WorldWideScience

Sample records for amine functional aniline

  1. Direct amination of benzene to aniline with several typical vanadium complexes

    Institute of Scientific and Technical Information of China (English)

    Yu Fen Lv; Liang Fang Zhu; Qiu Yuan Liu; Bin Guo; Xiao Ke Hu; Chang Wei Hu

    2009-01-01

    The liquid-phase direct catalytic amination of benzene to aniline was performed in acetic acid water solvent using a series of vanadium(Ⅲ,Ⅳ,Ⅴ)complexes with N,O-or O,O-ligands as catalysts and hydroxylamine hydrochloride as the aminating agent.The vanadium complexes exhibited much higher selectivity towards the production of aniline than NaVO3 or VOSO4.Under the optimized conditions,an aniline yield of 42.5% and a TON of 48 with a high selectivity of above 99.9% was obtained using 0.2 mmol of[VO(OAc)2]as the catalyst.

  2. Effects of aniline--an aromatic amine to some freshwater organisms.

    Science.gov (United States)

    Bhunia, Falguni; Saha, Nimai Chandra; Kaviraj, Anilava

    2003-10-01

    We determined the acute and chronic toxicity of aniline to tilapia (Oreochromis mossambicus), cladoceran crusatcea (Moina micrura) and oligochaete worm (Branchiura sowerbyi) using static bioassay tests. The 96h LC50 values of aniline for O. mossambicus, M. micrura and B. sowerbyi were 69.4, 0.6 and 586 mg l(-1) respectively. Tilapia responded to even low concentrations of aniline: the fish lost appetite at aniline concentrations as low as 0.02 mg l(-1). A 90 d outdoor bioassay with tilapia showed that 0.02 mg l(-1) aniline reduced fish yield, specific growth rate and food conversion efficiency. Reproductive functions of fish were affected by aniline at a concentration of 0.5 mg l(-1) and above. Dissolved oxygen, primary productivity and plankton population of the test medium also were significantly reduced at 2.65 and 6.94 mg l(-1) aniline.

  3. Glycosylated aniline polymer sensor: Amine to imine conversion on protein–carbohydrate binding

    Science.gov (United States)

    Wang, Zhe; Sun, Chunyan; Vegesna, Giri; Liu, Haiying; Liu, Yang; Li, Jinghong; Zeng, Xiangqun

    2013-01-01

    In this report, functionalized mannosylated aniline polymer (manno-PANI) was investigated as an electrochemical platform to study carbohydrate–protein interactions by exploiting the conductivity change of manno-PANI when the specific lectin binding occurs. A systematic study was performed to characterize the interconversion of polyaniline content (from amine to imine) in manno-PANI by UV–vis spectroscopy during its binding with concanavalin A (Con A). Both X-ray photoelectron spectrometry (XPS) and UV–vis results suggest that Con A binding with the manno-PANI film triggers the switching of amine functionalities in the polyaniline backbone, converting them to imine forms. Electrochemical impedance spectroscopy (EIS) was used to quantify the specific interactions between Con A and mannose by measuring the impedance change of manno-PANI film for the detection of Con A. A linear relationship between the impedance and Con A concentration was obtained, and the detection limit reaches to 0.12 nM Con A in a buffer solution (pH=7.4), whereas the addition of nonspecific control lectins to the same manno-PANI film gave very little impedance variations. Stability characterization of the manno-PANI film over 20 weeks shows a maximum drift of only 3% from the original signal. Thus, the uniquely constructed carbohydrate–PANI hybrid is a promising new carbohydrate recognition moiety for studying carbohydrate-protein interactions, presumably leading to a new electrochemical method for characterization of carbohydrate–protein interactions and carbohydrate-mediated intercellular recognitions. PMID:23563436

  4. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed

    2015-05-28

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  5. In-situ copolymerization of aniline with alkyl amine by APS:Kinetics and application

    Institute of Scientific and Technical Information of China (English)

    M.Rashid; Shams Qamar Usmani; Suhail Sabir

    2008-01-01

    The kinetic study of in-situ copolymerization of aniline with o-and p-methylaniline by ammonium persulfate (APS) has been carried out.UV-vis spectroscopic method was used to investigate the course of copolymerization.Structural characterization was studied by FT-IR spectral analysis.The electronic spectra of the copolymers poly(aniline-co-p-toluidine) and poly(aniline-co-o-tolnidine) show blue shift.The shift has been observed in the bands corresponding to π→π* transition as well as in the exciton transition.The increase in absorbance recorded during the reaction for different concentration of aniline,o-and p-toluidine at various intervals of time of polymerization reaction indicates a growth in the polymer formation.The resulting first-order rateconstant was used to calculate the rate of copolymer formation using the rate equation-d[A]/dt=kcn.

  6. 碳纳米管-苯胺电荷转移复合物中的胺荧光淬灭效应%Quenching Effects of Amine on Fluorescence of Carbon Nanotube-Aniline Charge Transfer Complex

    Institute of Scientific and Technical Information of China (English)

    SUN Xu-feng; WANG Yu; JIN Wei-jun

    2005-01-01

    Under refluxing, carbon nanotube (CNT) and aniline (An) can form the charge transfer complex (CTC) of CNT-An.The corresponding fluorescence emission peaks lied at 564nm and 606nm, respectively, with the excitation wavelength of 516nm in the acetone solution. The quenching effects of various amines on CNT- An CTC fluorescence were investigated in detail.

  7. Control of Photoluminescence of Carbon Nanodots via Surface Functionalization using Para-substituted Anilines

    Science.gov (United States)

    Kwon, Woosung; Do, Sungan; Kim, Ji-Hee; Seok Jeong, Mun; Rhee, Shi-Woo

    2015-01-01

    Carbon nanodots (C-dots) are a kind of fluorescent carbon nanomaterials, composed of polyaromatic carbon domains surrounded by amorphous carbon frames, and have attracted a great deal of attention because of their interesting properties. There are still, however, challenges ahead such as blue-biased photoluminescence, spectral broadness, undefined energy gaps and etc. In this report, we chemically modify the surface of C-dots with a series of para-substituted anilines to control their photoluminescence. Our surface functionalization endows our C-dots with new energy levels, exhibiting long-wavelength (up to 650 nm) photoluminescence of very narrow spectral widths. The roles of para-substituted anilines and their substituents in developing such energy levels are thoroughly studied by using transient absorption spectroscopy. We finally demonstrate light-emitting devices exploiting our C-dots as a phosphor, converting UV light to a variety of colors with internal quantum yields of ca. 20%. PMID:26218869

  8. Practical catalytic method for synthesis of sterically hindered anilines.

    Science.gov (United States)

    Mailig, Melrose; Rucker, Richard P; Lalic, Gojko

    2015-07-14

    A practical catalytic method for the synthesis of sterically hindered anilines is described. The amination of aryl and heteroaryl boronic esters is accomplished using a catalyst prepared in situ from commercially available and air-stable copper(i) triflate and diphosphine ligand. For the first time, the method can be applied to the synthesis of both secondary and tertiary anilines in the presence of a wide range of functional groups. Esters, aldehydes, alcohols, aryl halides, ketones, nitriles, and nitro arenes are all compatible with the reaction conditions. Finally, even the most sterically hindered anilines can be successfully prepared under mild reaction conditions. Overall, the new method addresses significant practical limitations of a transformation previously developed in our lab, and provides a valuable complement to the existing methods for the synthesis of anilines.

  9. Excitation and ionization energies of substituted anilines calculated with density functional theory

    Directory of Open Access Journals (Sweden)

    Yuji Takahata

    2010-06-01

    Full Text Available Valence electron singlet excitation energies (VEExE, valence electron ionization energies (VEIE, core electron binding energies (CEBE, and non-resonant X-ray emission energies of substituted anilines and related molecules were calculated using density functional theory (DFT. The energy calculations were done with TZP basis set of Slater Type Orbitals. PW86x-PW91c, turned out to be the best XC functional among eight functionals tested for time dependent DFT (TDDFT calculation of the singlet excitation energies of the substituted anilines. Using the XC functional, average absolute deviation (AAD from experiment was 0.223 eV for eighteen cases with maximum absolute deviation of 0.932 eV. The valence electron ionization energies of the substituted benzenes were calculated by ΔSCF method with PW86x-PW91c. AAD from experiment was 0.21 eV. The CEBEs were calculated with the previously established method, named as scheme 2003. ΔCEBE(SMS,, sum of mono substituted (SMS CEBE shift, and mutual interference effect (MIE were defined and their values were calculated. Magnitude of MIE provides the degree of mutual interference between two substituents in a phenyl ring. Average absolute value of MIE was ca. 0.1 eV for the three isomers of phenetidine. Using the calculated valence electron ionization energies and the core electron binding energies of one of the phenetidines, some X-ray emission energies were calculated.

  10. amines

    Directory of Open Access Journals (Sweden)

    Styszko Katarzyna

    2017-01-01

    Full Text Available The study investigated the application of char activated with CO2 and impregnated with amines solutions for removal of selected xenobiotics from aqueous solutions. The chars produced from the pyrolysis of waste tires. The solutions of monoethanolamine (MEA, diethanolamine (DEA and polyethylenimine (PEI were used for impregnation of char. The sorption capacity of char impregnated with amines depended on amines chemical properties. The adsorptive removal of mixture of pharmaceuticals residues by modified materials was assessed. BET surface area of materials varied from 36 m2 g−1 to 128 m2 g−1. The highest removal efficiencies up to 99 % were observed for char impregnated with PEI.

  11. Functional identification of gene cluster for the aniline metabolic pathway mediated by transposable element

    Institute of Scientific and Technical Information of China (English)

    LIANG Quanfeng; Takeo Masahiro; LIN Min; CHEN Ming; XU Yuquan; ZHANG Wei; PING Shuzhen; LU Wei; SONG Xianlong; WANG Weiwei; GENG Lizhao

    2005-01-01

    A convenient and widely applicable method has been developed to clone aniline metabolic gene cluster in this study. Three positive recombinant plasmids pDA1, pDB2 and pDB11 were cloned from genomic library of aniline degradation strain AD9. The result of aniline dioxygenase (AD) activity and catechol 2,3-oxygenase (C23O) activity assay showed that pDA1 and pDB11 contain aniline dioxygenase genes and catechol 2,3-dioxygenase genes, respectively. The sequence analysis of the total 24.7-kb region revealed that this region contains 25 ORFs, of which 17 genes involve metabolism of aniline. In the gene cluster, the first five genes (tadQTA1A2B) and the subsequent gene (tadR1) were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, respectively, while the others (tadD1C1D2C2EFGIJKL) were expected to encode meta- cleavage pathway enzymes for catechol degradation. The gene cluster was surrounded by two IS1071 sequences.

  12. Graphite Oxide and Aromatic Amines : Size Matters

    NARCIS (Netherlands)

    Spyrou, Konstantinos; Calvaresi, Matteo; Diamanti, Evmorfi A. K.; Tsoufis, Theodoros; Gournis, Dimitrios; Rudolf, Petra; Zerbetto, Francesco

    2015-01-01

    Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline

  13. Graphite Oxide and Aromatic Amines : Size Matters

    NARCIS (Netherlands)

    Spyrou, Konstantinos; Calvaresi, Matteo; Diamanti, Evmorfi A. K.; Tsoufis, Theodoros; Gournis, Dimitrios; Rudolf, Petra; Zerbetto, Francesco

    2015-01-01

    Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline molec

  14. Amine-functionalized porous silicas as adsorbents for aldehyde abatement.

    Science.gov (United States)

    Nomura, Akihiro; Jones, Christopher W

    2013-06-26

    A series of aminopropyl-functionalized silicas containing of primary, secondary, or tertiary amines is fabricated via silane-grafting on mesoporous SBA-15 silica and the utility of each material in the adsorption of volatile aldehydes from air is systematically assessed. A particular emphasis is placed on low-molecular-weight aldehydes such as formaldehyde and acetaldehyde, which are highly problematic volatile organic compound (VOC) pollutants. The adsorption tests demonstrate that the aminosilica materials with primary amines most effectively adsorbed formaldehyde with an adsorption capacity of 1.4 mmolHCHO g(-1), whereas the aminosilica containing secondary amines showed lower adsorption capacity (0.80 mmolHCHO g(-1)) and the aminosilica containing tertiary amines adsorbed a negligible amount of formaldehyde. The primary amine containing silica also successfully abated higher aldehyde VOC pollutants, including acetaldehyde, hexanal, and benzaldehyde, by effectively adsorbing them. The adsorption mechanism is investigated by (13)C CP MAS solid-state NMR and FT-Raman spectroscopy, and it is demonstrated that the aldehydes are chemically attached to the surface of aminosilica in the form of imines and hemiaminals. The high aldehyde adsorption capacities of the primary aminosilicas in this study demonstrate the utility of amine-functionalized silica materials for reduction of gaseous aldehydes.

  15. Aniline incorporated silica nanobubbles

    Indian Academy of Sciences (India)

    M J Rosemary; V Suryanarayanan; Ian Maclaren; T Pradeep

    2006-09-01

    We report the synthesis of stearate functionalized nanobubbles of SiO2 with a few aniline molecules inside, represented as C6H5NH2@SiO2@stearate, exhibiting fluorescence with red-shifted emission. Stearic acid functionalization allows the materials to be handled just as free molecules, for dissolution, precipitation, storage etc. The methodology adopted involves adsorption of aniline on the surface of gold nanoparticles with subsequent growth of a silica shell through monolayers, followed by the selective removal of the metal core either using sodium cyanide or by a new reaction involving halocarbons. The material is stable and can be stored for extended periods without loss of fluorescence. Spectroscopic and voltammetric properties of the system were studied in order to understand the interaction of aniline with the shell as well as the monolayer, whilst transmission electron microscopy has been used to study the silica shell.

  16. Preparation of tertiary amines by the reaction of iminium ions derived from unsymmetrical aminals with zinc and magnesium organometallics.

    Science.gov (United States)

    Werner, Veronika; Ellwart, Mario; Wagner, Andreas J; Knochel, Paul

    2015-04-17

    We report a convenient one-pot preparation of polyfunctional tertiary amines, including various biorelevant phenethylamines or ephedrine derivatives, via the reaction of new functionalized iminium ions with a variety of zinc and magnesium organometallic reagents. These iminium ions were generated from unsymmetrical aminals, obtained by the in situ addition of various amides to Tietze's iminium salt [Me2NCH2(+)CF3COO(-)]. A functionalized aniline, prepared by this method, was converted to a quinolidine via an intramolecular Heck reaction.

  17. Cytocompatibility of amine functionalized carbon nanoparticles grafted on polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Žáková, Pavlína, E-mail: pavlina.zakova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Slepičková Kasálková, Nikola [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Kolská, Zdeňka [Faculty of Science, J. E. Purkyně University, Ústí nad Labem (Czech Republic); Leitner, Jindřich [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Karpíšková, Jana; Stibor, Ivan [Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (Czech Republic); Slepička, Petr; Švorčík, Václav [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic)

    2016-03-01

    Five types of amide–amine Carbon Nano-Particles (CNPs) were prepared by functionalization of CNPs and characterized by several analytical methods. The successful grafting of amines on CNPs was verified by X-ray photoelectron spectroscopy (XPS), organic elemental analysis and electrokinetic analysis. The size and morphology of CNPs were determined from transmission electron microscopy. The surface area and porosity of CNPs were examined by adsorption and desorption isotherms. Differential scanning calorimetry was used to investigate thermal stability of CNPs. The amount of bonded amine depends on its dimensionality arrangement. Surface area and pore volumes of CNPs decrease several times after individual amino-compound grafting. Selected types of functionalized CNPs were grafted onto a plasma activated surface of HDPE. The successful grafting of CNPs on the polymer surface was verified by XPS. Wettability was determined by contact angle measurements. Surface morphology and roughness were studied by atomic force microscopy. A dramatic decrease of contact angle and surface morphology was observed on CNP grafted polymer surface. Cytocompatibility of modified surfaces was studied in vitro, by determination of adhesion, proliferation and viability of vascular smooth muscle cells (VSMCs). Grafting of CNPs onto the polymer surface has a positive effect on the adhesion, proliferation and viability of VSMCs. - Highlights: • Amine functionalized CNPs were successfully grafted on HDPE surface. • Significant change to the positive zeta potential for grafted CNPs was induced. • Grafting of CNPs significantly enhanced cell cytocompatibility and viability. • Homogeneous distribution of cells with correct size was achieved.

  18. Biogenic amines at a low level of evolution: Production, functions and regulation in the unicellular Tetrahymena.

    Science.gov (United States)

    Csaba, György

    2015-06-01

    The unicellular eukaryote Tetrahymena synthesize, store and secrete biogenic amines (histamine, serotonin, epinephrine, dopamine, melatonin) and also can take up amines from the milieu. It also has (G-protein-coupled) receptors (binding sites) for these amines as well, as second messengers. The factors infuencing the mentioned processes are shown. For certain amines the genes and the coded enzymes are demonstrated. The amines influence phagocytosis, cell division, ciliary regeneration, glucose metabolism and chemotaxis. There are interhormone actions between the amines, and between the amines and other hormones produced by Tetrahymena. The critical review discusses the role of amines in the early stages of evolution and compares this to their functions in mammals. It tries to give answer how and why biogenic amines were selected to hormones, and why new functions formed for them in higher ranked animals, preserving also the ancient ones.

  19. Nanoscale assembly of amine-functionalized colloidal iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Barick, K.C. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Aslam, M. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Prasad, Pottumarthi V. [Department of Radiology, Evanston Northwestern Healthcare, Evanston, IL 60201 (United States); Dravid, Vinayak P. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208 (United States)], E-mail: v-dravid@northwestern.edu; Bahadur, Dhirendra [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076 (India)], E-mail: dhirenb@iitb.ac.in

    2009-05-15

    We demonstrate a single-step facile approach for highly water-stable assembly of amine-functionalized Fe{sub 3}O{sub 4} nanoparticles using thermal decomposition of Fe-chloride precursors in ethylene glycol medium in the presence of ethylenediamine. The average size of nanoassemblies is 40{+-}1 nm, wherein the individual nanoparticles are about 6 nm. Amine-functionalized properties are evident from Fourier transform infrared spectrometer (FTIR), thermal and elemental analyses. The saturation magnetization and spin-echo r{sub 2} of the nanoassemblies were measured to be 64.3 emu/g and 314.6 mM{sup -1} s{sup -1}, respectively. The higher value of relaxivity ratio (r{sub 2}/r{sub 1}=143) indicates that nanoassemblies are a promising high-efficiency T2 contrast agent platform.

  20. Nanoscale assembly of amine-functionalized colloidal iron oxide

    Science.gov (United States)

    Barick, K. C.; Aslam, M.; Prasad, Pottumarthi V.; Dravid, Vinayak P.; Bahadur, Dhirendra

    2009-05-01

    We demonstrate a single-step facile approach for highly water-stable assembly of amine-functionalized Fe 3O 4 nanoparticles using thermal decomposition of Fe-chloride precursors in ethylene glycol medium in the presence of ethylenediamine. The average size of nanoassemblies is 40±1 nm, wherein the individual nanoparticles are about 6 nm. Amine-functionalized properties are evident from Fourier transform infrared spectrometer (FTIR), thermal and elemental analyses. The saturation magnetization and spin-echo r2 of the nanoassemblies were measured to be 64.3 emu/g and 314.6 mM -1 s -1, respectively. The higher value of relaxivity ratio ( r2/ r1=143) indicates that nanoassemblies are a promising high-efficiency T2 contrast agent platform.

  1. Comparison of Solvation Effects on CO2 Capture with Aqueous Amine Solutions and Amine-Functionalized Ionic Liquids.

    Science.gov (United States)

    Yamada, Hidetaka

    2016-10-13

    Amines are the most widely utilized chemicals for postcombustion CO2 capture, because the reversible reactions between amines and CO2 through their moderate interaction allow effective "catch and release". Usually, CO2 is dissolved in the form of an anion such as carbamate or bicarbonate. Therefore, the reaction energy diagram is potentially governed to a large extent by the polarity of the surrounding solvent. Herein, we compared aqueous amine solutions and amine-functionalized ionic liquids by investigating their dielectric constants and performing an intrinsic reaction coordinate analysis of the CO2 absorption process. Quantum mechanical calculations at the CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) level within the continuum solvation model (SMD/IEF-PCM) revealed contrasting dependencies of C-N bond formation on the dielectric constant in those solutions. Amines react with CO2 on an energy surface that is significantly affected by the dielectric constant in conventional aqueous amine solutions, whereas amine-functionalized anions and CO2 form stable C-N bonds with a comparatively lower activation energy regardless of the dielectric constant.

  2. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    Science.gov (United States)

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. © 2014 Wiley Periodicals, Inc.

  3. Robust dithiocarbamate-anchored amine functionalization of Au nanoparticles

    Science.gov (United States)

    Chen, Kai; Robinson, Hans D.

    2011-02-01

    We introduce an effective and facile technique that achieves robust amine functionalization of Au nanoparticles by binding the polyamine poly(allylamine hydrochloride) (PAH) to the surface using a dithiocarbamate (DTC) modification of the side group amines. The DTC anchor confers superior short- and long-term colloidal stability compared to a physisorbed layer of the same polymer. We also demonstrate that the surface amines are available for further functionalization and that at least four alternately charged polyelectrolyte layers can be assembled onto the particles. The latter modification could not be performed on a physisorbed functional layer, so this demonstrates the effectiveness of the DTC groups in robustly anchoring the polymer to the particle surface. At the same time, the DTC-anchored polymer layer is less than 2 nm thick in the dry state. This is one-third of the thickness of a physisorbed polyamine layer deposited under the same conditions, and sufficiently thin that the plasmonic field enhancement on the metal particle remains accessible to the outside environment. We attribute the difference in thickness to multiple DTC bonds on each polymer chain forcing it into much closer conformity to the particle surface than in the physisorbed case.

  4. Cytocompatibility of amine functionalized carbon nanoparticles grafted on polyethylene.

    Science.gov (United States)

    Žáková, Pavlína; Slepičková Kasálková, Nikola; Kolská, Zdeňka; Leitner, Jindřich; Karpíšková, Jana; Stibor, Ivan; Slepička, Petr; Švorčík, Václav

    2016-03-01

    Five types of amide-amine Carbon Nano-Particles (CNPs) were prepared by functionalization of CNPs and characterized by several analytical methods. The successful grafting of amines on CNPs was verified by X-ray photoelectron spectroscopy (XPS), organic elemental analysis and electrokinetic analysis. The size and morphology of CNPs were determined from transmission electron microscopy. The surface area and porosity of CNPs were examined by adsorption and desorption isotherms. Differential scanning calorimetry was used to investigate thermal stability of CNPs. The amount of bonded amine depends on its dimensionality arrangement. Surface area and pore volumes of CNPs decrease several times after individual amino-compound grafting. Selected types of functionalized CNPs were grafted onto a plasma activated surface of HDPE. The successful grafting of CNPs on the polymer surface was verified by XPS. Wettability was determined by contact angle measurements. Surface morphology and roughness were studied by atomic force microscopy. A dramatic decrease of contact angle and surface morphology was observed on CNP grafted polymer surface. Cytocompatibility of modified surfaces was studied in vitro, by determination of adhesion, proliferation and viability of vascular smooth muscle cells (VSMCs). Grafting of CNPs onto the polymer surface has a positive effect on the adhesion, proliferation and viability of VSMCs.

  5. Secondary Amine Functional Disiloxanes as CO2 Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, MJ; Farnum, RL; Perry, RJ; Genovese, SE

    2014-05-01

    A series of two different types of secondary amine functional disiloxanes were prepared and screened as CO2 capture solvents. The first group of materials contained RNHCH2CH2CH2 side chains where the R groups were C1-6 alkyls. When R was a primary alkyl group, these materials exhibited CO2 uptake values slightly in excess of theoretical. As the alkyl groups were changed to more sterically hindered secondary or tertiary alkyls, the uptake was less efficient. Heats of absorption values for these materials were generally in the range 2000-2200 kJ/kg of CO2, values significantly lower than those obtained for primary amine functional disiloxanes (2500-2700 kJ/kg of CO2). Also explored were a series of secondary amine functional disiloxanes with X-CH2CH2NH-CH2CH2CH2 - substituents. When X was an electron-donating group (RO-, R2N-, RO-CH2-) the CO2 uptake was also in excess of theoretical. Interestingly, these compounds were generally found to produce carbamate salts that were flowable, low-viscosity oils. Furthermore, the heat of absorption values determined for these materials were even lower. Most compounds gave values below 2000 kJ/kg of CO2. Overall the most promising results were obtained with a methoxyethylaminopropyl derivative, an ethoxyethylaminopropyl-containing material, and a dimethylaminoethylaminopropyl-based compound. These materials showed excellent CO2 uptake, had low heats of absorption, and produced carbamate salts that were flowable liquids even at room temperature.

  6. Mechanism of the N-Hydroxylation of Primary and Secondary Amines by Cytochrome P450

    DEFF Research Database (Denmark)

    Seger, Signe T.; Rydberg, Patrik; Olsen, Lars

    2015-01-01

    ) for four different amines (aniline, N-methylaniline, propan-2-amine, and dimethylamine). The hydrogen abstraction and rebound mechanism is found to be preferred over a direct oxygen transfer mechanism for all four amines. However, in contrast to the same mechanism for the hydroxylation of aliphatic carbon......Cytochrome P450 enzymes (CYPs) metabolize alkyl- and arylamines, generating several different products. For the primary and secondary amines, some of these reactions result in hydroxylated amines, which may be toxic. Thus, when designing new drugs containing amine groups, it is important to be able...... to predict if a given compound will be a substrate for CYPs, in order to avoid toxic metabolites, and hence to understand the mechanism that is utilized by CYPs. Two possible mechanisms, for the N-hydroxylation of primary and secondary amines mediated by CYPs, are studied by density functional theory (DFT...

  7. Amine-Functionalized ZnO Nanosheets for Efficient CO2 Capture and Photoreduction

    Directory of Open Access Journals (Sweden)

    Yusen Liao

    2015-10-01

    Full Text Available Amine-functionalized ZnO nanosheets were prepared through a one-step hydrothermal method by using monoethanolamine, which has a hydroxyl group, for covalent attachment on ZnO and a primary amine group to supply the amine-functionalization. We demonstrate that the terminal amine groups on ZnO surfaces substantially increase the capability of CO2 capture via chemisorption, resulting in effective CO2 activation. As a result, the photogenerated electrons from excited ZnO can more readily reduce the surface-activated CO2, which thereby enhances the activity for photocatalytic CO2 reduction.

  8. Amine-Functionalized ZnO Nanosheets for Efficient CO2 Capture and Photoreduction

    OpenAIRE

    Yusen Liao; Zhaoning Hu; Quan Gu; Can Xue

    2015-01-01

    Amine-functionalized ZnO nanosheets were prepared through a one-step hydrothermal method by using monoethanolamine, which has a hydroxyl group, for covalent attachment on ZnO and a primary amine group to supply the amine-functionalization. We demonstrate that the terminal amine groups on ZnO surfaces substantially increase the capability of CO2 capture via chemisorption, resulting in effective CO2 activation. As a result, the photogenerated electrons from excited ZnO can more readily reduce t...

  9. Robust and Porous β-Diketiminate-Functionalized Metal–Organic Frameworks for Earth-Abundant-Metal-Catalyzed C–H Amination and Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, Nathan C.; Lin, Zekai; Zhang, Teng; Gilhula, James C.; Abney, Carter W.; Lin, Wenbin (UC)

    2016-05-27

    We have designed a strategy for postsynthesis installation of the β-diketiminate (NacNac) functionality in a metal–organic framework (MOF) of UiO-topology. Metalation of the NacNac-MOF (I) with earth-abundant metal salts afforded the desired MOF-supported NacNac-M complexes (M = Fe, Cu, and Co) with coordination environments established by detailed EXAFS studies. The NacNac-Fe-MOF catalyst, I•Fe(Me), efficiently catalyzed the challenging intramolecular sp3 C–H amination of a series of alkyl azides to afford α-substituted pyrrolidines. The NacNac-Cu-MOF catalyst, I•Cu(THF), was effective in promoting the intermolecular sp3 C–H amination of cyclohexene using unprotected anilines to provide access to secondary amines in excellent selectivity. Finally, the NacNac-Co-MOF catalyst, I•Co(H), was used to catalyze alkene hydrogenation with turnover numbers (TONs) as high as 700 000. All of the NacNac-M-MOF catalysts were more effective than their analogous homogeneous catalysts and could be recycled and reused without a noticeable decrease in yield. The NacNac-MOFs thus provide a novel platform for engineering recyclable earth-abundant-element-based single-site solid catalysts for many important organic transformations.

  10. In Situ Preparation of Polyether Amine Functionalized MWCNT Nanofiller as Reinforcing Agents

    Directory of Open Access Journals (Sweden)

    Ayber Yıldrım

    2014-01-01

    Full Text Available In situ preparation of polyether amine functionalized cross-linked multiwalled carbon nanotube (MWCNT nanofillers may improve the thermal and mechanical properties of the composites in which they are used as reinforcing agents. The reduction and functionalization of MWCNT using ethylenediamine in the presence of polyether amine produced stitched MWCNT's due to the presence of two amine (–NH2 functionalities on both sides of the polymer. Polyether amine was chosen to polymerize the carboxylated MWCNT due to its potential to form bonds with the amino groups and carboxyl groups of MWCNT which produces a resin used as polymeric matrix for nanocomposite materials. The attachment of the polyether amine (Jeffamine groups was verified by TGA, FT-IR, XRD, SEM, and Raman spectroscopy. The temperature at which the curing enthalpy is maximum, observed by DSC, was shifted to higher values by adding functionalized MWCNT. SEM images show the polymer formation between MWCNT sheets.

  11. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement

    Science.gov (United States)

    Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong

    2016-12-01

    In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.

  12. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents.

    Science.gov (United States)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk; Lee, Hyunjoo; Kim, Hoon Sik; Lee, Je Seung

    2014-01-15

    Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption-desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO2 through oxygen atom, forming an ionic compound with a covalently bound OSO2(-) group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Anionic Synthesis of Primary and Secondary Amine-Functionalized Polymers Using Imine Chemistry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A review of methods for the anionic synthesis of well-defined, amine-functional-ized polymers using imines as functionalizing agents is provided. The disparate results in theliterature regarding functionalizations with N-(benzylidene)trimethylsilylamine to form pri-mary amine functionalized polymers are discussed ; the efficiency of functionalization dependson the molecular weight of the polymeric organolithium(PLi). Efficient functionalizationsare observed for PLi with Kn>10 000 g/mol. The poor functionalization yields using ke-timines with enolizable hydrogens is explained. The use of N-trimethylsi-lyldiphenylcarbimide as a quantitative primary amine functionalizing reagent is described.Recent results on the anionic synthesis of secondary amine-functionalized polymers using N-(benzylidene)methylamine as the functionalization agent are presented.

  14. Toxicity of five anilines to crustaceans, protozoa and bacteria

    Directory of Open Access Journals (Sweden)

    MARILIIS SIHTMÄE

    2010-09-01

    Full Text Available Aromatic amines (anilines and related derivates are an important class of environmental pollutants that can be released to the aquatic environment as industrial effluents or as breakdown products of pesticides and dyes. The toxicity of aniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline and 3,5-dichloroaniline towards a multitrophic test battery comprised of bacteria Aliivibrio fischeri (formerly Vibrio fischeri, a ciliated protozoan Tetrahymena thermophila and two crustaceans (Daphnia magna and Thamnocephalus platyurus were investigated. Under the applied test conditions, the toxicity of the anilines notably varied among the test species. The bacteria and protozoa were much less sensitive towards the anilines than the crustaceans: EC50 values 13–403 mg L-1 versus 0.13–15.2 mg L-1. No general tendency between toxicity and the chemical structure of the anilines (the degree of chloro-substitution and the position of the chloro-substituents was found in the case of all the tested aquatic species. The replacement of the artificial test medium (ATM by the river water remarkably decreased the toxicity of anilines to crustaceans but not to protozoa. This research is part of the EU 6th Framework Integrated Project OSIRIS, in which ecotoxicogenomic studies of anilines (e.g., for Daphnia magna will also be performed that may help to clarify the mechanisms of toxicity of different anilines.

  15. The weak fundamental NH-stretching transition in amines

    Science.gov (United States)

    Schrøder, Sidsel D.; Hansen, Anne S.; Wallberg, Jens H.; Nielsen, Anne R.; Du, Lin; Kjaergaard, Henrik G.

    2017-02-01

    Absolute intensities of NH-stretching fundamental and overtone transitions of gas phase aniline, methylamine, ethylamine, cyclopropylamine, methylethylamine, diethylamine and pyrrolidine have been measured with long path length conventional absorption spectroscopy. To support the assignments of NH-stretching transitions, transition frequencies and intensities were calculated with the local mode model using ab initio calculated local mode parameters and dipole moment functions obtained at the CCSD(T)-F12a/VDZ-F12 level of theory. For aniline, the absolute intensities of the NH-stretching transitions show the typical decrease of approximately an order of magnitude for each successive vibrational excitation. For methylamine, ethylamine, cyclopropylamine, methylethylamine, diethylamine and pyrrolidine, the observed absolute intensities of the fundamental NH-stretching transition is weak and of similar strength or even weaker than the corresponding first overtone transition. Characteristic for the amines with a normal fundamental intensity is a conjugated double bond next to the amine group.

  16. Synthesis of periodic mesoporous organosilicas functionalized with different amine-organoalkoxysilanes via direct co-condensation

    Energy Technology Data Exchange (ETDEWEB)

    Suriyanon, Nakorn [International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Center of Excellence for Environmental and Hazardous Waste Management (EHWM), Pathumwan, Bangkok 10330 (Thailand); Punyapalakul, Patiparn [Center of Excellence for Environmental and Hazardous Waste Management (EHWM), Pathumwan, Bangkok 10330 (Thailand); Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand)

    2015-01-15

    A series of amine-functionalized periodic mesoporous organosilicas (PMOs) were synthesized from bis(triethoxysilyl)ethane via surfactant-templating using supramolecular assemblies of hexadecyltrimethylammonium chloride under basic conditions. Functionalization of the PMO materials was performed via direct co-condensation in the presence of mono-, di- or tri-amine-organoalkoxysilanes. The effect of the type and concentration of the added organosilanes on the physicochemical properties of the functionalized PMOs were investigated. Thermogravimetric/differential thermal analysis (TG/DTA) and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of the inorganic–organic hybrid framework functionalized with the amine groups. The total nitrogen content of the functionalized PMOs ranged from 0.26 to 1.27 mmol/g. The materials possessed a hexagonal lattice with the highly ordered mesostructure being preserved after the amine-functionalization as evidenced by X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). The N{sub 2} adsorption–desorption measurement revealed that the materials had high specific surface areas (963–1252 m{sup 2}/g) and a relatively high total pore volume (0.52–0.85 cm{sup 3}/g). The mesopore size and wall thickness of these materials varied in relation with the molecular size and the loading of the organosilanes. Moreover, the morphology of the PMO materials was increasingly transformed from irregular shaped particles to spheres with increasing amounts of amine-functional groups or with organo-functional groups with several amine units. - Highlights: • Periodic mesoporous organosilicas (PMOs) were functionalized via co-condensation. • Long-chain organosilane with three amine units was employed a precursor. • Hexagonal mesostructure of PMO was preserved at a 40 mol% loading level. • Amine-functionalized PMOs had a high surface area and total pore volume. • Their morphology depended on the

  17. Density Functional Investigation of Graphene Doped with Amine-Based Organic Molecules

    OpenAIRE

    Yeun Hee Hwang; Hyang Sook Chun; Kang Min Ok; Kyung-Koo Lee; Kyungwon Kwak

    2015-01-01

    To improve the electronic properties of graphene, many doping techniques have been studied. Herein, we investigate the electronic and molecular structure of doped graphene using density functional theory, and we report the effects of amine-based benzene dopants adsorbed on graphene. Density functional theory (DFT) calculations were performed to determine the role of amine-based aromatic compounds in graphene doping. These organic molecules bind to graphene through long-range interactions such...

  18. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides

    Science.gov (United States)

    Cheung, Chi Wai; Hu, Xile

    2016-08-01

    (Hetero)Aryl amines, an important class of organic molecules in medicinal chemistry, are most commonly synthesized from anilines, which are in turn synthesized by hydrogenation of nitroarenes. Amine synthesis directly from nitroarenes is attractive due to improved step economy and functional group compatibility. Despite these potential advantages, there is yet no general method for the synthesis of (hetero)aryl amines by carbon-nitrogen cross-coupling of nitroarenes. Here we report the reductive coupling of nitroarenes with alkyl halides to yield (hetero)aryl amines. A simple iron catalyst enables the coupling with numerous primary, secondary and tertiary alkyl halides. Broad scope and high functional group tolerance are demonstrated. Mechanistic study suggests that nitrosoarenes and alkyl radicals are involved as intermediates. This new C-N coupling method provides general and step-economical access to aryl amines.

  19. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  20. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials.

    Science.gov (United States)

    Srisuda, Saeung; Virote, Boonamnuayvitaya

    2008-01-01

    The amine-functionalized mesoporous silica materials were prepared via the co-condensation reaction of tetraethoxysilane and three types of organoalkoxysilanes: 3-aminopropyl-trimethoxysilane, n-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and 3-(2-(2-aminoehtylamino)ethylamino) propyl-trimethoxysilane. Cetyltrimethylammonium bromide was used as a template for forming pores. Specific surface area and pore volume of the amine-functionalized mesoporous silica materials were determined using surface area and pore size analyzer. Fourier transform infrared (FTIR) spectroscope was employed for identifying the functional groups on pore surface. In addition, the amine-functionalized mesoporous silica materials were applied as adsorbents for adsorbing formaldehyde vapor. FTIR spectra showed the evidence of the reaction between formaldehyde molecules and amine groups on pore surface of adsorbents. The equilibrium data of formaldehyde adsorbed on the adsorbents were analyzed using the Langmuir, Freundlich and Temkin isotherm. The sample functionalized from n-(2-aminoethyl)-3-aminopropyltrimethoxysilane showed the highest adsorption capacity owing to its amine groups and the large pore diameter.

  1. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene.

    Science.gov (United States)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa; Suri, C Raman

    2013-03-15

    Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson-Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available OH and COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n=3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications.

  2. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials

    Institute of Scientific and Technical Information of China (English)

    SRISUDA Saeung; VIROTE Boonamnuayvitaya

    2008-01-01

    The amine-functionalized mesoporous silica materials were prepared via the co-condensation reaction of tetraethoxysilane and three types of organoalkoxysilanes:3-aminopropyl-trimethoxysilane,n-(2-aminoethyl)-3-aminopropyltrimethoxysilane,and 3-(2-(2-aminoehtylamino)ethylamino) propyl-trimethoxysilane.Cetyltrimethylammonium bromide was used as a template for forming pores.Specific surface area and pore volume of the amine-functionalized mesoporous silica materials were determined using surface area and pore size analyzer.Fourier transform infrared (FTIR) spectroscope was employed for identifying the functional groups on pore surface.In addition,the amine-functionalized mesoporous silica materials were applied as adsorbents for adsorbing formaldehyde vapor.FTIR spectra showed the evidence of the reaction between formaldehyde molecules and amine groups on pore surface of adsorbents.The equilibrium data of formaldehyde adsorbed on the adsorbents were analyzed using the Langmuir,Freundiich and Temkin isotherm.The sample functionalized from n-(2-aminoethyl)-3-aminopropyltrimethoxysilane showed the highest adsorption capacity owing to its amine groups and the large pore diameter.

  3. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  4. Highly water-soluble multi-walled carbon nanotubes amine-functionalized by supercritical water oxidation.

    Science.gov (United States)

    Chun, Kyoung-Yong; Moon, In-Kyu; Han, Joo-Hee; Do, Seung-Hoe; Lee, Jin-Seo; Jeon, Seong-Yun

    2013-11-07

    Multi-walled carbon nanotubes (MWNTs) have been amine-functionalized by eco-friendly supercritical water oxidation. The facilely functionalized MWNTs have high solubility (~84 mg L(-1)) in water and 78% transmittance at 30-fold dilution. The Tyndall effect is also shown for several liquids.

  5. Efficient SO2 capture by amine functionalized PEG.

    Science.gov (United States)

    Yang, Dezhong; Hou, Minqiang; Ning, Hui; Zhang, Jianling; Ma, Jun; Han, Buxing

    2013-11-07

    Polyethylene glycols (PEGs) are a class of non-toxic, non-volatile, biocompatible, and widely available polymers. In this work, we synthesized N-ethyl-N-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-2-aminoethanol (EE3AE) that combines the properties of PEG and amines, and N-decyl-N-ethyl-2-aminoethanol (DEAE). Their performances to capture SO2 were studied at different temperatures, pressures, and absorption times. The interaction between the absorbents and SO2 were characterized by NMR and FTIR techniques. It was demonstrated that both EE3AE and DEAE could absorb SO2 efficiently, and there existed chemical and physical interactions between the absorbents and SO2. In particular, the absorption capacity of EE3AE could be as high as 1.09 g SO2 per g EE3AE at 1 atm. The absorption capacity of EE3AE was much larger than that of DEAE because the ether group in the EE3AE interacted with SO2 more strongly than the alkyl group in the DEAE. The SO2 absorbed by EE3AE could be stripped out by bubbling N2 or by applying a vacuum and the EE3AE could be reused. Moreover, both absorbents exhibited a high SO2-CO2 selectivity.

  6. Aniline Will Be Oversupply

    Institute of Scientific and Technical Information of China (English)

    Lv Yongmei

    2007-01-01

    @@ 1 Drastic capacity expansion The capacity, the output and the demand of aniline in China all grewr apidly in 2006. By the end of 2006 the capacity was around 912 thousand t/a, an increase of 54.1% over the same period of 2005.

  7. Guidance document on fat reduction factor, functional barrier concept, phthalates and primary aromatic amines

    DEFF Research Database (Denmark)

    Hoekstra, Eddo J.; Petersen, Jens Højslev; Bustos, Juana

    and the functional barrier, and the restrictions for certain phthalates and primary aromatic amines. The Regulation applies from 1 May 2011. The network of the European Union Reference Laboratory and the National Reference Laboratories for food contact materials created a Task Force in order to give guidance...

  8. Density Functional Investigation of Graphene Doped with Amine-Based Organic Molecules

    Directory of Open Access Journals (Sweden)

    Yeun Hee Hwang

    2015-01-01

    Full Text Available To improve the electronic properties of graphene, many doping techniques have been studied. Herein, we investigate the electronic and molecular structure of doped graphene using density functional theory, and we report the effects of amine-based benzene dopants adsorbed on graphene. Density functional theory (DFT calculations were performed to determine the role of amine-based aromatic compounds in graphene doping. These organic molecules bind to graphene through long-range interactions such as π-π interactions and C-H⋯π hydrogen bonding. We compared the electronic structures of pristine graphene and doped graphene to understand the electronic structure of doped graphene at the molecular level. Also, work functions of doped graphene were obtained from electrostatic potential calculations. A decrease in the work function was observed when the amine-based organic compounds were adsorbed onto graphene. Because these systems are based on physisorption, there was no obvious band structure change at point K at the Fermi level after doping. However, the amine-based organic dopants did change the absolute Fermi energy levels. In this study, we showed that the Fermi levels of the doped graphene were affected by the HOMO energy level of the dopants and by the intermolecular charge transfer between the adsorbed molecules and graphene.

  9. Guidance document on fat reduction factor, functional barrier concept, phthalates and primary aromatic amines

    DEFF Research Database (Denmark)

    Hoekstra, Eddo J.; Petersen, Jens Højslev; Bustos, Juana

    and the functional barrier, and the restrictions for certain phthalates and primary aromatic amines. The Regulation applies from 1 May 2011. The network of the European Union Reference Laboratory and the National Reference Laboratories for food contact materials created a Task Force in order to give guidance...

  10. Efficient CO2 capture and photoreduction by amine-functionalized TiO2.

    Science.gov (United States)

    Liao, Yusen; Cao, Shao-Wen; Yuan, Yupeng; Gu, Quan; Zhang, Zhenyi; Xue, Can

    2014-08-11

    Amine-functionalization of TiO2 nanoparticles, through a solvothermal approach, substantially increases the affinity of CO2 on TiO2 surfaces through chemisorption. This chemisorption allows for more effective activation of CO2 and charge transfer from excited TiO2 , and significantly enhances the photocatalytic rate of CO2 reduction into methane and CO.

  11. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

    Directory of Open Access Journals (Sweden)

    Seong-Il Eyun

    Full Text Available Trace amine-associated receptors (TAARs are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4 have emerged earlier, generally have single-copy orthologs (very few duplication or loss, and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9 have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.

  12. Development of an efficient amine-functionalized glass platform by additional silanization treatment with alkylsilane.

    Science.gov (United States)

    Kamisetty, Nagendra Kumar; Pack, Seung Pil; Nonogawa, Mitsuru; Devarayapalli, Kamakshaiah Charyulu; Kodaki, Tsutomu; Makino, Keisuke

    2006-11-01

    Aminosilane-treated molecular layers on glass surfaces are frequently used as functional platforms for biosensor preparation. All the amino groups present on the surface are not available in reactive forms, because surface amino groups interact with remaining unreacted surface silanol groups. Such nonspecific interactions might reduce the efficiency of chemical immobilization of biomolecules such as DNA, enzymes, antibodies, etc., in biosensor fabrication. To improve immobilization efficiency we have used additional surface silanization with alkylsilane (capping) to convert the remaining silanol groups into Si-O-Si linkages, thereby liberating the amino groups from nonspecific interaction with the silanol groups. We prepared different types of capped amine surface and evaluated the effect of capping on immobilization efficiency by investigating the fluorescence intensity of Cy3-NHS (N-hydroxysuccinimide) dye that reacted with amino groups. The results indicate that most of the capped amine surfaces resulted in enhanced efficiency of immobilization of Cy3-NHS compared with the untreated control amine surface. We found a trend that trialkoxysilanes had greater capping effects on immobilization efficiency than monoalkoxysilanes. It was also found that the aliphatic chain of alkylsilane, which does not participate in the capping of the silanol, had an important function in enhancing immobilization efficiency. These results would be useful for preparation of an amine-modified surface platform, with enhanced immobilization efficiency, which is essential for developing many kinds of biosensors on a silica matrix.

  13. Cyclic Comonomers for the Synthesis of Carboxylic Acid and Amine Functionalized Poly(l-Lactic Acid

    Directory of Open Access Journals (Sweden)

    Markus Heiny

    2015-03-01

    Full Text Available Degradable aliphatic polyesters such as poly(lactic acid are widely used in biomedical applications, however, they lack functional moieties along the polymer backbone that are amenable for functionalization reactions or could be the basis for interactions with biological systems. Here we present a straightforward route for the synthesis of functional α-ω epoxyesters as comonomers for lactide polymerization. Salient features of these highly functionalized epoxides are versatility in functionality and a short synthetic route of less than four steps. The α-ω epoxyesters presented serve as a means to introduce carboxylic acid and amine functional groups into poly(lactic acid polymers via ring-opening copolymerization.

  14. Ruthenium-complex catalyzed N-(cyclo)alkylation of aromatic amines with diols. Selective synthesis of N-(n-hydroixyalkyl)anilines of type PhNH(CH2)nOH and of some bioactive arylpiperazines,

    NARCIS (Netherlands)

    Koten, G. van; Abbenhuis, R.A.T.M.; Boersma, J.

    1998-01-01

    A new class of well-defined neutral mono-, and dicationic ruthenium(II) complexes containing a neutral terdentate donor system [C5H3N(CH2E)(2)-2,6] (E = PPh2 (PNP) or NMe2 (NN'N)) has been found effective as catalyst precursor in N-(cyclo)alkylation reactions of aromatic amines with diols

  15. Gold nanoparticles assisted characterization of amine functionalized polystyrene multiwell plate and glass slide surfaces

    Science.gov (United States)

    Dharanivasan, Gunasekaran; Rajamuthuramalingam, Thangavelu; Michael Immanuel Jesse, Denison; Rajendiran, Nagappan; Kathiravan, Krishnan

    2015-01-01

    We demonstrated citrate-capped gold nanoparticles assisted characterization of amine functionalized polystyrene plate and glass slide surfaces through AuNPs staining method. The effect of AuNPs concentration on the characterization of amine modified surfaces was also studied with different concentration of AuNPs (ratios 1.0-0.0). 3-Aminopropylyl triethoxy silane has been used as amine group source for the surface modification. The interactions of AuNPs on modified and unmodified surfaces were investigated using atomic force microscopy and the dispersibility, and the aggregation of AuNPs was analyzed using UV-visible spectrophotometer. Water contact angle measurement and X-ray photoelectron spectroscopy (XPS) were used to further confirmation of amine modified surfaces. The aggregation of AuNPs in modified multiwell plate leads to the color change from red to purple and they are found to be adsorped on the modified surfaces. Aggregation and adsorption of AuNPs on the modified surfaces through the electrostatic interactions and the hydrogen bonds were revealed by XPS analysis. Remarkable results were found even in the very low concentration of AuNPs (ratio 0.2). This AuNPs staining method is simple, cost-effective, less time consuming, and required very low concentration of AuNPs. These results can be read out through the naked eye without the help of sophisticated equipments.

  16. Palladium-catalysed transannular C-H functionalization of alicyclic amines

    Science.gov (United States)

    Topczewski, Joseph J.; Cabrera, Pablo J.; Saper, Noam I.; Sanford, Melanie S.

    2016-03-01

    Discovering pharmaceutical candidates is a resource-intensive enterprise that frequently requires the parallel synthesis of hundreds or even thousands of molecules. C-H bonds are present in almost all pharmaceutical agents. Consequently, the development of selective, rapid and efficient methods for converting these bonds into new chemical entities has the potential to streamline pharmaceutical development. Saturated nitrogen-containing heterocycles (alicyclic amines) feature prominently in pharmaceuticals, such as treatments for depression (paroxetine, amitifadine), diabetes (gliclazide), leukaemia (alvocidib), schizophrenia (risperidone, belaperidone), malaria (mefloquine) and nicotine addiction (cytisine, varenicline). However, existing methods for the C-H functionalization of saturated nitrogen heterocycles, particularly at sites remote to nitrogen, remain extremely limited. Here we report a transannular approach to selectively manipulate the C-H bonds of alicyclic amines at sites remote to nitrogen. Our reaction uses the boat conformation of the substrates to achieve palladium-catalysed amine-directed conversion of C-H bonds to C-C bonds on various alicyclic amine scaffolds. We demonstrate this approach by synthesizing new derivatives of several bioactive molecules, including varenicline.

  17. Post-combustion Carbon Dioxide Capture using Amine Functionalized Solid Sorbents

    Science.gov (United States)

    Mittal, Nikhil

    This work is divided into two parts: (1) Synthesis of amine functionalized adsorbents using grafting technique for post-combustion CO2 capture, (2) Performance evaluation of structured bed configuration with straight gas flow channels using amine impregnated adsorbent for post-combustion CO 2 capture. Brief description of each part is given below: (1) N-(3-trimethoxysilylpropyl)diethylenetriamine (DAEAPTS) grafted SBA-15 adsorbents were synthesized for CO2 capture. The adsorption of CO2 on the amine-grafted sorbents was measured by thermogravimetric method over a CO2 partial pressure range of 8--101.3 kPa and a temperature range of 25--105 °C under atmospheric pressure. The optimal amine loaded SBA-15 adsorbent was examined for multi-cycle stability and adsorption/desorption kinetics. (2) The performance of structured bed and packed bed configurations for post-combustion CO2 capture was evaluated using PEI impregnated SBA-15 adsorbent. The effect of adsorption temperature (25-90 °C), adsorption /desorption kinetics and multi-cycle stability was studied in both structured and packed bed configurations.

  18. Preparation and characterization of amine-functionalized sugarcane bagasse for CO2 capture.

    Science.gov (United States)

    Luo, Shihe; Chen, Siyu; Chen, Shuixia; Zhuang, Linzhou; Ma, Nianfang; Xu, Teng; Li, Qihan; Hou, Xunan

    2016-03-01

    A low-cost solid amine adsorbent for CO2 capture was prepared by using sugarcane bagasse (SB), a dominant agro-industrial residue in the sugar and alcohol industry as raw materials. In this preparation process, acrylamide was grafted on SB, and the grafted fiber was then aminated with different type of amine reagents to introduce primary and secondary amine groups onto the surface of SB fibers. The graft and amination conditions were optimized. The prepared solid amine adsorbent showed remarkable CO2 adsorption capacity and the adsorption capacity of the solid amine adsorbent could reach 5.01 mmol CO2/g at room temperature. The comparison of adsorption capacities of amine fibers aminated with various amination agents demonstrated that fibers aminated with triethylenetetramine would obtain higher adsorption capacities and higher amine efficiency. These adsorbents also showed good regeneration performance, the regenerated adsorbent could maintain almost the same adsorption capacity for CO2 after 10 recycles.

  19. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks

    Energy Technology Data Exchange (ETDEWEB)

    Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F. (NIH)

    2008-08-19

    Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to the lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.

  20. CO2 Biofixation of Actinobacillus succinogenes Through Novel Amine-Functionalized Polystyrene Microsphere Materials.

    Science.gov (United States)

    Zhu, Wenhao; Li, Qiang; Dai, Ning

    2017-02-01

    CO2-derived succinate production was enhanced by Actinobacillus succinogenes through polystyrene (PSt) microsphere materials for CO2 adsorption in bioreactor, and the adhesion forces between A. succinogenes bacteria and PSt materials were characterized. Synthesized uniformly sized and highly cross-linked PSt microspheres had high specific surface areas. After modification with amine functional groups, the novel amine-functionalized PSt microspheres exhibited a high adsorption capacity of 25.3 mg CO2/g materials. After addition with the functionalized microspheres into the culture broth, CO2 supply to the cells increased. Succinate production by A. succinogenes can be enhanced from 29.6 to 48.1 g L(-1). Moreover, the characterization of interaction forces between A. succinogenes cells and the microspheres indicated that the maximal adhesive force was about 250 pN. The amine-functionalized PSt microspheres can adsorb a large amount of CO2 and be employed for A. succinogenes anaerobic cultivation in bioreactor for high-efficiency production of CO2-derived succinate.

  1. "Green" functionalization of pristine multi-walled carbon nanotubes with long-chain aliphatic amines.

    Science.gov (United States)

    Basiuk, Elena V; Ochoa-Olmos, Omar; Contreras-Torres, Flavio F; Meza-Laguna, Víctor; Alvarez-Zauco, Edgar; Puente-Lee, Iván; Basiuk, Vladimir A

    2011-06-01

    Short pristine multi-walled carbon nanotubes (MWNTs) were functionalized with a series of long-chain (including polymeric) aliphatic amines, namely octadecylamine (ODA), 1,8-diaminooctane (DO), polyethylene glycol diamine (PEGDA) and polyethylenimine (PEI), via two "green" approaches: (1) gas-phase functionalization (for volatile ODA and DO) and (2) direct heating in the melt (for polymeric PEGDA and PEI). Both of them consist in one-step reaction between MWNTs and amine without the use of organic solvents. The nanostructures obtained were characterized by using infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. It was observed that both solvent-free methods were efficient in the nanotube functionalization, and the nanostructures of variable solubility and morphology were obtained depending on the amines attached. ODA, PEGDA and PEI-functionalized MWNTs were found to be soluble in propanol, meanwhile the MWNTs-PEGDA and MWNTs-PEI were soluble in water as well. The attachment of 1,8-diaminooctane onto MWNTs resulted in cross-linked stable nanostructure.

  2. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Science.gov (United States)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei

    2016-11-01

    We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  3. Comparison of bacterial cells and amine-functionalized abiotic surfaces as support for Pd nanoparticle synthesis

    DEFF Research Database (Denmark)

    De Corte, Simon; Bechstein, Stefanie; Lokanathan, Arcot R.

    2013-01-01

    An increasing demand for catalytic Pd nanoparticles has motivated the search for sustainable production methods. An innovative approach uses bacterial cells as support material for synthesizing Pd nanoparticles by reduction of Pd(II) with e.g. hydrogen or formate. Nevertheless, drawbacks...... nanoparticles, and that abiotic surfaces could support the Pd particle synthesis as efficiently as bacteria. In this study, we explore the possibility of replacing bacteria with amine-functionalized materials, and we compare different functionalization strategies. Pd nanoparticles formed on the support...... of microbially supported Pd catalysts are the low catalytic activity compared to conventional Pd nanocatalysts and the possible poisoning of the catalyst surface by sulfur originating from bacterial proteins. A recent study showed that amine groups were a key component in surface-supported synthesis of Pd...

  4. Improving adsorbent properties of cage-like ordered amine functionalized mesoporous silica with very large pores for bioadsorption.

    Science.gov (United States)

    Budi Hartono, Sandy; Qiao, Shi Zhang; Jack, Kevin; Ladewig, Bradley P; Hao, Zhengping; Lu, Gao Qing Max

    2009-06-02

    In this paper, we report the successful synthesis of amine-functionalized FDU-12-type mesoporous silica with a very large pore (30.2 nm) and a highly ordered mesostructure by using 3-aminopropyltriethoxysilane (APTES) as an organosilane source. Small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) measurements confirmed that the materials possessed a face-centered cubic (space group Fm3m) mesostructure. Different techniques were used to obtain a significant pore and entrance size enlargement: low synthesis temperature and high hydrothermal treatment temperature. The amount of amine organosilane influenced the mesostructure of the mesoporous silica. It was found that the addition of inorganic salt (KCl) could help to maintain an ordered structure of the large pore mesoporous material. X-ray photoelectron spectroscopy (XPS), solid-state magic-angle spinning (MAS) 13C nuclear magnetic resonance (NMR) and thermogravimetric analysis (TGA) verified the incorporation of amine functional groups on the surface of the materials. The addition of amine organosilane extended the synthesis temperature domain of ordered FDU-12 materials. The amine functional group significantly enhanced the adsorption capacity of the mesoporous materials, e.g., the amine functionalized mesoporous silica had 8-fold higher bovine serum albumin (BSA) adsorption capacity than that of the unfunctionalized one. It also had 2 times higher adsorption capacity for large cellulase enzymes. The amine functional group introduced positively charged groups on the surface of the mesoporous silica, which created strong electrostatic interactions between the protein and the silica.

  5. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei, E-mail: weidong@njust.edu.cn

    2016-11-30

    Highlights: • Fe{sub 3}O{sub 4}@SiO{sub 2}@EDPS with uniform size and good dispersity is prepared. • We fabricated MMSN@EDPS with distinct core-shell–shell triple-layer composition. • DNA adsorption capacity of MMSN@EDPS is considerable. - Abstract: We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  6. Enhancement of formaldehyde degradation by amine functionalized silica/titania films.

    Science.gov (United States)

    Photong, Somjate; Boonamnuayvitaya, Virote

    2009-01-01

    Doping amine functional groups into SiO2/TiO2 films for enhancing the decomposition of formaldehyde has been investigated using the modified sol-gel method to prepare organic-inorganic hybrid photocatalysts via the co-condensation reaction of methyltrimethoxysilane (MTMOS) and amine functional groups. n-(2-Aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS) and 3-aminopropyl-trimethoxysilane (APTMS) were selected to study the effect of amine functional groups on the enhancement of formaldehyde adsorption and degradation under a UV irradiation process. Physicochemical properties of prepared photocatalysts were characterized with nitrogen adsorption-desorption isotherms measurement, X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. The results indicated that the APTMS/SiO2/TiO2 film demonstrated a degradation efficiency of 79% superior to those of SiO2/TiO2 and AEAPTMS/SiO2/TiO2 films due to the synergetic effect of adsorption and photocatalytic properties. The APTMS/SiO2/TiO2 film can be recycled with about 7% decreasing of degradation efficiency after seven cycles.

  7. Amine-functionalized magnetic nanoparticles as robust support for immobilization of Lipase

    Indian Academy of Sciences (India)

    BANALATA SAHOO; SUJAN DUTTA; DIBAKAR DHARA

    2016-07-01

    Preparation of magnetic nanoparticles with controlled size and shape along with modulation of their surface properties via introduction of functional groups holds great prospect in the field of nanotechnology. Superparamagnetic, aqueous dispersible iron oxide nanoparticles (Fe₃O₃) with amine-functionalized surface were prepared through solvothermal method, using poly(ethylene imine) (PEI), ethanolamine (EA), and 2,2' -(ethylenedioxy) bis (ethylamine) (EDBE) as amine precursors. These aminated nanoparticles were used as support for the immobilization of lipase, an important industrial enzyme. Lipase was immobilized via glutaraldehyde coupling agent. These functionalized nanoparticles were characterized by XRD, FTIR, TEM, FESEM and VSM analysis. The maximum activity was obtained for the lipase immobilized on EDBE modified Fe3O4 nanoparticles. The lipase immobilized on EDBE-Fe₃O₃ depicted 83.9% relative activity with respect to the same amount of free lipase. Moreover, lipase immobilized on EDBE-Fe₃O₃ nanoparticles demonstrated good thermal and storage stability, and easy reusability. The kinetic parameters of lipase immobilized on EDBE-Fe₃O₃ were compared with those of free lipase and the apparent Michaelis-Menten constant ofimmobilized lipase was found to be nearly same as that of free lipase.

  8. Thermolysis and radiofluorination of diaryliodonium salts derived from anilines.

    Science.gov (United States)

    Linstad, Ethan J; Vāvere, Amy L; Hu, Bao; Kempinger, Jayson J; Snyder, Scott E; DiMagno, Stephen G

    2017-03-08

    Aniline-derived diaryliodonium salts were synthesized and functionalized in good to excellent yields by judicious utilization of electron-withdrawing protecting groups. This simple approach opens another route to radiolabeling amino arenes in relatively complex molecules, such as flutemetamol.

  9. Photophysical properties of endohedral amine-functionalized bis(phosphine) Pt(II) complexes as models for emissive metallacycles.

    Science.gov (United States)

    Pollock, J Bryant; Cook, Timothy R; Schneider, Gregory L; Lutterman, Daniel A; Davies, Andrew S; Stang, Peter J

    2013-08-19

    The photophysical properties of bis(phosphine) Pt(II) complexes constructed from 2,6-bis(pyrid-3-ylethynyl) aniline and 2,6-bis(pyrid-4-ylethynyl) aniline vary significantly, even though the complexes differ only in the position of the coordinating nitrogen. By capping the ligands with an aryl bis(phosphine) Pt(II) metal acceptor, the photophysical properties of the two isomeric systems were directly compared, revealing that the low-energy absorption and emission bands of the two systems were separated by 30 nm (1804 cm(-1)) and 39 nm (1692 cm(-1)), respectively. From the analysis of time-dependent density functional (TD-DFT) calculations and excited-state lifetime measurements, it was determined that the nature of the Pt-N bond in the HOMO and the sums of the radiative (k(rad)) and nonradiative (k(nr)) rate constants were significantly different in the two systems. As the dominant nonradiative decay pathway in aniline systems is relaxation from the triplet state through intersystem crossing (ISC), the difference in k(nr) can be ascribed to changes in ISC between isomers of the bis(phosphine) Pt(II)-capped 2,6-bis(pyrid-3-ylethynyl) aniline system. It was also determined that the photophysical properties of these capped systems can be altered by functionalizing the aryl capping ligand on the bis(phosphine) Pt(II) metal center, which perturbs the molecular orbitals involved in the observed optical transitions. In addition, an isoelectronic bis(phosphine) Pd(II)-capped system was prepared for comparison with the bis(phosphine) Pt(II) suite of complexes. The Pd(II) system showed significant changes in its low-energy absorption band, but preserved the characteristic emissive properties of its Pt(II) analogue with an even higher quantum yield.

  10. Property profile of nanostructured blends of amine functionalized elastomer and epoxy

    Energy Technology Data Exchange (ETDEWEB)

    Zulfiqar, Sonia; Sarwar, Muhammad Ilyas [National University of Sciences and Technology (NUST), Islamabad (Pakistan); Fatima, Irum [Quaid-i-Azam University, Islamabad (Pakistan)

    2015-01-15

    Pure polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene (SEBS) was functionalized with amine moiety first through nitration, followed by reduction. The resulting amine modified SEBS was blended with various amounts of epoxy via in situ reactive approach. Thin blend films were initially cured at 120 .deg. C for 30 min and post cured at 180 .deg. C for 2 h. These films were then analyzed for their mechanical, thermal and morphological profile. Optimum improvement in tensile strength, modulus and toughness was observed with different epoxy loading in the blends. These blends were found thermally stable up to 300 .deg. C. The morphological studies indicated ample compatibility between the two components of blends.

  11. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-09-15

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS{sup 0}), enthalpy change (ΔH{sup 0}) and Gibbs free energy (ΔG{sup 0}) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much

  12. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    Science.gov (United States)

    Wanna, Yongyuth; Chindaduang, Anon; Tumcharern, Gamolwan; Phromyothin, Darinee; Porntheerapat, Supanit; Nukeaw, Jiti; Hofmann, Heirich; Pratontep, Sirapat

    2016-09-01

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group.

  13. Enantioselective amine α-functionalization via palladium-catalysed C-H arylation of thioamides

    Science.gov (United States)

    Jain, Pankaj; Verma, Pritha; Xia, Guoqin; Yu, Jin-Quan

    2017-02-01

    Saturated aza-heterocycles are highly privileged building blocks that are commonly encountered in bioactive compounds and approved therapeutic agents. These N-heterocycles are also incorporated as chiral auxiliaries and ligands in asymmetric synthesis. As such, the development of methods to functionalize the α-methylene C-H bonds of these systems enantioselectively is of great importance, especially in drug discovery. Currently, enantioselective lithiation with (-)-sparteine followed by Pd(0) catalysed cross-coupling to prepare α-arylated amines is largely limited to pyrrolidines. Here we report a Pd(II)-catalysed enantioselective α-C-H coupling of a wide range of amines, which include ethyl amines, azetidines, pyrrolidines, piperidines, azepanes, indolines and tetrahydroisoquinolines. Chiral phosphoric acids are demonstrated as effective anionic ligands for the enantioselective coupling of methylene C-H bonds with aryl boronic acids. This catalytic reaction not only affords high enantioselectivities, but also provides exclusive regioselectivity in the presence of two methylene groups in different steric environments.

  14. Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer.

    LENUS (Irish Health Repository)

    Chan, Jeffrey C Y

    2008-02-01

    A method to functionalize cholecyst-derived extracellular matrix (CEM) with free amine groups was established in an attempt to improve its potential for tethering of bioactive molecules. CEM was incorporated with Generation-1 polyamidoamine (G1 PAMAM) dendrimer by using N-(3-dimethylaminopropyl)-N\\'-ethylcarbodiimide and N-hydroxysuccinimide cross-linking system. The nature of incorporation of PAMAM dendrimer was evaluated using shrink temperature measurements, Fourier transform infrared (FTIR) assessment, ninhydrin assay, and swellability. The effects of PAMAM incorporation on mechanical and degradation properties of CEM were evaluated using a uniaxial mechanical test and collagenase degradation assay, respectively. Ninhydrin assay and FTIR assessment confirmed the presence of increasing free amine groups with increasing quantity of PAMAM in dendrimer-incorporated CEM (DENCEM) scaffolds. The amount of dendrimer used was found to be critical in controlling scaffold degradation, shrink temperature, and free amine content. Cell culture studies showed that fibroblasts seeded on DENCEM maintained their metabolic activity and ability to proliferate in vitro. In addition, fluorescence cell staining and scanning electron microscopy analysis of cell-seeded DENCEM showed preservation of normal fibroblast morphology and phenotype.

  15. Sequestering uranium from UO2(CO3)3(4-) in seawater with amine ligands: density functional theory calculations.

    Science.gov (United States)

    Guo, Xiaojing; Huang, Liangliang; Li, Cheng; Hu, Jiangtao; Wu, Guozhong; Huai, Ping

    2015-06-14

    The polystyrene-supported primary amine -CH2NH2 has shown an at least 3-fold increase in uranyl capacity compared to a diamidoxime ligand on a polystyrene support. This study aims to understand the coordination of substitution complexes from UO2(CO3)3(4-) and amines using density functional theory calculations. Four kinds of amines (diethylamine (DEA), ethylenediamine (EDA), diethylenetriamine (DETA) and triethylenetetramine (TETA)) were selected because they belong to different classes and have different chain lengths. The geometrical structures, electronic structures and the thermodynamic stabilities of various substitution complexes, as well as the trends in their calculated properties were investigated at equilibrium. In these optimized complexes, DEA groups bind to uranyl as monodentate ligands; EDA groups serve as monodentate and bidentate ligands; DETA groups act as monodentate and tridentate ligands; while TETA groups serve as monodentate, bidentate and tridentate ligands. The thermodynamic analysis confirmed that the primary amines coordinate to uranyl more strongly than does the secondary amine. The stabilities of substitution complexes with primary amines were calculated to decrease with increasing chain length of the amine, except for UO2(L2)(2+). Of the complexes analyzed, only UO2L(CO3)2(2-) (L = EDA and DETA) and UO2L2CO3 (L = EDA) were predicted to form from the substitution reactions with UO2(CO3)3(4-) and protonated amines as reactants in aqueous solution. Amines were calculated to be comparable to, or sometimes weaker than, amidoximate in replacing CO3(2-) in UO2(CO3)3(4-) to coordinate to uranium. Therefore, the coordination mechanism, in which amines replace carbonates to bind to uranyl, is not primarily responsible for the experimentally observed 3-fold or greater increase in uranyl capacity of primary amines compared to a diamidoxime ligand. Based on the results of our calculations, we believe that the cation exchange mechanism, in which the

  16. Solvent-free functionalization of fullerene C{sub 60} and pristine multi-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Calera, Itzel J. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico); Meza-Laguna, Victor [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Gromovoy, Taras Yu. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Chávez-Uribe, Ma. Isabel [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico)

    2015-02-15

    Highlights: • Pristine multi-walled carbon nanotubes were functionalized with aromatic amines. • The amines add onto nanotube defects, likewise they add onto fullerene C{sub 60}. • The addition takes place at elevated temperature and without organic solvents. • Functionalized nanotubes were characterized by a number of instrumental techniques. - Abstract: We employed a direct one-step solvent-free covalent functionalization of solid fullerene C{sub 60} and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180–250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, {sup 13}C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C{sub 60} molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C{sub 60}, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  17. A facile photo-induced synthesis of COOH functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines.

    Science.gov (United States)

    Jia, Lichao; Mane, Gurudas P; Anand, Chokkalingam; Dhawale, Dattatray S; Ji, Qingmin; Ariga, Katsuhiko; Vinu, Ajayan

    2012-09-18

    A simple photo-induced approach is developed for the preparation of COOH functionalized meso-macroporous carbon films with tunable pores without using any inorganic mesoporous silica templates, which show excellent sensing selectivity for aniline and the selectivity can be enhanced upon increasing COOH functional groups.

  18. Preparation and characterization of amine functionalized graphene oxide with water soluble quantum dots for sensing material

    Science.gov (United States)

    Zaid, Mohd Hazani Mat; Abdullah, Jaafar

    2017-09-01

    Nanocomposite material has been prepared comprises of amine functionalized graphene oxide (NH2-GO) incorporation with water solube CdS Quantum dots nanoparticle to form a new composite material (NH2-GO/QDs). This composite mixture shows highly homogenous without precipitation and have been characterize by using Raman, Fourier transform infrared spectroscopy (FTIR) and the scan electron microscopy (SEM-EDX). Kinetic investigation based on DNA hybridization by cyclic voltammetry shows modified electrode able to achieve high hybridization rate can be used as electrochemical biosensor platform.

  19. Terrestrial fate of coal-liquid constituents: behavior of alkyl anilines in soil

    Energy Technology Data Exchange (ETDEWEB)

    Felice, L.J.; Zachara, J.M.; Rogers, J.E.

    1982-07-01

    The low molecular weight aromatic amines (anilines) are important water soluble constituents of coal liquids. The impact of anilines released to the terrestrial environment will largely depend on their mobility and persistence. Studies were conducted to investigate those processes governing the mobility and persistence of the alkylanilines, namely, soil sorption and chemical/microbial degradation. Soil sorption measurements were conducted on aniline and several methyl substituted anilines on A and B horizons of a soil profile collected from Davies County, Kentucky. The magnitude of sorption was large in all horizons. Sorption in the B horizons was larger than in the A horizon for many of the anilines studied, indicating the importance of both the mineral matrix and organic carbon content of the soil in determining the magnitude of sorption. Results of these measurements indicate that movement of the anilines through the soil would be significantly attenuated by sorption reactions. Aniline sorption measurement in the A horizon after removal of the organic matter and in the B/sub 22/ horizon after removal of amorphous iron oxides and crystalline iron oxides indicate that organic matter largely controls aniline sorption in the A horizon, while crystalline iron oxides and phyllosilicates are important in the B horizons. The effects of pH on aniline sorption was also examined and shown to have significant effects on the magnitude of sorption in both A and B horizons. Soil degradation studies using /sup 14/C-3-methylaniline as a model for alkyl aniline degradation show that 3-methylaniline is readily metabolized by soil microorganisms during the 32-day period examined.

  20. Terrestrial fate of coal-liquid constituents: behavior of alkyl anilines in soil

    Energy Technology Data Exchange (ETDEWEB)

    Felice, L.J.; Zachara, J.M.; Rogers, J.E.

    1982-07-01

    The low molecular weight aromatic amines (anilines) are important water soluble constituents of coal liquids. The impact of anilines released to the terrestrial environment will largely depend on their mobility and persistence. Studies were conducted to investigate those processes governing the mobility and persistence of the alkylanilines, namely, soil sorption and chemical/microbial degradation. Soil sorption measurements were conducted on aniline and several methyl substituted anilines on A and B horizons of a soil profile collected from Davies County, Kentucky. The magnitude of sorption was large in all horizons. Sorption in the B horizons was larger than in the A horizon for many of the anilines studied, indicating the importance of both the mineral matrix and organic carbon content of the soil in determining the magnitude of sorption. Results of these measurements indicate that movement of the anilines through the soil would be significantly attenuated by sorption reactions. Aniline sorption measurement in the A horizon after removal of the organic matter and in the B/sub 22/ horizon after removal of amorphous iron oxides and crystalline iron oxides indicate that organic matter largely controls aniline sorption in the A horizon, while crystalline iron oxides and phyllosilicates are important in the B horizons. The effects of pH on aniline sorption was also examined and shown to have significant effects on the magnitude of sorption in both A and B horizons. Soil degradation studies using /sup 14/C-3-methylaniline as a model for alkyl aniline degradation show that 3-methylaniline is readily metabolized by soil microorganisms during the 32-day period examined.

  1. Post combustion carbon dioxide capture using amine functionalized carbon nanotubes: A review

    Science.gov (United States)

    Dash, Sukanta K.

    2016-04-01

    Many technological viable options available for post combustion CO2 capture (PCC) from fossil fuel based power plants, such as amine absorption, adsorption, membrane separation, cryogenic separation processes. Out of these technological pathways adsorption using carbon nanotubes (CNTs) has shown potential advantages compared to other techniques for CO2 capture from flue gas streams which is evident form published literature from various research groups. Considering the recent developments, this work presents a state-of-the-art review on CO2 capture process using CNTs, amine functionalized CNTs and membrane based CNTs. One of the major challenges in developing CNT adsorption technology lies in the choice and development of an adsorbent material that can efficiently adsorb and also easily desorb and concentrate the captured CO2 with low energy input. This review work consists of a number of interdisciplinary research activities that are focused on the feasibility of developing a small scale carbon capture and storage (CCS) based on the adsorption properties of chemically functionalized CNTs. Another recent development for CO2 separation from flue gas is the application of membrane-based CNTs. Membrane based CO2 separation invites several advantages such as no need of an additional chemical or physical solvent; low energy use; simple process, hence easy to operate. In this work analysis and literature reviews carried out in the recent development in CNTs and membrane based CNTs for CO2 adsorption and separation to update the recent progress in this area. Finally a comparison with amine absorption process and retrofitting option has been discussed with few recommendations.

  2. Examining the Amine Functionalization in Dicarboxylates: Photoelectron Spectroscopy and Theoretical Studies of Aspartate and Glutamate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shihu; Hou, Gao-Lei; Kong, Xiangyu; Valiev, Marat; Wang, Xue B.

    2014-06-30

    Aspartate (Asp2-) and Glutamate (Glu2-), two doubly charged conjugate bases of the corresponding amino acids were investigated using low temperature negative ion photoelectron spectroscopy (NIPES) and ab-initio calculations. The effect of amine functionalization was studied by a direct comparison to the parent dicarboxylate species (-CO2–(CH2)n–CO2-, DCn2-) -- succinate (DC22-) and propionate (DC32-). Experimentally the addition of amine group for n = 2 case (DC22-, Asp2-) significantly improves the stability of the resultant Asp2- dianionic species, albeit that NIPES shows only a small increase in adiabatic electron detachment energy (ADE) (+0.05eV). In contrast, for n = 3 (DC32-, Glu2-), much larger ADE increase is observed (+0.15eV). Similar results are obtained through ab-initio calculations. The latter indicates that increased stability of Asp2- can be attributed to the lowering of the energy of singlet dianion state due to hydrogen bonding effects. The effect of the amino group on the doublet monoanion state is more complicated, and results in the weakening of the binding of the adjacent carboxylate group due to electronic structure resonance effects. This conclusion is confirmed by the analysis of NIPES results that show enhanced production of near zero kinetic energy electrons observed experimentally for amine-functionalized species.

  3. Structural and functional evolution of the trace amine-associated receptors TAAR3, TAAR4 and TAAR5 in primates.

    Directory of Open Access Journals (Sweden)

    Claudia Stäubert

    Full Text Available The family of trace amine-associated receptors (TAAR comprises 9 mammalian TAAR subtypes, with intact gene and pseudogene numbers differing considerably even between closely related species. To date the best characterized subtype is TAAR1, which activates the G(s protein/adenylyl cyclase pathway upon stimulation by trace amines and psychoactive substances like MDMA or LSD. Recently, chemosensory function involving recognition of volatile amines was proposed for murine TAAR3, TAAR4 and TAAR5. Humans can smell volatile amines despite carrying open reading frame (ORF disruptions in TAAR3 and TAAR4. Therefore, we set out to study the functional and structural evolution of these genes with a special focus on primates. Functional analyses showed that ligands activating the murine TAAR3, TAAR4 and TAAR5 do not activate intact primate and mammalian orthologs, although they evolve under purifying selection and hence must be functional. We also find little evidence for positive selection that could explain the functional differences between mouse and other mammals. Our findings rather suggest that the previously identified volatile amine TAAR3-5 agonists reflect the high agonist promiscuity of TAAR, and that the ligands driving purifying selection of these TAAR in mouse and other mammals still await discovery. More generally, our study points out how analyses in an evolutionary context can help to interpret functional data generated in single species.

  4. Solvent-free functionalization of fullerene C60 and pristine multi-walled carbon nanotubes with aromatic amines

    Science.gov (United States)

    Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Gromovoy, Taras Yu.; Chávez-Uribe, Ma. Isabel; Basiuk, Vladimir A.; Basiuk, Elena V.

    2015-02-01

    We employed a direct one-step solvent-free covalent functionalization of solid fullerene C60 and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180-250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, 13C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C60 molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C60, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  5. Fluoride-Catalyzed Methylation of Amines by Reductive Functionalization of CO2 with Hydrosilanes.

    Science.gov (United States)

    Liu, Xiao-Fang; Ma, Ran; Qiao, Chang; Cao, Han; He, Liang-Nian

    2016-11-07

    An effective and inexpensive organocatalyst tetrabutylammonium fluoride (TBAF) was developed for the reductive functionalization of CO2 with amines to selectively afford formamides or methylamines by employing hydrosilanes. Hydrosilanes with different substituents show discriminatory reducing activity. Thus, the formation of formamides and further reduction products, that is, methylamines could be controlled by elegantly tuning hydrosilane types. Formamides were obtained exclusively under an atmospheric pressure of CO2 with triethoxysilane. Using phenylsilane as a reductant, methylamines were attained with up to 99 % yield at 50 °C coupled to a complete deoxygenation of CO2 . The crucial intermediate silyl formate in the formylation step was identified and thereby a tentative mechanism involving the fluoride-promoted hydride transfer from the hydrosilane to CO2 /formamide was proposed. Striking features of this metal-free protocol are formylation and methylation of amines by reductive functionalization of CO2 with hydrosilanes and mild reaction conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis by plasma of halogenated poly anilines; Sintesis por plasma de polianilinas halogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, M.A.; Olayo, M.G.; Cruz, G.J. [Facultad de Quimica, UAEM, 50000 Toluca, Estado de Mexico (Mexico)

    2002-07-01

    In this work polymerization by plasma of aniline with iodine and chlorine bonded chemically to the aniline ring were realized. The results of the synthesis and characterizations are compared with those ones obtained starting from the poly aniline synthesis (P An) doped with iodine, where the dopant was aggregated in the moment of the polymerization. The objective is to study the dopant behavior in the synthesis by plasma in function of the properties of these polymers. (Author)

  7. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Wanna, Yongyuth, E-mail: yongyuth.wanna@gmail.com [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Nara Machinery Co., Ltd., 2-5-7, Jonan-Jima, Ohta-ku, Tokyo 143-0002 (Japan); Chindaduang, Anon; Tumcharern, Gamolwan [National Nanotechnology Center (NANOTEC), 111 Thailand Science Park, Pahol Yothin Rd, Klong Luang, Pathum Thani 12120 (Thailand); Phromyothin, Darinee [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Porntheerapat, Supanit [NECTEC, National Science and Technology Development Agency (NSTDA), 112 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120 (Thailand); Nukeaw, Jiti [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Hofmann, Heirich [Laboratory of Powder Technology, Ecole Polytechnique Fédérale de Lausanne (Switzerland); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand)

    2016-09-15

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group. - Highlights: • We synthesis hybrid magnetic nanoparticles for heavy metal removal. • The efficiency of hybrid nanoparticles for heavy metal removal is proposed. • We investigated the characteristic of hybrid nanoparticle. • The heavy metal removal efficiency of the hybrid nanoparticle was founded that depend on the heavy metal cation radius.

  8. New one step functionalization of polycrystalline diamond films using amine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, Charles; Ruffinatto, Sebastien; Delbarre, Emma; Roget, Andre; Arnault, Jean-Charles; Omnes, Franck; Mailley, Pascal, E-mail: pascal.mailley@cea.fr, E-mail: franck.omnes@grenoble.cnrs.fr

    2010-11-15

    Diamond received tremendous interest for analytical sciences due to its intrinsic properties. However, the analytical perception of chemical environment requires surface functionalization that brings selectivity to the detection event. Thereby, many works focused on diamond modification using chemical or biochemical entities. We proposed here, a new and straightforward methodology for diamond (bio)functionalization. This method involves the chemical reaction between (bio)chemical entities presenting a primary amine moiety, used as grafting site, and hydrogenated diamond surface. This reaction allows in one step to modify diamond surface whatever its doping level and its crystalline quality. The effectiveness of this new method is exposed here through the grafting of one redox species, ferrocene, and of one biochemical, biotin. The impacts of both functionalization duration and pH are investigated and the robustness of the formed bond is demonstrated owing to biotin-avidin coupling.

  9. Functionalized Polysilsesquioxane-Based Hybrid Silica Solid Amine Sorbents for the Regenerative Removal of CO2 from Air.

    Science.gov (United States)

    Abhilash, Kochukunju Adisser Saraladevi; Deepthi, Thomas; Sadhana, Retnakumari Amma; Benny, K George

    2015-08-19

    Functionalized polysilsesquioxane-based hybrid silica materials are presented as solid amine sorbents for direct CO2 capture from air. The sorbent was synthesized from amine and vinyl functionalized alkoxysilanes by a simple, energy efficient, and cost-effective co-condensation method. The material, containing bound amine functionalities, was found to have a selective CO2 capturing capacity of 1.68 mmol/g from atmospheric air with an adsorption half time of 50 min. This material also showed a maximum adsorption capacity of 2.28 mmol/g in pure CO2 and 1.92 mmol/g in 10% CO2. Desorption started at a temperature as low as 60 °C, and complete desorption occurred at 80 °C. The sorbent exhibited high recycling ability, and 100 cycles of adsorption/desorption were demonstrated in pure CO2 and 50 cycles in ambient air without any loss in efficiency.

  10. Carbohydrate-interactive pDNA and siRNA gene vectors based on boronic acid functionalized poly(amido amine)s

    NARCIS (Netherlands)

    Piest, Martin; Ankone, Martinus J.K.; Engbersen, Johannes F.J.

    2013-01-01

    In order to evaluate the influence of incorporation of boronic acid groups on the properties of poly(amido amine)s as gene vectors, a novel poly(amido amine) copolymer p(CBA-ABOL/2AMPBA) containing ortho-aminomethylphenylboronic acid (2AMPBA) moieties was prepared by Michael-type polyaddition of a m

  11. Rh-Catalyzed, Regioselective, C-H Bond Functionalization: Access to Quinoline-Branched Amines and Dimers.

    Science.gov (United States)

    Reddy, M Damoder; Fronczek, Frank R; Watkins, E Blake

    2016-11-04

    Rh-catalyzed, chelation-induced, C-5 regioselective C-H functionalization of 8-amidoquinolines with a range of N-Boc aminals is reported for the first time. The addition of in situ generated imines to C(sp(2))-H bonds afforded branched amines in good to excellent yields. Moreover, this transformation features good functional group compatibility, broad substrate scope, and mild reaction conditions and is suitable for gram-scale synthesis. In addition, an unprecedented, chelation-induced, site-selective, remote dimerization of quinolines led to the formation of dimer frameworks in moderate yields under Rh-catalyzed conditions.

  12. Silver nanoparticles well-dispersed in amine-functionalized, one-pot made vesicles as an effective antibacterial agent.

    Science.gov (United States)

    Deng, Yuanming; Li, Jiefeng; Yu, Junyan; Zhao, Jinlai; Tang, Jiaoning

    2016-03-01

    We report a simple route to prepare silver nanoparticle (Ag NP) loaded amine functionalized poly-oligomeric (ethylene glycol) methyl ether methacrylate block poly-glycidyl methacrylate (POEGMA-b-PGMA) vesicles as an effective antibacterial agent. Self-assemblies of POEGMA-b-PGMA were prepared from reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization mediated by a POEGMA macro-chain transfer agent (macro-CTA) in ethanol. Amine-functionalized self-assemblies were applied for Ag NP loading by using amine and hydroxyl groups as both the coordination agent and reductant under hydrothermal condition in high-pressure steam sterilization. 12.7 wt.% content of fine Ag NP well-dispersed in vesicles showed excellent antibacterial activities with the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) below 5.0 and 10.0 mg/L against Escherichia coli and 2.5 and 80 mg/L against Staphylococcus aureus respectively.

  13. Electrochemical functionalization of polypyrrole through amine oxidation of poly(amidoamine) dendrimers: Application to DNA biosensor.

    Science.gov (United States)

    Miodek, Anna; Mejri-Omrani, Nawel; Khoder, Rabih; Korri-Youssoufi, Hafsa

    2016-07-01

    Electrochemical patterning method has been developed to fabricate composite based on polypyrrole (PPy) film and poly(amidoamine) dendrimers of fourth generation (PAMAM G4). PPy layer was generated using electrochemical polymerization of pyrrole on a gold electrode. PPy film was then modified with PAMAM G4 using amines electro-oxidation method. Covalent bonding of PAMAM G4 and the formation of PPy-PAMAM composite was characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). Ferrocenyl groups were then attached to such surface as a redox marker. Electrochemical properties of the modified nanomaterial (PPy-PAMAM-Fc) were studied using both amperometric and impedimetric methods to demonstrate the efficiency of electron transfer through the modified PPy layer. The obtained electrical and electrochemical properties were compared to a composite where PPy bearing carboxylic acid functions was chemically modified with PAMAM G4 by covalent attachment through formation of amid bond (PPy-CONH-PAMAM). The above mentioned studies showed that electrochemical patterning does not disturb the electronic properties of PPy. The effect of the number of functional groups introduced by the electrochemical patterning was demonstrated through the association of various compounds (ethylenediamine, PAMAM G2 and PAMAM G6). We demonstrated that such compounds could be applied in the biosensors technology. The modified PPy-PAMAM-Fc was evaluated as a platform for DNA sensing. High performance in the DNA detection by variation of the electrochemical signal of ferrocene was obtained with detection limit of 0.4 fM. Furthermore, such approach of electrochemical patterning by oxidation of amines could be applied for chemical modification of PPy and open a new way in various biosensing application involving functionalized PPy.

  14. A Metal and Base-Free Chemoselective Primary Amination of Boronic Acids Using Cyanamidyl/Arylcyanamidyl Radical as Aminating Species: Synthesis and Mechanistic Studies by Density Functional Theory.

    Science.gov (United States)

    Chatterjee, Nachiketa; Arfeen, Minhajul; Bharatam, Prasad V; Goswami, Avijit

    2016-06-17

    An efficient, metal and base-free, chemoselective synthesis of aryl-, heteroaryl-, and alkyl primary amines from the corresponding boronic acids has been achieved at ambient temperature mediated by [bis(trifluoroacetoxy)iodo]benzene (PIFA) and N-bromosuccinimide (NBS) using cyanamidyl/arylcyanamidyl radicals as the aminating species. The primary amine compounds were initially obtained as their corresponding ammonium trifluoroacetate salts which, on treatment with aq NaOH, provide the free amines. Finally, the primary amines were isolated through column chromatography over silica-gel using hexane-EtOAc solvent system as the eluent. The reactions are sufficiently fast, completing within 1 h. Quantum chemical calculations in combination with experimental observations validate that the ipso amination of substituted boronic acids involves the formation of cyanamidyl/arylcyanamidyl radical, followed by regiospecific interaction of its nitrile-N center with boron atom of the boronic acids, leading to chemoselective primary amination.

  15. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  16. Single step synthesis of amine-functionalized mesoporous magnetite nanoparticles and their application for copper ions removal from aqueous solution.

    Science.gov (United States)

    Gao, Jining; He, Yingjuan; Zhao, Xianying; Ran, Xinze; Wu, Yonghui; Su, Yongping; Dai, Jianwu

    2016-11-01

    Amine-functionalized mesoporous superparamagnetic Fe3O4 nanoparticles with an average size of 70nm have been synthesized using a single step solvothermal method by the introduction of triethylenetetramine (TETA), a chelating agent recommended for the removal of excess copper in patients with Wilson's disease. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen adsorption/desorption isotherm, vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR). It is confirmed that the magnetic nanoparticles have been functionalized with TETA during the synthetic process, and the concentration of TETA is crucial for the formation of monodisperse mesoporous nanoparticles. The obtained single-crystal magnetic nanoparticles have a high magnetization, which enhances their response to external magnetic field and therefore should greatly facilitate the manipulation of the particles in practical uses. Reaction parameters affecting the formation of mesoporous structure were explored, and a possible formation mechanism involving templated aggregation and recrystallization processes was proposed. The capacity of the synthesized amine-functionalized Fe3O4 nanoparticles toward Cu(II) removal from aqueous solution was investigated. The adsorption rate of Cu(II) on amine-functionalized Fe3O4 nanoparticles followed a pseudo-second order kinetic model. The results of this study demonstrated that the amine-functionalized mesoporous superparamagnetic Fe3O4 nanoparticles could be used as an efficient adsorbent in water treatment and would also find potential application for Cu(II) removal in vivo.

  17. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles.

    Science.gov (United States)

    Zhang, Ying; Kuang, Min; Zhang, Lijuan; Yang, Pengyuan; Lu, Haojie

    2013-06-04

    In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.

  18. Highly Enantioselective Fluorescent Recognition of Both Unfunctionalized and Functionalized Chiral Amines by a Facile Amide Formation from a Perfluoroalkyl Ketone.

    Science.gov (United States)

    Wang, Chao; Anbaei, Parastoo; Pu, Lin

    2016-05-17

    The H8 BINOL-based perfluoroalkyl ketone (S)-2 is found to exhibit highly enantioselective fluorescent enhancements toward both unfunctionalized and functionalized chiral amines. It greatly expands the substrate scope of the corresponding BINOL-based sensor. A dramatic solvent effect was observed for the reaction of the amines with compound (S)-2. In DMF, cleavage of the perfluoroalkyl group of compound (S)-2 to form amides was observed but not in other solvents, such as methylene chloride, chloroform, THF, hexane, and perfluorohexane. Thus, the addition of another solvent, such as THF, can effectively quench the reaction of compound (S)-2 with amines in DMF to allow stable fluorescent measurement. This is the first example that the formation of strong amide bonds under very mild conditions is used for the enantioselective recognition of chiral amines. The mechanism of the reaction of compound (S)-2 with chiral amines is investigated by using various analytical methods including mass spectrometry as well as NMR and UV/Vis absorption spectroscopy.

  19. Surface modification of silicone tubes by functional carboxyl and amine, but not peroxide groups followed by collagen immobilization improves endothelial cell stability and functionality.

    Science.gov (United States)

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Shokrgozar, Mohammad Ali; Mottaghy, Khosrow; Klein-Nulend, Jenneke; Zandieh-Doulabi, Behrouz

    2015-03-02

    Surface modification by functional groups promotes endothelialization in biohybrid artificial lungs, but whether it affects endothelial cell stability under fluid shear stress, and the release of anti-thrombotic factors, e.g. nitric oxide (NO), is unknown. We aimed to test whether surface-modified silicone tubes containing different functional groups, but similar wettability, improve collagen immobilization, endothelialization, cell stability and cell-mediated NO-release. Peroxide, carboxyl, and amine-groups increased collagen immobilization (41-76%). Only amine-groups increased ultimate tensile strength (2-fold). Peroxide and amine enhanced (1.5-2.5 fold), but carboxyl-groups decreased (2.9-fold) endothelial cell number after 6 d. After collagen immobilization, cell numbers were enhanced by all group-modifications (2.8-3.8 fold). Cells were stable under 1 h-fluid shear stress on amine, but not carboxyl or peroxide-group-modified silicone (>50% cell detachment), while cells were also stable on carboxyl-group-modified silicone with immobilized collagen. NO-release was increased by peroxide and amine (1.1-1.7 fold), but decreased by carboxyl-group-modification (9.8-fold), while it increased by all group-modifications after collagen immobilization (1.8-2.8 fold). Only the amine-group-modification changed silicone stiffness and transparency. In conclusion, silicone-surface modification of blood-contacting parts of artificial lungs with carboxyl and amine, but not peroxide-groups followed by collagen immobilization allows the formation of a stable functional endothelial cell layer. Amine-group-modification seems undesirable since it affected silicone's physical properties.

  20. Functional-Group-Tolerant, Silver-Catalyzed N-N Bond Formation by Nitrene Transfer to Amines.

    Science.gov (United States)

    Maestre, Lourdes; Dorel, Ruth; Pablo, Óscar; Escofet, Imma; Sameera, W M C; Álvarez, Eleuterio; Maseras, Feliu; Díaz-Requejo, M Mar; Echavarren, Antonio M; Pérez, Pedro J

    2017-02-15

    Silver(I) promotes the highly chemoselective N-amidation of tertiary amines under catalytic conditions to form aminimides by nitrene transfer from PhI═NTs. Remarkably, this transformation proceeds in a selective manner in the presence of olefins and other functional groups without formation of the commonly observed aziridines or C-H insertion products. The methodology can be applied not only to rather simple tertiary amines but also to complex natural molecules such as brucine or quinine, where the products derived from N-N bond formation were exclusively formed. Theoretical mechanistic studies have shown that this selective N-amidation reaction proceeds through triplet silver nitrenes.

  1. Efficient and reversible CO2 capture by amine functionalized-silica gel confined task-specific ionic liquid system.

    Science.gov (United States)

    Aboudi, Javad; Vafaeezadeh, Majid

    2015-07-01

    Simple, efficient and practical CO2 capture method is reported using task-specific ionic liquid (IL) supported onto the amine-functionalized silica gel. The results have been shown that both the capacity and rate of the CO2 absorption notably increase in the supported IL/molecular sieve 4 Å system in comparison of homogeneous IL. Additionally, it has shown that the prepared material is capable for reversible carbon dioxide absorption for at least 10 cycles without significant loss of efficiency. The presence of the amine-based IL and the surface bonded amine groups increase the capacity of CO2 absorption even in a CO2/CH4 gas mixture through the formation of ammonium carbamate onto the surface of mesoporous material.

  2. Efficient and reversible CO2 capture by amine functionalized-silica gel confined task-specific ionic liquid system

    Directory of Open Access Journals (Sweden)

    Javad Aboudi

    2015-07-01

    Full Text Available Simple, efficient and practical CO2 capture method is reported using task-specific ionic liquid (IL supported onto the amine-functionalized silica gel. The results have been shown that both the capacity and rate of the CO2 absorption notably increase in the supported IL/molecular sieve 4 Å system in comparison of homogeneous IL. Additionally, it has shown that the prepared material is capable for reversible carbon dioxide absorption for at least 10 cycles without significant loss of efficiency. The presence of the amine-based IL and the surface bonded amine groups increase the capacity of CO2 absorption even in a CO2/CH4 gas mixture through the formation of ammonium carbamate onto the surface of mesoporous material.

  3. Catalytic properties of carbon materials for wet oxidation of aniline

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Helder T. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Departamento de Tecnologia Quimica e Biologica, Escola Superior de Tecnologia e de Gestao, Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-857 Braganca (Portugal); Machado, Bruno F.; Ribeiro, Andreia; Moreira, Ivo; Rosario, Marcio; Silva, Adrian M.T.; Figueiredo, Jose L. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Faria, Joaquim L. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: jlfaria@fe.up.pt

    2008-11-30

    A mesoporous carbon xerogel with a significant amount of oxygen functional groups and a commercial activated carbon, were tested in the catalytic wet air oxidation of aniline at 200 deg. C and 6.9 bar of oxygen partial pressure. Both carbon materials showed high activity in aniline and total organic carbon removal, a clear increase in the removal efficiency relatively to non-catalytic wet air oxidation being observed. The best results in terms of aniline removal were obtained with carbon xerogel, an almost complete aniline conversion after 1 h oxidation with high selectivity to non-organic compounds being achieved. The materials were characterized by thermogravimetric analysis, temperature programmed desorption, N{sub 2} adsorption and scanning electron microscopy, in order to relate their performances to the chemical and textural characteristics. It was concluded that the removal efficiency, attributed to both adsorption and catalytic activity, is related to the mesoporous character of the materials and to the presence of specific oxygen containing functional groups at their surface. The effect of catalytic activity was found to be more important in the removal of aniline than the effect of adsorption at the materials surface. The results obtained indicate that mesoporous carbon xerogels are promising catalysts for CWAO processes.

  4. Catalytic properties of carbon materials for wet oxidation of aniline.

    Science.gov (United States)

    Gomes, Helder T; Machado, Bruno F; Ribeiro, Andreia; Moreira, Ivo; Rosário, Márcio; Silva, Adrián M T; Figueiredo, José L; Faria, Joaquim L

    2008-11-30

    A mesoporous carbon xerogel with a significant amount of oxygen functional groups and a commercial activated carbon, were tested in the catalytic wet air oxidation of aniline at 200 degrees C and 6.9 bar of oxygen partial pressure. Both carbon materials showed high activity in aniline and total organic carbon removal, a clear increase in the removal efficiency relatively to non-catalytic wet air oxidation being observed. The best results in terms of aniline removal were obtained with carbon xerogel, an almost complete aniline conversion after 1h oxidation with high selectivity to non-organic compounds being achieved. The materials were characterized by thermogravimetric analysis, temperature programmed desorption, N(2) adsorption and scanning electron microscopy, in order to relate their performances to the chemical and textural characteristics. It was concluded that the removal efficiency, attributed to both adsorption and catalytic activity, is related to the mesoporous character of the materials and to the presence of specific oxygen containing functional groups at their surface. The effect of catalytic activity was found to be more important in the removal of aniline than the effect of adsorption at the materials surface. The results obtained indicate that mesoporous carbon xerogels are promising catalysts for CWAO processes.

  5. Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal

    Science.gov (United States)

    Zhang, Xiaoyong; Huang, Qiang; Liu, Meiying; Tian, Jianwen; Zeng, Guangjian; Li, Zhen; Wang, Ke; Zhang, Qinsong; Wan, Qing; Deng, Fengjie; Wei, Yen

    2015-07-01

    The environmental applications of carbon nanotubes (CNTs) have attracted great research attention since their first discovery. However, the performance of pristine CNTs for removal of heavy metal ions is greatly limited by their severe aggregation and lack of functional groups. In this work, a novel method has been developed for preparation of amine functionalized CNTs via combination of mussel inspired chemistry and Michael addition reaction. CNTs were first coated with polydopamine (PDA) through mussel inspired chemistry. And then commercial available agent polyethylene polyamine with a number of amine groups was further conjugated with PDA coated CNTs via Michael addition reaction. A series of characterization techniques have demonstrated that the amine functionalized CNTs have been successfully prepared. Furthermore, the adsorption application of thus amine functionalized CNTs for Cu2+ was examined. The effects of various parameters including pH solution, temperature, initial Cu2+ concentration and the adsorbent concentration were investigated. The data from experiments were analyzed by the Langmuir and Freundlich models of adsorption. Due to the universal of mussel inspired chemistry, the method described in this work should be a general strategy for surface modification of materials for environmental applications.

  6. COMPUTATIONAL ELECTROCHEMISTRY: AQUEOUS ONE-ELECTRON OXIDATION POTENTIALS FOR SUBSTITUTED ANILINES

    Science.gov (United States)

    Semiempirical molecular orbital theory and density functional theory are used to compute one-electron oxidation potentials for aniline and a set of 21 mono- and di-substituted anilines in aqueous solution. Linear relationships between theoretical predictions and experiment are co...

  7. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization.

    Science.gov (United States)

    Lu, Yuan; Cueva, Mario Calderón; Lara-Curzio, Edgar; Ozcan, Soydan

    2015-10-20

    One of the main factors responsible for the mechanical and physical properties of nanocomposites is the effectiveness of the interfacial region to transfer loads and mechanical vibrations between the nano-reinforcements and the matrix. Surface functionalization has been the preferred approach to engineer the interfaces in polymer nanocomposites in order to maximize their potential in structural and functional applications. In this study, amine-functionalized cellulose nanofibrils (mCNF-G1) were synthesized via silylation of the hydroxyl groups on the CNF surface using 3-aminopropyltrimethoxysilane (APTMS). To further increase the amine density (mCNF-G2), dendritic polyamidoamine (PAMAM) was grafted onto mCNF-G1 by the Michael addition of methacrylate onto mCNF-G1, followed by the transamidation of the ester groups of methacrylate using ethylenediamine. Compared to native CNF-reinforced, poly(l-lactide) (PLLA) nanocomposites, amine-functionalized CNF exhibited significantly improved dispersion and interfacial properties within the PLLA matrix due to the grafting of PLLA chains via aminolysis. It is also a more effective nucleating agent, with 15% mCNF-G1 leading to a crystallinity of 32.5%, compared to 0.1 and 8.7% for neat PLLA and native CNF-reinforced composites. We have demonstrated that APTMS-functionalized CNF (mCNF-G1) significantly improved the tensile strength compared to native CNF, with 10% mCNF-G1 being the most effective (i.e., >100% increase in tensile strength). However, we also found that excessive amines on the CNF surface (i.e., mCNF-G2) resulted in decreased tensile strength and modulus due to PLLA degradation via aminolysis. These results demonstrate the potential of optimized amine-functionalized CNF for future renewable material applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Functional finishing of aminated polyester using biopolymer-based polyelectrolyte microgels.

    Science.gov (United States)

    Glampedaki, Pelagia; Dutschk, Victoria; Jocic, Dragan; Warmoeskerken, Marijn M C G

    2011-10-01

    This study focuses on a microgel-based functionalization method applicable to polyester textiles for improving their hydrophilicity and/or moisture-management properties, eventually enhancing wear comfort. The method proposed aims at achieving pH-/temperature-controlled wettability of polyester within a physiological pH/temperature range. First, primary amine groups are created on polyester surfaces using ethylenediamine; second, biopolymer-based polyelectrolyte microgels are incorporated using the natural cross-linker genipin. The microgels consist of the pH-responsive natural polysaccharide chitosan and pH/thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid) microparticles. Scanning electron microscopy confirmed the microgel presence on polyester surfaces. X-ray photoelectron spectroscopy revealed nitrogen concentration, supporting increased microscopy results. Electrokinetic analysis showed that functionalized polyester surfaces have a zero-charge point at pH 6.5, close to the microgel isoelectric point. Dynamic wetting measurements revealed that functionalized polyester has shorter total water absorption time than the reference. This absorption time is also pH dependent, based on dynamic contact angle and micro-roughness measurements, which indicated microgel swelling at different pH values. Furthermore, at 40 °C functionalized polyester has higher vapor transmission rates than the reference, even at high relative humidity. This was attributed to the microgel thermoresponsiveness, which was confirmed through the almost 50% decrease in microparticle size between 20 and 40 °C, as determined by dynamic light scattering measurements.

  9. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    Science.gov (United States)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik; Ibrahim, Zaharah

    2016-01-01

    Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver ions and APTES used during modification.

  10. Functional evolution of the trace amine associated receptors in mammals and the loss of TAAR1 in dogs

    Directory of Open Access Journals (Sweden)

    Westmoreland Susan V

    2010-02-01

    Full Text Available Abstract Background The trace amine associated receptor family is a diverse array of GPCRs that arose before the first vertebrates walked on land. Trace amine associated receptor 1 (TAAR1 is a wide spectrum aminergic receptor that acts as a modulator in brain monoaminergic systems. Other trace amine associated receptors appear to relate to environmental perception and show a birth-and-death pattern in mammals similar to olfactory receptors. Results Across mammals, avians, and amphibians, the TAAR1 gene is intact and appears to be under strong purifying selection based on rates of amino acid fixation compared to neutral mutations. We have found that in dogs it has become a pseudogene. Our analyses using a comparative genetics approach revealed that the pseudogenization event predated the emergence of the Canini tribe rather than being coincident with canine domestication. By assessing the effects of the TAAR1 agonist β-phenylethylamine on [3H]dopamine uptake in canine striatal synaptosomes and comparing the degree and pattern of uptake inhibition to that seen in other mammals, including TAAR1 knockout mice, wild type mice and rhesus monkey, we found that the TAAR1 pseudogenization event resulted in an uncompensated loss of function. Conclusion The gene family has seen expansions among certain mammals, notably rodents, and reductions in others, including primates. By placing the trace amine associated receptors in an evolutionary context we can better understand their function and their potential associations with behavior and neurological disease.

  11. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik, E-mail: niknizam@fbb.utm.my; Ibrahim, Zaharah

    2016-01-01

    Graphical abstract: - Highlights: • Functionalization of Ag-exchanged zeolite NaY with 3-aminopropyltriethoxysilane APTES (ZSA) as antibacterial agent. • Antibacterial assay of ZSA was performed against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538. • Functionalization of Ag-exchanged zeolite NaY with APTES significantly increased the antibacterial agent. • Different mechanisms of bacterial death were suggested for each bacteria type by the functionalized Ag-exchanged zeolite NaY. - Abstract: Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver

  12. Genetic Polymorphisms Affect Mouse and Human Trace Amine-Associated Receptor 1 Function.

    Directory of Open Access Journals (Sweden)

    Xiao Shi

    Full Text Available Methamphetamine (MA and neurotransmitter precursors and metabolites such as tyramine, octopamine, and β-phenethylamine stimulate the G protein-coupled trace amine-associated receptor 1 (TAAR1. TAAR1 has been implicated in human conditions including obesity, schizophrenia, depression, fibromyalgia, migraine, and addiction. Additionally TAAR1 is expressed on lymphocytes and astrocytes involved in inflammation and response to infection. In brain, TAAR1 stimulation reduces synaptic dopamine availability and alters glutamatergic function. TAAR1 is also expressed at low levels in heart, and may regulate cardiovascular tone. Taar1 knockout mice orally self-administer more MA than wild type and are insensitive to its aversive effects. DBA/2J (D2 mice express a non-synonymous single nucleotide polymorphism (SNP in Taar1 that does not respond to MA, and D2 mice are predisposed to high MA intake, compared to C57BL/6 (B6 mice. Here we demonstrate that endogenous agonists stimulate the recombinant B6 mouse TAAR1, but do not activate the D2 mouse receptor. Progeny of the B6XD2 (BxD family of recombinant inbred (RI strains have been used to characterize the genetic etiology of diseases, but contrary to expectations, BXDs derived 30-40 years ago express only the functional B6 Taar1 allele whereas some more recently derived BXD RI strains express the D2 allele. Data indicate that the D2 mutation arose subsequent to derivation of the original RIs. Finally, we demonstrate that SNPs in human TAAR1 alter its function, resulting in expressed, but functional, sub-functional and non-functional receptors. Our findings are important for identifying a predisposition to human diseases, as well as for developing personalized treatment options.

  13. Investigation of nonlinear optical (NLO) properties by charge transfer contributions of amine functionalized tetraphenylethylene

    Science.gov (United States)

    Rana, Meenakshi; Singla, Nidhi; Chatterjee, Amrita; Shukla, Abhishek; Chowdhury, Papia

    2016-12-01

    Nonlinear Optical (NLO) properties of amine functionalized tetraphenylethylene (TPE-NH2) have been recorded and analyzed. The structural geometry, bonding features, harmonic vibrational frequencies (FTIR and Raman) of TPE-NH2 have been investigated by B3LYP density functional theory (DFT). Charge (Mulliken and natural) analysis, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMOs), 13C and 1H nuclear magnetic resonance (NMR) and molecular electrostatic potential (MEP) indicate the delocalization of charges over the donor-acceptor region by the increase of C-N bond length. The vibrational analysis on the basis of potential energy distribution (PED) confirms the charge transfer interaction between donor and acceptor groups, and that in turn validates the presence of the larger dipole moment (μ), polarizability and hyperpolarizabilities (α, β and γ) in TPE-NH2. Higher value of ionization potential (IP), electronegativity (χ), hardness (η), chemical potential (CP) and smaller HOMO-LUMO energy gap (Δε) validate TPE-NH2's strong candidature to be used as an NLO active material.

  14. Transition-metal-free access to primary anilines from boronic acids and a common (+)NH2 equivalent.

    Science.gov (United States)

    Voth, Samantha; Hollett, Joshua W; McCubbin, J Adam

    2015-03-06

    Diversely substituted anilines are prepared by treatment of functionalized arylboronic acids with a common, inexpensive source of electrophilic nitrogen (H2N-OSO3H, HSA) under basic aqueous conditions. Electron-rich substrates are found to be the most reactive by this method. However, even moderately electron-poor substrates are well tolerated under the room temperature conditions. Sterically hindered substrates appear to be equally effective compared to unhindered ones. Highly electron-deficient substrates afford product in very low yields at room temperature, but moderate to good yields are obtained at refluxing temperatures. Our method is also amenable to electrophilic amination of several common boronic acid derivatives (e.g., pinacol esters). We demonstrate that it can be combined with metal-halogen exchange reactions or a variety of directed ortho metalation protocols in a "one-pot" sequence for the synthesis of aromatic amines with unique substitution patterns. DFT studies, in combination with experimental results, suggest that the reaction occurs via base-mediated activation of HSA, followed by 1,2 aryl B-N migration. This mode of activation appears to be critical for the success of the reaction and allows, for the first time, a general, electrophilic amination of boronic acids at ambient temperature.

  15. Synthesis of highly functionalized pyrroles from primary amines and activated acetylenes in water

    Institute of Scientific and Technical Information of China (English)

    S.Zahra Sayyed-Alangi; Zinatossadat Hossaini; Faramarz Rostami-Charati

    2012-01-01

    Stable derivatives of pyrroles were prepared using multicomponent reactions of dialkyl acetylenedicarboxylate,primary amine and propiolate in the presence of N-methylimidazole in water at room temperature in good yields.

  16. A quantum mechanical approach to the theory of cancer from polynuclear compounds. Metabolic activation and carcinogenicity of extended anilines and aminoazo compounds.

    Science.gov (United States)

    Mohammad, S N

    1985-01-01

    Calculations have been carried out of the electronic structure and molecular properties in relation to metabolic activation and carcinogenic activities of polycyclic aromatic amines (PAAs). Quantum mechanical molecular orbital method MINDO/3 is employed in the calculations mainly on anilines, extended anilines, and aminoazo and other azo compounds. The calculations, in agreement with findings of Arcos and Argus, indicate that for the highest level of carcinogenic activity obtainable with the dicyclic aromatic amines, the amino substituent must be introduced at the terminal carbon atom of the longest conjugate chain. In the case of monocyclic compounds, in particular, charge distribution of the amino substitution aids in identifying the carcinogenic character of the PAAs. Our results demonstrate that ring hydroxylation leads to detoxification of the compounds. However, the major pathway leading to carcinogenic activity involves transformation to hydroxylamines and subsequently to electrophilic arylnitrenium ions (ANIs). These are in line with findings from experiments. Calculations of certain electronic parameters give expected relative carcinogenic potencies. In all cases the ANIs function as ambient electrophiles which can undergo both electrostatic and covalent binding with nucleophilic centers of proteins and DNA bases.

  17. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord

    Directory of Open Access Journals (Sweden)

    Elizabeth A Gozal

    2014-11-01

    Full Text Available The trace amines (TAs, tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC. We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC and for receptor-mediated actions via trace amine-associated receptors (TAARs 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na+-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine actions depended on intracellular uptake via pentamidine-sensitive Na+-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known

  18. Microbial Degradation of Aniline by Bacterial Consortium

    Institute of Scientific and Technical Information of China (English)

    JIAN-LONG WANG; ZE-YU MAO; WEI-ZHONG WU

    2003-01-01

    Objective To investigate the characteristics of microbial degradation of aniline by a stable bacterial consortium. Methods The bacterial consortium was isolated from activated sludge treating chemical wastewater using aniline as the sole source of carbon and nitrogen by enrichment and isolation technique. The biomass was measured as optical density (OD) at 510 nm using a spectrophotometer. Aniline concentrations were determined by spectrophotometer. The intermediates of aniline degradation were identified by GC/MS method. Results The bacterial consortium could grow at a range of aniline concentrations between 50 and 500 mg/L. The optimal pH and temperature for aniline degradation were determined to be 7.0 and 30, respectively. The presence of NH4NO3 as an additional nitrogen source (100-500 mg/L) had no adverse effect on bacterial growth and aniline degradation. The presence of heavy metal ions, such as Co2+, Zn2+, Ni2+, Mn2+ and Cu2+ had an inhibitory effect on aniline degradation. Conclusions The isolated bacterial consortium candegrade aniline up to 500 mg/L effectively and tolerate some heavy metal ions that commonly exist in chemical wastewater. It has a potential to be applied in the practical treatment of aniline-containingwastewater.

  19. Estrogenicity and acute toxicity of selected anilines using a recombinant yeast assay.

    Science.gov (United States)

    Hamblen, Elizabeth L; Cronin, Mark T D; Schultz, T Wayne

    2003-08-01

    Suspected estrogen modulators include industrial organic chemicals (i.e., xenoestrogens), and have been shown to consist of alkylphenols, bisphenols, biphenylols, and some hydroxy-substituted polycyclic aromatic hydrocarbons. The most prominent structural feature identified to be important for estrogenic activity is a polar group capable of donating hydrogen bonds (i.e., hydroxyl) on an aromatic system. The present study was undertaken to explore the estrogenic activity and acute toxicity of chemicals containing a weaker hydrogen bond donor group on aromatic systems, i.e., the amino substituent. There is a great deal of chemical similarity between aromatic amines (anilines) and aromatic alcohols (phenols). The chemicals chosen for the current study contained an amino-substituted benzene ring with hydrophobic constituents varying in size and shape. Thus, 37 substituted aromatic amines were assayed for estrogenic activity EC50 and acute toxicity LC50 using the Saccharomyces cerevisiae recombinant yeast assay. While the EC50 of 17-beta-estradiol occurs at the 10(-10) range, the aniline with the greatest activity had an EC50 of 10(-6) M. Thus, anilines, in general, are capable only of very weak estrogenic activity in this assay. A comparison of estrogenic potency between the present group of anilines and a set of previously tested analogous phenols indicated that anilines are consistently less estrogenic than phenols. A comparison of hazard indices (EC50/LC50) of these chemicals revealed that, for the vast majority of anilines, the EC50 and LC50 were in the same order of magnitude. More specifically, estrogenic activity of para-substituted alkylanilines increases with alkyl group size up to 5 carbons in length, after which the acute toxicity of the larger alkyl-substituents precluded the ability of the compound to induce the estrogenic response.

  20. Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Le [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Zeng, Zhong [Safety Environment Quality Surveillance and Inspection Research Institute of CNPC Chuanqing Drilling & Exploration Corporation, Chengdu 618300 (China); Zou, Huawei, E-mail: hwzou@163.com [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Liang, Mei, E-mail: liangmeiww@163.com [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China)

    2015-08-20

    Highlights: • Functional graphite oxide with amine-rich surface was prepared and characterized. • Kinetic parameters were calculated by Kissinger method and autocatalytic model. • The incorporation of GO and DGO brings in an effect of inhibition on curing. • The inhibition effect weakens for its good compatibility and catalytic effect of DGO. - Abstract: Functional graphite oxide (DGO) with amine-rich surface was successfully prepared through the amidation reaction and characterized by X-ray diffraction analyses (XRD), Fourier transform infrared spectra (FTIR) and Raman spectra. The effects of functional graphite oxide on the curing kinetics of epoxy (EP) were investigated by means of differential scanning calorimetry (DSC). The curing kinetic parameters of EP, EP/graphite oxide (GO) and EP/functional graphite oxide were obtained. There was not much difference in total heat of reaction ΔH and peak temperature T{sub p} with the incorporation of GO or DGO. However, the activation energy, E{sub a}, and the overall order of reaction m + n were enhanced. Comprehensive kinetic analyses indicated that the incorporation of GO sheets brought in an effect of inhibition on curing process. While the inhibition effect weaken when the GO is modified with amine-rich surface. The possible curing mechanism and reaction pathways were proposed to provide a reasonable explanation.

  1. One step in-situ synthesis of amine functionalized graphene for immunosensing of cardiac marker cTnI.

    Science.gov (United States)

    Tuteja, Satish K; Kukkar, Manil; Suri, C R; Paul, A K; Deep, Akash

    2015-04-15

    2-Aminobenzyl amine (2-ABA) functionalized graphene is proposed for the ultrasensitive immunosensing of Cardiac Troponin I (cTnI). 2-ABA was electrochemically polymerized on the graphene decorated interdigitated electrode to obtain the amine functionalized graphene (f-GN). The f-GN electrode was then modified with monoclonal anti-cTnI antibodies via Schiff reaction based chemistry. Detailed characteristics of the processes involved and the finally developed antibody conjugated f-GN interdigitated electrode have been studied. The above micro-device was used in a drain source configuration for the sensing of cTnI. A wide dynamic linear range of antigen detection (0.01-1ng/mL) is achieved with the limit of detection of 0.01ng/mL. The utility of the proposed sensing technique is demonstrated by successfully testing the antigen concentration in spiked serum samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology.

    Science.gov (United States)

    Chavan, Sachin M; Shearer, Greig C; Svelle, Stian; Olsbye, Unni; Bonino, Francesca; Ethiraj, Jayashree; Lillerud, Karl Petter; Bordiga, Silvia

    2014-09-15

    A series of amine-functionalized mixed-linker metal-organic frameworks (MOFs) of idealized structural formula Zr6O4(OH)4(BDC)(6-6X)(ABDC)6X (where BDC = benzene-1,4-dicarboxylic acid, ABDC = 2-aminobenzene-1,4-dicarboxylic acid) has been prepared by solvothermal synthesis. The materials have been characterized by thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), and Fourier transform infrared (FTIR) spectroscopy with the aim of elucidating the effect that varying the degrees of amine functionalization has on the stability (thermal and chemical) and porosity of the framework. This work includes the first application of ultraviolet-visible light (UV-vis) spectroscopy in the quantification of ABDC in mixed-linker MOFs.

  3. Silver nanoparticles embedded in amine-functionalized silicate sol-gel network assembly for sensing cysteine, adenosine and NADH

    Energy Technology Data Exchange (ETDEWEB)

    Maduraiveeran, Govindhan; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2011-09-15

    Silver nanoparticles embedded in amine-functionalized silicate sol-gel network were synthesized and used for sensing biomolecules such as cysteine, adenosine, and {beta}-nicotinamide adenine dinucleotide (NADH). The sensing of these biomolecules by the assembly of silver nanoparticles was triggered by the optical response of the surface plasmon resonance (SPR) of the silver nanoparticles. The optical sensor exhibited the lowest detection limit (LOD) of 5, 20, and 5 {mu}M for cysteine, adenosine, and NADH, respectively. The sensing of biomolecules in the micromolar range by using the amine-functionalized silicate sol-gel embedded silver nanoparticles was studied in the presence of interference molecules like uridine, glycine, guanine, and guanosine. Thus, the present approach might open up a new avenue for the development of silver nanoparticles-based optical sensor devices for biomolecules.

  4. Kinetics of the Reaction of 2-Chloro-3,5-dinitrobenzotriflouride with Aniline in Toluene and Methanol-Toluene Mixed Solvents

    Institute of Scientific and Technical Information of China (English)

    Fathalla; Magda F.

    2012-01-01

    Kinetics of the reaction of 2-chloro-3,5-dinitrobenzotriflouride with aniline were studied in toluene, metha- nol-toluene binary solvents, benzene and chloroform. The reaction in toluene exhibits third-order kinetics consistent with aggregates of aniline. Thermodynamic parameters AH#, AS# and AG# are calculated and discussed for the reaction of 2-chloro-3,5-dinitrobenzotriflouride with aniline in methanol-toluene. Molecular complexes between aniline and the substrate are rejected spectrophotometricaly. The mechanism is studied and compared with the reac- tion in presence of pyridine. It shows an amine dependence and formation of homo and/or hetero mixed aggregates between aniline and pyridine i.e. dimer mechanism.

  5. Chemical polymerization of aniline in phenylphosphinic acid

    Directory of Open Access Journals (Sweden)

    NICOLETA PLESU

    2005-10-01

    Full Text Available The chemical polymerization of aniline was performed in phenylphosphinic acid (APP medium using ammonium peroxidisulfate as the oxidizing agent, at 0 ºC and 25 ºC. The yield of polyaniline (PANI was about 60–69 %. The polymerization process required an induction time 8–10 times greater than in other acids (hydrochloric, sulfuric. The average density of the obtained polymer was 1.395 g cm-3 for PANI-salt and 1.203 g cm-3 for PANI-base. The acid capacity of PANI depends on the synthesis parameters and the maximum value was 15.02 meq/g polymer. The inherent viscosity of PANI was 0.662 dl/g at aniline/oxidant molar ratios >2 and 0 ºC. The oxidation state was a function of the synthesis parameters and lay between 0.553–0.625, as determined from UV-VIS and titration with TiCl3 data. The PANI samples were characterized by measurements of their density, inherent viscosity, conductivity, acid capacity, FTIR and UV-VIS spectrum, and thermogravimetric data.

  6. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes

    Science.gov (United States)

    Elangovan, Saravanakumar; Neumann, Jacob; Sortais, Jean-Baptiste; Junge, Kathrin; Darcel, Christophe; Beller, Matthias

    2016-10-01

    Borrowing hydrogen (or hydrogen autotransfer) reactions represent straightforward and sustainable C-N bond-forming processes. In general, precious metal-based catalysts are employed for this effective transformation. In recent years, the use of earth abundant and cheap non-noble metal catalysts for this process attracted considerable attention in the scientific community. Here we show that the selective N-alkylation of amines with alcohols can be catalysed by defined PNP manganese pincer complexes. A variety of substituted anilines are monoalkylated with different (hetero)aromatic and aliphatic alcohols even in the presence of other sensitive reducible functional groups. As a special highlight, we report the chemoselective monomethylation of primary amines using methanol under mild conditions.

  7. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant.

    Science.gov (United States)

    Tan, D X; Manchester, L C; Burkhardt, S; Sainz, R M; Mayo, J C; Kohen, R; Shohami, E; Huo, Y S; Hardeland, R; Reiter, R J

    2001-10-01

    The biogenic amine The biogenic amine N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) was investigated for its potential antioxidative capacity. AFMK is a metabolite generated through either an enzymatic or a chemical reaction pathway from melatonin. The physiological function of AFMK remains unknown. To our knowledge, this report is the first to document the potent antioxidant action of this biogenic amine. Cyclic voltammetry (CV) shows that AFMK donates two electrons at potentials of 456 mV and 668 mV, and therefore it functions as a reductive force. This function contrasts with all other physiological antioxidants that donate a single electron only when they neutralize free radicals. AFMK reduced 8-hydroxydeoxyguanosine formation induced by the incubation of DNA with oxidants significantly. Lipid peroxidation resulting from free radical damage to rat liver homogenates was also prevented by the addition of AFMK. The inhibitory effects of AFMK on both DNA and lipid damage appear to be dose-response related. In cell culture, AFMK efficiently reduced hippocampal neuronal death induced by either hydrogen peroxide, glutamate, or amyloid b25-35 peptide. AFMK is a naturally occurring molecule with potent free radical scavenging capacity (donating two electrons/molecule) and thus may be a valuable new antioxidant for preventing and treating free radical-related disorders.

  8. Reaction of 2,4-Dinitrochlorobenzene with Aromatic Amines in Toluene: Effect of Nucleophile Structure

    Directory of Open Access Journals (Sweden)

    C. E.S. Alvaro

    2000-03-01

    Full Text Available The kinetics of the reaction of 2,4-dinitrochlorobenzene (DNClB with aniline and substituted anilines such as p-anisidine, p-toluidine and N-methylaniline have been studied in toluene. Except for N-methylaniline the reactions have shown a third order in amine rate dependence which is consistent with aggregates of the amine acting as the nucleophile. On the other hand, the reaction of DNClB with N-methylaniline under the same conditions shows a linear dependence of the second order rate coefficient, kA, vs [amine], which is consistent with the previous mechanism.

  9. An acetyltransferase conferring tolerance to toxic aromatic amine chemicals: molecular and functional studies.

    Science.gov (United States)

    Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie

    2009-07-10

    Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils.

  10. Monolith-Supported Amine-Functionalized Mg2(dobpdc) Adsorbents for CO2 Capture.

    Science.gov (United States)

    Darunte, Lalit A; Terada, Yuri; Murdock, Christopher R; Walton, Krista S; Sholl, David S; Jones, Christopher W

    2017-05-24

    The potential of using an amine-functionalized metal organic framework (MOF), mmen-M2(dobpdc) (M = Mg and Mn), supported on a structured monolith contactor for CO2 capture from simulated flue gas is explored. The stability of the unsupported MOF powders under humid conditions is explored using nitrogen physisorption and X-ray diffraction analysis before and after exposure to humidity. Based on its superior stability to humidity, mmen-Mg2(dobpdc) is selected for further growth on a honeycomb cordierite monolith that is wash-coated with α-alumina. A simple approach for the synthesis of an Mg2(dobpdc) MOF film using MgO nanoparticles as the metal precursor is used. Rapid drying of MgO on the monolith surface followed by a hydrothermal treatment is demonstrated to allow for the synthesis of a MOF film with good crystallite density and favorable orientation of the MOF crystals. The CO2 adsorption behavior of the monolith-supported mmen-Mg2(dobpdc) material is assessed using 10% CO2 in helium and 100% CO2, demonstrating a CO2 uptake of 2.37 and 2.88 mmol/g, respectively. Excellent cyclic adsorption/desorption performance over multiple cycles is also observed. This is one of the first examples of the deployment of an advanced MOF adsorbent in a scalable, low-pressure drop gas-solid contactor. Such demonstrations are critical to the practical application of MOF materials in adsorptive gas separations, as structured contactors have many practical advantages over packed or fluidized beds.

  11. Saponification of esters of chiral alpha-amino acids anchored through their amine function on solid support.

    Science.gov (United States)

    Cantel, Sonia; Desgranges, Stéphane; Martinez, Jean; Fehrentz, Jean-Alain

    2004-06-01

    Anchoring an alpha-amino acid residue by its amine function onto a solid support is an alternative to develop chemistry on its carboxylic function. This strategy can involve the use of amino-acid esters as precursors of the carboxylic function. A complete study on the Wang-resin was performed to determine the non racemizing saponification conditions of anchored alpha-amino esters. The use of LiOH, NaOH, NaOSi(Me)3, various solvents and temperatures were tested for this reaction. After saponification and cleavage from the support, samples were examined through their Marfey's derivatives by reversed phase HPLC to evaluate the percentage of racemization.

  12. Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam.

    Science.gov (United States)

    Li, Wen; Bollini, Praveen; Didas, Stephanie A; Choi, Sunho; Drese, Jeffrey H; Jones, Christopher W

    2010-11-01

    Three classes of amine-functionalized mesocellular foam (MCF) materials are prepared and evaluated as CO(2) adsorbents. The stability of the adsorbents under steam/air and steam/nitrogen conditions is investigated using a Parr autoclave reactor to simulate, in an accelerated manner, the exposure that such adsorbents will see under steam stripping regeneration conditions at various temperatures. The CO(2) capacity and organic content of all adsorbents decrease after steam treatment under both steam/air and steam/nitrogen conditions, primarily due to structural collapse of the MCF framework, but with additional contributions likely associated with amine degradation during treatment under harsh conditions. Treatment with steam/air is found to have stronger effect on the CO(2) capacity of the adsorbents compared to steam/nitrogen.

  13. Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO 2 Adsorbents Upon Exposure to Steam

    KAUST Repository

    Li, Wen

    2010-11-24

    Three classes of amine-functionalized mesocellular foam (MCF) materials are prepared and evaluated as CO2 adsorbents. The stability of the adsorbents under steam/air and steam/nitrogen conditions is investigated using a Parr autoclave reactor to simulate, in an accelerated manner, the exposure that such adsorbents will see under steam stripping regeneration conditions at various temperatures. The CO2 capacity and organic content of all adsorbents decrease after steam treatment under both steam/air and steam/nitrogen conditions, primarily due to structural collapse of the MCF framework, but with additional contributions likely associated with amine degradation during treatment under harsh conditions. Treatment with steam/air is found to have stronger effect on the CO2 capacity of the adsorbents compared to steam/nitrogen. © 2010 American Chemical Society.

  14. Post-synthesis amine borane functionalization of metal-organic framework and its unusual chemical hydrogen release phenomenon

    KAUST Repository

    Berke, Heinz

    2017-05-11

    We report a novel strategy for post-synthesis amine borane functionalization of MOFs under gas-solid phase transformation utilizing gaseous diborane. The covalently confined amine borane derivative decorated on the framework backbone is stable when preserved at low temperature, but spontaneously liberates soft chemical hydrogen at room temperature leading to the development of an unusual borenium type species (-NH=BH2+) ion-paired with hydroborate anion. Furthermore, the unsaturated amino borane (-NH=BH2) and the -iminodiborane ((--NHB2H5) were detected as final products. A combination of DFT based molecular dynamics simulations and solid state NMR spectroscopy, utilizing isotopically enriched materials, were undertaken to unequivocally elucidate the mechanistic pathways for H2 liberation.

  15. Fast solid-phase extraction of N-linked glycopeptides by amine-functionalized mesoporous silica nanoparticles.

    Science.gov (United States)

    Miao, Weili; Zhang, Cheng; Cai, Yan; Zhang, Ying; Lu, Haojie

    2016-04-21

    Selective enrichment is a crucial step before the mass spectrometric analysis of glycoproteins. A new approach using 3-aminopropyltriethoxysilane (APTES)-functionalized mesoporous silica materials (SBA-15) was reported to enrich the glycoproteins. Selective extraction of glycopeptides was achieved through coupling the oxidized glycan chains on the glycopeptides with the amine groups on SBA-15 through a reductive amination reaction, then the captured glycopeptides were detached from the SBA-15 for the following MS analysis using the enzyme PNGase F. Because the mesoporous material has a confinement effect, the efficiency of enrichment and enzymatic deglycosylation was improved dramatically. The coupling time was shortened from 4 hours to 1 hour, and the deglycosylation time was greatly shortened from 6 hours to 3 hours. This approach was successfully applied to profile the N-glycoproteome of human colorectal cancer serum. 84 N-linked glycosylation sites from 56 N-linked glycoproteins were identified from as little as 5 μL serum.

  16. Stepwise Synthesis of Mesoporous Carbon Nitride Functionalized by Melamine Based Dendrimer Amines for Adsorption of CO2 and CH4

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-12-01

    Full Text Available In this study, a novel solid dendrimer amine (hyperbranched polymers was prepared using mesoporous carbon nitride functionalized by melamine based dendrimer amines. This adsorbent was denoted MDA-MCN-1. The process was stepwise synthesis and hard-templating method using mesoporous silica SBA-15 as a template. Cyanuric chloride and N,N-diisopropylethylamine (DIPEA, Merck were used for functionalization of the MCN-1. Fourier transform infrared spectroscopy (FT-IR, Nitrogen adsorption-desorption analysis, Small Angle X-ray Scattering (SAXS, X-ray diffraction (XRD and thermogravimetric analysis (TGA were used for characterization of the adsorbent. This material was used for carbon dioxide gas (CO2 and methane gas (CH4 adsorption at high pressure (up to 20 bar and room temperature. The volumetric method was used for the tests of the gas adsorption. The CO2 adsorption capacity of modified mesoporous carbon nitrides was about 4 mmol CO2 per g adsorbent. The methane adsorption capacity of this material was less than that CO2. Modified Mesoporous Carbon Nitride adsorbed about 3.52 mmol CH4 /g adsorbent. The increment of melamine based dendrimer generation on mesoporous surface increased adsorption capacity of both carbon dioxide and methane gases. According to the results obtained, the solid dendrimer amines, (MDA-MCN-1, performs excellently for CO2 and CH4 capture from flow gases and CO2 and CH4 storage.

  17. Synthesis and post-synthetic modification of amine-, alkyne-, azide- and nitro-functionalized metal-organic frameworks based on DUT-5.

    Science.gov (United States)

    Gotthardt, Meike A; Grosjean, Sylvain; Brunner, Tobias S; Kotzel, Johannes; Gänzler, Andreas M; Wolf, Silke; Bräse, Stefan; Kleist, Wolfgang

    2015-10-14

    Functionalized 4,4'-biphenyldicarboxylic acid molecules with additional amine, alkyne, azide or nitro groups were prepared and applied in the synthesis of novel metal-organic frameworks and mixed-linker metal-organic frameworks isoreticular to DUT-5. The properties of the frameworks could be tuned by varying the number of functional groups in the materials and the amine groups were employed in post-synthetic modification reactions without changing the framework structure or significantly decreasing the porosity of the materials.

  18. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    Science.gov (United States)

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples.

  19. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations.

    Science.gov (United States)

    Seidel, Daniel

    2015-02-17

    Conspectus Redox-neutral methods for the functionalization of amine α-C-H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C-H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet-Spengler, and Kabachnik-Fields reactions, Friedel-Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C-H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic processes, have been

  20. Amine-functionalized, multi-arm star polymers: A novel platform for removing glyphosate from aqueous media.

    Science.gov (United States)

    Samuel, Lianna; Wang, Ran; Dubois, Geraud; Allen, Robert; Wojtecki, Rudy; La, Young-Hye

    2017-02-01

    We describe a novel method for efficiently removing glyphosate from aqueous media via adsorption onto highly functionalized star-shaped polymeric particles. These particles have a polystyrene core with more than 35 attached methacrylate polymer arms, each containing a plurality of pendant amines (poly(dimethylamino ethyl methacrylate): PDMAEMA) that are partially protonated in water. Kinetic studies demonstrate that these star-polymers successfully remove up to 93% of glyphosate present in aqueous solution (feed concentration: 5 ppm), within 10 min contact time, outperforming activated carbon, which removed 33% after 20 min. On these star-polymers, glyphosate adsorption closely follows the Langmuir model indicating monolayer coverage at most. Ionic interaction between the protonated amines and glyphosate's dissociated carboxylic and phosphoric acid groups lead to effective glyphosate capture even at feed concentrations below 1 ppm. Surface charge of these star polymers and dissociation of glyphosate are both influenced by pH, thus glyphosate removal efficiency increases from 63% to 93% when pH increases from 4.2 to 7.7. NMR studies conducted with butylamine as a proxy for these polymeric particles confirm that the amine group binds with both glyphosate's carboxylic and phosphoric acid groups when its concentrations are in a 2:1 or higher molar ratio with glyphosate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Light absorption and photoluminescence due to interfacial charge-transfer transitions in aromatic amine-functionalized silicon nanoparticles

    Science.gov (United States)

    Fujisawa, Jun-ichi; Hanaya, Minoru

    2017-09-01

    Aromatic amine-functionalization of silicon nanoparticles induces a new absorption band in the near UV-to-blue region and efficient blue photoluminescence even at room temperature. However, the origin of the absorption band and photoluminescence has not yet been understood well. Here, we study theoretically the electronic structure and light absorption and photoluminescence properties of carbazole-functionalized silicon nanoparticles. We reveal that the absorption band and photoluminescence are attributed to interfacial charge-transfer (ICT) transitions between the covalently-boned carbazole and silicon nanoparticles. The ICT transitions are induced by strong electronic couplings between CA and a silicon nanoparticle via the Sisbnd N bond.

  2. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal.

  3. Photoinduced electron transfer interaction of anthraquinones with aniline quenchers: Influence of methyl substitution in aniline donors

    Science.gov (United States)

    Sivakumar, V.; Ponnamma, Deepalekshmi; Hussein, Yasser H. A.

    2017-02-01

    Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQT) but not the triplets AQT or AQST. However in aqueous medium, AN quenches AQST and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQT or AQST while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications.

  4. Fluorescence quantum efficiency of CdSe/ZnS quantum dots functionalized with amine or carboxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Pilla, Viviane, E-mail: vivianepilla@infis.ufu.br [Universidade Federal de Uberlandia (UFU), Instituto de Fisica (Brazil); Munin, Egberto [Universidade Camilo Castelo Branco (UNICASTELO), Centro de Engenharia Biomedica (Brazil)

    2012-10-15

    The thermo-optical parameters of cadmium selenide/zinc sulfide (CdSe/ZnS) core-shell quantum dots (QDs) suspended in aqueous solutions were measured using a Thermal Lens (TL) technique. TL transient measurements were performed using the mode-mismatched dual-beam (excitation and probe) configuration. A He-Ne laser at {lambda}{sub p} = 632.8 nm was used as the probe beam, and an Ar{sup +} laser (at {lambda}{sub e} = 514.5 nm) was used as the excitation beam to study the effect of the core sizes (2-4 nm) of CdSe/ZnS nanocrystals functionalized with amine (R-NH{sub 2}) or carboxyl (R-COOH) groups. The average values of the thermal diffusivity D = (1.48 {+-} 0.06) Multiplication-Sign 10{sup -3} cm{sup 2}/s obtained for QDs samples are in good agreement with the pure water solvent result. The fraction thermal load ({phi}) and radiative quantum efficiencies ({eta}) of the functionalized CdSe/ZnS QDs were determined and compared with non-functionalized CdSe/ZnS QDs. The obtained {eta} values for non-functionalized CdSe/ZnS are slightly higher than those for the QDs functionalized with amine or carboxyl groups.

  5. An efficient catalytic reductive amination: A facile one-pot access to 1,2-dihydropyrrolo[3,4-b]indol-3(4H)-ones by using B(C6F5)3/NaBH4

    Indian Academy of Sciences (India)

    Atulya Nagarsenkar; Santosh Kumar Prajapti; Nagendra Babu Bathini

    2015-04-01

    An efficient combination of B(C6F5)3 and NaBH4 was developed for direct reductive amination of aldehydes. A wide range of functional groups such as ester, nitro, nitrile, halogen, alkene, heterocycles were tolerated. Also, acid sensitive protecting groups like TBDMS and TBDPS were not affected. In addition, the present methodology was extended for tandem amination-amidation of 3-formyl-indole-2-carboxylic acids with substituted anilines to afford 1,2-dihydropyrrolo[3,4-b]indol-3(4H)-ones.

  6. Efficient and reversible CO2 capture by amine functionalized-silica gel confined task-specific ionic liquid system

    OpenAIRE

    Javad Aboudi; Majid Vafaeezadeh

    2015-01-01

    Simple, efficient and practical CO2 capture method is reported using task-specific ionic liquid (IL) supported onto the amine-functionalized silica gel. The results have been shown that both the capacity and rate of the CO2 absorption notably increase in the supported IL/molecular sieve 4 Å system in comparison of homogeneous IL. Additionally, it has shown that the prepared material is capable for reversible carbon dioxide absorption for at least 10 cycles without significant loss of efficien...

  7. Structure-Function Relationships of a Tertiary Amine-Based Polycarboxybetaine.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Tang, Qiong; Cao, Bin; Wang, Huifeng; Cong, Hongbo; Zhe, Jiang; Xu, Fujian; Cheng, Gang

    2015-09-15

    Zwitterionic polycarboxybetaine (PCB) materials have attracted noticeable interest for biomedical applications, such as wound healing/tissue engineering, medical implants, and biosensors, due to their excellent antifouling properties and design flexibility. Antifouling materials with buffering capability are particularly useful for many biomedical applications. In this work, an integrated zwitterionic polymeric material, poly(2-((2-hydroxyethyl)(2-methacrylamidoethyl)ammonio)acetate) (PCBMAA-1T), was synthesized to carry desired properties (antifouling, switchability and buffering capability). A tertiary amine was used to replace quaternary ammonium as the cation to endow the materials with buffering capability under neutral pH. Through this study, a better understanding on the structure-property relationship of zwitterionic materials was obtained. The tertiary amine cation does not compromise antifouling properties of zwitterionic materials. The amount of adsorbed proteins on PCBMAA-1T polymer brushes is less than 0.8 ng/cm(2) for fibrinogen and 0.3 ng/cm(2) (detection limit of the surface plasmon resonance sensor) for both undiluted blood plasma and serum. It is found that the tertiary amine is favorable to obtain good lactone ring stability in switchable PCB materials. Titration study showed that PCBMAA-1T could resist pH changes under both acidic (pH 1-3) and neutral/basic (pH 7-9) conditions. To the best of our knowledge, such an all-in-one material has not been reported. We believe this material might be potentially used for a variety of applications, including tissue engineering, chronic wound healing and medical device coating.

  8. Porous organic polymers with anchored aldehydes: A new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties

    KAUST Repository

    Guillerm, Vincent

    2014-01-01

    A novel porous organic polymer has been synthesized using the molecular building block approach to deliberately encompass aldehyde functionalities amenable to post functionalization. The resultant porous framework allows a facile, one-step quantitative and post-synthetic functionalization by amines, permitting enhanced CO2 sorption properties. © 2014 The Royal Society of Chemistry.

  9. Additive effects in halogen hot atom chemistry. I. Nuclear reaction (. gamma. ,n) in bromobenzene, fluorobenzene-amine systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Fu, K.; Li, W.; Wang, T.

    1980-05-01

    (1) For observing the chemical effects of the nuclear reaction /sup 79/Br(..gamma..,n)/sup 78/Br in liquid bromobenzene, the nitrogen-containing compounds, such as aniline, diphenylamine, phenylhydrazine and pyridine, were used as additives respectively during irradiation. Similarly, aniline, diphenylamine, phenylhydrazine, dimethylaniline and pyridine were added in liquid fluorobenzene when the reaction /sup 19/F(..gamma..,n)/sup 18/F proceeded. The curves indicating the dependence of recoil atom retention to the additive mole concentration were plotted, and each curve typically showed the general characteristics of dropping sharply in low mol % of additive and gradually in high mol %. (2) The relative effectiveness of additives in depressing organic retention was revealed in the following order: phenylhydrazine > aniline greater than or equal to dimethylaniline > diphenylamine greater than or equal to pyridine. In our opinion the reactivity of nitrogen lone-pair electrons, which is influenced and bounded by the Pi-bond delocalization of the aromatic amine molecule, substantially determines this effectiveness order. (3) Adding the inert additive benzene or toluene to the fluorobenzene system, a linear dependence of retention to additive concentration was obtained. The contribution of the reactive functional group NHNH/sub 2/ of phenylhydrazine in reducing the retention chemically could be evaluated by the comparison of the benzene line with the phenylhydrazine curve.

  10. Mechanical and thermal studies of unsaturated polyester-toughened epoxy composites filled with amine-functionalized nanosilica

    Science.gov (United States)

    Jaya Vinse Ruban, Y.; Ginil Mon, S.; Vetha Roy, D.

    2013-02-01

    The inter-crosslinking networks of unsaturated polyester (UP)-toughened epoxy-nanosilica hybrid nanocomposites have been developed. Epoxy resin was toughened with 5 and 10% (by wt) of unsaturated polyester using benzoyl peroxide as radical initiator and 4,4'-diaminodiphenylmethane (DDM) as a curing agent at appropriate condition, and the resulting product was identified by FT-IR spectra. Unsaturated polyester-toughened epoxy system (10%) was further filled with 1, 3, 5 and 7% (by wt) of amine-functionalized nanosilica particles prepared by sol-gel method. Modified nanosilica-filled hybrid UP-epoxy matrices developed in the form of casting were characterized for their thermal, mechanical properties and water absorption capacity according to ASTM standards. The degree of dispersion of nanosilica in the matrices was investigated by SEM technique. Mechanical testing data indicate that the introduction of UP into epoxy resin has improved the impact strength. Significant improvement in the flexural properties, tensile properties and impact strength were observed in the UP-epoxy blends with increase in the percentage of amine-modified nanosilica particles. The T g value decreases with UP toughening and increases with concentration of modified nanosilica on the UP-epoxy matrix. The water absorption behavior is found to decrease with UP toughening and concentration of modified nanosilica on the UP-epoxy matrix.

  11. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles

    Science.gov (United States)

    Ghalei, Behnam; Sakurai, Kento; Kinoshita, Yosuke; Wakimoto, Kazuki; Isfahani, Ali Pournaghshband; Song, Qilei; Doitomi, Kazuki; Furukawa, Shuhei; Hirao, Hajime; Kusuda, Hiromu; Kitagawa, Susumu; Sivaniah, Easan

    2017-07-01

    Mixed matrix membranes (MMMs) for gas separation applications have enhanced selectivity when compared with the pure polymer matrix, but are commonly reported with low intrinsic permeability, which has major cost implications for implementation of membrane technologies in large-scale carbon capture projects. High-permeability polymers rarely generate sufficient selectivity for energy-efficient CO2 capture. Here we report substantial selectivity enhancements within high-permeability polymers as a result of the efficient dispersion of amine-functionalized, nanosized metal-organic framework (MOF) additives. The enhancement effects under optimal mixing conditions occur with minimal loss in overall permeability. Nanosizing of the MOF enhances its dispersion within the polymer matrix to minimize non-selective microvoid formation around the particles. Amination of such MOFs increases their interaction with thepolymer matrix, resulting in a measured rigidification and enhanced selectivity of the overall composite. The optimal MOF MMM performance was verified in three different polymer systems, and also over pressure and temperature ranges suitable for carbon capture.

  12. Reductive fluorescence quenching of DMP with aniline

    Energy Technology Data Exchange (ETDEWEB)

    Asha Jhonsi, M. [B.S. Abdur Rahman University, Vandalur, Chennai 600048, Tamil Nadu (India); Kathiravan, A., E-mail: akathir23@hotmail.com [National Centre for Ultrafast Processes, University of Madras, Taramani Campus, Chennai 600113, Tamil Nadu (India)

    2014-01-15

    The photoinduced electron transfer (PET) between 8-(4-methoxyphenyl)-3,5-di[(E)-1-(4-methoxyphenyl)methylidene]-1,2,3,5,6, 7-hexahydrodicyclopenta[b,e]pyridine (DMP) and aniline is studied in acetonitrile medium by using steady state and time resolved absorption and fluorescence spectroscopic methods. Bimolecular quenching rate constants (k{sub q}) were calculated from the obtained linear Stern–Volmer plots from both steady state and time resolved measurements. The rate constant (k{sub q}) for PET between DMP and aniline is 1.4×10{sup 10} M{sup −1} s{sup −1}, which is in diffusion control limit. The free energy change (ΔG{sup 0}) has been evaluated by using Rehm–Weller equation for the evidence of electron transfer from aniline to DMP. Direct evidence for the electron transfer reaction in the present system has been obtained by characterizing the aniline cation radical using nanosecond time resolved absorption measurements in the visible region. Further, this quenching mechanism is attributed to be reductive in nature i.e. electron transfer occurs from ground state aniline to excited DMP. This is the first example of reductive fluorescence quenching of DMP with aniline in acetonitrile ever known. -- Highlights: • Photoinduced electron transfer between DMP and aniline using time resolved absorption and fluorescence spectroscopy has been investigated. • Reductive quenching behavior was observed. • Direct evidence for the ET reaction in the present system has been obtained by characterizing the aniline cation radical.

  13. A study of function mechanism of hemxamethyl tetra-amine in gelation process of uranium

    Institute of Scientific and Technical Information of China (English)

    GUO Wenli; LIANG Tongxiang; ZHAO Xingyu; HAO Shaochang; FU Xiaoming

    2006-01-01

    The UO2 ceramic microspheres are the most important materials in the spherical fuel elements for high temperature reactor (HTR). A process for preparation of UO2 kernels known as total gelation process of uranium (TGU) was developed as the production process of 10 mW HTR at Tsinghua University. The TGU process is based on the traditional sol-gel process, external gelation process and internal gelation process of uranium (EGU and IGU), which implies that the gelation action is initiated both by ammonia out of the gel particles and hemxamethyl tetra-amine (HMTA) inside the gel particles. The gelation behavior and the properties of uranium microspheres were investigated of the solution with and without HMTA. It is observed that good spherical particles can be obtained without HMTA in the sol, which indicates a more controllable and industrialized route will be set up. Contrasts between this route and the traditional EGU were also listed .

  14. Preparation of E-1,3-diaminoethenyl functional groups by the reaction of enol tosylate of alpha-formylglycine with primary and secondary amines

    Directory of Open Access Journals (Sweden)

    Sitaram Bhavaraju

    2016-03-01

    Full Text Available The E-1,3-diaminoethenyl functional group is a potentially useful synthon. A number of examples of E-1,3-diaminoethenyl functional groups were prepared in good yield starting from an E-enol tosylate of a serine based diketopiperazine and 1°- or 2° amine nucleophiles. The reaction proceeds via a stereoselective nucleophilic substitution pathway.

  15. Ionic liquid-functionalized silica for selective solid-phase extraction of organic acids, amines and aldehydes.

    Science.gov (United States)

    Vidal, Lorena; Parshintsev, Jevgeni; Hartonen, Kari; Canals, Antonio; Riekkola, Marja-Liisa

    2012-02-24

    Three ionic liquid (IL)-functionalized silica materials, imidazolium, N-methylimidazolium and 1-alkyl-3-(propyl-3-sulfonate) imidazolium, were synthesised and applied in solid-phase extraction (SPE) of organic acids, amines and aldehydes, which are important compound families in atmospheric aerosol particles. 1-Alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica was tested as sorbent for SPE for the first time. The analytes were separated and detected by liquid chromatography-mass spectrometry (LC-MS). To confirm the results achieved by LC-MS, the acids were additionally determined by gas chromatography-mass spectrometry (GC-MS). The stability of the IL-functionalized silica materials was tested at low and high pH. The effect of the pH on the extraction was also informative of the retention mechanism of the materials. The results showed anion exchange to be the main interaction, but hydrophobic and π interactions and hydrogen bonding also played a role in the extraction. Extraction efficiencies for organic acids ranged from 87 to 110%, except for cis-pinonic acid (19-29%). Lower extraction efficiencies for amines and aldehydes confirmed that anionic exchange was the predominant interaction. Comparisons made with two commercial SPE materials--silica-based strong anion exchange (SAX) and polymer-based mixed-mode anion exchange and reverse-phase (MAX)--showed the IL-functionalized materials to offer different selectivity and better extraction efficiency than SAX for aromatic compounds. Finally, the new materials were successfully tested in the extraction of an atmospheric aerosol sample.

  16. Facile Synthesis of Benzaldehyde-Functionalized Ionic Liquids and Their Flexible Functional Group Transformations

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    2012-01-01

    Full Text Available Three benzaldehyde-functionalized ionic liquids were readily synthesized by quaternization of N-alkylimidazole with benzaldehyde-functionalized alkyl bromides under microwave irradiation in good yield. These aldehyde-functionalized ionic liquids could easily be oxidized in the presence of H2O2/KOH or be reduced by NaBH4 leading to the formation of the corresponding carboxyl-functionalized ionic liquids or benzylic alcohol-functionalized ionic liquids. In addition, the condensations of these functionalized ones with hydrazine hydrate and with aniline under reductive amination conditions were demonstrated.

  17. Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: Direct coupling of two amines to form an imine without oxidant

    KAUST Repository

    He, Lipeng

    2012-07-23

    Dehydrogenative homocoupling of primary alcohols to form esters and coupling of amines to form imines was accomplished using a class of novel pincer ruthenium complexes. The reactivities of the ruthenium pincer complexes for the direct coupling of amines to form imines were enhanced by introducing an imine arm to the pincer ligand. Selective oxidation of benzylamines to imines was achieved using aniline derivatives as the substrate and solvent. © 2012 American Chemical Society.

  18. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Di Li

    2017-07-01

    Full Text Available A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR, transmission electron microscopy (TEM, and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G and adenine (A. The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA.

  19. STUDIES ON THE INITIATION MECHANISM OF ORGANIC PEROXIDE AND N-METHACRYLOYLOXYETHYL-N-METHYL ANILINE IN METHYL METHACRYLATE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; GUO Dajie; GUO Xinqiu; FENG Xinde

    1990-01-01

    The initiation mechanism of methyl methacrylate (MMA) polymerization by organic peroxide and polymerizable aromatic tertiary amine such as N-methacryloyloxyethyl-N-methyi aniline (MEMA) binary system has been studied. The kinetics of polymerization of MMA and the ESR spectra of organic peroxide/MEMA system were determined. Based on the ESR study and the end-group analysis by UV spectra of the polymer formed, the initiation mechanism is proposed.

  20. Three-Phase Carbon Fiber Amine Functionalized Carbon Nanotubes Epoxy Composite: Processing, Characterisation, and Multiscale Modeling

    Directory of Open Access Journals (Sweden)

    Kamal Sharma

    2014-01-01

    Full Text Available The present paper discusses the key issues of carbon nanotube (CNT dispersion and effect of functionalisation on the mechanical properties of multiscale carbon epoxy composites. In this study, CNTs were added in epoxy matrix and further reinforced with carbon fibres. Predetermined amounts of optimally amine functionalised CNTs were dispersed in epoxy matrix, and unidirectional carbon fiber laminates were produced. The effect of the presence of CNTs (1.0 wt% in the resin was reflected by pronounced increase in Young’s modulus, inter-laminar shear strength, and flexural modulus by 51.46%, 39.62%, and 38.04%, respectively. However, 1.5 wt% CNT loading in epoxy resin decreased the overall properties of the three-phase composites. A combination of Halpin-Tsai equations and micromechanics modeling approach was also used to evaluate the mechanical properties of multiscale composites and the differences between the predicted and experimental values are reported. These multiscale composites are likely to be used for potential missile and aerospace structural applications.

  1. Mechanistic investigation of the iridium-catalysed alkylation of amines with alcohols.

    Science.gov (United States)

    Fristrup, Peter; Tursky, Matyas; Madsen, Robert

    2012-04-07

    The [Cp*IrCl(2)](2)-catalysed alkylation of amines with alcohols was investigated using a combination of experimental and theoretical methods. A Hammett study involving a series of para-substituted benzyl alcohols resulted in a line with a negative slope. This clearly documents that a positive charge is built up in the transition state, which in combination with the measurement of a significant kinetic isotope effect determines hydride abstraction as being the selectivity-determining step under these conditions. A complementary Hammett study using para-substituted anilines was also carried out. Again, a line with a negative slope was obtained suggesting that nucleophilic attack on the aldehyde is selectivity-determining. A computational investigation of the entire catalytic cycle with full-sized ligands and substrates was performed using density functional theory. The results suggest a catalytic cycle where the intermediate aldehyde stays coordinated to the iridium catalyst and reacts with the amine to give a hemiaminal which is also bound to the catalyst. Dehydration to the imine and reduction to the product amine also takes place without breaking the coordination to the catalyst. The fact that the entire catalytic cycle takes place with all the intermediates bound to the catalyst is important for the further development of this synthetic transformation.

  2. ELECTROCHEMICAL COPOLYMERIZATION OF ANILINE AND AZURE B

    Institute of Scientific and Technical Information of China (English)

    Dan Shan; Shao-lin Mu; Bing-wei Mao; Yong-fang Li

    2001-01-01

    The electrochemical copolymerization of aniline and N,N,N'-trimethylthionin (azure B) in aqueous solutions has been carried out using the potential sweep method. The optimum conditions for the coelectrodeposition are that the pH value and the temperature of the electrolytic solution are controlled at 5.57 and 30℃, respectively, and the scan potential range is set between -0.25 and 1.10 V (versus SCE). The copolymerization rate of aniline and azure B is about 3 times larger than that of aniline in the absence of azure B. The copolymerization of aniline and azure B was verified from the results of visible spectra during electrolysis, FTIR spectra and the atomic force microscopy (AFM) images of the polymers. The in situ visible spectrum for the electrolysis of the solution containing aniline and azure B is different from that of the respective aniline and azure B. The FTIR spectrum of the copolymer is not a superposition of that of polyaniline and poly(azure B). The AFM image of the copolymer is different from those of polyaniline and poly(azure B) and is not a mixture of individual polymers. The conductivity of the copolymer synthesized at pH 5.57 is four orders of magnitude higher than that of polyaniline synthesized under the same conditions, but in the absence of azure B. The electrochemical properties of the copolymer are mainly attributed to polyaniline, but the copolymer has a better electrochemical reversibility and a much faster charge transfer than those of polyaniline.``

  3. “Low Cost” Pore Expanded SBA-15 Functionalized with Amine Groups Applied to CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Enrique Vilarrasa-García

    2015-05-01

    Full Text Available The CO2 adsorption capacity of different functionalized mesoporous silicas of the SBA-15 type was investigated and the influence of textural properties and the effect of the silicon source on the CO2 uptake studied. Several adsorbents based on SBA-15 were synthesized using sodium silicate as silicon source, replacing the commonly used tetraethyl orthosilicate (TEOS. Thus, we synthesized three couples of supports, two at room temperature (RT, RT-F, two hydrothermal (HT, HT-F and two hydrothermal with addition of swelling agent (1,3,5-triisopropylbenzene (TiPB, TiPB-F. Within each couple, one of the materials was synthesized with ammonium fluoride (NH4F. The supports were functionalized via grafting 3-aminopropyltriethoxysilane (APTES and via impregnation with polyethylenimine ethylenediamine branched (PEI. The adsorption behavior of the pure materials was described well by the Langmuir model, whereas for the amine-silicas, a Dualsite Langmuir model was applied, which allowed us to qualify and quantify two different adsorption sites. Among the materials synthesized, only the SBA-15 synthesized at room temperatures (RT improved its properties as an adsorbent with the addition of fluoride when the silicas were functionalized with APTES. The most promising result was the TiPB-F/50PEI silica which at 75 °C and 1 bar CO2 captured 2.21 mmol/g.

  4. Gemini胺功能离子液体吸收CO2的研究%Study on CO2 capture by gemini amine functional ionic liquid*

    Institute of Scientific and Technical Information of China (English)

    刘海燕; 赵秀丽; 李睿

    2011-01-01

    Taking a cue from the chemistry of aqueous organic amines reacting with CO2, amine functionalities can be added to ionic liquids to introduce specific and tunable chemical reactivity with CO2. The Gemini amine functional ionic liquid 1,4-bis(3-aminoethyl imidazolium-l-yl) butane bromide was synthesized with four methylene as spacer. The products were characterized by the way of FT-IR and 1H NMR. The results proved that they were all the objective products. Experimental of absorption result indicated that while CO2 uptake of ILs with Gemini amine-functionalized cations is much greater than is possible by physical absorption. The Gemini amine functional ionic liquid can react with CO, on 1:1 reaction stoichiometry.%受亲水有机胺与CO2进行化学反应的启发,将胺功能基团能引入到咪唑环上,合成含胺功能基团的离子液体.本研究以四个亚甲基为连接基,合成含胺功能基团的Gemini咪唑离子液体1,4一二(溴化3-乙胺基咪唑)丁烷,所合成的物质经红外、核磁共振氢谱表征确为目标产物.进行了简单的吸收实验,其对CO2的吸收比物理吸收高很多,可与CO2按照1:1的化学计量比进行化学反应.

  5. Stability of IRA-45 solid amine resin as a function of carbon dioxide absorption and steam desorption cycling

    Science.gov (United States)

    Wood, Peter C.; Wydeven, Theodore

    1987-01-01

    The removal of CO2 from the NASA Space Station's cabin atmosphere, which may be undertaken by a solid-amine water (steam)-desorbed system, is presently evaluated with a view to long-term amine resin stability and adsorption/desorption cycling by means of an automated laboratory flow-testing facility. While the CO2-adsorption capacity of the IRA-45 amine resin used gradually decreased over time, the rate of degradation significantly decreased after the first 10 cycles. Attention is given to the presence (and possible need for removal) of trimethylamine in the process air downstream of the resin bed.

  6. STUDIES ON RADICAL POLYMERIZATION OF METHYL METHACRYLATE INITIATED WITH ORGANIC PEROXIDE-AMINE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; SHUI Li; FENG Xinde

    1984-01-01

    Radical polymerization of methyl methacrylate (MMA) initiated with various diacyl peroxideamine systems was studied. Benzoyl peroxide (BPO) and lauroyl peroxide (LPO) were used as diacyl peroxide component, N,N-dimethyl aniline (DMA) and its para substituted derivatives, i.e., N,N-dimethyl-p-toluidine (DMT), p-hydroxymethyl-N,N-dimethyl aniline (HDMA), p-nitro-N,N-dimethyl aniline (NDMA) and p-dimethylamino benzaldehyde (DMAB) were used as amine components. It was found that the peroxide-DMT systems give higher rates of bulk polymerization Rp of MMA than the organic hydroperoxide-DMT systems with the following descending order BPO-DMT>LPO-DMT>CHP (cumene hydroperoxide)-DMT>TBH (tert-butyl hydroperoxide)-DMT.The aromatic tertiary amines possess obvious structural effect on the Rp values in the diacyl peroxideamine system. The overall activation energy of MMA polymerization was determined and the kinetics of polymerization of MMA initiated with BPO-DMT system was investigated.

  7. Dispersion of Pt Nanoparticle-Doped Reduced Graphene Oxide Using Aniline as a Stabilizer

    Directory of Open Access Journals (Sweden)

    Hyoung-Joon Jin

    2012-12-01

    Full Text Available In this study, a simple one-step method was developed to load small-sized Pt nanoparticles (3.1 ± 0.3 nm in large quantities (50 wt % on aniline-functionalized and reduced graphene oxide (r-fGO. In the process, an ethylene glycol solution and aniline-functionalized moiety play the roles of reducing agent and stabilizer for the Pt nanoparticles, respectively, without damaging the graphite structures of the r-fGO. The Pt nanoparticles loading on the surface of r-fGO with uniform dispersion have a great effect on the electrical conductivity.

  8. DFT modelling of the effect of strong magnetic field on Aniline molecule

    CERN Document Server

    Atci, H; Huseyinoglu, M; Arikan, B; Siddiki, A

    2016-01-01

    Aniline is an organic compound with the stoichiometric expression $C_{6}H_{5}NH_{2}$; consisting of a phenyl structure attached to an amino group. It is colorless, but it slowly oxidizes and resinifies in air, giving a red-brown tint to aged samples. Until now, there are only few researches on Aniline considering low magnetic fields. In this work, we study Aniline molecule under different high magnetic fields using density functional theory methods including independent particle and interacting particle approaches. We obtain charge density distrubitions, energy dispersions, dipol moments and forces as functions of position and magnetic field. Our numerical results show that magnetic field affects electron density of the considered molecule. As a result, it is observed that there are strong fluctuations in energy dispersion.

  9. Sonophotocatalytic Degradation of Amines in Water

    Science.gov (United States)

    Verman, Mayank; Pankaj

    Hazardous effects of various amines, produced in the environment from the partial degradation of azo dyes and amino acids, adversely affect the quality of human life through water, soil and air pollution and therefore needed to be degraded. A number of such studies are already available in the literature, with or without the use of ultrasound, which have been summarized briefly. The sonochemical degradation of amines and in the combination with a photocatalyst, TiO2 has also been discussed. Similar such degradation studies for ethylamine (EA), aniline (A), diphenylamine (DPA) and naphthylamine (NA) in the presence of ultrasound, TiO2 and rare earths (REs); La, Pr, Nd, Sm and Gd, in aqueous solutions at 20 kHz and 250 W power have been carried out and reported, to examine the combinatorial efficacy of ultrasound in the presence of a photocatalyst and rare earth ions with reactive f-electrons.

  10. Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejing, E-mail: kejinghuang@163.co [College of Chemistry and Chemical Engineering, Xinyang Normal University, 237 Chang' an Road, Xinyang, He' nan 464000 (China); Niu Dejun; Liu Xue; Wu Zhiwei; Fan Yang; Chang Yafang; Wu Yingying [College of Chemistry and Chemical Engineering, Xinyang Normal University, 237 Chang' an Road, Xinyang, He' nan 464000 (China)

    2011-02-28

    Direct electrochemistry and electrocatalysis of catalase (Cat) was studied based on a nano-composite film consisting of amine functionalized graphene and gold nanoparticles (AuNPs) modified glassy carbon electrode. Graphene was synthesized chemically by Hummers and Offeman method and then was functionalized with amino groups via chemical modification of carboxyl groups introduced on the graphene surface. The nano-composite film showed an obvious promotion of the direct electron transfer between Cat and the underlying electrode, which attributed to the synergistic effect of graphene-NH{sub 2} and AuNPs. The resultant bioelectrode retained its biocatalytic activity and offered fast and sensitive H{sub 2}O{sub 2} quantification. Under the optimized experimental conditions, hydrogen peroxide was detected in the concentration range from 0.3 to 600 {mu}M with a detection limit of 50 nM at S/N = 3. The biosensor exhibited some advantages, such as short time respond (2 s), high sensitivity (13.4 {mu}A/mM) and good reproducibility (RSD = 5.8%).

  11. N-Heterocyclic Carbene-Palladium Complex Catalyzed Oxidative Carbonylation of Amines to Ureas

    Institute of Scientific and Technical Information of China (English)

    ZHENG,Shu-Zhan; PENG,Xin-Gao; LIU,Jian-Ming; SUN,Wei; XIA,Chun-Gu

    2007-01-01

    Palladium carbene shows high efficiency without any promoter on oxidative carbonylation of amines to ureas and a new type of palladium carbene complex containing both an aniline and an NHC ligands was found to be the active species for the reaction.

  12. Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane☆

    Institute of Scientific and Technical Information of China (English)

    Zhongqi Ren; Xinyan Zhu; Wei Liu; Wei Sun; Weidong Zhang; Junteng Liu

    2014-01-01

    Hol ow fiber renewal liquid membrane (HFRLM) method was proposed based on the surface renewal theory for re-moval of aniline from waste water. The system of aniline+D2EHPA in kerosene+HCl was used. Aqueous layer diffusion in the feed phase is the rate-control step, and the influence of lumen side flow rate on the mass transfer is more significant than that on the shel side. The resistance of overal mass transfer is greatly reduced because of the mass transfer intensification in the renewal of liquid membrane on the lumen side. The driving force of mass transfer can be considered as a function of distribution equilibrium, and the overall mass transfer coefficient in-creases with the increase of pH in the feed solution, HCl concentration and D2EHPA concentration, and decreases with the increase of initial aniline concentration. A mass transfer model is developed for HFRLM based on the surface renewal theory. The calculated results agree wel with experimental results. The HFRLM process is a promising method for aniline wastewater treatment.

  13. Biodegradability of Chlorinated Anilines in Waters

    Institute of Scientific and Technical Information of China (English)

    CHAO WANG; GUAN-GHUA LU; YAN-JIE ZHOU

    2007-01-01

    Objective To identify the bacteria tolerating chlorinated anilines and to study the biodegradability of o-chloroaniline and its coexistent compounds. Methods Microbial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicant. Biodegradability of chlorinated anilines was determined using domesticated complex bacteria as an inoculum by shaking-flask test. Results The complex bacteria were identified, consisting of Xanthomonas, Bacillus alcaligenes,Acinetobacter, Pseudomonas, and Actinomycetaceae nocardia. The obtained complex bacteria were more tolerant to o-chloroaniline than mixture bacteria in natural river waters. The effects of exposure concentration and inoculum size on the biodegradability of o-chloroaniline were analyzed, and the biodegradation characteristics of single o-chloroaniline and 2,4-dichloroaniline were compared with the coexistent compounds. Conclusion The biodegradation rates can be improved by decreasing concentration of compounds and increasing inoculum size of complex bacteria. When o-chloroaniline coexists with aniline, the latter is biodegraded prior to the former, and as a consequence the metabolic efficiency of o-chloroaniline is improved with the increase of aniline concentration. Meanwhile, when o-chloroaniline coexists with 2,4-dichloroaniline, the metabolic efficiency of 2,4-dichloroaniline is markedly improved.

  14. Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose.

    Science.gov (United States)

    Gebald, Christoph; Wurzbacher, Jan A; Borgschulte, Andreas; Zimmermann, Tanja; Steinfeld, Aldo

    2014-02-18

    A fundamental analysis of single-component and binary CO2 and H2O adsorption of amine-functionalized nanofibrillated cellulose is carried out in the temperature range of 283-353 K and at CO2 partial pressures in the range of 0.02-105 kPa, where the ultralow partial pressure range is relevant for the direct capture of CO2 from atmospheric air. Single-component CO2 and H2O adsorption experimental data are fitted to the Toth and Guggenheim-Anderson-de Boer models, respectively. Corresponding heats of adsorption, derived from explicit solutions of the van't Hoff equation, are -50 kJ/mol CO2 and -48.8 kJ/mol H2O. Binary CO2/H2O adsorption measurements for humid air reveal that the presence of H2O at 2.55 kPa enhances CO2 adsorption, while the presence of CO2 at 0.045 kPa does not influence H2O adsorption. The energy demand of the temperature-vacuum-swing adsorption/desorption cycle for delivering pure CO2 from air increases significantly with H2O adsorption and indicates the need to reduce the hygroscopicity of the adsorbent.

  15. Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air.

    Science.gov (United States)

    Gebald, Christoph; Wurzbacher, Jan A; Tingaut, Philippe; Steinfeld, Aldo

    2013-09-03

    The stability of amine-functionalized nanofibrilated cellulose sorbent for direct air capture of CO2 is investigated during temperature-vacuum-swing (TVS) cycling. The presence of O2 at 90 °C degrades the sorbent, reducing its CO2 adsorption capacity by 30% after 15 h of treatment in moist air with a dew point of 22 °C. In contrast, exposure to moist CO2 at 90 °C with a dew point of 22 °C does not deteriorate its CO2 adsorption capacity after 15 h. Performing 100 TVS consecutive cycles, with CO2 adsorption from ambient air containing 400-530 ppm CO2 at 30 °C and 60% relative humidity and with CO2 desorption at 90 °C and 30 mbar, resulted in a reduction of the equilibrium CO2 adsorption capacity by maximum 5%. The average CO2 adsorption capacity during TVS cyclic operation is 0.90 mmol CO2/g.

  16. Dynamical insights into (1)pi sigma(*) state mediated photodissociation of aniline.

    Science.gov (United States)

    King, Graeme A; Oliver, Thomas A A; Ashfold, Michael N R

    2010-06-07

    This article reports a comprehensive study of the mechanisms of H atom loss in aniline (C(6)H(5)NH(2)) following ultraviolet excitation, using H (Rydberg) atom photofragment translational spectroscopy. N-H bond fission via the low lying (1)pi sigma(*) electronic state of aniline is experimentally demonstrated. The (1)pi sigma(*) potential energy surface (PES) of this prototypical aromatic amine is essentially repulsive along the N-H stretch coordinate, but possesses a shallow potential well in the vertical Franck-Condon region, supporting quasibound vibrational levels. Photoexcitation at wavelengths (lambda(phot)) in the range 293.859 nm > or = lambda(phot) > or = 193.3 nm yields H atom loss via a range of mechanisms. With lambda(phot) resonant with the 1(1)pi pi(*) resonantly enhanced at the one photon energy by the first (1)pi pi(*) excited state (the 1(1)pi pi(*) state). Direct excitation to the first few quasibound vibrational levels of the (1)pi sigma(*) state (at wavelengths in the range 269.513 nm > or = lambda(phot) > or = 260 nm) induces N-H bond fission via H atom tunneling through an exit barrier into the repulsive region of the (1)pi sigma(*) PES, forming anilino (C(6)H(5)NH) radical products in their ground electronic state, and with very limited vibrational excitation; the photo-prepared vibrational mode in the (1)pi sigma(*) state generally evolves adiabatically into the corresponding mode of the anilino radical upon dissociation. However, as the excitation wavelength is reduced (lambda(phot) conical intersection. Changes in product kinetic energy disposal once lambda(phot) approaches approximately 230 nm likely indicate that the photodissociation pathways of aniline proceed via direct excitation to the (higher) 2(1)pi pi(*) state. Analysis of the anilino fragment vibrational energy disposal-and thus the concomitant dynamics of (1)pi sigma(*) state mediated photodissociation-provides a particularly interesting study of competing sigma(*) <-- pi and

  17. Gravimetric analysis of the adsorption and desorption of CO2 on amine-functionalized mesoporous silica mounted on a microcantilever array.

    Science.gov (United States)

    Lee, Dongkyu; Jin, Yusung; Jung, Namchul; Lee, Jaehyuk; Lee, Jinwoo; Jeong, Yong Shik; Jeon, Sangmin

    2011-07-01

    The kinetics of CO(2) adsorption and desorption over amine-functionalized mesoporous silica were investigated using silicon microcantilever arrays. Three types of mesoporous silica with different pore sizes were synthesized and functionalized with a variety of amine molecules. After depositing the silica sorbents onto the free end of each cantilever in an array, mass changes due to the adsorption and desorption of CO(2) were determined in situ with picogram sensitivity by measuring variations in the cantilever frequencies. The adsorption and desorption kinetics were found to be diffusion-controlled, and the kinetics were accelerated by increasing the temperature and pore size. The activation energies for adsorption and desorption of CO(2) were determined from Arrhenius plots.

  18. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xinbo [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Wang, Danjun [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Li, Kebin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Zhen, Yanzhong [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Hu, Huaiming [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Xue, Ganglin, E-mail: xglin707@163.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China)

    2014-09-15

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.

  19. Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: Synthesis and characterization of the recyclable nanobiocatalyst.

    Science.gov (United States)

    Abdollahi, Kourosh; Yazdani, Farshad; Panahi, Reza

    2017-01-01

    Magnetic nanoparticles (MNPs) were synthesized using the chemical co-precipitation method. Then the nanoparticles were coated with silica via hydrolysis of tetraethyl orthosilicate using the sol-gel process. The silica coated magnetic nanoparticles were amine-functionalized with 3-aminopropyltriethoxysilane/ethanol solution. Subsequently, the nanoparticles were added to a solution of cyanuric chloride in tetrahydrofuran to synthesize cyanuric chloride-functionalized magnetic nanoparticles (Cy-MNPs). For covalent immobilization of tyrosinase, Cy-MNPs were added to a freshly prepared tyrosinase solution and the mixture was shaken. The FTIR spectra, as well as EDX, analysis proved the covalent immobilization of tyrosinase on the nanoparticles. The magnetic properties of tyrosinase-immobilized magnetic nanoparticles (tyrosinase-MNPs) were specified by VSM analysis. TEM images indicated that the most of the tyrosinase-MNPs had a semi-spherical shape with an average size of 17nm. The synthesized nanoparticles had a high loading capacity of 194mg tyrosinase/g nanoparticles with an immobilization yield of 69%. The optimum condition for both free and immobilized tyrosinase was found at pH 7.0 and 35°C. The immobilized enzyme was active after treatment of the particles at various pHs and temperatures for 100min. In addition, reusability of the immobilized enzyme was investigated and it was proved its suitability to be used for more than 7 cycles. Also, tyrosinase-MNPs remained about 70% of its initial activity after storing at 4°C for 40days. This nanobiocatalyst with interesting properties is promising for practical application in wastewater treatment and biosensor development. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Amines in the Earth’s Atmosphere: A Density Functional Theory Study of the Thermochemistry of Pre-Nucleation Clusters

    Directory of Open Access Journals (Sweden)

    Jason Herb

    2011-02-01

    Full Text Available The impact of organic species which are present in the Earth’s atmosphere on the burst of new particles is critically important for the understanding of the molecular nature of atmospheric nucleation phenomena. Amines have recently been proposed as possible stabilizers of binary pre-nucleation clusters. In order to advance the understanding of atmospheric nucleation phenomena, a quantum-chemical study of hydrogen-bonded complexes of binary sulfuric acid-water clusters with methyl-, dimethyl- and trimethylamines representing common atmospheric organic species, vegetation products and laboratory impurities has been carried out. The thermochemical stability of the sulfuric acid-amines-water complexes was found to be higher than that of the sulfuric acid-ammonia-water complexes, in qualitative agreement with the previous studies. However, the enhancement in stability due to amines appears to not be large enough to overcome the difference in typical atmospheric concentrations of ammonia and amines. Further research is needed in order to address the existing uncertainties and to reach a final conclusion about the importance of amines for the atmospheric nucleation.

  1. Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release

    Science.gov (United States)

    Szegedi, A.; Popova, M.; Goshev, I.; Mihály, J.

    2011-05-01

    MCM-41 and SBA-15 silica materials with spherical morphology and different particle sizes were synthesized and modified by post-synthesis method with 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, were carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N 2 physisorption, thermal analysis, elemental analysis and FT-IR spectroscopy. Surface modification with amino groups resulted in high degree of ibuprofen loading and slow rate of release for MCM-41, whereas it was the opposite for SBA-15. The adsorbed drug content and the delivery rate can be predetermined by the choice of mesoporous material with the appropriate structural characteristics and surface functionality.

  2. Recycle Adsorption of Cu2+ on Amine-functionalized Mesoporous Silica Monolithic

    Institute of Scientific and Technical Information of China (English)

    ZHAO Da-zhou; JING Shu-bo; XU Jia-ning; YANG Hong; ZHENG Wei; SONG Tian-you; ZHANG Ping

    2013-01-01

    3-Aminopropyltriethoxysilane functionalized worm-like mesoporous silica monolithic(WMSM-NH2) was prepared and used as a new regenerable adsorbent for the removal of Cu2+ ions.The analysis results show that the WMSM-NH2 monolithic had a high efficiency value of 99.3% for Cu2+ remediation when the Cu2+ solution was at an initial concentration of 10.32 mg/L.The regeneration study of the WMSM-NH2 monolithic presented that the adsorption efficiency of 89.0% was remained and a mass of 92.0% was left after seven adsorption-desorption cycles were executed.The monolithic material with high resistance to the acid and good mechanical stability can facilitate the operations of adsorption and regeneration of the adsorbent.

  3. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors

    Science.gov (United States)

    Almeida, Patrick V.; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A.

    2014-08-01

    Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA+ relies on the capability of the conjugated HA+ to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA+-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA+) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA+ nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of Un

  4. Facile Synthesis of Amine-Functionalized Eu3+-Doped La(OH3 Nanophosphors for Bioimaging

    Directory of Open Access Journals (Sweden)

    Sun Conroy

    2011-01-01

    Full Text Available Abstract Here, we report a straightforward synthesis process to produce colloidal Eu3+-activated nanophosphors (NPs for use as bioimaging probes. In this procedure, poly(ethylene glycol serves as a high-boiling point solvent allowing for nanoscale particle formation as well as a convenient medium for solvent exchange and subsequent surface modification. The La(OH3:Eu3+ NPs produced by this process were ~3.5 nm in diameter as determined by transmission electron microscopy. The NP surface was coated with aminopropyltriethoxysilane to provide chemical functionality for attachment of biological ligands, improve chemical stability and prevent surface quenching of luminescent centers. Photoluminescence spectroscopy of the NPs displayed emission peaks at 597 and 615 nm (λex = 280 nm. The red emission, due to 5D0 → 7F1 and 5D0 → 7F2 transitions, was linear with concentration as observed by imaging with a conventional bioimaging system. To demonstrate the feasibility of these NPs to serve as optical probes in biological applications, an in vitro experiment was performed with HeLa cells. NP emission was observed in the cells by fluorescence microscopy. In addition, the NPs displayed no cytotoxicity over the course of a 48-h MTT cell viability assay. These results suggest that La(OH3:Eu3+ NPs possess the potential to serve as a luminescent bioimaging probe.

  5. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors.

    Science.gov (United States)

    Almeida, Patrick V; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-09-01

    Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA(+)) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA(+) nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA(+) relies on the capability of the conjugated HA(+) to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA(+)-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.

  6. Effect of amine functionalized polyethylene on clay-silver dispersion for polyethylene nanocomposites

    Science.gov (United States)

    Sánchez-Valdes, S.; Ibarra-A, M. C.; Ramírez-V, E.; Ramos-V, L. F.; Martinez-C, J. G.; Romero-G, J.; Ledezma-P, A. S.; Rodriguez-F, O. S.

    2014-08-01

    The compatibilization provided by maleic anhydride (MA) and 2-[2-(dimethylamino)-ethoxy] ethanol (DMAE) functionalized polyethylene for forming polyethylene-based nanocomposites was studied and compared. MA was grafted into PE by melt mixing to obtain PEgMA (compatibilizer 1), thereafter, PEgMA was reacted with DMAE and an antioxidant also by melt mixing to obtain PAgDMAE (compatibilizer 2). These compatibilizers were reacted using ultrasound with a solution of AgNO3 0.04 M and Ethylene glycol. Ammonium hydroxide was added in a ratio of 2:1 molar with respect to silver nitrate. These silver coated compatibilizers were mixed with PE and nano-clay (Cloisite I28E), thus forming the different hybrid PE-clay-silver nanocomposites. FTIR confirmed the formation of these two compatibilizers. All the compatibilized nanocomposites had better filler (clay and silver) dispersion and exfoliation compared to the uncompatibilized PE nanocomposites. X-ray diffraction, mechanical and antimicrobial properties attained showed that the PEgDMAE produced the better dispersed PE, clay and silver nanocomposites. The obtained nanocomposites showed outstanding antimicrobial properties against bacteria, Escherichia coli and fungus, Aspergillus niger. It is concluded that the PEgDMAE offers an outstanding capability for preparing nanocomposites with highly exfoliated and dispersed filler into the PE matrix.

  7. Dispersion quality of amine functionalized multiwall carbon nanotubes plays critical roles in polymerase chain reaction enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, Meral, E-mail: meralyuce@sabanciuniv.edu; Budak, Hikmet [Sabanci University, Nanotechnology Research and Application Centre (Turkey)

    2014-12-15

    Impact of dispersion quality of NH{sub 2}-MWCNTs (13–18 nm in diameter with a length between 1 and 12 µm, >99 % purity) in the amplification efficiency of a random DNA oligonucleotide library (96 bp) was investigated. Amplification yield in the presence of non-filtered NH{sub 2}-MWCNT dispersion, filtered NH{sub 2}-MWCNT dispersion and surface-attached NH{sub 2}-MWCNTs was explored, and physical interactions between NH{sub 2}-MWCNTs and major PCR reagents including DNA template, wild type Taq DNA polymerase enzyme and primers were determined using high resolution polyacrylamide gel electrophoresis, dynamic light scattering, UV–Vis-NIR spectroscopy and scanning electron microscopy techniques. The results revealed that presence of NH{sub 2}-MWCNT dispersion which was sonicated, centrifuged and filtered, enhanced the total PCR efficiency up to 70 % while the presence of NH{sub 2}-MWCNT only centrifuged after sonication, inhibited the reaction significantly at similar concentrations. Furthermore, the NH{sub 2}-MWCNTs coupled covalently onto magnetic microspheres, contributed for the specificity enhancement whilst decreasing the amplification efficiency by 30 % at the maximum concentration, which suggests a removable enhancement system for sensitive applications. On the other hand, the relative hydrodynamic size distribution measurements displayed a clear difference between the filtered NH{sub 2} and non-filtered NH{sub 2}-MWCNT water dispersions, which justifies the inhibition of the amplification by the non-filtered NH{sub 2}-MWCNTs containing big agglomerates and bundles. Finally, we demonstrated that major PCR components adsorb onto the NH{sub 2}-MWCNTs with diverse affinities, and maintain their functions after adsorption, which provides a good framework to further develop tunable NH{sub 2}-MWCNT-carriers to be utilized in various nanobiotechnology and material science applications.

  8. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashwani Kumar; Talat, Mahe [Banaras Hindu University, Nanoscience and Nanotechnology Unit, Department of Physics (India); Singh, D. P. [Southern Illinois University Carbondale, Department of Physics (United States); Srivastava, O. N., E-mail: hepons@yahoo.co [Banaras Hindu University, Nanoscience and Nanotechnology Unit, Department of Physics (India)

    2010-06-15

    We report a simple and cost effective way for synthesis of metallic nanoparticles (Au and Ag) using natural precursor clove. Au and Ag nanoparticles have been synthesized by reducing the aqueous solution of AuCl{sub 4} and AgNO{sub 3} with clove extract. One interesting aspect here is that reduction time is quite small (few minutes instead of hours as compared to other natural precursors). We synthesized gold and silver nanoparticles of different shape and size by varying the ratio of AuCl{sub 4} and AgNO{sub 3} with respect to clove extract, where the dominant component is eugenol. The evolution of Au and Ag nanoparticles from the reduction of different ratios of AuCl{sub 4} and AgNO{sub 3} with optimised concentration of the clove extract has been evaluated through monitoring of surface plasmon behaviour as a function of time. The reduction of AuCl{sub 4} and AgNO{sub 3} by eugenol is because of the inductive effect of methoxy and allyl groups which are present at ortho and para positions of proton releasing -OH group as two electrons are released from one molecule of eugenol. This is followed by the formation of resonating structure of the anionic form of eugenol. The presence of methoxy and allyl groups has been confirmed by FTIR. To the best of our knowledge, use of clove as reducing agent, the consequent very short time (minutes instead of hours and without any scavenger) and the elucidation of mechanism of reduction based on FTIR analysis has not been attempted earlier.

  9. Magnetism of aniline modified graphene-based materials

    Science.gov (United States)

    Komlev, A. A.; Makarova, T. L.; Lahderanta, E.; Semenikhin, P. V.; Veinger, A. I.; Tisnek, T. V.; Magnani, G.; Bertoni, G.; Pontiroli, D.; Ricco, M.

    2016-10-01

    The possibility of producing magnetic graphene nanostructures by functionalization with aromatic radicals has been investigated. Functionalization of graphene basal plane was performed with three types of anilines: 4-bromoaniline, 4-nitroaniline and 4-chloroaniline. The samples were examined by composition analysis with energy-dispersive X-ray spectroscopy and magnetic measurements by SQUID magnetometry and electron paramagnetic resonance. Initial graphene was produced by thermal exfoliation. Both pristine and functionalized samples demonstrate strong paramagnetic contribution at low temperatures, which originates from intrinsic defects. Attachment of an organic molecule with the formation of a covalent bond with carbon atom on the basal plane generates a delocalized spin in the graphene π - electron system. Nitroaniline proved to be the most suitable and sufficiently reactive to attach to the basal plane carbon atoms in large amounts. Functionalization of graphene with nitroaniline resulted in appearance both ferromagnetic and antiferromagnetic features with a clear antiferromagnetic transition near 120 K.

  10. Facile fabrication of a stable and recyclable lipase@amine-functionalized ZIF-8 nanoparticles for esters hydrolysis and transesterification

    Science.gov (United States)

    Cheong, Ling-Zhi; Wei, Yayu; Wang, Hongbin; Wang, Zhiying; Su, Xiurong; Shen, Cai

    2017-08-01

    Zeolitic imidazolate frameworks (ZIF) represent one of the metal organic frameworks (MOF) with high potential for enzyme immobilization due to their exceptional chemical and thermal stability, negligible cytotoxicity, and easy synthesis under mild biocompatible conditions. Amine-functionalized ZIF-8 (An-ZIF-8) are capable of forming multipoint attachment via hydrogen bonding with lipase which will immobilize and further enhance stabilization of lipase. In addition, increased hydrophilicity of An-ZIF-8 will increase partitioning of An-ZIF-8 immobilized lipase at the aqueous/organic interface which enable lipase to expose its active site and retain its catalytic activity at its highest. Present study reports the use of ZIF-8 and An-ZIF-8 nanoparticles as carrier for Burkholderia cepacia lipase (BCL), compares the ester hydrolysis and transesterification activities of immobilized lipase with those of free lipase, and evaluates the reusability and recovery rate of the immobilized lipase. An-ZIF-8 nanoparticles (average 130.42 ± 0.55 nm) were facilely synthesized via mixing ZIF-8 nanoparticles with ammonia hydroxide solution. Despite having similar characteristics of high crystallinity and forming cuboid-like particles, An-ZIF-8 demonstrated significantly ( P esters hydrolysis and transesterification activities with those of free BCL. BCL@An-ZIF-8 demonstrated superior catalytic stability in comparison to BCL@ZIF-8 with retainment of more than 80% of its initial hydrolysis and transesterification activity for at least 10 repeated runs. In addition, more than 80% of the BCL@An-ZIF-8 can be easily recovered during each cycle of the reusability test through simple centrifugation.

  11. Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids.

    Science.gov (United States)

    Goodrich, Brett F; de la Fuente, Juan C; Gurkan, Burcu E; Lopez, Zulema K; Price, Erica A; Huang, Yong; Brennecke, Joan F

    2011-07-28

    Amine-functionalized anion-tethered ionic liquids (ILs) trihexyl(tetradecyl)phosphonium asparaginate [P(66614)][Asn], glutaminate [P(66614)][Gln], lysinate [P(66614)][Lys], methioninate [P(66614)][Met], prolinate [P(66614)][Pro], taurinate [P(66614)][Tau], and threoninate [P(66614)][Thr] were synthesized and investigated as potential absorbents for CO(2) capture from postcombustion flue gas. Their physical properties, including density, viscosity, glass transition temperature, and thermal decomposition temperature were determined. Furthermore, the CO(2) absorption isotherms of [P(66614)][Lys], [P(66614)][Tau], [P(66614)][Pro], and [P(66614)][Met] were measured using a volumetric method, and the results were modeled with two different Langmuir-type absorption models. The most important result of this study is that the viscosity of [P(66614)][Pro] only increased by a factor of 2 when fully complexed with 1 bar of CO(2) at room temperature. This is in stark contrast to the other chemically reacted ILs investigated here and all other amino acid-based ILs reported in the literature, which dramatically increase in viscosity, typically by 2 orders of magnitude, when complexed with CO(2). The unique behavior of [P(66614)][Pro] is likely due to its ring structure, which limits the number and availability of hydrogen atoms that can participate in a hydrogen bonding network. We found that water can be used to further reduce the viscosity of the CO(2)-complexed IL, while only slightly decreasing the CO(2) capacity. Finally, from temperature-dependent isotherms, we estimate a heat of absorption of -63 kJ/mol of CO(2) for the 1:1 reaction of CO(2) with [P(66614)][Pro], when we use the two-reaction model.

  12. A Density Functional Study on the Hydrolysis Process of Non-classical Transplatin(Ⅱ) with Two Same Planar Heterocycle Amines

    Institute of Scientific and Technical Information of China (English)

    YUAN Qing-Hui; ZHOU Li-Xin

    2007-01-01

    In the present work, the hydrolysis process of non-classical transplatin(Ⅱ) with two same planar heterocycle amines has been studied using hybrid density functional theory (B3LYP) and IEF-PCM solvation models. Optimizations were performed at the B3LYP level using a combined basis set of (LanL2DZ+6-31+G(d,p)) with single-point energy evaluations using the B3LYP/6-31++G(3df,2pd) approach in vacuo and in aqueous solution. For the obtained structures of reactants, intermediates, transition states, and products, both thermodynamic (reaction energies and Gibbs energies) and kinetic (reaction barriers) characteristics were estimated. In comparison with cisplatin, decreased activation energies were obtained. The result implies that the non-classical transplatin with two same planar heterocycle amines increases the equatorial steric effect and lowers reaction barriers, which may assist in designing novel Pt-based anticancer drugs.

  13. Recyclable decoration of amine-functionalized magnetic nanoparticles with Ni(2+) for determination of histidine by photochemical vapor generation atomic spectrometry.

    Science.gov (United States)

    Hu, Yuan; Wang, Qi; Zheng, Chengbin; Wu, Li; Hou, Xiandeng; Lv, Yi

    2014-01-07

    It is critically important to accurately determine histidine since it is an indicator for many diseases when at an abnormal level. Here, an inexpensive and simple method using an amine-functionalized magnetic nanoparticle-based Ni(2+)-histidine affinity pair system was developed for highly sensitive and selective detection of histidine in human urine by photochemical vapor generation atomic spectrometry. Ni(2+) was first bound to the amine groups of the amine-functionalized magnetic nanoparticles and then liberated to solution via the highly specific interaction between the histidine and Ni(2+) in the presence of histidine. The liberated histidine-Ni(2+) complex was exposed to UV irradiation in the presence of formic acid to form gaseous nickel tetracarbonyl, which was separated from the sample matrix and determined by atomic absorption/fluorescence spectrometry. Compared to other methods, this approach promises high sensitivity, simplicity in design, and convenient operation. The need for organic solvents, enzymatic reactions, separation processes, chemical modification, expensive instrumentations, and sophisticated and complicated pretreatment is minimized with this strategy. A limit of detection of 1 nM was obtained and provided tens-to-hundreds of fold improvements over that achieved with conventional methods. The protocol was evaluated by analysis of several urine samples with good recoveries and showed great potential for practical application.

  14. Fine-Tuning of the Carbon Dioxide Capture Capability of Diamine-Grafted Metal-Organic Framework Adsorbents Through Amine Functionalization.

    Science.gov (United States)

    Jo, Hyuna; Lee, Woo Ram; Kim, Nam Woo; Jung, Hyun; Lim, Kwang Soo; Kim, Jeong Eun; Kang, Dong Won; Lee, Hanyeong; Hiremath, Vishwanath; Seo, Jeong Gil; Jin, Hailian; Moon, Dohyun; Han, Sang Soo; Hong, Chang Seop

    2017-02-08

    A combined sonication and microwave irradiation procedure provides the most effective functionalization of ethylenediamine (en) and branched primary diamines of 1-methylethylenediamine (men) and 1,1-dimethylethylenediamine (den) onto the open metal sites of Mg2 (dobpdc) (1). The CO2 capacities of the advanced adsorbents 1-en and 1-men under simulated flue gas conditions are 19 wt % and 17.4 wt %, respectively, which are the highest values reported among amine-functionalized metal-organic frameworks (MOFs) to date. Moreover, 1-den exhibits both a significant working capacity (12.2 wt %) and superb CO2 uptake (11 wt %) at 3 % CO2 . Additionally, this framework showcases the superior recyclability; ultrahigh stability after exposure to O2 , moisture, and SO2 ; and exceptional CO2 adsorption capacity under humid conditions, which are unprecedented among MOFs. We also elucidate that the performance of CO2 adsorption can be controlled by the structure of the diamine ligands grafted such as the number of amine end groups or the presence of side groups, which provides the first systematic and comprehensive demonstration of fine-tuning of CO2 uptake capability using different amines.

  15. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines

    Directory of Open Access Journals (Sweden)

    Simona Bettini

    2015-11-01

    Full Text Available Cu,H2-bis-porphyrin (Cu,H2-Por2, in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir–Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase to a surface plasmon resonance (SPR substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.

  16. BIODEGRADATION OF AROMATIC AMINE COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    M. Delnavaz ، B. Ayati ، H. Ganjidoust

    2008-10-01

    Full Text Available Three moving bed biofilm reactors were used to treat synthesized wastewater of aromatic amine compounds including aniline, para-diaminobenzene and para-aminophenol that are found in many industrial wastewaters. The reactors with cylindrical shape had an internal diameter and an effective depth of 10 and 60 cm, respectively. The reactors were filled with light expanded clay aggregate as carriers and operated in an aerobic batch and continuous conditions. Evaluation of the reactors' efficiency was done at different retention time of 8, 24, 48 and 72 h with an influent COD from 100 to 3500 mg/L (filling ratio of 50%. The maximum obtained removal efficiencies were 90% (influent COD=2000 mg/L, 87% (influent COD=1000 mg/L and 75% (influent COD=750 mg/L for aniline, para-diaminobenzene and para-aminophenol, respectively. In the study of decrease in filling ratio from 50 to 30 percent, 6% decrease for both para-diaminobenzene and para-aminophenol and 7% increase for aniline degradation were obtained. The removal efficiency was decreased to about 10% after 15 days of continuous loading for each of the above three substrates. In the shock loading test, initially the COD removal rate was decreased in all reactors, but after about 10 days, it has been approached to the previous values. Finally, biodegradability of aromatic amines has been proved by nuclear magnetic resonance system.

  17. Hydrothermal Reactivity of Amines

    Science.gov (United States)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral

  18. Kinetic study on electrochemical oxidation of catechols in the presence of cycloheptylamine and aniline: Experiments and digital simulation

    Indian Academy of Sciences (India)

    DAVOOD NEMATOLLAHI; FATEMEH GHASEMI; SADEGH KHAZALPOUR; FAHIMEH VARMAGHANI

    2016-12-01

    Oxidative coupling reaction of some catechols has been studied by cyclic voltammetry at the glassy carbon electrode in different experimental conditions. The electrogenerated o-banzoquinone participates in a coupling reaction with anionic and dianionic forms of catechol. Based on EC mechanism, the observed homogenous rate constants of the coupling reaction of catechols were estimated by analyzing the cyclic voltammetric responses using the simulation software DIGIELCH. This paper deals with reaction of o-benzoquinones derived by the oxidation of catechol (CAT), 3-methylcatechol (3-MC), 3-methoxycatechol(3-MOC) and 3,4-dihydroxybenzoic acid (3,4-DHBA) with cycloheptylamine (a primary aliphatic amine) and aniline (a primary aromatic amine) as nucleophiles to gain mechanistic insight. The outcome indicates participation of o-benzoquinone in the Michael addition reaction with the studied primary amines. The best fit of theexperimental and simulated results was obtained for ECE mechanism. The calculated/estimated homogeneous rate constants (kobs) for Michael addition reaction were found to vary in the order CAT>3-MC>3-MOC>3,4- DHBA and CAT>3,4-DHBA>3-MC>3-MOC for cycloheptylamine and aniline, respectively. These data are in agreement with the trend of electronic properties (electron-donating/-withdrawing) of the substitutions on the catechol ring.

  19. Study of interaction and adsorption of aromatic amines by manganese oxides and their role in chemical evolution

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2017-04-01

    The role of manganese oxides in concentrating organic moieties and offering catalytic activity for prebiotic reactions is investigated by studying their interaction with different aromatic amines such as aniline, p-chloroaniline, p-toluidine and p-anisidine. For all amines, metal oxides showed highest adsorption at neutral pH. The order of their adsorption capacity and affinity as revealed by the Langmuir constants was found to be manganosite (MnO) > bixbyite (Mn2O3) > hausmannite (Mn3O4) > and pyrolusite (MnO2). At alkaline pH, these manganese oxides offered their surfaces for oxidation of amines to form coloured oligomers. Analysis of the oxidation products by gas chromatography-mass spectrometry showed the formation of a dimer from p-anisidine and p-chloroaniline, while a trimer and tetramer is formed from p-toluidine and aniline, respectively. A reaction mechanism is proposed for the formation of the oligomers. While field-emission scanning electron microscopic studies confirm the binding phenomenon, the Fourier transform infrared spectroscopy analysis suggests that the mechanism of binding of amines on the manganese oxides was primarily electrostatic. The adsorption behaviour of the studied aromatic amines followed the order: p-anisidine > p-toluidine > aniline > p-chloroaniline, which is related to the basicities and structure of the amines. Our studies confirmed the significance of the role of manganese oxides in prebiotic chemistry.

  20. Advance in the synthesis of aromatic amine via direct amination

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Arylamines are very common and important organic molecules. Acting as important intermediates in medical and chemical industry, they are widely used in the synthesis of pharmaceuticals, dyes, pesticides, rubber additives, isocyanates and heterocyclic compounds. The traditional methods for the synthesis of arylamines include several steps. The production of aniline, for example, includes the following steps: the production of nitro-benzene by the nitration of benzene, and the reduction of the resulting nitro-benzene by catalytic hydrogenation or other reduction ways[1-6]; or the substitution of phenol or chlorbenzene by amino groups, etc.[7-10]. There are several disadvantages for these methods: low atom utilization, strict operation condition, large amount of by-products and serious environmental pollution, which could not afford for the needs of a sustainable civilization. So there has been growing interest in the direct amination to produce arylamines recently. With the direct methods, the multi- step reaction may change into one step, the atom utilization can be evidently improved, and the by-products H2 or/and H2O are harmless to the environment.

  1. Highly functionalized 1,2-diamino compounds through reductive amination of amino acid-derived β-keto esters.

    Directory of Open Access Journals (Sweden)

    Paula Pérez-Faginas

    Full Text Available 1,2-Diamine derivatives are valuable building blocks to heterocyclic compounds and important precursors of biologically relevant compounds. In this respect, amino acid-derived β-keto esters are a suitable starting point for the synthesis of β,γ-diamino ester derivatives through a two-step reductive amination procedure with either simple amines or α-amino esters. AcOH and NaBH(3CN are the additive and reducing agents of choice. The stereoselectivity of the reaction is still an issue, due to the slow imine-enamine equilibria through which the reaction occurs, affording mixtures of diastereoisomers that can be chromatographically separated. Transformation of the β,γ-diamino esters into pyrrolidinone derivatives allows the configuration assignment of the linear compounds, and constitutes an example of their potential application in the generation of molecular diversity.

  2. [Catalytic wet air oxidation of phenol and aniline over multi-walled carbon nanotubes].

    Science.gov (United States)

    Li, Xiang; Yang, Shao-xi; Zhu, Wan-peng; Wang, Jian-bing; Wang, Li

    2008-09-01

    Multi-walled carbon nanotubes (MWNTs) without any metal ions were used as the catalyst, and investigated in the CWAO of phenol and aniline in a batch reactor. The structures of the MWNTs were characterized by means of SEM and TEM. It showed that the MWNTs, treated with the mixed acid (HNO3-H2SO4), displayed excellent activity and stability in the CWAO. Under the reaction temperature of 160 degrees C, the total pressure of 2.5 MPa, the initial concentration of 1000 mg/L and loading the catalyst of 1.6 g/L, 100% phenol and 86% COD were removed after 120 min reaction in CWAO of phenol. At the same operating conditions, 83% aniline and 68% COD removals were obtained in the CWAO of aniline solution when the initial concentration of aniline was 2 000 mg/L. The surface functional groups played the important role for the high activity of the MWNTs in CWAO of organic compounds.

  3. Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO2 capture

    OpenAIRE

    Yu, Yinghao; Mai, Jingzhang; Wang, Lefu; Li, Xuehui; Jiang, Zheng; Wang, Furong

    2014-01-01

    CO2 capture on solid materials possesses significant advantages on the operation cost, process for large-scale CO2 capture and storage (CCS) that stimulates great interest in exploring high-performance solid CO2 adsorbents. A ship-in-a-bottle strategy was successfully developed to prepare the [APMIM]Br@NaY host–guest system in which an amine-functionalized ionic liquid (IL), 1-aminopropyl-3-methylimidazolium bromide ([APMIM]Br), was in-situ encapsulated in the NaY supercages. The genuine host...

  4. Simultaneous Detection of Phenols and Anilines in Oilfield Waste Water

    Institute of Scientific and Technical Information of China (English)

    Yuan Cunguang; Feng Chengwu

    1996-01-01

    @@ Phenols and aromatic anilines are monitored in many countries , because both of them pollute environment seriously. The methods of 4-AAP(4-Aminoantipyrine)photometric detection of volatile phenols and naphthalene -ethyl-diamine-azo photometric detection of anilines are recommended by the National Environmental Protection Bureau, China (NEPBC).

  5. Degradation Characteristics of Aniline with Ozonation and Subsequent Treatment Analysis

    Directory of Open Access Journals (Sweden)

    Zhaoqian Jing

    2015-01-01

    Full Text Available Owing to the toxicity and low biodegradability of aniline in water, its removal usually needs high cost processes such as adsorption and advanced oxidation. The degradation characteristics of aniline during ozonation were studied. The influence of operation parameters such as contact time, initial concentration, ozone dosage, temperature, and pH was also investigated. With ozone dosage of 22 mg/L, neutral pH, and room temperature, the ozonation removed aniline efficiently. After two hours’ ozonation, aniline removal reached 93.57%, and the corresponding COD removal was 31.03%, which indicated most of aniline was transformed into intermediates. At alkaline conditions, the aniline was more susceptible to being removed by ozonation owing to more hydroxyl radicals’ production. The results of GC-MS indicated many intermediates appeared during the process of ozonation such as butane diacid, oxalic acid, and formic acid. The intermediates produced during ozonation were more biodegradable than aniline; thus the ozonation of such organic compounds as aniline could be integrated with biological processes for further removal.

  6. Synthesis and antibacterial activity of Schiff bases and amines derived from alkyl 2-(2-formyl-4-nitrophenoxy)alkanoates.

    Science.gov (United States)

    Goszczyńska, Agata; Kwiecień, Halina; Fijałkowski, Karol

    A series of novel Schiff bases and secondary amines were obtained in good yields, as a result of the reductive amination of alkyl 2-(2-formyl-4-nitrophenoxy)alkanoates with both aniline and 4-methoxyaniline under established mild reaction conditions. Sodium triacetoxyborohydride as well as hydrogen in the presence of palladium on carbon were used as efficient reducing agents of the Schiff bases, in both direct and stepwise reductive amination processes. The Schiff bases, amines, and amine hydrochlorides were designed as potential antibacterial agents, and structure-activity relationship could be established following in vitro assays against Gram-positive and Gram-negative bacteria. The minimal inhibitory concentration and zone of inhibition were also determined. In these tests, some of Schiff bases and secondary amine hydrochlorides showed moderate-to-good activity against Gram-positive bacteria, including S. aureus, M. luteus, and S. mutans.

  7. Synthesis and photochromic properties of thiolated N-salicylidene-anilines on silver nanoparticles

    Science.gov (United States)

    Mahmoodi, Nosrat O.; Aghajani, Nafiseh; Ghavidast, Atefeh

    2017-01-01

    Here, we synthesized the salicylidene-aniline (anil) photochromes with thiol group (thiolated Schiff base) to modify silver nanoparticles (AgNPs) surface and their photochromic properties were described. A photochromic response related to the light induced tautomerization of the anils functionality along with bathochromic shift in the absorption band is observed in AgNPs surfaces. We have also examined that enol→keto photoisomerization rate by UV light for functionalized AgNPs are clearly faster than free anils.

  8. Ladder Oligo(m-aniline)s: Derivatives of Azaacenes with Cross-Conjugated [pi]-Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajca, Andrzej; Boraty; #324; ski, Przemys; #322; aw J.; Olankitwanit, Arnon; Shiraishi, Kouichi; Pink, Maren; Rajca, Suchada (UNL); (Indiana)

    2012-04-30

    We describe the synthesis and electronic properties of ladder oligomers of poly(m-aniline) that may be considered as derivatives of azaacenes with cross-conjugated {pi}-systems. Syntheses of ladder oligo(m-aniline)s with 9 and 13 collinearly fused six-membered rings employed Pd-catalyzed aminations and Friedel-Crafts-based ring closures. Structures were confirmed by either X-ray crystallography or correlations between DFT-computed and experimental spectroscopic data such as {sup 1}H, {sup 13}C, and {sup 15}N NMR chemical shifts and electronic absorption spectra. All compounds have planar 'azaacene' moieties. The experimental band gaps E{sub g} {approx} 3.5-3.65 eV, determined by the UV-vis absorption onsets, were in agreement with the TD-DFT-computed vertical excitation energies to the S{sub 1} state. Fluorescence quantum yields of up to 20% were found. Electrochemically estimated HOMO energies of -4.8 eV suggested propensity for a facile one-electron oxidation and just sufficient environmental stability toward oxygen (O{sub 2}). For two oligomers with 'tetraazanonacene' moieties, potentials of E{sup 4+/3+} {approx} 1.6-1.7 V vs SCE were determined for four-electron oxidation to the corresponding tetraradical tetracations.

  9. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  10. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-11-01

    Full Text Available The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC. Levels of reactive oxygen species (ROS, malondialdehyde (MDA, and glutathione (GSH, activities of superoxide dismutase (SOD and catalase (CAT, mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  11. Oxidant-free conversion of primary amines to nitriles.

    Science.gov (United States)

    Tseng, Kuei-Nin T; Rizzi, Andrew M; Szymczak, Nathaniel K

    2013-11-06

    An amide-derived NNN-Ru(II) hydride complex catalyzes oxidant-free, acceptorless, and chemoselective dehydrogenation of primary and secondary amines to the corresponding nitriles and imines with liberation of dihydrogen. The catalyst system tolerates oxidizable functionality and is selective for the dehydrogenation of primary amines (-CH2NH2) in the presence of amines without α-CH hydrogens.

  12. Synthesis and characterization of poly iodine anilines by plasma; Sintesis y caracterizacion de poliyodoanilinas por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez P, M.A

    2003-07-01

    The polymers and organic materials present a numberless quantity of applications. However, it has not been but until recent times that it has been found that some of these materials can possess semiconductor properties. This has generated a great interest for the investigation in the area of semiconductor polymers. The poly aniline (Pan) it is one of the main semiconductor polymers because their electric properties change depending on the doping and of the state of oxidation to the one the molecules are subjected. The synthesis of this material has been carried out by means of chemical oxidation or electrochemistry. In this work a study is presented on the formation of poly aniline polymers with halogens chemically united to the aniline ring, poly(m-iodine aniline) (m-PAnI) and poly(m-chloroaniline) (m-PAnCI) for plasma. The plasma is generated by means of discharges of splendor with an r f amplifier to 13.5 MHz to drops pressures (10{sup -2} mbar). The synthesized polymers were obtained in form of thin film in the walls of the reactor and in the substrate introduced in the one. The electric properties of the polymers were evaluated in function of the time of reaction. Also, the conductivity of the polymers was compared synthesized in this work with reported data of synthesized poly aniline and doped with iodine for plasma. The highest values in conductivity are obtained in the poly aniline where the halogens are chemically connected to the ring that if it is doped with iodine. The atomic proportion in the surface of the polymers was analyzed by dispersive energy spectroscopy with which is deduced that the halogens come off of the molecules of the monomers or of the polymer in formation and that the atoms of iodine get lost more easily than those of chlorine. Other techniques that were used to characterize to the poly aniline were scanning electron microscopy, infrared spectroscopy, thermal gravimetric analysis and X-ray diffraction. The results are presented in

  13. Magnetism of aniline modified graphene-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Komlev, A.A., E-mail: KomlevAnton@hotmail.com [St. Petersburg State Electrotechnical University, St. Petersburg, 197376 (Russian Federation); Lappeenranta University of Technology, 53851 Lappeenranta (Finland); Makarova, T.L. [St. Petersburg State Electrotechnical University, St. Petersburg, 197376 (Russian Federation); Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Lahderanta, E. [St. Petersburg State Electrotechnical University, St. Petersburg, 197376 (Russian Federation); Semenikhin, P.V.; Veinger, A.I.; Tisnek, T.V. [Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Magnani, G. [Università degli studi di Parma, Dipartimento di Fisica e Scienze della Terra, 43124 Parma (Italy); Bertoni, G. [Istituto dei Materiali per l’Elettronica e il Magnetismo(IMEM-CNR), 43124 Parma (Italy); Pontiroli, D.; Ricco, M. [Università degli studi di Parma, Dipartimento di Fisica e Scienze della Terra, 43124 Parma (Italy)

    2016-10-01

    The possibility of producing magnetic graphene nanostructures by functionalization with aromatic radicals has been investigated. Functionalization of graphene basal plane was performed with three types of anilines: 4-bromoaniline, 4-nitroaniline and 4-chloroaniline. The samples were examined by composition analysis with energy-dispersive X-ray spectroscopy and magnetic measurements by SQUID magnetometry and electron paramagnetic resonance. Initial graphene was produced by thermal exfoliation. Both pristine and functionalized samples demonstrate strong paramagnetic contribution at low temperatures, which originates from intrinsic defects. Attachment of an organic molecule with the formation of a covalent bond with carbon atom on the basal plane generates a delocalized spin in the graphene π – electron system. Nitroaniline proved to be the most suitable and sufficiently reactive to attach to the basal plane carbon atoms in large amounts. Functionalization of graphene with nitroaniline resulted in appearance both ferromagnetic and antiferromagnetic features with a clear antiferromagnetic transition near 120 K. - Highlights: • Graphene was produced and functionalized by chloro-, bromo- and nitroaniline. • Nitroaniline was found to be the most suitable compound for functionalization. • Both SQUID and EPR revealed a carbon-related antiferromagnetic transition near 120 K. • Antiferomagnetic interactions are attributed to the extended defects on basal plane.

  14. ZnAl2O4@SiO2 nanocomposite catalyst for the acetylation of alcohols, phenols and amines with acetic anhydride under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Saeed Farhadi; Kosar Jahanara

    2014-01-01

    A ZnAl2O4@SiO2 nanocomposite was prepared from metal nitrates and tetraethyl orthosilicate by the sol-gel process, and characterized by X-ray diffraction, Fourier transform infrared, transmission electron microscopy, and N2 adsorption-desorption measurements. The nanocomposite was tested as a heterogeneous catalyst for the acetylation of alcohols, phenols, and amines under solvent-free conditions. Under optimized conditions, efficient acetylation of these substrates with acetic anhy-dride over the ZnAl2O4@SiO2 nanocomposite was obtained. Acetylation of anilines and primary aliphatic amines proceeded rapidly at room temperature, while the reaction time was longer for the acetylation of alcohols and phenols, showing that an amine NH2 group can be selectively acetylated in the presence of alcoholic or phenolic OH groups. The catalyst can be reused without obvious loss of catalytic activity. The catalytic activity of the ZnAl2O4@SiO2 nanocomposite was higher than that of pure ZnAl2O4. The method gives high yields, and is clean, cost effective, compatible with sub-strates having other functional groups and it is suitable for practical organic synthesis.

  15. Interaction of L-lysine and soluble elastin with the semicarbazide-sensitive amine oxidase in the context of its vascular-adhesion and tissue maturation functions.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2010-04-01

    The copper-containing quinoenzyme semicarbazide-sensitive amine oxidase (EC 1.4.3.21; SSAO) is a multifunctional protein. In some tissues, such as the endothelium, it also acts as vascular-adhesion protein 1 (VAP-1), which is involved in inflammatory responses and in the chemotaxis of leukocytes. Earlier work had suggested that lysine might function as a recognition molecule for SSAO\\/VAP-1. The present work reports the kinetics of the interaction of L-lysine and some of its derivatives with SSAO. Binding was shown to be saturable, time-dependent but reversible and to cause uncompetitive inhibition with respect to the amine substrate. It was also specific, since D-lysine, L-lysine ethyl ester and epsilon-acetyl-L-lysine, for example, did not bind to the enzyme. The lysine-rich protein soluble elastin bound to the enzyme relatively tightly, which may have relevance to the reported roles of SSAO in maintaining the extracellular matrix (ECM) and in the maturation of elastin. Our data show that lysyl residues are not oxidized by SSAO, but they bind tightly to the enzyme in the presence of hydrogen peroxide. This suggests that binding in vivo of SSAO to lysyl residues in physiological targets might be regulated in the presence of H(2)O(2), formed during the oxidation of a physiological SSAO substrate, yet to be identified.

  16. An integrative technique based on synergistic coremoval and sequential recovery of copper and tetracycline with dual-functional chelating resin: roles of amine and carboxyl groups.

    Science.gov (United States)

    Ling, Chen; Liu, Fu-Qiang; Xu, Chao; Chen, Tai-Peng; Li, Ai-Min

    2013-11-27

    A novel chelating resin (R-AC) bearing dual-functional groups (amino and carboxyl groups) was self-synthesized and it showed superior properties on synergistic coremoval of Cu(II) and tetracycline (TC) to commercial resins (amine, carboxyl, and hydrophobic types), which was deeply investigated by equilibrium and kinetic tests in binary, preloading, and saline systems. The adsorption of TC on R-AC was markedly enhanced when coexisted with Cu(II), up to 13 times of that in sole system, whereas Cu(II) uptake seldom decreased in the copresence of TC. Decomplexing-bridging, which included [Cu-TC] decomplexing and [R-Cu] bridging for TC, was demonstrated as the leading mechanism for the synergistic coremoval of Cu(II) and TC. Carboxyl groups of R-AC played a dominant role in decomplexing of [Cu-TC] complex and releasing free TC. Cu(II) coordinated with amine groups of R-AC was further proved to participate in bridging interaction with free TC, and the bridging stoichiometric ratio ([NH-Cu]: TC) possibly was 2:1. About 96.9% of TC and 99.3% of Cu could be sequentially recovered with dilute NaOH followed by HCl. Considering stable application for five cycles in simulated and practical wastewater, R-AC shows great potential in green and simple coremoval of antibiotic and heavy metal ions.

  17. Synthesis of Macrocyclic Hexaoxazole (6OTD Dimers, Containing Guanidine and Amine Functionalized Side Chains, and an Evaluation of Their Telomeric G4 Stabilizing Properties

    Directory of Open Access Journals (Sweden)

    Keisuke Iida

    2010-01-01

    Full Text Available Structure-activity relationship studies were carried out on macrocyclic hexaoxazole (6OTD dimers, whose core structure stabilizes telomeric G-quadruplexes (G4. Two new 6OTD dimers having side chain amine and guanidine functional groups were synthesized and evaluated for their stabilizing ability against a telomeric G4 DNA sequence. The results show that the 6OTD dimers interact with the DNA to form 1:1 complexes and stabilize the antiparallel G4 structure of DNA in the presence of potassium cation. The guanidine functionalized dimer displays a potent stabilizing ability of the G4 structure, as determined by using a FRET melting assay (ΔTm=14 °C.

  18. SYNTHESIS OF NOVEL BI-FUNCTIONAL COPOLYMER BEA RING STERICALLY HINDERED PHENOL AND HINDERED AMINE GROUPS VIA RING-OPENING METATHESIS POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Bo-yong Xue; Kenichi Ogata; Akinori Toyota

    2008-01-01

    Norbornene derivatives exo,endo-2-[2-(3,5-di-tert-butyl-4-hydroxyphenoxy)-acetoxy]methyl-5-norbornene(M1) and 3,3,5,5-tetramethyl-4-piperidinyl 5-norbornene-exo,endo-2-carboxylate(M2)were synthesized and polymerized by RuCl2(=CHPh)(PCy3)2 to prepare a novel kind of bi-functional polymer bearing sterically hindered phenol (SHP) and hindered amine(HLAS)groups via ring-opening metathesis polymerization(ROMP).The resulting copolymers were characterized by gel permeation chromatography(GPC),'H-NMR and differential scanning calorimetry (DSC).The number average molecular weight(Mn)and functional unit content of the resulting copolymer could be regulated by varying the concentration of catalyst and monomer feed.

  19. Interaction energies of CO2·amine complexes: effects of amine substituents.

    Science.gov (United States)

    Jorgensen, Kameron R; Cundari, Thomas R; Wilson, Angela K

    2012-10-25

    To focus on the identification of potential alternative amine carbon capture compounds, CO(2) with methyl, silyl, and trifluoromethyl monosubstituted and disubstituted amine compounds were studied. Interaction energies of these CO(2)·amine complexes were determined via two methods: (a) an ab initio composite method, the correlation consistent composite approach (ccCA), to determine interaction energies and (b) density functional theories, B3LYP/aug-cc-pVTZ and B97D/aug-cc-pVTZ. Substituent effects on the interaction energies were examined by interchanging electron donating and electron withdrawing substituents on the amine compounds. The calculations suggested two different binding modes, hydrogen bonding and acid-base interactions, which arise from the modification of the amine substituents, echoing previous work by our group on modeling protein·CO(2) interactions. Recommendations have been noted for the development of improved amine scrubber complexes.

  20. Analysis of primary aromatic amines (PAA) in black nylon kitchenware 2014

    DEFF Research Database (Denmark)

    Trier, Xenia; Granby, Kit

    shall be accompanied by appropriate documentation, including analytical results showing that it meets the requirements concerning the release of primary aromatic amines. 25 samples of black nylon kitchenware each of three articles were tested for migration of primary aromatic amines (PAA), using 3......% acetic acid as food simulant at an exposure temperature of 100°C and time from ½-4 hours, depending on the foreseeable use of the utensil. The samples were collected by the Norwegian Food Safety Authority at importers and retail shops. Of the 20 PAAs analysed. four PAAs were detected, being aniline (ANL...

  1. Implication for functions of the ectopic adipocyte copper amine oxidase (AOC3 from purified enzyme and cell-based kinetic studies.

    Directory of Open Access Journals (Sweden)

    Sam H Shen

    Full Text Available AOC3 is highly expressed in adipocytes and smooth muscle cells, but its function in these cells is currently unknown. The in vivo substrate(s of AOC3 is/are also unknown, but could provide an invaluable clue to the enzyme's function. Expression of untagged, soluble human AOC3 in insect cells provides a relatively simple means of obtaining pure enzyme. Characterization of enzyme indicates a 6% titer for the active site 2,4,5-trihydroxyphenylalanine quinone (TPQ cofactor and corrected k(cat values as high as 7 s(-1. Substrate kinetic profiling shows that the enzyme accepts a variety of primary amines with different chemical features, including nonphysiological branched-chain and aliphatic amines, with measured k(cat/K(m values between 10(2 and 10(4 M(-1 s(-1. K(m(O(2 approximates the partial pressure of oxygen found in the interstitial space. Comparison of the properties of purified murine to human enzyme indicates k(cat/K(m values that are within 3 to 4-fold, with the exception of methylamine and aminoacetone that are ca. 10-fold more active with human AOC3. With drug development efforts investigating AOC3 as an anti-inflammatory target, these studies suggest that caution is called for when screening the efficacy of inhibitors designed against human enzymes in non-transgenic mouse models. Differentiated murine 3T3-L1 adipocytes show a uniform distribution of AOC3 on the cell surface and whole cell K(m values that are reasonably close to values measured using purified enzymes. The latter studies support a relevance of the kinetic parameters measured with isolated AOC3 variants to adipocyte function. From our studies, a number of possible substrates with relatively high k(cat/K(m have been discovered, including dopamine and cysteamine, which may implicate a role for adipocyte AOC3 in insulin-signaling and fatty acid metabolism, respectively. Finally, the demonstrated AOC3 turnover of primary amines that are non-native to human tissue suggests

  2. Removal of aromatic amines from water by montmorillonite-(cerium or zirconium) phosphate crosslinked compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Pradas, E.; Villafranca-Sanchez, M.; Urena-Amate, M.D. (Univ. of Almeria (Spain). Dept. of Inorganic Chemistry); Del Rey-Bueno, F.; Garcia-Rodriguez, A. (Univ. of Granada (Spain). Dept. of Inorganic Chemistry)

    To evaluate the potential use of two montmorillonite-(Ce or Zr) phosphate crosslinked compounds in removing organic pollutants such as aniline, p-toluidine, and p-acetylaniline from water, adsorption experiments were performed under conditions of varied temperature (288 and 308 K). Adsorption on the montmorillonite-Ce-phosphate compound was best described by a hyperbolic (H-type) isotherm, whereas for the montmorillonite-Zr-phosphate compound, S-type isotherms were obtained for p-toluidine and aniline and L-type for p-acetylaniline. Amines adsorption increases with increasing temperature on the cerium crosslinked material, while for the zirconium-crosslinked compound, adsorption decreases as temperature increases from 288 to 308 K, possibly due to a mainly physical process. Fourier-transform infrared (FTIR) spectroscopy indicated that at the pH generated by the adsorbents, the protonated species of these amines plays an important role in the adsorption process. X-ray diffraction analysis showed that the aromatic amines are intercalated into the adsorbents. For any given amine, the cerium-montmorillonite adsorbent shows a higher capacity of adsorption compared with zirconium-montmorillonite adsorbent, so it might be reasonably used in removing aromatic amines from water.

  3. Dynamical insights into 1πσ* state mediated photodissociation of aniline

    Science.gov (United States)

    King, Graeme A.; Oliver, Thomas A. A.; Ashfold, Michael N. R.

    2010-06-01

    This article reports a comprehensive study of the mechanisms of H atom loss in aniline (C6H5NH2) following ultraviolet excitation, using H (Rydberg) atom photofragment translational spectroscopy. N-H bond fission via the low lying π1σ∗ electronic state of aniline is experimentally demonstrated. The π1σ∗ potential energy surface (PES) of this prototypical aromatic amine is essentially repulsive along the N-H stretch coordinate, but possesses a shallow potential well in the vertical Franck-Condon region, supporting quasibound vibrational levels. Photoexcitation at wavelengths (λphot) in the range 293.859 nm≥λphot≥193.3 nm yields H atom loss via a range of mechanisms. With λphot resonant with the 1π1π∗←S0 origin (293.859 nm), H atom loss proceeds via, predominantly, multiphoton excitation processes, resonantly enhanced at the one photon energy by the first π1π∗ excited state (the 1π1π∗ state). Direct excitation to the first few quasibound vibrational levels of the π1σ∗ state (at wavelengths in the range 269.513 nm≥λphot≥260 nm) induces N-H bond fission via H atom tunneling through an exit barrier into the repulsive region of the π1σ∗ PES, forming anilino (C6H5NH) radical products in their ground electronic state, and with very limited vibrational excitation; the photo-prepared vibrational mode in the π1σ∗ state generally evolves adiabatically into the corresponding mode of the anilino radical upon dissociation. However, as the excitation wavelength is reduced (λphot<260 nm), N-H bond fission yields fragments with substantially greater vibrational excitation, rationalized in terms of direct excitation to 1π1π∗ levels, followed by coupling to the π1σ∗ PES via a 1π1π∗/π1σ∗ conical intersection. Changes in product kinetic energy disposal once λphot approaches ˜230 nm likely indicate that the photodissociation pathways of aniline proceed via direct excitation to the (higher) 2π1π∗ state. Analysis of the

  4. Poly(ortho-phenylenediamine-co-aniline) based copolymer with improved capacitance

    Science.gov (United States)

    Olmedo-Martínez, Jorge L.; Farías-Mancilla, Bárbara I.; Vega-Rios, Alejandro; Zaragoza-Contreras, E. Armando

    2017-10-01

    A poly(ortho-phenylenediamine-co-aniline) copolymer is synthesized via the oxidative route, using a 1:1 M ratio of aniline to ortho-phenylenediamine (oPDA) and ammonium persulfate as the oxidizing agent. Infrared spectroscopy indicates that the copolymer contains the functional groups typically present in polyaniline and poly(ortho-phenylenediamine); whereas UV-vis-NIR spectroscopy shows that the copolymer adopts a phenazine-type structure. Cyclic voltammetry evidences the copolymer synthesis, as a redox peak at -65 mV, different from those exhibited by polyaniline (160 mV and 600 mV) or poly(o-phenylenediamine) (-240 mV) is observed. Finally, electrochemical impedance spectroscopy and the charge/discharge test provide support to propose the copolymer application in electrodes for supercapacitors.

  5. A facile BPO-mediated ortho-hydroxylation and benzoylation of N-alkyl anilines for synthesis of 2-benzamidophenols.

    Science.gov (United States)

    Zhang, Zhi-Jing; Quan, Xue-Jing; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2014-06-20

    A facile benzoyl peroxide (BPO) mediated ortho-hydroxylation and benzoylation of N-alkyl anilines for the synthesis of 2-benzamidophenols has been developed. The reaction tolerates a wide range of functional groups and is a good method for the straightforward synthesis of valuable 2-benzamidophenols in good yields under mild conditions.

  6. Functionalized nanostructured silica by tetradentate-amine chelating ligand as efficient heavy metals adsorbent : Applications to industrial effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, Afsaneh [Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Younesi, Habibollah [Tarbiat Modares University, Noor (Iran, Islamic Republic of); Badiei, Alireza [University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Organofunctionalized nanostructured silica SBA-15 with tri(2-aminoethyl)amine tetradentate-amine ligand was synthesized and applied as adsorbent for the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from both synthetic wastewater and real paper mill and electroplating industrial effluents. The prepared materials were characterized by XRD, N{sub 2} adsorption-desorption, TGA, and FT-IR analysis. The Tren-SBA-15 was found to be a fast adsorbent for heavy metal ions from single solution with affinity for Cu{sup 2+}, Pb{sup 2+}, than for Cd{sup 2+} due to the complicated impacts of metal ion electronegativity. The kinetic rate constant decreased with increasing metal ion concentration due to increasing of ion repulsion force. The equilibrium batch experimental data is well described by the Langmuir isotherm. The maximum adsorption capacity was 1.85 mmol g{sup -1} for Cu{sup 2+}, 1.34 mmol g{sup -1} for Pb{sup 2+}, and 1.08 mmol g{sup -1} for Cd{sup 2+} at the optimized adsorption conditions (pH=4, T=323 K, t=2 h, C0=3 mmol L{sup -1}, and adsorbent dose=1 g L{sup -1}). All Gibbs energy was negative as expected for spontaneous interactions, and the positive entropic values from 103.7 to 138.7 J mol{sup -1} K{sup -1} also reinforced this favorable adsorption process in heterogeneous system. Experiment with real wastewaters showed that approximately a half fraction of the total amount of studied metal ions was removed within the first cycle of adsorption. Hence, desorption experiments were performed by 0.3M HCl eluent, and Tren-SBA-15 successfully reused for four adsorption/desorption cycles to complete removal of metal ions from real effluents. The regenerated Tren-SBA-15 displayed almost similar adsorption capacity of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} even after four recycles. The results suggest that Tren-SBA-15 is a good candidate as an adsorbent in the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from aqueous solutions.

  7. Interaction of protonated merocyanine dyes with amines in organic solvents

    Science.gov (United States)

    Ribeiro, Eduardo Alberton; Sidooski, Thiago; Nandi, Leandro Guarezi; Machado, Vanderlei Gageiro

    2011-10-01

    2,6-Diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate ( 1a) and 4-[(1-methyl-4(1 H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one ( 2a) were protonated in organic solvents (dichloromethane, acetonitrile, and DMSO) to form 1b and 2b, respectively. The appearance of the solvatochromic bands of 1a and 2a was studied UV-vis spectrophotometrically by deprotonation of 1b and 2b in solution in the presence of the following amines: aniline (AN), N-methylaniline (NMAN), N, N-dimethylaniline (NDAN), n-butylamine (BA), diethylamine (DEA), and triethylamine (TEA). Titrations of 1b and 2b with the amines were carried out and the binding constants were determined from the titration curves in each solvent, using a mathematical model adapted from the literature which considers the simultaneous participation of two dye: amine stoichiometries, 1:1 and 1:2. The data obtained showed the following base order for the two compounds in DMSO: BA > DEA > TEA, while aromatic amines did not cause any effect. In dichloromethane, the following base order for 1b was verified: TEA > DEA > BA ≫NDAN, while for 2b the order was: TEA > DEA > BA, suggesting that 1b is more acidic than 2b. The data in acetonitrile indicated for 1b and 2b the following order for the amines: DEA > TEA > BA. The diversity of the experimental data were explained based on a model that considers the level of interaction of the protonated dyes with the amines to be dependent on three aspects: (a) the basicity of the amine, which varies according to their molecular structure and the solvent in which it is dissolved, (b) the molecular structure of the dye, and (c) the solvent used to study the system.

  8. Multilayered Thin Films from Poly(amido amine)s and DNA

    NARCIS (Netherlands)

    Hujaya, S.D.; Engbersen, J.F.J.; Paulusse, J.M.J.

    2015-01-01

    Dip-coated multilayered thin films of poly(amido amine)s (PAAs) and DNA have been developed to provide surfaces with cell-transfecting capabilities. Three types of PAAs, differing in side chain functional groups, were synthesized and characterized for their properties in forming multilayered structu

  9. Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Vashist

    2012-08-01

    Full Text Available 1-Ethyl-3-(3-dimethylaminopropyl carbodiimide (EDC alone, and in combination with N-hydroxysuccinimide (NHS or sulfoNHS were employed for crosslinking anti-human fetuin A (HFA antibodies on 3-aminopropyltriethoxysilane (APTES-functionalized surface plasmon resonance (SPR gold chip and 96-well microtiter plate. The SPR immunoassay and sandwich enzyme linked immunosorbent immunoassay (ELISA for HFA clearly demonstrated that EDC crosslinks anti-HFA antibodies to APTES-functionalized bioanalytical platforms more efficiently than EDC/NHS and EDC/sulfoNHS at a normal pH of 7.4. Similar results were obtained by sandwich ELISAs for human Lipocalin-2 and human albumin, and direct ELISA for horseradish peroxidase. The more efficient crosslinking of antibodies by EDC to the APTES-functionalized platforms increased the cost-effectiveness and analytical performance of our immunoassays. This study will be of wide interest to researchers developing immunoassays on APTES-functionalized platforms that are being widely used in biomedical diagnostics, biosensors, lab-on-a-chip and point-of-care-devices. It stresses a critical need of an intensive investigation into the mechanisms of EDC-based amine-carboxyl coupling under various experimental conditions.

  10. Protocol for the Synthesis of Ortho-trifluoromethoxylated Aniline Derivatives.

    Science.gov (United States)

    Feng, Pengju; Ngai, Ming-Yu

    2016-01-19

    Molecules bearing trifluoromethoxy (OCF3) group often show desired pharmacological and biological properties. However, facile synthesis of trifluoromethoxylated aromatic compounds remains a formidable challenge in organic synthesis. Conventional approaches often suffer from poor substrate scope, or require use of highly toxic, difficult-to-handle, and/or thermally labile reagents. Herein, we report a user-friendly protocol for the synthesis of methyl 4-acetamido-3-(trifluoromethoxy)benzoate using 1-trifluoromethyl-1,2-benziodoxol-3(1H)-one (Togni reagent II). Treating methyl 4-(N-hydroxyacetamido)benzoate (1a) with Togni reagent II in the presence of a catalytic amount of cesium carbonate (Cs2CO3) in chloroform at RT afforded methyl 4-(N-(trifluoromethoxy)acetamido)benzoate (2a). This intermediate was then converted to the final product methyl 4-acetamido-3-(trifluoromethoxy)benzoate (3a) in nitromethane at 120 °C. This procedure is general and can be applied to the synthesis of a broad spectrum of ortho-trifluoromethoxylated aniline derivatives, which could serve as useful synthetic building blocks for the discovery and development of new pharmaceuticals, agrochemicals, and functional materials.

  11. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    Science.gov (United States)

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click

  12. Occurrence of aromatic amines and N-nitrosamines in the different steps of a drinking water treatment plant.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2012-09-15

    The occurrence of 24 amines within a full scale drinking water treatment plant that used chlorinated agents as disinfectants was evaluated for the first time in this research. Prior to any treatment (raw water), aniline, 3-chloroaniline, 3,4-dichloroaniline and N-nitrosodimethylamine were detected at low levels (up to 18 ng/L) but their concentration increased ∼10 times after chloramination while 9 new amines were produced (4 aromatic amines and 5 N-nitrosamines). Within subsequent treatments, there were no significant changes in the amine levels, although the concentrations of 2-nitroaniline, N-nitrosodimethylamine and N-nitrosodiethylamine increased slightly within the distribution system. Eleven of the 24 amines studied were undetected either in the raw and in the treatment plant samples analysed. There is an important difference in the behaviour of the aromatic amines and N-nitrosamines with respect to water temperature and rainfall events. Amine concentrations were higher in winter due to low water temperatures, this effect being more noticeable for N-nitrosamines. Aromatic amines were detected at their highest concentrations (especially 3,4-dichloroaniline and 2-nitroaniline) in treated water after rainfall events. These results may be explained by the increase in the levels of amine precursors (pesticides and their degradation products) in raw water since the rainfall facilitated the transport of these compounds from soil which was previously contaminated as a result of intensive agricultural practices.

  13. Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells

    Science.gov (United States)

    Wei, Huan; Wu, Xiao-Shuai; Zou, Long; Wen, Guo-Yun; Liu, Ding-Yu; Qiao, Yan

    2016-05-01

    An amine-terminated ionic liquid (IL-NH2) is applied to functionalize carbon nanotubes (CNTs) for improving the interfacial electron transfer of Shewanella putrefaciens (S. putrefaciens) anode in Microbial fuel cells (MFCs). The introduction of thin layer of ILs does not change the morphology of CNTs a lot but increases surface positive charges as well as nitrogen functional groups of the CNTs based anode. The CNT-IL composite not only improves the adhesion of S. putrefaciens cells but also promotes both of the flavin-mediated and the direct electron transfer between the S. putrefaciens cells and the anode. It is interesting that the CNT-IL is more favorable for the mediated electron transfer than for the direct electron transfer. The CNT-IL/carbon cloth anode delivers 3-fold higher power density than that of CNT anode and shows great long-term stability in the batch-mode S. putrefaciens MFCs. This CNT-IL could be a promising anode material for high performance MFCs.

  14. Baeyer-Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-aniline complex

    Institute of Scientific and Technical Information of China (English)

    Qing Hua Zhang; Shou Feng Wang; Zi Qiang Lei

    2007-01-01

    Sn-aniline complex was prepared by a simple procedure. Cyclic and acyclic ketones were oxidized into lactones or esters with very high selectivity and yield with 30% hydrogen peroxide in the presence of Sn-aniline complex.

  15. New Stable Cu(I) Catalyst Supported on Weakly Acidic Polyacrylate Resin for Green C-N Coupling: Synthesis of N-(Pyridin-4-yl)benzene Amines and N,N-Bis(pyridine-4-yl)benzene Amines.

    Science.gov (United States)

    Kore, Nitin; Pazdera, Pavel

    2016-12-22

    A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.

  16. New Stable Cu(I Catalyst Supported on Weakly Acidic Polyacrylate Resin for Green C-N Coupling: Synthesis of N-(Pyridin-4-ylbenzene Amines and N,N-Bis(pyridine-4-ylbenzene Amines

    Directory of Open Access Journals (Sweden)

    Nitin Kore

    2016-12-01

    Full Text Available A method for preparation of a new stable Cu(I catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG or electron withdrawing (EWG groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.

  17. Insights into amine binding to biaryl phosphine palladium oxidative addition complexes and reductive elimination from biaryl phosphine arylpalladium amido complexes via density functional theory.

    Science.gov (United States)

    Barder, Timothy E; Buchwald, Stephen L

    2007-10-03

    We present results on the binding of a variety amines to monoligated oxidative addition complexes of the type L1Pd(Ar)Cl, where L is 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos, 1) or 2-dicyclohexylphosphino-2',4',6'-tri-ispropylbiphenyl (XPhos, 2). The binding of an amine to oxidative addition complexes composed of 1 and 2 is more complex than with smaller ligands as intermediate Pd(II) complexes with bulky biaryl phosphine ligands disfavor amine binding to favorable conformations of oxidative addition complexes. Additionally, thermodynamic and kinetic parameters for reductive elimination from complexes of the type L1Pd(amido)Ph (where amido = EtNH, Me2N, PhNH) are discussed. From this data, we suggest a possible mechanism for (biaryl phosphine) Pd-catalyzed amination reactions that is more intricate than previously thought.

  18. Research of Influence of Aniline on the Growth of Ocean Algae

    Institute of Scientific and Technical Information of China (English)

    QIU Haiyuan; WANG Xian

    2005-01-01

    This article discusses the interaction of aniline and ocean algae based on the standard appraisal method of chemical medicine for algae toxicity. It is showed by experimental results that aniline has pretty toxic effects on algae. Suspended substances in water can offset some effects of aniline. It also discusses the dynamic constant of first order degradation reaction rate of algae on aniline from the point of view of chemical dynamics.

  19. Separation of Aniline Derivatives by Micellar Electrokinetic Capillary Chromatography

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Zhuo Bin YUAN

    2004-01-01

    A micellar electrokinetic capillary chromatography (MECC) was developed for the determination of aniline and 6 substituted anilines.The seven components were separated within 25 min in the buffer solution of 40 mmol/L sodium borate and 100 mmol/L SDS.It was found that the separation was dependent on operating voltage, pH value, borate and SDS concentrations.The analytical performance was examined in terms of linear response and reproducibility.Wastewater was determined by the established method.

  20. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols.

    Science.gov (United States)

    Harvey, Patricia J; Campanella, Bruno F; Castro, Paula M L; Harms, Hans; Lichtfouse, Eric; Schäffner, Anton R; Smrcek, Stanislav; Werck-Reichhart, Daniele

    2002-01-01

    Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an

  1. Synthesis, Characterization, and Biological Activity of 5-Phenyl-1,3,4-thiadiazole-2-amine Incorporated Azo Dye Derivatives

    Directory of Open Access Journals (Sweden)

    Chinnagiri T. Keerthi Kumar

    2013-01-01

    Full Text Available 5-Phenyl-1,3,4-thiadiazole-2-amine has been synthesized by single step reaction. A series of heterocyclic azodyes were synthesized by diazotisation of 5-phenyl-1,3,4-thiadiazole-2-amine by nitrosyl sulphuric acid followed by coupling with different coupling compounds such as 8-hydroxyquinoline, 2,6-diaminopyridine, 2-naphthol, N,N-dimethyl aniline, resorcinol, and 4,6-dihydroxypyrimidine. The dyes were characterized by UV-Vis, IR, 1H-NMR, 13C NMR, and elemental analysis. The synthesized compounds were also screened for biological activity.

  2. Study on preferential adsorption of cationic-style heavy metals using amine-functionalized magnetic iron oxide nanoparticles (MIONPs-NH2) as efficient adsorbents

    Science.gov (United States)

    Lin, Sen; Liu, Lili; Yang, Yong; Lin, Kuangfei

    2017-06-01

    Amine-functionalized magnetic iron oxide nanoparticles (MIONPs-NH2) were successfully synthesized via a simple method, which exhibited excellent adsorbents properties for cationic-type heavy metals. The adsorption and desorption performances of Cu2+, Zn2+, Cd2+, Pb2+ and Ni2+ were fully investigated in detail and the possible adsorption mechanism was proposed on the basis of various characterizations as well as the adsorption priority. As a result, the MIONPs-NH2 could remove metal cations rapidly depending on the complexation of amino groups on surface and the adsorption was both sensitive to pH and ionic strength. Moreover, the corresponding competitive adsorption processes and desorption experiments indicated that the as-synthesized sample has the strongest affinity and adsorption priority for Pb2+, followed by Cu2+ and Zn2+, and finally by Cd2+and Ni2+. The present study may provide a helpful direction for the application of the MIONPs-NH2 in wastewater treatments involving multiple heavy metal cations.

  3. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Science.gov (United States)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy

    2013-05-01

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO2) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO2 spheres (SiO2/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO2/Ag NPs with an experimental detection limit of 5 μM. It was found that the addition of Hg(II) ions (150 μM) into the solution of SiO2/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO2/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.

  4. Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO2 capture.

    Science.gov (United States)

    Yu, Yinghao; Mai, Jingzhang; Wang, Lefu; Li, Xuehui; Jiang, Zheng; Wang, Furong

    2014-08-08

    CO2 capture on solid materials possesses significant advantages on the operation cost, process for large-scale CO2 capture and storage (CCS) that stimulates great interest in exploring high-performance solid CO2 adsorbents. A ship-in-a-bottle strategy was successfully developed to prepare the [APMIM]Br@NaY host-guest system in which an amine-functionalized ionic liquid (IL), 1-aminopropyl-3-methylimidazolium bromide ([APMIM]Br), was in-situ encapsulated in the NaY supercages. The genuine host-guest systems were thoroughly characterized and tested in CO2 capture from simulated flue gas. It was evidenced the encapsulated ILs are more stable than the bulk ILs. These host-guest systems exhibited superb overall CO2 capture capacity up to 4.94 mmol g(-1) and the chemically adsorbed CO2 achieved 1.85 mmol g(-1) depending on the [APMIM]Br loading amount. The chemisorbed CO2 can be desorbed rapidly by flushing with N2 gas at 50 °C. The optimized [APMIM]Br@NaY system remains its original CO2 capture capacity in multiple cycling tests under prolonged harsh adsorption-desorption conditions. The excellent physicochemical properties and the CO2 capture performance of the host-guest systems offer them great promise for the future practice in the industrial CO2 capture.

  5. Biogenic amines in beer

    OpenAIRE

    Čiháková, Dagmar

    2016-01-01

    This thesis deals with the technological process of brewing beer, describes the raw materials needed for its production, and points out the useful and harmful substances contained in beer as biogenic amines (BA). Furthermore, there are described the issues of biogenic amines in food and primarily in beer, which is a histamine, putrescine, cadaverine, tyramine and tryptamine. In the practical section BA was determined in lager bottom-fermented beers from local microbreweries and large industri...

  6. Splenotoxicity associated with splenic sarcomas in rats fed high doses of D & C Red No. 9 or aniline hydrochloride.

    Science.gov (United States)

    Weinberger, M A; Albert, R H; Montgomery, S B

    1985-10-01

    A histopathologic review of F344 rat spleens from the National Toxicology Program-National Cancer Institute bioassays of barium salt of 5-chloro-2-(2-hydroxy-1-naphthalenyl)-azo-4-methylbenzenesulfonic acid [(D & C Red No. 9) CAS: 516-00-21] and aniline HCI (CAS: 142-04-1) was conducted to assess splenotoxic changes associated with splenic sarcomas induced by these aromatic amines. Four splenic changes--fatty metamorphosis (FM), splenic fibrosis (FIB), capsule hyperplasia (CH), and hemorrhage--were markedly increased in incidence and severity in males treated with high doses of either D & C Red No. 9 or aniline HCI. Females treated with high doses of either of these compounds showed similar but less severe changes. FIB and FM showed strong group correlations with tumor incidence (r greater than or equal to 0.87). All groups that demonstrated FM also demonstrated splenic sarcomas; groups without the FM lesions did not exhibit splenic tumors. The morphologic similarity of the FIB and CH lesions to the induced splenic sarcomas suggests that these lesions are preneoplastic. Moreover, the treatment-related splenic lesions appear to be precursors of the induced splenic sarcomas. Carcinogenicity studies with serial sacrifices at varying intervals will be required for experimental verification of these conclusions. A schema, based on the findings of the study, suggests a hypothetical pathway for the progression of the treatment-related splenic lesions from onset to tumor formation.

  7. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN).

    Science.gov (United States)

    Delnavaz, M; Ayati, B; Ganjidoust, H

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds.

  8. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Delnavaz, M. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ayati, B., E-mail: ayati_bi@modares.ac.ir [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ganjidoust, H. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of)

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds.

  9. Preparation of Poly(Aniline-co-p-Nitro Aniline by Spin-Coating and Study of the Effect of Thickness on Energy Gap

    Directory of Open Access Journals (Sweden)

    Hussein Falaihj HUSSEIN

    2014-05-01

    Full Text Available Thin films of a copolymer of aniline with p-nitro aniline were prepared from a dimethyl sulfoxide solution (DMSO by spin-coating. The solution of the polymer was spread on cover glass and at room temperature. The optical properties of the poly(aniline-co-p-nitro aniline were investigated at room temperature. An absorbance, transmission and reflectance were determined from UV-visible measurements. The absorption coefficients and bang gap of films material were developed. The thickness of the poly(aniline-co-p-nitro aniline thin layer on the glass was determined at the range from 1055 to 2033 nm.doi:10.14456/WJST.2014.19

  10. N-(2-Ferrocenylethyl-idene)-4-(trifluoro-meth-yl)aniline.

    Science.gov (United States)

    Imhof, Wolfgang

    2009-03-28

    The title compound, [Fe(C(5)H(5))(C(13)H(9)F(3)N)], was prepared by a condensation reaction from ferrocenylcarbaldehyde and 4-(trifluoro-meth-yl)aniline. The cyclo-penta-dienyl (Cp) rings are coplanar [dihedral angle = 1.4 (3)°] and the imine function is situated in the same plane. The aromatic substituent is bent out of the plane of the Cp ring to which the imine group is attached by 44.5 (4)°. The F atoms of the trifluoro-methyl substituent are disordered [occupancies 0.52 (2)/0.48 (2)].

  11. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation

    OpenAIRE

    Yang, Zhen-zhen; He, Liang-Nian

    2014-01-01

    Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs) and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li+ and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well ...

  12. Laser-induced thermal desorption of aniline from silica surfaces

    Science.gov (United States)

    Voumard, Pierre; Zenobi, Renato

    1995-10-01

    A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.

  13. Ultrasonic and spectral studies on charge transfer complexes of anisole and certain aromatic amines

    Science.gov (United States)

    Rajesh, R.; Raj Muhamed, R.; Justin Adaikala Baskar, A.; Kannappan, V.

    2016-10-01

    Stability constants of two complexes of anisole with aniline and N-methylaniline (NMA) are determined from the measured ultrasonic velocity in n-hexane medium at four different temperatures. Acoustic and excess thermo acoustic parameters [excess ultrasonic velocity (uE), excess molar volume (VE), excess internal pressure (πiE)] are reported for these systems at four different temperatures. The trend in acoustic and excess parameters with concentration in the two systems establishes the formation of hydrogen bonded complexes between anisole and the two amines. Thermodynamic properties are computed for the two complexes from the variation in K with temperature. The formation of these complexes is also established by UV spectral method and their spectral characteristics and stability constants are determined. K values of these complexes obtained by ultrasonic and UV spectroscopic techniques agree well. Aniline forms more stable complex than N-methylaniline with anisole in n-hexane medium.

  14. Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives.

    Science.gov (United States)

    Timoshenko, Mariya A; Kharitonov, Yurii V; Shakirov, Makhmut M; Bagryanskaya, Irina Yu; Shults, Elvira E

    2016-02-01

    A selective synthesis of 7- or 14-nitrogen containing tricyclic diterpenoids was completed according to a strategy in which the key step was the catalyzed direct allylic amination of methyl 14α-hydroxy-15,16-dihydroisopimarate with a wide variety of nitrogenated nucleophiles. It was revealed that the selectivity of the reaction depends on the nature of nucleophile. The catalyzed reaction of the mentioned diterpenoid allylic alcohol with 3-nitroaniline, 3-(trifluoromethyl)aniline, and 4-(trifluoromethyl)aniline yield the subsequent 7α-, 7β- and 14αnitrogen-containing diterpenoids. The reaction with 2-nitroaniline, 4-nitro-2-chloroaniline, 4-methoxy-2-nitroaniline, phenylsulfamide, or tert-butyl carbamate proceeds with the formation of 7α-nitrogen-substituted diterpenoids as the main products.

  15. Carbon dioxide adsorption in amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology.

    Science.gov (United States)

    Ethiraj, Jayashree; Albanese, Elisa; Civalleri, Bartolomeo; Vitillo, Jenny G; Bonino, Francesca; Chavan, Sachin; Shearer, Greig C; Lillerud, Karl Petter; Bordiga, Silvia

    2014-12-01

    A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations.

  16. Dispersive liquid-liquid microextraction based on amine-functionalized Fe₃O₄ nanoparticles for the determination of phenolic acids in vegetable oils by high-performance liquid chromatography with UV detection.

    Science.gov (United States)

    Shi, Zhihong; Qiu, Lingna; Zhang, Dan; Sun, Mengyuan; Zhang, Hongyi

    2015-08-01

    A novel dispersive liquid-liquid microextraction method based on amine-functionalized Fe3O4 magnetic nanoparticles was developed for the determination of six phenolic acids in vegetable oils by high-performance liquid chromatography. Amine-functionalized Fe3O4 was synthesized by a one-pot solvothermal reaction between Fe3O4 and 1,6-hexanediamine and characterized by transmission electron microscopy and Fourier transform infrared spectrophotometry. A trace amount of phosphate buffer solution (extractant) was adsorbed on bare Fe3O4-NH2 nanoparticles by hydrophilic interaction to form the "magnetic extractant". Rapid extraction could be achieved while the "magnetic extractant" on amine-functionalized Fe3O4 nanoparticles was dispersed in the sample solution by vortexing. After extraction, the "magnetic extractant" was collected by application of an external magnet. Some important parameters, such as pH and volume of extraction and desorption solvents, the extraction and desorption time needed were carefully investigated and optimized to achieve the best extraction efficiency. Under the optimal conditions, satisfactory extraction recoveries were obtained for the six phenolic acids in the range of 84.2-106.3%. Relative standard deviations for intra- and inter-day precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied for the determination of six phenolic acids in eight kinds of vegetable oils.

  17. Tris{2-[(2-aminobenzylideneamino]ethyl}amine

    Directory of Open Access Journals (Sweden)

    Perla Elizondo Martínez

    2010-12-01

    Full Text Available The title Schiff base, C27H33N7, is a tripodal amine displaying C3 symmetry, with the central tertiary N atom lying on the threefold crystallographic axis. The N—CH2—CH2—N conformation of the pendant arms is gauche [torsion angle = 76.1 (3°], which results in a claw-like molecule, with the terminal aniline groups wrapped around the symmetry axis. The lone pair of the apical N atom is clearly oriented inwards towards the cavity, and should thus be chemically inactive. The amine NH2 substituents lie in the plane of the benzene ring to which they are bonded. With such an arrangement, one amine H atom forms an S(6 motif through a weak N—H...N hydrogen bond with the imine N atom, while the other is engaged in an intermolecular N—H...π contact involving the benzene ring of a neighbouring molecule related by inversion. The benzene rings also participate in an intramolecular C—H...π contact of similar strength. In the crystal structure, molecules are separated by empty voids (ca 5% of the crystal volume, although the crystal seems to be unsolvated.

  18. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li(+)-stabilized zwitterionic adduct formation.

    Science.gov (United States)

    Yang, Zhen-Zhen; He, Liang-Nian

    2014-01-01

    Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs) and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li(+) and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well as the CO2 capacity of the chelated ILs obtained were investigated. For example, the CO2 capacity of PEG150MeBu2N increased steadily from 0.10 to 0.66 (mol CO2 absorbed per mol of base) through the formation of zwitterionic adducts being stabilized by Li(+).

  19. Palladium Nanoparticles Tethered in Amine-Functionalized Hypercrosslinked Organic Tubes as an Efficient Catalyst for Suzuki Coupling in Water

    Directory of Open Access Journals (Sweden)

    Arindam Modak

    2016-10-01

    Full Text Available It is highly desirable to design functionalized supports in heterogeneous catalysis regarding the stabilization of active sites. Pd immobilization in porous polymers and henceforth its application is a rapidly growing field. In virtue of its’ scalable synthesis and high stability in reaction conditions, amorphous polymers are considered an excellent scaffold for metal mediated catalysis, but the majority of them are found as either agglomerated particles or composed of rough spheres. Owing to several important applications of hollow organic tubes in diverse research areas, we aimed to utilize them as support for the immobilization of Pd nanoparticles. Pd immobilization in nanoporous polymer tubes shows high activity in Suzuki cross coupling reactions between aryl halides and sodium phenyl trihydroxyborate in water, which deserves environmental merit.

  20. Functional polyester materials with tunable degradability: Investigations into the use of reductive amination, ketoxime ether, and hydrazone linkages for functionalization, covalent stabilization and crosslinking of poly(epsilon-caprolactone) materials

    Science.gov (United States)

    van Horn, Brooke Angela

    Aliphatic polyesters represent one class of degradable, polymeric materials that is receiving significant attention in the search for, and design of, biocompatible and bioresorbable synthetic substances. Functional and crosslinked polyesters, having potential biomedical value, are the target of many avenues of current research. This dissertation work expands the utility of a specific aliphatic polyester, poly(epsilon-caprolactone-co-2-oxepane-1,5-dione) (P(CL-co-OPD)), which contains backbone ketone units that can be reacted with various functional, nucleophilic agents. Results presented in this dissertation convey both the successes had and the challenges encountered in the employment of different "iminyl" chemistries for the synthesis of functional and crosslinked materials. Specifically, the ketone-functionalized polyester was investigated as a general substrate designed to undergo solution-state intramolecular crosslinking and functionalization upon reductive amination with 1,6-hexanediamine and hexylamine, respectively, in the presence of NaCNBH3. Through detailed analysis of the products from these reactions, and simpler systems including small molecule model compounds, the polymeric gamma-keto ester functionality was determined to be incompatible with the reductive amination chemistry, resulting in chain cleavage via intramolecular lactam formation. Subsequent investigation of ketoxime ether formation using synthetic model hydroxylamines, 1-aminooxydodecane and 1,6-bis(aminooxy)hexane, in solution and in the presence of an acid catalyst, resulted in the targeted graft and crosslinked particulate/gel materials, respectively. With the significant interest in the development of synthetic polymer materials of increasing degrees of complexity, attention has been focused on the efficient and high-yielding conversion of polyesters into multi-functional materials. Facile conjugation of aminooxy- and sulfonyl hydrazide model ligands with P(CL-co-OPD) were also

  1. Amine-functionalized low-cost industrial grade multi-walled carbon nanotubes for the capture of carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Qing; Liu; Yao; Shi; Shudong; Zheng; Liqi; Ning; Qing; Ye; Mengna; Tao; Yi; He

    2014-01-01

    Industrial grade multi-walled carbon nanotubes(IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes(P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepentamine(TEPA) for CO2capture. The TEPA impregnated IG-MWCNTs were characterized with various experimental methods including N2adsorption/desorption isotherms, elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. Both the adsorption isotherms of IGMWCNTs-n and the isosteric heats of different adsorption capacities were obtained from experiments. TEPA impregnated IG-MWCNTs were also shown to have high CO2adsorption capacity comparable to that of TEPA impregnated P-MWCNTs. The adsorption capacity of IG-MWCNTs based adsorbents was in the range of 2.145 to 3.088 mmol/g, depending on adsorption temperatures. Having the advantages of low-cost and high adsorption capacity, TEPA impregnated IG-MWCNTs seem to be a promising adsorbent for CO2capture from flue gas.

  2. Selective adhesion of intestinal epithelial cells on patterned films with amine functionalities formed by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Seop; Choi, Changrok; Kim, Soo Heon; Choi, Kun oh [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Jeong Min [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Kim, Hong Ja [Department of Internal Medicine, Dankook University College of Medicine, Cheonan 330-715 (Korea, Republic of); Yeo, Sanghak [R and D Center, ELBIO Incorporation, 426-5 Gasan-dong Geumchun-gu, Seoul (Korea, Republic of); Park, Heonyong [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Jung, Donggeun, E-mail: djung@skku.ac.kr [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2010-11-01

    Control of cell adhesion to surfaces is important to develop analytical tools in the areas of biomedical engineering. To control cell adhesiveness of the surface, we constructed a variety of plasma polymerized hexamethyldisiloxane (PPHMDSO) thin films deposited at the plasma power range of 10-100 W by plasma enhanced chemical vapor deposition (PECVD). The PPHMDSO film that was formed at 10 W was revealed to be resistant to cell adhesion. The resistance to cell adhesion is closely related to physicochemical properties of the film. Atomic force microscopic data show an increase in surface roughness from 0.52 nm to 0.74 nm with increasing plasma power. From Fourier transform infrared (FT-IR) absorption spectroscopy data, it was also determined that the methyl (-CH{sub 3}) peak intensity increases with increasing plasma power, whereas the hydroxyl (-OH) peak decreases. X-ray photoelectron spectroscopy data reveal an increase in C-O bonding with increasing plasma power. These results suggest that C-O bonding and hydroxyl (-OH) and methyl (-CH{sub 3}) functional groups play a critical part in cell adhesion. Furthermore, to enhance a diversity of film surface, we accumulated the patterned plasma polymerized ethylenediamine (PPEDA) thin film on the top of the PPHMDSO thin film. The PPEDA film is established to be strongly cell-adherent. This patterned two-layer film stacking method can be used to form the selectively limited cell-adhesive PPEDA spots over the adhesion-resistant surface.

  3. Pro-Apoptotic Activity of 4-Isopropyl-2-(1-Phenylethyl) Aniline Isolated from Cordyceps bassiana.

    Science.gov (United States)

    Kim, Mi Seon; Lee, Yunmi; Sung, Gi-Ho; Kim, Ji Hye; Park, Jae Gwang; Kim, Han Gyung; Baek, Kwang Soo; Cho, Jae Han; Han, Jaegu; Lee, Kang-Hyo; Hong, Sungyoul; Kim, Jong-Hoon; Cho, Jae Youl

    2015-07-01

    Cordyceps species including Cordyceps bassiana are a notable anti-cancer dietary supplement. Previously, we identified several compounds with anti-cancer activity from the butanol fraction (Cb-BF) of Cordyceps bassiana. To expand the structural value of Cb-BF-derived anti-cancer drugs, we employed various chemical moieties to produce a novel Cb-BF-derived chemical derivative, KTH-13-amine-monophenyl [4-isopropyl-2-(1-phenylethyl) aniline (KTH-13-AMP)], which we tested for anti-cancer activity. KTH-13-AMP suppressed the proliferation of MDA-MB-231, HeLa, and C6 glioma cells. KTH-13-AMP also dose-dependently induced morphological changes in C6 glioma cells and time-dependently increased the level of early apoptotic cells stained with annexin V-FITC. Furthermore, the levels of the active full-length forms of caspase-3 and caspase-9 were increased. In contrast, the levels of total forms of caspases-3, caspase-8, caspase-9, and Bcl-2 were decreased in KTH-13-AMP treated-cells. We also confirmed that the phosphorylation of STAT3, Src, and PI3K/p85, which is linked to cell survival, was diminished by treatment with KTH-13-AMP. Therefore, these results strongly suggest that this compound can be used to guide the development of an anti-cancer drug or serve as a lead compound in forming another strong anti-proliferative agent.

  4. p-Nitrophenol, phenol and aniline sorption by organo-clays.

    Science.gov (United States)

    Ko, Chun Han; Fan, Chihhao; Chiang, Po Neng; Wang, Ming Kuang; Lin, Kuo Chuan

    2007-10-22

    The aims of this study were to make use of organo-clays (i.e., Cloisite-10A, Cloisite-15A, Cloisite-30B and Cloisite-93A), to remove p-nitrophenol, phenol and aniline of organic pollutants. The organo-clays were characterized by X-ray diffraction (XRD). Sorption isotherm, kinetic and pH effect of p-nitrophenol, phenol and aniline sorbed by four organo-clays were evaluated. The d-spacings (001) of the XRD peak of Cloisite-10A, Cloisite-15A, Cloisite-30B and Cloisite-93A are 1.98, 2.76, 1.93 and 2.64 nm, respectively. The d(001)-spacings of XRD indicated that these p-nitropheno, phenol and aniline could penetrate into the interlayer of clays and expand the d(001)-spacings. The linear sorption isotherm of constant partition was employed to describe the sorption isotherms of phenols sorbed by organo-clays through hydrophobic-hydrophobic chemical reactions. The parabolic diffusion and power-function of kinetic models were employed to describe properly the kinetic experiments. The rate limiting step of the p-nitrophenol sorption reactions on organo-clays were diffusion-controlled processes (i.e., 15A, 30B, 93A) and chemical-controlled process for 10A organo-clays. The pre-exponential factor of the p-nitrophenol sorbed by four organo-clays showed the trend as follows: 10A> 30B> 93A> 15A. The efficiency of these organo-clays in removing phenol compounds in water treatments merit further study.

  5. Simultaneous detection of forbidden chemical residues in milk using dual-label time-resolved reverse competitive chemiluminescent immunoassay based on amine group functionalized surface.

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    Full Text Available In this study, a sensitive dual-label time-resolved reverse competitive chemiluminescent immunoassay was developed for simultaneous detection of chloramphenicol (CAP and clenbuterol (CLE in milk. The strategy was performed based on the distinction of the kinetic characteristics of horseradish peroxidase (HRP and alkaline phosphatase (ALP in chemiluminesecence (CL systems and different orders of magnitude in HRP CL value for CAP and ALP CL value for CLE in the chemiluminescent immunoassay. Capture antibodies were covalently bound to the amine group functionalized chemiluminescent microtiter plate (MTP for efficient binding of detection antibodies for the enzymes labeled CAP (HRP-CAP and CLE (ALP-CLE. The CL signals were recorded at different time points by the automatic luminometers with significant distinction in the dynamic curves. When we considered the ALP CL value (about 10(5 of CLE as background for HRP CL signal value (about 10(7 of CAP, there was no interaction from ALP CL background of CLE and the differentiation of CAP and CLE can be easily achieved. The 50% inhibition concentration (IC50 values of CAP and CLE in milk samples were 0.00501 µg L(-1 and 0.0128 µg L(-1, with the ranges from 0.0003 µg L(-1 to 0.0912 µg L(-1 and from 0.00385 µg L(-1 to 0.125 µg L(-1, respectively. The developed method is more sensitive and of less duration than the commercial ELISA kits, suitable for simultaneous screening of CAP and CLE.

  6. Trimodal nanoporous silica as a support for amine-based CO2 adsorbents: Improvement in adsorption capacity and kinetics

    Science.gov (United States)

    Chen, Chao; Bhattacharjee, Samiran

    2017-02-01

    A trimodal nanoporous silica (TS) having unique trimodal pore structure viz., internal mesopores, textural mesopores and interconnected macropores, has been functionalized with amine using two different methods covalent grafting and wet impregnation. Both were studied as nanocomposite sorbents for CO2 capture. The effects of the amine loading, immobilization processes and the type of support were investigated. Commercially available silica gel (SG) with a purely mesoporous structure was studied as the support for the amine in order to compare differences in pore structure and amine loading with differences in CO2 adsorption capacity and kinetics. Amine-grafted TS exhibited much faster CO2 adsorption kinetics at 35 °C than amine-grafted SG. At the same amine loading, amine-impregnated TS showed higher CO2 adsorption capacity and faster CO2 adsorption kinetics than amine-impregnated SG. The CO2 adsorption capacity of amine-impregnated TS increased as the amine loading increased until 70%, with the highest value of 172 mg/g, while the amine-impregnated SG reached the highest CO2 adsorption capacity of only 78 mg/g at 40% amine loading. More importantly, amine-impregnated as-prepared TS exhibited even higher CO2 capture capacity than amine-impregnated TS when the amine loading was below 60%. Results suggest that amine-modified trimodal nanoporous silica sorbents meet the challenges of current CO2 capture technology.

  7. Semicarbazide-sensitive amine oxidase (SSAO): from cell to circulation

    NARCIS (Netherlands)

    F. Boomsma (Frans); H. Hut; U. Bagghoe; A.H. van den Meiracker (Anton)

    2005-01-01

    textabstractSemicarbazide-sensitive amine oxidase (SSAO) is a multi-functional enzyme widely present in nature. It converts primary amines into their corresponding aldehydes, while generating H(2)O(2) and NH(3). In mammals, SSAO circulates in plasma, while a membrane-bound form (of

  8. Semicarbazide-sensitive amine oxidase (SSAO): from cell to circulation

    NARCIS (Netherlands)

    F. Boomsma (Frans); H. Hut; U. Bagghoe; A.H. van den Meiracker (Anton)

    2005-01-01

    textabstractSemicarbazide-sensitive amine oxidase (SSAO) is a multi-functional enzyme widely present in nature. It converts primary amines into their corresponding aldehydes, while generating H(2)O(2) and NH(3). In mammals, SSAO circulates in plasma, while a membrane-bound form

  9. Novel proton-type ionic liquid doped polyaniline for the headspace solid-phase microextraction of amines

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Youhong [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhao, Faqiong [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zeng, Baizhao, E-mail: bzzeng@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2015-06-23

    Graphical abstract: The novel proton-type ionic liquid (1-sulfobutyl-3-methylimidazolium hydrosulfate) doped polyaniline coating showed granular porous nanostructure and it had high self-EF values and extraction efficiency for amines. - Highlights: • A proton-type ionic liquid-doped polyaniline was fabricated by electrodeposition. • It showed porous granular nanostructure and had large specific surface. • It had high extraction capacity to aromatic amines. • A reasonable self-enrichment factor of SPME fiber has been proposed. - Abstract: A novel proton-type ionic liquid doped polyaniline (HIL-doped PANI) coating was presented, which was prepared on a stainless steel wire by electrodeposition in an aqueous solution containing aniline and 1-sulfobutyl-3-methylimidazolium hydrosulfate. The HIL-doped PANI coating showed granular nanostructure and had large specific surface. When it was applied to the headspace solid-phase microextraction of several amines (i.e., aniline, N-methylaniline, 3-methylaniline, 2-chloroaniline and 3-chloroaniline), it showed high extraction efficiency. The enrichment factors were 191.8–343.9 for different amines, much higher than those of common PANI and commercial polydimethylsiloxane/divinylbenzene coatings. Coupled with gas chromatographic analysis, the linear ranges were 0.097–100 μg/L with correlation coefficients above 0.9942, and the detection limits were 0.012–0.048 μg/L (S/N = 3) for different amines. The relative standard deviations (RSD) were smaller than 8.1% for five successive measurements with single fiber and the fiber-to-fiber RSDs were 8.6–13.8% (n = 5) for these amines. The proposed method was successfully applied to the extraction and determination of amines in organic waste water samples, and the recoveries were 78.3–112.8% for different analytes.

  10. High capacity immobilized amine sorbents

    Science.gov (United States)

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  11. CHITOSE AMINE & BODY ACUPOINTS' COSMETOLOGY

    Institute of Scientific and Technical Information of China (English)

    TEO Gek Chun

    2002-01-01

    @@ Chitose Amine is a natural substance which the body cells will readily absorb and it helps strengthen the immune system and reduces the cholesterol. Currently. Chitose Amine has been used widely in cosmetics and detoxification foods. The mian therapeutic properties of Chitose Amine in cosmetics are as follow:

  12. Efficient and versatile catalysis of N-alkylation of heterocyclic amines with alcohols and one-pot synthesis of 2-aryl substituted benzazoles with newly designed ruthenium(II) complexes of PNS thiosemicarbazones.

    Science.gov (United States)

    Ramachandran, Rangasamy; Prakash, Govindan; Selvamurugan, Sellappan; Viswanathamurthi, Periasamy; Malecki, Jan Grzegorz; Ramkumar, Venkatachalam

    2014-06-07

    Ruthenium(II) carbonyl complexes with phosphine-functionalized PNS type thiosemicarbazone ligands [RuCl(CO)(EPh3)(L)] (1-6) (E = P or As, L = 2-(2-(diphenylphosphino)benzylidene) thiosemicarbazone (PNS-H), 2-(2-(diphenylphosphino)benzylidene)-N-methylthiosemicarbazone (PNS-Me), 2-(2-(diphenylphosphino)benzylidene)-N-phenylthiosemicarbazone (PNS-Ph)) have been synthesized and characterized by elemental analysis and spectroscopy (IR, UV-Vis, (1)H, (13)C, (31)P-NMR) as well as ESI mass spectrometry. The molecular structures of complexes 1, 2 and 6 were identified by means of single-crystal X-ray diffraction analysis. The analysis revealed that all the complexes possess a distorted octahedral geometry with the ligand coordinating in a uni-negative tridentate PNS fashion. All the ruthenium complexes (1-6) were tested as catalyst for N-alkylation of heteroaromatic amines with alcohols. Notably, complex 2 was found to be a very efficient and versatile catalyst towards N-alkylation of a wide range of heterocyclic amines with alcohols. Complex 2 can also catalyze the direct amination of 2-nitropyridine with benzyl alcohol to the corresponding secondary amine. Furthermore, a preliminary examination of performance for N,N-dialkylation of diamine showed promising results, giving good conversion and high selectivity. In addition, N-alkylation of ortho-substituted anilines (-NH2, -OH and -SH) led to the one-pot synthesis of 2-aryl substituted benzimidazoles, benzoxazoles and benzothiazoles, also revealing the catalytic activity of complex 2.

  13. Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO₂ Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater.

    Science.gov (United States)

    Dai, Ning; Mitch, William A

    2015-07-21

    Formation of nitrosamines and nitramines from reactions between flue gas NOx and the amines used in CO2 capture units has arisen as a significant concern. Washwater scrubbers can capture nitrosamines and nitramines. They can also capture amines, preventing formation of nitrosamines and nitramines downwind by amine reactions with ambient NOx. The continuous application of UV alone, or a combination of UV and ozone to the return line of a washwater treatment unit was evaluated to control the accumulation of nitrosamines, nitramines and amines in a laboratory-scale washwater unit. With model secondary amine solvents ranging from nonvolatile diethanolamine to volatile morpholine, application of 272-537 mJ/cm(2) UV incident fluence alone reduced the accumulation of nitrosamines and nitramines by approximately an order of magnitude. Modeling indicated that the gains achieved by UV treatment should increase over time, because UV treatment converts the time dependence of nitrosamine accumulation from a quadratic to a linear function. Ozone (21 mg/L) maintained low steady-state concentrations of amines in the washwater. While modeling indicated that more than 80% of nitrosamine accumulation in the washwater was associated with reaction of washwater amines with residual NOx, a reduction in nitrosamine accumulation rates due to ozone oxidation of amines was not fully realized because the ozonation products of amines reduced nitrosamine photolysis rates by competing for photons.

  14. Amination Reactions of Aryl Halides with Nitrogen-Containing Reagents Catalyzed by Cul in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    YAN,Jin-Can; ZHOU,Li; WANG,Lei

    2008-01-01

    CuI-catalyzed coupling reactions of aryl iodides and electron-deficient aryl bromides with nitrogen-containing reagents, such as imidazole, benzimidazole, aliphatic primary and secondary amines, aniline, primary and secondary amides, in ionic liquid were developed. The reaction conditions involved the use of[Bmim][BF4] as the solvent,potassium phosphate as the base, and CuI as the catalyst. The CuI and[Bmim][BF4] could be recovered and recycled for five consecutive trials without significant loss of their activity.

  15. Extraction and Spectrophotometric Determination of Molybdenum with o-Hydroxythiophenols and Aromatic Amines

    OpenAIRE

    A. Z. Zalov; N. A. Verdizade; A. B. Hadjieva

    2015-01-01

    The interaction of molybdenum (VI) with o-hydroxythiophenol derivatives (HTPDs) and aromatic amines (AAs) was studied. The following three HTPDs, which contain different halogen atoms at position 5, were used: 2-hydroxy-5-chlorothiophenol(HCTP), 2-hydroxy-5-bromothiophenol (HBTP), 2-hydroxy-5-iodothiophenol (HITP)]. The examined AAs were aniline (An), N-methylaniline (mAn) and N,N-dimethylaniline (dAn). The obtained ternary complexes have a composition of 1:2:2 {Mo(V):HBTP:AA}.Optimal conditi...

  16. Efficient Route to Deuterated Aromatics by the Deamination of Anilines.

    Science.gov (United States)

    Burglova, Kristyna; Okorochenkov, Sergei; Hlavac, Jan

    2016-07-15

    One-step replacement of NH2 groups in ring-substituted anilines by deuterium is reported. Approaches comprising both solid-phase and solution-phase syntheses can be used on a large variety of substrates. The method uses diazotization in a mixture of water and either dichloromethane or chloroform, which serve as a source of hydrogen. This protocol can be used as a general method for fast and easy incorporation of deuterium into an aromatic system using deuterated chloroform.

  17. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  18. Cooperative catalysis by palladium and a chiral phosphoric acid: enantioselective amination of racemic allylic alcohols.

    Science.gov (United States)

    Banerjee, Debasis; Junge, Kathrin; Beller, Matthias

    2014-11-24

    Cooperative catalysis by [Pd(dba)2] and the chiral phosphoric acid BA1 in combination with the phosphoramidite ligand L8 enabled the efficient enantioselective amination of racemic allylic alcohols with a variety of functionalized amines. This catalytic protocol is highly regio- and stereoselective (up to e.r. 96:4) and furnishes valuable chiral amines in almost quantitative yield.

  19. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Directory of Open Access Journals (Sweden)

    Andreas Gansäuer

    2013-08-01

    Full Text Available The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG‡ and ΔGR are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  20. SYNTHESIS AND PROPERTIES OF ANILINE AND o-AMINOBENZENESULFONIC ACID COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    Jun-hua Fan; Mei-xiang Wan; Dao-ben Zhu

    1999-01-01

    Poly(aniline-co-o-aminobenzenesulfonic acid) (PAOABSA) as a water soluble conducting polymer was synthesized by chemical polymerization. The productivity and the room-temperature conductivity of the copolymer were measured as a function of the reaction conditions, such as reaction temperature, the ratio of oxidant to monomer and the degree of sulfonation defined as the ratio of sulfur to nitrogen atoms(S/N). The main results obtained are summarized as follows: (1) lower reaction temperature (at about 0℃) is favorable for the enhancement of the room-temperature conductivity of the copolymer; (2) higher content of oxidant is unfavorable for increasing the room-temperature conductivity of the copolymer; (3) both productivity and room-temperature conductivity of the copolymer decrease with increase of the degree of sulfonation which was always lower than 0.5 even an excess of o-aminobenzenesulfonic acid was added, probably because the reactivity ratio of aniline (γ1=2.99 ± 0.05) is much higher than that of o-aminobenzenesulfonic acid (γ2 = 0.06± 0.02) estimated by using Fineman-Ross method and least square method.

  1. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Science.gov (United States)

    Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca

    2013-01-01

    Summary The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG ‡ and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  2. Catalytic Enantioselective Allylic Amination of Olefins for the Synthesis of ent-Sitagliptin.

    Science.gov (United States)

    Bao, Hongli; Bayeh, Liela; Tambar, Uttam K

    2013-11-01

    The presence of nitrogen atoms in most chiral pharmaceutical drugs has motivated the development of numerous strategies for the synthesis of enantioenriched amines. Current methods are based on the multi-step transformation of pre-functionalized allylic electrophiles into chiral allylic amines. The enantioselective allylic amination of unactivated olefins represents a more direct and attractive strategy. We report the enantioselective synthesis of ent-sitagliptin via an allylic amination of an unactivated terminal olefin.

  3. New adducts of Lapachol with primary amines

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Mirelly D.F.; Litivack-Junior, Jose T.; Antunes, Roberto V.; Silva, Tania M.S.; Camara, Celso A., E-mail: ccelso@dq.ufrpe.b [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Quimica

    2011-07-01

    New adducts of lapachol with neat primary aliphatic amines were obtained in a solvent-free reaction in good to reasonable yields (52 to 88%), at room temperature. The new compounds containing a phenazine moiety were obtained from suitable functionalized aminoalkyl compounds, including ethanolamine, 3-propanolamine, 2-methoxy-ethylamine, 3-methoxy-propylamine, n-butylamine and 2-phenetylamine. (author)

  4. Effect of Different Electrode Materials on the Electropolymerization Process of Aniline in Nitric Acid Media

    Science.gov (United States)

    Li, Yaozong; Yi, Yun; Yang, Weifang; Liu, Xiaoqing; Li, Yuanyuan; Wang, Wei

    2016-11-01

    The electropolymerization process of aniline on different electrode surfaces such as Pt, Au, RuTi and polyaniline film in nitric acid solution containing 1 M aniline was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Proposed electrical equivalent circuits were used to give a further analysis. Results show that the electrode materials accelerate the aniline electropolymerization remarkably as a catalyst, especially the electrochemical oxidation process of monomer aniline to its cation radical, which is the key step to incur the electropolymerization reaction of aniline on the electrode surface. The polymerization of aniline on RuTi electrode has the lowest reaction resistance for its adsorption sites, and the catalytic effects of these different electrodes decrease in the order: RuTi > polyaniline film > Pt > Au. The results also show that several states of polyaniline films are formed during the potential linear scan process in nitric acid solution and the corresponding oxidation and reduction reaction are reversible.

  5. Effect of Different Electrode Materials on the Electropolymerization Process of Aniline in Nitric Acid Media

    Science.gov (United States)

    Li, Yaozong; Yi, Yun; Yang, Weifang; Liu, Xiaoqing; Li, Yuanyuan; Wang, Wei

    2017-02-01

    The electropolymerization process of aniline on different electrode surfaces such as Pt, Au, RuTi and polyaniline film in nitric acid solution containing 1 M aniline was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Proposed electrical equivalent circuits were used to give a further analysis. Results show that the electrode materials accelerate the aniline electropolymerization remarkably as a catalyst, especially the electrochemical oxidation process of monomer aniline to its cation radical, which is the key step to incur the electropolymerization reaction of aniline on the electrode surface. The polymerization of aniline on RuTi electrode has the lowest reaction resistance for its adsorption sites, and the catalytic effects of these different electrodes decrease in the order: RuTi > polyaniline film > Pt > Au. The results also show that several states of polyaniline films are formed during the potential linear scan process in nitric acid solution and the corresponding oxidation and reduction reaction are reversible.

  6. Synthesis of Various Polyaniline / Clay Nanocomposites Derived from Aniline and Substituted Aniline Derivatives by Mechanochemical Intercalation Method

    Directory of Open Access Journals (Sweden)

    N. Kalaivasan

    2010-01-01

    Full Text Available Polyaniline clay nanocomposite can be prepared by mechano-chemical method in which intercalation of anilinium ion into the clay lattices accomplished by mechanical grinding of sodium montmorillonite (Na+MMT in presence of anilinium hydrochloride at room temperature using mortar & pestle for about 30 min and subsequent grinding with oxidizing agent, ammonium peroxysulfate. The appearance of green colour indicates the formation of polyaniline/clay nanocomposite (PANI/Clay. Similarly aniline derivatives like o-toludine and o-anisidine in the form of HCl salt can form intercalation into the clay lattices. The intercalated aniline derivatives were ground mechanically in presence of oxidizing agent ammonium peroxysulfate lead to formation of substituted polyaniline/ clay nanocomposites. The characteristics of various polyaniline-clay nanocomposites were investigated using UV-Visible, FT-IR, cyclic voltammetry studies.

  7. Micellization behavior of mixtures of amphiphilic promazine hydrochloride and cationic aniline hydrochloride in aqueous and electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rub, Malik Abdul; Azum, Naved; Asiri, Abdullah M. [King Abdulaziz University, Jeddah (Saudi Arabia); Khan, Farah [Aligarh Muslim University, Aligarh (India); Al-Sehemi, Abdullah G. [Research Center for Advanced Materials Science, King Khalid University, Abha (Saudi Arabia)

    2015-10-15

    We studied the influence of cationic hydrotrope aniline hydrochloride on the micellization behavior of cationic amphiphilic phenothiazine drug promazine hydrochloride in the presence and absence of 50mmol kg{sup -1} NaCl. The experimental critical micelle concentration (CMC) values came out to be lower than ideal CMC (CMCid) values, signifying attractive interactions between the two components in mixed micelles. NaCl further decreases the CMC of pure PMZ and aniline hydrochloride as well as their mixture due to screening of the electrostatic repulsion among the polar head groups. The bulk properties of solution were examined by using different theoretical models for justification and comparison of results. The micellar mole fraction of aniline hydrochloride (X{sup Rub}{sub ,} X{sup M}{sub 1}, X{sup Rod}{sub 1} and X{sup id}{sub 1}) was evaluated by different proposed models, showing greater contribution of hydrotrope in mixed micelle. The negative values of interaction parameter (β) indicate synergistic interactions and negative values of β further decrease by the addition of salt in mixed systems. From the CMC values as a function of temperature, various thermodynamic properties have been evaluated and discussed in detail.

  8. Naked eye and spectrophotometric detection of chromogenic insecticide in aquaculture using amine functionalized gold nanoparticles in the presence of major interferents

    Science.gov (United States)

    Loganathan, C.; John, S. Abraham

    2017-02-01

    Detection of a chromogenic insecticide, malachite green (MG) using 3,5-diamino-1,2,4-triazole capped gold nanoparticles (DAT-AuNPs) by both naked eye and spectrophotometry was described in this paper. The DAT-AuNPs were prepared by wet chemical method and show absorption maximum at 518 nm. The zeta potential of DAT-AuNPs was found to be - 39.9 mV, suggesting that one of the amine groups of DAT adsorbed on the surface of AuNPs and the other amine group stabilizes the AuNPs from aggregation. The wine red color DAT-AuNPs changes to violet while adding 25 μM MG whereas the absorption band at 518 nm was increased and shifted towards longer wavelength. However, addition of 70 μM MG leads to the aggregation of DAT-AuNPs. This is due to strong electrostatic interaction between ammonium ion of MG and the free amine group of DAT. Based on the color change and shift in SPR band, 25 and 5 μM MG can be easily detected by naked eye and spectrophotometry. The DAT-AuNPs show high selectivity towards MG even in the presence of 5000-fold higher concentrations of common interferents. The practical application was successfully demonstrated by determining MG in fish farm water.

  9. Naked eye and spectrophotometric detection of chromogenic insecticide in aquaculture using amine functionalized gold nanoparticles in the presence of major interferents.

    Science.gov (United States)

    Loganathan, C; John, S Abraham

    2017-02-15

    Detection of a chromogenic insecticide, malachite green (MG) using 3,5-diamino-1,2,4-triazole capped gold nanoparticles (DAT-AuNPs) by both naked eye and spectrophotometry was described in this paper. The DAT-AuNPs were prepared by wet chemical method and show absorption maximum at 518nm. The zeta potential of DAT-AuNPs was found to be -39.9mV, suggesting that one of the amine groups of DAT adsorbed on the surface of AuNPs and the other amine group stabilizes the AuNPs from aggregation. The wine red color DAT-AuNPs changes to violet while adding 25μM MG whereas the absorption band at 518nm was increased and shifted towards longer wavelength. However, addition of 70μM MG leads to the aggregation of DAT-AuNPs. This is due to strong electrostatic interaction between ammonium ion of MG and the free amine group of DAT. Based on the color change and shift in SPR band, 25 and 5μM MG can be easily detected by naked eye and spectrophotometry. The DAT-AuNPs show high selectivity towards MG even in the presence of 5000-fold higher concentrations of common interferents. The practical application was successfully demonstrated by determining MG in fish farm water.

  10. Relative Abundance and the Relationships between Aniline,Phenol and Catechol Degraders in Fresh Water

    Institute of Scientific and Technical Information of China (English)

    MasaoNasu; NevilGOONEWARDENA; 等

    1993-01-01

    Relative abundance and relationships between aniline,phenol and catechol degraders were investigated in unpolluted and polluted fresh waters in Osaka prefectur,Japan,Phenol and catechol degraders were found more frequently compared to aniline degraders.The results indicate that these degraders were more abundant in polluted waters than in unpolluted waters.Aniline degraders isolated from the Ina River water showed a higher capability of degrading catechol than phenol.Analysis on sequence homology among these three kinds of degraders indicated a possible relationship between aniline degraders and certain strains of both catechol and phenol degraders.

  11. EFFECT OF DE-tert-BUTYLATION AND FUNCTIONALIZATION WITH AMINE GROUPS AT THE UPPER RIM OF p-tert-BUTYLCALIX[4]ARENE TO THE EXTRACTABILITY FOR Cr3+, Cd2+ and Pb2+ IONS

    Directory of Open Access Journals (Sweden)

    Firdaus Firdaus

    2010-06-01

    Full Text Available The effects to the extractability forwards Cr3+, Cd2+, and Pb2+ ions of de-tert-butylation and functionalization with amine groups at the upper rim of p-tert-butylcalix[4]arene had been studied by applied the p-tert-butylcalix[4]arene (1, tetrahydroxycalix[4]arene (2, and p-(aminobutoxycalixarene (3 compounds as extractants for the heavy metals ions. The extraction involved optimise of three parameters, i.e. pH, time, and concentration of extractants. The extraction degrees of the heavy metals ions at optimum conditions were compared each other to decide the effects. Compound 1 showed high extractability to Cr3+ and Pb2+ ions over Cd2+ ion, but compound 2 as the debutylated product of compound 1 showed low extractability to the all of the heavy metals ions. Compound 3 as product of etherification with butyl groups of the lower rim followed functionalization with amine groups of the upper rim of compound 1 showed high extractability to Pb2+, but low to Cr3+ and Cd2+. Pursuant to the facts it was concluded that debutylation of compound 1 to compound 2 causing decrease drastically of extractability to the heavy metals ions; functionalization of the upper with amine groups as ionophore (compound 3 causing increase of the extractability to Pb2+ ion and decrease of the extractability to Cr3+ with increasing of separation factor value β(Pb2+/Cr3+ from 1.74 by compound 1 to 48.00 by compound 3. By slope analysis, the extracted species and mechanisms of the extractions have been confirmed.   Keywords: p-tert-butylcalix[4]arene, debutylation, p-(aminobutoxycalix[4]arene, extractability, heavy metals, extraction mechanisms.

  12. Nitrosamine formation in amine scrubbing at desorber temperatures.

    Science.gov (United States)

    Fine, Nathan A; Goldman, Mark J; Rochelle, Gary T

    2014-01-01

    Amine scrubbing is a thermodynamically efficient and industrially proven method for carbon capture, but amine solvents can nitrosate in the desorber, forming potentially carcinogenic nitrosamines. The kinetics of reactions involving nitrite and monoethanolamine (MEA), diethanolamine (DEA), methylethanolamine (MMEA), and methyldiethanolamine (MDEA) were determined under desorber conditions. The nitrosations of MEA, DEA, and MMEA are first order in nitrite, carbamate species, and hydronium ion. Nitrosation of MDEA, a tertiary amine, is not catalyzed by the addition of CO2 since it cannot form a stable carbamate. Concentrated and CO2 loaded MEA was blended with low concentrations of N-(2-hydroxyethyl) glycine (HeGly), hydroxyethyl-ethylenediamine (HEEDA), and DEA, secondary amines common in MEA degradation. Nitrosamine yield was proportional to the concentration of secondary amine and was a function of CO2 loading and temperature. Blends of tertiary amines with piperazine (PZ) showed n-nitrosopiperazine (MNPZ) yields close to unity, validating the slow nitrosation rates hypothesized for tertiary amines. These results provide a useful tool for estimating nitrosamine accumulation over a range of amine solvents.

  13. Electrochemical degradation of sulfonated amines on SI/BDD electrodes.

    Science.gov (United States)

    Santos, V; Diogo, J; Pacheco, M J A; Ciríaco, L; Morão, A; Lopes, A

    2010-04-01

    The electrochemical oxidation of aniline (AN) and ortanilic (OA), metanilic (MA) and sulfanilic (SA) acids was performed using as anode a boron-doped diamond (BDD) electrode. Tests were performed with model solutions of the different amines, with concentrations of 200mg L(-1), using as electrolyte 0.035 M Na2SO4, in a batch cell, with re-circulation, at different current densities (200 and 300 A m(-2)). Samples were collected at pre-selected intervals and absorbance measurements, Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), Total Kjeldahl Nitrogen, Ammonia Nitrogen, Nitrates and Nitrites and HPLC analysis were performed. Results have shown a good elimination of the persistent pollutant, with COD and TOC removals always higher than, respectively: AN--91% and 90%; OA--75% and 82%; MA--88% and 87%; and SA--85% and 79%. The combustion efficiencies, calculated for the first hour of the runs, for the 300 A m(-2) assays, were the following: AN--0.93; OA--0.28; MA--0.82; and SA--0.83. For all the amines studied, after 6h degradation only oxalic and maleic acids were identified by HPLC. 2010 Elsevier Ltd. All rights reserved.

  14. Preparation, Characterization and Application of Amine-functionalized Poly(lactic acid) Electrospun Fibers%氨基官能化聚乳酸电纺纤维的制备、表征和应用

    Institute of Scientific and Technical Information of China (English)

    熊曦; 李强; 张绪成; 于建; 郭朝霞

    2014-01-01

    通过聚乳酸(PLA)和氨基丙基三乙氧基硅烷(KH550)混合进行静电纺丝制备氨基官能化聚乳酸纳米纤维。采用滴定法测定了纤维表面氨基含量,证明当 KH550的添加量为3%~13%(质量分数)时,有19%~26%的氨基出现在纤维的表面。利用场发射扫描电子显微镜、差示扫描量热(DSC)仪、接触角测试仪和电子拉伸机对纤维形貌、 PLA 的玻璃化转变温度和熔点以及纤维膜的亲水性和力学性能进行了表征。结果表明, KH550的加入可以在电纺纤维表面引入氨基,同时使纤维直径变细,使 PLA 的玻璃化转变温度上升,熔点下降,电纺纤维膜的亲水性略有增加,力学性能有所下降。通过吸附将金纳米粒子负载到氨基官能化聚乳酸电纺纤维膜上,得到负载型催化剂,对硼氢化钠还原对硝基苯酚的反应具有良好的催化活性和重复使用性。%Amine-functionalized poly(lactic acid)(PLA) nanofibers were prepared by co-electrospinning of PLA and aminopropyltriethoxysilane(KH550) in 1,1,1,3,3,3-hexafluoroisopropanol. The contents of amine groups on the surfaces of the fibers were measured by chemical titration. The results show 19% -26% of total amine groups appeared on the fiber surfaces when 3% -13% of KH550 to PLA is added. The amine-functionalized PLA nanofibers were also characterized by field emission scanning electron microscopy, differen-tial scanning calorimetry(DSC), contact angle measurements and uniaxial tensile tests. It has been shown that the addition of KH550 can introduce amine groups on PLA fiber surfaces, meantime the fiber diameter decrea-ses, Tg of PLA increases, Tm of PLA decreases, the hydrophilicity of the fiber mat slightly increases and its mechanical properties decreases. Au nanoparticles were adsorbed on the surface of amine-functionalized PLA nanofibers, which showed good catalytic activity and reusability for the reduction of 4-nitrophenol.

  15. Soil-Column Test on Aniline Degradation in Riverbank Filtration under Denitrification Conditions

    Institute of Scientific and Technical Information of China (English)

    Wu Yaoguo; Wang Hui; Zhang Wencun; Sun Weijian

    2005-01-01

    Drinking water is at risk from aniline pollution and thus aniline degradation and its mechanism have received much attention. In this paper, a soil column, including sediments and aquifer media, was collected from the Weihe riverbed and its bank, and used to research the characteristics of aniline degradation in the riverbank filtration process under denitrification conditions. The results indicate that all aniline could be degraded by the habituated indigenous microbes, and even mostly mineralized under denitrification conditions, but with a long lag phase. Some aniline degradation must involve deamination, while the majority undergoes covalent binding with humic substances to form complexes, and the complexes are easily degraded and even mineralized. During the degradation no intermediates were harmful to denitrifiers. Therefore, under denitrifaction conditions, aniline is degraded in RBF, and up to now aniline has not been monitored in the groundwater along the polluted river. During the 153 d testing process, the nitrate-nitrogen concentration was about 23.0 mg/L, and aniline concentrations were 40, 80 or 400 mg/L at 0-74 d, 75-105 d and 106-153 d respectively in infiltrating water. Indigenous microbes pass a lag period of 37 d, and grow on aniline as the source of carbon in the RBF under denitrification conditions. Aniline concentration in leachate was lower than the detected limits, so its removal rate was 100 %. Total organic carbon (TOC) removal rates were 97.99 %, 91.39 % and 75.30 % for 40, 80 and 400 mg/L aniline concentrations respectively, based on TOC monitored in infiltrating water and leachate.

  16. Synthesis and Structure of a Novel Disulfide-Containing Aniline

    Institute of Scientific and Technical Information of China (English)

    DENG,Shi-Ren; WU,Lei; WANG,Hao; ZHOU,Bin; LI,Zao-Ying

    2004-01-01

    @@ A novel disulfide-containing aniline, 8-dihydro-1H,4H-2,3,6,7-tetrathia-anthracen-9-ylamine (5) was synthesized.The single-crystal X-ray analysis of 4 indicates that the molecular has a non-planar structure, with its four sulfur atoms out of the plane of benzene ting. The designed molecular has the advantage of high theoretic specific capacity and reversibility,[1,2] when it is to be polymerized and used as the cathode material of the secondary lithium batteries.

  17. Indirect Electrochemical Oxidation of 4-Amino-dimethyl-aniline Hydrochloride

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The indirect electrochemical oxidation of 4-amino-dimethyl-aniline hydrochloride containing wastewater generated from vanillin production is presented. Experiments were conducted at a constant current density of 30 mA/cm2 via a Ti/Ru-Ti-Sn ternary oxide coated anode and an undivided reactor. During the various stages of the electrolysis, parameters such as the values of chemical oxygen demand (COD) and total organic carbon (TOC) were determined in order to evaluate the feasibility of the electrochemical treatment. The energy consumption and the current efficiency during the electrolysis were calculated. The present study proves the effectiveness of the electrochemical treatment for wastewater resulted from vanillin production.

  18. Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov

    2014-01-01

    We report on the synthesis and characterization of fluorescent halogen substituted anthracene-bridge-aniline (ABA) supermolecules that undergo structural reorganization on photoexcitation to form transient complexes. The syntheses were achieved in high yields on a large scale and the molecular...... structures were confirmed by single crystal X-ray diffraction. The photophysics of the ABA supermolecules were investigated using steady state and time resolved optical spectroscopy. Despite the presence of heavy atoms the series of ABA molecules have high quantum yields of fluorescence from both a locally...

  19. 氨改性的介孔二氧化硅的直接合成和CO2吸附%Direct Synthesis of Amine-functionalized Mesoporous Silica for CO2 Adsorption

    Institute of Scientific and Technical Information of China (English)

    胡智辉; 张东辉; 王纪孝

    2011-01-01

    Amine-functionalized mesoporous silica was prepared by using lauric acid and N-stearoyl-l-glutamic acid as structure directing agents via the S-N+-I- mechanism and applied to CO2 adsorption at room temperature.With γ-aminopropyltriethoxysilane as co-structure directing agent and due to the direct electrostatic interaction with anionic surfactant, most of the amino groups were uniformly distributed at the inner surface of pores and the performance was stable. The amine-functionalized mesoporous silica was characterized by Fourier transform infrared spectrometer, X-ray diffraction, nitrogen physisorption and thermogravimetric analysis. The CO2 adsorption capacity was measured by digital recording balance. At the room temperature and under the atmospheric pressure, the adsorption capacity of LAA-AMS-0.2 for CO2 and N2 is 1.40 mmol·g-1 and 0.03 mmol·g-1, respectively, indicating high separation coefficient of CO2/N2.

  20. Highly biocompatible and water-dispersible, amine functionalized magnetite nanoparticles, prepared by a low temperature, air-assisted polyol process: a new platform for bio-separation and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Manasmita; Dhak, Prasanta; Gupta, Satyajit; Basak, Amit; Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Mishra, Debasish; Maiti, Tapas K, E-mail: md_manasmita@yahoo.com, E-mail: panchanan_123@yahoo.com [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur (India)

    2010-03-26

    A low temperature polyol process, based on glycolaldehyde mediated partial reduction of FeCl{sub 3{center_dot}}6H{sub 2}O at 120 deg. C in the presence of sodium acetate as an alkali source and 2, 2{sup '}-(ethylenedioxy)-bis-(ethylamine) as an electrostatic stabilizer has been used for the gram-scale preparation of biocompatible, water-dispersible, amine functionalized magnetite nanoparticles (MNPs) with an average diameter of 6 {+-} 0.75 nm. With a reasonably high magnetization (37.8 e.m.u.) and amine groups on the outer surface of the nanoparticles, we demonstrated the magnetic separation and concentration implications of these ultrasmall particles in immunoassay. MRI studies indicated that these nanoparticles had the desired relaxivity for T{sub 2} contrast enhancement in vivo. In vitro biocompatibility, cell uptake and MR imaging studies established that these nanoparticles were safe in clinical dosages and by virtue of their ultrasmall sizes and positively charged surfaces could be easily internalized by cancer cells. All these positive attributes make these functional nanoparticles a promising platform for further in vitro and in vivo evaluations.

  1. Degradation of aniline by heterogeneous Fenton's reaction using a Ni-Fe oxalate complex catalyst.

    Science.gov (United States)

    Liu, Yucan; Zhang, Guangming; Fang, Shunyan; Chong, Shan; Zhu, Jia

    2016-11-01

    A Ni-Fe oxalate complex catalyst was synthesized and characterized by means of Brunauer-Emmet-Teller (BET) method, scanning electron microscope (SEM) and X-ray photo-electron spectroscopy (XPS). The catalyst showed good catalytic activity for aniline degradation by heterogeneous Fenton's reaction, in which the synergetic index was 9.3. The effects of reaction temperature, catalyst dosage, hydrogen peroxide concentration and initial pH were investigated. Under the optimum conditions (T = 293 K, catalyst dosage = 0.2 g/L, H2O2 concentration = 4 mmol/L and initial pH = 5.4), 100% aniline could be removed within 35 min, and approximately 88% deamination efficiency was achieved in 60 min. The aniline degradation process followed the pseudo-first-order kinetic (k = 0.177 min(-1)) with activation energy (Ea) of 49.4 kJ mol(-1). Aniline could be removed in a broad initial pH (3-8) due to the excellent pH-tolerance property of the catalyst. The detected ammonium ion indicated that deamination occurred during aniline degradation. It was proposed that deamination synchronized with aniline removal, and aniline was attacked by free radicals to generate benzoquinonimine and phenol. This system is promising for the removal of aniline from water.

  2. Colorimetric Detection of Aniline Based on Di(hydroxymethyl)-di-(2-pyrrolyl)methane-TCNQ System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The blue color system of supramolecular assembly formed by di(hydroxymethyl)di-(2-pyrrolyl)methane and tetracyanoquinodimethane (TCNQ) may be used for effective and selective detection of aniline through the visual color change in CH3CN/H2O mixed solvent. The excellent properties of the system make the supramolecular assembly to be a highly selective colorimetric probe for aniline.

  3. Isolation and characterization of aniline degradation slightly halophilic bacterium, Erwinia sp. Strain HSA 6.

    Science.gov (United States)

    Li, Junmin; Jin, Zexin; Yu, Binbin

    2010-07-20

    The isolated strain HSA6 is classified as Erwinia amylovora based on 16S rDNA sequence and the morphological and physiological properties. Strain HSA6 is the first reported E. amylovora in pure culture growing with aniline as sole electron donor and carbon source. The suitable pH for strain HSA6 is wide (from 5 to 11). Strain HSA6 is slightly halophilic with growth occurring at 0-10% (v/v) NaCl, and the suitable NaCl concentration for strain HSA6 is from 0% to 6%. The number of bacteria appeared to decrease with an increase in aniline concentration. The number of bacteria appeared to be constant as the wastewater concentration increased from 0% to 20%. However, the number of cells decreased with an increase in wastewater concentration from 30% to 50% and grew very slowly at 50%. The degradation rate of aniline was 100% at 0.5% aniline concentration after 24 h culture. The degradation rate of aniline was found to descend as the concentration of aniline increased from 0.5% to 3% and rose as the culture time increased. Strain HSA6 contains a plasmid with molecular weight higher than 42 kDA. Plasmid curing test and quantitative degradation test showed that strain requires the plasmid for aniline degradation. The gene cluster degrading aniline was determined in the plasmid by PCR amplification.

  4. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Energy Technology Data Exchange (ETDEWEB)

    Bláha, Michal, E-mail: blaha@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Prokeš, Jan [Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8 (Czech Republic); Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)

    2017-06-15

    Aniline was oxidized with three strong inorganic oxidants (ammonium peroxydisulfate, cerium(IV) sulfate, potassium dichromate), two weak inorganic oxidants (iron(III) chloride, silver nitrate), and one organic oxidant (p-benzoquinone) in aqueous solutions of methanesulfonic acid (MSA) of various concentration. Whereas oxidation of aniline with ammonium peroxydisulfate yielded high-molecular-weight conducting polyaniline (PANI) in the whole acidity range, the oxidation with cerium(IV) sulfate led also to a single product close to PANI with considerably lower molecular weight and lower conductivity. Potassium dichromate gave PANI only at high concentration of MSA. The use of iron(III) chloride yielded composite mixtures of PANI and low-molecular-weight aniline oligomers. The oxidation of aniline with silver nitrate led to composites of silver and an organic part, which was constituted either by aniline oligomers or conducting polyaniline or both. p-Benzoquinone as oxidant produced mainly aniline oligomers with poor conductivity and 2,5-dianilino-p-benzoquinone-like structure detected in FTIR and Raman spectra when oxidation proceeded with weak oxidants. A general model of oxidation with strong and weak oxidants was formulated. - Highlights: • Comparison of aniline oxidation with oxidants of different redox potential. • UV–vis, FTIR and Raman spectroscopies combined with size-exclusion chromatography. • The contents of polymer and oligomers were analyzed and discussed. • General model of aniline oxidation with strong and weak oxidants was formulated.

  5. Bifunctional Catalysis: Direct Reductive Amination of Aliphatic Ketones with an Iridium-Phosphate Catalyst

    Directory of Open Access Journals (Sweden)

    Barbara Villa-Marcos

    2010-04-01

    Full Text Available Chiral amines are one of the ubiquitous functional groups in fine chemical, pharmaceutical and agrochemical products, and the most convenient, economical, and eco-benign synthetic pathway to these amines is direct asymmetric reductive amination (DARA of prochiral ketones. This paper shows that a wide range of aliphatic ketones can be directly aminated under hydrogenation conditions, affording chiral amines with good to excellent yields and with enantioselectivities up to 96% ee. The catalysis is effected by the cooperative action of a cationic Cp*Ir(III complex and its phosphate counteranion.

  6. High-capacity adsorption of aniline using surface modification of lignocellulose-biomass jute fibers.

    Science.gov (United States)

    Gao, Da-Wen; Hu, Qi; Pan, Hongyu; Jiang, Jiping; Wang, Peng

    2015-10-01

    Pyromellitic dianhydride (PMDA) modified jute fiber (MJF) were prepared with microwave treatment to generate a biosorbent for aniline removal. The characterization of the biosorbent was investigated by SEM, BET and FT-IR analysis to discuss the adsorption mechanism. The studies of various factors influencing the adsorption behavior indicated that the optimum dosage for aniline adsorption was 3g/L, the maximum adsorption capacity was observed at pH 7.0 and the adsorption process is spontaneous and endothermic. The aniline adsorption follows the pseudo second order kinetic model and Langmuir isotherm model. Moreover, the biosorbent could be regenerated through the desorption of aniline by using 0.5M HCl solution, and the adsorption capacity after regeneration is even higher than that of virgin MJF. All these results prove MJF is a promising adsorbent for aniline removal in wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Amine Swingbed Payload Testing on ISS

    Science.gov (United States)

    Button, Amy B.; Sweterlitsch, Jeffrey J.

    2014-01-01

    One of NASA Johnson Space Center's test articles of the amine-based carbon dioxide (CO2) and water vapor sorbent system known as the CO2 And Moisture Removal Amine Swing-bed, or CAMRAS, was incorporated into a payload on the International Space Station (ISS). The intent of the payload is to demonstrate the spacecraft-environment viability of the core atmosphere revitalization technology baselined for the new Orion vehicle. In addition to the air blower, vacuum connection, and controls needed to run the CAMRAS, the payload incorporates a suite of sensors for scientific data gathering, a water save function, and an air save function. The water save function minimizes the atmospheric water vapor reaching the CAMRAS unit, thereby reducing ISS water losses that are otherwise acceptable, and even desirable, in the Orion environment. The air save function captures about half of the ullage air that would normally be vented overboard every time the cabin air-adsorbing and space vacuum-desorbing CAMRAS beds swap functions. The JSC team conducted 1000 hours of on-orbit Amine Swingbed Payload testing in 2013 and early 2014. This paper presents the basics of the payload's design and history, as well as a summary of the test results, including comparisons with prelaunch testing.

  8. A Colorimetric Sensor for Qualitative Discrimination and Quantitative Detection of Volatile Amines

    Directory of Open Access Journals (Sweden)

    Zhonglin Tang

    2010-06-01

    Full Text Available We have developed a novel colorimetric sensor based on a digital camera and white LED illumination. Colorimetric sensor arrays (CSAs were made from a set of six chemically responsive dyes impregnated on an inert substrate plate by solution casting. Six common amine aqueous solutions, including dimethylamine, triethylamine, diisopropyl-amine, aniline, cyclohexylamine, and pyridine vaporized at 25 °C and six health-related trimethylamine (TMA concentrations including 170 ppm, 51 ppm, 8 ppm, 2 ppm, 125 ppb and 50 ppb were analyzed by the sensor to test its ability for the qualitative discrimination and quantitative detection of volatile amines. We extracted the feature vectors of the CSA's response to the analytes from a fusional color space, which was obtained by conducting a joint search algorithm of sequential forward selection and sequential backward selection (SFS&SBS based on the linear discriminant criteria (LDC in a mixed color space composed of six common color spaces. The principle component analysis (PCA followed by the hierarchical cluser analysis (HCA were utilized to discriminate 12 analytes. Results showed that the colorimetric sensor grouped the six amine vapors and five TMA concentrations correctly, while TMA concentrations of 125 ppb and 50 ppb were indiscriminable from each other. The limitation of detection (LOD of the sensor for TMA was found to be lower than 50 ppb. The CSAs were reusable for TMA concentrations below 8 ppm.

  9. FTIR Study of Enhanced Polymeric Blend Membrane with Amines

    Directory of Open Access Journals (Sweden)

    Asim Mushtaq

    2014-03-01

    Full Text Available In this study, research will be carried out to identify the functional group behavior of glassy and rubbery polymeric blend membrane with amines. Polymeric blend membranes with different blending ratios were prepared and the developed membranes were characterized by FTIR to see the effect of blend ratio on different functional groups. The developed membranes are flat dense sheet membrane of 20% wt/wt. The pure and blend membrane polysulfone, polyethersulfone, polyvinyl acetate with different composition, with 10% methyl diethanol amine, mono ethanol amine, diethanol amine are developed with dimethyl acetamide solvent. Fourier Transform Infrared (FTIR spectroscopy was utilized to study the interaction between two polymers and to analyze the type of bonding present. To observed frequencies were assigned to various mode of vibration in terms of fundamentals and combination. These spectral changes indicated the existence of molecular interaction among the enhanced polymeric blends; highlight the compatible nature among each other.

  10. Sensitive Detection of Aromatic Hydrophobic Compounds in Water and Perfluorooctane Sulfonate in Human Serum by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS) with Amine Functionalized Graphene-Coated Cobalt Nanoparticles.

    Science.gov (United States)

    Nakai, Keisuke; Kawasaki, Hideya; Yamamoto, Atsushi; Arakawa, Ryuichi; Grass, Robert N; Stark, Wendelin J

    2014-01-01

    In this article, we describe the application of surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) with the use of amine functionalized graphene-coated cobalt nanoparticles (CoC-NH2 nanoparticles) to analyse aromatic hydrophobic compounds that are known environmental contaminants, including polycyclic aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP). Our results demonstrated that SALDI-MS can detect PCP, anthracene, and pyrene in water. In particular, the CoC-NH2 nanoparticles proved to be an efficient means of capturing PCP in water because of the high adsorption capacity of the nanoparticles for PCP, which resulted in a detectability of 100 ppt. Furthermore, the CoC-NH2 nanoparticles also functioned as an adsorbent for solid-phase extraction of perfluorooctane sulfonate (PFOS) from human serum, displaying good performance with a detectability of 10 ppb by SALDI-MS.

  11. Synthesis and characterization of bisoxazolines- and pybox-copper(II) complexes and their application in the coupling of α-carbonyls with functionalized amines

    KAUST Repository

    Jia, Weiguo

    2014-01-01

    Binuclear complexes [{(DMOX)CuCl}2(μ-Cl)2] (1), mononuclear complexes [(DMOX)CuBr2] (2) (DMOX = 4,5-dihydro-2-(4,5- dihydro-4,4-dimethyloxazol-2-yl)-4,4-dimethyloxazole) and the pybox Cu(ii) complex [(Dm-Pybox)CuBr2] (3) (Dm-Pybox = 2,6-bis[4′,4′- dimethyloxazolin-2′-yl]pyridine) were obtained by reactions of CuX 2 (X = Cl, Br) with DMOX and Dm-Pybox ligands, respectively. The molecular structures of 1, 2 and 3 have been determined by single-crystal X-ray diffraction analyses. The complexes 2 and 3 are efficient in catalyzing α-amination of ketones and esters through α-bromo carbonyl intermediate. The procedures are environmentally benign methods using molecular oxygen as an oxidant with water as the only byproduct. This journal is © the Partner Organisations 2014.

  12. Ultrafast forward and backward electron transfer dynamics of coumarin 337 in hydrogen-bonded anilines as studied with femtosecond UV-pump/IR-probe spectroscopy.

    Science.gov (United States)

    Ghosh, Hirendra N; Verma, Sandeep; Nibbering, Erik T J

    2011-02-10

    Femtosecond infrared spectroscopy is used to study both forward and backward electron transfer (ET) dynamics between coumarin 337 (C337) and the aromatic amine solvents aniline (AN), N-methylaniline (MAN), and N,N-dimethylaniline (DMAN), where all the aniline solvents can donate an electron but only AN and MAN can form hydrogen bonds with C337. The formation of a hydrogen bond with AN and MAN is confirmed with steady state FT-IR spectroscopy, where the C═O stretching vibration is a direct marker mode for hydrogen bond formation. Transient IR absorption measurements in all solvents show an absorption band at 2166 cm(-1), which has been attributed to the C≡N stretching vibration of the C337 radical anion formed after ET. Forward electron transfer dynamics is found to be biexponential with time constants τ(ET)(1) = 500 fs, τ(ET)(2) = 7 ps in all solvents. Despite the presence of hydrogen bonds of C337 with the solvents AN and MAN, no effect has been found on the forward electron transfer step. Because of the absence of an H/D isotope effect on the forward electron transfer reaction of C337 in AN, hydrogen bonds are understood to play a minor role in mediating electron transfer. In contrast, direct π-orbital overlap between C337 and the aromatic amine solvents causes ultrafast forward electron transfer dynamics. Backward electron transfer dynamics, in contrast, is dependent on the solvent used. Standard Marcus theory explains the observed backward electron transfer rates.

  13. Reaction Kinetics of Aniline Synthetic Wastewater Treatment by Moving Bed Biofilm Reactor

    Directory of Open Access Journals (Sweden)

    H Ganjidoust

    2009-07-01

    Full Text Available "n "nBackground and Objectives: Experiments were conducted to investigate the behavior of Moving Bed Biofilm Reactor (MBBR as a novel aerobic process for treatment of aniline synthetic wastewater as a hard biodegradable compound is commonly used in number of industrial processes. The objective of this paper is evaluation of MBBR in different conditions for treatment of aniline and determination of reaction kinetics."nMaterials and Methods: In the MBBRs, different carriers are used to maximize the active biofilm surface area in the reactors. In this study, the reactor was filled with Light Expanded Clay Aggregate (LECA as carriers. Evaluation of the reactor efficiency was done at different retention time of 8, 24, 48 and 72 hours with an influent COD from 100 to 3500 mg/L (filling ratio of 50%. After obtaining removal efficiencies, effluent concentration of aniline was measured by adsorption spectrum and maladaptive municipal wastewater treatment plant sludge in batch conditions for confidence of aniline biodegradation and its adsorption to the sludge mass. "nResults:The maximum obtained removal efficiencies were 91% (influent COD=2000 mg/L after 72 hours. Biodegradation of aniline in MBBR has been also approved by NMR spectrum tests. Finally experimental data has indicated that Grau second order model and Stover-Kincannon were the best models to describe substrate loading removal rate for aniline."nConclusion:biological treatment of aniline wastewater compared to other researchers methods.

  14. Biodegradation of aniline by Candida tropicalis AN1 isolated from aerobic granular sludge

    Institute of Scientific and Technical Information of China (English)

    Dianzhan Wang; Guanyu Zheng; Shimei Wang; Dewei Zhang; Lixiang Zhou

    2011-01-01

    Aniline-degrading microbes were cultivated and acclimated with the initial activated sludge collected from a chemical wastewater treatment plant.During the acclimation processes,aerobic granular sludge being able to effectively degrade aniline was successfully formed,from which a preponderant bacterial strain was isolated and named as ANi.Effects of factors including pH,temperature,and second carbon/nitrogen source on the biodegradation of aniline were investigated.Results showed that the optimal conditions for the biodegradation of aniline by the strain AN1 were at pH 7.0 and 28-35°C.At the optimal pH and temperature,the biodegradation rate of aniline could reach as high as 17.8 mg/(L.hr) when the initial aniline concentration was 400 mg/L.Further studies revealed that the addition of 1 g/L glucose or ammonium chloride as a second carbon or nitrogen source could slightly enhance the biodegradation efficiency from 93.0% to 95.1%-98.5%.However,even more addition of glucose or ammonium could not further enhance the biodegradation process but delayed the biodegradation of aniline by the strain AN1.Based on morphological and physiological characteristics as well as the phylogenetic analysis of 26S rDNA sequences,the strain AN1 was identified as Candida tropicalis.

  15. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation

    Institute of Scientific and Technical Information of China (English)

    Xiaofang Xie; Yongqing Zhang; Weilin Huang; Shaobing Huang

    2012-01-01

    Oxidation of aniline by persulfate in aqueous solutions was investigated and the reaction kinetic rates under different temperature,persulfate concentration and pH conditions were examined in batch experiments.The results showed that,the aniline degradation followed pseudo first-order reaction model.Aniline degradation rate increased with increasing temperature or persulfate concentration.In the pH range of 3 to 11,a low aniline degradation rate was obtained at strong acid system (pH 3),while a high degradation rate was achieved at strong alkalinity (pH 11).Maximum aniline degradation occurred at pH 7 when the solution was in a weak level of acid and alkalinity (pH 5,7 and 9).Produced intermediates during the oxidation process were identified using liquid chromatography-mass spectrometry technology.And nitrobenzene,4-4'-diaminodiphenyl and 1-hydroxy-1,2-diphenylhydrazine have been identified as the major intermediates of aniline oxidation by persulfate and the degradation meehanism of aniline was also tentatively proposed.

  16. Chemical and Molecular Descriptors for the Reactivity of Amines with CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Anita S.; Kitchin, John R.

    2012-10-24

    Amine-based solvents are likely to play an important role in CO{sub 2} capture applications in the future, and the identification of amines with superior performance will facilitate their use in CO{sub 2} capture. While some improvements in performance will be achieved through process modifications, modifying the CO{sub 2} capture performance of an amine also implies in part an ability to modify the reactions between the amine and CO{sub 2} through development of new functionalized amines. We present a computational study of trends in the reactions between CO{sub 2} and functionalized amines with a focus on identifying molecular descriptors that determine trends in reactivity. We examine the formation of bicarbonate and carbamate species on three classes of functionalized amines: alkylamines, alkanolamines, and fluorinated alkylamines including primary, secondary and tertiary amines in each class. These functional groups span electron-withdrawing to donating behavior, hydrogen-bonding, extent of functionalization, and proximity effects of the functional groups. Electron withdrawing groups tend to destabilize CO{sub 2} reaction products, whereas electron-donating groups tend to stabilize CO{sub 2} reaction products. Hydrogen bonding stabilizes CO{sub 2} reaction products. Electronic structure descriptors based on electronegativity were found to describe trends in the bicarbonate formation energy. A chemical correlation was observed between the carbamate formation energy and the carbamic acid formation energy. The local softness on the reacting N in the amine was found to partially explain trends carbamic acid formation energy.

  17. Nanoparticle formation and thin film deposition in aniline containing plasmas

    Science.gov (United States)

    Pattyn, Cedric; Dias, Ana; Hussain, Shahzad; Strunskus, Thomas; Stefanovic, Ilija; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with plasma based polymerization processes in mixtures of argon and aniline. The investigations are performed in a capacitively coupled RF discharge (in pulsed and continuous mode) and concern both the observed formation of nanoparticles in the plasma volume and the deposition of films. The latter process was used for the deposition of ultra-thin layers on different kind of nanocarbon materials (nanotubes and free standing graphene). The analysis of the plasma and the plasma chemistry (by means of mass spectroscopy and in-situ FTIR spectroscopy) is accompanied by several ex-situ diagnostics of the obtained materials which include NEXAFS and XPS measurements as well as Raman spectroscopy and electron microscopy. The decisive point of the investigations concern the preservation of the original monomer structure during the plasma polymerization processes and the stability of the thin films on the different substrates.

  18. Vibrational predissociation of aniline(water)n+ (n = 1-12)

    Science.gov (United States)

    Roy, Madhusudan; Kim, Kuk Ki; Song, Jae Kyu; Choe, Joong Chul; Park, Seung Min

    2016-05-01

    Vibrational predissociation dynamics of aniline(water)n+ cluster ions formed via resonance two photon ionization followed by the absorption of single infrared photon was investigated. A linear tandem time of flight mass spectrometer designed for this research was tested by the dissociation of aniline+ at 266 nm and observed decay constant matched well with the previous result. The rate of dissociation of aniline(water)n+ cluster increased with internal energy, whereas decreased with increasing the size of cluster, manifesting that the intramolecular vibrational energy redistribution precedes VP. The internal energies of the cluster ions were estimated from comparing the experimental and Rice-Ramsperger-Kassel-Marcus calculation results.

  19. Differentiation of N-from C-protonated aniline by neutralization-reionization.

    Science.gov (United States)

    Nold, M J; Wesdemiotis, C

    1996-10-01

    Amino- and ring-protonated aniline are distinguished in the gas phase by neutralization-reionization mass spectrometry. This method takes advantage of the dramatically different stabilities and reactivities of the neutralized forms of N- and C-protonated aniline, to ascertain thereby the specific protonation site(s). Fast atom bombardment ionization of aniline is found to yield primarily the anilinium cation (N-protonated tautomer). In contrast, chemical ionization with a variety of reagent gases is shown to generate mixtures in which the ring-protonated species predominates.

  20. Equilibrium and Transport Properties of Primary, Secondary and Tertiary Amines by Molecular Simulation

    Directory of Open Access Journals (Sweden)

    Orozco Gustavo A.

    2014-09-01

    Full Text Available Using molecular simulation techniques such as Monte Carlo (MC and molecular dynamics (MD, we present several simulation results of thermodynamic and transport properties for primary, secondary and tertiary amines. These calculations are based on a recently proposed force field for amines that follows the Anisotropic United Atom approach (AUA. Different amine molecules have been studied, including n-ButylAmine, di-n-ButylAmine, tri-n-ButylAmine and 1,4-ButaneDiAmine for primary, secondary, tertiary and multi-functional amines respectively. For the transport properties, we have calculated the viscosity coefficients as a function of temperature using the isothermal-isobaric (NPT ensemble. In the case of the pure components, we have investigated different thermodynamic properties using NVT Gibbs ensemble simulations such as liquid-vapor phase equilibrium diagrams, vaporization enthalpies, vapor pressures, normal boiling points, critical temperatures and critical densities. We have also calculated the excess enthalpies for water-n-ButylAmine and n-heptane-n-ButylAmine mixtures using Monte Carlo simulations in the NPT ensemble. In addition, we present the calculation of liquid-vapor surface tensions of n-ButylAmine using a two-phase NVT simulation as well as the radial distribution functions. Finally, we have investigated the physical Henry constants of nitrous oxide (N2O and nitrogen (N2 in an aqueous solutions of n-ButylAmine. In general, we found a good agreement between the available experimental information and our simulation results for all the studied properties, ratifying the predictive capability of the AUA force field for amines.

  1. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications.

    Science.gov (United States)

    Pei, Yue; Asif-Malik, Aman; Canales, Juan J

    2016-01-01

    Biogenic amines are a collection of endogenous molecules that play pivotal roles as neurotransmitters and hormones. In addition to the "classical" biogenic amines resulting from decarboxylation of aromatic acids, including dopamine (DA), norepinephrine, epinephrine, serotonin (5-HT), and histamine, other biogenic amines, present at much lower concentrations in the central nervous system (CNS), and hence referred to as "trace" amines (TAs), are now recognized to play significant neurophysiological and behavioral functions. At the turn of the century, the discovery of the trace amine-associated receptor 1 (TAAR1), a phylogenetically conserved G protein-coupled receptor that is responsive to both TAs, such as β-phenylethylamine, octopamine, and tyramine, and structurally-related amphetamines, unveiled mechanisms of action for TAs other than interference with aminergic pathways, laying the foundations for deciphering the functional significance of TAs and its mammalian CNS receptor, TAAR1. Although, its molecular interactions and downstream targets have not been fully elucidated, TAAR1 activation triggers accumulation of intracellular cAMP, modulates PKA and PKC signaling and interferes with the β-arrestin2-dependent pathway via G protein-independent mechanisms. TAAR1 is uniquely positioned to exert direct control over DA and 5-HT neuronal firing and release, which has profound implications for understanding the pathophysiology of, and therefore designing more efficacious therapeutic interventions for, a range of neuropsychiatric disorders that involve aminergic dysregulation, including Parkinson's disease, schizophrenia, mood disorders, and addiction. Indeed, the recent development of novel pharmacological tools targeting TAAR1 has uncovered the remarkable potential of TAAR1-based medications as new generation pharmacotherapies in neuropsychiatry. This review summarizes recent developments in the study of TAs and TAAR1, their intricate neurochemistry and

  2. The degradation products of aniline in the solutions with ozone and kinetic investigations.

    Science.gov (United States)

    Turhan, Kadir; Uzman, Suheyla

    2007-10-01

    Aromatic compounds are extensively used in several industries and can cause pollution in water sources. This work aims at examining the degradability of aniline in aqueous solutions by ozone-induced cleavage, and at determining the kinetics of the cited cleavage reactions. Aniline was prepared in four different concentrations and the flow rate of ozone supplied to each solution was selected. Aniline solutions were ozonated at low and high pH, so as to compare both molecular and hydroxyl free radical mechanisms, respectively. The main identified aromatic by-products were nitrobenzene and azobenzene when the experiment was carried out at acidic pH. Formation of nitrobenzene, azobenzene, azoxybenzene and 2-pyridine carboxylic acid (picolinic acid) was observed when the ozonization was carried out at basic pH. All the aromatic by-products found were less toxic than the raw materials. The pseudo-first-order constants in aniline concentrations were calculated.

  3. 3-substituted anilines as scaffolds for the construction of glutamine synthetase and DXP-reductoisomerase inhibitors

    CSIR Research Space (South Africa)

    Mutorwa, M

    2009-01-01

    Full Text Available -1 Synthetic Communications Volume 39, Issue 15, 2009 3-Substituted Anilines as Scaffolds for the Construction of Glutamine Synthetase and DXP-Reductoisomerase Inhibitors Marius Mutorwaa, Sheriff Salisua, Gregory L. Blatchbc, Colin Kenyond & Perry T...

  4. Laboratory shake flask batch tests can predict field biodegradation of aniline in the Rhine

    DEFF Research Database (Denmark)

    Toräng, Lars; Reuschenbach, P.; Müller, B.

    2001-01-01

    The aim of this study was to compare degradation rates of aniline in laboratory shake flask simulation tests with field rates in the river Rhine. The combined events of a low flow situation in the Rhine and residual aniline concentrations in the effluent from the BASF treatment plant...... in Ludwigshafen temporarily higher than normal, made it possible to monitor aniline at trace concentrations in the river water downstream the wastewater outlet by means of a sensitive GC headspace analytical method. Aniline was analyzed along a downstream gradient and the dilution along the gradient...... was calculated from measurements of conductivity, sulfate and a non-readily biodegradable substance, 1,4-dioxane. Compensating dilution, field first-order degradation rate constants downstream the discharge of BASF were estimated at 1.8 day(-1) for two different dates with water temperatures of 21.9 and 14...

  5. Determination of the solid surface critical exponent β1 from contact-angle variation on approach to a wetting transition: Cyclohexane/aniline/quartz

    Science.gov (United States)

    Pallas, Norman R.

    2016-03-01

    The three-phase contact angle (θ) for the system cyclohexane/aniline/quartz has been measured from drop shapes as a function of temperature on approach to the cyclohexane/aniline upper consolute solution temperature Tc. The experiments employed exacting criteria previously established for thermodynamic-quality measurements at fluid interfaces. A first-order wetting transition from partial wetting to complete wetting was observed at a temperature Tw, 2.12 K below Tc. The contact angle vanishes at Tw, scaling as cos θ ˜ |T - Tc|β1-μ for T system. These results are in marked contrast to previous measurements on this system from measurements of capillary rise and meniscus curvature.

  6. Corrosion inhibition of aluminum with a series of aniline monomeric surfactants and their analog polymers in 0.5 M HCl solution

    Directory of Open Access Journals (Sweden)

    M.M. El-Deeb

    2015-07-01

    Full Text Available The inhibition effect of 3-(12-sodiumsulfonate dodecyloxy aniline monomeric surfactant (MC12 and its analog polymer Poly 3-(dodecyloxy sulfonic acid aniline (PC12 on the corrosion of aluminum in 0.5 M HCl solution was investigated using weight loss and potentiodynamic polarization techniques. The presence of these two compounds in 0.5 M HCl inhibits the corrosion of aluminum without modifying the mechanism of corrosion process. It was found that these inhibitors act as mixed-type inhibitors with anodic predominance as well as the inhibition efficiency increases with increasing inhibitor concentration, but decreases with raising temperature. Langmuir and Frumkin adsorption isotherms fit well with the experimental data. Thermodynamic functions for both dissolution and adsorption processes were determined. The obtained results from weight loss and potentiodynamic polarization techniques are in good agreement with contact angle measurements.

  7. Synthesis, spectroscopy, crystal structure and DFT studies of cobalt(III) complexes featuring dimethylglyoximate and aniline or p-bromoaniline ligands

    Science.gov (United States)

    Berradj, O.; Adkhis, A.; Bougherra, H.; Bruno, G.; Michaud, F.

    2017-03-01

    Two new cobalt(III) compounds [Co(Hdmg)2(Ani)2]NO3·2H2O (I) and [Co(Hdmg)2(Ani-Br)2]NO3·H2O (II), where Hdmg is the dimethylglyoximate monoanion, Ani is aniline and Ani-Br is p-bromoaniline, were synthesized and characterized using spectroscopic techniques including IR, UV-Visible, and X-ray diffraction. In the octahedral Co(III) complexes, the two dimethylglyoximato ions are coordinated to a cobalt atom in a planar configuration and are connected by intramolecular Osbnd H⋯O hydrogen-bonding. The nitrogen atoms of the two aniline ligands occupy the apical sites. A Density Functional Theory approach has been successfully used for the investigation of the nature of solid state interactions and determination of the whole molecular packing. It was found that the computational data are in good agreement with the experimental results.

  8. Sustainable Pathways to Pyrroles through Iron-Catalyzed N-Heterocyclization from Unsaturated Diols and Primary Amines.

    Science.gov (United States)

    Yan, Tao; Barta, Katalin

    2016-09-01

    Pyrroles are prominent scaffolds in pharmaceutically active compounds and play an important role in medicinal chemistry. Therefore, the development of new, atom-economic, and sustainable catalytic strategies to obtain these moieties is highly desired. Direct catalytic pathways that utilize readily available alcohol substrates have been recently established; however, these approaches rely on the use of noble metals such as ruthenium or iridium. Here, we report on the direct synthesis of pyrroles using a catalyst based on the earth-abundant and inexpensive iron. The method uses 2-butyne-1,4-diol or 2-butene-1,4-diol that can be directly coupled with anilines, benzyl amines, and aliphatic amines to obtain a variety of N-substituted pyrroles in moderate-to-excellent isolated yields.

  9. Monofunctional primary amine: A new class of organocatalyst for asymmetric Aldol reaction

    Indian Academy of Sciences (India)

    KHIANGTE VANLALDINPUIA; PORAG BORA; GHANASHYAM BEZ

    2017-03-01

    A new class of organocatalysts involving a primary amine as the only functional group is developed for catalytic asymmetric aldol reaction of cyclohexanone/ cyclopentanone with various aryl aldehydes in thepresence of benzoic acid as an additive at −10◦C. In an unexpected observation, the primary amine catalyzed reactions gave excellent yield and good to excellent stereoselectivity, while secondary amines were found to have little or no reactivity under similar reaction conditions.

  10. Rett syndrome - Stimulation of endogenous biogenic amines

    Science.gov (United States)

    Pelligra, R.; Norton, R. D.; Wilkinson, R.; Leon, H. A.; Matson, W. R.

    1992-01-01

    Transient hypercapnic hyperoxemia was induced in two Rett syndrome children by the administration of a gaseous mixture of 80 percent O2 and 20 percent CO2. Time course studies of neurotransmitters and their metabolites showed an immediate and marked increase in central biogenic amine turnover following inhalation of the gas mixture. The increased turnover of biogenic amines was associated with improved clinical changes. This suggests a coupled relationship and provides further support for an etiological role of neurotransmitter dysfunction in Rett syndrome. In a complementary study, elevation of pulmonary CO2 by application of a simple rebreathing device resulted in improvement of abnormal blood gases and elimination of the Cheyne-Stokes-like respiratory pattern of the Rett syndrome. Near normalization of the EEG occurred when a normal respiratory pattern was imposed by means of a respirator. Taken together, these results lead to the preliminary conclusion that cerebral hypoxemia secondary to abnormal respiratory function may contribute to diminished production of biogenic amines in Rett syndrome.

  11. Photocatalytic Degradation of Aniline Using TiO2 Nanoparticles in a Vertical Circulating Photocatalytic Reactor

    Directory of Open Access Journals (Sweden)

    F. Shahrezaei

    2012-01-01

    Full Text Available Photocatalytic degradation of aniline in the presence of titanium dioxide (TiO2 and ultraviolet (UV illumination was performed in a vertical circulating photocatalytic reactor. The effects of catalyst concentration (0–80 mg/L, initial pH (2–12, temperature (293–323 K, and irradiation time (0–120 min on aniline photodegradation were investigated in order to obtain the optimum operational conditions. The results reveal that the aniline degradation efficiency can be effectively improved by increasing pH from 2 to 12 and temperature from 313 to 323 K. Besides, the effect of temperature on aniline photo degradation was found to be unremarkable in the range of 293–313 K. The optimum catalyst concentration was about 60 mg/L. The Langmuir Hinshelwood kinetic model could successfully elucidate the effects of the catalyst concentration, pH, and temperature on the rate of heterogeneous photooxidation of aniline. The data obtained by applying the Langmuir Hinshelwood treatment are consistent with the available kinetic parameters. The activated energy for the photocatalytic degradation of aniline is 20.337 kj/mol. The possibility of the reactor use in the treatment of a real petroleum refinery wastewater was also investigated. The results of the experiments indicated that it can therefore be potentially applied for the treatment of wastewater contaminated by different organic pollutants.

  12. Competitive and cooperative adsorption behaviors of phenol and aniline onto nonpolar macroreticular adsorbents

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-ming; CHEN Jin-long; PAN Bing-cai; ZHANG Quan-xing

    2005-01-01

    The adsorption behaviors of phenol and aniline on nonpolar macroreticular adsorbents( NDA100 and Amberlite XAD4) were investigated in single or binary batch system at 293K and 313K respectively in this study. The results indicated that the adsorption isotherms of phenol and aniline on both adsorbents in both systems fitted well Langmuir equation, which indicated a favourable and exothermic process. At the lower equilibrium concentrations, the individual amount adsorbed of phenol or aniline or macroreticular adsorbents in single-component systems was higher than those in binary-component systems because of the competition between phenol and aniline towards the adsorption sites. It is noteworthy, on the contrast, that at higher concentrations, the total uptake amounts of phenol and aniline in binary-component systems were obviously larger than that in single-component systems, and a large excess was noted on the adsorbent surface at saturation, which is presumably due to the cooperative effect primarily arisen from the hydrogen bonding or weak acidbase interaction between phenol and aniline.

  13. Amine-Amine Exchange in Aminium-Methanesulfonate Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Matthew L.; Varner, Mychel E.; Perraud, Veronique M.; Ezell, Michael J.; Wilson, Jacqueline M.; Zelenyuk, Alla; Gerber, Robert B.; Finlayson-Pitts, Barbara J.

    2014-12-18

    Aerosol particles are ubiquitous in the atmosphere and have been shown to impact the Earth’s climate, reduce visibility, and adversely affect human health. Modeling the evolution of aerosol systems requires an understanding of the species and mechanisms involved in particle growth, including the complex interactions between particle- and gas-phase species. Here we report studies of displacement of amines (methylamine, dimethylamine or trimethylamine) in methanesulfonate salt particles by exposure to a different gas-phase amine, using a single particle mass spectrometer, SPLAT II. The variation of the displacement with the nature of the amine suggests that behavior is dependent on water in or on the particles. Small clusters of methanesulfonic acid with amines are used as a model in quantum chemical calculations to identify key structural elements that are expected to influence water uptake, and hence the efficiency of displacement by gas-phase molecules in the aminium salts. Such molecular-level understanding of the processes affecting the ability of gas-phase amines to displace particle-phase aminium species is important for modeling the growth of particles and their impacts in the atmosphere.

  14. The Use of 7,7′,8,8′-Tetracyanoquinodimethane for the Spectrophotometric Determination of Some Primary Amines Application to Real Water Samples

    Directory of Open Access Journals (Sweden)

    Theia'a N. Al-Sabha

    2013-01-01

    Full Text Available A sensitive, simple, and accurate spectrophotometric method was developed for the quantitative determination of some primary aliphatic and aromatic amines, that is, ethylamine, 1,2-diaminopropane, aniline, p-aminophenol, and benzidine. The method is based on the interaction of these amines in aqueous medium with 7,7′,8,8′-tetracyanoquinodimethane (TCNQ reagent in the presence of a buffer solution and surfactant (in the case of aromatic amines to form charge-transfer complexes measurable at maximum wavelengths ranging between 323 and 511 nm. Beer’s law is obeyed over the concentration ranges of 0.025 and 3.0 μg/mL and the molar absorptivity is ranged between 8.977 × 103 and 5.8034 × 104  L·mol−1·cm−1 for these amines. The method was applied for the determination of benzidine in the river, sea, and tap waters. The TCNQ complexes with the previously mentioned amines were formed in the ratio of 1 : 1 amine : TCNQ, and their stability constants ranged between 8.78 × 104 and 1.844 × 105 L·mol−1.

  15. Sponges with covalently tethered amines for high-efficiency carbon capture

    KAUST Repository

    Qi, Genggeng

    2014-12-12

    © 2014 Macmillan Publishers Limited. All rights reserved. Adsorption using solid amine sorbents is an attractive emerging technology for energy-efficient carbon capture. Current syntheses for solid amine sorbents mainly based on physical impregnation or grafting-to methods (for example, aminosilane-grafting) lead to limited sorbent performance in terms of stability and working capacity, respectively. Here we report a family of solid amine sorbents using a grafting-from synthesis approach and synthesized by cationic polymerization of oxazolines on mesoporous silica. The sorbent with high amount of covalently tethered amines shows fast adsorption rate, high amine efficiency and sorbent capacity well exceeding the highest value reported to date for lowerature carbon dioxide sorbents under simulated flue gas conditions. The demonstrated efficiency of the new amine-immobilization chemistry may open up new avenues in the development of advanced carbon dioxide sorbents, as well as other nitrogen-functionalized systems.

  16. Method of neutralizing the corrosive surface of amine-cured epoxy resins

    Science.gov (United States)

    Lee, S. Y. (Inventor)

    1982-01-01

    The corrosive alkaline surface layer of an epoxy resin product formed by the curing of the epoxy with an aliphatic amine is eliminated by first applying a non-solvent to remove most or all of the free unreacted amine and then applying a layer of a chemical reagent to neutralize the unused amine or amine functional groups by forming a substituted urea. The surface then may be rinsed with acetone and then with alcohol. The non-solvent may be an alcohol. The neutralizing chemical reagent is a mono-isocyanate or a mono-isothiocyanate. Preferred is an aromatic mono-isocyanate such as phenyl isocyanate, nitrophenyl isocyanate and naplthyl isocyanate.

  17. A comparison of the ion chemistry for mono-substituted toluenes and anilines by three methods of atmospheric pressure ionization with ion mobility spectrometry.

    Science.gov (United States)

    Borsdorf, H; Neitsch, K; Eiceman, G A; Stone, J A

    2009-06-15

    Ion mobility spectra for a series of mono-substituted toluenes and a series of mono-substituted anilines were obtained using three different methods of atmospheric pressure ionization including photoionization, chemical ionization from a (63)Ni source, and chemical ionization from a corona discharge source. The product ion peak intensities were measured as functions of analyte concentration at 323 K in a purified air atmosphere. Two, and sometimes three, product ion peaks were observed in spectra from chemical ionization with the (63)Ni source and it is suggested that the major peak, due to the protonated molecule, arose in both series by proton transfer from H3O+(H2O)n. The second peak with diminished intensity and longer drift time than the protonated molecule can be seen with the toluenes and was understood to be the NO+ adduct, formed from the reactant ion NO+(H2O)n. Electron transfer from the anilines to the latter ion yields the molecular ions, identified by having the same reduced mobility coefficients as the molecular ions produced by photoionization. The structure of these product ions was determined by investigations using the coupling of ion mobility spectrometry with atmospheric pressure photoionization and mass spectrometry (APPI-IMS-MS). The relative abundances of both the NO+ adducts with the toluenes and the molecular ions with the anilines are enhanced with a corona discharge source where relatively more NO+(H2O)n is produced than in a (63)Ni source. Ab initio calculations show that only the protonated anilines of all the product ions are significantly hydrated with 1 ppm(v) of moisture in the supporting atmosphere of the ion mobility spectrometer.

  18. Micro‑cantilevers for optical sensing of biogenic amines

    DEFF Research Database (Denmark)

    Wang, Ying; Bravo Costa, Carlos André; Sobolewska, Elżbieta Karolina

    2017-01-01

    This paper discusses the functionalization of micro-cantilevers in order to bind and sense specific biogenic amines related to meat degradation (cadaverine). The micro-cantilevers were functionalized with the composite 1,4,8,11-tetraazacyclotetradecane (cyclam), which is binding to cadaverine mol...

  19. Amine Swingbed Payload Project Management

    Science.gov (United States)

    Walsch, Mary; Curley, Su

    2013-01-01

    The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the Orion Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the Orion vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6 ]person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload-the swingbed unit itself-launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open -loop Orion application as well as the closed-loop ISS application.

  20. Visual Recognition of Aliphatic and Aromatic Amines Using a Fluorescent Gel: Application of a Sonication-Triggered Organogel.

    Science.gov (United States)

    Pang, Xuelei; Yu, Xudong; Lan, Haichuang; Ge, Xiaoting; Li, Yajuan; Zhen, Xiaoli; Yi, Tao

    2015-06-24

    A naphthalimide-based fluorescent gelator (N1) containing an alkenyl group has been designed and characterized. This material is able to gelate alcohols via a precipitate-to-gel transformation when triggered with ultrasound for less than 2 min (S-gel). The gelation process in n-propanol was studied by means of absorption, fluorescence, and IR spectra, scanning electron microscopy (SEM) images, and X-ray diffraction patterns. The fluorescence intensity of N1 decreased during the gelation process in a linear relationship with the sonication time. The S-gel of N1 could be used to sense aliphatic and aromatic amines by measuring the change in the signal output. For example, the addition of propylamine to the S-gel of N1 resulted in a dramatic enhancement of the fluorescence intensity, accompanied by a gel-to-sol transition. On the contrary, when the S-gel of N1 was treated with aromatic amines such as aniline, fluorescence was quenched and there was no gel collapse. The sensing mechanisms were studied by (1)H NMR, small-angle X-ray scattering, SEM and spectroscopic experiments. It is proposed that isomerization of the alkenyl group of N1 from the trans to cis form occurs when the S-gel is treated with propylamine, resulting in a gel-sol transition. However, the aromatic aniline molecules prefer to insert into the gel networks of N1 via hydrogen-bonding and charge-transfer interactions, maintaining the gel state. As potential applications, testing strips of N1 were prepared to detect aniline.

  1. Amine Swingbed Payload Technology Demonstration

    Science.gov (United States)

    Sweterlitsch, Jeffrey

    2014-01-01

    The Amine Swingbed is an amine-based, vacuum-regenerated adsorption technology for removing carbon dioxide and humidity from a habitable spacecraft environment, and is the baseline technology for the Orion Program’s Multi-Purpose Crew Vehicle (MPCV). It uses a pair of interleaved-layer beds filled with SA9T, the amine sorbent, and a linear multiball valve rotates 270° back and forth to control the flow of air and vacuum to adsorbing and desorbing beds. One bed adsorbs CO2 and H2O from cabin air while the other bed is exposed to vacuum for regeneration by venting the CO2 and H2O. The two beds are thermally linked, so no additional heating or cooling is required. The technology can be applied to habitable environments where recycling CO2 and H2O is not required such as short duration missions.

  2. Complex amine-based reagents

    Science.gov (United States)

    Suslov, S. Yu.; Kirilina, A. V.; Sergeev, I. A.; Zezyulya, T. V.; Sokolova, E. A.; Eremina, E. V.; Timofeev, N. V.

    2017-03-01

    Amines for a long time have been applied to maintaining water chemistry conditions (WCC) at power plants. However, making use of complex reagents that are the mixture of neutralizing and the filmforming amines, which may also contain other organic components, causes many disputes. This is mainly due to lack of reliable information about these components. The protective properties of any amine with regard to metal surfaces depend on several factors, which are considered in this article. The results of applying complex reagents to the protection of heating surfaces in industrial conditions and estimated behavior forecasts for various reagents under maintaining WCC on heat-recovery boilers with different thermal circuits are presented. The case of a two-drum heat-recovery boiler with in-line drums was used as an example, for which we present the calculated pH values for various brands of reagents under the same conditions. Work with different reagent brands and its analysis enabled us to derive a composition best suitable for the conditions of their practical applications in heat-recovery boilers at different pressures. Testing the new amine reagent performed at a CCPP power unit shows that this reagent is an adequate base for further development of reagents based on amine compounds. An example of testing a complex reagent is shown created with the participation of the authors within the framework the program of import substitution and its possible use is demonstrated for maintaining WCC of power-generating units of combined-cycle power plants (CCPP) and TPP. The compliance of the employed reagents with the standards of water chemistry conditions and protection of heating surfaces were assessed. The application of amine-containing reagents at power-generating units of TPP makes it possible to solve complex problems aimed at ensuring the sparing cleaning of heating surfaces from deposits and the implementation of conservation and management of water chemistry condition

  3. Novel Synthetic Monothiourea Aspirin Derivatives Bearing Alkylated Amines as Potential Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Norsyafikah Asyilla Nordin

    2017-01-01

    Full Text Available A new series of aspirin bearing alkylated amines moieties 1–12 were synthesised by reacting isothiocyanate with a series of aniline derivatives in overall yield of 16–56%. The proposed structures of all the synthesised compounds were confirmed using elemental analysis, FTIR, and 1H and  13C NMR spectroscopy. All compounds were evaluated for antibacterial activities against E. coli and S. aureus via turbidimetric kinetic and Kirby Bauer disc diffusion method. Compound 5 bearing meta -CH3 substituent showed the highest relative inhibition zone diameter against tested bacteria compared to ortho and para substituent. Furthermore, aspirin derivatives bearing shorter chains exhibited better bacterial inhibition than longer alkyl chains.

  4. Important roles of enthalpic and entropic contributions to CO2 capture from simulated flue gas and ambient air using mesoporous silica grafted amines.

    Science.gov (United States)

    Alkhabbaz, Mustafa A; Bollini, Praveen; Foo, Guo Shiou; Sievers, Carsten; Jones, Christopher W

    2014-09-24

    The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0-0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropyl-functionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less efficient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  5. Benzoyl peroxide (BPO)-promoted oxidative trifluoromethylation of tertiary amines with trimethyl(trifluoromethyl)silane.

    Science.gov (United States)

    Chu, Lingling; Qing, Feng-Ling

    2010-09-14

    The benzoyl peroxide (BPO)-promoted oxidative functionalization of tertiary amines under transition-metal-free reaction conditions was developed. Various 1-trifluoromethylated tetrahydroisoquinoline derivatives were prepared by employing this method. It constitutes the first example of direct trifluoromethylation of tertiary amines.

  6. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng

    2017-03-13

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  7. A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid

    Science.gov (United States)

    Andrews, Keith G.; Faizova, Radmila; Denton, Ross M.

    2017-06-01

    Amines are a fundamentally important class of biologically active compounds and the ability to manipulate their physicochemical properties through the introduction of fluorine is of paramount importance in medicinal chemistry. Current synthesis methods for the construction of fluorinated amines rely on air and moisture sensitive reagents that require special handling or harsh reductants that limit functionality. Here we report practical, catalyst-free, reductive trifluoroethylation reactions of free amines exhibiting remarkable functional group tolerance. The reactions proceed in conventional glassware without rigorous exclusion of either moisture or oxygen, and use trifluoroacetic acid as a stable and inexpensive fluorine source. The new methods provide access to a wide range of medicinally relevant functionalized tertiary β-fluoroalkylamine cores, either through direct trifluoroethylation of secondary amines or via a three-component coupling of primary amines, aldehydes and trifluoroacetic acid. A reduction of in situ-generated silyl ester species is proposed to account for the reductive selectivity observed.

  8. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  9. Mono-N-methylation of primary amines with alkyl methyl carbonates over Y faujasites. 2. Kinetics and selectivity.

    Science.gov (United States)

    Selva, Maurizio; Tundo, Pietro; Perosa, Alvise

    2002-12-27

    In the presence of a Na-exchanged Y faujasite, the reaction of primary aromatic amines 1 with 2-(2-methoxyethoxy)methylethyl carbonate [MeO(CH(2))(2)O(CH(2))(2)OCO(2)Me, 2a] yields the corresponding mono-N-methyl derivatives ArNHMe with selectivity up to 95%, at substantially quantitative conversions. At 130 degrees C, the reaction can be run under diffusion-free conditions and is strongly affected by the solvent polarity: for instance, in going from xylene (epsilon(r) = 2.40) to triglyme (epsilon(r) = 7.62) as the solvent, the pseudo-first-order rate constant for the aniline (1a) disappearance shows a 5-fold decrease. In DMF (epsilon(r) = 38.25), the same reaction does not occur at all. Competitive adsorption of the solvent and the substrate onto the catalytic sites accounts for this result. The behavior of alkyl-substituted anilines ZC(6)H(4)NH(2) [Z = p-Me, p-Et, p-Pr, p-(n-Bu) (1b-e); Z = 3,5-di-tert-butyl- and 2,4,6-tri-tert-butylanilines (1f,g)] and p-alkoxyanilines p-ZC(6)H(4)NH(2) [Z = OMe, OEt, OPr, O-n-Bu (1b'-e')] clearly indicates a steric effect of ring substituents: as diffusion of the amine into the catalytic pores is hindered, the reaction hardly proceeds and the mono-N-methyl selectivity (S(M/D)) drops as well. Moreover, the strength of adsorption of the amine onto the catalyst influences the rate and the selectivity as well: the reaction of p-anisidine and p-toluidine-despite the higher nucleophilicity of these compounds-is slower and even less selective with respect to aniline. From a mechanistic viewpoint, the intermediacy of carbamates ArN(Me)CO(2)R [R = MeO(CH(2))(2)O(CH(2))(2)] is suggested. At 90 degrees C, the reaction of benzylamine (7)-a model for aliphatic amines-with dimethyl carbonate shows that the reaction outcome can be improved by tuning the amphoteric properties of the catalyst: in going from CsY to the more acidic LiY zeolite, methylation is not only more selective (S(M/D) ratio increases from 77% to 84%) but even much faster (Cs

  10. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    Science.gov (United States)

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.

    2017-09-01

    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  11. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite

    Science.gov (United States)

    Chen, Jun; Min, Fan-fei; Liu, Lingyun; Liu, Chunfu; Lu, Fangqin

    2017-10-01

    The adsorption of four different amine/ammonium salts of DDA (Dodecyl amine), MDA (N-methyldodecyl amine), DMDA (N,N-dimethyldodecyl amine) and DTAC (Dodecyl trimethyl ammonium chloride) on kaolinite particles was investigated in the study through the measurement of contact angles, zeta potentials, aggregation observation, adsorption and sedimentation. The results show that different amine/ammonium salts can adsorb on the kaolinite surface to enhance the hydrophobicity and reduce the electronegativity of kaolinite particle surface, and thus induce a strong hydrophobic aggregation of kaolinite particles which promotes the settlement of kaolinite. To explore the adsorption mechanism of these four amine/ammonium salts on kaolinite surfaces, the adsorptions of DDA+, MDA+, DMDA+ and DTAC+ on kaolinite (001) surface and (00 1 bar) surface are calculated with DFT (Density functional theory). The DFT calculation results indicate that different amine/ammonium cations can strongly adsorbed on kaolinite (001) surface and (00 1 bar) surface by forming Nsbnd H⋯O strong hydrogen bonds or Csbnd H⋯O weak hydrogen bonds, and there are strongly electrostatic attractions between different amine/ammonium cations and kaolinite surfaces. The main adsorption mechanism of amine/ammonium cations on kaolinite is hydrogen-bond interaction and electrostatic attraction.

  12. Electrolytic aminated carbon materials for the electrocatalytic redox reactions of inorganic and organic compounds.

    Science.gov (United States)

    Hayashida, Eriko; Takahashi, Yuichi; Nishi, Hideki; Uchiyama, Shunichi

    2011-06-01

    Some kinds of amine groups can be introduced to the glassy carbon surface by the electrode oxidation of the carbon electrode surface in ammonium carbamate solution, and this amine groups modified electrode is named as an aminated glassy carbon electrode. The existences of not only primary amine but also secondary and tertially amines were confirmed by X ray photoelectron spectroscopy. The applications of the aminated carbon material for the electrocatalytic reductions of oxygen, hydrogen peroxide, and organic compounds such as quinones were carried out, and the effects of amination on the formation of electrocatalytic sites for many species were revealed. The electrocatalyzed cyclic voltammograms of metal ions and metal chelate compounds obtained by aminated glassy carbon electrodes are also discussed. Moreover, we intend to describe that the aminated carbon electrode can exhibit the large reduction waves of inorganic oxoacids such as N02- or bromide ion. The introduced functional groups containing nitrogen atom can change the distribution of the electron densities of the graphite carbon surface, and this specific electron distribution environment may generate the various electrocatalytic activities. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Crystal structures, spectroscopic and theoretical study of novel Schiff bases of 2-(methylthiomethyl)anilines.

    Science.gov (United States)

    Olalekan, Temitope E; Adejoro, Isaiah A; VanBrecht, Bernardus; Watkins, Gareth M

    2015-03-15

    New Schiff bases derived from p-methoxysalicylaldehyde and 2-(methylthiomethyl)anilines (substituted with methyl, methoxy, nitro) were synthesized and characterized by elemental analyses, FT-IR, NMR, electronic spectra and quantum chemical calculations. X-ray crystallography of two compounds showed the solid structures are stabilized by intramolecular and intermolecular H-bonds. The effect of OH⋯N interaction between the phenolic hydrogen and imine nitrogen on the proton and carbon NMR shifts, and the role of CH⋯O and CH⋯S contacts are discussed. The bond lengths and angles, (1)H and (13)C NMR data, E(LUMO-HOMO), dipole moments and polarizability of the compounds were predicted by density functional theory, DFT (B3LYP/6-31G∗∗) method. The experimental geometric parameters and the NMR shifts were compared with the calculated values, which gave good correlations. The electronic effects of aryl ring substituents (methyl, methoxy and nitro) on the properties of the resulting compounds, such as the color, NMR shifts, electronic spectra and the calculated energy band gaps, dipole moments and polarizability are discussed. Increase in electron density shifted the phenolic proton resonance to lower fields. The methoxy-substituted compound has a small dipole moment and subsequent large polarizability value. Highest polarity was indicated by the nitro compound which also showed high polarizability due to its larger size. The energy gaps obtained from E(LUMO-HOMO) calculations suggest these compounds may have applications as organic semiconducting materials.

  14. Crystal structures, spectroscopic and theoretical study of novel Schiff bases of 2-(methylthiomethyl)anilines

    Science.gov (United States)

    Olalekan, Temitope E.; Adejoro, Isaiah A.; VanBrecht, Bernardus; Watkins, Gareth M.

    2015-03-01

    New Schiff bases derived from p-methoxysalicylaldehyde and 2-(methylthiomethyl)anilines (substituted with methyl, methoxy, nitro) were synthesized and characterized by elemental analyses, FT-IR, NMR, electronic spectra and quantum chemical calculations. X-ray crystallography of two compounds showed the solid structures are stabilized by intramolecular and intermolecular H-bonds. The effect of OH⋯N interaction between the phenolic hydrogen and imine nitrogen on the proton and carbon NMR shifts, and the role of CH⋯O and CH⋯S contacts are discussed. The bond lengths and angles, 1H and 13C NMR data, ELUMO-HOMO, dipole moments and polarizability of the compounds were predicted by density functional theory, DFT (B3LYP/6-31G∗∗) method. The experimental geometric parameters and the NMR shifts were compared with the calculated values, which gave good correlations. The electronic effects of aryl ring substituents (methyl, methoxy and nitro) on the properties of the resulting compounds, such as the color, NMR shifts, electronic spectra and the calculated energy band gaps, dipole moments and polarizability are discussed. Increase in electron density shifted the phenolic proton resonance to lower fields. The methoxy-substituted compound has a small dipole moment and subsequent large polarizability value. Highest polarity was indicated by the nitro compound which also showed high polarizability due to its larger size. The energy gaps obtained from ELUMO-HOMO calculations suggest these compounds may have applications as organic semiconducting materials.

  15. Functionalization of Fe3O4 NPs by Silanization: Use of Amine (APTES and Thiol (MPTMS Silanes and Their Physical Characterization

    Directory of Open Access Journals (Sweden)

    Silvia Villa

    2016-10-01

    Full Text Available In this paper the results concerning the synthesis of magnetite (Fe3O4 nanoparticles (NPs, their functionalization using silane derivatives, such as (3-Aminopropyltriethoxysilane (APTES and (3-mercaptopropyltrimethoxysilane (MPTMS, and their exhaustive morphological and physical characterization by field emission scanning electron microscopy (FE-SEM with energy dispersion X-ray spectrometer (EDX analysis, AC magnetic susceptibility, UV-VIS and IR spectroscopy, and thermogravimetric (TGA analyses are reported. Two different paths were adopted to achieve the desired functionalization: (1 the direct reaction between the functionalized organo-silane molecule and the surface of the magnetite nanoparticle; and (2 the use of an intermediate silica coating. Finally, the occurrence of both the functionalization with amino and thiol groups has been demonstrated by the reaction with ninhydrin and the capture of Au NPs, respectively.

  16. Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes.

    Science.gov (United States)

    Yang, Kun; Wu, Wenhao; Jing, Qingfeng; Zhu, Lizhong

    2008-11-01

    Aqueous adsorption of a series of phenols and anilines by a multiwalled carbon nanotube material (MWCNT15), which depends strongly on the solution pH and the number and types of solute groups, was investigated in this study. The pH-dependent adsorption coefficients, Kd, could be predicted by the established models including solute pKa and solution pH values. Phenol or aniline substitution with more groups has higher adsorption affinity, and nitro, chloride, or methyl groups enhanced adsorption in the following order: nitro group > chloride group > methyl group. All adsorption isotherms of nondissociated phenols and anilines are nonlinear and fitted well bythe Polanyi-theory based Dubinin-Ashtakhov (DA) model. Linear quantitative relationships combining DA model parameters (E and b) with solute solvatochromic parameters were developed to evaluate the adsorptive behaviors of nondissociated species. For the saturated sorbed capacity, Q0, the logarithmic values of phenols and anilines were relatively constant with a mean value of 1.90. Besides the van der Waals force, H-bonding interactions from solutes as hydrogen-bonding donors, and followed by pi-electron polarizability, may play important roles on the adsorption of phenols and anilines by carbon nanotubes in the aqueous environment

  17. Specifically Grafting Hematin on MPTS-Coated Carbon Nanotubes for Catalyzing the Oxidation of Aniline

    Directory of Open Access Journals (Sweden)

    Kunkun Zheng

    2016-08-01

    Full Text Available Catalysts supported on nanomaterials have been widely investigated for the treatment of hazardous materials. This work has developed a novel method for grafting hematin on nanomaterials for catalyzing the oxidation of aniline in order to remove aniline from wastewater. Magnetic multi-walled carbon nanotubes (M-MWCNTs were coated with a layer formed through the hydrolysis and condensation of 3-mercaptopropyltriethoxysilane (MPTS. Hematin was specifically grafted on the MPTS-coated M-MWCNTs through thiol-alkene reaction. Hematin-MPTS-M-MWCNTs were used to catalyze the oxidation of aniline, and a high efficiency has been obtained. Consecutive use of the conjugate of hematin-MPTS-M-MWCNTs has been investigated, and the activity has been retained to a significant extent after five reaction/cleaning cycles. The result demonstrates that hematin-MPTS-M-MWCNTs are efficient for catalyzing the oxidation of aniline. The methodology for the specific grafting of hematin is of general utility, it is an easy-to-operate method and can be extended to other supports. Potentially, hematin-MPTS-based conjugates have a widespread application in catalyzing the removal of aniline from wastewater.

  18. [Removal Kinetics and Mechanism of Aniline by Manganese-oxide-modified Diatomite].

    Science.gov (United States)

    Xiao, Shao-dan; Liu, Lu; Jiang, Li-ying; Chen, Jian-meng

    2015-06-01

    A novel rapid green one-step method was developed for the preparation of manganese modified diatomite (Mn-D) by treating roasted diatomite with an acidic permanganate solution. The effects of calcination temperature and mass ratio of KMnO4 and diatomite (p) on aniline removal efficiency of Mn-D were investigated. The removal kinetics and mechanism of aniline by Mn-D were also discussed. The results showed that when the optimal calcination temperature was 450 degrees C, p was 1.6, and the loading amounts of δ-MnO2 was 0.82 g x g(-1), Mn-D had a great performance for aniline removal, and more than 80% of aniline was adsorbed within 10 minutes, accompanied with the release of Mn2+. In acidic conditions, the adsorption process on Mn-D followed pseudo-second-order and was mainly controlled by intra-particle diffusion. The best fitting of the experimental adsorption data was given by the Freundlich equation. Gas chromatograph-mass spectrometer was applied to identify the reaction intermediates at different times, and azobenzene was found to be the main reaction intermediate in the degradation system. Based on the above observations, the possible degradation pathway of aniline by Mn-D was proposed.

  19. Removal of aniline and phenol from water using raw and aluminum hydroxide-modified diatomite.

    Science.gov (United States)

    Wu, C D; Zhang, J Y; Wang, L; He, M H

    2013-01-01

    The feasibility of using raw diatomite and aluminum hydroxide-modified diatomite (Al-diatomite) for removal of aniline and phenol from water was investigated. Their physicochemical characteristics such as pHsolution, point of zero charge (pHPZC), surface area, Fourier transform infrared (FT-IR) and scanning electron microscopy was determined. After the raw diatomite was modified, the surface area of Al-diatomite increases from 26.67 to 82.65 m(2) g(-1). The pHPZC and pHsolution (10%) occurred around pH 5.2 and pH 8.6, respectively. The removal rates of aniline and phenol on diatomite and Al-diatomite decreased with increasing solution pH, while surface charge density decreased. The adsorption of aniline and phenol on diatomite presented a good fit to the Langmuir and Freundlich models, but the models are not fit to forecast the adsorption of aniline and phenol on Al-diatomite. The study indicated that electrostatic interaction was a dominating mechanism of aniline and phenol sorption onto Al-diatomite.

  20. Laboratory shake flask batch tests can predict field biodegradation of aniline in the Rhine.

    Science.gov (United States)

    Toräng, Lars; Reuschenbach, Peter; Müller, Britta; Nyholm, Niels

    2002-12-01

    The aim of this study was to compare degradation rates of aniline in laboratory shake flask simulation tests with field rates in the river Rhine. The combined events of a low flow situation in the Rhine and residual aniline concentrations in the effluent from the BASF treatment plant in Ludwigshafen temporarily higher than normal, made it possible to monitor aniline at trace concentrations in the river water downstream the wastewater outlet by means of a sensitive GC headspace analytical method. Aniline was analyzed along a downstream gradient and the dilution along the gradient was calculated from measurements of conductivity, sulfate and a non-readily biodegradable substance, 1,4-dioxane. Compensating dilution, field first-order degradation rate constants downstream the discharge of BASF were estimated at 1.8 day(-1) for two different dates with water temperatures of 21.9 and 14.7 degrees C, respectively. This field rate estimate was compared with results from 38 laboratory shake flask batch tests with Rhine water which averaged 1.5 day(-1) at 15 degrees C and 2.0 day(-1) at 20 degrees C. These results indicate that laboratory shake flask batch tests with low concentrations of test substance can be good predictors of degradation rates in natural water bodies--at least as ascertained here for short duration tests with readily degradable compounds among which aniline is a commonly used reference.

  1. Adduct of magnesium tetraphenylporphyrin with aniline for colorimetric detection of SO2

    Institute of Scientific and Technical Information of China (English)

    Li Hua Liu; Wen Bin Li; Fei Gao; Tian Rui Huo

    2012-01-01

    Adduct of magnesium tetraphenylporphyrin (MgTPP) with aniline for colorimetric detection of SO2.was investigated in CH2Cl2 by steady-state fluorescence and UV-vis absorption spectroscopic techniques.The UV-vis spectra showed that the increasing aniline concentrations resulted in red shift of 3 nm for MgTPP Soret absorption band.Once introduced,SO2 competes with MgTPP for aniline,which eventually leads to the release of MgTPP and changes in the solution color/absorption.The fluorescence spectra suggested that MgTPP interacted with aniline to form 1∶1 molecular adducts,and showed that the binding of MgTPP with aniline with the binding constants of 1.58-1.64 is not only endothermal but entropy-driven with △H=1.622 kJ mol -1,△S=9.389 J mol-1 K -1,and △G=-1.585 kJ mol -1 at T=298.15 K.

  2. Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.

    Science.gov (United States)

    Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M

    2008-07-15

    The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.

  3. Direct functionalization of pristine single-walled carbon nanotubes by diazonium-based method with various five-membered S- or N- heteroaromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, Heli; Lajunen, Marja, E-mail: marja.lajunen@oulu.fi [University of Oulu, Department of Chemistry (Finland)

    2012-09-15

    Reactivity of five-membered, variously substituted, heteroaromatic diazonium salts was studied toward pristine single-walled carbon nanotubes (SWCNTs), prepared by high-pressure CO conversion (HiPCO) method. Average size range of individual HiPCO SWCNTs was 0.8-1.2 nm (diameter) and 100-1,000 nm (length). Functionalizations were performed by a one-pot diazotization-dediazotization method with methyl-2-aminothiophene-3-carboxylate, 2-aminothiophene-3-carbonitrile, 2-aminoimidazole sulfate, or 3-aminopyrazole in acetic acid using sodium nitrite at room temperature or by heating. According to Raman and Fourier transform infrared spectroscopy, all used heterocyclic diazonium salts formed a covalent bond with SWCNTs and yielded new kinds of five-membered heterocycle-functionalized SWCNTs. Methyl-2-thiophenyl-3-carboxylate-functionalized SWCNTs formed a highly soluble, stable dispersion in tetrahydrofuran (THF), 3-pyrazoyl-functionalized SWCNTs in ethanol, and 2-imidazoyl- or 2-thiophenyl-3-carbonitrile-functionalized SWCNTs in ethanol and THF. The thermogravimetric analysis as well as energy-filtered transmission electron microscopy imaging of the products confirmed the successful functionalization of SWCNTs.

  4. Polymeric amines and biomedical uses thereof

    NARCIS (Netherlands)

    Broekhuis, Antonius; Zhang, Youchum; Picchioni, Francesco; Roks, Antonius

    2010-01-01

    The invention relates to the field of polymers and biomedical applications thereof. In particular, it relates to the use of polymeric amines derived from alternating polyketones.Provided is the use of a polymeric amine for modulating or supporting cellular behavior, said polymeric amine being an alt

  5. Adsorption of Uranyl ions on Amine-functionalization of MIL-101(Cr) Nanoparticles by a Facile Coordination-based Post-synthetic strategy and X-ray Absorption Spectroscopy Studies.

    Science.gov (United States)

    Zhang, Jian-Yong; Zhang, Na; Zhang, Linjuan; Fang, Yongzheng; Deng, Wei; Yu, Ming; Wang, Ziqiang; Li, Lina; Liu, Xiyan; Li, Jingye

    2015-09-10

    By a facile coordination-based post-synthetic strategy, the high surface area MIL-101(Cr) nanoparticles was functionallized by grafting amine group of ethylenediamine (ED) on coordinatively unsaturated Cr(III) centers, yielding a series of ED-MIL-101(Cr)-based adsorbents and their application for adsorption of U(VI) from aqueous solution were also studied. The obtained ED-functionallized samples with different ED contents were characterized by powder X-ray diffraction (PXRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), FTIR, elemental analysis (EA) and N2 adsorption and desorption isothermal. Compared with the pristine MIL-101(Cr) sorbents, the ED-functionallized MIL-101(Cr) exhibits significantly higher adsorption capacity for U(VI) ions from water with maximum adsorption capacities as high as 200 mg/g (corresponding to 100% extraction rate) at pH of 4.5 with ED/Cr ratio of 0.68 and the sorbed U(VI) ions can easily be desorbed at lower pH (pH ≤ 2.0). The adsorption mode of U(VI) ions and effects of grafted ED on the MIL-101(Cr) frameworks were also been studied by X-ray absorption spectroscopy (XAS). We believe that this work establishes a simple and energy efficient route to a novel type of functional materials for U(VI) ions extraction from solution via the post-synthetic modification (PSM) strategy.

  6. Biogenic amines in fermented foods

    NARCIS (Netherlands)

    Spano, G.; Russo, P.; Lonvaud-Funel, A.; Lucas, P.; Alexandre, H.; Grandvalet, C.; Coton, E.; Coton, M.; Barnavon, L.; Bach, B.; Rattray, F.; Bunte, A.; Magni, C.; Ladero, V.; Alvarez, M.; Fernández, M.; Lopez, P.; Palencia, P.F. de; Corbi, A.; Trip, H.; Lolkema, J.S.

    2010-01-01

    Food-fermenting lactic acid bacteria (LAB) are generally considered to be non-toxic and non-pathogenic. Some species of LAB, however, can produce biogenic amines (BAs). BAs are organic, basic, nitrogenous compounds, mainly formed through decarboxylation of amino acids. BAs are present in a wide rang

  7. Aminering van hydroxyderivaten van halogeenazahetarenen

    NARCIS (Netherlands)

    Roelfsema, W.A.

    1972-01-01

    In this thesis an introductory investigation is described on the reactivity of hydroxy derivatives of halogenopyridines and a bromohydroxyquinoline towards strong bases.It is a sequel to earlier work on the effect of substituents present in the nucleus of halogenopyridines on the course of amination

  8. Advances in heterocyclic ketene aminals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Recent developments in the study of the reactions of heterocyclic ketene aminals are reviewed with the emphases on regioselective alkylation, acylation and glycosylation reactions, and on the aza-ene reactions with α,β-unsaturated compounds, azo and carbonyl compounds. Reactions with 1,3-dipoles and other reagents to synthesize fused heterocycles are also discussed.

  9. Important Roles of Enthalpic and Entropic Contributions to CO 2 Capture from Simulated Flue Gas and Ambient Air Using Mesoporous Silica Grafted Amines

    KAUST Repository

    Alkhabbaz, Mustafa A.

    2014-09-24

    © 2014 American Chemical Society. The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0- 0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropylfunctionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less effi cient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  10. Polycyclic amines as chloroquine resistance modulating agents in Plasmodium falciparum.

    Science.gov (United States)

    Joubert, Jacques; Kapp, Erika; Taylor, Dale; Smith, Peter J; Malan, Sarel F

    2016-02-15

    Pentacycloundecylamines (PCUs) and adamantane amines, such as NGP1-01 (1) and amantadine, have shown significant channel blocking activities. They are postulated to act as chemosensitizers and circumvent the resistance of the plasmodia parasite against chloroquine (CQ) by inhibiting the p-glycoprotein efflux pump and enabling the accumulation of CQ inside the parasite digestive vacuole. Twelve polycyclic amines containing either a PCU or adamantane amine moiety conjugated to different aromatic functionalities through various tethered linkers were selected based on their channel blocking abilities and evaluated as potential chemosensitizers. Compounds 2, 4, 5 and 10 showed significant voltage-gated calcium channel (VGCC) blocking ability (IC50=0.27-35 μM) and were able to alter the CQ IC50 in differing degrees (45-81%) in the multidrug resistant Plasmodium falciparum Dd2 isolate. Among them, the PCU-dansyl amine compound (4) displayed the best potential to act as a chemosensitizer against the Dd2 strain at a 1 μM concentration (RMI=0.19) while displaying moderate antiplasmodial activity (Dd2 IC50=6.25 μM) and low in vitro cytotoxicity against a mammalian cell line (CHO, IC50=119 μM). Compounds 2 and 10 also showed some promising chemosensitizing abilities (RMI=0.36 and 0.35 respectively). A direct correlation was found between the VGCC blocking ability of these polycyclic amines and their capacity to act as CQ resistance modulating agents.

  11. Adsorption and Oxidation of Aromatic Amines on Metal(II Hexacyanocobaltate(III Complexes: Implication for Oligomerization of Exotic Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Rachana Sharma

    2017-03-01

    Full Text Available Based on the hypothesis on the presence of double metal cyanides in the primordial oceans, a series of nano-sized metal(II hexacyanocobaltate(III (MHCCo with the general formula: M3[Co(CN6]2•xH2O (where M = Zn, Fe, Ni and Mn has been synthesized. Surface interaction of aromatic amines, namely aniline, 4-chloroaniline, 4-methylaniline and 4-methoxyaniline with MHCCo particles has been carried out at the concentration range of 100–400 μM at pH~7.0. The percentage binding of aromatic amines on MHCCo surface was found to be in the range of 84%–44%. The trend in adsorption was in accordance to the relative basicity of the studied amines. At the experimental pH, amines reacted rapidly with the surface of the iron(II hexacyanocobaltate, producing colored products that were analyzed by Gas Chromatography Mass Spectroscopy (GC-MS. GC-MS analysis of the colored products demonstrated the formation of dimers of the studied aromatic amines. Surface interaction of aromatic amines with MHCCo was studied by Fourier Transform Infrared (FT-IR spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM. The change in amine characteristic frequencies, as observed by FT-IR, suggests that interaction took place through the NH2 group on amines with metal ions of hexacyanocobaltate complexes. FE-SEM studies revealed the adherence of 4-methoxyaniline on zinc hexacyanocobaltate particles surface. We proposed that MHCCo might have been formed under the conditions on primitive Earth and may be regarded as an important candidate for concentrating organic molecules through the adsorption process.

  12. Effect of substitution on aniline in inducing growth of anionic micelles

    Indian Academy of Sciences (India)

    Gunjan Garg; V K Aswal; S K Kulshreshtha; P A Hassan

    2004-08-01

    Small-angle neutron scattering (SANS) measurements were carried out on sodium dodecyl sulfate (SDS) micelles in the presence of three different hydrophobic salts, i.e. aniline hydrochloride, -toluidine hydrochloride and -toluidine hydrochloride. All these salts induce a uniaxial growth of micelles to form prolate ellipsoidal structures. A progressive decrease in the surface charge of the micelles was observed with the addition of salts followed by a rapid growth of the micelles. The presence of a methyl substitution at the ortho position of aniline does not alter the growth behavior significantly. However, when the substitution is at meta position micellar growth is favored at lower salt concentration than that is observed for aniline. This can be explained in terms of the difference in the chemical environments of the substituents at the ortho and meta positions.

  13. Determination of aniline in environmental water samples by alternating-current oscillopolarographic titration

    Institute of Scientific and Technical Information of China (English)

    Jun Ping Xiao; Qing Xiang Zhou; Xiao Ke Tian; Hua Hua Bai; Xian Fa Su

    2007-01-01

    A new method for the determination of aniline in environmental water based on oscillopolarographic titration was presented in this paper.Several factors including the kind, concentration, and volume of acid, the dosage of potassium bromide, the temperature and concentration of concomitant substances were investigated in detail.The experimental results indicated that this method was simple, rapid, and sensitive.The linear range was 8.367 x 10-4 to 2.789 x 10-2 mol L-1, the relative standard deviation (R.S.D.) was lower than 0.96%, and the spiked recoveries of aniline in environmental water samples were in the range of 99.4-106.9% under the optimal conditions.The results indicated that the present method could be used as an alternative method for aniline determination in realworld water samples.

  14. Detection of aniline at boron-doped diamond electrodes with cathodic stripping voltammetry.

    Science.gov (United States)

    Spătaru, Tanţa; Spătaru, Nicolae; Fujishima, Akira

    2007-09-15

    Boron-doped diamond (BDD) electrodes were used to investigate the possibility of detecting aniline by linear-sweep cathodic stripping voltammetry. It was found that the dimeric species (p-aminodiphenylamine and benzidine) formed by anodic oxidation of aniline during the accumulation period are involved in electrochemically reversible redox processes and, in acidic media, the shape of the stripping voltammetric response is suitable for aniline detection in the micromolar concentration range. The low background current of conductive diamond is an advantage compared to other electrode materials and allows a detection limit of 1muM. Weak adsorption properties and the extreme electrochemical stability are additional advantages of BDD and it was found that, even after long-time measurements, the electrode surface can regain its initial activity by an anodic polarization in the potential region of water decomposition.

  15. Rapid degradation of aniline in aqueous solution by ozone in the presence of zero-valent zinc.

    Science.gov (United States)

    Zhang, Jing; Wu, Yao; Qin, Chao; Liu, Liping; Lan, Yeqing

    2015-12-01

    The effects of Zn(0) dosage from 0.1 to 1.3gL(-1), pH from 2 to 12 and temperature from 288 to 318K on the degradation of aniline in aqueous solution by ozone in the presence of Zn(0) were investigated through batch experiments. The results demonstrated that Zn(0) had a significantly synergistic role in the degradation of aniline by ozone. A complete decomposition of the initial aniline (10mgL(-1)) was achieved by ozone together with Zn(0) within 25min, and meanwhile nearly 70% of the total organic carbon in the solution was removed. The decomposition efficiency of aniline markedly increased with an increase of Zn(0) dosage. However, temperature exerted a slight impact on the degradation of aniline and the optimum removal efficiency of aniline was realized at 298K. Aniline was efficiently degraded at all the tested pHs except for 12. Free radicals were investigated by electron paramagnetic resonance technique and free radical scavengers. H2O2 concentration generated during the reactions was analyzed using a photometric method. Based on the results obtained in this study, it is proposed that O2(-) instead of OH is the dominant active species responsible for the degradation of aniline. It is concluded that ozone combined with Zn(0) is an effective and promising approach to the degradation of organic pollutants.

  16. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hao, E-mail: realking163@163.com [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China); Wang, Chao; Shi, Jiaqi [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Chen, Lei [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China)

    2014-08-30

    Highlights: • Cd has different effects on joint toxicity when in different concentrations. • The toxicity of most binary mixtures decreases when Cd concentration rises. • Different QSAR models are developed to predict the joint toxicity. • Descriptors in QSARs can help to elucidate the joint toxicity mechanism. • Van der Waals’ force or complexation may reduce the toxicity of mixtures. - Abstract: The individual IC{sub 50} (the concentrations causing a 50% inhibition of bioluminescence after 15 min exposure) of cadmium ion (Cd) and nine chlorinated anilines to Photobacterium phosphoreum (P. phosphoreum) were determined. In order to evaluate the combined effects of the nine chlorinated anilines and Cd, the toxicities of chlorinated anilines combined with different concentrations of Cd were determined, respectively. The results showed that the number of chlorinated anilines manifesting synergy with Cd decreased with the increasing Cd concentration, and the number manifesting antagonism decreased firstly and then increased. The joint toxicity of mixtures at low Cd concentration was weaker than that of most binary mixtures when combined with Cd at medium and high concentrations as indicated by TU{sub Total}. QSAR analysis showed that the single toxicity of chlorinated anilines was related to the energy of the lowest unoccupied molecular orbital (E{sub LUMO}). When combined with different concentrations of Cd, the toxicity was related to the energy difference (E{sub HOMO} − E{sub LUMO}) with different coefficients. Van der Waals’ force or the complexation between chlorinated anilines and Cd had an impact on the toxicity of combined systems, which could account for QSAR models with different physico-chemical descriptors.

  17. Controlled aniline polymerization strategies for polyaniline micro- and nano self-assembling into practical electronic devices.

    Science.gov (United States)

    Yunus, Sami; Attout, Anne; Bertrand, Patrick

    2009-02-03

    Electroless polymerization of aniline on platinum is investigated for polyaniline micro- and nanostructuring into practical electronic devices. This type of reaction is adapted to estimate its usefulness in a lithographic process. For practical electronic device fabrication, electroless polymerization of aniline can be used to electrically bridge initially independent platinum electrodes. As this application requires a polyaniline bridge to form over a nonconductive material before an electrical contact is obtained, polyaniline growth using chemical oxidative reaction is investigated on substrates presenting surface-tension contrast patterns.

  18. Facile synthesis of gold nanoplates by thermally reducing AuCl4ˉwith aniline

    Institute of Scientific and Technical Information of China (English)

    Kang Xu; Zhi Rui Guo; Ning Gu

    2009-01-01

    We herein report a one-step,wet-chemical approach to synthesizing gold nanoplates in large quantities via the AuCl4-thermal reduction process by aniline,without introducing additional capping agent or surfactant.It is found that the reduction kinetics of AuCl4-is greatly altered by varying the initial molar ratio of aniline to AuCl4-.Moreover,further investigation reveals that the in-situ formed polyaniline could serve effectively as a capping agent to preferably adsorb the { 111 } facets of gold crystals during a slow reduction process,directing the formation of gold nanoplates.

  19. Preparation of heterocyclic amines by an oxidative amination of zinc organometallics mediated by Cu(I): a new oxidative cycloamination for the preparation of annulated indole derivatives.

    Science.gov (United States)

    Kienle, Marcel; Wagner, Andreas J; Dunst, Cora; Knochel, Paul

    2011-02-01

    Functionalized heterocyclic zinc reagents are easily aminated by an oxidative amination reaction of zinc amidocuprates prepared from various lithium amides. For the oxidation step, PhI(OAc)(2) proved to be the best reagent. The required heterocyclic zinc organometallics can be prepared either by direct metalation, by magnesium insertion in the presence of ZnCl(2), or by transmetalation of a suitable magnesium reagent. Furthermore, we report a new ring-closing reaction involving an intramolecular oxidative amination reaction. This reaction allows the preparation of tetracyclic heterocycles containing furan, thiophene, or indole rings.

  20. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  1. Concentration of Biogenic Amines in ‘Pinot Noir’ Wines Produced in Croatia

    Directory of Open Access Journals (Sweden)

    Ana Jeromel

    2012-03-01

    Full Text Available The origins of biogenic amines are sound grapes, alcoholic fermentations, malolactic fermentation and microbial activities during wine storage. These biologically produced amines are essential at low concentrations for optimal metabolic and physiological functions in animals, plants and micro-organisms. During alcoholic fermentation the degree of maceration is the first factor that affects the extraction of compounds present in the grape skin, among them aminoacids, precursors of biogenic amines. The aim of the present work was to study the changes of the concentration of biogenic amines in wines made from Vitis vinifera ‘Pinot noir’ from Plešivica (vintage 2009 produced with classical maceration, cold maceration and use of sur lie method. Biogenic amines were quantified using a reversed-phase high performance liquid chromatography (HPLC with fluorescence detection after pre-column derivatization with o-phthalaldehyde (OPA. In ‘Pinot noir’ wines tested, histamine was the most abundant biogenic amine followed by tryptamine and 2-Phenylethylamine. Total amount of biogenic amines ranged from 8.72 mg/L in wines made with classical maceration up to 9.34 mg/L in sur lie wines. In summary, from the results obtained in this study, it can be concluded that sur lie technology can influence the formation of biogenic acids since the release of amino acids is probably more pronounced in wines aged with lees and stirred weekly. No significant differences were found in the concentration of biogenic amines in relation to the used maceration process.

  2. Strong Fluorescent Smart Organogel as a Dual Sensing Material for Volatile Acid and Organic Amine Vapors.

    Science.gov (United States)

    Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran

    2015-11-23

    An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively.

  3. Dual-electrode oxidation used for aniline degradation in aqueous electrolyte.

    Science.gov (United States)

    Yan-Yang, Chu; Ling-Ling, Li; Mao-Juan, Bai

    2011-01-01

    The electrochemical degradation of aniline in aqueous electrolyte has been studied by dual-electrode oxidation process using Ti/SnO2-Sb2O5 for anodic oxidation and graphite cathode to produce H2O2 in situ. The linear voltammograms were employed to obtain reasonable anodic and cathodic potential values for the purpose of restraining side reactions. The influence of Fe2+ on aniline degradation was investigated under potentiostatic condition with a three-electrode system. It was found that an anodic potential range of 2.0 +/- 0.1 V and a cathodic potential of -0.65 V could favor anodic oxidation and H2O2 generation. Anodic oxidation was accounted for aniline degradation in the absence of Fe2+, while in the presence of Fe2+ both electro-Fenton oxidation and anodic oxidation (dual-electrode oxidation) could degradate aniline effectively. When cathodic potential values were -0.65 and -0.80 V, the optimum Fe2+ concentration were 0.50 and 0.30 mM, respectively. 77.5% COD removal and 70.4% TOC removal with a current efficiency (CE) of 96-100% were achieved under the optimum conditions. This work indicates that dual-electrode oxidation process characterized by a high CE is feasible for the degradation of organic compounds.

  4. Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media

    Science.gov (United States)

    Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.

    2015-06-01

    Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.

  5. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system

    DEFF Research Database (Denmark)

    Li, Xiaohu; Jin, Xiangdan; Angelidaki, Irini

    2017-01-01

    wastewater under an acidic condition maintained by the bipolar membrane. The aniline was effectively degraded following first-order kinetics at a rate constant of 0.0166 h−1 under an applied voltage of 0.5 V. Meanwhile, a total organic carbon (TOC) removal efficiency of 93.1 ± 1.2% was obtained, revealing...

  6. Regioselective chlorination and bromination of unprotected anilines under mild conditions using copper halides in ionic liquids

    Directory of Open Access Journals (Sweden)

    Han Wang

    2012-05-01

    Full Text Available By using ionic liquids as solvents, the chlorination or bromination of unprotected anilines at the para-position can be achieved in high yields with copper halides under mild conditions, without the need for potentially hazardous operations such as supplementing oxygen or gaseous HCl.

  7. [Migration of monomers and primary aromatic amines from nylon products].

    Science.gov (United States)

    Mutsuga, Motoh; Yamaguchi, Miku; Ohno, Hiroyuki; Kawamura, Yoko

    2010-01-01

    Migration of 2 kinds of monomer and 21 kinds of primary aromatic amines (PAAs) from 21 kinds of nylon products such as turners, ladles and wrap film were determined. Samples were classified as regards materials by mean of pyrolysis-GC/MS. One sample was classified as nylon 6, 15 samples as nylon 66 and three samples as nylon 6/66 copolymers, while two samples were laminate of nylon 6 with polyethylene or polypropylene. All of the nylon 66 samples contained a small amount of ε-caprolactam (CPL), which is the nylon 6 monomer. Migration levels of monomers and PAAs at 60°C for 30 min into 20% ethanol were measured by LC/MS/MS. CPL was detected at the level of 0.015-38 µg/mL from all samples, excluding one wrap film sample, and 1,6-hexamethylenediamine was detected at the level of 0.002-0.013 µg/mL from all nylon 66 samples and one nylon 6/66 sample. In addition, 0.006-4.3 µg/mL of 4,4'-diaminodiphenylmethane from three samples, 0.032-0.23 µg/mL of aniline from four samples, 0.001 µg/mL of 4-chloroaniline from two samples, and 0.002 µg/mL of 2-toluidine and 0.066 mg/mL of 1-naphthylamine from one sample each were detected. The migration levels at 95 or 121°C were about 3 and 10 times the 60°C levels, respectively.

  8. Iridium-Catalyzed Condensation of Primary Amines To Form Secondary Amines

    DEFF Research Database (Denmark)

    Lorentz-Petersen, Linda Luise Reeh; Jensen, Paw; Madsen, Robert

    2009-01-01

    Symmetric secondary amines are readily obtained by heating a neat primary amine with 0.5 mol% of bis(dichloro[eta(5)-pentamethylcyclopentadienyl]iridium). The products are isolated by direct distillation in good yields....

  9. Volumetric Behavior of Binary Mixtures of Alkoxyethanols and Some Selected Amines at 298.15 K

    Directory of Open Access Journals (Sweden)

    Ayasen Jermaine Kemeakegha

    2015-01-01

    Full Text Available Densities of binary mixtures of 2-methoxyethanol (2-MeO-EtOH and 2-ethoxyethanol (2-EtO-EtOH with hexylamine (HLA, diethylamine (DEA, triethylamine (TEA, tert-butylamine (TBA, aniline (ANL, and benzylamine (BLA have been determined at varying compositions of the alkoxyalkanols at 298.15 K. The excess molar volumes, VE, of the binary mixtures were calculated from the experimental density data of the mixtures and the component single solvents. The calculated excess molar volumes were fitted into the Redlich-Kister polynomial to obtain the fitting coefficients and standard deviations. The excess molar volumes of the binary mixtures of all the solvent systems investigated were negative over the entire range of the solvents composition. The negative values were attributed to stronger hydrogen bond formations between the unlike molecules of mixtures than those between the like molecules of the pure components. The magnitude of the excess molar volumes of the binary mixtures of 2-methoxyethanol and the aliphatic amines were in the order TBA > TEA > DEA > HEA. For the two aromatic amines, the magnitudes were in the order BLA > ANL. For binary mixtures of the amines and 2-ethoxyethanol, the magnitudes were in the order DEA > TEA > TBA > HEA at compositions where the mole fraction of 2-EtO-EtOH was ≤0.5 and TBA > TEA > DEA > HEA above 0.5 mole fraction of 2-EtO-EtOH.

  10. Intercalating quaternary nicotinamide-based poly(amido amine)s for gene delivery.

    Science.gov (United States)

    van der Aa, L J; Vader, P; Storm, G; Schiffelers, R M; Engbersen, J F J

    2014-12-10

    In the development of potent polymeric gene carriers for gene therapy, a good interaction between the polymer and the nucleotide is indispensable to form small and stable polyplexes. Polymers with relatively high cationic charge density are frequently used to provide these interactions, but high cationic charge is usually associated with severe cytotoxicity. In this study an alternative, nucleotide specific binding interaction based on intercalation was investigated to improve polymer/pDNA complex formation. For this purpose bioreducible poly(amido amine) copolymers (p(CBA-ABOL/Nic)) were synthesized with different degrees of intercalating quaternary nicotinamide (Nic) groups and amide-substituted derivatives in their side chains. The quaternary nicotinamide group was chosen as intercalating moiety because this group is part of the naturally occurring NAD+ coenzyme and is therefore expected to be non-toxic and non-carcinogenic. The presence of the quaternary nicotinamide moieties in the poly(amido amine) copolymers showed to effectively promote self-assembled polyplex formation already at low polymer/DNA ratios and results in decreased polyplex size and increased stability of the polyplexes. Furthermore, in contrast to the primary amine functionalized analogs the quaternary nicotinamide polymers showed to be non-hemolytic, indicating their compatibility with cell membranes. Polymers with 25% of Nic in the side chains induced GFP expressions of about 4-5 times that of linear PEI, which is comparable with p(CBA-ABOL), the parent PAA without Nic, but at a two- to fourfold lower required polymer dose. N-phenylation of the nicotinamide functionality even further reduces the required polymer dose to form stable polyplexes, which is a major improvement for these kinds of cationic polymers. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications

    OpenAIRE

    Yue ePei; Aman eAsif-Malik; Canales, Juan J.

    2016-01-01

    Biogenic amines are a collection of endogenous molecules that play pivotal roles as neurotransmitters and hormones. In addition to the “classical” biogenic amines resulting from decarboxylation of aromatic acids, including dopamine (DA), norepinephrine, epinephrine, serotonin (5-HT), and histamine, other biogenic amines, present at much lower concentrations in the central nervous system (CNS), and hence referred to as “trace” amines (TAs), are now recognized to play significant neurophysiolog...

  12. Flotation of kaolinite with dodecyl tertiary amines

    Institute of Scientific and Technical Information of China (English)

    CAO Xue-feng; LIU Chang-miao; HU Yue-hua

    2009-01-01

    The flotation of kaolinite using a series of tertiary amines (N,N-dimethyl-dodecyl amine (DRN), N,N-diethyl-dodecyl amine (DEN), N,N-dipropyl-dodecyl amine (DPN) and N,N-dibenzyl-bodecyi amine (DBN)) was investigated. The results show that the maximum recoveries of kaolinite for DEN, DPN and DRN are 93%, 88% and 84%, respectively, but that of DBN is very low. On the basis of zeta potential and FT-IR spectra, the ionization of surface hydroxyl and isomorphic exchange of surface ions account for the charging mechanisms of kaolinite surface. The adsorption mechanism of tertiary amines on kaolinite surface is mainly electrostatic. The isoelectric point (IEP) of kaolinite increases from 3.4 to some more positive points after the interaction of kaolinite with the four tertiary amines. The FT-IR spectra of kaolinite change with the presence of some new sharp shapes belonging to the tertiary amines. The inductive electronic effects and space-steric effects of -CH_3, -C_2H_5, -C_3H_7 and -C_7H_7 bonding to N atom result in different collecting power of the four tertiary amines.

  13. Unexpected Reduction of Ethyl 3-Phenylquinoxaline-2- carboxylate 1,4-Di-N-oxide Derivatives by Amines

    Directory of Open Access Journals (Sweden)

    Antonio Monge

    2008-01-01

    Full Text Available The unexpected tendency of amines and functionalized hydrazines to reduceethyl 3-phenylquinoxaline-2-carboxylate 1,4-di-N-oxide (1 to afford a quinoxaline 1c andmono-oxide quinoxalines 1a and 1b is described. The experimental conditions werestandardized to the use of two equivalents of amine in ethanol under reflux for two hours,with the aim of studying the distinct reductive profiles of the amines and thechemoselectivity of the process. With the exception of hydrazine hydrate, which reducedcompound 1 to a 3-phenyl-2-quinoxalinecarbohydrazide derivative, the amines only actedas reducing agents.

  14. Determination of aniline and quinoline compounds in textiles.

    Science.gov (United States)

    Luongo, Giovanna; Iadaresta, Francesco; Moccia, Emanuele; Östman, Conny; Crescenzi, Carlo

    2016-11-04

    A simple method for simultaneous determination of twenty-one analytes, belonging to two classes of compounds, aromatic amines and quinolines, is presented. Several of the analytes considered in this study frequently occur in textiles goods on the open market and have been related to allergic contact dermatitis and/or are proven or suspected carcinogens. The method includes an efficient clean-up step using graphitized carbon black (GCB) that simplifies and improves the robustness of the subsequent GC-MS analysis. Briefly, after solvent extraction of the textile sample, the extract is passed through a GCB SPE cartridge that selectively retain dyes and other interfering compounds present in the matrix, producing a clean extract, suitable for GC-MS analysis, is obtained. The method was evaluated by spiking blank textiles with the selected analytes. Method quantification limits (MQL) ranged from 5 to 720ng/g depending on the analyte. The linear range of the calibration curves ranged over two order magnitude with coefficients of determination (R(2)) higher than 0.99. Recoveries ranged from 70 to 92% with RSDs 1.7-14%. The effectiveness of the method was tested on a variety of textile materials samples from different origin. In a pilot explorative survey, 2,6-dichloro-4-nitroaniline was detected in all the analysed clothing samples in concentrations ranging from 1.0 to 576μg/g. 2,4-dinitroaniline was detected in four of the seven samples with a highest concentration of 305μg/g. Quinoline was detected in all samples in concentrations ranging from 0.06 to 6.2μg/g. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Amine-phenyl multi-component gradient stationary phases.

    Science.gov (United States)

    Dewoolkar, Veeren C; Kannan, Balamurali; Ashraf, Kayesh M; Higgins, Daniel A; Collinson, Maryanne M

    2015-09-04

    Continuous multi-component gradients in amine and phenyl groups were fabricated using controlled rate infusion (CRI). Solutions prepared from either 3-aminopropyltriethoxysilane (APTEOS) or phenyltrimethoxysilane (PTMOS) were infused, in a sequential fashion, at a controlled rate into an empty graduated cylinder housing a vertically aligned thin layer chromatography (TLC) plate. The hydrolyzed precursors reacted with an abundance of silanol (SiOH) groups on the TLC plates, covalently attaching the functionalized silane to its surface. The extent of modification by phenyl and amine was determined by the kinetics of each reaction and the exposure time at each point along the TLC plate. The local concentrations of phenyl and amine were measured using diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy, respectively. The profile of the multi-component gradients strongly depended on the order of infusion, the direction of the gradient and the presence of available surface silanol groups. A slightly higher amount of phenyl can be deposited on the TLC plate by first modifying its surface with amine groups as they serve as a catalyst, enhancing condensation. Separation of water- and fat-soluble vitamins and the control of retention factors were demonstrated on the multi-component gradient TLC plates. Uniformly modified and single-component TLC plates gave different separations compared to the multi-component gradient plates. The retention factors of the individual vitamins depended on the order of surface modification, the spotting end, and whether the multi-component gradients align or oppose each other.

  16. Experimental and theoretical investigations into the stability of cyclic aminals

    Directory of Open Access Journals (Sweden)

    Edgar Sawatzky

    2016-10-01

    Full Text Available Background: Cyclic aminals are core features of natural products, drug molecules and important synthetic intermediates. Despite their relevance, systematic investigations into their stability towards hydrolysis depending on the pH value are lacking.Results: A set of cyclic aminals was synthesized and their stability quantified by kinetic measurements. Steric and electronic effects were investigated by choosing appropriate groups. Both molecular mechanics (MM and density functional theory (DFT based studies were applied to support and explain the results obtained. Rapid decomposition is observed in acidic aqueous media for all cyclic aminals which occurs as a reversible reaction. Electronic effects do not seem relevant with regard to stability, but the magnitude of the conformational energy of the ring system and pKa values of the N-3 nitrogen atom.Conclusion: Cyclic aminals are stable compounds when not exposed to acidic media and their stability is mainly dependent on the conformational energy of the ring system. Therefore, for the preparation and work-up of these valuable synthetic intermediates and natural products, appropriate conditions have to be chosen and for application as drug molecules their sensitivity towards hydrolysis has to be taken into account.

  17. Biogenic amines in rhizobia and legume root nodules.

    Science.gov (United States)

    Fujihara, Shinsuke

    2009-01-01

    Root-nodule bacteria (rhizobia) are of great importance for nitrogen acquisition through symbiotic nitrogen fixation in a wide variety of leguminous plants. These bacteria differ from most other soil microorganisms by taking dual forms, i.e. a free-living form in soils and a symbiotic form inside of host legumes. Therefore, they should have a versatile strategy for survival, whether inhabiting soils or root nodules formed through rhizobia-legume interactions. Rhizobia generally contain large amounts of the biogenic amine homospermidine, an analog of spermidine which is an essential cellular component in most living systems. The external pH, salinity and a rapid change in osmolarity are thought to be significant environmental factors affecting the persistence of rhizobia. The present review describes the regulation of homospermidine biosynthesis in response to environmental stress and its possible functional role in rhizobia. Legume root nodules, an alternative habitat of rhizobia, usually contain a variety of biogenic amines besides homospermidine and the occurrence of some of these amines is closely associated with rhizobial infections. In the second half of this review, novel biogenic amines found in certain legume root nodules and the mechanism of their synthesis involving cooperation between the rhizobia and host legume cells are also described.

  18. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement

    Science.gov (United States)

    Smith, Nikaïa; Pietrancosta, Nicolas; Davidson, Sophia; Dutrieux, Jacques; Chauveau, Lise; Cutolo, Pasquale; Dy, Michel; Scott-Algara, Daniel; Manoury, Bénédicte; Zirafi, Onofrio; McCort-Tranchepain, Isabelle; Durroux, Thierry; Bachelerie, Françoise; Schwartz, Olivier; Münch, Jan; Wack, Andreas; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2017-01-01

    Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. PMID:28181493

  19. Organocatalyzed Asymmetric α-Oxidation, α-Aminoxylation and α-Amination of Carbonyl Compounds

    Directory of Open Access Journals (Sweden)

    Worawan Bhanthumnavin

    2010-02-01

    Full Text Available Organocatalytic asymmetric α-oxidation and amination reactions of carbonyl compounds are highly useful synthetic methodologies, especially in generating chiral building blocks that previously have not been easily accessible by traditional methods. The concept is relatively new and therefore the list of new catalysts, oxidizing and aminating reagents, as well as new substrates, are expanding at an amazing rate. The scope of this review includes new reactions and catalysts, mechanistic aspects and synthetic applications of α-oxidation, hydroxylation, aminoxylation, amination, hydrazination, hydroxyamination and related α-heteroatom functionalization of aldehydes, ketones and related active methylene compounds published during 2005–2009.

  20. ORGANIC CHEMISTRY. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines.

    Science.gov (United States)

    Yang, Yang; Shi, Shi-Liang; Niu, Dawen; Liu, Peng; Buchwald, Stephen L

    2015-07-01

    Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Here, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins—an important yet unexploited class of abundant feedstock chemicals—into highly enantioenriched α-branched amines (≥96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas.

  1. Mixed - Amine Functionalized MesoPorous Silica Gel for CO2 CaPture%混合胺修饰的介孔硅胶吸附 cO2性能研究

    Institute of Scientific and Technical Information of China (English)

    陈琳琳; 郭庆杰

    2015-01-01

    以介孔硅胶为载体,采用“嫁接+浸渍”两步法制备了混合胺(APTS + TEPA)修饰的介孔硅胶吸附剂。在固定床中考察了3-氨丙基三乙氧基硅烷(APTS)和四乙烯五胺(TEPA)负载量、吸附温度、进气流量对 cO2吸附性能的影响,并研究了吸附剂的循环稳定性。结果表明,当 APTS 负载量30%,TEPA 负载量30%(TEPA30- APTS30- MSG),吸附温度为70℃,进气流量为30 mL/min 时,该吸附剂表现出最好的吸附性能,饱和吸附量高达3.04 mmol/ g,较纯 TEPA 浸渍提高了37.6%。该吸附剂经10次吸脱附循环后,饱和吸附量仅下降2.96%,具有较好的循环稳定性。%A novel hybrid 3 - aminopropyltrimethoxysilane( APTS) and tetraethylenepentamine ( TEPA ) modified mesoporous silica gel sorbent was synthesized by a two - step method,which combined grafting and impregnation methods. The effects of APTS and TEPA loadings,adsorption temperature and influent velocities on cO2 adsorption capacity were investigated in a self - assembled fixed bed reactor. It was found that the mesoporous silica gel modified with 30% APTS and 30% TEPA(TEPA30 - APTS30 - MSG)showed a maximum adsorption capacity of 3. 04 mmol - cO2 / g - sorbent at a optimal temperature of 70 ℃ and influent velocities of 30 mL/ min. The adsorption capacity is maintained after 10 cycles of adsorption - desorption process,indicating that the mixed - amine functionalized mesoporous silica gel exhibited an excellent stability in a prolonged cyclic operation.

  2. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  3. Effect of chelating agent on oxidation rate of aniline in ferrous ion activated persulfate system at neutral pH

    Institute of Scientific and Technical Information of China (English)

    张永清; 谢晓芳; 黄少斌; 梁海云

    2014-01-01

    In the interest of accelerating aniline degradation, Fe2+and chelated Fe2+activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate (EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn’t follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.

  4. Palladium-catalyzed amination of allyl alcohols.

    Science.gov (United States)

    Ghosh, Raju; Sarkar, Amitabha

    2011-10-21

    An efficient catalytic amination of aryl-substituted allylic alcohols has been developed. The complex [(η(3)-allyl)PdCl](2) modified by a bis phosphine ligand, L, has been used as catalyst in the reaction that afforded a wide range of allyl amines in good to excellent yield under mild conditions.

  5. Method for the production of primary amines

    NARCIS (Netherlands)

    Baldenius, Kai-Uwe; Ditrich, Klaus; Breurer, Michael; Navickas, Vaidotas; Janssen, Dick; Crismaru, Ciprian; Bartsch, Sebastian

    2014-01-01

    The present invention relates to a novel enzymatically catalyzed method for the production of aliphatic primary amines, which method comprises the enzymatic oxidation of a primary aliphatic alcohol catalyzed by an alcohol dehydrogenase, amination of the resulting oxocompound catalyzed by a transamin

  6. Intolerance to dietary biogenic amines : a review

    NARCIS (Netherlands)

    Jansen, SC; van Dusseldorp, M; Bottema, KC; Dubois, AEJ

    2003-01-01

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allergen intoler*, and

  7. Intolerance to dietary biogenic amines: A review

    NARCIS (Netherlands)

    Jansen, S.C.; Dusseldorp, M. van; Bottema, K.C.; Dubois, A.E.J.

    2003-01-01

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allerg*, intoler*, and

  8. Intolerance to dietary biogenic amines : a review

    NARCIS (Netherlands)

    Jansen, SC; van Dusseldorp, M; Bottema, KC; Dubois, AEJ

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allergen intoler*, and

  9. Intolerance to dietary biogenic amines: A review

    NARCIS (Netherlands)

    Jansen, S.C.; Dusseldorp, M. van; Bottema, K.C.; Dubois, A.E.J.

    2003-01-01

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allerg*, intoler*, and

  10. Speaking Personally--with Amin Qazi

    Science.gov (United States)

    Ragan, Lawrence

    2016-01-01

    This article provides an interview with Amin Quazi, the founding chief executive officer of Unizin, a university-owned consortium focused on the emerging digital teaching and learning ecosystem. Amin has a bachelor's degree in chemical engineering from The University of Iowa and a master's degree in business administration from the Carlson School…

  11. Basic biogenic aerosol precursors: Agricultural source attribution of volatile amines revised

    Science.gov (United States)

    Kuhn, U.; Sintermann, J.; Spirig, C.; Jocher, M.; Ammann, C.; Neftel, A.

    2011-08-01

    Despite recent evidence on an important role of volatile amines in the nucleation of particulate matter, very scarce information is available on their atmospheric abundance and source distribution. Previous measurements in animal housings had identified livestock husbandry as the main amine source, with trimethylamine (TMA) being the key component. This has led to the assumption that the agricultural sources for amines are similar as for ammonia, emitted throughout the cascade of animal excretion, storage and application in the field. In this study, we present the first micrometeorological flux measurements as well as dynamic enclosure experiments showing that the amine source strength from stored slurry is negligible, implying significant consequences for the global amine emission inventory. In the case of cattle, amine production is attributed to the animal's rumination activity and exhalation is suggested to be an important emission pathway, similar to the greenhouse gas methane. Fodder like hay and silage also emits volatile amines, potentially assigning these alkaloid compounds a key function in enhancing particle formation in remote areas.

  12. Study on Electrochemical Copolymerization of Aniline and 3-Methylthiophene in HMIMBF4 Ionic Liquid and Its Properties

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-Jian; ZHANG Gui-Rong; YANG Guang-Da; AO Feng-Guo; LU Jia-Xing

    2007-01-01

    Electrochemical polymerization of aniline and 3-methylthiophene has been accomplished in 1-methylimidazium tetrafluoroborate (HMIMBF4) ionic liquid. Homopolymer and copolymers of aniline and 3-methylthiophene were obtained successfully. The copolymer was studied by cyclic voltammetry and electrochemical impedance spectroscopy. The formation of copolymer has been confirmed by FT-IR and UV spectra. The atomic force microscope (AFM) was used for microstructural analysis. Both the homopolymer and the copolymer had the catalytic activity for the hydroquinone.

  13. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  14. Role of L-alanine for redox self-sufficient amination of alcohols

    OpenAIRE

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-01

    Background In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578–5585, 2014), and the role of L-alanine for efficient amin...

  15. Using aqueous ammonia in hydroaminomethylation reactions: ruthenium-catalyzed synthesis of tertiary amines.

    Science.gov (United States)

    Wu, Lipeng; Fleischer, Ivana; Zhang, Min; Liu, Qiang; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2014-12-01

    The direct synthesis of tertiary amines from ammonia and olefins is presented. Using a combination of Ru3 (CO)12 and 2-phosphino-substituted imidazole ligand as catalyst system allows for hydroaminomethylation reactions of bulk aliphatic and functionalized olefins. Tertiary amines are obtained in an atom-efficient domino process in moderate to good isolated yields (45-76%) with excellent regioselectivities (n/iso up to 99:1).

  16. Experimental and QSPR Studies on n-Octanol/water Partition Coefficient(lgKow) of Substituted Aniline

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EHOMO)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.

  17. Thermodynamics of mixtures containing amines

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan Antonio [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain)], E-mail: jagl@termo.uva.es; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain); Riesco, Nicolas [Department of Chemical Engineering, Loughborough University, Loughborough, LE113TU Leicestershire (United Kingdom)

    2008-01-30

    Mixtures with dimethyl or trimethylpyridines and alkane, aromatic compound or 1-alkanol have been examined using different theories: DISQUAC, Flory, the concentration-concentration structure factor, S{sub CC}(0), or the Kirkwood-Buff formalism. DISQUAC represents fairly well the available experimental data, and improves theoretical calculations from Dortmund UNIFAC. Two important effects have been investigated: (i) the effect of increasing the number of methyl groups attached to the aromatic ring of the amine; (ii) the effect of modifying the position of the methyl groups in this ring. The molar excess enthalpy, H{sup E}, and the molar excess volume, V{sup E}, decrease in systems with alkane or methanol as follows: pyridine > 3-methylpyridine > 3,5-dimethylpyridine and pyridine > 2-methylpyridine > 2,4-dimethylpyridine > 2,4,6-trimethylpyridine, which has been attributed to a weakening of the amine-amine interactions in the same sequences. This is in agreement with the relative variation of the effective dipole moment, {mu}-bar, and of the differences between the boiling temperature of a pyridine base and that of the homomorphic alkane. For heptane solutions, the observed H{sup E} variation, H{sup E} (3,5-dimethylpyridine) > H{sup E} (2,4-dimethylpyridine) > H{sup E} (2,6-dimethylpyridine), is explained similarly. Calculations on the basis of the Flory model confirm that orientational effects become weaker in systems with alkane in the order: pyridine > methylpyridine > dimethylpyridine > trimethylpyridine. S{sub CC}(0) calculations show that steric effects increase with the number of CH{sub 3}- groups in the pyridine base, and that the steric effects exerted by methyl groups in positions 2 and 6 are higher than when they are placed in positions 3 and 5. The hydrogen bond energy in methanol mixtures is independent of the pyridine base, and it is estimated to be -35.2 kJ mol{sup -1}. Heterocoordination in these solutions is due in part to size effects. Their

  18. Biodegradation of toluene diamine (TDA) in activated sludge acclimated with aniline and TDA.

    Science.gov (United States)

    Asakura, S; Okazaki, S

    1995-06-01

    The biodegradability of toluene diamine (TDA) which has been regarded as a "recalcitrant compound" was examined in activated sludges. In this study, a microorganic-enzyme system which metabolized TDA was obtained by acclimating the activated sludge with aniline and TDA. In the sludge subject to be 200 days' acclimation, the considerable increase in respiration rate with the addition of TDA, accompanied the sharp decrease in its concentration. This indicated that TDA was metabolized fortuitously. The rate of biodegradation of TDA in the absence of aniline was first order with respect to its concentration when the initial TDA concentration was less than about 5 mg/l. The rate constant in this relation was proportional to mixed liquor suspended solid (MLSS). However, when the initial TDA concentration exceeded 5 mg/l, the plots were deviated from a first order rate equation.

  19. INHIBITION OF CORROSION OF ZINC IN (HNO3 + HCl ACID MIXTURE BY ANILINE

    Directory of Open Access Journals (Sweden)

    R.T. Vashi

    2015-05-01

    Full Text Available Corrosion of Zinc metal in (HNO3 + HCl binary acid mixture and inhibition efficiency of aniline has been studied by weight loss method and polarization technique. Corrosion rate increases with the concentration of acid mixture and the temperature. Inhibition efficiency (I.E. of aniline increases with the concentration of inhibitor while decreases with the increase in concentration of acid. As temperature increases corrosion rate increases while percentage of I.E. decreases. A plot of log (θ/1-θ versus log C results in a straight line suggest that the inhibitor cover both the anodic and cathodic regions through general adsorption following Longmuir isotherm. Galvenostatic polarization curves show polarization of both anodes as well as cathodes.

  20. Poly(aniline-co--aminobenzoic acid) deposited on poly(vinyl alcohol): Synthesis and characterization

    Indian Academy of Sciences (India)

    S Adhikari; P Banerji

    2013-08-01

    In this work, we have deposited poly(aniline-co--aminobenzoic acid) on poly(vinyl alcohol) (PVA) by in situ polymerization. The polymerization was effected within maleic acid (MA) cross-linked PVA hydrogel. The copolymer was obtained by oxidative polymerization of aniline hydrochloride and -aminobenzoic acid using ammonium persulfate as an oxidant. Instead of conventional solution polymerization, here synthesis was carried out on APS soaked MA cross-linked PVA (MA–PVA) film where the polymer was in situ deposited in its conducting form. The composite film was characterized by Fourier transform infra red (FT–IR) and ultraviolet visible (UV–VIS) spectroscopy and electrical measurements. Surface morphology of the composite films was studied by field emission scanning electron microscopy (FESEM). The variation of conductivity of the films was studied.

  1. Characterization of Aniline Tetramer by MALDI TOF Mass Spectrometry upon Oxidative and Reductive Cycling

    Directory of Open Access Journals (Sweden)

    Rebecca L. Li

    2016-11-01

    Full Text Available By combining electrochemical experiments with mass spectrometric analysis, it is found that using short chain oligomers to improve the cycling stability of conducting polymers in supercapacitors is still problematic. Cycling tests via cyclic voltammetry over a potential window of 0 to 1.0 V or 0 to 1.2 V in a two-electrode device configuration resulted in solid-state electropolymerization and chain scission. Electropolymerization of the aniline tetramer to generate long chain oligomers is shown to be possible despite the suggested decrease in reactivity and increase in intermediate stability with longer oligomers. Because aniline oligomers are more stable towards reductive cycling when compared to oxidative cycling, future conducting polymer/oligomer-based pseudocapacitors should consider using an asymmetric electrode configuration.

  2. Study on Molecular Recognition of Crown Ethers to Aniline and Monosaccharides

    Institute of Scientific and Technical Information of China (English)

    QI Li-Ya; TENG Qi-Wen; WU Shi; LIU Zheng-Zheng

    2005-01-01

    Theoretical study on coordinates between crown ethers and aniline as well as monosaccharides is performed by AM1, MNDO and PM3 methods.It is indicated that crown ethers possess ability to recognize polar guests especially ionic guests and monosaccharides.Electronic spectra of coordinates are computed by the INDO/SCI method.The reason of the blue-shift for UV absorption of complexes relative to that of hosts is discussed and electronic transition is theoretic- cally assigned.

  3. Effect of Ionic Liquid on the Determination of Aromatic Amines as Contaminants in Hair Dyes by Liquid Chromatography Coupled to Electrochemical Detection

    Directory of Open Access Journals (Sweden)

    Maria Valnice Boldrin Zanoni

    2012-07-01

    Full Text Available The room temperature ionic liquid (IL 1-butyl-3-methylimidazolium bis-(trifluorometanesulfonylimide BMIm[NTf2] was used as a novel medium for improvement of separation and quantization of 16 aromatic amines typically present as contaminants in consumer products and detected by HPLC coupled to an electrochemical detector. The aromatic amines, namely 4,4'-diaminodiphenylmethane, 4-chloroaniline, 2-methoxy-5-methyl-aniline, 3,3'-dimethylbenzidine, 2,4-diaminotoluidine, 2-chloro-4-nitroaniline, 4,4'-oxydianiline, aniline, 3,3'-dichlorobenzidine, benzidine, 4-aminobiphenyl, o-dianisidine, o-anisidine, o-toluidine, 4,4'-methylene-bis-2-chloroaniline and 2-naphthyl-amine are oxidized in methanol/BMIm[NTf2] at a potential around +0.68V to +0.93V vs. Ag/AgCl at a glassy carbon electrode, which is the base for their determination by HPLC/ED. Using the optimized conditions of methanol/BMIm[NTf2] 70:30 (v/v as mobile phase, flow-rate of 0.8 mL·min−1, column CLC-ODS, Eap = +1.0 V and T = 40 °C analytical curves were constructed for each of the tested amines. Good linearity was obtained in the concentration range of 1.09 mg·L−1 to 217 mg·L−1, with excellent correlation coefficients. The limits of detection reached 0.021 mg·L−1 to 0.246 mg·L−1 and good relative standard deviations (RSD, n = 3 were obtained from the measurements. Satisfactory recovery for each aromatic amine was achieved, ranging from 95 to 103%. The developed method was successfully applied to determine six aromatic amines present as contaminants in commercial hair dye samples.

  4. Dispersion Interactions and the Stability of Amine Dimers

    Science.gov (United States)

    Guttmann, Robin

    2017-01-01

    Abstract Weak, intermolecular interactions in amine dimers were studied by using the combination of a dispersionless density functional and a function that describes the dispersion contribution to the interaction energy. The validity of this method was shown by comparison of structural and energetic properties with data obtained with a conventional density functional and the coupled cluster method. The stability of amine dimers was shown to depend on the size, the shape, and the relative orientation of the alkyl substituents, and it was shown that the stabilization energy for large substituents is dominated by dispersion interactions. In contrast to traditional chemical explanations that attribute stability and condensed matter properties solely to hydrogen bonding and, thus, to the properties of the atoms forming the hydrogen bridge, we show that without dispersion interactions not even the stability and structure of the ammonia dimer can be correctly described. The stability of amine dimers depends crucially on the interaction between the non‐polar alkyl groups, which is dominated by dispersion interactions. This interaction is also responsible for the energetic part of the free energy interaction used to describe hydrophobic interactions in liquid alkanes. The entropic part has its origin in the high degeneracy of the interaction energy for complexes of alkane molecules, which exist in a great variety of conformers, having their origin in internal rotations of the alkane chains. PMID:28794953

  5. Photocatalytic Oxidation of Aniline in the Gas Phase Using Porous TiO2 Thin Films

    Institute of Scientific and Technical Information of China (English)

    Fa Wenjun; Li Ying; Gong Chuqing; Zhong Jiacheng

    2006-01-01

    The gas-phase photocatalytic oxidation of aniline on a new kind of porous nano-TiO2 composite films is investigated.The composite film was prepared on glass fiber with the water glass as binders and dilute H2SO4 solution as solidifying reagent.The surface characters were observed by scanning electron microscope.The photocatalytic degradation of aniline on the composite films was carried out in a TiO2AJV system.Some important factors affecting the photodegmdation,such as the concentration of TiO2,the initial concentration of aniline,and the existing water vapor,are also studied.The product ofphotocatalytic oxidation was detected by Fourier transform-Infrared.The partial intermediate products were absorbed on TiO2 surface,which resulted in catalyst deactivation.But when it was irradiated under UV illumination or solar irradiation for some time,the catalyst could be reused without loss of catalytic activity.

  6. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel.

    Science.gov (United States)

    Kumar, P Albino; Ray, Manabendra; Chakraborty, Saswati

    2007-05-08

    A resinous polymer, aniline formaldehyde condensate (AFC) coated on silica gel was used as an adsorbent in batch system for removal of hexavalent chromium from aqueous solution by considering the effects of various parameters like reaction pH, dose of AFC coated silica gel, initial Cr(VI) concentration and aniline to formaldehyde ratio in AFC synthesis. The optimum pH for total chromium [Cr(VI) and Cr(III)] adsorption was observed as 3. Total chromium adsorption was second order and equilibrium was achieved within 90-120 min. Aniline to formaldehyde ratio of 1.6:1 during AFC synthesis was ideal for chromium removal. Total chromium adsorption followed Freundlich's isotherm with adsorption capacity of 65 mg/g at initial Cr(VI) 200mg/L. Total chromium removal was explained as combinations of electrostatic attraction of acid chromate ion by protonated AFC, reduction of Cr(VI) to Cr(III) and bond formation of Cr(III) with nitrogen atom of AFC. Almost 40-84% of adsorbed chromium was recovered during desorption by NaOH, EDTA and mineral acids. AFC coated silica gel can be effectively used for treatment of chromium containing wastewaters as an alternative.

  7. Prediction of Toxicity of Phenols and Anilines to Algae by Quantitative Structure-activity Relationship

    Institute of Scientific and Technical Information of China (English)

    GUANG-HUA LU; CHAO WANG; XIAO-LING GUO

    2008-01-01

    Objective To measure the toxicity of phenol, aniline, and their derivatives to algae and to assess, model and predict the toxicity using quantitative structure-activity relationship (QSAR) method. Methods Oxygen production was used as the response endpoint for assessing the toxic effects of chemicals on algal photosynthesis. The energy of the lowest unoccupied molecular orbital (ELUMO) and the energy of the highest occupied molecular orbital (E) Were obtained from the ChemOffice 2004 program using the quantum chemical method MOPAC, and the frontier orbital energy gap (ΔE) was obtained. Results The compounds exhibited a reasonably wide range of algal toxicity. The most toxic compound was α-naphthol, whereas the least toxic one was aniline. A two-descriptor model was derived from the algal toxicity and structural parameters:logl/EC50=0.268logKow-1.006ΔE+11.769 (n=20,r2=0.946). This model was stable and satisfactory for predicting toxicity. Conclusion Phenol aniline, and their derivatives axe polar narcotics. Their toxicity is greater than estimated by hydrophobicity only, and addition of the frontier orbital energy gap ΔE can significantly improve the prediction of logKow-dependont models.

  8. Development of quantitative structure-metabolism (QSMR) relationships for substituted anilines based on computational chemistry.

    Science.gov (United States)

    Athersuch, Toby J; Wilson, Ian D; Keun, Hector C; Lindon, John C

    2013-09-01

    A novel stepwise classification approach for predicting the metabolic fate of substituted anilines, based on calculated physicochemical parameters of the parent anilines, was developed. Based on multivariate pattern recognition methods (PLS-DA or soft independent modelling of class analogy [SIMCA]), these models allowed prediction of N-acetylation and subsequent N-oxanilic acid formation. These classification methods provided an improved classification success when compared with existing quantitative structure-metabolism relationship models for substituted anilines. Modelling the physicochemical properties of the N-acetylated compounds was considered as an addition to the stepwise model. Inclusion of parameters describing the N-acetyl moiety had little effect on the predictive ability of a stepwise parent to N-acetyl to N-oxanilic acid PLS-DA model, and had a negative impact on that of SIMCA models. This was attributed to the relatively small contribution to the total parameter variance caused by differences arising as a result of N-acetylation compared to the contribution made by the substituent effects. Calculation of physicochemical properties incorporating the effect of solvation using ab initio methods improved the classification model in terms of both the visual separation in multivariate projections and prediction accuracy.

  9. Intrauterine Exposure to Paracetamol and Aniline Impairs Female Reproductive Development by Reducing Follicle Reserves and Fertility.

    Science.gov (United States)

    Holm, Jacob Bak; Mazaud-Guittot, Severine; Danneskiold-Samsøe, Niels Banhos; Chalmey, Clementine; Jensen, Benjamin; Nørregård, Mette Marie; Hansen, Cecilie Hurup; Styrishave, Bjarne; Svingen, Terje; Vinggaard, Anne Marie; Koch, Holger Martin; Bowles, Josephine; Koopman, Peter; Jégou, Bernard; Kristiansen, Karsten; Kristensen, David Møbjerg

    2016-03-01

    Studies report that fetal exposure to paracetamol/acetaminophen by maternal consumption can interfere with male reproductive development. Moreover, recent biomonitoring data report widespread presence of paracetamol in German and Danish populations, suggesting exposure via secondary (nonpharmaceutical) sources, such as metabolic conversion from the ubiquitous industrial compound aniline. In this study, we investigated the extent to which paracetamol and aniline can interfere with female reproductive development. Intrauterine exposure to paracetamol by gavage of pregnant dams resulted in shortening of the anogenital distance in adult offspring, suggesting that fetal hormone signaling had been disturbed. Female offspring of paracetamol-exposed mothers had ovaries with diminished follicle reserve and reduced fertility. Fetal gonads of exposed animals had also reduced gonocyte numbers, suggesting that the reduced follicle count in adults could be due to early disruption of germ cell development. However, ex vivo cultures of ovaries from 12.5 days post coitum fetuses showed no decrease in proliferation or expression following exposure to paracetamol. This suggests that the effect of paracetamol occurs prior to this developmental stage. Accordingly, using embryonic stem cells as a proxy for primordial germ cells we show that paracetamol is an inhibitor of cellular proliferation, but without cytotoxic effects. Collectively, our data show that intrauterine exposure to paracetamol at levels commonly observed in pregnant women, as well as its precursor aniline, may block primordial germ cell proliferation, ultimately leading to reduced follicle reserves and compromised reproductive capacity later in life.

  10. Atomic-Level Organization of Vicinal Acid-Base Pairs through the Chemisorption of Aniline and Derivatives onto Mesoporous SBA15

    KAUST Repository

    Basset, Jean-Marie

    2016-06-09

    The design of novel heterogeneous catalysts with multiple adjacent functionalities is of high interest for heterogeneous catalysis. Herein, we report a method to obtain a majority bifunctional acid-base pairs on SBA15. Aniline reacts with SBA15 by opening siloxane bridges leading to N-phenylsilanamine-silanol pairs. In contrast with ammonia treated surfaces, the material is stable under air/moisture. Advanced solid state MAS NMR: 2D ¹H-¹H double-quantum, ¹H-¹³C HETCOR experiments and dynamic nuclear polarization enhanced ²⁹Si and ¹⁵N spectra demonstrate both the close proximity between the two moieties and the formation of a covalent Si-N surface bond and confirm the design of vicinal acid-base pairs. This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. A correlation of the substituents effects on the aromatic ring (Hammet parameters) on the kinetics of the model reaction of Knoevenagel is observed.

  11. Quantifying amine permeation sources with acid neutralization: calibrations and amines measured in coastal and continental atmospheres

    Directory of Open Access Journals (Sweden)

    N. A. Freshour

    2014-04-01

    Full Text Available An acid titration method for quantifying amine permeation rates was used to calibrate an Ambient pressure Proton transfer Mass Spectrometer (AmPMS that monitors ambient amine compounds. The method involves capturing amines entrained in a N2 flow by bubbling it through an acidified solution (~ 10−5 M HCl, and the amines are quantified via changes in solution pH with time. Home-made permeation tubes had permeation rates (typically tens of pmol s−1 that depended on the type of amine and tubing and on temperature. Calibrations of AmPMS yielded sensitivities for ammonia, methyl amine, dimethyl amine, and trimethyl amine that are close to the sensitivity assuming a gas-kinetic, ion-molecule rate coefficient. The permeation tubes were also designed to deliver a reproducible amount of amine to a flow reactor where nucleation with sulfuric acid was studied. The high proton affinity compound dimethyl sulfoxide (DMSO, linked to oceanic environments, was also studied and AmPMS is highly sensitive to it. AmPMS was deployed recently in two field campaigns and mixing ratios are reported for ammonia, alkyl amines, and DMSO and correlations between these species and with particle formation events are discussed.

  12. Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme

    Science.gov (United States)

    Prier, Christopher K.; Zhang, Ruijie K.; Buller, Andrew R.; Brinkmann-Chen, Sabine; Arnold, Frances H.

    2017-07-01

    C-H bonds are ubiquitous structural units of organic molecules. Although these bonds are generally considered to be chemically inert, the recent emergence of methods for C-H functionalization promises to transform the way synthetic chemistry is performed. The intermolecular amination of C-H bonds represents a particularly desirable and challenging transformation for which no efficient, highly selective, and renewable catalysts exist. Here we report the directed evolution of an iron-containing enzymatic catalyst—based on a cytochrome P450 monooxygenase—for the highly enantioselective intermolecular amination of benzylic C-H bonds. The biocatalyst is capable of up to 1,300 turnovers, exhibits excellent enantioselectivities, and provides access to valuable benzylic amines. Iron complexes are generally poor catalysts for C-H amination: in this catalyst, the enzyme's protein framework confers activity on an otherwise unreactive iron-haem cofactor.

  13. Preparation of amine coated silver nanoparticles using triethylenetetramine

    Indian Academy of Sciences (India)

    L Ramajo; R Parra; M Reboredo; M Castro

    2009-01-01

    This article presents a simple method towards the preparation of functionalized silver nanoparticles in a continuous medium. Silver nanoparticles were obtained through AgNO3 chemical reduction in ethanol and triethylenetetramine was used to stabilize and functionalize the metal. The product was characterized with X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), UVvisible spectroscopy, thermal gravimetric analysis (TGA) and transmission electron microscopy (TEM). Monocrystalline silver particles with cubic structure and an average size of 20 nm were obtained. The results reveal that it is possible to synthesize Ag nanoparticles functionalized with amine groups and that particle size is influenced by the processing route.

  14. Multiple amine oxidases in cucumber seedlings.

    Science.gov (United States)

    Percival, F W; Purves, W K

    1974-10-01

    Cell-free extracts of cucumber (Cucumis sativus L. cv. National Pickling) seedlings were found to have amine oxidase activity when assayed with tryptamine as a substrate. Studies of the effect of lowered pH on the extract indicated that this activity was heterogeneous, and three amine oxidases could be separated by ion exchange chromatography. The partially purified enzymes were tested for their activities with several substrates and for their sensitivities to various amine oxidase inhibitors. One of the enzymes may be a monoamine oxidase, although it is inhibited by some diamine oxidase inhibitors. The other two enzymes have properties more characteristic of the diamine oxidases. The possible relationship of the amine oxidases to indoleacetic acid biosynthesis in cucumber seedlings is discussed.

  15. Amines as occupational hazards for visual disturbance

    Science.gov (United States)

    JANG, Jae-Kil

    2015-01-01

    Various amines, such as triethylamine and N,N-dimethylethylamine, have been reported to cause glaucopsia in workers employed in epoxy, foundry, and polyurethane foam industries. This symptom has been related to corneal edema and vesicular collection of fluid within the corneal subepithelial cells. Exposure to amine vapors for 30 min to several hours leads to blurring of vision, a blue-grey appearance of objects, and halos around lights, that are probably reversible. Concentration-effect relationships have been established. The visual disturbance is considered a nuisance, as it could cause onsite accidents, impair work efficiency, and create difficulties in driving back home. Occupational exposure limits have been established for some amines, but there is shortage of criteria. Volatility factors, such as vapor pressure, should be considered in industrial settings to prevent human ocular risks, while trying to reduce levels of hazardous amines in the atmosphere. PMID:26538000

  16. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.

    Science.gov (United States)

    Ikawa, Takashi; Fujita, Yuki; Mizusaki, Tomoteru; Betsuin, Sae; Takamatsu, Haruki; Maegawa, Tomohiro; Monguchi, Yasunari; Sajiki, Hironao

    2012-01-14

    Nitriles were found to be highly effective alkylating reagents for the selective N-alkylation of amines under catalytic hydrogenation conditions. For the aromatic primary amines, the corresponding secondary amines were selectively obtained under Pd/C-catalyzed hydrogenation conditions. Although the use of electron poor aromatic amines or bulky nitriles showed a lower reactivity toward the reductive alkylation, the addition of NH(4)OAc enhanced the reactivity to give secondary aromatic amines in good to excellent yields. Under the same reaction conditions, aromatic nitro compounds instead of the aromatic primary amines could be directly transformed into secondary amines via a domino reaction involving the one-pot hydrogenation of the nitro group and the reductive alkylation of the amines. While aliphatic amines were effectively converted to the corresponding tertiary amines under Pd/C-catalyzed conditions, Rh/C was a highly effective catalyst for the N-monoalkylation of aliphatic primary amines without over-alkylation to the tertiary amines. Furthermore, the combination of the Rh/C-catalyzed N-monoalkylation of the aliphatic primary amines and additional Pd/C-catalyzed alkylation of the resulting secondary aliphatic amines could selectively prepare aliphatic tertiary amines possessing three different alkyl groups. According to the mechanistic studies, it seems reasonable to conclude that nitriles were reduced to aldimines before the nucleophilic attack of the amine during the first step of the reaction.

  17. Aromatic amines sources, environmental impact and remediation

    OpenAIRE

    Pereira,Luciana; Mondal, P. K.; Alves,M. M.

    2015-01-01

    Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these comp...

  18. Aromatic amines sources, environmental impact and remediation

    OpenAIRE

    Pereira, Luciana; Mondal, P. K.; Alves, M. M.

    2015-01-01

    Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these comp...

  19. 2,3,6 Trioxypentafulrene, 5(1): reactivity to primary-amines, nucleophilic substitution and ring expansion; 2,3,6 trioxipentafulvenos, 5(1): reactividad frente a aminas primarias: sustitucion nucleofilica y expansion de anillo

    Energy Technology Data Exchange (ETDEWEB)

    Victory, P.; Alvarez-Larena, A.; Pinilla, J.F.; Germain, G.; Solar, E.; Munoz, M. [Departamento de Quimica Organica, Instituto Quimico de Sarria, Barcelona (Spain)

    1995-11-01

    The reaction between dimethyl 2,3,6-trihydroxypenta-fulvene-1,4-dicarboxylate and primary alkyl or cycloalkylamines (methylamine, butylamine, cyclooactylamine, cyclohexylamine) affords the corresponding 6-aminopentafulvenes (nucleophilic substitution of the C6 hydroxyl group by the amine) or dimethyl 5-amino-2,3-dihydroxyterephthalates (ring expansion) depending on the reaction conditions. For the two kinds of compounds both a spectroscopic study and a single crystal X-ray analysis have been carried out. Different hydrogen bondings have been observed. Only the substitution products are obtained in the reaction between dimethyl 2,3,6-trihydroxypentafulvene-1,4-dicarboxylate and primary aromatic amines (aniline, 4-sec-butylaniline, p-anisidine). When p-nitroaniline or p-aminobenzonitrile are used the reaction does not progress. 26 refs.

  20. Novel multiparametric approach to elucidate the surface amine-silanization reaction profile on fluorescent silica nanoparticles.

    Science.gov (United States)

    Roy, Shibsekhar; Dixit, Chandra K; Woolley, Robert; MacCraith, Brian D; O'Kennedy, Richard; McDonagh, Colette

    2010-12-07

    This Article addresses the important issue of the characterization of surface functional groups for optical bioassay applications. We use a model system consisting of spherical dye-doped silica nanoparticles (NPs) that have been functionalized with amine groups whereby the encapsulated cyanine-based near-infrared dye fluorescence acts as a probe of the NP surface environment. This facilitates the identification of the optimum deposition parameters for the formation of a stable ordered amine monolayer and also elucidates the functionalization profile of the amine-silanization process. Specifically, we use a novel approach where the techniques of fluorescence correlation spectroscopy (FCS) and fluorescence lifetime measurement (FL) are used in conjunction with the more conventional analytical techniques of zeta potential measurement and Fourier transfer infrared spectroscopy (FTIR). The dynamics of the ordering of the amine layer in different stages of the reaction have been characterized by FTIR, FL, and FCS. The results indicate an optimum reaction time for the formation of a stable amine layer, which is optimized for further biomolecular conjugation, whereas extended reaction times lead to a disordered cross-linked layer. The results have been validated using an immunoglobulin (IgG) plate-based direct binding assay where the maximum number of IgG-conjugated aminated NPs were captured by immobilized anti-IgG antibodies for the NP sample corresponding to the optimized amine-silanization condition. Importantly, these results point to the potential of FCS and FL as useful analytical tools in diverse fields such as characterization of surface functionalization.

  1. Coupling of bio-PRB and enclosed in-well aeration system for remediation of nitrobenzene and aniline in groundwater.

    Science.gov (United States)

    Liu, Na; Ding, Feng; Wang, Liu; Liu, Peng; Yu, Xiaolong; Ye, Kang

    2016-05-01

    A laboratory-scale bio-permeable reactive barrier (bio-PRB) was constructed and combined with enclosed in-well aeration system to treat nitrobenzene (NB) and aniline (AN) in groundwater. Batch-style experiments were first conducted to evaluate the effectiveness of NB and AN degradation, using suspension (free cells) of degrading consortium and immobilized consortium by a mixture of perlite and peat. The NB and AN were completely degraded in 4 mg L(-1) when the aeration system was applied into the bio-PRB system. The NB and AN were effectively removed when the aeration system was functional in the bio-PRB. The removal efficiency decreased when the aeration system malfunctioned for 20 days, thus indicating that DO was an important factor for the degradation of NB and AN. The regain of NB and AN removal after the malfunction indicates the robustness of degradation consortium. No original organics and new formed by-products were observed in the effluent. The results indicate that NB and AN in groundwater can be completely mineralized in a bio-PRB equipped with enclosed in-well aeration system and filled with perlite and peat attached with degrading consortium.

  2. Screening and structural elucidation of the zwitterionic cocrystal o-picolinic acid with p-nitro aniline

    Science.gov (United States)

    Mekala, R.; Jagdish, P.; Mathammal, R.; Sangeetha, K.

    2017-04-01

    The cocrystal was screened by solvent drop grinding method and the crystals were grown by slow evaporation method at ambient conditions. The cocrystal formation of o-picolinic acid with p-nitro aniline was initially analysed by powder X-ray diffraction. Further the structural properties of the grown crystal were confirmed by the single X-ray diffraction which indicates that the cocrystal were connected by the strong N+sbnd H-⋯O hydrogen bond interaction. The cell parameters of the grown crystal were a = 14.2144(5) Å, b = 5.7558(2) Å, c = 16.0539(6) Å. The functional groups were identified using Fourier transform infrared and Raman spectral analysis. The excitation and emission state of the sample was analysed by the UV-Visible and Fluorescence studies. The red emission was observed from the Fluorescence studies. NMR studies revealed the chemical shift of the cocrystal. Thermal stability and its melting behaviour were studied by TGA and DSC analytical techniques. Electrical behaviour was studied using the dielectric studies. The intermolecular charge transfer within the molecule were analysed using HOMO- LUMO plots.

  3. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.

    Science.gov (United States)

    Xie, Meihua; Wang, Ling; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-04-01

    Preparation of functional shape memory polymer (SMP) for tissue engineering remains a challenge. Here the synthesis of strong electroactive shape memory polymer (ESMP) networks based on star-shaped polylactide (PLA) and aniline trimer (AT) is reported. Six-armed PLAs with various chain lengths were chemically cross-linked to synthesize SMP. After addition of an electroactive AT segment into the SMP, ESMP was obtained. The polymers were characterized by (1)H NMR, GPC, FT-IR, CV, DSC, DMA, tensile test, and degradation test. The SMP and ESMP exhibited strong mechanical properties (modulus higher than GPa) and excellent shape memory performance: short recovery time (several seconds), high recovery ratio (over 94%), and high fixity ratio (almost 100%). Moreover, cyclic voltammetry test confirmed the electroactivity of the ESMP. The ESMP significantly enhanced the proliferation of C2C12 cells compared to SMP and linear PLA (control). In addition, the ESMP greatly improved the osteogenic differentiation of C2C12 myoblast cells compared to PH10 and PLA in terms of ALP enzyme activity, immunofluorescence staining, and relative gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). These intelligent SMPs and electroactive SMP with strong mechanical properties, tunable degradability, good electroactivity, biocompatibility, and enhanced osteogenic differentiation of C2C12 cells show great potential for bone regeneration.

  4. Application of Functionalized SWCNTs for Increase of Degradation Resistance of Acrylic Paint for Cars

    Directory of Open Access Journals (Sweden)

    Osiel Lucas Flores

    2013-01-01

    Full Text Available Physical properties of automotive acrylic paint are improved by incorporation of three different types of carbon nanotubes: single-wall carbon nanotubes (SWCNTs, OH-functionalized single-wall carbon nanotubes (OH-SWCNTs, and aniline-functionalized single-wall carbon nanotubes (aniline-SWCNTs. The formed composites are studied by electron miscroscopy methods and Raman spectrometry. It is found that the acrylic paints with addition of OH-SWCNTs and aniline-SWCNTs show better quality for their applications. In particular, the resistance against degradation by electron beam increased in ~500%.

  5. Enhancing amine terminals in an amine-deprived collagen matrix.

    LENUS (Irish Health Repository)

    Tiong, William H C

    2008-10-21

    Collagen, though widely used as a core biomaterial in many clinical applications, is often limited by its rapid degradability which prevents full exploitation of its potential in vivo. Polyamidoamine (PAMAM) dendrimer, a highly branched macromolecule, possesses versatile multiterminal amine surface groups that enable them to be tethered to collagen molecules and enhance their potential. In this study, we hypothesized that incorporation of PAMAM dendrimer in a collagen matrix through cross-linking will result in a durable, cross-linked collagen biomaterial with free -NH 2 groups available for further multi-biomolecular tethering. The aim of this study was to assess the physicochemical properties of a G1 PAMAM cross-linked collagen matrix and its cellular sustainability in vitro. Different amounts of G1 PAMAM dendrimer (5 or 10 mg) were integrated into bovine-derived collagen matrices through a cross-linking process, mediated by 5 or 25 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in 5 mM N-hydroxysuccinimide (NHS) and 50 mM 2-morpholinoethane sulfonic acid buffer at pH 5.5. The physicochemical properties of resultant matrices were investigated with scanning electron microscopy (SEM), collagenase degradation assay, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectra, and ninhydrin assay. Cellular sustainability of the matrices was assessed with Alamar Blue assay and SEM. There was no significant difference in cellular behavior between the treated and nontreated groups. However, the benefit of incorporating PAMAM in the cross-linking reaction was limited when higher concentrations of either agent were used. These results confirm the hypothesis that PAMAM dendrimer can be incorporated in the collagen cross-linking process in order to modulate the properties of the resulting cross-linked collagen biomaterial with free -NH 2 groups available for multi-biomolecular tethering.

  6. An Electrochemical Study of Two Self-Dopable Water-Soluble Aniline Derivatives: Electrochemical Deposition of Copolymers

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2012-01-01

    Full Text Available An electrochemical study of two water-soluble aniline derivatives, N-(3-sulfopropyl aniline (AnPS and N-(3-sulfopropyl p-aminodiphenylamine (DAnPS, in aqueous acidic electrolytic solutions containing different kinds of doping anions (Cl −, SO4 2−, and ClO4 − was carried out. At sufficiently high anodic potential, the sulfonated aniline derivatives undergo oxidation processes yielding cation-radical and dimer intermediates, but no polymer deposition was observed on the working electrode surface. Experimental results showed that both aniline derivatives are electroactive compounds exhibiting redox behaviour in the range of potential of −0.2 V–1.6 V. Due to the self-doping effect induced by sulfonic groups, AnPS and DAnPS compounds have good electroactivity even in neat water solution. By adding a small amount of aniline into electrolytic system, thin layers of copolymers were deposited on the working electrode surface. The copolymer layers formed on the electrodes show a highly orientational and positional order, confirmed by AFM and XRD spectroscopic techniques. During the anodic oxidation processes some distinct colour changes were observed.

  7. Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: Kinetics, thermodynamics and mechanism studies

    Directory of Open Access Journals (Sweden)

    Ali Fakhri

    2017-01-01

    Full Text Available The aim of this study is to investigate the possibility of graphene oxide (GO as an alternative adsorbent for aniline removal from aqueous solution. Adsorption properties of GO for aniline removal were regularly investigated, including pH effect, adsorbent dose, temperature, contact time and initial concentration. The adsorption amount of aniline decreased with increasing pH. The experimental data were evaluated by Langmuir, Freundlich, Temkin and Harkins–Jura models in order to describe the equilibrium isotherms. Equilibrium data fitted well to the Langmuir model. The kinetic parameters achieved at different concentrations were analyzed using a pseudo first-order, pseudo second-order kinetic equation and intra-particle diffusion model. The experimental data fitted very well the pseudo second-order kinetic model. Thermodynamic parameters (free energy change, enthalpy change, and entropy change announced that the removal of aniline from GO was endothermic and spontaneous. The study showed that GO could be used as an efficient adsorbent material for the adsorption of aniline from aqueous solution.

  8. Dynamics of CO 2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    Packed bed breakthrough experiments are reported for commercial zeolite 13X and 3-aminopropyl-functionalized SBA-15 silica materials with three different amine loadings. Mass and heat transfer dynamics for all four materials are modeled successfully. Amine adsorbents with open pores are found to exhibit faster mass diffusion rates compared to zeolite 13X. When amine loading is increased by coupling aminopropyl groups, premature breakthrough combined with a long tail is observed. Contrary to conventional physisorbants, finite heat losses to the column wall do not explain the long breakthrough tail. A rate model that accounts for heterogeneity in diffusion was found to accurately capture the breakthrough shape of the high loading material. Batch uptake measurements support the hypothesis that slow diffusion through the polymer phase is what hampers adsorption kinetics in the high amine loading adsorbent. The results emphasize the importance of designing materials that are not overloaded with amine sites, as excessive amine loadings can lead to depressed adsorption kinetics and premature column breakthrough. © 2012 American Chemical Society.

  9. Exploiting Solvate Ionic Liquids for Amine Gas Analysis on a Quartz Crystal Microbalance.

    Science.gov (United States)

    Li, Hsin-Yi; Chu, Yen-Ho

    2017-05-16

    We demonstrated in this work the usefulness of solvate ionic liquids SIL 3 and SIL 4 for chemoselective detection of amine gases on a quartz crystal microbalance. This detection of gaseous amines was achieved by nucleophilic aromatic addition reactions with super electrophilic SIL 3 or SIL 4 thin-coated on quartz chips. Starting with inexpensive reagents, functional SIL 3 and SIL 4 could be readily synthesized in two short steps with high isolated yield (81 and 77%, respectively). The QCM platform developed in this work is readily applicable and highly sensitive to low molecular weight amine gases: for propylamine gas at 10 Hz decrease in resonance frequency, the sensitivity of detection using SIL 4 was 5.4 ppb. This simple and convenient assembly of neutral ligands (e.g., 1a and 1b) with Li(+) ion to afford room temperature ionic liquids should be of great importance for a myriad of applications. To the best of our knowledge, no example to date of reports based on nucleophilic aromatic addition reactions demonstrating sensitive amine gas detection in solvate ionic liquids on a QCM has been reported. Furthermore, because of the high color intensity of the Meisenheimer complexes formed, our preliminary result showed that SIL 4 loaded on copier paper can be used not only as a portable amine gas sensor but also as a potential invisible ink that is only revealed by amine vapor.

  10. Comparative study of structural and optical properties of pulsed and RF plasma polymerized aniline films

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Tapan; Pal, Arup R., E-mail: arpal@iasst.gov.in; Chutia, Joyanti

    2014-09-15

    Graphical abstract: - Highlights: • Pulse DC and RF plasma is used for synthesis of conducting polymer films. • Conjugated structure retention is better at optimum powers in both the processes. • Conjugated structure retention is better in case of RF plasma prepared films. • Band gap is lower in case of RF plasma prepared films at higher power. • Defect in pulse plasma prepared film is less than RF plasma prepared thin films. - Abstract: Plasma polymerization of aniline is carried out by means of continuous RF and pulsed DC glow discharge plasma in a common reactor at different applied powers. The discharge control variables are optimized for good quality film growth and the role of fragmentation of the molecular structure on the structural, optical, morphological and optophysical properties of the deposited plasma polymerized aniline (PPAni) layers is investigated. Retention of the conjugated structure is found to be prominent at optimum applied power to the plasma in both the continuous RF and pulsed DC polymerization techniques. Improvement in conjugated structure and chain length have been observed in both the continuous RF and pulse DC PPAni thin films with the increase in applied power to the plasma up to a certain limit of applied power when working pressure is fixed at 0.15 mbar. A decrease in optical bandgap with the increase in applied power to the plasma is observed in both the pulsed DC and RF PPAni thin films, but it is more significant in case of RF PPAni films. The plasma polymerized aniline thin films are found to emit photoluminescence due to band to band transition and defects generated in the structure.

  11. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    Science.gov (United States)

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed.

  12. Reductive Amination of Aldehydes and Ketones with Primary Amines by Using Lithium Amidoborane as Reducing Reagent

    Institute of Scientific and Technical Information of China (English)

    徐维亮; 郑学丽; 吴国涛; 陈萍

    2012-01-01

    A variety of secondary amines were obtained in high isolated yields in the reductive amination of aldehydes and ketones by using lithium amidoborane as reducing agent. Compared to ammonia borane, lithium amidoborane has higher reducibility, and thus, exhibits faster reaction rate.

  13. Theoretical Study on the Vibrational Spectra and Thermodynamic Properties for Nitro Derivatives of Benzene and Anilines

    Institute of Scientific and Technical Information of China (English)

    WANG Gui-Xiang; GONG Xue-Dong; XIAO He-Ming

    2008-01-01

    Nitro derivatives of benzene and anilines were optimized to obtain their molecular geometries and electronic structures at a DFT-B3LYP/6-31G* level. Their IR spectra were obtained and assigned by vibrational analysis. Comparing the calculated IR spectra with these of experiments known, all the IR data obtained in this paper were considered to be reliable. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties were evaluated, which were linearly related with the number of nitro and amino groups as well as the temperature, obviously showing good group additivity.

  14. Catalytic wet peroxide oxidation of aniline in wastewater using copper modified SBA-15 as catalyst.

    Science.gov (United States)

    Kong, Liming; Zhou, Xiang; Yao, Yuan; Jian, Panming; Diao, Guowang

    2016-01-01

    SBA-15 mesoporous molecular sieves modified with copper (Cu-SBA-15) were prepared by pH-adjusting hydrothermal method and characterized by X-ray diffraction, BET, transmission electron microscopy, UV-Vis and (29)Si MAS NMR. The pH of the synthesis gel has a significant effect on the amount and the dispersion of copper on SBA-15. The Cu-SBA-15(4.5) (where 4.5 denotes the pH value of the synthesis gel) modified with highly dispersed copper was used as catalyst for the oxidation of aniline by H2O2. The Cu-SBA-15(4.5) shows a higher catalytic activity compared to CuO on the surface of SBA-15. The influences of reaction conditions, such as initial pH of the aqueous solutions, temperature, as well as the dosages of H2O2 and catalyst were investigated. Under weakly alkaline aqueous solution conditions, the aniline conversion, the H2O2 decomposition and the total organic carbon (TOC) removal could be increased significantly compared to the acid conditions. The percentage of leaching Cu(2+) could be decreased from 45.0% to 3.66% when the initial pH of solution was increased from 5 to 10. The TOC removal could be enhanced with the increases of temperature, H2O2 and catalyst dosage, but the aniline conversion and H2O2 decomposition change slightly with further increasing dosage of catalyst and H2O2. At 343 K and pH 8.0, 100% aniline conversion and 66.9% TOC removal can be achieved under the conditions of 1.0 g/L catalyst and 0.05 mol/L H2O2 after 180 min. Although copper might be slightly leached from catalyst, the homogeneous Cu(2+) contribution to the whole catalytic activity is unimportant, and the highly dispersed copper on SBA-15 plays a dominant role.

  15. Ruthenium-catalysed synthesis of 2- and 3-substituted quinolines from anilines and 1,3-diols

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Madsen, Robert

    2011-01-01

    A straightforward synthesis of substituted quinolines is described by cyclocondensation of anilines with 1,3-diols. The reaction proceeds in mesitylene solution with catalytic amounts of RuCl3·xH 2O, PBu3 and MgBr2·OEt2. The transformation does not require any stoichiometric additives and only...... produces water and dihydrogen as byproducts. Anilines containing methyl, methoxy and chloro substituents as well as naphthylamines were shown to participate in the heterocyclisation. In the 1,3-diol a substituent was allowed in the 1- or the 2-position giving rise to 2- and 3-substituted quinolines......, respectively. The best results were obtained with 2-alkyl substituted 1,3-diols to afford 3-alkylquinolines. The mechanism is believed to involve dehydrogenation of the 1,3-diol to the 3-hydroxyaldehyde which eliminates water to the corresponding α,β-unsaturated aldehyde. The latter then reacts with anilines...

  16. Effect of molecular structure of aniline-formaldehyde copolymers on corrosion inhibition of mild steel in hydrochloric acid solution.

    Science.gov (United States)

    Zhang, Yan; Nie, Mengyan; Wang, Xiutong; Zhu, Yukun; Shi, Fuhua; Yu, Jianqiang; Hou, Baorong

    2015-05-30

    Aniline-formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L(-1) hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline-formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution.

  17. Nongassing long-lasting electro-osmotic pump with polyaniline-wrapped aminated graphene electrodes.

    Science.gov (United States)

    Kumar, Rudra; Jahan, Kousar; Nagarale, Rajaram K; Sharma, Ashutosh

    2015-01-14

    An efficient nongassing electro-osmotic pump (EOP) with long-lasting electrodes and exceptionally stable operation is developed by using novel flow-through polyaniline (PANI)-wrapped aminated graphene (NH2-G) electrodes. The NH2-G/PANI electrode combines the excellent oxidation/reduction capacity of PANI with the exceptional conductivity and inertness of NH2-G. The flow rate varies linearly with voltage but is highly dependent on the electrode composition. The flow rates at a potential of 5 V for pristine NH2-G and PANI electrodes are 71 and 100 μL min(-1) cm(-2), respectively, which increase substantially by the use of NH2-G/PANI electrode. It increased from 125 to 182 μL min(-1) cm(-2) as the fraction of aniline increased from 66.63 to 90.90%. The maximum flux obtained is 40 μL min(-1) V(-1) cm(-2) with NH2-G/PANI-90.9 electrodes. The assembled EOP remained exceptionally stable until the electrode columbic capacity was fully utilized. The prototype shown here delivered 8.0 μL/min at a constant applied voltage of 2 V for over 7 h of continuous operation. The best EOP produces a maximum stall pressure of 3.5 kPa at 3 V. These characteristics make it suitable for a variety of microfluidic/device applications.

  18. Survey of Primary Aromatic Amines and Colorants in Polyurethane, Nylon and Textile Toys.

    Science.gov (United States)

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Akiyama, Hiroshi; Kawamura, Yoko

    2016-01-01

    The residual and migration levels of 28 primary aromatic amines (PAAs) in polyurethane and nylon toys were determined using LC-MS/MS, and the migration and residual amounts of PAAs and 15 colorants in textile toys were determined using LC-MS/MS and LC-TOF-MS according to the European Standard EN71. Among 34 polyurethane toy samples, 2,6-diaminotoluene and 2,4-diaminotoluene were detected in the same 12 samples at residual levels ranging from 2.1 to 19.7 and from 7.6 to 39.6 μg/g, respectively. Furthermore, 4,4'-diaminodiphenylmethane (4,4'-MDA) and aniline were detected in 9 samples (from 0.2 to 8.7 μg/g), and one sample (0.4 μg/g), respectively. PAAs were not detected in the 8 samples of nylon toys. As for the migration test into water, only 4,4'-MDA migrated from 3 polyurethane toys at levels ranging from 0.4 to 2.5 μg/g. PAAs did not migrate from the 43 textile toys, but colorants such as Solvent Yellow 1 and Basic Red 9 were detected at the residual level of 0.02 μg/g. The residual levels of PAAs and colorants detected in this study were significantly lower than the limit values established by the European Union regulation.

  19. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite.

    Science.gov (United States)

    Zhang, Huichun; Huang, Ching-Hua

    2007-01-01

    Seven members (ciprofloxacin, enrofloxacin, norfloxacin, ofloxacin, lomefloxacin, pipemidic acid, and flumequine) of the popular fluoroquinolone antibacterial agents (FQs) were found to adsorb strongly to goethite with 50-76% of the added FQ adsorbed under the experimental conditions. The adsorption isotherms fitted well to the Langmuir model. Adsorption was accompanied by slow oxidation of the FQs (except for flumequine) by goethite yielding a range of hydroxylated and dealkylated products. The oxidation kinetics showed different stages in reaction rate, mostly likely caused by accumulation of Fe(II) species on the oxide surface that slowed the reaction. Structurally related amines 1-phenylpiperazine, N-phenylmorpholine, aniline, and N,N-dimethylaniline were found to be oxidized by goethite without significant adsorption. The results strongly indicate that the carboxylic group of FQs is critical for adsorption while the piperazine ring is susceptible to oxidation. A radical mechanism is proposed for the oxidation of FQs by goethite which involves formation of a surface complex between the FQ and surface-bound Fe(III) through adsorption, and initial oxidation at the piperazinyl N1 atom to form radical intermediates that ultimately lead to the final products. This study indicates that Fe oxides in aquatic sediments may well play an important role in the natural attenuation of fluoroquinolone antibacterial agents.

  20. CCN activity of aliphatic amine secondary aerosol

    Directory of Open Access Journals (Sweden)

    X. Tang

    2014-01-01

    Full Text Available Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical. The particle composition can contain both secondary organic aerosol (SOA and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN activity. SOA formed from trimethylamine (TMA and butylamine (BA reactions with hydroxyl radical (OH is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25. Secondary aerosol formed from the tertiary aliphatic amine (TMA with N2O5 (source of nitrate radical, NO3, contains less volatile compounds than the primary aliphatic amine (BA aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR ideal mixing rules. Higher CCN activity (κ > 0.3 was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2, as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3. Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  1. BIOGENIC AMINES CONTENT IN DIFFERENT WINE SAMPLES

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2015-02-01

    Full Text Available Twenty-five samples of different Slovak wines before and after filtration were analysed in order to determine the content of eight biogenic amines (tryptamine, phenylalanine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine. The method involves extraction of biogenic amines from wine samples with used dansyl chloride. Ultra-high performance liquid chromatography (UHPLC was used for determination of biogenic amines equipped with a Rapid Resolution High Definition (RRHD, DAD detectors and Extend-C18 LC column (50 mm x 3.0 mm ID, 1.8 μm particle size. In this study the highest level of biogenic amine in all wine samples represent tryptamine (TRM with the highest content 170.9±5.3 mg/L in Pinot Blanc wine. Phenylalanine (PHE cadaverine (CAD, histamine (HIS and spermidine (SPD were not detected in all wines; mainly SPD was not detected in 16 wines, HIS not detected in 14 wines, PHE and CAD not detected in 2 wines. Tyramine (TYR, spermine (SPN and putrescine (PUT were detected in all wines, but PUT and SPN in very low concentration. The worst wine samples with high biogenic amine content were Saint Laurent (BF, Pinot Blanc (S and Pinot Noir (AF.

  2. Biogenic amines in raw and processed seafood

    Directory of Open Access Journals (Sweden)

    Pierina eVisciano

    2012-06-01

    Full Text Available The presence of biogenic amines in raw and processed seafood, associated with either time/temperature conditions or food technologies is discussed in the present paper from a safety and prevention point of view. In particular, storage temperature, handling practices, presence of microbial populations with decarboxylase activity and availability of free amino acids are considered the most important factors affecting the production of biogenic amines in raw seafood. On the other hand, some food technological treatments such as salting, ripening, fermentation or marination can increase the levels of biogenic amines in processed seafood. The consumption of high amount of biogenic amines, above all histamine, can result in food borne poisoning which is a worldwide problem. The European Regulation established as maximum limits for histamine, in fishery products from fish species associated with high histidine amounts, values ranging from 100 to 200 mg/kg, while for products which have undergone enzyme maturation treatment in brine, the aforementioned limits rise to 200 and 400 mg/kg. Preventive measures and emerging methods aiming at controlling the production of biogenic amines are also reported for potential application in seafood industries.

  3. Insights on the mechanism for synthesis of methylenedianiline from aniline and formaldehyde through HPLC-MS and isotope tracer studies

    Institute of Scientific and Technical Information of China (English)

    Chen Ye Wang; Hui Quan Li; Li Guo Wang; Yan Cao; Hai Tao Liu; Yi Zhang

    2012-01-01

    The mechanism for synthesis of 4,4-methylenedianiline (MDA) via condensation reaction of aniline with formaldehyde has been studied extensively in this paper.The intermediate and by-products were isolated and identified.The combination of isotope labeling and HPLC-MS characterizations disclosed that the reaction proceeded through an SN2 reaction mechanism.Moreover,the effect of aniline/formaldehyde molar ratio on the formation of MDA was investigated.This work would be of significance to understand the reaction mechanism deeply and provide valuable information for further improving the yield of desired product.

  4. A novel solid-state electrochemiluminescence quenching sensor for detection of aniline based on luminescent composite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoying, E-mail: wxy@seu.edu.cn; Yang, Yu; Gao, Huiwen

    2014-12-15

    A novel solid-state electrochemiluminescence (ECL) quenching sensor based on the luminescent composite nanofibers for detection of aniline has been developed. The gold nanoparticles (AuNPs) and Ruthenium (II) tris-(bipyridine) (Ru(bpy){sub 3}{sup 2+}) doped nylon 6 (PA6) luminescent composite nanofibers (Ru–AuNPs–PA6) were successfully deposited to the bare glassy carbon (GC) electrode by a one-step electrospinning technique. The Ru–AuNPs–PA6 nanofibers maintained the photoelectric properties of the Ru(bpy){sub 3}{sup 2+} ions completely and exhibited excellent ECL behaviors. A high quenching effect on the ECL signal of the Ru–AuNPs–PA6/C{sub 2}O{sub 4}{sup 2−} system was obtained with the presence of low concentration aniline compounds. The potential of analytical application was explored by use of the inhibited ECL. The quenching efficiencies of the five kinds of aniline compounds were compared by monitoring the aniline-dependent ECL intensity change. The magnitude of quenching depended linearly upon the concentration of aniline in the investigated concentration range of 10–10 µM. The detection limit for aniline is 5.0 nM, which is comparable or better than that in the reported assays. The solid-state ECL quenching sensor exhibited high sensitivity and good stability. This study may provide new insight into the design of advanced electrospun nanofibers-based ECL sensors for detection and analysis of a variety of active molecules. - Highlights: • The Ru–AuNPs–PA6 nanofibers were first prepared by one-step electrospinning technique. • The Ru–AuNPs–PA6 nanofibers exhibited excellent ECL behaviors on GC electrodes. • It is the first solid-state ECL sensor based on nanofibers for aniline detection. • The quenching efficiencies of the five kinds of aniline compounds were compared. • The strategy could be extended to develop various nanofibers-based ECL sensors.

  5. Conductive nano composites based on cellulose nano fiber coated poly aniline via in situ polymerization; Nanocompositos condutores de nanofibras de celulose recobertas com polianilina via polimerizacao in situ

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Michael J. da; Sanches, Alex O.; Malmonge, Luiz F.; Malmonge, Jose A. [Grupo de Polimero, Depto de Fisica e Quimica, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, SP (Brazil); Medeiros, Eliton S. de [Depto de Engenharia de Materiais, Universidade Federal da Paraiba, Joao Pessoa, PB (Brazil); Rosa, Morsyleide F. [Embrapa Agroindustria Tropical, Fortaleza, CE (Brazil)

    2011-07-01

    Cellulose nano fiber (CNF) was extracted by acid hydrolysis from cotton microfibril and nano composites of CNF/PANI-DBSA were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA/aniline and aniline/oxidant were varied and the nano composites were characterized by four probes direct current (dc) electrical conductivity, ultraviolet-visible (UV-Vis-NIR) and FTIR spectroscopy and X-ray diffraction (XRD). Electrical conductive about {approx}10{sup -1}S/cm was research and was independent of DBSA/aniline molar ratio between 2-4 and the aniline/oxidant molar ratio between 1-5. X-ray patterns of the samples show crystalline peaks characteristic of cellulose I. The FTIR spectra confirmed the presence of PANI and CNF in all samples. (author)

  6. Transformation of halogen-, alkyl-, and alkoxy-substituted anilines by a lactase of Trametes versicolor

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, T.; Liu, S.Y.; Bollag, J.M.

    1985-05-01

    The lactase of the fungus Trametes versicolor was able to polymerize various halogen-, alkyl-, and alkoxy-substituted anilines, showing substrate specificity similar to that of horseradish peroxidase, whereas the lactase of Rhizoctonia praticola was active only with p-methoxyaniline. The substrate specificities of the enzymes were determined by using gas chromatography to measure the decrease in substrate concentration during incubation. With p-chloroaniline as the substrate, the peroxidase and the Trametes lactase showed maximum activity near pH 4.2. The transformation of this substrate gave rise to a number of oligomers, ranging from dimers to pentamers, as determined by mass spectrometry. The product profiles obtained by high-pressure liquid chromatography were similar for the two enzymes. A chemical reaction was observed between p-chloroaniline and an enzymatically formed dimer, resulting in the formation of a trimer. All three enzymes oxidized p-methoxyaniline to 2-amino-5-p-anisidinobenzoquinone di-p-methoxyphenylimine, but only the T. versicolor lactase and the peroxidase caused the formation of a pentamer (2,5-di-p-anisidinobenzoquinone di-p-methoxyphenylimine). These results demonstrate that in addition to horseradish peroxidase, a T. versicolor lactase can also polymerize aniline derivatives.

  7. ELECTROCHEMICAL POLYMERIZATION OF ANILINE IN PHOSPHORIC ACID AND THE PROPERTIES OF POLYANILINE

    Institute of Scientific and Technical Information of China (English)

    Shao-lin Mu; Yong Kong; Jun Wu

    2004-01-01

    The behavior of the electrochemical polymerization of aniline in a weak acid, phosphoric acid, is very similar to that in strong acids, i.e. its polymerization rate increases quickly with the electrolysis time. The FTIR spectra of polyaniline samples synthesized in phosphoric acid indicate that the counter ion H2PO4- is present in both the oxidized form and the reduced form of polyaniline. The counter ion plays an important role in adjusting the pH value at the electrode surface of polyaniline during the oxidation and reduction processes. As a result, a pair of redox peaks still appear in cyclic voltammograms of polyaniline in a solution of sodium sulfate of pH 5.5 and in a solution of NaH2PO4 of pH 7.0,respectively, at low potential scan rate; and the color of polyaniline film also changes with applied potential at pH 7.0. Thus,the pH region for the electrochemical activity and the electrochromism of polyaniline is extended to pH 5.5 for a solution of sodium sulfate and to pH 7.0 for a solution of NaH2PO4. The conductivity of polyaniline is 3.3 Scm-1, depending on the concentration of phosphoric acid used in the stage of polymerization of aniline. The result of elemental analysis of polyaniline is presented here.

  8. Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline using vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    Kuestan A. Ibrahim

    2017-05-01

    Full Text Available Due to the advantages of material abundance and synthetic simplicity, polyaniline can be used as a high capacity cathode material. However, its practical application in battery has been hindered by poor electrochemical utilization and cycling instability. To solve these problems, we synthesized the Polyaniline-co-o-nitroaniline aniline. The copolymers were synthesized for 1:1 and 1:4 M ratios of aniline and o-nitroaniline in acidic medium using ammonium persulfate as oxidant and their properties were compared with that of polyaniline. The prepared samples have been characterized using number of techniques including Raman spectroscopy, FTIR, UV–vis, and conductivity. The polymers showed less electrical conductivity than polyaniline. Unlike polyaniline, the presence of nitro group caused higher frequency dependence of electrical conductivity. The FTIR bands at 1560, 1306 and 1148 cm−1 are corresponding to the polyaniline salt. The Raman band observed in the range of 1100–1140 cm−1 is the characteristic of conductive polyaniline and is due to the charge delocalization on the polymer backbone.

  9. Preparation and characterization of nanocomposite between poly(aniline-co-m-chloroaniline)-copper sulfide nanoparticles

    Science.gov (United States)

    Abbas, Saeed J.; Rani, Mamta; Tripathi, S. K.

    2014-06-01

    One dimensional nanostructures of poly(aniline-co-m-chloroaniline) nanocomposite (NC) with CuS nanoparticles (NPs) are prepared by template free method. CuS NPs are prepared by chemical method by using trisodium nitilotriacetate acid as a complexing agent. The materials are characterized by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Ultraviolet spectroscopy (UV-Vis), photoluminescence (PL) spectroscopy and thermogravimetric analysis (TGA). The hexagonal structure of CuS NPs is confirmed from XRD results with lattice parameters, a=3.78 Å and c=16.288 Å. The diameter of CuS NPs is found to be 16 nm from TEM measurements. Different shapes such as NPs, nanorods and nanotubes structures are observed for poly(aniline-co-m-chloroaniline) whereas its NC with CuS NPs have nanorod and nanotube shapes. Significant shift in the absorption edge of CuS NC is observed in comparison with copolymer and CuS NPs. Also the thermal stability of CuS NC is improved as compared with a copolymer and CuS NPs.

  10. Preparation and characterization of nanocomposite between poly(aniline-co-m-chloroaniline)–copper sulfide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Saeed J.; Rani, Mamta; Tripathi, S.K., E-mail: surya@pu.ac.in

    2014-06-15

    One dimensional nanostructures of poly(aniline-co-m-chloroaniline) nanocomposite (NC) with CuS nanoparticles (NPs) are prepared by template free method. CuS NPs are prepared by chemical method by using trisodium nitilotriacetate acid as a complexing agent. The materials are characterized by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Ultraviolet spectroscopy (UV-Vis), photoluminescence (PL) spectroscopy and thermogravimetric analysis (TGA). The hexagonal structure of CuS NPs is confirmed from XRD results with lattice parameters, a=3.78 Å and c=16.288 Å. The diameter of CuS NPs is found to be 16 nm from TEM measurements. Different shapes such as NPs, nanorods and nanotubes structures are observed for poly(aniline-co-m-chloroaniline) whereas its NC with CuS NPs have nanorod and nanotube shapes. Significant shift in the absorption edge of CuS NC is observed in comparison with copolymer and CuS NPs. Also the thermal stability of CuS NC is improved as compared with a copolymer and CuS NPs.

  11. Electro-adsorption of tetracycline from aqueous solution by carbonized pomelo peel and composite with aniline

    Science.gov (United States)

    Li, Na; Yang, Shaogui; Chen, Jian; Gao, Jia; He, Huan; Sun, Cheng

    2016-11-01

    Tetracycline is an important broad-spectrum antibiotic. Its overuse can easily cause water and soil pollution. In this study, a carbon electrode was successfully prepared by simple carbonization of a natural material pomelo peel to remove tetracycline from aqueous solution through electro-adsorption. Then the carbon electrode was modified by aniline to improve its mechanical strength. These materials were characterized by XRD, SEM, FT-IR and Zeta Potential, and all these characterizations demonstrated aniline coated on the carbon electrode perfectly. CV tests of electrodes demonstrated that carbon electrode was more inclined to the double layer capacitance, and composite electrode exhibited more properties of the pseudo capacitance. Adsorption experiments showed that adsorption efficiency of the carbon electrode was 95.11% after 3000 s and that of the composite electrode was 92.32% after 5000 s; polyaniline greatly improved the mechanical stability of the composite electrode. The composite electrode with high adsorbability and strong mechanical stability, has potential to treat tetracycline-containing wastewaters.

  12. Self-assembly of nanostructures obtained in a microwave-assisted oxidative polymerization of aniline

    Directory of Open Access Journals (Sweden)

    M. R. Gizdavic-Nikolaidis

    2014-10-01

    Full Text Available For the first time, microwave assisted aniline oxidative polymerization is performed in the presence of acetic acid (CH3COOH and ammonium hydroxide (NH4OH at different microwave power levels. The reaction system is kept at constant temperature of 24±1°C. The products are investigated by Fourier Transform Infrared Spectroscopy (FTIR, Raman, solid-state Nuclear Magnetic Resonance (NMR and Electron Paramagnetic Resonance (EPR spectroscopies. EPR signals in polyaniline (PANI originate from the polarons formed upon protonation and doping by acid. The microwave radiation causes an increase in the spin concentration which is slightly more evident for 8 W than for 93 W. The morphology is investigated by using scanning electron microscopy (SEM. SEM micrographs revealed the formation of nanorods (in the presence of CH3COOH and nanospheres (in the presence of NH4OH. FTIR, Raman and solid-state NMR spectroscopies indicate the presence of PANI and aniline oligomers. X-ray Diffraction (XRD measurements showed the presence of well-ordered structures.

  13. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2017-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope...... of the reaction. Particularly, a formation of configurationally labile aminal centers with alkyl substituents has been a formidable challenge due to the enamine/imine equilibrium of electrophilic substrates. Herein, we report enantioselective nucleophilic addition reactions of potassium phthalimides to Boc......-protected alkyl- and aryl-substituted α-amido sulfones. In-situ generated imines smoothly reacted with the nitrogen nucleophiles to corresponding aminals with good to excellent enantioselectivitiy under mild reaction conditions. In addition, transformation of aminal products gave biologically relevant...

  14. High performance of a cobalt–nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives

    Science.gov (United States)

    Zhou, Peng; Jiang, Liang; Wang, Fan; Deng, Kejian; Lv, Kangle; Zhang, Zehui

    2017-01-01

    Replacement of precious noble metal catalysts with low-cost, non-noble heterogeneous catalysts for chemoselective reduction and reductive coupling of nitro compounds holds tremendous promise for the clean synthesis of nitrogen-containing chemicals. We report a robust cobalt–nitrogen/carbon (Co–Nx/C-800-AT) catalyst for the reduction and reductive coupling of nitro compounds into amines and their derivates. The Co–Nx/C-800-AT catalyst was prepared by the pyrolysis of cobalt phthalocyanine–silica colloid composites and the subsequent removal of silica template and cobalt nanoparticles. The Co–Nx/C-800-AT catalyst showed extremely high activity, chemoselectivity, and stability toward the reduction of nitro compounds with H2, affording full conversion and >97% selectivity in water after 1.5 hours at 110°C and under a H2 pressure of 3.5 bar for all cases. The hydrogenation of nitrobenzene over the Co–Nx/C-800-AT catalyst can even be smoothly performed under very mild conditions (40°C and a H2 pressure of 1 bar) with an aniline yield of 98.7%. Moreover, the Co–Nx/C-800-AT catalyst has high activity toward the transfer hydrogenation of nitrobenzene into aniline and the reductive coupling of nitrobenzene into other derivates with high yields. These processes were carried out in an environmentally friendly manner without base and ligands. PMID:28232954

  15. [N-Benzyl-N-(diphenylphosphanylmethylpyridin-2-amine]chloridomethylplatinum(II

    Directory of Open Access Journals (Sweden)

    Chong-Qing Wan

    2011-01-01

    Full Text Available In the mononuclear title complex, [Pt(CH3Cl(C25H23N2P], the N-benzyl-N-(diphenylphosphanylmethylpyridin-2-amine functions as a bidentate ligand with the pyridyl N atom and the phosphine P atom chelating the PtII ion, forming a six-membered metallocycle. The PtII atom adopts a square-planar coordination geometry with one methyl group and one chloride ligand bonding to the metal center in a cis relationship. C—H...π and C—H...Cl interactions help to consolidate the packing.

  16. The repertoire of trace amine G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Gloriam, David E.; Bjarnadóttir, Thóra K; Yan, Yi-Lin

    2005-01-01

    Trace amines, such as tyramine, beta-phenylethylamine, tryptamine, and octopamine, are present in trace levels in nervous systems and bind a specific family of G-protein-coupled receptors (GPCR), but the function or origin of this system is not well understood. We searched the genomes of several...... ancestor of vertebrate TA-receptors arose before the split of the ray-finned and lobe-finned fishes. The evolutionary history of the TA-receptors is more complex than for most other GPCR families and here we suggest a mechanism by which they may have arisen....

  17. Amine permeation sources characterized with acid neutralization and sensitivities of an amine mass spectrometer

    Science.gov (United States)

    Freshour, N. A.; Carlson, K. K.; Melka, Y. A.; Hinz, S.; Panta, B.; Hanson, D. R.

    2014-10-01

    An acid titration method for quantifying amine permeation rates was used to calibrate an Ambient pressure Proton transfer Mass Spectrometer (AmPMS) that monitors ambient amine compounds. The method involves capturing amines entrained in a N2 flow by bubbling it through an acidified solution (~10-5 M HCl), and the amines are quantified via changes in solution pH with time. Home-made permeation tubes had permeation rates (typically tens of pmol s-1) that depended on the type of amine and tubing and on temperature. Calibrations of AmPMS yielded sensitivities for ammonia, methylamine, dimethylamine, and trimethylamine that are close to the sensitivity assuming a gas-kinetic, ion-molecule rate coefficient. The permeation tubes were also designed to deliver a reproducible amount of amine to a flow reactor where nucleation with sulfuric acid was studied. The high proton affinity compound dimethyl sulfoxide (DMSO), linked to oceanic environments, was also studied and AmPMS is highly sensitive to it. AmPMS was deployed recently in two field campaigns and, using these sensitivities, mixing ratios for ammonia and the alkyl amines are derived from the signals. Correlations between these species and with particle formation events are discussed.

  18. Interaction between hypocrellin and aliphatic amines

    Institute of Scientific and Technical Information of China (English)

    张曼华; 陈申; 夏万林; 蒋丽金; 陈德文

    1996-01-01

    The interaction of hypocrellin, including hypocrellin A (HA) and hypocrellin B (HB), with aliphatic amines in deaerated solutions has been studied by ESR and nanosecond transient absorption spectra. In polar solvents, the acid-base interaction between hypocrellin and amines was observed without irradiation. The signals of semiquinone radical anions of hypocrellm and the spin-trapping adduct of α-phenyl-N-tertbutyl-ratrone (PNB) with the aminoalkyl radicals have been detected in photoinduced ESR studies. The transient absorption of excited triplet state of HA and semiquinone radical anion of HA have been observed in laser flash photolysis studies.

  19. Synthesis of carbodiimides by I2/CHP-mediated cross-coupling reaction of isocyanides with amines under metal-free conditions.

    Science.gov (United States)

    Zhu, Tong-Hao; Wang, Shun-Yi; Tao, Yang-Qing; Ji, Shun-Jun

    2015-04-17

    An I2/CHP-mediated cross-coupling reaction of isocyanides with readily accessible amines via C-N formation is described for carbodiimide synthesis in moderate to excellent yields. This represents a metal-free strategy for a coupling reaction of isocyanides with amines, and it provides an efficient approach for symmetric and unsymmetric functionalized carbodiimide derivative synthesis under mild conditions.

  20. 杂环芳胺结构与致癌性和致突性的密度泛函研究%Density Functional Study of Relationship Between Structure and Carcinogenicity/Mutagenicity of Heterocyclic Aromatic Amines

    Institute of Scientific and Technical Information of China (English)

    胡辰尧; 王涛; 居学海; 曾秀琳

    2012-01-01

    根据杂环芳胺(HCAs)在生物体内的代谢特征,用DFT-B3LYP方法分别进行了19种杂环芳胺类致癌/致突化合物在气相和水溶剂下的量子化学计算,获得了其结构与致癌性和致突性的相关关系.结果表明:9种HCAs的致癌性与分子的前线轨道能量之差△Egap,neutral、最高占有轨道能量EHOMO及与氨基相连的稠环数n有较好的线性关系,相关系数r为0.969,F检验因子为25.47(大于其F**0.1临界值).对19种致突性HCAs在水溶剂化条件下的计算表明:分子偶极矩μ和Ar-NH+离子前线轨道能级差△Egap,ion及其平方与致突性密切相关,r为0.912,F为17.3(大于其F**0.01临界值).%Based on the metabolic mechanisms of the heterocyclic aromatic amines( HCAs) in the organism, the. DFT-B3LYP quantum chemistry calculations are performed on 19 HCAs with careinogenicity and mutagenicity in the gaseous state or the water solvent, and the relationships between the structures and the carcinogenicity/mutagenicity are established. Results show that the carcinogenicity for 9 HCAs is related with their frontier orbital gap △Egap neutra], the energy of highest occupied-molecular orbital EHOMO and the number of fused rings linked to the amine group re. The related coefficient r is 0.969,and the F factor is 25.47(larger than the corresponding critical value F0.01 ). The mutagenicity of 19 HACs in the water solvent is related to their molecular dipole moment μ,the frontier orbital gap of the Ar-NH+AEgep,ion and its square and the fused ring number. The r is 0. 912 and F is 17. 3(larger than F0.01 ) .

  1. An efficient methodology to introduce o-(aminomethyl)phenyl-boronic acids into peptides: alkylation of secondary amines.

    Science.gov (United States)

    Hernandez, Erik T; Kolesnichenko, Igor V; Reuther, James F; Anslyn, Eric V

    2017-01-07

    Current approaches for incorporating boronic acids into peptides require one of the following: the synthesis of commercially unavailable pinacol-protected boronate ester amino acid building blocks, amidation of small-molecule amine-containing boronic acids, or reductive amination of amine residues with 2-formylphenyl boronic acid. These methods have drawbacks, such as the use of excess starting materials, the lack of reactive-site specificity, or the inability to add multiple boronic acids in solution. In addition, several of these approaches do not allow for incorporation of the critical o-aminomethyl functionality that allows for binding of sacharrides under physiological conditions. In this work, we report three methods to functionalize synthetic peptides with boronic acids using solid-phase and solution-phase chemistries by alkylating a secondary amine with o-(bromomethyl)phenylboronic acid. Solution-phase chemistries afforded the highest yields, and were used to synthesize seven complex biotinylated multi-boronic acid peptides.

  2. Enantioselective catalytic syntheses of alpha-branched chiral amines

    DEFF Research Database (Denmark)

    Brase, S.; Baumann, T.; Dahmen, S.

    2007-01-01

    Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....

  3. Changes in gene expression induced by aromatic amine drugs: testing the danger hypothesis.

    Science.gov (United States)

    Ng, Winnie; Uetrecht, Jack

    2013-01-01

    Virtually all drugs that contain a primary aromatic amine are associated with a high incidence of idiosyncratic drug reactions (IDRs), suggesting that this functional group has biological effects that may be used as biomarkers to predict IDR risk. Most IDRs exhibit evidence of immune involvement and the ability of aromatic amines to form reactive metabolites and redox cycle may be responsible for initiation of an immune response through induction of cell stress, as postulated by the Danger Hypothesis. If true, danger signals could be biomarkers of IDR risk. A previous attempt to test the Danger Hypothesis found that sulfamethoxazole (SMX), the only aromatic amine tested, was also the only drug not associated with an increase of cell stress genes in mice. To ensure that these observations were not species-specific, and to determine biomarkers of IDR risk common to aromatic amines, rats were treated with SMX and two other aromatic amine drugs, dapsone (DDS) and aminoglutethimide (AMG), and hepatic gene expression was determined using microarrays. As in mice, SMX induced minimal gene changes in the rat, and none indicated cell stress, whereas DDS and AMG induced several changes including up-regulation of enzymes such as aldo-keto reductase, glutathione-S-transferase, and aldehyde dehydrogenase, which may represent danger signals. Early insulin-induced hepatic gene (Eiih) was up-regulated by all three drugs. Some mRNA changes were observed in the Keap-1-Nrf2-ARE pathway; however, the pattern was significantly different for each drug. Overall, the most salient finding was that the changes in the liver were minimal, even though aromatic amines cause a high incidence of IDRs. The liver generates a large number of reactive species; however, the ability of aromatic amines to be bioactivated by cells of the immune system may be why they cause a high incidence of IDRs.

  4. Expression of a copper-containing amine oxidase by human ciliary body.

    Science.gov (United States)

    Howell, D N; Valnickova, Z; Oury, T D; Miller, S E; Sanfilippo, F P; Enghild, J J

    1998-09-08

    To examine the molecular structure and ultrastructural distribution of a novel amine oxidase in human ciliary body. Human ciliary bodies were solubilized with a nonionic detergent. The solubilized material was subjected to affinity chromatography with 2B4.14.1, a monoclonal antibody which recognizes a family of ciliary body glycoproteins. Proteins eluted from the affinity column were further separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Peptides produced from a 2B4.14. 1-reactive protein with an approximate molecular weight of 100 kDa were analyzed by Edman degradation. The protein thus identified was further examined by Western blotting and immunoelectron microscopy with anti-peptide antisera. Peptide sequences from the 100 kDa ciliary body protein were identical to the predicted protein sequence of an amine oxidase identified recently in a human placental cDNA library. The identity of the ciliary body protein was confirmed by Western blotting with rabbit antiserum generated against the predicted carboxy-terminal peptide of human placenta amine oxidase. Western blotting under nonreducing conditions and following glycosidase digestion indicated that the native enzyme is a disulfide-linked homodimer with multiple N-linked oligosaccharide side chains. By immunoelectron microscopy, the ciliary body amine oxidase was localized to the plasma membranes of inner epithelial cells. Human placenta amine oxidase is present on the plasma membranes of ciliary body inner epithelial cells. This finding provides a potential explanation for amine oxidase enzyme activity detected in previous studies of anterior segment tissues. Though the functional role of human placenta amine oxidase in the eye is unclear, it may contribute to the production of H2O2 in aqueous humor.

  5. Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air-water interface.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-02-01

    The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines.

  6. Tertiary amines nucleophilicity in quaternization reaction with benzyl chloride

    Directory of Open Access Journals (Sweden)

    Ksenia S. Yutilova

    2016-03-01

    Full Text Available Quaternization reaction of tertiary amines with benzyl chloride was investigated. Reaction orders with respect to the reactants were determined. Kinetic scheme of quaternization reaction was found to be corresponding to reversible process. An influence of amines basicity and steric factor of alkyl substituent bound to the nitrogen atom on tertiary amines reactivity as nucleophiles was studied. It was shown that the rate constants of direct reaction step may serve as a measure of nucleophilicity of amines.

  7. Dimedone-catalyzed Addition of Amines into Cyano Group: Facile Synthesis of Thiazol-2-yl Substituted E-Acrylonitriles

    Institute of Scientific and Technical Information of China (English)

    朱伟军; 屠兴超; 冯惠; 屠蔓苏; 姜波; 吴飞跃; 屠树江

    2012-01-01

    An efficient dimedone-catalyzed synthesis of highly functionalized thiazol-2-yl substituted E-acrylonitrile derivatives has been established through two-step reaction of a-thiocyanate ketones with malononitrile and amines. The a-thiocyanate ketones were subjected with malononitrile to provide thiazol-2-ylidenemalononitrile derivatives, followed with various amines in the presence of dimedone to yield the final thiazol-2-yl substituted acrylonitrile derivatives.

  8. Rh(III)-Catalyzed C-H Bond Addition/Amine-Mediated Cyclization of Bis-Michael Acceptors.

    Science.gov (United States)

    Potter, Tyler J; Ellman, Jonathan A

    2016-08-01

    A Rh(III)-catalyzed C-H bond addition/primary amine-promoted cyclization of bis-Michael acceptors is reported. The C-H bond addition step occurs with high chemoselectivity, and the subsequent intramolecular Michael addition, mediated by a primary amine catalyst, sets three contiguous stereocenters with high diastereoselectivity. A broad range of directing groups and both aromatic and alkenyl C-H bonds were shown to be effective in this transformation, affording functionalized piperidines, tetrahydropyrans, and cyclohexanes.

  9. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions.

    Science.gov (United States)

    Jiang, Gaoxi; Chen, Jian; Huang, Jie-Sheng; Che, Chi-Ming

    2009-10-15

    A variety of secondary benzylic amines were oxidized to imines in 90% to >99% yields by singlet oxygen generated from oxygen and a porphyrin photosensitizer. On the basis of these reactions, a protocol was developed for oxidative Ugi-type reactions with singlet oxygen as the oxidant. This protocol has been used to synthesize C1- and N-functionalized benzylic amines in up to 96% yields.

  10. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline

    Science.gov (United States)

    Singha, Somdutta; Ghosh, Swapankumar

    2017-09-01

    Carbon nanotubes in all forms are very much insoluble in both organic and inorganic solvents due to its high agglomeration and entangled morphology. General methods for dissolution of single-walled carbon nanotubes (SWNTs) are mostly associated with complexation or polymerization or addition of macromolecules which change the physical or chemical properties of SWNTs and the pristine nature of SWNTs is lost. Dissolution of SWNTs in a solvent like aniline is practiced here which is a very simple reaction method. Here aniline is capable to form a SWNT-aniline charge transfer complex without attachment of macromolecules or polymer which is also soluble in other organic solvents. Solvation of SWNTs by this method is also capable of maintaining the similarity between the structure of SWNTs before and after the dissolution, which means that the pristine nature of SWNTs is preserved. Formation of charge transfer complex in this reaction has been proven by UV-Vis/NIR absorption and photoluminescence spectroscopy. Raman spectroscopy and electron microscopy (FESEM and TEM) are the evidences for protection of the pristine nature of SWNTs even after high-temperature complexation reaction with aniline and also after solubilization in organic solvents.

  11. Biological Properties of Chloro-salicylidene Aniline and Its Complexes with Co(II) and Cu(II)

    OpenAIRE

    IQBAL, Javed; TIRMIZI, Syed Ahmad; Wattoo,Feroza Hamid; Imran, Muhammad

    2014-01-01

    New complexes of chloro-salicylidene aniline with Co(II) and Cu(II) were synthesised and screened for antibacterial activity against several bacterial strains, namely Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The metal complexes showed enhanced antibacterial activity compared to uncomplexed ligands.

  12. Biological Properties of Chloro-salicylidene Aniline and Its Complexes with Co(II) and Cu(II)

    OpenAIRE

    IQBAL, Javed; TIRMIZI, Syed Ahmad; Wattoo,Feroza Hamid; Imran, Muhammad

    2006-01-01

    New complexes of chloro-salicylidene aniline with Co(II) and Cu(II) were synthesised and screened for antibacterial activity against several bacterial strains, namely Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The metal complexes showed enhanced antibacterial activity compared to uncomplexed ligands.

  13. AN EFFICIENT AQUEOUS N-HETEROCYCLIZATION OF ANILINE DERIVATIVES: MICROWAVE-ASSISTED SYNTHESIS OF N-ARYL AZACYCLOALKANES

    Science.gov (United States)

    N-aryl azacycloalkanes, an important class of building blocks in natural product and pharmaceuticals, are synthesized via an efficient and simple eco-friendly protocol that involves double N-alkylation of aniline derivatives. The reaction is accelerated by exposure to microwaves ...

  14. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  15. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Science.gov (United States)

    2010-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting under...

  16. Amine modification of nonporous silica nanoparticles reduces inflammatory response following intratracheal instillation in murine lungs.

    Science.gov (United States)

    Morris, Angie S; Adamcakova-Dodd, Andrea; Lehman, Sean E; Wongrakpanich, Amaraporn; Thorne, Peter S; Larsen, Sarah C; Salem, Aliasger K

    2016-01-22

    Amorphous silica nanoparticles (NPs) possess unique material properties that make them ideal for many different applications. However, the impact of these materials on human and environmental health needs to be established. We investigated nonporous silica NPs both bare and modified with amine functional groups (3-aminopropyltriethoxysilane (APTES)) in order to evaluate the effect of surface chemistry on biocompatibility. In vitro data showed there to be little to no cytotoxicity in a human lung cancer epithelial cell line (A549) for bare silica NPs and amine-functionalized NPs using doses based on both mass concentration (below 200μg/mL) and exposed total surface area (below 14m(2)/L). To assess lung inflammation, C57BL/6 mice were administered bare or amine-functionalized silica NPs via intra-tracheal instillation. Two doses (0.1 and 0.5mg NPs/mouse) were tested using the in vivo model. At the higher dose used, bare silica NPs elicited a significantly higher inflammatory response, as evidence by increased neutrophils and total protein in bronchoalveolar lavage (BAL) fluid compared to amine-functionalized NPs. From this study, we conclude that functionalization of nonporous silica NPs with APTES molecules reduces murine lung inflammation and improves the overall biocompatibility of the nanomaterial.

  17. Fate and biodegradability of sulfonated aromatic amines

    NARCIS (Netherlands)

    Tan, N.C.G.; Leeuwen, van A.; Voorthuizen, van E.M.; Slenders, P.; Prenafeta, F.X.; Temmink, H.; Lettinga, G.; Field, J.A.

    2005-01-01

    Ten sulfonated aromatic amines were tested for their aerobic and anaerobic biodegradability and toxicity potential in a variety of environmental inocula. Of all the compounds tested, only two aminobenzenesulfonic acid (ABS) isomers, 2- and 4-ABS, were degraded. The observed degradation occurred only

  18. PEMIKIRAN QASIM AMIN TENTANG EMANSIPASI WANITA

    Directory of Open Access Journals (Sweden)

    Eliana Siregar

    2017-02-01

    Full Text Available The aim of this research is to explore the idea belong to Qosim Amin "Tahrir al-Mar'ah" as the main theme  of Qasim Amin reformation is an idea that is based on the spirit of liberation and empowerment of women. This idea emerged as a reflection and manifestation of concern intellectualism against the reality of Egyptian woman, who had reached the threshold of tolerance limits area . By using library research method, this research used book, journal, and others as the data resouces. As the cosequency, content analysis was used to analyse the data. Qasim Amin stresses that Islam should be granted rights of women in proportion tha is the right in education and acquire  same right in tasting educational right between men and women, because Islaic value is full of fairness and required the responsibility to Allah. The resut of this research shows that Qosim Amin concern on vision and educational issues in his Idea. There was an awareness of Egytianson the important position of women on education, chance of women to wear veily the government’s attention on the revision of religions justice. These changes have in fired the Egypt women todays.

  19. Catalytic Amination of Alcohols, Aldehydes, and Ketones

    Science.gov (United States)

    Klyuev, M. V.; Khidekel', M. L.

    1980-01-01

    Data on the catalytic amination of alcohols and carbonyl compounds are examined, the catalysts for these processes are described, and the problems of their effectiveness, selectivity, and stability are discussed. The possible mechanisms of the reactions indicated are presented. The bibliography includes 266 references.

  20. Affective disorder: studies with amine precursors.

    Science.gov (United States)

    Dunner, D L; Fieve, R R

    1975-02-01

    The authors assessed the clinical antidepressant effects of L-tryptophan given alone and in combination with L-dopa in 12 patients with a diagnosis of primary affective disorder; Preliminary results did not demonstrate an antidepressant response when L-dopa was combined with L-tryptophan. Also, the results did not support the catecholamine or biogenic amine hypotheses of affective disorder.