIS methodology. Spatial distribution of speciated NMVOC emissions shows a clear difference in emission densities between developed eastern and relatively underdeveloped western and inland China. Besides, the appearance and expansion of high-emission areas was another notable characteristic of spatial distribution of speciated NMVOC emissions during the period.

    Emission contributions of vehicle categories to speciated NMVOC groups showed annual variation, due to the variance in the provincial emissions and in the relative fractions of the seven emission profiles adopted at the provincial level. Highly reactive and toxic compounds accounted for high proportions of emissions of speciated NMVOC groups. The most abundant compounds were isopentane, pentane and butane from alkanes; ethene, propene, 2-methyl-2-butene and ethyne from alkenes and alkines; benzene, toluene, ethylbenzene, o-xylene, and m,p-xylene (BTEX and 1,2,4-trimethylbenzene from aromatics and formaldehyde, acetaldehyde

  15. Tempo-spatial variation of emission inventories of speciated volatile organic compounds from on-road vehicles in China

    Directory of Open Access Journals (Sweden)

    H. Cai

    2009-09-01

    Full Text Available Emission inventories of sixty-seven speciated non-methane volatile organic compounds (NMVOC from on-road vehicles in China were estimated for the period of 1980–2005, using seven NMVOC emission profiles, which were summarized based on local and international measurements from published literatures dealing with specific vehicle categories running under particular modes.

    Results show an exponential growth trend of China's historical emissions of alkanes, alkenes, alkines, aromatics and carbonyls during the period of 1980–2005, increasing from 63.9, 39.3, 6.9, 36.8 and 24.1 thousand tons, respectively, in 1980 to 2778.2, 1244.5, 178.7, 1351.7 and 406.0 thousand tons, respectively, in 2005, which coincided well with China's economic growth. Emission inventories of alkenes, aromatics and carbonyls were gridded at a high resolution of 40 km×40 km for air quality simulation and health risk evaluation, using the geographic information system (GIS methodology. Spatial distribution of speciated NMVOC emissions shows a clear difference in emission densities between developed eastern and relatively underdeveloped western and inland China. Besides, the appearance and expansion of high-emission areas was another notable characteristic of spatial distribution of speciated NMVOC emissions during the period.

    Emission contributions of vehicle categories to speciated NMVOC groups showed annual variation, due to the variance in the provincial emissions and in the relative fractions of the seven emission profiles adopted at the provincial level. Highly reactive and toxic compounds accounted for high proportions of emissions of speciated NMVOC groups. The most abundant compounds were isopentane, pentane and butane from alkanes; ethene, propene, 2-methyl-2-butene and ethyne from alkenes and alkines; benzene, toluene, ethylbenzene, o-xylene, and m,p-xylene (BTEX and 1,2,4-trimethylbenzene from aromatics and formaldehyde, acetaldehyde

  16. Ammonia and hydrogen sulfide emissions from swine production facilities in North America: a meta-analysis.

    Science.gov (United States)

    Liu, Z; Powers, W; Murphy, J; Maghirang, R

    2014-04-01

    Literature on NH3 and H2S emissions from swine production facilities in North America was reviewed, and a meta-analysis was conducted on measured emissions data from swine houses and manure storage facilities as well as concentration data in the vicinity of swine production facilities. Results from more than 80 studies were compiled with results from the 11 swine sites in the National Air Emissions Monitoring Study (NAEMS). Data across studies were analyzed statistically using the MIXED procedures of SAS. The median emission rates from swine houses across various production stages and manure handling systems were 2.78 and 0.09 kg/yr per pig for NH3 and H2S, respectively. The median emission rates from swine storage facilities were 2.08 and 0.20 kg/yr per pig for NH3 and H2S, respectively. The size of swine farm that may trigger the need to report NH3 emissions under the Emergency Planning and Community Right-to-Know Act (EPCRA) is 3,410 pigs on the basis of the median NH3 emission rate (4.86 kg/yr per pig), but the threshold can be as low as 992 pigs on the basis of the 90th-percentile emission rates (16.71 kg/yr per pig). Swine hoop houses had significantly higher NH3 emission rate (14.80 kg/yr per pig) than other manure-handling systems (P pig, P = 0.03). Farrowing houses had the highest H2S emission rate (2.50 kg/yr per pig), followed by gestation houses, and finishing houses had the lowest H2S emission rate (P < 0.01). Regression models for NH3 and H2S emission rates were developed for finishing houses with deep pits, recharge pits, and lagoons. The NH3 emission rates increased with increasing air temperature, but effects of air temperature on H2S emission rates were not significant. The recharge interval of manure pits significantly affected H2S but not NH3 emission rates. The H2S emission rates were also influenced by the size of the operation. Although NH3 and H2S concentrations at the edge of swine houses or lagoons were often higher than corresponding

  17. Emissions of ammonia, nitrous oxide and methane during the management of solid manures

    DEFF Research Database (Denmark)

    Webb, J; Sommer, Sven Gjedde; Kupper, Thomas

    2012-01-01

    understanding of emission patterns from solid manure. The review found that housing systems with deep litter emit more NH3 than tied stalls. This is likely to be because the emitting surface area in a tied stall is smaller. Laying hens emit more NH3 than broilers and reduced-emission housing systems for poultry......, including the aviary system, can reduce NH3 emissions by between 50% and 80%. The greatest N2O-N emissions from buildings housing livestock were also from deep litter systems, but the amount of N2O-N was smaller than that of NH3-N by a factor of 15. Air exchange and temperature increase induced by aerobic...... manures at high density also reduces air exchange which with the low temperature limits the formation and transfer of NH3 to the surface layers of the heap, reducing emissions. Most N2O emission estimates from cattle and pig manure have been between 0.001 and 0.009 of total-N. Emission of N2O from poultry...

  18. Remote sensing and in situ measurements of methane and ammonia emissions from a megacity dairy complex: Chino, CA.

    Science.gov (United States)

    Leifer, Ira; Melton, Christopher; Tratt, David M; Buckland, Kerry N; Clarisse, Lieven; Coheur, Pierre; Frash, Jason; Gupta, Manish; Johnson, Patrick D; Leen, J Brian; Van Damme, Martin; Whitburn, Simon; Yurganov, Leonid

    2017-02-01

    Methane (CH4) and ammonia (NH3) directly and indirectly affect the atmospheric radiative balance with the latter leading to aerosol generation. Both have important spectral features in the Thermal InfraRed (TIR) that can be studied by remote sensing, with NH3 allowing discrimination of husbandry from other CH4 sources. Airborne hyperspectral imagery was collected for the Chino Dairy Complex in the Los Angeles Basin as well as in situ CH4, carbon dioxide (CO2) and NH3 data. TIR data showed good spatial agreement with in situ measurements and showed significant emissions heterogeneity between dairies. Airborne remote sensing mapped plume transport for ∼20 km downwind, documenting topographic effects on plume advection. Repeated multiple gas in situ measurements showed that emissions were persistent on half-year timescales. Inversion of one dairy plume found annual emissions of 4.1 × 10(5) kg CH4, 2.2 × 10(5) kg NH3, and 2.3 × 10(7) kg CO2, suggesting 2300, 4000, and 2100 head of cattle, respectively, and Chino Dairy Complex emissions of 42 Gg CH4 and 8.4 Gg NH3 implying ∼200k cows, ∼30% more than Peischl et al. (2013) estimated for June 2010. Far-field data showed chemical conversion and/or deposition of Chino NH3 occurs within the confines of the Los Angeles Basin on a four to six h timescale, faster than most published rates, and likely from higher Los Angeles oxidant loads. Satellite observations from 2011 to 2014 confirmed that observed in situ transport patterns were representative and suggests much of the Chino Dairy Complex emissions are driven towards eastern Orange County, with a lesser amount transported to Palm Springs, CA. Given interest in mitigating husbandry health impacts from air pollution emissions, this study highlights how satellite observations can be leveraged to understand exposure and how multiple gas in situ emissions studies can inform on best practices given that emissions reduction of one gas could increase those of

  19. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources.

    Science.gov (United States)

    Pouliot, George; Rao, Venkatesh; McCarty, Jessica L; Soja, Amber

    2017-05-01

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions Inventory (NEI). In the 2011 NEI, wildland fires, prescribed fires, and crop residue burning collectively were the largest source of PM2.5. This paper summarizes our 2014 NEI method to estimate crop residue burning emissions and grass/pasture burning emissions using remote sensing data and field information and literature-based, crop-specific emission factors. We focus on both the postharvest and pre-harvest burning that takes place with bluegrass, corn, cotton, rice, soybeans, sugarcane and wheat. Estimates for 2014 indicate that over the continental United States (CONUS), crop residue burning excluding all areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay occurred over approximately 1.5 million acres of land and produced 19,600 short tons of PM2.5. For areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay, biomass burning emissions occurred over approximately 1.6 million acres of land and produced 30,000 short tons of PM2.5. This estimate compares with the 2011 NEI and 2008 NEI as follows: 2008: 49,650 short tons and 2011: 141,180 short tons. Note that in the previous two NEIs rangeland burning was not well defined and so the comparison is not exact. The remote sensing data also provided verification of our existing diurnal profile for crop residue burning emissions used in chemical transport modeling. In addition, the entire database used to estimate this sector of emissions is available on EPA's Clearinghouse for Inventories and Emission Factors (CHIEF, http://www3.epa.gov/ttn/chief/index.html ).

  20. A harmonised dataset of greenhouse gas emissions inventories from cities under the EU Covenant of Mayors initiative

    Directory of Open Access Journals (Sweden)

    A. Iancu

    2015-06-01

    Full Text Available The realization of national climate change commitments, as agreed through international negotiations, requires local action. However, data is still insufficient to make accurate statements about the scale of urban emissions (UNHABITAT, 2011. The need of comparable emission inventories at city level, including smaller cities, is widely recognized to develop evidence-based policies accounting for the relation between emissions and institutional, socio-economic and demographic characteristics at city level. This paper presents a collection of harmonized greenhouse gases (GHG emission inventories (the "CoM sample 2013" at municipal level directly computed by the cities and towns that participate in the EU Covenant of Mayors initiative. This is the mainstream European movement of local and regional authorities who voluntarily commit to reduce GHG emissions by 20 % or more by 2020. The "CoM sample 2013" (http://edgar.jrc.ec.europa.eu/com/data/index.php?SECURE=123, doi:10.2904/EDGARcom2013 has been carefully checked to ensure its internal consistency and its congruity with respect to internationally accepted guide values for emission factors. Overall, it provides valuable data for the analysis of the heterogeneity of final energy consumption and greenhouse gas emissions of cities.

  1. Global evaluation of ammonia bi-directional exchange

    OpenAIRE

    Zhu, L; D. Henze; J. Bash; G.-R. Jeong; Cady-Pereira, K.; Shephard, M; Luo, M; F. Paulot; Capps, S.

    2015-01-01

    Bi-directional air–surface exchange of ammonia (NH3) has been neglected in many air quality models. In this study, we implement the bi-directional exchange of NH3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for NH3 livestock emissions and evaluate the recently developed MASAGE_NH3 bottom up inventory. While updated diurnal variability improves comparison of modeled-to-hourly in situ measurements i...

  2. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP

    Science.gov (United States)

    Li, Meng; Zhang, Qiang; Kurokawa, Jun-ichi; Woo, Jung-Hun; He, Kebin; Lu, Zifeng; Ohara, Toshimasa; Song, Yu; Streets, David G.; Carmichael, Gregory R.; Cheng, Yafang; Hong, Chaopeng; Huo, Hong; Jiang, Xujia; Kang, Sicong; Liu, Fei; Su, Hang; Zheng, Bo

    2017-01-01

    The MIX inventory is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 29 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. Emissions are aggregated to five anthropogenic sectors: power, industry, residential, transportation, and agriculture. We estimate the total Asian emissions of 10 species in 2010 as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds), 28.8 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2. Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006-2010 are estimated as follows: -8.1 % for SO2, +19.2 % for NOx, +3.9 % for CO, +15.5 % for NMVOC, +1.7 % for NH3, -3.4 % for PM10, -1.6 % for PM2.5, +5.5 % for BC, +1.8 % for OC, and +19.9 % for CO2. Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach. Monthly gridded emissions at a spatial resolution of 0.25° × 0.25° are developed and can be accessed from http://www.meicmodel.org/dataset-mix.

  3. Research on the Emission Inventory of Major Air Pollutants in 2012 for the Sichuan City Cluster in China

    Science.gov (United States)

    Qian, J.; He, Q.

    2014-12-01

    This paper developed a high resolution emission inventory of major pollutants in city cluster of Sichuan Basin, one of the most polluted regions in China. The city cluster included five cities, which were Chengdu, Deyang, Mianyang, Meishan and Ziyang. Pollution source census and field measurements were conducted for the major emission sources such as the industry sources, on-road mobile sources, catering sources and the dust sources. The inventory results showed that in the year of 2012, the emission of SO2、NOX、CO、PM10、PM2.5、VOCs and NH3 in the region were 143.5、251.9、1659.9、299.3、163.5、464.1 and 995kt respectively. Chengdu, the provincial capital city, had the largest emission load of every pollutant among the cities. The industry sources, including power plants, fuel combustion facilities and non-combustion processes were the largest emission sources for SO2、NOX and CO, contributing to 84%, 46.5%, 35% of total SO2, NOX and CO emissions. On-road mobile sources accounted for 46.5%, 33%, 16% of the total NOx, CO, PM2.5 emissions and 28% of the anthropogenic VOCs emission. Dust and industry sources contributed to 42% and 23% of the PM10 emission with the dust sources also as the largest source of PM2.5, contributing to 27%. Anthropogenic and biogenic sources took 75% and 25% of the total VOCs emission while 36% of anthropogenic VOCs emission was owing to solvent use. Livestock contributed to 62% of NH3 emissions, followed by nitrogen fertilizer application whose contribution was 23%. Based on the developed emission inventory and local meteorological data, the regional air quality modeling system WRF-CMAQ was applied to simulate the status of PM2.5 pollution in a regional scale. The results showed that high PM2.5 concentration was distributed over the urban area of Chengdu and Deyang. On-road mobile sources and dust sources were two major contributors to the PM2.5 pollution in Chengdu, both had an contribution ratio of 27%. In Deyang, Mianyang

  4. Characteristics of ammonia emission during thermal drying of lime sludge for co-combustion in cement kilns.

    Science.gov (United States)

    Liu, Wei; Xu, Jingcheng; Liu, Jia; Cao, Haihua; Huang, Xiang-Feng; Li, Guangming

    2015-01-01

    Thermal drying was used to reduce sludge moisture content before co-combustion in cement kilns. The characteristics of ammonia (NH3) emission during thermal drying of lime sludge (LS) were investigated in a laboratory-scale tubular dry furnace under different temperature and time conditions. As the temperature increased, the NH3 concentration increased in the temperature range 100-130°C, decreased in the temperature range 130-220°C and increased rapidly at >220°C. Emission of NH3 also increased as the lime dosage increased and stabilized at lime dosages>5%. In the first 60 min of drying experiments, 55% of the NH3 was released. NH3 accounted for about 67-72% of the change in total nitrogen caused by the release of nitrogen-containing volatile compounds (VCs) from the sludge. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy revealed that the main forms of nitrogen in sludge were amides and amines. The addition of lime (CaO) could cause conversion of N-H, N-O or C-N containing compounds to NH3 during the drying process.

  5. Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products

    Science.gov (United States)

    Huang, Yu; Lee, Shun Cheng; Ho, Kin Fai; Ho, Steven Sai Hang; Cao, Nanying; Cheng, Yan; Gao, Yuan

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. Ammonia (NH3) is ubiquitous in ambient and indoor environments. In this study, we investigated the effect of ammonia (NH3) on secondary pollutants formation from the ozonolysis of BVOCs emitted from cleaning products including floor cleaner (FC), kitchen cleaner (KC) and dishwashing detergent (DD) in a large environmental chamber. Our results demonstrated that the presence of NH3 (maximum concentration is 240 ppb) could significantly enhance secondary organic aerosols (SOAs) formation from the ozonolysis of all the three categories of cleaning products. For example, for the FC sample, the maximum total particle concentration was up to 2.0 × 104 # cm-3 in the presence of NH3, while it was 1.3 × 104 # cm-3 which was 35% lower without NH3. However, it was found that the extent of NH3 effect on SOAs formation from the ozonolysis of BVOCs emissions was component-dependent. The presence of NH3 in the reaction systems could increase the consumptions of d-limonene that is the dominant BVOC species as identified in cleaning products. The percent yields (%) of secondary carbonyl compounds generated from the ozonolysis of BVOCs emitted from three categories of cleaning products were identified in the presence and absence of NH3, respectively. The increase in SOAs particle number concentration can be attributed to the formation of condensable salts from reactions between NH3 and organic compounds generated from the BVOCs ozonolysis processes. By investigating the NH3 effect on the ozonolysis of BVOCs mixtures in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on real indoor environments.

  6. Determination of ammonia and greenhouse gas emissions from land application of swine slurry: a comparison of three application methods.

    Science.gov (United States)

    Lovanh, Nanh; Warren, Jason; Sistani, Karamat

    2010-03-01

    In this study, the comparison and monitoring of the initial greenhouse gas (GHG) emissions using a flux chamber and gas analyzer from three different liquid manure application methods at a swine farm in Kentucky were carried out. Swine slurry was applied to farmland by row injection, surface spray, and Aerway injection. Ammonia and GHG concentrations were monitored immediately after application, 72 and 216h after application. The results showed that the initial ammonia flux ranged from 5.80 mg m(-2)h(-1) for the surface spray method to 1.80 mg m(-2)h(-1) for the row injection method. The initial fluxes of methane ranged from 8.75 mg m(-2)h(-1) for surface spray to 2.27 mg m(-2)h(-1) for Aerway injection, carbon dioxide ranged from 4357 mg m(-2)h(-1) for surface spray to 60 mg m(-2)h(-1) for row injection, and nitrous oxide ranged from 0.89 mg m(-2)h(-1) for surface spray to 0.22 mg m(-2)h(-1) for row injection. However, the Aerway injection method seemed to create the highest gas (GHG) concentrations inside the monitoring chambers at the initial application and produced the highest gas fluxes at subsequent sampling time (e.g., 72h after application). Nevertheless, the surface spray method appeared to produce the highest gas fluxes, and the row injection method appeared to emit the least amount of greenhouse gases into the atmosphere. Gas fluxes decreased over time and did not depend on the initial headspace concentration in the monitoring flux chambers.

  7. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts.

    Science.gov (United States)

    Riva, C; Orzi, V; Carozzi, M; Acutis, M; Boccasile, G; Lonati, S; Tambone, F; D'Imporzano, G; Adani, F

    2016-03-15

    Anaerobic digestion produces a biologically stable and high-value fertilizer product, the digestate, which can be used as an alternative to mineral fertilizers on crops. However, misuse of digestate can lead to annoyance for the public (odours) and to environmental problems such as nitrate leaching and ammonia emissions into the air. Full field experimental data are needed to support the use of digestate in agriculture, promoting its correct management. In this work, short-term experiments were performed to substitute mineral N fertilizers (urea) with digestate and products derived from it to the crop silage maize. Digestate and the liquid fraction of digestate were applied to soil at pre-sowing and as topdressing fertilizers in comparison with urea, both by surface application and subsurface injection during the cropping seasons 2012 and 2013. After each fertilizer application, both odours and ammonia emissions were measured, giving data about digestate and derived products' impacts. The AD products could substitute for urea without reducing crop yields, apart from the surface application of AD-derived fertilizers. Digestate and derived products, because of high biological stability acquired during the AD, had greatly reduced olfactometry impact, above all when they were injected into soils (82-88% less odours than the untreated biomass, i.e. cattle slurry). Ammonia emission data indicated, as expected, that the correct use of digestate and derived products required their injection into the soil avoiding, ammonia volatilization into the air and preserving fertilizer value. Sub-surface injection allowed ammonia emissions to be reduced by 69% and 77% compared with surface application during the 2012 and 2013 campaigns.

  8. An elaborate high resolution emission inventory of primary air pollutants for the Central Plain Urban Agglomeration of China

    Science.gov (United States)

    Qiu, Peipei; Tian, Hezhong; Zhu, Chuanyong; Liu, Kaiyun; Gao, Jiajia; Zhou, Junrui

    2014-04-01

    A high resolution emission inventory of primary air pollutants was developed based on the detailed collected activity data and the latest source-specific emission factors for the year 2010 in the Central Plain Urban Agglomeration (CPUA) region of China. The total emissions of SO2, NOx, PM10, PM2.5, CO, VOCs, and NH3 were estimated to be about 863.7 kt, 1058.2 kt, 1180.4 kt, 753.2 kt, 2854.3 kt, 466.1 kt, and 496.0 kt, respectively. Therein, power plants were demonstrated to be the largest sources for NOx, contributing about 36.1% of total emissions; industrial processes and biomass burning sources were proved to be the two major contributors of PM10, PM2.5 and VOCs emissions, together accounting for about 71.1%, 79.2% and 56.9% of the total emissions respectively. Besides, 18.4% of VOCs emissions can be explained by VOCs product-related sources. Other stationary combustion sources accounted for 57.7% of SO2 and 30.3% of CO emissions, respectively. Livestock and N-fertilizer application sources contributed about 81.0% of NH3 emissions together. Further, the emissions were spatially distributed into grid cells with a resolution of 3 km × 3 km, by using spatial allocation surrogates such as high resolution gridded population density and regional GDP. This inventory will benefit for policymakers and researchers to better understand the current situation of complex air pollution in the CPUA region of China and supply important necessary input for regional air quality modeling and policymaking.

  9. A high-resolution and multi-year emissions inventory for biomass burning in Southeast Asia during 2001-2010

    Science.gov (United States)

    Shi, Yusheng; Yamaguchi, Yasushi

    2014-12-01

    Biomass burning (BB) emissions from forest fires, agricultural waste burning, and peatland combustion contain large amounts of greenhouse gases (e.g., CO2, CH4, and N2O), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate change. With the help of recently released satellite products, biomass density based on satellite and observation data, and spatiotemporal variable combustion factors, this study developed a new high-resolution and multi-year emissions inventory for BB in Southeast Asia (SEA) during 2001-2010. The 1-km grid was effective for quantifying emissions from small-sized fires that were frequently misinterpreted by coarse grid data due to their large smoothed pixels. The average annual BB emissions in SEA during 2001-2010 were 277 Gg SO2, 1125 Gg NOx, 55,388 Gg CO, 3831 Gg NMVOC, 553 Gg NH3, 324 Gg BC, 2406 Gg OC, 3832 Gg CH4, 817,809 Gg CO2, and 99 Gg N2O. Emissions were high in western Myanmar, Northern Thailand, eastern Cambodia, northern Laos, and South Sumatra and South Kalimantan of Indonesia. Emissions from forest burning were the dominant contributor to the total emissions among all land types. The spatial pattern of BB emissions was consistent with that of the burned areas. In addition, BB emissions exhibited similar temporal trends from 2001 to 2010, with strong interannual and intraannual variability. Interannual and intraannual emission peaks were seen during 2004, 2007, 2010, and January-March and August-October, respectively.

  10. The air quality management of the region of Great Casablanca (Morocco). Part 1: Atmospheric emission inventory for the year 1992.

    Science.gov (United States)

    Khatami, A; Ponche, J L; Jabry, E; Mirabel, P

    1998-01-19

    Within the frame of an air quality study of the Great Casablanca Area (GCA), an atmospheric emission inventory concerning the major pollutants: SO2; NOx; non-methane volatile organic compounds (NMVOC); and CO has been realized. This inventory has a spatial resolution of 1 km2 and is established for the reference year 1992. The area, which covers 2500 km2 includes a region which is very sensitive to atmospheric pollution since it is heavily populated and contains up to 60% of the industrial activities of Morocco. The results, which include both biogenic and anthropogenic sources, show as expected very large emissions of pollutants mainly due to the presence of a refinery, several power plants and, contrary to the general European situation, the production of NOx is not dominated by road traffic.

  11. Applying an Inverse Model to Estimate Ammonia Emissions at Cattle Feedlots Using Three Different Observation-Based Approaches

    Science.gov (United States)

    Shonkwiler, K. B.; Ham, J. M.; Nash, C.

    2014-12-01

    Accurately quantifying emissions of ammonia (NH3) from confined animal feeding operations (CAFOs) is vital not only to the livestock industry, but essential to understanding nitrogen cycling along the Front Range of Colorado, USA, where intensive agriculture, urban sprawl, and pristine ecosystems (e.g., Rocky Mtn Nat'l Park) lie within 100-km of each other. Most observation-based techniques for estimating NH3 emissions can be expensive and highly technical. Many methods rely on concentration observations on location, which implicitly depends on weather conditions. A system for sampling NH3 using on-site weather data was developed to allow remote measurement of NH3 in a simple, cost-effective way. These systems use passive diffusive cartridges (Radiello, Sigma-Aldrich) that provide time-averaged concentrations representative of a typical two-week deployment. Cartridge exposure is robotically managed so they are only visible when winds are 1.4 m/s or greater from the direction of the CAFO. These concentration data can be coupled with stability parameters (measured on-site) in a simple inverse model to estimate emissions (FIDES, UMR Environnement et Grandes Cultures). Few studies have directly compared emissions estimates of NH3 using concentration data obtained from multiple measurement systems at different temporal and spatial scales. Therefore, in the summer and autumn of 2014, several conditional sampler systems were deployed at a 25,000-head cattle feedlot concomitant with an open-path infrared laser (GasFinder2, Boreal Laser Inc.) and a Cavity Ring Down Spectrometer (CRDS) (G1103, Picarro Inc.) which each measured instantaneous NH3 concentrations. This study will test the sampler technology by first comparing concentration data from the three different methods. In livestock research, it is common to estimate NH3 emissions by using such instantaneous data in a backward Lagrangian stochastic (bLs) model (WindTrax, Thunder Beach Sci.) Considering this, NH3 fluxes

  12. Effects of floor design and floor cleaning on ammonia emission from cubicle houses for dairy cows

    NARCIS (Netherlands)

    Braam, C.R.; Ketelaars, J.J.M.H.; Smits, M.C.J.

    1997-01-01

    The traditional slatted floor was compared with 2 different solid floor systems: a non-sloped (L) and a 3% one-sided sloped floor (S), combined with a highly frequent (96 times/day) or normal (12 times/day) removal of manure by a scraper. NH3 emissions were measured continuously over 2 separate 2-we

  13. Utilizing vegetative environmental buffers to mitigate ammonia and particulate matter emissions from poultry houses

    Science.gov (United States)

    Vegetative Environmental Buffers (VEBs) are vegetation designed as a visual screen, which usually consist of trees, shrubs, grass and other potential plants. VEBs are placed around the poultry houses for the purpose of minimizing the air pollutant emissions. The expansion of the poultry industry due...

  14. Ammonia and greenhouse gas emissions from a modern U.S. swine breeding-gestation-farrowing system

    Science.gov (United States)

    Stinn, John P.; Xin, Hongwei; Shepherd, Timothy A.; Li, Hong; Burns, Robert T.

    2014-12-01

    Aerial emissions from livestock production continue to be an area of attention and concern for both the potential health and environmental impacts. However, information of gaseous, especially greenhouse gas (GHG), emissions for swine breeding/gestation and farrowing production systems is limited. The purpose of this study was to quantify ammonia (NH3), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) concentrations and emissions from a modern breeding-gestation-farrowing system located in central Iowa, USA. A 4300-sow farm was selected for the extensive field monitoring which employed a Mobile Air Emission Monitoring Unit equipped with state-of-the-art gas analyzers and a data acquisition system. The monitored portion of the farm facility consisted of a deep-pit breeding/early gestation (B/EG) barn (1800 head), a deep-pit late gestation (LG) barn (1800 head), and two shallow-pit (pull-plug) farrowing rooms (40 head per room). A dynamic flux chamber was used to monitor gaseous emissions from the external manure storage for the farrowing rooms. Data were collected for 29 consecutive months (January 2011 through June 2013). Daily indoor NH3, CO2, N2O, and CH4 concentrations (ppm, mean ± SD) were 12.0 (±7.6), 1594 (±797), 0.31 (±0.11), and 28.5 (±9.8), respectively, in the breeding/gestation barns; and 9.7 (±4.1), 1536 (±701), 0.30 (±0.10), and 78.3 (±37), respectively, in the farrowing rooms. Daily emissions per animal unit (AU, 500 kg live weight) were 35.1 g NH3, 7.46 kg CO2, 0.17 g N2O, and 263.4 g CH4 for sows in the B/EG barn; and 28.2 g NH3, 6.50 kg CO2, 0.12 g N2O, and 201.3 g CH4 for sows in the LG barn. The average daily emissions per AU (sow and piglets) of the farrowing rooms during the lactation period (birth to weaning) were: 59.7 g NH3, 16.4 kg CO2, 0.73 g N2O, and 107 g CH4. For the monitored period, the external manure storage had the following average daily emission per m2 surface area: 1.26 g NH3, 137 g CO2, and 94.8 g CH4, which

  15. Development of a road transport emission inventory for Greece and the Greater Athens Area: effects of important parameters.

    Science.gov (United States)

    Fameli, K M; Assimakopoulos, V D

    2015-02-01

    Traffic is considered one of the major polluting sectors and as a consequence a significant cause for the measured exceedances of ambient air quality limit values mainly in urban areas. The Greater Athens Area (located in Attica), the most populated area in Greece, faces severe air pollution problems due to the combination of high road traffic emissions, complex topography and local meteorological conditions. Even though several efforts were made to construct traffic emission inventories for Greece and Attica, still there is not a spatially and temporally resolved one, based on data from relevant authorities and organisations. The present work aims to estimate road emissions in Greece and Attica based on the top down approach. The programme COPERT 4 was used to calculate the annual total emissions from the road transport sector for the period 2006-2010 and an emission inventory for Greece and Attica was developed with high spatial (6 × 6 km(2) for Greece and 2 × 2 km(2) for Attica) and temporal (1-hour) resolutions. The results revealed that about 40% of national CO₂, CO, VOC and NMVOC values and 30% of NOx and particles are emitted in Attica. The fuel consumption and the subsequent reduction of annual mileage driven in combination with the import of new engine anti-pollution technologies affected CO₂, CO, VOC and NMVOC emissions. The major part of CO (56.53%) and CO₂ (66.15%) emissions was due to passenger cars (2010), while heavy duty vehicles (HDVs) were connected with NOx, PM₂.₅ and PM₁₀ emissions with 51.27%, 43.97% and 38.13% respectively (2010). The fleet composition, the penetration of diesel fuelled cars, the increase of urban average speed and the fleet renewal are among the most effective parameters towards the emission reduction strategies.

  16. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover

    Directory of Open Access Journals (Sweden)

    D. C. Oderbolz

    2013-02-01

    Full Text Available Biogenic volatile organic compounds (BVOC emitted from vegetation are important for the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA in the atmosphere. Therefore, BVOC emission are an important input for air quality models. To model these emissions with high spatial resolution, the accuracy of the underlying vegetation inventory is crucial. We present a BVOC emission model that accommodates different vegetation inventories and uses satellite-based measurements of greenness instead of pre-defined vegetation periods. This approach to seasonality implicitly treats effects caused by water or nutrient availability, altitude and latitude on a plant stand. Additionally, we test the influence of proposed seasonal variability in enzyme activity on BVOC emissions. In its present setup, the emission model calculates hourly emissions of isoprene, monoterpenes, sesquiterpenes and the oxygenated volatile organic compounds (OVOC methanol, formaldehyde, formic acid, ethanol, acetaldehyde, acetone and acetic acid. In this study, emissions based on three different vegetation inventories are compared with each other and diurnal and seasonal variations in Europe are investigated for the year 2006. Two of these vegetation inventories require information on tree-cover as an input. We compare three different land-cover inventories (USGS GLCC, GLC2000 and Globcover 2.2 with respect to tree-cover. The often-used USGS GLCC land-cover inventory leads to a severe reduction of BVOC emissions due to a potential miss-attribution of broad-leaved trees and reduced tree-cover compared to the two other land-cover inventories. To account for uncertainties in the land-cover classification, we introduce land-cover correction factors for each relevant land-use category to adjust the tree-cover. The results are very sensitive to these factors within the plausible range. For June 2006, total monthly BVOC emissions decreased up to −27% with

  17. High-resolution historical emission inventories of crop residue burning in fields in China for the period 1990-2013

    Science.gov (United States)

    Li, Jing; Li, Yaqi; Bo, Yu; Xie, Shaodong

    2016-08-01

    High-resolution historical emission inventories of crop residue burning in fields in China were developed for the period 1990-2013. More accurate time-varying statistical data and locally observed emission factors were utilized to estimate crop residue open burning emissions at provincial level. Then pollutants emissions were allocated to a high spatial resolution of 10 km × 10 km and a high temporal resolution of 1 day based on the Moderate Resolution Imaging Spectroradiometer (MODIS) Fire Product (MOD/MYD14A1). Results show that China's CO emissions have increased by 5.67 times at an annual average rate of 24% from 1.06 Tg in 1990 to 7.06 Tg in 2013; the emissions of CO2, CH4, NMVOCs, N2O, NOx, NH3, SO2, PM2.5, OC, and BC have increased by 595%, 500%, 608%, 584%, 600%, 600%, 543%, 571%, 775%, and 500%, respectively, over the past 24 years. Spatially, the regions with high emissions had been notable expanding over the years, especially in the central eastern districts, the Northeastern of China, and the Sichuan Basin. Strong temporal pattern were observed with the highest emissions in June, followed by March to May and October. This work provides a better understanding of the spatiotemporal representation of agricultural fire emissions in China and can benefit both air quality modeling and management with improved accuracy.

  18. Greenhouse gas and ammonia emissions from composting of animal manure and other organic waste products

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune

    on human health and ecosystem health. Thus, alternative technologies for recycling manure and utilising it as a nutrient source for crop production, while minimising the environmental costs, are important for the sustainability of the livestock and poultry sectors. Composting of animal manure and other......, but information on its effect on GHG emissions, especially nitrous oxide (N2O), is still limited. This thesis investigated the main processes and factors affecting the physicochemical composition of the compost and emissions of GHG and NH3 during composting of animal manure and other organic waste products....... Laboratory studies showed that differences in the initial physical properties (moisture, bulk density, particle density and air-filled porosity) of separated animal slurry solid fractions (SSF) had a considerable impact on the development of compost maximum temperatures (40-70 o C) and the time required (2...

  19. Global Xenon-133 Emission Inventory Caused by Medical Isotope Production and Derived from the Worldwide Technetium-99m Demand

    Science.gov (United States)

    Kalinowski, Martin B.; Grosch, Martina; Hebel, Simon

    2014-03-01

    Emissions from medical isotope production are the most important source of background for atmospheric radioxenon measurements, which are an essential part of nuclear explosion monitoring. This article presents a new approach for estimating the global annual radioxenon emission inventory caused by medical isotope production using the amount of Tc-99m applications in hospitals as the basis. Tc-99m is the most commonly used isotope in radiology and dominates the medical isotope production. This paper presents the first estimate of the global production of Tc-99m. Depending on the production and transport scenario, global xenon emissions of 11-45 PBq/year can be derived from the global isotope demand. The lower end of this estimate is in good agreement with other estimations which are making use of reported releases and realistic process simulations. This proves the validity of the complementary assessment method proposed in this paper. It may be of relevance for future emission scenarios and for estimating the contribution to the global source term from countries and operators that do not make sufficient radioxenon release information available. It depends on sound data on medical treatments with radio-pharmaceuticals and on technical information on the production process of the supplier. This might help in understanding the apparent underestimation of the global emission inventory that has been found by atmospheric transport modelling.

  20. Combined Flux Chamber and Genomics Approach Links Nitrous Acid Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil.

    Science.gov (United States)

    Scharko, Nicole K; Schütte, Ursel M E; Berke, Andrew E; Banina, Lauren; Peel, Hannah R; Donaldson, Melissa A; Hemmerich, Chris; White, Jeffrey R; Raff, Jonathan D

    2015-12-01

    Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.

  1. Sulfur hexafluoride (SF6) emission estimates for China: an inventory for 1990-2010 and a projection to 2020.

    Science.gov (United States)

    Fang, Xuekun; Hu, Xia; Janssens-Maenhout, Greet; Wu, Jing; Han, Jiarui; Su, Shenshen; Zhang, Jianbo; Hu, Jianxin

    2013-04-16

    Sulfur hexafluoride (SF6) is the most potent greenhouse gas regulated under the Kyoto Protocol, with a high global warming potential. In this study, SF6 emissions from China were inventoried for 1990-2010 and projected to 2020. Results reveal that the highest SF6 emission contribution originates from the electrical equipment sector (about 70%), followed by the magnesium production sector, the semiconductor manufacture sector and the SF6 production sector (each about 10%). Both agreements and discrepancies were found in comparisons of our estimates with previously published data. An accelerated growth rate was found for Chinese SF6 emissions during 1990-2010. Because the relative growth rate of SF6 emissions is estimated to be much higher than those of CO2, CH4, and N2O, SF6 will play an increasing role in greenhouse gas emissions in China. Global contributions from China increased rapidly from 0.9 ± 0.3% in 1990 to 22.8 ± 6.3% in 2008, making China one of the crucial contributors to the recent growth in global emissions. Under the examined Business-as-usual (BAU) Scenario, projected emissions will reach 4270 ± 1020 t in 2020, but a reduction of about 90% of the projected BAU emissions would be obtained under the Alternative Scenario.

  2. Preliminary study of ammonia emissions from naturally ventilated fattening pig houses in the south-east China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K.; Ye, Z.; Li, H. [Zhejiang Univ., Hangzhou City (China). School of Biosystems Engineering and Food Science

    2010-07-01

    This paper reported on an experimental simulation in which ammonia emissions from naturally ventilated pig houses were monitored and the ventilation airflow rate was estimated. Two identical pig houses and the same number of pigs were used in the study. Natural ventilation was used in the experimental pig house while the reference pig house had mechanical ventilation. Both houses had the same air temperature and relative humidity. The ventilation airflow rate of the experimental pig house was estimated by calculating the ventilation airflow rate in the reference pig house. The ventilation airflow rate of the experimental pig house was also estimated based on heat pressure theory. The room air temperature and relative humidity were found to be related to inlet air temperature and relative humidity for both ventilation systems. After 19 days, the average air temperature in the room with mechanical ventilation was about 4.1 degrees C higher than inlet air temperature, but the relative humidity was lower by 7.1 per cent. In the room with natural ventilation, the average air temperature after 19 days was about 3.9 degrees C higher than inlet air temperature, but the relative humidity was lower by 4.3 per cent.

  3. Impaired myocardial blood flow reserve in subjects with metabolic syndrome analyzed using positron emission tomography and N-13 labeled ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Teragawa, Hiroki; Kihara, Yasuki [Hiroshima University Graduate School of Biomedical Sciences, Department of Cardiovascular Medicine, Hiroshima (Japan); Morita, Koichi; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Sapporo (Japan); Shishido, Hiroki; Otsuka, Nobuaki; Hirokawa, Yutaka [Hiroshima Heiwa Clinic, Hiroshima (Japan); Chayama, Kazuaki [Hiroshima University Graduate School of Biomedical Sciences, Department of Molecular Science and Medicine, Hiroshima (Japan)

    2010-02-15

    Coronary vasomotor response might be impaired in metabolic syndrome (MS); however, the precise abnormality has not been elucidated. The aim of this study was to assess coronary-vasomotor response in MS subjects using N-13 labeled ammonia and positron emission tomography. Myocardial blood flow (MBF) was measured at rest and during adenosine infusion in MS subjects (n = 13, MS group) with no definite evidence of heart disease and in subjects without MS (n = 14, non-MS group). Coronary vascular resistance (CVR) was calculated by dividing the mean aortic blood pressure by MBF. Myocardial blood flow reserve (MFR) was calculated as the ratio of the MBF during adenosine infusion to that during rest. Blood chemical parameters were measured to evaluate their relationship with MFR. During adenosine infusion, MBF was lower (p = 0.0085) and CVR higher (p = 0.0128) in the MS group than in the non-MS group and MFR was significantly lower in the MS group than in the non-MS group (2.13 {+-} 0.99 vs. 3.38 {+-} 0.95, p = 0.0027). Multivariate analysis demonstrated that the homeostasis model assessment-insulin resistance (p < 0.05) and the presence of hypertension (p < 0.05) were independent determinants of MFR. The results indicate that MFR was impaired in MS subjects, suggesting that an abnormal coronary microvascular response occurred in these subjects. This abnormality may have been partially due to insulin resistance and hypertension. (orig.)

  4. Molecular line mapping of the giant molecular cloud associated with RCW 106 - IV. Ammonia towards dust emission

    CERN Document Server

    Lowe, Vicki; Urquhart, James S; Marshall, Jonathan P; Horiuchi, Shinji; Lo, Nadia; Walsh, Andrew J; Jordan, Christopher H; Jones, Paul A

    2014-01-01

    Here we report observations of the two lowest inversion transitions of ammonia with the 70-m Tidbinbilla radio telescope. They were conducted to determine the kinetic temperatures in the dense clumps of the G333 giant molecular cloud associated with RCW 106 and to examine the effect that accurate temperatures have on the calculation of derived quantities such as mass. This project is part of a larger investigation to understand the timescales and evolutionary sequence associated with high-mass star formation, particularly its earliest stages. Assuming that the initial chemical composition of a giant molecular cloud is uniform, any abundance variations within will be due to evolutionary state. We have identified 63 clumps using SIMBA 1.2-mm dust continuum maps and have calculated gas temperatures for most (78 per cent) of these dense clumps. After using Spitzer GLIMPSE 8.0 $\\mu$m emission to separate the sample into IR-bright and IR-faint clumps, we use statistical tests to examine whether our classification s...

  5. Measurements of hydrocarbons, oxygenated hydrocarbons, carbon monoxide, and nitrogen oxides in an urban basin in Colorado: Implications for Emission Inventories

    Science.gov (United States)

    Goldan, P. D.; Trainer, M.; Kuster, W. C.; Parrish, D. D.; Carpenter, J.; Roberts, J. M.; Yee, J. E.; Fehsenfeld, F. C.

    1995-11-01

    Concentrations of a wide variety of volatile organic compounds (VOCs) in the C3 to C10 range, CO, NOy (total reactive oxidized nitrogen), SO2, and meteorological parameters were measured concurrently at a site on the western perimeter of Boulder, Colorado, during February 1991. The measurement site, located some 150 m above the Boulder urban basin, receives air masses typifying averaged local sources. The highest hydrocarbon concentrations observed showed little effects of photochemical loss processes and reflect the pattern of the local emission sources. The observed ratios of CO and the VOCs to NOy are compared to those predicted by the 1985 National Acid Precipitation Assessment Program (NAPAP) inventory.These comparisons indicate (1) good agreement for CO/NOY, (2) significant overpredictions by the NAPAP inventory for many of the hydrocarbon to NOY ratios, (3) much more benzene from mobile sources (and less from area sources) than predicted by the NAPAP inventory, and (4) large underpredictions of the light alcohols and carbonyls by the NAPAP inventory. These first two results are in marked contrast to the conclusions of the recent tunnel study reported by Ingalls in 1989. Source profile reconciliation implies substantial input from both a local propane source and gasoline headspace venting.

  6. A quality enhancement green strategy for broiler meat by application of turmeric (Curcuma longa powder as litter amendment to affect microbes, ammonia emission, pH and moisture

    Directory of Open Access Journals (Sweden)

    K.G.S.C. Katukurunda

    2016-10-01

    Full Text Available In multi-cultural Sri Lankan conditions, poultry meat is paramount importance in ensuring food security and improving nutrition. Issues as contact dermatitis and ammonia emission in broiler industry which caused by diminished litter parameters cause reduction of meat quality, profits and environmental conditions. Therefore use of Turmeric (Curcuma longa (TM powder as an antiseptic litter amendment at several application levels to enhance litter parameters with microbial demolition was attempted. Three months old broiler litter (2 kg sample was taken and initial pH and moisture was determined. Turmeric was used to mix at levels of 0%, 1%, 3%, 5% and 8% (w/w. After mixing, 150 g of mixed litter was placed in container for each level of the 4 replicates, incubated for 5h and analyzed for Total Plate Count (TPC, Yeast and Mold Count (YMC, total Nematode Count (NC, ammonia emission, pH and moisture. Significant reduction (p <0.05 of total bacteria was seen (20%, 46%, 95% and 96% when 1%, 3%, 5% and 8% applications of TM. The YMC reduction was also significant (p <0.05 (34%, 41%, 55% and 65%. Total nematode reduction (p <0.05 was 22%, 45%, 62.5% and 70%. A significant (p <0.05 pH reduction with increment of TM also seen (0.1, 2, 3 and 3%. Moisture (% was increased (p <0.05 (6, 0.78, 19 and 1%. Ammonia emission was significantly decreased (p <0.05 by increased TM (64, 68, 73 and 84% against control. It was concluded that the bacterial, fungal, nematode counts, pH and Ammonia emission of broiler litter can be significantly reduced with the application of 8% (w/w of turmeric powder.

  7. Carbon emissions and resources use by Chinese economy 2007: A 135-sector inventory and input-output embodiment

    Science.gov (United States)

    Chen, G. Q.; Chen, Z. M.

    2010-11-01

    A 135-sector inventory and embodiment analysis for carbon emissions and resources use by Chinese economy 2007 is presented in this paper by an ecological input-output modeling based on the physical entry scheme. Included emissions and resources belong to six categories as: (1) greenhouse gas (GHG) in terms of CO 2, CH 4, and N 2O; (2) energy in terms of coal, crude oil, natural gas, hydropower, nuclear power, and firewood; (3) water in terms of freshwater; (4) exergy in terms of coal, crude oil, natural gas, grain, bean, tuber, cotton, peanut, rapeseed, sesame, jute, sugarcane, sugar beet, tobacco, silkworm feed, tea, fruits, vegetables, wood, bamboo, pulp, meat, egg, milk, wool, aquatic products, iron ore, copper ore, bauxite, lead ore, zinc ore, pyrite, phosphorite, gypsum, cement, nuclear fuel, and hydropower; (5) and (6) solar and cosmic emergies in terms of sunlight, wind power, deep earth heat, chemical power of rain, geopotential power of rain, chemical power of stream, geopotential power of stream, wave power, geothermal power, tide power, topsoil loss, coal, crude oil, natural gas, ferrous metal ore, non-ferrous metal ore, non-metal ore, cement, and nuclear fuel. Accounted based on the embodied intensities are carbon emissions and resources use embodied in the final use as rural consumption, urban consumption, government consumption, gross fixed capital formation, change in inventories, and export, as well as in the international trade balance. The resulted database is basic to environmental account of carbon emissions and resources use at various levels.

  8. Reliable low-cost devices for monitoring ammonia concentrations and emissions in naturally ventilated dairy barns.

    Science.gov (United States)

    Wang, Xiang; Ndegwa, Pius M; Joo, HungSoo; Neerackal, George M; Harrison, Joseph H; Stöckle, Claudio O; Liu, Heping

    2016-01-01

    This research investigated the use of two relatively cost-effective devices for determining NH3 concentrations in naturally ventilated (NV) dairy barns including an Ogawa passive sampler (Ogawa) and a passive flux sampler (PFS). These samplers were deployed adjacent to sampling ports of a photoacoustic infrared multigas spectroscope (INNOVA), in a NV dairy barn. A 3-day deployment period was deemed suitable for both passive samplers. The correlations between concentrations determined with the passive samplers and the INNOVA were statistically significant (r = 0.93 for Ogawa and 0.88 for PFS). Compared with reference measurements, Ogawa overestimated NH3 concentrations in the barn by ∼ 14%, while PFS underestimated NH3 concentrations by ∼ 41%. Barn NH3 emission factors per animal unit (20.6-21.2 g d(-1) AU(-1)) based on the two passive samplers, after calibration, were similar to those obtained with the reference method and were within the range of values reported in literature.

  9. Inventory and Policy Reduction Potential of Greenhouse Gas and Pollutant Emissions of Road Transportation Industry in China

    Directory of Open Access Journals (Sweden)

    Ye Li

    2016-11-01

    Full Text Available In recent years, emissions from the road transportation industry in China have been increasing rapidly. To evaluate the reduction potential of greenhouse gas and pollutant emissions of the industry in China, its emission inventory was calculated and scenario analysis was created for the period between 2012 and 2030 in this paper. Based on the Long-range Energy Alternatives Planning System (LEAP model, the development of China’s road transportation industry in two scenarios (the business-as-usual (BAU scenario and the comprehensive-mitigation (CM scenario was simulated. In the Comprehensive Mitigation scenario, there are nine various measures which include Fuel Economy Standards, Auto Emission Standards, Energy-saving Technology, Tax Policy, Eco-driving, Logistics Informatization, Vehicle Liquidation, Electric Vehicles, and Alternative Fuels. The cumulative energy and emission reductions of these specific measures were evaluated. Our results demonstrate that China’s road transportation produced 881 million metric tons of CO2 and emitted 1420 thousand tons of CO, 2150 thousand tons of NOx, 148 thousand tons of PM10, and 745 thousand tons of HC in 2012. The reduction potential is quite large, and road freight transportation is the key mitigation subsector, accounting for 85%–92% of the total emission. For energy conservation and carbon emission mitigation, logistics informatization is the most effective method, potentially reducing 1.80 billion tons of coal equivalent and 3.83 billion tons of CO2 from 2012 to 2030. In terms of air pollutant emission mitigation, the auto emission standards measure performs best with respect to NOx, PM10, and HC emission mitigation, and logistic informatization measure is the best in CO emission reduction. In order to maximize the mitigation potential of China’s road transportation industry, the government needs to implement various measures in a timely and strict fashion.

  10. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil.

    Science.gov (United States)

    Dai, Yu; Di, Hong J; Cameron, Keith C; He, Ji-Zheng

    2013-11-01

    Ammonia oxidizers, including ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) are important drivers of a key step of the nitrogen cycle - nitrification, which affects the production of the potent greenhouse gas, nitrous oxide (N2O). A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of AOB and AOA and on N2O emissions in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha(-1) and animal urine at 300 and 600 kg N ha(-1). DCD was applied to some of the N treatments at 10 kg ha(-1). The results showed that the AOB amoA gene copy numbers were greater than those of AOA. The highest ratio of the AOB to AOA amoA gene copy numbers was 106.6 which occurred in the urine-N 600 treatment. The AOB amoA gene copy numbers increased with increasing nitrogen application rates. DCD had a significant impact in reducing the AOB amoA gene copy numbers especially in the high nitrogen application rates. N2O emissions increased with the N application rates. DCD had the most significant effect in reducing the daily and total N2O emissions in the highest nitrogen application rate. The greatest reduction of total N2O emissions by DCD was 69% in the urine-N 600 treatment. The reduction in the N2O emission factor by DCD ranged from 58% to 83%. The N2O flux and NO3(-)-N concentrations were significantly correlated to the growth of AOB, rather than AOA. This study confirms the importance of AOB in nitrification and the effect of DCD in inhibiting AOB growth and in decreasing N2O emissions in grazed pasture soils under field conditions.

  11. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    Science.gov (United States)

    Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B.

    2015-12-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO2, NOx, and CO2, respectively, and decreased by 23 and 27 % for PM2.5 and PM10 respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  12. Eddy Covariance Flux Measurements of Pollutant Gases in the Mexico City Urban Area: a Useful Technique to Evaluate Emissions inventories

    Science.gov (United States)

    Velasco, E.; Grivicke, R.; Pressley, S.; Allwine, G.; Jobson, T.; Westberg, H.; Lamb, B.; Ramos, R.; Molina, L.

    2007-12-01

    Direct measurements of emissions of pollutant gases that include all major and minor emissions sources in urban areas are a missing requirement to improve and evaluate emissions inventories. The quality of an urban emissions inventory relies on the accuracy of the information of anthropogenic activities, which in many cases is not available, in particular in urban areas of developing countries. As part of the MCMA-2003 field campaign, we demonstrated the feasibility of using eddy covariance (EC) techniques coupled with fast-response sensors to measure fluxes of volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City. Those flux measurements demonstrated to be also a valuable tool to evaluate the emissions inventory used for air quality modeling. With the objective to confirm the representativeness of the 2003 flux measurements in terms of magnitude, composition and diurnal distribution, as well to evaluate the most recent emissions inventory, a second flux system was deployed in a different district of Mexico City during the 2006 MILAGRO field campaign. This system was located in a busy district surrounded by congested avenues close to the center of the city. In 2003 and 2006 fluxes of olefins and CO2 were measured by the EC technique using a Fast Isoprene Sensor calibrated with a propylene standard and an open path Infrared Gas Analyzer (IRGA), respectively. Fluxes of aromatic and oxygenated VOCs were analyzed by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique. In 2006 the number of VOCs was extended using a disjunct eddy accumulation (DEA) system. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site by gas chromatography / flame ionization detection (GC-FID). In both studies we found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns were similar, but the 2006 fluxes

  13. Highlighting Uncertainty and Recommendations for Improvement of Black Carbon Biomass Fuel-Based Emission Inventories in the Indo-Gangetic Plain Region.

    Science.gov (United States)

    Soneja, Sutyajeet I; Tielsch, James M; Khatry, Subarna K; Curriero, Frank C; Breysse, Patrick N

    2016-03-01

    Black carbon (BC) is a major contributor to hydrological cycle change and glacial retreat within the Indo-Gangetic Plain (IGP) and surrounding region. However, significant variability exists for estimates of BC regional concentration. Existing inventories within the IGP suffer from limited representation of rural sources, reliance on idealized point source estimates (e.g., utilization of emission factors or fuel-use estimates for cooking along with demographic information), and difficulty in distinguishing sources. Inventory development utilizes two approaches, termed top down and bottom up, which rely on various sources including transport models, emission factors, and remote sensing applications. Large discrepancies exist for BC source attribution throughout the IGP depending on the approach utilized. Cooking with biomass fuels, a major contributor to BC production has great source apportionment variability. Areas requiring attention tied to research of cookstove and biomass fuel use that have been recognized to improve emission inventory estimates include emission factors, particulate matter speciation, and better quantification of regional/economic sectors. However, limited attention has been given towards understanding ambient small-scale spatial variation of BC between cooking and non-cooking periods in low-resource environments. Understanding the indoor to outdoor relationship of BC emissions due to cooking at a local level is a top priority to improve emission inventories as many health and climate applications rely upon utilization of accurate emission inventories.

  14. A novel approach to produce road-level inventories of on-road greenhouse gas and air pollutant emissions

    Science.gov (United States)

    Powell, J.; Butenhoff, C. L.

    2015-12-01

    Emissions inventories are an important tool often built by governments tomanage and assess greenhouse gases and other air pollutants. High resolutioninventories, both in space and time, are necessary to capture localcharacteristics of on-road transportation emissions in particular. Emissionsvary widely due to the local nature of the fleet, fuel, and roads and thisheterogeneity must inform effective emissions modeling on the urban level. Inaddition, widespread availability of low-cost computing now makes highresolution climate and air quality modeling feasible, but efforts to improveinventories have not kept pace. There currently is a lack of inventories atcomparable resolutions. This motivated similar work such as the VULCAN projectwhich used county-level data to estimate on-road emissions. We are motivatedto improve upon this by using site-level traffic count data where available.Here we show a new high resolution model of CO2 emissions for the Portland,OR metropolitan region. The backbone is an archive of traffic counterrecordings taken by the Portland Bureau of Transportation intermittently at9,352 sites over 21 years and continuing today (1986-2006 data are summarizedhere) and by The Portland Regional Transportation Archive Listing at 309freeway sites. We constructed a regression model to fill in traffic networkgaps using GIS data such as road class and population density. After stepwisetesting of each of eighteen road classes (from minor streets to freeway), wewere able to select ten variables that are significant (P traffic; particularly freeway, unimproved road, and minor streets. Themodel was tested by holding back one-third of the data. The R2 for the linearmodel (based on road class and land use) is 0.84. The EPA MOVES model was thenused to estimate transportation CO2 emissions using local fleet, traffic, andmeteorology data.

  15. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories.

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli; Wang, Xing; Sun, Yuzhuang

    2016-02-01

    A rough estimate of the annual amount of sulfur, arsenic, mercury and fluoride emission from spontaneous combustion of