WorldWideScience

Sample records for aminopropionitrile

  1. The effect of beta-aminopropionitrile on lung development in the rat.

    OpenAIRE

    Das, R. M.

    1980-01-01

    beta-Aminopropionitrile (beta APN) was administered intraperitoneally to rats on postnatal days 1, 3, and 5. Body weight, lung volume, lung weight, number of alveoli per unit area and volume, total number of alveoli in the lung, and the total length of elastic fibers in the lung decreased, and the average alveolar volume increased in comparison with control animals similarly treated with saline. From Day 2 of age to Day 6 the total length of elastic fibers increased in control lungs but remai...

  2. The effects of beta-aminopropionitrile on the growing rat lung.

    OpenAIRE

    Kida, K; Thurlbeck, W. M.

    1980-01-01

    beta-Aminopropionitrile (beta APN), 500 ng/g body weight was injected intraperitoneally into male rats every 2 days between 2 and 28 days after birth. The lungs were examined structurally and functionally and compared with the lungs of control animals given injections of saline and 28-day-old normal male rats which were not given injections. Lungs volumes, both distended with air at 30 cm H2O and with formalin at 25 cm H2O, were increased in beta APN-treated animals. The architecture of the l...

  3. Comparison of the effects of semicarbazide and β-aminopropionitrile on the arterial extracellular matrix in the Brown Norway rat

    International Nuclear Information System (INIS)

    To investigate a putative role for semicarbazide-sensitive amine oxidase (SSAO) in arterial extracellular matrix (ECM) organization, we compared arteries of growing Brown Norway (BN) rats after chronic administration of semicarbazide (SCZ) and β-aminopropionitrile (BAPN), two inhibitors with different properties and relative specificities for SSAO and lysyl oxidase (LOX). The BN model is particularly well adapted to evaluating effects of toxic compounds on the arterial elastic network. We measured aortic LOX and SSAO activities and quantified several ECM parameters. After a pilot study comparing doses previously studied and testing for additivity, we studied low and high equimolar doses of SCZ and BAPN. Both compounds similarly inhibited LOX, whereas SCZ inhibited SSAO far more effectively than BAPN. Both decreased carotid wall rupture pressure, increased tail tendon collagen solubility, decreased aortic insoluble elastin (% dry weight) and dose-dependently increased defects in the internal elastic lamina of abdominal aorta, iliac and renal arteries. Our results suggest that either these effects are mediated by LOX inhibition, SCZ being slightly more effective than BAPN in our conditions, or SSAO acts similarly to and in synergy with LOX on ECM, the greater SCZ effect reflecting the simultaneous inhibition of both enzymes. However, the high SCZ dose increased aortic collagen and ECM proteins other than insoluble elastin markedly more than did equimolar BAPN, possibly revealing a specific effect of SSAO inhibition. To discriminate between the two above possibilities, and to demonstrate unequivocally a specific effect of SSAO inhibition on ECM formation or organization, we must await availability of more specific inhibitors.

  4. The lysyl oxidase inhibitor (β-aminopropionitrile) reduces leptin profibrotic effects and ameliorates cardiovascular remodeling in diet-induced obesity in rats.

    Science.gov (United States)

    Martínez-Martínez, Ernesto; Rodríguez, Cristina; Galán, María; Miana, María; Jurado-López, Raquel; Bartolomé, María Visitación; Luaces, María; Islas, Fabián; Martínez-González, José; López-Andrés, Natalia; Cachofeiro, Victoria

    2016-03-01

    Lysyl oxidase (LOX) is an extracellular matrix (ECM)-modifying enzyme that has been involved in cardiovascular remodeling. We explore the impact of LOX inhibition in ECM alterations induced by obesity in the cardiovascular system. LOX is overexpressed in the heart and aorta from rats fed a high-fat diet (HFD). β-Aminopropionitrile (BAPN), an inhibitor of LOX activity, significantly attenuated the increase in body weight and cardiac hypertrophy observed in HFD rats. No significant differences were found in cardiac function or blood pressure among any group. However, HFD rats showed cardiac and vascular fibrosis and enhanced levels of superoxide anion (O2(-)), collagen I and transforming growth factor β (TGF-β) in heart and aorta and connective tissue growth factor (CTGF) in aorta, effects that were attenuated by LOX inhibition. Interestingly, BAPN also prevented the increase in circulating leptin levels detected in HFD fed animals. Leptin increased protein levels of collagen I, TGF-β and CTGF, Akt phosphorylation and O2(-) production in both cardiac myofibroblasts and vascular smooth muscle cells in culture, while LOX inhibition ameliorated these alterations. LOX knockdown also attenuated leptin-induced collagen I production in cardiovascular cells. Our findings indicate that LOX inhibition attenuates the fibrosis and the oxidative stress induced by a HFD on the cardiovascular system. The reduction of leptin levels by BAPN in vivo and the ability of this compound to inhibit leptin-induced profibrotic mediators and ROS production in cardiac and vascular cells suggest that interactions between leptin and LOX regulate downstream events responsible for myocardial and vascular fibrosis in obesity. PMID:26780438

  5. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats.

    Science.gov (United States)

    Miana, María; Galán, María; Martínez-Martínez, Ernesto; Varona, Saray; Jurado-López, Raquel; Bausa-Miranda, Belén; Antequera, Alfonso; Luaces, María; Martínez-González, José; Rodríguez, Cristina; Cachofeiro, Victoria

    2015-06-01

    Extracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD). Interestingly, treatment with β-aminopropionitrile (BAPN), a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters - it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA) index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4), as well as the increase in suppressor of cytokine signaling 3 (SOCS3) and dipeptidyl peptidase 4 (DPP4) levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX activity for

  6. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats

    Directory of Open Access Journals (Sweden)

    María Miana

    2015-06-01

    Full Text Available Extracellular matrix (ECM remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX family of amine oxidases, including LOX and LOX-like (LOXL isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD. Interestingly, treatment with β-aminopropionitrile (BAPN, a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters – it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4, as well as the increase in suppressor of cytokine signaling 3 (SOCS3 and dipeptidyl peptidase 4 (DPP4 levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX

  7. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats

    OpenAIRE

    María Miana; María Galán; Ernesto Martínez-Martínez; Saray Varona; Raquel Jurado-López; Belén Bausa-Miranda; Alfonso Antequera; María Luaces; José Martínez-González; Cristina Rodríguez; Victoria Cachofeiro

    2015-01-01

    ABSTRACT Extracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expressi...

  8. ポリアクリルアミドゲルによるパパインの固定化

    OpenAIRE

    "河邊,誠一郎/河邊,要太郎"; "カワベ,セイイチロウ/カワベ,ヨウタロウ"; "Kawabe,Seiichiro/Kawabe,Yohtaro"

    1981-01-01

    "Papain was immobilized in crosslinked polyacrylamide gel by entrapment. The method is based on the polymerization of acrylamide in the presence of varying amount of N, N'-methylene bisacrylamide, 3-dimethyl aminopropionitrile and potassumpersulfate as crosslinking monomer, polymerization accelerator and initiator, in an aqueous medium containing the dissolved papain. It appeared that the only acrylamide as polymerization monomer decreased the activity of papain. Then, to protect papain again...

  9. An ultrafiltration assay for lysyl oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Shackleton, D.R.; Hulmes, D.J. (Univ. of Edinburgh Medical School (England))

    1990-03-01

    A modification of the original microdistillation assay for lysyl oxidase is described in which Amicon C-10 microconcentrators are used to separate, by ultrafiltration, the 3H-labeled products released from a (4,5-3H)-lysine-labeled elastin substrate. Enzyme activity is determined by scintillation counting of the ultrafiltrate, after subtraction of radioactivity released in the presence of beta-aminopropionitrile, a specific inhibitor of the enzyme. Conditions are described which optimize both the sensitivity and the efficient use of substrate. The assay shows linear inhibition of activity in up to 1 M urea; hence, as the enzyme is normally diluted in the assay, samples in 6 M urea can be assayed directly, without prior dialysis, and corrected for partial inhibition. Comparable results are obtained when enzyme activity is assayed by ultrafiltration or microdistillation. The assay is simple and convenient and, by using disposable containers throughout, it eliminates the need for time-consuming decontamination of radioactive glassware.

  10. An ultrafiltration assay for lysyl oxidase

    International Nuclear Information System (INIS)

    A modification of the original microdistillation assay for lysyl oxidase is described in which Amicon C-10 microconcentrators are used to separate, by ultrafiltration, the 3H-labeled products released from a [4,5-3H]-lysine-labeled elastin substrate. Enzyme activity is determined by scintillation counting of the ultrafiltrate, after subtraction of radioactivity released in the presence of beta-aminopropionitrile, a specific inhibitor of the enzyme. Conditions are described which optimize both the sensitivity and the efficient use of substrate. The assay shows linear inhibition of activity in up to 1 M urea; hence, as the enzyme is normally diluted in the assay, samples in 6 M urea can be assayed directly, without prior dialysis, and corrected for partial inhibition. Comparable results are obtained when enzyme activity is assayed by ultrafiltration or microdistillation. The assay is simple and convenient and, by using disposable containers throughout, it eliminates the need for time-consuming decontamination of radioactive glassware

  11. An ultrafiltration assay for lysyl oxidase.

    Science.gov (United States)

    Shackleton, D R; Hulmes, D J

    1990-03-01

    A modification of the original microdistillation assay for lysyl oxidase is described in which Amicon C-10 microconcentrators are used to separate, by ultrafiltration, the 3H-labeled products released from a [4,5-3H]-lysine-labeled elastin substrate. Enzyme activity is determined by scintillation counting of the ultrafiltrate, after subtraction of radioactivity released in the presence of beta-aminopropionitrile, a specific inhibitor of the enzyme. Conditions are described which optimize both the sensitivity and the efficient use of substrate. The assay shows linear inhibition of activity in up to 1 M urea; hence, as the enzyme is normally diluted in the assay, samples in 6 M urea can be assayed directly, without prior dialysis, and corrected for partial inhibition. Comparable results are obtained when enzyme activity is assayed by ultrafiltration or microdistillation. The assay is simple and convenient and, by using disposable containers throughout, it eliminates the need for time-consuming decontamination of radioactive glassware. PMID:1971160

  12. Impact of Antifibrotic Treatment on the Course of Schistosoma mansoni Infection in Murine Model

    Directory of Open Access Journals (Sweden)

    Giboda Michal

    1997-01-01

    Full Text Available Administration of an antifibrotic agent as an adjunct to antihelmintic treatment with the objective of morbidity reduction was investigated in the murine schistosomiasis mansoni model. Antifibrotic, ß-aminopropionitrile treatment has a profound effect on the cellular matrix composition of the liver granuloma of Schistosoma mansoni infected mice when given alone, resulting in increase macrophage infiltration. These macrophages, in response to stimulation with soluble egg antigen or lipopolysaccharide produced elevated levels of nitric oxide but low levels of tumor necrosis factor alpha compared to untreated infected mice. This also correlated with reduced liver granuloma size. In spite of low numbers of eggs in the liver, mice receiving a combine treatment had a high level of resistance to a challenge infection compared with mice receiving only praziquantel. Those mice also exhibited a reduced lymphocyte proliferative response, similar to that of infected untreated mice. Antifibrotic treatment has an impact on the dynamic of the cellular nature of granulomas and impacts on the host immunity to infection

  13. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    Science.gov (United States)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  14. Intracellular lysyl oxidase: Effect of a specific inhibitor on nuclear mass in proliferating cells

    International Nuclear Information System (INIS)

    LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN (β-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.