WorldWideScience

Sample records for amine functional aniline

  1. Industrial Process Design for the Production of Aniline by Direct Amination

    NARCIS (Netherlands)

    Driessen, Rick T.; Kamphuis, Peter; Mathijssen, Lydwien; Zhang, Ruo; van der Ham, Louis G.J.; van den Berg, Henk; Zeeuw, Arend Jan

    2017-01-01

    The objective is to design a plant from raw material to product for the production of aniline by direct amination of benzene. The process design is started on a conceptual level and ended on a basic engineering level as well as a techno-economical evaluation. The amination of benzene by

  2. Sulfonato-imino copper(ii) complexes: fast and general Chan-Evans-Lam coupling of amines and anilines.

    Science.gov (United States)

    Hardouin Duparc, V; Schaper, F

    2017-10-14

    Sulfonato-imine copper complexes with either chloride or triflate counteranions were prepared in a one-step reaction followed by anion-exchange. They are highly active in Chan-Evans-Lam couplings under mild conditions with a variety of amines or anilines, in particular with sterically hindered substrates. No optimization of reaction conditions other than time and/or temperature is required.

  3. Thermometric titrations of amines with nitrosyl perchlorate in acetonitrile solvent.

    Science.gov (United States)

    Gündüz, T; Kiliç, E; Cakirer, O

    1996-05-01

    Thirteen aliphatic and four aromatic amines, namely diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-butylamine, isopropylamine, di-isopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, aniline, N,N-dimethylaniline, 2-nitroaniline and 4-nitroaniline were titrated thermometrically with nitrosyl perchlorate in acetonitrile solvent. All the aliphatic amines gave very well-shaped thermometric titration curves. The calculated recovery values of the amines were very good. In comparison, the aromatic amines, aniline and N,N-dimethylaniline gave rather well-shaped titration curves, but the recovery values were fairly low. 2-Nitro- and 4-nitro anilines gave no thermometric response at all. The heats of reaction of the amines with nitrosyl perchlorate are rather high. However, the average heat of reaction of the aromatic amines is approximately two-thirds that of the average heat of the aliphatic amines. To support this method all the amines were also titrated potentiometrically and very similar results to those obtained with the thermometric method are seen. The nitrosyl ion is a Lewis acid, strong enough to titrate quantitatively aliphatic amines in acetonitrile solvent, but not strong enough to titrate aromatic amines at the required level in the same solvent.

  4. Catalyst- and Reagent-free Electrochemical Azole C-H Amination.

    Science.gov (United States)

    Qiu, Youai; Struwe, Julia; Meyer, Tjark H; Oliveira, Joao Carlos Agostinho Carlos Agostinho; Ackermann, Lutz

    2018-06-14

    Catalyst-, and chemical oxidant-free electrochemical azole C-H aminations were accomplished via cross-dehydrogenative C-H/N-H functionalization. The catalyst-free electrochemical C-H amination proved feasible on azoles with high levels of efficacy and selectivity, avoiding the use of stoichiometric oxidants under ambient conditions. Likewise, the C(sp3)-H nitrogenation proved viable under otherwise identical conditions. The dehydrogenative C-H amination featured ample scope, including cyclic and acyclic aliphatic amines as well as anilines, and employed sustainable electricity as the sole oxidant. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Theoretical study on perylene derivatives as fluorescent sensors for amines

    Science.gov (United States)

    Lathiotakis, Nektarios N.; Kerkines, Ioannis S. K.; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D.

    2018-01-01

    A theoretical study is presented on perylene diimide (PDI) and perylene monoimide (PMI) and their action as sensors of amines in solution. Density functional theory (DFT) and Time dependent DFT (TDDFT) calculations are carried out on complexes of PDI and PMI with aniline in THF solution. The optimized geometries for the complexes have aniline lying parallel above the perylene at 3.15 Å and with binding energy of 0.53 eV in the ground state. The results on the excited states are consistent with a photoinduced electron transfer (PET) mechanism. The effective aniline-perylene distance resulting from a Mulliken's approach is 3.61 Å.

  6. Molecular Interaction Study of some ortho and para Substituted Anilines with 1-Octanol

    OpenAIRE

    Manjunatha, M. S.; Sannappa, J.

    2010-01-01

    Interactions between ortho and para substituents of anilines such as chloroaniline, methylaniline and methoxyaniline with 1-octanol have been studied in carbon tetrachloride. The most likely association of complex between 1-octanol and substituents of anilines is 1:1 stoichiometric complex, through hydroxyl group of 1-octanol and amine group of ortho and para substituents of anilines. Interactions are studied on the bases of formation constant and free energy changes. Formation constant of...

  7. Determination of Aniline Degraded From Sudan I in Cloths

    International Nuclear Information System (INIS)

    Wei, C.K.; Fung, L.C.; Men, C.K.

    2013-01-01

    A method development for the determination of an aromatic amine degraded from an azo dye in cloths was carried out. Sodium dithionite was used to cleave the azo bond of Sudan I into its aromatic amines, and the amines, mainly aniline were analyzed using high performance liquid chromatography (HPLC) with UV detection. The efficiency of the reduction process of Sudan I, based on the degree of decolorisation of dye, was measured using the spectrophotometer. The optimized values of the reduction process was found effective when 1:1 ratio of 0.30 % sodium dithionite to Sudan I (dit/ Sud) was used at pH 8. The recovery percentage and relative standard deviation (R.S.D.) of this method was found to be 62.9 - 88.4 % and 7.6 - 21.5 %, respectively. The proposed method was tested on self-dyed cloth samples with Sudan I. Aniline released from the reduction of Sudan I was detected in the self-dyed cloth samples. The results of this study demonstrate the applicability of sodium dithionite for the reduction of the azo dye in the cloth samples. (author)

  8. Molecular Interaction Study of some ortho and para Substituted Anilines with 1-Octanol

    Directory of Open Access Journals (Sweden)

    M. S. Manjunatha

    2010-01-01

    Full Text Available Interactions between ortho and para substituents of anilines such as chloroaniline, methylaniline and methoxyaniline with 1-octanol have been studied in carbon tetrachloride. The most likely association of complex between 1-octanol and substituents of anilines is 1:1 stoichiometric complex, through hydroxyl group of 1-octanol and amine group of ortho and para substituents of anilines. Interactions are studied on the bases of formation constant and free energy changes. Formation constant of the complex has been calculated using Nash method. The result shows that molecular interaction of 1-octanol as proton donor with methyl and chloride substitution of anilines in ortho position is smaller than the para position substitution of anilines. The results shows, the ability of acceptors is in the order p-methoxyaniline < o-chloroaniline

  9. Interaction of aromatic amines with iron oxides: implications for prebiotic chemistry.

    Science.gov (United States)

    Shanker, Uma; Singh, Gurinder; Kamaluddin

    2013-06-01

    The interaction of aromatic amines (aniline, p-chloroaniline, p-toludine and p-anisidine) with iron oxides (goethite, akaganeite and hematite) has been studied. Maximum uptake of amines was observed around pH 7. The adsorption data obtained at neutral pH were found to follow Langmuir adsorption. Anisidine was found to be a better adsorbate probably due to its higher basicity. In alkaline medium (pH > 8), amines reacted on goethite and akaganeite to give colored products. Analysis of the products by GC-MS showed benzoquinone and azobenzene as the reaction products of aniline while p-anisidine afforded a dimer. IR analysis of the amine-iron oxide hydroxide adduct suggests that the surface acidity of iron oxide hydroxides is responsible for the interaction. The present study suggests that iron oxide hydroxides might have played a role in the stabilization of organic molecules through their surface activity and in prebiotic condensation reactions.

  10. Terrestrial fate of coal-liquid constituents: behavior of alkyl anilines in soil

    Energy Technology Data Exchange (ETDEWEB)

    Felice, L.J.; Zachara, J.M.; Rogers, J.E.

    1982-07-01

    The low molecular weight aromatic amines (anilines) are important water soluble constituents of coal liquids. The impact of anilines released to the terrestrial environment will largely depend on their mobility and persistence. Studies were conducted to investigate those processes governing the mobility and persistence of the alkylanilines, namely, soil sorption and chemical/microbial degradation. Soil sorption measurements were conducted on aniline and several methyl substituted anilines on A and B horizons of a soil profile collected from Davies County, Kentucky. The magnitude of sorption was large in all horizons. Sorption in the B horizons was larger than in the A horizon for many of the anilines studied, indicating the importance of both the mineral matrix and organic carbon content of the soil in determining the magnitude of sorption. Results of these measurements indicate that movement of the anilines through the soil would be significantly attenuated by sorption reactions. Aniline sorption measurement in the A horizon after removal of the organic matter and in the B/sub 22/ horizon after removal of amorphous iron oxides and crystalline iron oxides indicate that organic matter largely controls aniline sorption in the A horizon, while crystalline iron oxides and phyllosilicates are important in the B horizons. The effects of pH on aniline sorption was also examined and shown to have significant effects on the magnitude of sorption in both A and B horizons. Soil degradation studies using /sup 14/C-3-methylaniline as a model for alkyl aniline degradation show that 3-methylaniline is readily metabolized by soil microorganisms during the 32-day period examined.

  11. Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C-H Amination and Hydroxylation.

    Science.gov (United States)

    Zheng, Yi-Wen; Chen, Bin; Ye, Pan; Feng, Ke; Wang, Wenguang; Meng, Qing-Yuan; Wu, Li-Zhu; Tung, Chen-Ho

    2016-08-17

    We present a blueprint for aromatic C-H functionalization via a combination of photocatalysis and cobalt catalysis and describe the utility of this strategy for benzene amination and hydroxylation. Without any sacrificial oxidant, we could use the dual catalyst system to produce aniline directly from benzene and ammonia, and phenol from benzene and water, both with evolution of hydrogen gas under unusually mild conditions in excellent yields and selectivities.

  12. Tunable properties of novel tetra-functional fluorene-based benzoxazines from mixed amines: Synthesis, characterization and curing kinetics

    International Nuclear Information System (INIS)

    Feng, Tiantian; Wang, Jun; Pan, Lan; Derradji, Mehdi; Ramdani, Noureddine; Liu, Wenbin; Zhou, Haoran

    2016-01-01

    Highlights: • Synthesis of tetra-functional fluorene-based benzoxazines with tunable properties. • Cure reaction could be successfully described with the autocatalytic model. • The benzoxazines show an excellent heat resistance with T_g of 291–307 °C. • The benzoxazines exhibit good thermal stability with T_5 over 340 °C. - Abstract: A series of tetra-functional fluorene-based benzoxazines containing both flexible linear aliphatic chain and rigid aromatic structure in their backbones were synthesized using mixed amines such as aniline and n-octylamine, 2,7-dihydroxy-9,9-bis-(4-hydroxyphenyl)fluorene (THPF) and paraformaldehyde as raw materials via Mannich reaction. The prepared benzoxazine monomers were identified by fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance ("1H NMR). In addition, the curing behavior, curing kinetics and rheological properties of these monomers as well as the thermal and mechanical properties of their cured resins were studied using a rheometer, differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), and dynamic thermomechanical analyzer (DMA). The newly developed benzoxazines show good processibility, excellent thermal stability and high glass transition temperature (T_g) values ranging from 291 to 307 °C. By varying the proportion of n-octylamine to aniline, the properties of these resins are tuned.

  13. Study of interaction and adsorption of aromatic amines by manganese oxides and their role in chemical evolution

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2017-04-01

    The role of manganese oxides in concentrating organic moieties and offering catalytic activity for prebiotic reactions is investigated by studying their interaction with different aromatic amines such as aniline, p-chloroaniline, p-toluidine and p-anisidine. For all amines, metal oxides showed highest adsorption at neutral pH. The order of their adsorption capacity and affinity as revealed by the Langmuir constants was found to be manganosite (MnO) > bixbyite (Mn2O3) > hausmannite (Mn3O4) > and pyrolusite (MnO2). At alkaline pH, these manganese oxides offered their surfaces for oxidation of amines to form coloured oligomers. Analysis of the oxidation products by gas chromatography-mass spectrometry showed the formation of a dimer from p-anisidine and p-chloroaniline, while a trimer and tetramer is formed from p-toluidine and aniline, respectively. A reaction mechanism is proposed for the formation of the oligomers. While field-emission scanning electron microscopic studies confirm the binding phenomenon, the Fourier transform infrared spectroscopy analysis suggests that the mechanism of binding of amines on the manganese oxides was primarily electrostatic. The adsorption behaviour of the studied aromatic amines followed the order: p-anisidine > p-toluidine > aniline > p-chloroaniline, which is related to the basicities and structure of the amines. Our studies confirmed the significance of the role of manganese oxides in prebiotic chemistry.

  14. STUDIES ON RADICAL POLYMERIZATION OF METHYL METHACRYLATE INITIATED WITH ORGANIC PEROXIDE-AMINE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; SHUI Li; FENG Xinde

    1984-01-01

    Radical polymerization of methyl methacrylate (MMA) initiated with various diacyl peroxideamine systems was studied. Benzoyl peroxide (BPO) and lauroyl peroxide (LPO) were used as diacyl peroxide component, N,N-dimethyl aniline (DMA) and its para substituted derivatives, i.e., N,N-dimethyl-p-toluidine (DMT), p-hydroxymethyl-N,N-dimethyl aniline (HDMA), p-nitro-N,N-dimethyl aniline (NDMA) and p-dimethylamino benzaldehyde (DMAB) were used as amine components. It was found that the peroxide-DMT systems give higher rates of bulk polymerization Rp of MMA than the organic hydroperoxide-DMT systems with the following descending order BPO-DMT>LPO-DMT>CHP (cumene hydroperoxide)-DMT>TBH (tert-butyl hydroperoxide)-DMT.The aromatic tertiary amines possess obvious structural effect on the Rp values in the diacyl peroxideamine system. The overall activation energy of MMA polymerization was determined and the kinetics of polymerization of MMA initiated with BPO-DMT system was investigated.

  15. Copper-Catalyzed Electrophilic Amination of Organoaluminum Nucleophiles with O-Benzoyl Hydroxylamines.

    Science.gov (United States)

    Zhou, Shuangliu; Yang, Zhiyong; Chen, Xu; Li, Yimei; Zhang, Lijun; Fang, Hong; Wang, Wei; Zhu, Xiancui; Wang, Shaowu

    2015-06-19

    A copper-catalyzed electrophilic amination of aryl and heteroaryl aluminums with N,N-dialkyl-O-benzoyl hydroxylamines that affords the corresponding anilines in good yields has been developed. The catalytic reaction proceeds very smoothly under mild conditions and exhibits good substrate scope. Moreover, the developed catalytic system is also well suited for heteroaryl aluminum nucleophiles, providing facile access to heteroaryl amines.

  16. Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: Direct coupling of two amines to form an imine without oxidant

    KAUST Repository

    He, Lipeng

    2012-07-23

    Dehydrogenative homocoupling of primary alcohols to form esters and coupling of amines to form imines was accomplished using a class of novel pincer ruthenium complexes. The reactivities of the ruthenium pincer complexes for the direct coupling of amines to form imines were enhanced by introducing an imine arm to the pincer ligand. Selective oxidation of benzylamines to imines was achieved using aniline derivatives as the substrate and solvent. © 2012 American Chemical Society.

  17. Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: Direct coupling of two amines to form an imine without oxidant

    KAUST Repository

    He, Lipeng; Chen, Tao; Gong, Dirong; Lai, Zhiping; Huang, Kuo-Wei

    2012-01-01

    Dehydrogenative homocoupling of primary alcohols to form esters and coupling of amines to form imines was accomplished using a class of novel pincer ruthenium complexes. The reactivities of the ruthenium pincer complexes for the direct coupling of amines to form imines were enhanced by introducing an imine arm to the pincer ligand. Selective oxidation of benzylamines to imines was achieved using aniline derivatives as the substrate and solvent. © 2012 American Chemical Society.

  18. Studies of interaction of amines with TOPO/TOP capped CdSe quantum dots: Role of crystallite size and oxidation potential

    International Nuclear Information System (INIS)

    Sharma, Shailesh N.; Sharma, Himani; Singh, Gurmeet; Shivaprasad, S.M.

    2008-01-01

    This work reports the interaction of aliphatic (triethyl amine, butyl amine) and aromatic amines (PPD, aniline) with CdSe quantum dots of varied sizes. The emission properties and lifetime values of CdSe quantum dots were found to be dependent on the oxidation potential of amines and crystallite sizes. Smaller CdSe quantum dots (size ∼5 nm) ensure better surface coverage of amines and hence higher quenching efficiency of amines could be realized as compared to larger CdSe quantum dots (size ∼14 nm). Heterogeneous quenching of amines due to the presence of accessible and inaccessible set of CdSe fluorophores is indicated. PPD owing to its lowest oxidation potential (∼0.26 V) has been found to have higher quenching efficiency as compared to other amines TEA and aniline having oxidation potentials ∼0.66 and >1.0 V, respectively. Butyl amine on the other hand, plays a dual role: its post-addition acts as a quencher for smaller and enhances emission for larger CdSe quantum dots, respectively. The beneficial effect of butyl amine in enhancing emission intensity could be attributed to enhance capping effect and better passivation of surface-traps

  19. A rapid detection method for policy-sensitive amines real-time supervision.

    Science.gov (United States)

    Zhang, Haixu; Shu, Jinian; Yang, Bo; Zhang, Peng; Ma, Pengkun

    2018-02-01

    Many organic amines that comprise a benzene ring are policy-sensitive because of their toxicity and links to social harm. However, to date, detection of such compounds mainly relies on offline methods. This study proposes an online pptv (parts per trillion by volume) level of detection method for amines, using the recently-built vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) combined with a new doping technique. Thus, the dichloromethane doping-assisted photoionization mass spectra of aniline, benzylamine, phenethylamine, amphetamine, and their structural isomers were recorded. The dominant characteristic mass peaks for all amines are those afforded by protonated amines and the amino radical-loss. The signal intensities of the amines were enhanced by 60-130 times compared to those recorded without doping assistance. Under 10s detection time, the sensitivities of aniline and benzylamine in the gas phase were determined as 4.0 and 2.7 countspptv -1 , with limits of detection (LODs) of 36 and 22 pptv, respectively. Notably, the detection efficiency of this method can be tenfold better in future applications since the ion transmission efficiency of the mass spectrometer was intentionally reduced to ~ 10% in this study. Therefore, dichloromethane doping-assisted photoionization mass spectrometry has proven to be a highly promising on-line approach to amine detection in environmental and judicial supervision and shows great potential for application in the biological field. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Antipyrilquinoneimine dye formation by coupling aniline derivatives with 4-aminoantipyrine in the presence of ruthenium nanoparticles

    International Nuclear Information System (INIS)

    Kasthuri, J.; Santhanalakshmi, J.; Rajendiran, N.

    2008-01-01

    The coupling of 4-aminoantipyrine with aniline derivatives catalyzed by ruthenium nanoparticles has been studied by UV-Vis spectroscopy in aqueous medium. The rate constant for antipyrilquinoneimine dye formation depends on the nature of the aniline substituent and the p H, ionic strength and temperature of the reaction medium. The maximum rate constant of the dye formation reaction is observed at p H 3.6. Aniline derivatives with electron donating substituents show higher rate constant values than those with electron withdrawing substituents, with increasing rate constant values in the order: N,N-dimethyl aniline> a-toluidine> o-chloroaniline > m-chloroaniline. With pseudo first order kinetics, the total order is 1.0 + 1.0 + 1.0 = 3.0, which includes the orders with respect to amine, 4-aminoantipyrine and ruthenium nanoparticles. Studies on these effects help to complete the kinetic analysis as well as propose the reaction pathway. Furthermore, TEM measurement confirms that the nano scalar size of the ruthenium nanoparticles is 7 nm

  1. On the formation of protected gold nanoparticles from AuCl4- by the reduction using aromatic amines

    International Nuclear Information System (INIS)

    Subramaniam, Chandramouli; Tom, Renjis T.; Pradeep, T.

    2005-01-01

    Amines are used extensively as reductants and subsequent capping agents in the synthesis of metal nanoparticles, especially gold, due to its affinity to nitrogen. Taking 2-methyl aniline as an example, we show that metal reduction is followed by polymerization of the amine, while part of it covers the nanoparticle surface another fraction deposits in the solution. It is found that the oxidative polymerization of the amine goes in step with the formation of gold nanoparticles. The gold nanoparticles thus formed have a mean diameter of 20 nm. The polymerized amine encapsulates the gold nanoparticle forming a robust shell of about 5 nm thickness, making the gold core inert towards mineralizing agents such as chloroform, bromoform, sodium cyanide, benzylchloride, etc. which react with the naked gold nanoparticles. The deposited polymer is largely protonated, taking up protons from the medium during its formation. Similar results have been observed in the case of aniline also. The materials have been fully characterized by spectroscopy and microscopy

  2. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes

    Science.gov (United States)

    Elangovan, Saravanakumar; Neumann, Jacob; Sortais, Jean-Baptiste; Junge, Kathrin; Darcel, Christophe; Beller, Matthias

    2016-01-01

    Borrowing hydrogen (or hydrogen autotransfer) reactions represent straightforward and sustainable C–N bond-forming processes. In general, precious metal-based catalysts are employed for this effective transformation. In recent years, the use of earth abundant and cheap non-noble metal catalysts for this process attracted considerable attention in the scientific community. Here we show that the selective N-alkylation of amines with alcohols can be catalysed by defined PNP manganese pincer complexes. A variety of substituted anilines are monoalkylated with different (hetero)aromatic and aliphatic alcohols even in the presence of other sensitive reducible functional groups. As a special highlight, we report the chemoselective monomethylation of primary amines using methanol under mild conditions. PMID:27708259

  3. Modification of aniline containing proteins using an oxidative coupling strategy.

    Science.gov (United States)

    Hooker, Jacob M; Esser-Kahn, Aaron P; Francis, Matthew B

    2006-12-13

    A new bioconjugation reaction has been developed based on the chemoselective modification of anilines through an oxidative coupling pathway. Aryl amines were installed on the surface of protein substrates through lysine acylation reactions or through the use of native chemical ligation techniques. Upon exposure to NaIO4 in aqueous buffer, the anilines coupled rapidly to the aromatic rings of N,N-dialkyl-N'-acyl-p-phenylenediamines. The identities of the reaction products were confirmed using ESI-MS and through comparison to small molecule analogs. Control experiments indicated that none of the native amino acids participated in the reaction. The resulting bioconjugates were found to be stable toward hydrolysis from pH 4 to pH 11 and in the presence of many commonly used oxidants, reductants, and nucleophiles. A fluorescent phenylenediamine reagent was synthesized for the selective detection of aniline labeled proteins in mixtures, and the reaction was used to append the C-terminus of the green fluorescent protein with a single PEG chain. When combined with techniques for the incorporation of unnatural amino acids into proteins, this bioorthogonal coupling method should prove useful for a number of applications requiring a high degree of labeling specificity.

  4. On salting in effect of the second group metal rhodanides on aqueous-amine solutions

    International Nuclear Information System (INIS)

    Krupatkin, I.L.; Ostrovskaya, E.M.; Vorob'eva, L.D.; Kamyshnikova, G.V.

    1978-01-01

    The ''salting in'' effect of rhodanides of Group 2 metals (magnesium, calcium, strontium, barium) on aqueous-amine solutions (water-aniline, and water-o-toluidine systems) is studied. The solubility in these systems has been determined by the isothermal method at 25 deg C. Compositions of the co-existing liquid phases have been determined by refractometry. The phase diagrams of water-aniline-rhodanide of magnesium, calcium and strontium systems have the same qualitative view. These rhodanides ''salt in'' the water-aniline system so strongly that the systems are completely homogenized. According to the decreasing homogenization effect on the water-aniline and water-o-toluidine systems the salts may be arranged into the following series Mg(NCS) 2 >Ca(NCS) 2 >Sr(NCS) 2 >Ba(NCS) 2 . The ''salting in'. effect is weaker in the water-o-toluidine system rather than in the water-aniline one

  5. Synthesis by plasma of halogenated poly anilines

    International Nuclear Information System (INIS)

    Enriquez, M.A.; Olayo, M.G.; Cruz, G.J.

    2002-01-01

    In this work polymerization by plasma of aniline with iodine and chlorine bonded chemically to the aniline ring were realized. The results of the synthesis and characterizations are compared with those ones obtained starting from the poly aniline synthesis (P An) doped with iodine, where the dopant was aggregated in the moment of the polymerization. The objective is to study the dopant behavior in the synthesis by plasma in function of the properties of these polymers. (Author)

  6. Synthesis and characterization of poly aniline/wood and poly aniline/carbon composites

    International Nuclear Information System (INIS)

    Kanwal, F.; Siddiqi, S.A.; Tasleem, S.

    2009-01-01

    Conducting polymers have shown many applications in the field of nano science, nano technology and nuclear science. Poly aniline (PAN I) is the most studied conducting polymer due to its environmental stability, easy availability of its raw materials, and simple synthesis. We have synthesized poly aniline and two of its conducting composites i.e., poly aniline-carbon and poly aniline-wood in acidic medium (HCI) using K/sub 2/Cr/sub 2/O/sub 7/ as oxidizing agent. All samples were characterized by FTIR and four-probe d.c. conductivity methods The synthesis was carried out at two different temperatures (0 degree C and -5 degree C) and it was found that the yield and conductivity were maximum at lower temperature (-5 degree C). The poly aniline-carbon composites showed enhanced conductivity whereas poly aniline-wood composites showed reduced conductivity when compared with the conductivity of pure poly aniline. (author)

  7. Solvent-free functionalization of carbon nanotube buckypaper with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Abarca-Morales, Edgar; Pérez-Rey, Luis A.; Re, Marilena; Prete, Paola; Lovergine, Nico

    2015-01-01

    Graphical abstract: - Abstract: We demonstrate the possibility of fast and efficient solvent-free functionalization of buckypaper (BP) mats prefabricated from oxidized multiwalled carbon nanotubes (MWCNTs-ox), by using three representative amines of different structure: one monofunctional aliphatic amine, octadecylamine (ODA), one monofunctional aromatic amine, 1-aminopyrene (AP), and one aromatic diamine, 1,5-diaminonaphthalene (DAN). The functionalization procedure, which relies on the formation of amide bonds with carboxylic groups of MWCNTs-ox, is performed at 150–180 °C under reduced pressure and takes about 4 h including auxiliary degassing. The amine-treated BP samples (BP-ODA, BP-AP and BP-DAN, respectively) were characterized by means of a variety of analytical techniques such as Fourier-transform infrared and Raman spectroscopy, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, scanning helium ion microscopy, and atomic force microscopy. The highest amine content was found for BP-ODA, and the lowest one was observed for BP-DAN, with a possible contribution of non-covalently bonded amine molecules in all three cases. Despite of some differences in spectral and morphological characteristics for amine-functionalized BP samples, they have in common a dramatically increased stability in water as compared to pristine BP and, on the other hand, a relatively invariable electrical conductivity.

  8. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents

    International Nuclear Information System (INIS)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk; Lee, Hyunjoo; Kim, Hoon Sik; Lee, Je Seung

    2014-01-01

    Highlights: • Nitrile-functionalized tertiary amines physically and reversibly absorb SO 2 . • Tertiary alkanolamines chemically and irreversibly absorb SO 2 through OH group. • SO 2 absorption modes were studied by spectroscopy and computational calculations. -- Abstract: Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO 2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption–desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO 2 through oxygen atom, forming an ionic compound with a covalently bound -OSO 2 − group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO 2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities

  9. Nitrotyrosine formation in splenic toxicity of aniline

    International Nuclear Information System (INIS)

    Khan, M. Firoze; Wu Xiaohong; Kaphalia, Bhupendra S.; Boor, Paul J.; Ansari, G.A.S.

    2003-01-01

    Splenic toxicity of aniline is characterized by vascular congestion, hyperplasia, fibrosis and development of a variety of sarcomas in rats. However, the mechanisms of this selective splenic toxicity are not well understood. Previously we showed that aniline exposure causes oxidative damage to spleen. To further explore the oxidative mechanisms of aniline toxicity, we evaluated the contributions of nitric oxide. Nitric oxide reacts with superoxide anion to form peroxynitrite, a powerful oxidant that converts the tyrosine residues of proteins to nitrotyrosine (NT). Therefore, aim of this study was to establish the role of nitric oxide through the formation and localization of NT in the spleen of rats exposed to aniline. Male Sprague-Dawley (SD) rats were given 1 mmol/kg per day aniline hydrochloride in water by gavage for 7 days, while the controls received water only. Immunohistochemical analysis for NT showed an intense staining in the red pulp areas of spleen from aniline-treated rats, localized in macrophages and sinusoidal cells. Occasionally mild NT immunostaining was also evident in the white pulp. Western blot analyses of the post-nuclear fraction of the spleens showed major nitrated proteins with molecular weights of 49, 30 and 18 kDa. Immunohistochemical analysis of inducible nitric oxide synthase (iNOS) also showed increased expression in the red pulp of the spleens from aniline-treated rats; the cellular localization was similar to nitrated proteins. These studies suggest that oxidative stress in aniline toxicity also includes aberration in nitric oxide production leading to nitration of proteins. Functional consequences of such nitration will further elucidate the contribution of nitric oxide to the splenic toxicity of aniline

  10. Pulse Radiolysis of Aqueous Solutions of Aniline and Substituted Anilines

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H C

    1971-07-01

    The primary reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with aniline and the aniline cation in aqueous solutions have been studied by the technique of pulse radiolysis and by determination of end products after y-radiolysis. Hydrogen atoms and hydrated electrons react with aniline under formation of the cyclohexadienyl type radical with absorption maximum at 355 nm and an extinction coefficient of 4100/M/cm. A similar radical formed by reaction of hydrogen atoms with the aniline cation has its absorption maximum at 31 0 nm and an extinction coefficient of 3200/M/cm. Hydrogen atoms react with the acid and neutral forms of aniline with rate constants of (1.3 +- 0.2 ) x 109/M/s and (2.9 +- 0.7) x 109/M/s, respectively. OH radicals react with aniline with a rate constant of (1.4 +- 0.3) x 1010/M/s under formation of the cyclohexadienyl radical with absorption maximum at 355 nm and the anilino radical with absorption maxima at 300 and 400 nm. The cyclohexadienyl radical decayed in a first order process with a rate constant of 1.4 x 105/s by elimination of NH{sub 3}, whereas the anilino radical disappeared in a second order reaction under formation of hydrazobenzene. O- radicals react with aniline at pH 13.3 with a rate constant of (3.1 +- 0.6) x 109 under formation of anilino radicals. The reaction of OH radicals with the aniline cation produced the anilino radical cation with a rate constant of (4.8 +- 0.8) x 109 . The absorption maximum was placed at 415 nm, The cyclohexadienyl type radical with absorption maximum at 350 nm was also found in aqueous solutions of 2-amino-1,3-dimethylbenzene but was not formed in solutions of N,N' -dimethylaniline

  11. Pulse Radiolysis of Aqueous Solutions of Aniline and Substituted Anilines

    International Nuclear Information System (INIS)

    Christensen, H.C.

    1971-01-01

    The primary reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with aniline and the aniline cation in aqueous solutions have been studied by the technique of pulse radiolysis and by determination of end products after y-radiolysis. Hydrogen atoms and hydrated electrons react with aniline under formation of the cyclohexadienyl type radical with absorption maximum at 355 nm and an extinction coefficient of 4100/M/cm. A similar radical formed by reaction of hydrogen atoms with the aniline cation has its absorption maximum at 31 0 nm and an extinction coefficient of 3200/M/cm. Hydrogen atoms react with the acid and neutral forms of aniline with rate constants of (1.3 ± 0.2 ) x 10 9 /M/s and (2.9 ± 0.7) x 10 9 /M/s, respectively. OH radicals react with aniline with a rate constant of (1.4 ± 0.3) x 10 10 /M/s under formation of the cyclohexadienyl radical with absorption maximum at 355 nm and the anilino radical with absorption maxima at 300 and 400 nm. The cyclohexadienyl radical decayed in a first order process with a rate constant of 1.4 x 10 5 /s by elimination of NH 3 , whereas the anilino radical disappeared in a second order reaction under formation of hydrazobenzene. O - radicals react with aniline at pH 13.3 with a rate constant of (3.1 ± 0.6) x 10 9 under formation of anilino radicals. The reaction of OH radicals with the aniline cation produced the anilino radical cation with a rate constant of (4.8 ± 0.8) x 10 9 . The absorption maximum was placed at 415 nm, The cyclohexadienyl type radical with absorption maximum at 350 nm was also found in aqueous solutions of 2-amino-1,3-dimethylbenzene but was not formed in solutions of N,N' -dimethylaniline

  12. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents.

    Science.gov (United States)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk; Lee, Hyunjoo; Kim, Hoon Sik; Lee, Je Seung

    2014-01-15

    Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption-desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO2 through oxygen atom, forming an ionic compound with a covalently bound OSO2(-) group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Impact of thiol and amine functionalization on photoluminescence properties of ZnO films

    International Nuclear Information System (INIS)

    Jayalakshmi, G.; Saravanan, K.; Balasubramanian, T.

    2013-01-01

    In the present study, we have investigated surface functionalization of ZnO films with dodecanethiol (Thiol) and trioctylamine (amine) by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle (CA) and photoluminescence (PL) measurements. The chemical bondings of thiol and amine with ZnO have been confirmed via the formation of Zn–S and Zn–N bonds by XPS measurements. AFM measurements on ZnO films before and after surface functionalization with thiol and amine provide evidence for the successful functionalization of thiol and amine on ZnO surfaces without any island formation. The CA measurements on ZnO films before and after surface functionalization with thiol and amine show the hydrophobic nature. PL measurements of thiol and amine functionalized ZnO show enhancements of UV emission and quenching of visible emission. The enhanced UV emissions in thiol and amine functionalized ZnO films suggest that the surface defects such as oxygen vacancies are passivated by thiol and amine functionalization. -- Highlights: ► Surface functionalization is a new approach to reduce surface dependent non-radiative process. ► Oxygen vacancies are passivated on surface functionalization. ► Thiol and amine functionalized ZnO show enhancements of UV emission

  14. A Catalyst-Free Amination of Functional Organolithium Reagents by Flow Chemistry.

    Science.gov (United States)

    Kim, Heejin; Yonekura, Yuya; Yoshida, Jun-Ichi

    2018-04-03

    Reported is the electrophilic amination of functional organolithium intermediates with well-designed aminating reagents under mild reaction conditions using flow microreactors. The aminating reagents were optimized to achieve efficient C-N bond formation without using any catalyst. The electrophilic amination reactions of functionalized aryllithiums were successfully conducted under mild reaction conditions, within 1 minute, by using flow microreactors. The aminating reagent was also prepared by the flow method. Based on stopped-flow NMR analysis, the reaction time for the preparation of the aminating reagent was quickly optimized without the necessity of work-up. Integrated one-flow synthesis consisting of the generation of an aryllithium, the preparation of an aminating reagent, and their combined reaction was successfully achieved to give the desired amine within 5 minutes of total reaction time. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Regularities of synthesis and mechanism of polycondensation of aromatic amines

    International Nuclear Information System (INIS)

    Matnishyan, Hagob

    2002-01-01

    Full text.Aniline polymers and its derivatives are widely used in modern electronics, electrical engineering and manufacturing of various appliances. They are used for production of electrical power sources, probes and sensors, composite materials absorbing high frequency radiations, anticorrosion coatings, nonlinear optical devices-such as lasers, cathode ray tubes, photodiodes etc. Such a wide usage of aromatic amine polymers brings up new demands to their structure and properties, which is dependent on conditions of synthesis and forming of the hard phase. The presented article describes regularities and mechanisms of oxidative polycondensation of aromatic amines. Several types of polymers have been synthesized by chemical and electrochemical oxidation of aniline and its chlor-, brom-, iodo-, nitro-, p-substituted derivatives; diphenylamine, benzidine and phenylenediamines in nonwater media. On the basis of kinetic and electrochemical studies and literature analysis we suggested a mechanism of polycondensation of aromatic amines. According to it, oxidation of amines starts with the electron transfer with cation-radical formation on the first stage, which stabilizes in acid environments due to complex formation with initial amine. Dimer formation and further growth of chain takes place upon another electron transfer from formed complex, which results in forming of macromolecules. We also suggested a scheme for obtaining of structures defect in media assisting in deprotonizing of cation radicals and formation of arylamine radical centers. Those processes lead to formation of azo- and diphenyl fragments in the main chain of the polymer and predetermine the possibility of chain disruption. We also considered reactions leading to formation of branched polymers and cyclic structures, such as phenazine in particular. The peculiarity of electrochemical process lies in regulation of concentration of active centres on the positive electrode surface

  16. Direct α-C-H bond functionalization of unprotected cyclic amines

    Science.gov (United States)

    Chen, Weijie; Ma, Longle; Paul, Anirudra; Seidel, Daniel

    2018-02-01

    Cyclic amines are ubiquitous core structures of bioactive natural products and pharmaceutical drugs. Although the site-selective abstraction of C-H bonds is an attractive strategy for preparing valuable functionalized amines from their readily available parent heterocycles, this approach has largely been limited to substrates that require protection of the amine nitrogen atom. In addition, most methods rely on transition metals and are incompatible with the presence of amine N-H bonds. Here we introduce a protecting-group-free approach for the α-functionalization of cyclic secondary amines. An operationally simple one-pot procedure generates products via a process that involves intermolecular hydride transfer to generate an imine intermediate that is subsequently captured by a nucleophile, such as an alkyl or aryl lithium compound. Reactions are regioselective and stereospecific and enable the rapid preparation of bioactive amines, as exemplified by the facile synthesis of anabasine and (-)-solenopsin A.

  17. Nitrile-functionalized tertiary amines as highly efficient and reversible SO{sub 2} absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Lee, Hyunjoo [Clean Energy Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Hoon Sik, E-mail: khs2004@khu.ac.kr [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Lee, Je Seung, E-mail: leejs70@khu.ac.kr [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-01-15

    Highlights: • Nitrile-functionalized tertiary amines physically and reversibly absorb SO{sub 2}. • Tertiary alkanolamines chemically and irreversibly absorb SO{sub 2} through OH group. • SO{sub 2} absorption modes were studied by spectroscopy and computational calculations. -- Abstract: Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO{sub 2} absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption–desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO{sub 2} through oxygen atom, forming an ionic compound with a covalently bound -OSO{sub 2}{sup −} group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO{sub 2} through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities.

  18. Dielectric Relaxation Studies of 2-Butoxyethanol with Aniline and Substituted Anilines Using Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    P. Jeevanandham

    2014-01-01

    Full Text Available The complex dielectric spectra of 2-butoxyethanol with aniline and substituted anilines like aniline, o-chloroaniline, m-chloroaniline, o-anisidine and m-anisidine binary mixtures in the composition of different volumes of percent (0%, 25%, 50%, 75%, and 100% have been measured as a function of frequency between 10 MHz and 30 GHz at 298.15 K. The dielectric parameters like static dielectric constant ε0 and relaxation time τ have been obtained by using least square fit method. By using these parameters ε0,τ, effective Kirkwood correlation factor geff, corrective Kirkwood correlation factor gf, Bruggeman factor fB, excess dielectric constant εE, and excess inverse relaxation time 1/τE values are calculated and discussed to yield information on the dipolar alignment and molecular rotation of the binary liquid mixtures. From all the derived dielectric parameters, molecular interactions are interpreted through hydrogen bonding.

  19. Disorder of G2-M Checkpoint Control in Aniline-Induced Cell Proliferation in Rat Spleen.

    Directory of Open Access Journals (Sweden)

    Jianling Wang

    Full Text Available Aniline, a toxic aromatic amine, is known to cause hemopoietic toxicity both in humans and animals. Aniline exposure also leads to toxic response in spleen which is characterized by splenomegaly, hyperplasia, fibrosis and the eventual formation of tumors on chronic in vivo exposure. Previously, we have shown that aniline exposure leads to iron overload, oxidative DNA damage, and increased cell proliferation, which could eventually contribute to a tumorigenic response in the spleen. Despite our demonstration that cell proliferation was associated with deregulation of G1 phase cyclins and increased expression of G1 phase cyclin-dependent kinases (CDKs, molecular mechanisms, especially the regulation of G2 phase and contribution of epigenetic mechanisms in aniline-induced splenic cellular proliferation remain largely unclear. This study therefore, mainly focused on the regulation of G2 phase in an animal model preceding a tumorigenic response. Male Sprague-Dawley rats were given aniline (0.5 mmol/kg/day in drinking water or drinking water only (controls for 30 days, and expression of G2 phase cyclins, CDK1, CDK inhibitors and miRNAs were measured in the spleen. Aniline treatment resulted in significant increases in cell cycle regulatory proteins, including cyclins A, B and CDK1, particularly phosphor-CDK1, and decreases in CDK inhibitors p21 and p27, which could promote the splenocytes to go through G2/M transition. Our data also showed upregulation of tumor markers Trx-1 and Ref-1 in rats treated with aniline. More importantly, we observed lower expression of miRNAs including Let-7a, miR-15b, miR24, miR-100 and miR-125, and greater expression of CDK inhibitor regulatory miRNAs such as miR-181a, miR-221 and miR-222 in the spleens of aniline-treated animals. Our findings suggest that significant increases in the expression of cyclins, CDK1 and aberrant regulation of miRNAs could lead to an accelerated G2/M transition of the splenocytes, and

  20. COMPUTATIONAL ELECTROCHEMISTRY: AQUEOUS ONE-ELECTRON OXIDATION POTENTIALS FOR SUBSTITUTED ANILINES

    Science.gov (United States)

    Semiempirical molecular orbital theory and density functional theory are used to compute one-electron oxidation potentials for aniline and a set of 21 mono- and di-substituted anilines in aqueous solution. Linear relationships between theoretical predictions and experiment are co...

  1. Treatment of wastewaters containing anilines using enzymes: an overview

    International Nuclear Information System (INIS)

    Mantha, R.; Biswas, N.; Taylor, K.E.; Bewtra, J.K.

    2002-01-01

    Aromatic amines are manufactured in a large scale for use in industries dealing with resins, dyes, plastics and rubber, pesticides and explosives. The majority of the production-related waste is either incinerated or released into the environment. The majority of them are highly toxic, carcinogenic or mutagenic and impose serious health hazards to mankind. Available conventional physical-chemical processes including activated carbon adsorption processes, solvent extraction processes, microbial degradation and various chemical-oxidation processes developed over the years are not selective in terms of the range of the aromatic pollutant removed during treatment. Thus, such treatment strategies are more economically suitable for treatment of dilute wastewaters and are invariably used as polishing steps. Enzymes such as peroxidases, in the presence of hydrogen peroxide, and laccases, in the presence of oxygen, catalyze the oxidation of a wide variety of phenols, biphenyls, anilines, benzidines and other related aromatic compounds. Various peroxidases and laccases have been used to treat wastewaters. With respect to anilines, the potential, scope and cost of enzymatic treatment is reviewed here and compared with conventional technology, e.g., the cost of enzymatic treatment using a crude enzyme preparation of soybean peroxidase was reported to be about $0.36/m 3 for synthetic wastewater containing 1 mM of aniline, compared to an activated sludge process of $1.05/m 3 and $1.31/m 3 for activated carbon process, while for p-toluidine, it was about $0.17/m 3 . Thus, through choice of enzyme and its mode of operation, treatment costs less than the conventional treatment strategies can be achieved. (author)

  2. Novel proton-type ionic liquid doped polyaniline for the headspace solid-phase microextraction of amines

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Youhong [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhao, Faqiong [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zeng, Baizhao, E-mail: bzzeng@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2015-06-23

    Graphical abstract: The novel proton-type ionic liquid (1-sulfobutyl-3-methylimidazolium hydrosulfate) doped polyaniline coating showed granular porous nanostructure and it had high self-EF values and extraction efficiency for amines. - Highlights: • A proton-type ionic liquid-doped polyaniline was fabricated by electrodeposition. • It showed porous granular nanostructure and had large specific surface. • It had high extraction capacity to aromatic amines. • A reasonable self-enrichment factor of SPME fiber has been proposed. - Abstract: A novel proton-type ionic liquid doped polyaniline (HIL-doped PANI) coating was presented, which was prepared on a stainless steel wire by electrodeposition in an aqueous solution containing aniline and 1-sulfobutyl-3-methylimidazolium hydrosulfate. The HIL-doped PANI coating showed granular nanostructure and had large specific surface. When it was applied to the headspace solid-phase microextraction of several amines (i.e., aniline, N-methylaniline, 3-methylaniline, 2-chloroaniline and 3-chloroaniline), it showed high extraction efficiency. The enrichment factors were 191.8–343.9 for different amines, much higher than those of common PANI and commercial polydimethylsiloxane/divinylbenzene coatings. Coupled with gas chromatographic analysis, the linear ranges were 0.097–100 μg/L with correlation coefficients above 0.9942, and the detection limits were 0.012–0.048 μg/L (S/N = 3) for different amines. The relative standard deviations (RSD) were smaller than 8.1% for five successive measurements with single fiber and the fiber-to-fiber RSDs were 8.6–13.8% (n = 5) for these amines. The proposed method was successfully applied to the extraction and determination of amines in organic waste water samples, and the recoveries were 78.3–112.8% for different analytes.

  3. Novel proton-type ionic liquid doped polyaniline for the headspace solid-phase microextraction of amines

    International Nuclear Information System (INIS)

    Ai, Youhong; Zhao, Faqiong; Zeng, Baizhao

    2015-01-01

    Graphical abstract: The novel proton-type ionic liquid (1-sulfobutyl-3-methylimidazolium hydrosulfate) doped polyaniline coating showed granular porous nanostructure and it had high self-EF values and extraction efficiency for amines. - Highlights: • A proton-type ionic liquid-doped polyaniline was fabricated by electrodeposition. • It showed porous granular nanostructure and had large specific surface. • It had high extraction capacity to aromatic amines. • A reasonable self-enrichment factor of SPME fiber has been proposed. - Abstract: A novel proton-type ionic liquid doped polyaniline (HIL-doped PANI) coating was presented, which was prepared on a stainless steel wire by electrodeposition in an aqueous solution containing aniline and 1-sulfobutyl-3-methylimidazolium hydrosulfate. The HIL-doped PANI coating showed granular nanostructure and had large specific surface. When it was applied to the headspace solid-phase microextraction of several amines (i.e., aniline, N-methylaniline, 3-methylaniline, 2-chloroaniline and 3-chloroaniline), it showed high extraction efficiency. The enrichment factors were 191.8–343.9 for different amines, much higher than those of common PANI and commercial polydimethylsiloxane/divinylbenzene coatings. Coupled with gas chromatographic analysis, the linear ranges were 0.097–100 μg/L with correlation coefficients above 0.9942, and the detection limits were 0.012–0.048 μg/L (S/N = 3) for different amines. The relative standard deviations (RSD) were smaller than 8.1% for five successive measurements with single fiber and the fiber-to-fiber RSDs were 8.6–13.8% (n = 5) for these amines. The proposed method was successfully applied to the extraction and determination of amines in organic waste water samples, and the recoveries were 78.3–112.8% for different analytes

  4. Solid-phase reductive amination for glycomic analysis.

    Science.gov (United States)

    Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George

    2017-04-15

    Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.

  5. Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth

    International Nuclear Information System (INIS)

    Hopper, A P; Dugan, J M; Gill, A A; Haycock, J W; Claeyssens, F; Fox, O J L; May, P W

    2014-01-01

    In this study, we report the production of amine functionalized nanodiamond. The amine functionalized nanodiamond forms a conformal monolayer on a negatively charged surface produced via plasma polymerization of acrylic acid. Nanodiamond terminated surfaces were studied as substrates for neuronal cell culture. NG108-15 neuroblastoma-glyoma hybrid cells were successfully cultured upon amine functionalized nanodiamond coated surfaces for between 1 and 7 d. Additionally, primary dorsal root ganglion (DRG) neurons and Schwann cells isolated from Wistar rats were also successfully cultured over a period of 21 d illustrating the potential of the coating for applications in the treatment of peripheral nerve injury. (paper)

  6. CO_2 capture by amine-functionalized nanoporous materials: A review

    International Nuclear Information System (INIS)

    Chen, Chao; Kim, Jun; Ahn, Wha-Seung

    2014-01-01

    Amine-functionalized nanoporous materials can be prepared by the incorporation of diverse organic amine moieties into the pore structures of a range of support materials, such as mesoporous silica and alumina, zeolite, carbon and metal organic frameworks (MOFs), either by direct functionalization or post-synthesis through physical impregnation or grafting. These hybrid materials have great potential for practical applications, such as dry adsorbents for postcombustion CO_2 capture, owing to their high CO_2 capture capacity, high capture selectivity towards CO_2 compared to other gases, and excellent stability. This paper summarizes the preparation methods and CO_2 capture performance based on the equilibrium CO_2 uptake of a range of amine-functionalized nanoporous materials

  7. Mild Palladium Catalyzed ortho C-H Bond Functionalizations of Aniline Derivatives.

    Science.gov (United States)

    Tischler, Ms Orsolya; Tóth, Mr Balázs; Novák, Zoltán

    2017-02-01

    This account collects the developments and transformations which avoid the utilization of harsh reaction conditions in the field of palladium catalyzed, ortho-directed C-H activation of aniline derivatives from the first attempts to up-to-date results, including the results of our research laboratory. The discussed functionalizations performed under mild conditions include acylation, olefination, arylation, alkylation, alkoxylation reactions. Beside the optimization studies and the synthetic applications mechanistic investigations are also presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In Situ Preparation of Polyether Amine Functionalized MWCNT Nanofiller as Reinforcing Agents

    Directory of Open Access Journals (Sweden)

    Ayber Yıldrım

    2014-01-01

    Full Text Available In situ preparation of polyether amine functionalized cross-linked multiwalled carbon nanotube (MWCNT nanofillers may improve the thermal and mechanical properties of the composites in which they are used as reinforcing agents. The reduction and functionalization of MWCNT using ethylenediamine in the presence of polyether amine produced stitched MWCNT's due to the presence of two amine (–NH2 functionalities on both sides of the polymer. Polyether amine was chosen to polymerize the carboxylated MWCNT due to its potential to form bonds with the amino groups and carboxyl groups of MWCNT which produces a resin used as polymeric matrix for nanocomposite materials. The attachment of the polyether amine (Jeffamine groups was verified by TGA, FT-IR, XRD, SEM, and Raman spectroscopy. The temperature at which the curing enthalpy is maximum, observed by DSC, was shifted to higher values by adding functionalized MWCNT. SEM images show the polymer formation between MWCNT sheets.

  9. Tris{2-[(2-aminobenzylideneamino]ethyl}amine

    Directory of Open Access Journals (Sweden)

    Perla Elizondo Martínez

    2010-12-01

    Full Text Available The title Schiff base, C27H33N7, is a tripodal amine displaying C3 symmetry, with the central tertiary N atom lying on the threefold crystallographic axis. The N—CH2—CH2—N conformation of the pendant arms is gauche [torsion angle = 76.1 (3°], which results in a claw-like molecule, with the terminal aniline groups wrapped around the symmetry axis. The lone pair of the apical N atom is clearly oriented inwards towards the cavity, and should thus be chemically inactive. The amine NH2 substituents lie in the plane of the benzene ring to which they are bonded. With such an arrangement, one amine H atom forms an S(6 motif through a weak N—H...N hydrogen bond with the imine N atom, while the other is engaged in an intermolecular N—H...π contact involving the benzene ring of a neighbouring molecule related by inversion. The benzene rings also participate in an intramolecular C—H...π contact of similar strength. In the crystal structure, molecules are separated by empty voids (ca 5% of the crystal volume, although the crystal seems to be unsolvated.

  10. One-Pot Two-Step Multicomponent Process of Indole and Other Nitrogenous Heterocycles or Amines toward α-Oxo-acetamidines.

    Science.gov (United States)

    Martinez-Ariza, Guillermo; McConnell, Nicholas; Hulme, Christopher

    2016-04-15

    A cesium carbonate promoted three-component reaction of N-H containing heterocycles, primary or secondary amines, arylglyoxaldehydes, and anilines is reported. The key step involves a tandem sequence of N-1 addition of a heterocycle or an amine to preformed α-iminoketones, followed by an air- or oxygen-mediated oxidation to form α-oxo-acetamidines. The scope of the reaction is enticingly broad, and this novel methodology is applied toward the synthesis of various polycyclic heterocycles.

  11. STUDIES ON THE INITIATION MECHANISM OF ORGANIC PEROXIDE AND N-METHACRYLOYLOXYETHYL-N-METHYL ANILINE IN METHYL METHACRYLATE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; GUO Dajie; GUO Xinqiu; FENG Xinde

    1990-01-01

    The initiation mechanism of methyl methacrylate (MMA) polymerization by organic peroxide and polymerizable aromatic tertiary amine such as N-methacryloyloxyethyl-N-methyi aniline (MEMA) binary system has been studied. The kinetics of polymerization of MMA and the ESR spectra of organic peroxide/MEMA system were determined. Based on the ESR study and the end-group analysis by UV spectra of the polymer formed, the initiation mechanism is proposed.

  12. Dual C-H functionalization of N-aryl amines: synthesis of polycyclic amines via an oxidative Povarov approach.

    Science.gov (United States)

    Min, Chang; Sanchawala, Abbas; Seidel, Daniel

    2014-05-16

    Iminium ions generated in situ via copper(I) bromide catalyzed oxidation of N-aryl amines readily undergo [4 + 2] cycloadditions with a range of dienophiles. This method involves the functionalization of both a C(sp(3))-H and a C(sp(2))-H bond and enables the rapid construction of polycyclic amines under relatively mild conditions.

  13. Separation optimization of aniline and seven 4-substituted anilines in high-submicellar liquid chromatography using empirical retention modeling and Derringer's desirability function.

    Science.gov (United States)

    Hadjmohammadi, Mohammad Reza; S J Nazari, S Saman

    2013-08-01

    The separation optimization of aniline and seven 4-substituted derivatives in high-submicellar LC was performed using an interpretive optimization strategy and Derringer's desirability function. Description of the retention of solutes was carried out through several hyperbolic and logarithmic retention models using the retention data of five mobile phases of SDS (0.06-0.12 M) and methanol (50-70% v/v) at pH 3. Among the investigated models, a logarithmic retention model logk=c0+c1φ+c2[S]+c12φ[S]+d12(φ[S])0.5 showed the best prediction capability and was used to predict the solute retention factors. A grid search program was used to calculate the retention times of each solute, based on the best retention model, for all combinations of SDS and methanol concentrations in the factor space. Two different chromatographic goals, analysis time and retention differences between adjacent peaks, were evaluated simultaneously using Derringer's desirability function for each mobile phase conditions in the grid search. Optimal mobile phase composition for separation of eight anilines was found to be 0.119 M SDS and 53% v/v methanol. Under these conditions, full resolutions with a reasonable analysis time (22 min) were obtained. At the optimal condition, a good agreement was observed between predicted and experimental values of the retention times. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization.

    Science.gov (United States)

    Clark, Joseph R; Feng, Kaibo; Sookezian, Anasheh; White, M Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  15. Lewis basicity, adhesion thermodynamic work and coordinating ability on aminated silicon surfaces

    International Nuclear Information System (INIS)

    Sánchez, M. Alejandra; Paniagua, Sergio A.; Borge, Ignacio; Viales, Christian; Montero, Mavis L.

    2014-01-01

    Highlights: • Silicon(1 0 0) surfaces with diamines followed by anchoring of copper complexes over the diamine layer, an approach that could be used for advanced functionalization of semiconducting surfaces. • Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. • Higher basicity and thermodynamic work correlate with selective copper acetate monolayer grow. The cyclic voltammetry studies confirm the confined copper redox activity. - Abstract: Silicon(1 0 0) surfaces have been modified with three different amines (aniline, benzylamine and dodecylamine) and diamines (4-aminopyridine, 4-aminomethylpyridine, 1,12-dodecyldiamine). The surface energy was measured by contact angle technique. For Si-diamine surfaces, Lewis basicity (using Fowkes–van Oss–Chaudhury–Good surface tension model) and adhesion thermodynamic work (using chemical force microscopy) were determined. We related these data, the amine/diamine nature and their geometry on the surface (via DFT calculations) with the consequent ability to coordinate copper(II) acetate. Finally, copper(II) acetate monolayers behavior was studied by cyclic voltammetry

  16. Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes.

    Science.gov (United States)

    Ansari, R; Ajori, S; Rouhi, S

    2015-12-01

    Molecular dynamics (MD) simulations were used to study the adsorption of different polymer chains on functionalized double-walled carbon nanotubes (DWCNTs). The nanotubes were functionalized with two different amines: NH2 (a small amine) and CH2-NH2 (a large amine). Considering three different polymer chains, all with the same number of atoms, the effect of polymer type on the polymer-nanotube interaction was studied. In general, it was found that covalent functionalization considerably improved the polymer-DWCNT interaction. By comparing the results obtained with different polymer chains, it was observed that, unlike polyethylene and polyketone, poly(styrene sulfonate) only weakly interacts with the functionalized DWCNTs. Accordingly, the smallest radius of gyration was obtained with adsorbed poly(styrene sulfonate). It was also observed that the DWCNTs functionalized with the large amine presented more stable interactions with polyketone and poly(styrene sulfonate) than with polyethylene, whereas the DWCNTs functionalized with the small amine showed better interfacial noncovalent bonding with polyethylene.

  17. Anodic selective functionalization of cyclic amine derivatives

    OpenAIRE

    Onomura, Osamu

    2012-01-01

    Anodic reactions are desirable methods from the viewpoint of Green Chemistry, since no toxic oxidants are necessary for the oxidation of organic molecules. This review introduces usefulness of anodic oxidation and successive reaction for selective functionalization of cyclic amine derivatives.

  18. Mixed ligand complexes of uranyl lactate with some simple and heterocyclic amines

    International Nuclear Information System (INIS)

    Jaiswal, S.R.; Rupainwar, D.C.

    1984-01-01

    Mixed ligand complexes of uranyl lactate with simple and heterocyclic amines having a general formula UO 2 (C 3 H 5 O 3 ).nL.xH 2 O, were prepared, where n=1 and x=1 for L=ethylenediamine (En), dimethyl aniline (DMAn), diethyl amine (DEA), orthophenylenediamine (OPDA), pyridine (Py), 2-picoline(2-Pic), 3-picoline(3-Pic), 4-Picoline(4-Pic), piperidine (Pipy), 2,4-lutidine (2,4 Lut), 2-Aminopyridine (2 APy), quinoline (Quin), isoquinoline (Isoquin) but x=0 for the ligands 2,2'-bipyrldyl (Bipy) and 1,10-phenenthroline (Phen). All the compounds are bright yellow coloured with high decomposition temp. (>200deg) and were characterized by electronic and infrared spectral data. (author)

  19. Patterning of electrically conductive poly(aniline-co-aniline sulfonic acid) and its application in the immobilization of cytochrome c

    International Nuclear Information System (INIS)

    Oh, Se Young; Oh, Il Soo; Choi, Jeong-Woo

    2004-01-01

    We have synthesized poly(aniline-co-aniline sulfonic acid) and then investigated the feasibility of application as a specific and electrically conductive binding template for biomolecules. Poly(aniline-co-aniline sulfonic acid)s were prepared by oxidation polymerization of aniline and aniline sulfonic acid under various ratios. A fine pattern of the conducting copolyaniline was obtained by using a deep UV lithographic technique. Cytochrome c was immobilized onto the photochemically patterned conducting copolyaniline with a self-assembly method. Physical and electrochemical properties of the self-assembled cytochrome c monolayer were studied from atomic force microscopy and cyclic voltammetry. The self-assembled cytochrome c monolayer immobilized onto the copolyaniline with a high electrical conductivity showed a high electrochemical activity

  20. Nanoscale assembly of amine-functionalized colloidal iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Barick, K.C. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Aslam, M. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Prasad, Pottumarthi V. [Department of Radiology, Evanston Northwestern Healthcare, Evanston, IL 60201 (United States); Dravid, Vinayak P. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208 (United States)], E-mail: v-dravid@northwestern.edu; Bahadur, Dhirendra [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076 (India)], E-mail: dhirenb@iitb.ac.in

    2009-05-15

    We demonstrate a single-step facile approach for highly water-stable assembly of amine-functionalized Fe{sub 3}O{sub 4} nanoparticles using thermal decomposition of Fe-chloride precursors in ethylene glycol medium in the presence of ethylenediamine. The average size of nanoassemblies is 40{+-}1 nm, wherein the individual nanoparticles are about 6 nm. Amine-functionalized properties are evident from Fourier transform infrared spectrometer (FTIR), thermal and elemental analyses. The saturation magnetization and spin-echo r{sub 2} of the nanoassemblies were measured to be 64.3 emu/g and 314.6 mM{sup -1} s{sup -1}, respectively. The higher value of relaxivity ratio (r{sub 2}/r{sub 1}=143) indicates that nanoassemblies are a promising high-efficiency T2 contrast agent platform.

  1. Nanoscale assembly of amine-functionalized colloidal iron oxide

    International Nuclear Information System (INIS)

    Barick, K.C.; Aslam, M.; Prasad, Pottumarthi V.; Dravid, Vinayak P.; Bahadur, Dhirendra

    2009-01-01

    We demonstrate a single-step facile approach for highly water-stable assembly of amine-functionalized Fe 3 O 4 nanoparticles using thermal decomposition of Fe-chloride precursors in ethylene glycol medium in the presence of ethylenediamine. The average size of nanoassemblies is 40±1 nm, wherein the individual nanoparticles are about 6 nm. Amine-functionalized properties are evident from Fourier transform infrared spectrometer (FTIR), thermal and elemental analyses. The saturation magnetization and spin-echo r 2 of the nanoassemblies were measured to be 64.3 emu/g and 314.6 mM -1 s -1 , respectively. The higher value of relaxivity ratio (r 2 /r 1 =143) indicates that nanoassemblies are a promising high-efficiency T2 contrast agent platform.

  2. Aniline-induced nitrosative stress in rat spleen: Proteomic identification of nitrated proteins

    International Nuclear Information System (INIS)

    Fan Xiuzhen; Wang Jianling; Soman, Kizhake V.; Ansari, G.A.S.; Khan, M. Firoze

    2011-01-01

    Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6 kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity. - Highlights: → Proteomic approaches are used to identify nitrated proteins in the spleen. → Twenty five nitrated proteins were found only in the spleen of aniline-treated rats. → Aniline exposure led to increased iNOS mRNA and protein

  3. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene

    Energy Technology Data Exchange (ETDEWEB)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa [Institute of Microbial Technology (CSIR) Sector-39A, Chandigarh160036 (India); Suri, C. Raman, E-mail: raman@imtech.res.in [Institute of Microbial Technology (CSIR) Sector-39A, Chandigarh160036 (India)

    2013-03-15

    Highlights: ► Binding of electron-deficient trinitrotoluene to the electron rich amino groups to form JM complexes. ► rGO/CNT based platform for enhanced electrochemical detection. ► Functionalization and characterization of rGO/CNT with amine derivative. ► Ultrasenstitive and specific detection of TNT. -- Abstract: Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson–Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available -OH and -COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n = 3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications.

  4. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene

    International Nuclear Information System (INIS)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa; Suri, C. Raman

    2013-01-01

    Highlights: ► Binding of electron-deficient trinitrotoluene to the electron rich amino groups to form JM complexes. ► rGO/CNT based platform for enhanced electrochemical detection. ► Functionalization and characterization of rGO/CNT with amine derivative. ► Ultrasenstitive and specific detection of TNT. -- Abstract: Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson–Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available -OH and -COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n = 3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications

  5. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement

    Science.gov (United States)

    Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong

    2016-12-01

    In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.

  6. Density Functional Investigation of Graphene Doped with Amine-Based Organic Molecules

    Directory of Open Access Journals (Sweden)

    Yeun Hee Hwang

    2015-01-01

    Full Text Available To improve the electronic properties of graphene, many doping techniques have been studied. Herein, we investigate the electronic and molecular structure of doped graphene using density functional theory, and we report the effects of amine-based benzene dopants adsorbed on graphene. Density functional theory (DFT calculations were performed to determine the role of amine-based aromatic compounds in graphene doping. These organic molecules bind to graphene through long-range interactions such as π-π interactions and C-H⋯π hydrogen bonding. We compared the electronic structures of pristine graphene and doped graphene to understand the electronic structure of doped graphene at the molecular level. Also, work functions of doped graphene were obtained from electrostatic potential calculations. A decrease in the work function was observed when the amine-based organic compounds were adsorbed onto graphene. Because these systems are based on physisorption, there was no obvious band structure change at point K at the Fermi level after doping. However, the amine-based organic dopants did change the absolute Fermi energy levels. In this study, we showed that the Fermi levels of the doped graphene were affected by the HOMO energy level of the dopants and by the intermolecular charge transfer between the adsorbed molecules and graphene.

  7. Synthesis by plasma of halogenated poly anilines; Sintesis por plasma de polianilinas halogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, M.A.; Olayo, M.G.; Cruz, G.J. [Facultad de Quimica, UAEM, 50000 Toluca, Estado de Mexico (Mexico)

    2002-07-01

    In this work polymerization by plasma of aniline with iodine and chlorine bonded chemically to the aniline ring were realized. The results of the synthesis and characterizations are compared with those ones obtained starting from the poly aniline synthesis (P An) doped with iodine, where the dopant was aggregated in the moment of the polymerization. The objective is to study the dopant behavior in the synthesis by plasma in function of the properties of these polymers. (Author)

  8. Quantification of amine functional groups and their influence on OM/OC in the IMPROVE network

    Science.gov (United States)

    Kamruzzaman, Mohammed; Takahama, Satoshi; Dillner, Ann M.

    2018-01-01

    Recently, we developed a method using FT-IR spectroscopy coupled with partial least squares (PLS) regression to measure the four most abundant organic functional groups, aliphatic C-H, alcohol OH, carboxylic acid OH and carbonyl C=O, in atmospheric particulate matter. These functional groups are summed to estimate organic matter (OM) while the carbon from the functional groups is summed to estimate organic carbon (OC). With this method, OM and OM/OC can be estimated for each sample rather than relying on one assumed value to convert OC measurements to OM. This study continues the development of the FT-IR and PLS method for estimating OM and OM/OC by including the amine functional group. Amines are ubiquitous in the atmosphere and come from motor vehicle exhaust, animal husbandry, biomass burning, and vegetation among other sources. In this study, calibration standards for amines are produced by aerosolizing individual amine compounds and collecting them on PTFE filters using an IMPROVE sampler, thereby mimicking the filter media and collection geometry of ambient standards. The moles of amine functional group on each standard and a narrow range of amine-specific wavenumbers in the FT-IR spectra (wavenumber range 1 550-1 500 cm-1) are used to develop a PLS calibration model. The PLS model is validated using three methods: prediction of a set of laboratory standards not included in the model, a peak height analysis and a PLS model with a broader wavenumber range. The model is then applied to the ambient samples collected throughout 2013 from 16 IMPROVE sites in the USA. Urban sites have higher amine concentrations than most rural sites, but amine functional groups account for a lower fraction of OM at urban sites. Amine concentrations, contributions to OM and seasonality vary by site and sample. Amine has a small impact on the annual average OM/OC for urban sites, but for some rural sites including amine in the OM/OC calculations increased OM/OC by 0.1 or more.

  9. Cytocompatibility of amine functionalized carbon nanoparticles grafted on polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Žáková, Pavlína, E-mail: pavlina.zakova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Slepičková Kasálková, Nikola [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Kolská, Zdeňka [Faculty of Science, J. E. Purkyně University, Ústí nad Labem (Czech Republic); Leitner, Jindřich [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Karpíšková, Jana; Stibor, Ivan [Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (Czech Republic); Slepička, Petr; Švorčík, Václav [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic)

    2016-03-01

    Five types of amide–amine Carbon Nano-Particles (CNPs) were prepared by functionalization of CNPs and characterized by several analytical methods. The successful grafting of amines on CNPs was verified by X-ray photoelectron spectroscopy (XPS), organic elemental analysis and electrokinetic analysis. The size and morphology of CNPs were determined from transmission electron microscopy. The surface area and porosity of CNPs were examined by adsorption and desorption isotherms. Differential scanning calorimetry was used to investigate thermal stability of CNPs. The amount of bonded amine depends on its dimensionality arrangement. Surface area and pore volumes of CNPs decrease several times after individual amino-compound grafting. Selected types of functionalized CNPs were grafted onto a plasma activated surface of HDPE. The successful grafting of CNPs on the polymer surface was verified by XPS. Wettability was determined by contact angle measurements. Surface morphology and roughness were studied by atomic force microscopy. A dramatic decrease of contact angle and surface morphology was observed on CNP grafted polymer surface. Cytocompatibility of modified surfaces was studied in vitro, by determination of adhesion, proliferation and viability of vascular smooth muscle cells (VSMCs). Grafting of CNPs onto the polymer surface has a positive effect on the adhesion, proliferation and viability of VSMCs. - Highlights: • Amine functionalized CNPs were successfully grafted on HDPE surface. • Significant change to the positive zeta potential for grafted CNPs was induced. • Grafting of CNPs significantly enhanced cell cytocompatibility and viability. • Homogeneous distribution of cells with correct size was achieved.

  10. Complex Formation and Liquid-Liquid Extraction in the Niobium(V) - 2,4-Dihydroxythiophenol - Hydrophobic Amines System

    International Nuclear Information System (INIS)

    Zalov, A.Z.

    2015-01-01

    The formation and solvent extraction of new ion-association complexes between anionic chelat of niobium(V) with 2,4-dihydroxy-thio-phenol (DHTP) and hydrophobic amines (HAs). The HAs were aniline (An), N-methyl-aniline (MAn), N,N-dimethylaniline (DAn). The optimum conditions for the extraction of mixed ligand complexes (MLC) (organic solvent, extraction time, acidity of the aqueous phase, concentration of reagents), some key constants (association constant (β), extraction constant (Kex)) and analytical characteristics were determined. The molar absorptivities of MLC were calculated ε =(3.5-3.9) * 10/sup 4/ L mol /sup -1/ cm/sup -1/ . The Beer law was applicable in the range of 2.2-100 μg/mL. (author)

  11. Aniline oligomers versus polyaniline

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava

    2012-01-01

    Roč. 61, č. 2 (2012), s. 240-251 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GA203/08/0686; GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * anilin e oligomers * anilin e Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.125, year: 2012

  12. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

    Directory of Open Access Journals (Sweden)

    Seong-Il Eyun

    Full Text Available Trace amine-associated receptors (TAARs are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4 have emerged earlier, generally have single-copy orthologs (very few duplication or loss, and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9 have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.

  13. Direct C-H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis.

    Science.gov (United States)

    Mishra, Neeraj Kumar; Choi, Miji; Jo, Hyeim; Oh, Yongguk; Sharma, Satyasheel; Han, Sang Hoon; Jeong, Taejoo; Han, Sangil; Lee, Seok-Yong; Kim, In Su

    2015-12-18

    The rhodium(III)-catalyzed direct functionalization of aniline C-H bonds with α-diazo compounds is described. These transformations provide a facile construction of ortho-alkylated anilines with diazo malonates or highly substituted indoles with diazo acetoacetates.

  14. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines.

    Science.gov (United States)

    Bettini, Simona; Maglie, Emanuela; Pagano, Rosanna; Borovkov, Victor; Inoue, Yoshihisa; Valli, Ludovico; Giancane, Gabriele

    2015-01-01

    Cu,H2-bis-porphyrin (Cu,H2-Por2), in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir-Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase) to a surface plasmon resonance (SPR) substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.

  15. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines

    Directory of Open Access Journals (Sweden)

    Simona Bettini

    2015-11-01

    Full Text Available Cu,H2-bis-porphyrin (Cu,H2-Por2, in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir–Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase to a surface plasmon resonance (SPR substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.

  16. Conformation-Induced Remote meta-C–H Activation of Amines

    Science.gov (United States)

    Tang, Ri-Yuan; Li, Gang; Yu, Jin-Quan

    2014-01-01

    Achieving site selectivity in C–H functionalization is a long-standing challenge in organic synthesis. The small differences in intrinsic reactivity of C–H bonds in a given organic molecule often lead to poor discrimination by a catalyst. One solution to this problem is to distinguish C–H bonds based on their location with respect to a particular functional group. In this context, the activation of C–H bonds 5 or 6 bonds away from a functional group via cyclometalation has been extensively studied.1-13 However, directed activation of C–H bonds that are distal (>6 bonds away) from functional groups has remained difficult, especially when the target C–H bonds are geometrically inaccessible through directed metalation due to the ring strain encountered in cyclometalation.14,15 Herein we report a recyclable template that directs the olefination and acetoxyation of distal meta-C–H bonds (as far as 11 bonds away) of anilines and benzylic amines. Remarkably, this template is able to direct the meta-selective C–H functionalization of bicyclic heterocycles via highly strained tricyclic cyclophane-like palladated intermediates. X-ray and NMR studies reveal that the conformational biases induced by a single fluorine substitution in the template can be enhanced by a ligand to switch from ortho- to meta-selectivity. PMID:24622200

  17. Effect of Ionic Liquid on the Determination of Aromatic Amines as Contaminants in Hair Dyes by Liquid Chromatography Coupled to Electrochemical Detection

    Directory of Open Access Journals (Sweden)

    Maria Valnice Boldrin Zanoni

    2012-07-01

    Full Text Available The room temperature ionic liquid (IL 1-butyl-3-methylimidazolium bis-(trifluorometanesulfonylimide BMIm[NTf2] was used as a novel medium for improvement of separation and quantization of 16 aromatic amines typically present as contaminants in consumer products and detected by HPLC coupled to an electrochemical detector. The aromatic amines, namely 4,4'-diaminodiphenylmethane, 4-chloroaniline, 2-methoxy-5-methyl-aniline, 3,3'-dimethylbenzidine, 2,4-diaminotoluidine, 2-chloro-4-nitroaniline, 4,4'-oxydianiline, aniline, 3,3'-dichlorobenzidine, benzidine, 4-aminobiphenyl, o-dianisidine, o-anisidine, o-toluidine, 4,4'-methylene-bis-2-chloroaniline and 2-naphthyl-amine are oxidized in methanol/BMIm[NTf2] at a potential around +0.68V to +0.93V vs. Ag/AgCl at a glassy carbon electrode, which is the base for their determination by HPLC/ED. Using the optimized conditions of methanol/BMIm[NTf2] 70:30 (v/v as mobile phase, flow-rate of 0.8 mL·min−1, column CLC-ODS, Eap = +1.0 V and T = 40 °C analytical curves were constructed for each of the tested amines. Good linearity was obtained in the concentration range of 1.09 mg·L−1 to 217 mg·L−1, with excellent correlation coefficients. The limits of detection reached 0.021 mg·L−1 to 0.246 mg·L−1 and good relative standard deviations (RSD, n = 3 were obtained from the measurements. Satisfactory recovery for each aromatic amine was achieved, ranging from 95 to 103%. The developed method was successfully applied to determine six aromatic amines present as contaminants in commercial hair dye samples.

  18. Effect of Diamine in Amine-Functionalized MIL-101 for Knoevenagel Condensation

    International Nuclear Information System (INIS)

    Kasinathan, Palraj; Seo, You Kyong; Shim, Kyu Eun; Hwang, Young Kyu; Lee, U Hwang; Hwang, Dong Won; Hong, Do Young; Halligudi, Shiva B.; Chang, Jong San

    2011-01-01

    Have demonstrated that amines with different basicities successfully functionalized into the pores of MIL-101 and amine functionalized chromium terephthalate used as a base catalyst. The catalytic activity of amine functionalized MIL-101 in Knoevenagel condensation of ethylcyanoacetate and benzaldehyde depends on their basi-cities. The reactivity of these catalytic materials could be also affected by their pore size and/or surface area, which governs the facile diffusion of the molecules through the channels of the MIL-101. The present strategy ensures the development of new functionalities and lead to MOF applications of practically useful heterogeneous base catalysts for chemical transformations. Crystalline Metal-Organic Frameworks (MOFs) are currently an important kind of advanced functional materials due to their novel coordination structures, diverse topologies, and potential applications. As one of topical MOFs, porous chromium terephthalate with giant pores labeled MIL-101(Cr) possesses several unique features such as hierarchical pore structure including a mesoporous zeotype architecture, mesoporous cages and microporous windows, outstanding sorption properties, numerous unsaturated metal cation sites, and high hydrothermal and chemical stability. These properties have led to a number of application potential in catalysis, gas storage, drug delivery and adsorptive separation. One important challenge has to realize is funtionalization via incorporation of binding site or reactive centers for catalysis. The functionalization methods of metal organic frameworks (MOFs) in a wide range of applications are two possible approaches including pre- and post-modification with functional groups

  19. Synthesis and characterization of poly iodine anilines by plasma

    International Nuclear Information System (INIS)

    Enriquez P, M.A.

    2003-01-01

    The polymers and organic materials present a numberless quantity of applications. However, it has not been but until recent times that it has been found that some of these materials can possess semiconductor properties. This has generated a great interest for the investigation in the area of semiconductor polymers. The poly aniline (Pan) it is one of the main semiconductor polymers because their electric properties change depending on the doping and of the state of oxidation to the one the molecules are subjected. The synthesis of this material has been carried out by means of chemical oxidation or electrochemistry. In this work a study is presented on the formation of poly aniline polymers with halogens chemically united to the aniline ring, poly(m-iodine aniline) (m-PAnI) and poly(m-chloroaniline) (m-PAnCI) for plasma. The plasma is generated by means of discharges of splendor with an r f amplifier to 13.5 MHz to drops pressures (10 -2 mbar). The synthesized polymers were obtained in form of thin film in the walls of the reactor and in the substrate introduced in the one. The electric properties of the polymers were evaluated in function of the time of reaction. Also, the conductivity of the polymers was compared synthesized in this work with reported data of synthesized poly aniline and doped with iodine for plasma. The highest values in conductivity are obtained in the poly aniline where the halogens are chemically connected to the ring that if it is doped with iodine. The atomic proportion in the surface of the polymers was analyzed by dispersive energy spectroscopy with which is deduced that the halogens come off of the molecules of the monomers or of the polymer in formation and that the atoms of iodine get lost more easily than those of chlorine. Other techniques that were used to characterize to the poly aniline were scanning electron microscopy, infrared spectroscopy, thermal gravimetric analysis and X-ray diffraction. The results are presented in

  20. Identification of Anaerobic Aniline-Degrading Bacteria at a Contaminated Industrial Site.

    Science.gov (United States)

    Sun, Weimin; Li, Yun; McGuinness, Lora R; Luo, Shuai; Huang, Weilin; Kerkhof, Lee J; Mack, E Erin; Häggblom, Max M; Fennell, Donna E

    2015-09-15

    Anaerobic aniline biodegradation was investigated under different electron-accepting conditions using contaminated canal and groundwater aquifer sediments from an industrial site. Aniline loss was observed in nitrate- and sulfate-amended microcosms and in microcosms established to promote methanogenic conditions. Lag times of 37 days (sulfate amended) to more than 100 days (methanogenic) were observed prior to activity. Time-series DNA-stable isotope probing (SIP) was used to identify bacteria that incorporated (13)C-labeled aniline in the microcosms established to promote methanogenic conditions. In microcosms from heavily contaminated aquifer sediments, a phylotype with 92.7% sequence similarity to Ignavibacterium album was identified as a dominant aniline degrader as indicated by incorporation of (13)C-aniline into its DNA. In microcosms from contaminated canal sediments, a bacterial phylotype within the family Anaerolineaceae, but without a match to any known genus, demonstrated the assimilation of (13)C-aniline. Acidovorax spp. were also identified as putative aniline degraders in both of these two treatments, indicating that these species were present and active in both the canal and aquifer sediments. There were multiple bacterial phylotypes associated with anaerobic degradation of aniline at this complex industrial site, which suggests that anaerobic transformation of aniline is an important process at the site. Furthermore, the aniline degrading phylotypes identified in the current study are not related to any known aniline-degrading bacteria. The identification of novel putative aniline degraders expands current knowledge regarding the potential fate of aniline under anaerobic conditions.

  1. Graphene-poly aniline by oxidative electro polymerization

    International Nuclear Information System (INIS)

    Pa-a, Jonathan E.; Enriquez, Erwin P.

    2013-01-01

    In this work , the photochemically synthesized NH 2 - graphene is doped with poly aniline through oxidative electro polymerization to form the NH 2 -graphene/poly aniline composites. These composites with varying amounts of NH 2 -graphene are investigated using Fourier Transform-infrared (FTIR) spectroscopy, ultraviolet-visible (UV)absorption spectroscopy , scanning electron microscopy (SEM-EDX), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and electrochemical measurements. FTIR analysis strongly suggests incorporation of NH 2 -graphene sheets on poly aniline via imine (C=N) formation. UV/visible analysis of composites containing varying amounts of NH 2 -graphene in PANI shows different extent of modification on the oxidation state of the emeraldine base form to leuco emeraldine form of the PANI chain segments with possible formation of imine (C=N) units at other positions of the aniline ring in the composite, Time evolution UV/visible spectra by UV-irradiation of composites tend to proceed further with imine and phenazine-like microstructure formation. TEM and SEM images show patterns on aggregation of regular to deformed fibers surrounding planar surfaces which may indicate interior surface of NH 2 -graphene sheets not being grafted with polymers. Improved thermal stability of poly aniline in the presence of minimum amount of NH 2 -graphene sheets further confirms structural transformation within the microstructures. Electrochemical measurements by cyclic voltammetry show enhanced capacitive behavior relative to pure poly aniline. The route of synthesis using NH 2 -graphene and poly aniline offers a simple but controlled synthetic route for electrochemical doping and welding of N-containing heterocyclic structures onto pristine graphene sheets for possible use in sensing and energy storage applications. (author)

  2. Activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine

    International Nuclear Information System (INIS)

    Jayalakshmi, G.; Gopalakrishnan, N.; Balasubramanian, T.

    2013-01-01

    Highlights: ► Room temperature ferromagnetism (RTFM) is observed in surface functionalized ZnO films. ► Surface functionalization is a new approach to make ZnO as ferromagnetic. ► The RTFM is attributed to the interaction between the adsorbates and the surface of ZnO. ► The oxygen vacancies are passivated upon surface functionalization. - Abstract: In this paper, we report the activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine. The pure and surface functionalized ZnO films have been examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements. XRD measurements show that all the films have single phase and (0 0 2) preferred orientation. The chemical bonding of ZnO with thiol and amine molecules has been confirmed by XPS measurements. The quenching of visible emission in PL spectra indicates that the surface defects are passivated by functionalization with thiol and amine. Surface functionalization of ZnO films with thiol and amine induces robust room temperature ferromagnetism in ZnO films as evidenced from VSM measurements. It is concluded that the observed ferromagnetic behavior in functionalized ZnO films is attributed to the different electronegativity of the atom in the thiol (or amine) and the surface of ZnO.

  3. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed; Guillerm, Vincent; Weselinski, Lukasz Jan; Alkordi, Mohamed H.; Mohideen, Mohamed Infas Haja; Belmabkhout, Youssef

    2015-01-01

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  4. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed

    2015-05-28

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  5. Solvent-free functionalization of fullerene C{sub 60} and pristine multi-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Calera, Itzel J. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico); Meza-Laguna, Victor [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Gromovoy, Taras Yu. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Chávez-Uribe, Ma. Isabel [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico)

    2015-02-15

    Highlights: • Pristine multi-walled carbon nanotubes were functionalized with aromatic amines. • The amines add onto nanotube defects, likewise they add onto fullerene C{sub 60}. • The addition takes place at elevated temperature and without organic solvents. • Functionalized nanotubes were characterized by a number of instrumental techniques. - Abstract: We employed a direct one-step solvent-free covalent functionalization of solid fullerene C{sub 60} and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180–250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, {sup 13}C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C{sub 60} molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C{sub 60}, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  6. Photoinduced electron transfer interaction of anthraquinones with aniline quenchers: Influence of methyl substitution in aniline donors

    Science.gov (United States)

    Sivakumar, V.; Ponnamma, Deepalekshmi; Hussein, Yasser H. A.

    2017-02-01

    Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQT) but not the triplets AQT or AQST. However in aqueous medium, AN quenches AQST and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQT or AQST while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications.

  7. Conformation-induced remote meta-C-H activation of amines

    Science.gov (United States)

    Tang, Ri-Yuan; Li, Gang; Yu, Jin-Quan

    2014-03-01

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a long-standing challenge in organic chemistry. The small differences in intrinsic reactivity of C-H bonds in any given organic molecule can lead to the activation of undesired C-H bonds by a non-selective catalyst. One solution to this problem is to distinguish C-H bonds on the basis of their location in the molecule relative to a specific functional group. In this context, the activation of C-H bonds five or six bonds away from a functional group by cyclometallation has been extensively studied. However, the directed activation of C-H bonds that are distal to (more than six bonds away) functional groups has remained challenging, especially when the target C-H bond is geometrically inaccessible to directed metallation owing to the ring strain encountered in cyclometallation. Here we report a recyclable template that directs the olefination and acetoxylation of distal meta-C-H bonds--as far as 11 bonds away--of anilines and benzylic amines. This template is able to direct the meta-selective C-H functionalization of bicyclic heterocycles via a highly strained, tricyclic-cyclophane-like palladated intermediate. X-ray and nuclear magnetic resonance studies reveal that the conformational biases induced by a single fluorine substitution in the template can be enhanced by using a ligand to switch from ortho- to meta-selectivity.

  8. Dispersion of Pt Nanoparticle-Doped Reduced Graphene Oxide Using Aniline as a Stabilizer

    Directory of Open Access Journals (Sweden)

    Hyoung-Joon Jin

    2012-12-01

    Full Text Available In this study, a simple one-step method was developed to load small-sized Pt nanoparticles (3.1 ± 0.3 nm in large quantities (50 wt % on aniline-functionalized and reduced graphene oxide (r-fGO. In the process, an ethylene glycol solution and aniline-functionalized moiety play the roles of reducing agent and stabilizer for the Pt nanoparticles, respectively, without damaging the graphite structures of the r-fGO. The Pt nanoparticles loading on the surface of r-fGO with uniform dispersion have a great effect on the electrical conductivity.

  9. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    Science.gov (United States)

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  10. Preparation, characterization and photocatalytic applications of amine-functionalized mesoporous silica impregnated with transition-metal-monosubstituted polyoxometalates

    International Nuclear Information System (INIS)

    Li Li; Liu, Chunming; Geng Aifang; Jiang Chunjie; Guo Yihang; Hu Changwen

    2006-01-01

    Amine-functionalized mesoporous silica materials impregnated with transition-metal-monosubstituted polyoxometalates, K 5 [M(H 2 O)PW 11 O 39 ]-(EtO) 3 SiCH 2 CH 2 CH 2 NH 2 -MCM-48 (M = Co/Ni), were prepared by coordination of nickel/cobalt centers in the clusters with the amine surface groups in amine-functionalized mesoporous silica supports. The materials obtained were characterized by powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis-DR), infrared (IR) spectra, magic-angle spinning 31 P MAS NMR, transmission electron microscopy (TEM) and nitrogen adsorption measurements, indicating that the primary Keggin structures remained intact in as-prepared composites, and the composites possessed mesoporous structures. The composites exhibited UV-photocatalytic activity to degrade dye rhodamine B (RB), and the pesticides including hexachlorobenzene (HCB) and methylparathion (MPT). Leakage of K 5 [M(H 2 O)PW 11 O 39 ] from the support was hardly observed during the photocatalytic tests, attributed to strong coordination interactions between the Keggin units and the amine-functionalized silica surface. -- Graphical abstract: The K 5 [M(H 2 O)PW 11 O 39 ]-(EtO) 3 SiCH 2 CH 2 CH 2 NH 2 -SiO 2 composites were prepared by coordination of M centers in the Keggin units with the amine surface groups in amine-functionalized mesoporous silica supports, and the composites exhibited photocatalytic activity to degrade aqueous rhodamine B, hexachlorobenzene and methyl parathion

  11. A Colorimetric Sensor for Qualitative Discrimination and Quantitative Detection of Volatile Amines

    Directory of Open Access Journals (Sweden)

    Zhonglin Tang

    2010-06-01

    Full Text Available We have developed a novel colorimetric sensor based on a digital camera and white LED illumination. Colorimetric sensor arrays (CSAs were made from a set of six chemically responsive dyes impregnated on an inert substrate plate by solution casting. Six common amine aqueous solutions, including dimethylamine, triethylamine, diisopropyl-amine, aniline, cyclohexylamine, and pyridine vaporized at 25 °C and six health-related trimethylamine (TMA concentrations including 170 ppm, 51 ppm, 8 ppm, 2 ppm, 125 ppb and 50 ppb were analyzed by the sensor to test its ability for the qualitative discrimination and quantitative detection of volatile amines. We extracted the feature vectors of the CSA's response to the analytes from a fusional color space, which was obtained by conducting a joint search algorithm of sequential forward selection and sequential backward selection (SFS&SBS based on the linear discriminant criteria (LDC in a mixed color space composed of six common color spaces. The principle component analysis (PCA followed by the hierarchical cluser analysis (HCA were utilized to discriminate 12 analytes. Results showed that the colorimetric sensor grouped the six amine vapors and five TMA concentrations correctly, while TMA concentrations of 125 ppb and 50 ppb were indiscriminable from each other. The limitation of detection (LOD of the sensor for TMA was found to be lower than 50 ppb. The CSAs were reusable for TMA concentrations below 8 ppm.

  12. ZnAl2O4@SiO2 nanocomposite catalyst for the acetylation of alcohols, phenols and amines with acetic anhydride under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Saeed Farhadi; Kosar Jahanara

    2014-01-01

    A ZnAl2O4@SiO2 nanocomposite was prepared from metal nitrates and tetraethyl orthosilicate by the sol-gel process, and characterized by X-ray diffraction, Fourier transform infrared, transmission electron microscopy, and N2 adsorption-desorption measurements. The nanocomposite was tested as a heterogeneous catalyst for the acetylation of alcohols, phenols, and amines under solvent-free conditions. Under optimized conditions, efficient acetylation of these substrates with acetic anhy-dride over the ZnAl2O4@SiO2 nanocomposite was obtained. Acetylation of anilines and primary aliphatic amines proceeded rapidly at room temperature, while the reaction time was longer for the acetylation of alcohols and phenols, showing that an amine NH2 group can be selectively acetylated in the presence of alcoholic or phenolic OH groups. The catalyst can be reused without obvious loss of catalytic activity. The catalytic activity of the ZnAl2O4@SiO2 nanocomposite was higher than that of pure ZnAl2O4. The method gives high yields, and is clean, cost effective, compatible with sub-strates having other functional groups and it is suitable for practical organic synthesis.

  13. Characterization of poly-aniline/silicon heterojunction for gamma dosimetry

    International Nuclear Information System (INIS)

    Laranjeira, Jane M.G.; Khoury, Helen J.; Azevedo, Walter M.; Silva Junior, Eronides F. da; Vasconcelos, Elder A.

    2000-01-01

    In this work, we have developed and characterized poly-aniline/silicon heterojunction diodes for dosimetry applications. The poly-aniline thin film (thickness in order of microns) was deposited on n-type Si (1 Ωcm) by spin-coating technique from soluble poly-aniline. Al electrode was evaporated on the back side of Si wafer and a circular gold electrode with an area of 0,0036 cm 2 was evaporated on the poly-aniline film. The UV-visible and infrared characterization of the poly-aniline solution and the poly-aniline film has also been done. The heterojunction presents good rectifying behavior at room temperature and the rectification ratio were found to be 51664 ±1,0 V under ambient conditions. The saturation current densities are of the order of 1,4 μA/cm 2 at -1,0 V. The forward current correspond to the negative polarity on the aluminum electrode side and the ideality factor of diodes was approximately 2. The rectifying characteristics of diodes was changed after interaction with gamma radiation ( 60 Co) and the results shows that this devices has potential for applications in dosimetry for doses in range of 0 to 4000 Gy. (author)

  14. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  15. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    International Nuclear Information System (INIS)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-01-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis

  16. Comparison of several solid-phase extraction sorbents for continuous determination of amines in water by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2009-08-15

    A semiautomatic method has been proposed for the determination of different types of amines in water samples including anilines, chloroanilines, N-nitrosamines and aliphatic amines. The analytes were retained on a solid-phase extraction sorbent column and after elution, 1 microL of the extract was analysed by gas chromatography coupled with electron impact ionization mass spectrometry. A systematic overview is given of the advantages and disadvantages of several sorbents (LiChrolut EN, Oasis HLB, RP-C(18), graphitized carbon black, fullerenes and nanotubes) in the retention of amine compounds and based on sensitivity, selectivity and reliability. The retention efficiency for the studied amines was higher (ca. 100%) with LiChrolut EN and Oasis HLB than it was with RP-C(18) and fullerenes (53 and 62%, respectively, on average). Detection limits of 0.5-16 ng L(-1) for the 27 amines studied were obtained when using a sorbent column containing 75 mg of LiChrolut EN for 100mL of sample, the RSD being lower than 6.5%. The method was applied with good accuracy and precision in the determination of amines in various types of water including river, pond, tap, well, drinking, swimming pool and waste.

  17. Analysis of primary aromatic amines (PAA) in black nylon kitchenware 2014

    DEFF Research Database (Denmark)

    Trier, Xenia; Granby, Kit

    is 0,01 mg of substance per kg of food or food simulant. The detection limit applies to the sum of primary aromatic amines released’ Since July 1st 2011, an additional EU regulation has come into place, which states that each consignment of polyamide (nylon) kitchen utensils from China and Hong Kong......% acetic acid as food simulant at an exposure temperature of 100°C and time from ½-4 hours, depending on the foreseeable use of the utensil. The samples were collected by the Norwegian Food Safety Authority at importers and retail shops. Of the 20 PAAs analysed. four PAAs were detected, being aniline (ANL...

  18. Post-synthesis amine borane functionalization of metal-organic framework and its unusual chemical hydrogen release phenomenon

    KAUST Repository

    Berke, Heinz; Barman, Smair; Remhof, Arndt; Koitz, Ralph; Iannuzzi, Marcella; Blacque, Olivier; Yan, Yigang; Fox, Thomas; Hutter, Jü rg; Zü ttel, Andreas

    2017-01-01

    We report a novel strategy for post-synthesis amine borane functionalization of MOFs under gas-solid phase transformation utilizing gaseous diborane. The covalently confined amine borane derivative decorated on the framework backbone is stable when

  19. Enhancement of percutaneous penetration of aniline and o-toluidine in vitro using skin barrier creams.

    Science.gov (United States)

    Korinth, Gintautas; Lüersen, Lars; Schaller, Karl Heinz; Angerer, Jürgen; Drexler, Hans

    2008-04-01

    Aniline (ANI) and the human carcinogen o-toluidine (OT) are released at the workplace during the production and processing of rubber. Recently, we showed in rubber industry workers that a frequent use of skin barrier creams (SBC) increased the internal exposure of ANI and OT. In the present study, diffusion cells were used to investigate the effects of two SBC and one skin care cream (SCC) on percutaneous penetration of neat ANI and OT as well as of OT from a mixture with a workplace specific lubricant. The experiments were carried out with untreated and with skin creams treated human skin. A considerable percutaneous penetration enhancement of test compounds was observed for treated skin compared with untreated skin; the highest enhancement (mean factors 6.2-12.3) was found for SBC (based on oil in water emulsion) treated skin. The lowest penetration enhancement showed SCC treated skin (mean factors 4.2-9.7). The in vitro data support our findings in workers that the percutaneous absorption of aromatic amines significantly increases in presence of skin creams. The efficacy of skin creams to protect the percutaneous penetration of aromatic amines is not confirmed by our own experiments.

  20. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  1. Degradation of aromatic amines in textile-dyeing sludge by combining the ultrasound technique with potassium permanganate treatment.

    Science.gov (United States)

    Liang, Jieying; Ning, Xun-An; An, Taicheng; Sun, Jian; Zhang, Yaping; Wang, Yujie

    2016-08-15

    This paper reports, for the first time, a combined technique of ultrasound (US) with KMnO4 degradation of aromatic amines in a textile-dyeing sludge. The reaction mechanisms and the degradation kinetics of aromatic amines at various operating parameters (KMnO4 dosage, US power density and pH) were systematically examined by the combined system of US-KMnO4. The results indicated that there was a synergistic effect between US and KMnO4, as US greatly enhanced KMnO4 in the degradation of aromatic amines and exhibited apparent sludge disintegration and separated pollutants from the sludge. In addition to accelerating the Mn(VII) reaction with pollutants in the filtrate, US also caused Mn(VII) to enter the porous sludge and sufficiently facilitated the reaction of the strongly absorbed aromatic amines. The combined treatment of US-KMnO4 was effective in the degradation of aromatic amines in textile-dyeing sludge. On average, 58.7% of monocyclic anilines, 88.3% of other forms of aromatic amines, and 24.0% of TOC were removed under the optimal operating conditions of a KMnO4 dosage of 12mM, an US power density of 1.80W/cm(3) and pH 5. The present study proposed US-KMnO4 treatment as a practical method for the disposal of aromatic amines in textile-dyeing sludge. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions

    Science.gov (United States)

    Podkościelny, P.; László, K.

    2007-08-01

    The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.

  3. Aniline Is Rapidly Converted Into Paracetamol Impairing Male Reproductive Development.

    Science.gov (United States)

    Holm, Jacob Bak; Chalmey, Clementine; Modick, Hendrik; Jensen, Lars Skovgaard; Dierkes, Georg; Weiss, Tobias; Jensen, Benjamin Anderschou Holbech; Nørregård, Mette Marie; Borkowski, Kamil; Styrishave, Bjarne; Martin Koch, Holger; Mazaud-Guittot, Severine; Jegou, Bernard; Kristiansen, Karsten; Kristensen, David Møbjerg

    2015-11-01

    Industrial use of aniline is increasing worldwide with production estimated to surpass 5.6 million metric tons in 2016. Exposure to aniline occurs via air, diet, and water augmenting the risk of exposing a large number of individuals. Early observations suggest that aniline is metabolized to paracetamol/acetaminophen, likely explaining the omnipresence of low concentrations of paracetamol in European populations. This is of concern as recent studies implicate paracetamol as a disrupter of reproduction. Here, we show through steroidogenic profiling that exposure to aniline led to increased levels of the Δ4 steroids, suggesting that the activity of CYP21 was decreased. By contrast, paracetamol decreased levels of androgens likely through inhibition of CYP17A1 activity. We confirm that aniline in vivo is rapidly converted to paracetamol by the liver. Intrauterine exposure to aniline and paracetamol in environmental and pharmaceutical relevant doses resulted in shortening of the anogenital distance in mice, a sensitive marker of fetal androgen levels that in humans is associated with reproductive malformations and later life reproductive disorders. In conclusion, our results provide evidence for a scenario where aniline, through its conversion into antiandrogenic paracetamol, impairs male reproductive development. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Silicene catalyzed reduction of nitrobenzene to aniline: A mechanistic study

    Science.gov (United States)

    Morrissey, Christopher; He, Haiying

    2018-03-01

    The reduction of nitrobenzene to aniline has broad applications in chemical and pharmaceutical industries. The high reaction temperatures and pressures and unavoidable hazardous chemicals of current metal catalysts call for more environmentally friendly non-metal catalysts. In this study, the plausibility of silicene as a potential catalyst for nitrobenzene reduction is investigated with a focus on the distinct reaction mechanism based on the density functional theory. The direct reaction pathway was shown to be distinctly different from the Haber mechanism following PhNO2∗ → PhNO∗ → PhNHO∗ → PhNH2O∗ → PhNH2∗. The hydroxyl groups remain bound to silicene after aniline is formed and acquire a high activation barrier to remove.

  5. Poly(ortho-phenylenediamine-co-aniline) based copolymer with improved capacitance

    Science.gov (United States)

    Olmedo-Martínez, Jorge L.; Farías-Mancilla, Bárbara I.; Vega-Rios, Alejandro; Zaragoza-Contreras, E. Armando

    2017-10-01

    A poly(ortho-phenylenediamine-co-aniline) copolymer is synthesized via the oxidative route, using a 1:1 M ratio of aniline to ortho-phenylenediamine (oPDA) and ammonium persulfate as the oxidizing agent. Infrared spectroscopy indicates that the copolymer contains the functional groups typically present in polyaniline and poly(ortho-phenylenediamine); whereas UV-vis-NIR spectroscopy shows that the copolymer adopts a phenazine-type structure. Cyclic voltammetry evidences the copolymer synthesis, as a redox peak at -65 mV, different from those exhibited by polyaniline (160 mV and 600 mV) or poly(o-phenylenediamine) (-240 mV) is observed. Finally, electrochemical impedance spectroscopy and the charge/discharge test provide support to propose the copolymer application in electrodes for supercapacitors.

  6. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Energy Technology Data Exchange (ETDEWEB)

    Bláha, Michal, E-mail: blaha@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Prokeš, Jan [Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8 (Czech Republic); Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)

    2017-06-15

    Aniline was oxidized with three strong inorganic oxidants (ammonium peroxydisulfate, cerium(IV) sulfate, potassium dichromate), two weak inorganic oxidants (iron(III) chloride, silver nitrate), and one organic oxidant (p-benzoquinone) in aqueous solutions of methanesulfonic acid (MSA) of various concentration. Whereas oxidation of aniline with ammonium peroxydisulfate yielded high-molecular-weight conducting polyaniline (PANI) in the whole acidity range, the oxidation with cerium(IV) sulfate led also to a single product close to PANI with considerably lower molecular weight and lower conductivity. Potassium dichromate gave PANI only at high concentration of MSA. The use of iron(III) chloride yielded composite mixtures of PANI and low-molecular-weight aniline oligomers. The oxidation of aniline with silver nitrate led to composites of silver and an organic part, which was constituted either by aniline oligomers or conducting polyaniline or both. p-Benzoquinone as oxidant produced mainly aniline oligomers with poor conductivity and 2,5-dianilino-p-benzoquinone-like structure detected in FTIR and Raman spectra when oxidation proceeded with weak oxidants. A general model of oxidation with strong and weak oxidants was formulated. - Highlights: • Comparison of aniline oxidation with oxidants of different redox potential. • UV–vis, FTIR and Raman spectroscopies combined with size-exclusion chromatography. • The contents of polymer and oligomers were analyzed and discussed. • General model of aniline oxidation with strong and weak oxidants was formulated.

  7. Chemical polymerization of aniline in phenylphosphinic acid

    Directory of Open Access Journals (Sweden)

    NICOLETA PLESU

    2005-10-01

    Full Text Available The chemical polymerization of aniline was performed in phenylphosphinic acid (APP medium using ammonium peroxidisulfate as the oxidizing agent, at 0 ºC and 25 ºC. The yield of polyaniline (PANI was about 60–69 %. The polymerization process required an induction time 8–10 times greater than in other acids (hydrochloric, sulfuric. The average density of the obtained polymer was 1.395 g cm-3 for PANI-salt and 1.203 g cm-3 for PANI-base. The acid capacity of PANI depends on the synthesis parameters and the maximum value was 15.02 meq/g polymer. The inherent viscosity of PANI was 0.662 dl/g at aniline/oxidant molar ratios >2 and 0 ºC. The oxidation state was a function of the synthesis parameters and lay between 0.553–0.625, as determined from UV-VIS and titration with TiCl3 data. The PANI samples were characterized by measurements of their density, inherent viscosity, conductivity, acid capacity, FTIR and UV-VIS spectrum, and thermogravimetric data.

  8. Modular functionalization of allenes to aminated stereotriads.

    Science.gov (United States)

    Adams, Christopher S; Boralsky, Luke A; Guzei, Ilia A; Schomaker, Jennifer M

    2012-07-04

    Nitrogen-containing stereotriads, compounds with three adjacent stereodefined carbons, are commonly found in biologically important molecules. However, the preparation of molecules bearing these motifs can be challenging. Herein, we describe a modular oxidation protocol which converts a substituted allene to a triply functionalized amine of the form C-X/C-N/C-Y. The key step employs a Rh-catalyzed intramolecular conversion of the allene to a strained bicyclic methylene aziridine. This reactive intermediate is further elaborated to the target products, often in one reaction vessel and with effective transfer of the axial chirality of the allene to point chirality in the stereotriad.

  9. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-11-01

    Full Text Available The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC. Levels of reactive oxygen species (ROS, malondialdehyde (MDA, and glutathione (GSH, activities of superoxide dismutase (SOD and catalase (CAT, mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  10. Removal of amino groups from anilines through diazonium salt-based reactions.

    Science.gov (United States)

    He, Linman; Qiu, Guanyinsheng; Gao, Yueqiu; Wu, Jie

    2014-09-28

    This minireview describes the applications of in situ generated diazonium salts from anilines in organic synthesis. In situ generation of diazonium salts from anilines represents an efficient and practical pathway, leading to a series of useful structures. In these transformations, the amino group of aniline formally acts as a leaving group. Two distinctive kinds of mechanisms, including transition metal (especially palladium)-catalyzed oxidative addition-reductive elimination and a radical process, are involved in the removal of amino groups from anilines, and both catalytic processes are described in this minireview.

  11. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties.

    Science.gov (United States)

    Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying

    2013-02-07

    Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine.

  12. Iridium/Bipyridine-Catalyzed ortho-Selective C-H Borylation of Phenol and Aniline Derivatives.

    Science.gov (United States)

    Li, Hong-Liang; Kanai, Motomu; Kuninobu, Yoichiro

    2017-11-03

    An iridium-catalyzed ortho-selective C-H borylation of phenol and aniline derivatives has been successfully developed. Iridium/bipyridine-catalyzed C-H borylation generally occurred at the meta- and para-positions of aromatic substrates. Introduction of an electron-withdrawing substituent on the bipyridine-type ligand and a methylthiomethyl group on the hydroxy and amino groups of the phenol and aniline substrates, however, dramatically altered the regioselectivity, affording exclusively ortho-borylated products. The reaction proceeded in good to excellent yields with good functional group tolerance. C-H borylation was applied to the synthesis of a calcium receptor modulator.

  13. The Azomethine Ylide Route to Amine C–H Functionalization: Redox-Versions of Classic Reactions and a Pathway to New Transformations

    Science.gov (United States)

    2016-01-01

    Conspectus Redox-neutral methods for the functionalization of amine α-C–H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C–H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet–Spengler, and Kabachnik–Fields reactions, Friedel–Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C–H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic

  14. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations.

    Science.gov (United States)

    Seidel, Daniel

    2015-02-17

    Conspectus Redox-neutral methods for the functionalization of amine α-C-H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C-H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet-Spengler, and Kabachnik-Fields reactions, Friedel-Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C-H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic processes, have been

  15. Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy

    Science.gov (United States)

    Bilyeu, Bryan

    Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network

  16. Synthesis of poly(aniline-co-o-toluidine) coatings on copper

    Energy Technology Data Exchange (ETDEWEB)

    Raotole, Pritee, E-mail: priteeraotole@gmail.com; Patil, V. T.; Huse, V. R.; Chaudhari, A. L. [MGSM’s Arts, Science and Commerce, College, Chopda, Dist-Jalgaon 425107, Maharashtra (India); Raotole, Mahesh [Sharacchandrika Suresh Patil, Institute of Technology, Polytechnic, Chopda, Dist-Jalgaon, 425107, Maharashtra (India)

    2016-05-06

    The corrosion protective poly(aniline-co-o-toluidine) (PAOT) coatings were synthesized on copper (Cu) by the electrochemical copolymerization of aniline with o-toluidine under cyclic voltammetry conditions. Aqueous oxalate solutions were used as the supporting electrolytes for the synthesis of PAOT coatings on Cu. The resulting coatings were characterized by different spectroscopic techniques, cyclic voltammetry, ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and scanning electron microscopy. The Fourier Transform InfraRed (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR) spectroscopy studies reveal that the copolymerization of aniline and o-toluidine takes place on Cu substrates from an aqueous oxalate solutions and resulting in PAOT copolymer, there are more o-toluidine units than aniline units.

  17. 159 - 162_Kogo_Aniline

    African Journals Online (AJOL)

    pc

    mechanical properties of doped polyester fabric with aniline w s of various ... tion of the PANI solution rly constant up to ... computer interface and printer according to the AS. Figure 2: .... Material Systems and Structures, 23(17), pp. 1969-1986.

  18. Novel Synthetic Monothiourea Aspirin Derivatives Bearing Alkylated Amines as Potential Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Norsyafikah Asyilla Nordin

    2017-01-01

    Full Text Available A new series of aspirin bearing alkylated amines moieties 1–12 were synthesised by reacting isothiocyanate with a series of aniline derivatives in overall yield of 16–56%. The proposed structures of all the synthesised compounds were confirmed using elemental analysis, FTIR, and 1H and  13C NMR spectroscopy. All compounds were evaluated for antibacterial activities against E. coli and S. aureus via turbidimetric kinetic and Kirby Bauer disc diffusion method. Compound 5 bearing meta -CH3 substituent showed the highest relative inhibition zone diameter against tested bacteria compared to ortho and para substituent. Furthermore, aspirin derivatives bearing shorter chains exhibited better bacterial inhibition than longer alkyl chains.

  19. Ru(III) catalyzed permanganate oxidation of aniline at environmentally relevant pH.

    Science.gov (United States)

    Zhang, Jing; Zhang, Ying; Wang, Hui; Guan, Xiaohong

    2014-07-01

    Ru(III) was employed as catalyst for aniline oxidation by permanganate at environmentally relevant pH for the first time. Ru(III) could significantly improve the oxidation rate of aniline by 5-24 times with its concentration increasing from 2.5 to 15 μmol/L. The reaction of Ru(III) catalyzed permanganate oxidation of aniline was first-order with respect to aniline, permanganate and Ru(III), respectively. Thus the oxidation kinetics can be described by a third-order rate law. Aniline degradation by Ru(III) catalyzed permanganate oxidation was markedly influenced by pH, and the second-order rate constant (ktapp) decreased from 643.20 to 2.67 (mol/L)⁻¹sec⁻¹ with increasing pH from 4.0 to 9.0, which was possibly due to the decrease of permanganate oxidation potential with increasing pH. In both the uncatalytic and catalytic permanganate oxidation, six byproducts of aniline were identified in UPLC-MS/MS analysis. Ru(III), as an electron shuttle, was oxidized by permanganate to Ru(VI) and Ru(VII), which acted the co-oxidants for decomposition of aniline. Although Ru(III) could catalyze permanganate oxidation of aniline effectively, dosing homogeneous Ru(III) into water would lead to a second pollution. Therefore, efforts would be made to investigate the catalytic performance of supported Ru(III) toward permanganate oxidation in our future study. Copyright © 2014. Published by Elsevier B.V.

  20. Electrorheology of aniline oligomers

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Sedlačík, M.; Pavlínek, V.; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav; Sáha, P.

    2013-01-01

    Roč. 291, č. 9 (2013), s. 2079-2086 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : anilin e oligomers * polyaniline * electrorheology Subject RIV: JI - Composite Materials Impact factor: 2.410, year: 2013

  1. Synthesis and characterization of novel N-substituted poly aniline by Triton X-100

    International Nuclear Information System (INIS)

    Arsalani, N.; Khavei, M.; Entezami, A. A.

    2003-01-01

    A new N-substituted poly aniline is synthesized by insertion of polyether chain in the form of Triton X-100 onto the poly aniline backbone. In the preparation method, firstly the emeraldine base poly aniline was reacted with Na H to produce the N-anionic doped poly aniline and then contacted with chlorinated Triton X-100. The prepared N-substituted poly aniline was characterized by UV-vis, FTIR, 1 H NMR spectroscopy techniques and elemental analysis. The physical properties of synthesized polymer such as electrical conductivity, thermal and electro activity properties were also studied. The prepared polymer has good solubility in common organic solvents such as T HF and chloroform

  2. Adsorption and Oxidation of Aromatic Amines on Metal(II Hexacyanocobaltate(III Complexes: Implication for Oligomerization of Exotic Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Rachana Sharma

    2017-03-01

    Full Text Available Based on the hypothesis on the presence of double metal cyanides in the primordial oceans, a series of nano-sized metal(II hexacyanocobaltate(III (MHCCo with the general formula: M3[Co(CN6]2•xH2O (where M = Zn, Fe, Ni and Mn has been synthesized. Surface interaction of aromatic amines, namely aniline, 4-chloroaniline, 4-methylaniline and 4-methoxyaniline with MHCCo particles has been carried out at the concentration range of 100–400 μM at pH~7.0. The percentage binding of aromatic amines on MHCCo surface was found to be in the range of 84%–44%. The trend in adsorption was in accordance to the relative basicity of the studied amines. At the experimental pH, amines reacted rapidly with the surface of the iron(II hexacyanocobaltate, producing colored products that were analyzed by Gas Chromatography Mass Spectroscopy (GC-MS. GC-MS analysis of the colored products demonstrated the formation of dimers of the studied aromatic amines. Surface interaction of aromatic amines with MHCCo was studied by Fourier Transform Infrared (FT-IR spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM. The change in amine characteristic frequencies, as observed by FT-IR, suggests that interaction took place through the NH2 group on amines with metal ions of hexacyanocobaltate complexes. FE-SEM studies revealed the adherence of 4-methoxyaniline on zinc hexacyanocobaltate particles surface. We proposed that MHCCo might have been formed under the conditions on primitive Earth and may be regarded as an important candidate for concentrating organic molecules through the adsorption process.

  3. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-09-15

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS{sup 0}), enthalpy change (ΔH{sup 0}) and Gibbs free energy (ΔG{sup 0}) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much

  4. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie; Wang, Ke; Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS"0), enthalpy change (ΔH"0) and Gibbs free energy (ΔG"0) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much enhanced adsorption

  5. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway.

    Science.gov (United States)

    Zeyer, J; Wasserfallen, A; Timmis, K N

    1985-08-01

    Moraxella sp. strain G is able to utilize as sole source of carbon and nitrogen aniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline (PCA), and 4-bromoaniline but not 4-iodoaniline, 4-methylaniline, 4-methoxyaniline, or 3,4-dichloroaniline. The generation time on PCA was 6 h. The pathway for the degradation of PCA was investigated by analysis of catabolic intermediates and enzyme activities. Mutants of strain G were isolated to enhance the accumulation of specific pathway intermediates. PCA was converted by an aniline oxygenase to 4-chlorocatechol, which in turn was degraded via a modified ortho-cleavage pathway. Synthesis of the aniline oxygenase was inducible by various anilines. This enzyme exhibited a broad substrate specificity. Its specific activity towards substituted anilines seemed to be correlated more with the size than with the electron-withdrawing effect of the substituent and was very low towards anilines having substituents larger than iodine or a methyl group. The initial enzyme of the modified ortho-cleavage pathway, catechol 1,2-dioxygenase, had similar characteristics to those of corresponding enzymes of pathways for the degradation of chlorobenzoic acid and chlorophenol, that is, a broad substrate specificity and high activity towards chlorinated and methylated catechols.

  6. Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer.

    LENUS (Irish Health Repository)

    Chan, Jeffrey C Y

    2008-02-01

    A method to functionalize cholecyst-derived extracellular matrix (CEM) with free amine groups was established in an attempt to improve its potential for tethering of bioactive molecules. CEM was incorporated with Generation-1 polyamidoamine (G1 PAMAM) dendrimer by using N-(3-dimethylaminopropyl)-N\\'-ethylcarbodiimide and N-hydroxysuccinimide cross-linking system. The nature of incorporation of PAMAM dendrimer was evaluated using shrink temperature measurements, Fourier transform infrared (FTIR) assessment, ninhydrin assay, and swellability. The effects of PAMAM incorporation on mechanical and degradation properties of CEM were evaluated using a uniaxial mechanical test and collagenase degradation assay, respectively. Ninhydrin assay and FTIR assessment confirmed the presence of increasing free amine groups with increasing quantity of PAMAM in dendrimer-incorporated CEM (DENCEM) scaffolds. The amount of dendrimer used was found to be critical in controlling scaffold degradation, shrink temperature, and free amine content. Cell culture studies showed that fibroblasts seeded on DENCEM maintained their metabolic activity and ability to proliferate in vitro. In addition, fluorescence cell staining and scanning electron microscopy analysis of cell-seeded DENCEM showed preservation of normal fibroblast morphology and phenotype.

  7. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    Science.gov (United States)

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click

  8. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis

    Science.gov (United States)

    2016-01-01

    . These processes have been explored in depth in the photochemical literature and have resulted in a firm mechanistic grasp of the behavior of amine radical cations in fundamental systems. Harnessing the synthetic potential of these transient species represents an ongoing challenge for the controlled functionalization of amine substrates, because these mechanistic possibilities may result in undesired byproduct formation or substrate decomposition. The presence of tertiary amines in numerous alkaloids, pharmaceuticals, and agrochemicals lends credence to the potential utility of this chemistry in natural product synthesis, and herein we will discuss how these transformations might be controlled for synthetic purposes. PMID:25951291

  9. Effect of gamma irradiation on nano polymer poly aniline

    International Nuclear Information System (INIS)

    Chan Yan Yhee

    2012-01-01

    Poly aniline (PANI) is a conductor polymer that investigated by a lot of researchers which display unique electric characteristic and widely applications. The objective in this research is to see the effect of gamma irradiation on PANI by using microemulsion method. Cation surfactant, cetyltrimethylammonium bromide, (CTAB) use in microemulsion method for dissolve aniline with distilled water. Mixture of aniline, ammonium persulfate (APS) as oxidizing agent and hydrochloric acid (HCL) into aqueous CTAB and magnetic bar stirrer applied at temperature of 3 degree Celsius for 3 hours to form PANI. The washing is done by using distilled water and ethanol to purify PANI. After washing the PANI are categories in two group, PANI aqueous solution and PANI powder. PANI aqueous solution irradiated with gamma irradiation from 0 kGy to 100 kGy doses in 10 kGy intervals while PANI powder are dried in oven before irradiated with gamma irradiation with same doses as PANI aqueous solution. These aqueous solution products are characterized by ultraviolet absorption spectroscopy (UV-Vis) which shows the electron transition π - π * and Microscope Electron Transmission (TEM) for morforlogy of PANI nanoparticles while PANI powder are characterized using Spectroscopy Fourier Transformation Intra-Red (FTIR) for the functional group, X-Ray Diffraction (XRD) to determine the crystalline peak and Field Emission Scanning Electron Microscope (FESEM) for morphology PANI nanoparticles. The effect of gamma irradiation nanoparticles are PANI aqueous solution produce aggregation and changing of PANI nanoparticles sizes while PANI powder produce fractures and distortion on PANI nanoparticles. (author)

  10. p-Nitrophenol, phenol and aniline sorption by organo-clays

    International Nuclear Information System (INIS)

    Ko, C.H.; Fan Chihhao; Chiang, P.N.; Wang, M.K.; Lin, K.C.

    2007-01-01

    The aims of this study were to make use of organo-clays (i.e., Cloisite-10A, Cloisite-15A, Cloisite-30B and Cloisite-93A), to remove p-nitrophenol, phenol and aniline of organic pollutants. The organo-clays were characterized by X-ray diffraction (XRD). Sorption isotherm, kinetic and pH effect of p-nitrophenol, phenol and aniline sorbed by four organo-clays were evaluated. The d-spacings (0 0 1) of the XRD peak of Cloisite-10A, Cloisite-15A, Cloisite-30B and Cloisite-93A are 1.98, 2.76, 1.93 and 2.64 nm, respectively. The d(0 0 1)-spacings of XRD indicated that these p-nitropheno, phenol and aniline could penetrate into the interlayer of clays and expand the d(0 0 1)-spacings. The linear sorption isotherm of constant partition was employed to describe the sorption isotherms of phenols sorbed by organo-clays through hydrophobic-hydrophobic chemical reactions. The parabolic diffusion and power-function of kinetic models were employed to describe properly the kinetic experiments. The rate limiting step of the p-nitrophenol sorption reactions on organo-clays were diffusion-controlled processes (i.e., 15A, 30B, 93A) and chemical-controlled process for 10A organo-clays. The pre-exponential factor of the p-nitrophenol sorbed by four organo-clays showed the trend as follows: 10A > 30B > 93A > 15A. The efficiency of these organo-clays in removing phenol compounds in water treatments merit further study

  11. Radioisotope tracer study in an aniline production reactor

    International Nuclear Information System (INIS)

    Pant, H.J.; Yelgoankar, V.N.; Mendhekar, G.N.

    1995-01-01

    A radioisotope tracer study was carried out in an aniline production reactor to investigate the cause of poor heat transfer from tube side to shell side in an aniline production (ANPO) reactor. The results of the study indicated that more than 50% of the shell volume was reduced due to deposition of the process material (i.e. fouling) on the shell walls and may be the cause of poor heat transfer in the reactor. (author). 2 refs., 2 figs

  12. Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.

    Science.gov (United States)

    Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M

    2008-07-15

    The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.

  13. A Bioinspired Catalytic Aerobic Oxidative C–H Functionalization of Primary Aliphatic Amines: Synthesis of 1,2-Disubstituted Benzimidazoles

    Science.gov (United States)

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-01-01

    Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475

  14. Synthesis of 2-[4-(10H-Substituted Phenothiazine-3-yl-6-Pyrimidin-2-Phenylthiol/ol/amine/thiol] Pyrroles

    Directory of Open Access Journals (Sweden)

    Meghasham Narule

    2007-01-01

    Full Text Available 2-[4-Hydroxy benz-1(propene-1-one]Pyrrole II on treatment with phenyl thiourea, guanidine carbonate, urea and thiourea in alcoholic KOH yielded compounds III, IV, V, VI which on treatment with different aryl anilines gave compounds VII, VIII, IX, X which under goes cyclisation with sulphur and iodine to give 2-[4-(10H-substituted phenothiazine-3-yl-6-pyrimidin-2-phenylthiol/-ol/-amine/-thiol] pyrrole XI(a-j, XII(a-j, XIII(a-j and XIV(a-j respectively. The structural products were characterized by elemental analysis and spectral data.

  15. Gas-liquid chromatographic determination of aniline metabolites of substituted urea and carbamate herbicides in aqueous solution.

    Science.gov (United States)

    Hargesheimer, E E; Coutts, R T; Pasutto, F M

    1981-07-01

    A simple gas-liquid chromatographic (GLC) method has been developed which provides sensitivity and specificity for the analysis of complex mixtures of the commonly occurring herbicide metabolites aniline, 3-chloroaniline, 4-chloroaniline, 4-bromoaniline, and 3-chloro-4-methylaniline. All of these anilines react with acetic anhydride directly in basified aqueous solution. Further reaction of the acetylated anilines with trifluoroacetic anhydride gave diacyl derivatives which were readily resolved by gas chromatography. The structures of the N-acetylated and N-trifluoroacetylated derivatives of benzylamine (internal standard) and the anilines were confirmed by GLC-mass spectrometry. In distilled water the minimum detectable concentrations of aniline and the substituted anilines, using electron capture GLC, are 0.1 nmole/100 mL and 0.05 nmole/100 mL, respectively. The detection limit for the anilines is 1 nmole/100 mL distilled water, using GLC with flame ionization detection. The technique was applied to the determination of anilines added to urine samples obtained from the general population.

  16. Structural characterization of Poly aniline blended with polyacrylamide

    International Nuclear Information System (INIS)

    Fayek, S.A.; El-Sayed, S.M.; Sayed, W.M.

    2007-01-01

    Poly aniline / polyacrylamide blends in presence of different catalysts were prepared. X-ray diffraction studies reveal that the samples produced are crystalline. Optical gap of the blend in the presence of NaCIO 4 used as a catalyst is greater than that in the presence of (NH 4 ) 2 S 2 O 8 as a catalyst. The structure of polyacrylamide (PAM) blended with poly aniline (PANI) were investigated by infrared spectroscopy, Grain size was identified using scanning electron microscopy [SEM

  17. Synthesis of new radiotracers based on aniline

    International Nuclear Information System (INIS)

    Ayari, Issra

    2008-01-01

    There are several possible applications of radioactivity, we cite: the study of the functional and neurochirnical aspects related to the brain. This study requires the synthesis of specific radiotracers able to cross their target tissue. The synthesis methods need to be constantly updated to respond to the big demand of this domain. The development of the chemistry of metal complexes helped us to find a stable radiotracer based on aniline and marked with technetium. This stability aI 10wed us to realize a possible biodistribution and to envisage to count the radioactivity and to valid the radiopharmaceutical. (Author)

  18. Aryl-derivatized, water-soluble functionalized carbon nanotubes for biomedical applications

    International Nuclear Information System (INIS)

    Karousis, N.; Ali-Boucetta, H.; Kostarelos, K.; Tagmatarchis, N.

    2008-01-01

    The functionalization of very-thin multi-walled carbon nanotubes (VT-MWNTs) with an aniline derivative, via the protocol of in situ generated aryl diazonium salts results, upon acidic deprotection of the terminal BOC group, on the formation of the water-soluble positively charged ammonium functionalized VT-MWNTs-NH 3 + material. The new materials have been structurally and morphologically characterized by infra-red (ATR-IR) spectroscopy and transmission electron microscopy (TEM). The quantitative calculation of the grafted aryl units onto the skeleton of VT-MWNTs has been estimated by thermogravimetric analysis (TGA), while the quantitative Kaiser test showed the amine group loaded onto VT-MWNTs-NH 3 + material. The aqueous solubility of this material has allowed the performance of some initial toxicological in vitro investigations

  19. Thermodynamic functions of hydrogen bonding of amines in methanol derived from solution calorimetry data and headspace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Ksenia V., E-mail: zaitseva.ksenia@gmail.com [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Varfolomeev, Mikhail A., E-mail: vma.ksu@gmail.com [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Solomonov, Boris N., E-mail: boris.solomonov@ksu.ru [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation)

    2012-05-10

    Highlights: Black-Right-Pointing-Pointer Solution enthalpies and activity coefficients of amines in methanol were measured. Black-Right-Pointing-Pointer Thermodynamic functions of H-bonding of amines with methanol were determined. Black-Right-Pointing-Pointer Specific interaction entropy of amines in methanol can be about zero or positive. Black-Right-Pointing-Pointer Cooperativity of H-bonds in methanol media is smaller than in water solutions. Black-Right-Pointing-Pointer A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes 'methanol-amine' determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent-solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.

  20. Scientific criteria document for the development of an interim provincial water quality objective for aniline

    Energy Technology Data Exchange (ETDEWEB)

    Angelow, R.V.; Bazinet, N.

    1996-11-01

    The purpose of this document is to develop an interim provincial water quality objective for aniline for the protection of aquatic life in Ontario. It reviews the sources of aniline in the environment, its environmental fate and properties, acute and chronic toxicity as determined from results reported in the literature on toxicity tests using vertebrates and invertebrates, the bioaccumulation of aniline in the environment, mutagenic effects, and threshold aniline concentrations affecting fish odour and taste. The document then explains the derivation of the interim water quality objective. Water quality criteria for aniline developed in other jurisdictions are noted.

  1. Thermodynamic functions of hydrogen bonding of amines in methanol derived from solution calorimetry data and headspace analysis

    International Nuclear Information System (INIS)

    Zaitseva, Ksenia V.; Varfolomeev, Mikhail A.; Solomonov, Boris N.

    2012-01-01

    Highlights: ► Solution enthalpies and activity coefficients of amines in methanol were measured. ► Thermodynamic functions of H-bonding of amines with methanol were determined. ► Specific interaction entropy of amines in methanol can be about zero or positive. ► Cooperativity of H-bonds in methanol media is smaller than in water solutions. ► A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes “methanol–amine” determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent–solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.

  2. Synthesis and Characterizations of Colloidal Nanostructured Copolymers of Aniline and Aniline Derivatives

    OpenAIRE

    GUAN, XIN NING

    2012-01-01

    Nanostructured conducting polymers such as polyaniline are promising candidates for next-generation electronics because of their low cost, mechanical flexibility, good solution processability, along with the low-dimensionality that is characteristic of nanoscale materials. Here, we further expand the attractive properties of polyaniline by copolymerizing it with a variety of substituted aniline monomers, with electron donating groups, electron withdrawing groups, or substituents that can enha...

  3. A functional carbohydrate chip platform for analysis of carbohydrate-protein interaction

    International Nuclear Information System (INIS)

    Seo, Jeong Hyun; Kim, Chang Sup; Hwang, Byeong Hee; Cha, Hyung Joon

    2010-01-01

    A carbohydrate chip based on glass or other transparent surfaces has been suggested as a potential tool for high-throughput analysis of carbohydrate-protein interactions. Here we proposed a facile, efficient, and cost-effective method whereby diverse carbohydrate types are modified in a single step and directly immobilized onto a glass surface, with retention of functional orientation. We modified various types of carbohydrates by reductive amination, in which reducing sugar groups were coupled with 4-(2-aminoethyl)aniline, which has di-amine groups at both ends. The modified carbohydrates were covalently attached to an amino-reactive NHS-activated glass surface by formation of stable amide bonds. This proposed method was applied for efficient construction of a carbohydrate microarray to analyze carbohydrate-protein interactions. The carbohydrate chip prepared using our method can be successfully used in diverse biomimetic studies of carbohydrates, including carbohydrate-biomolecule interactions, and carbohydrate sensor chip or microarray development for diagnosis and screening.

  4. [Removal Kinetics and Mechanism of Aniline by Manganese-oxide-modified Diatomite].

    Science.gov (United States)

    Xiao, Shao-dan; Liu, Lu; Jiang, Li-ying; Chen, Jian-meng

    2015-06-01

    A novel rapid green one-step method was developed for the preparation of manganese modified diatomite (Mn-D) by treating roasted diatomite with an acidic permanganate solution. The effects of calcination temperature and mass ratio of KMnO4 and diatomite (p) on aniline removal efficiency of Mn-D were investigated. The removal kinetics and mechanism of aniline by Mn-D were also discussed. The results showed that when the optimal calcination temperature was 450 degrees C, p was 1.6, and the loading amounts of δ-MnO2 was 0.82 g x g(-1), Mn-D had a great performance for aniline removal, and more than 80% of aniline was adsorbed within 10 minutes, accompanied with the release of Mn2+. In acidic conditions, the adsorption process on Mn-D followed pseudo-second-order and was mainly controlled by intra-particle diffusion. The best fitting of the experimental adsorption data was given by the Freundlich equation. Gas chromatograph-mass spectrometer was applied to identify the reaction intermediates at different times, and azobenzene was found to be the main reaction intermediate in the degradation system. Based on the above observations, the possible degradation pathway of aniline by Mn-D was proposed.

  5. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system.

    Science.gov (United States)

    Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-08-01

    Aniline-containing wastewater can cause significant environmental problems and threaten the humans's life. However, rapid degradation of aniline with cost-efficient methods remains a challenge. In this work, a novel microbial electrolysis cell with bipolar membrane was integrated with Fenton reaction (MEC-Fenton) for efficient treatment of real wastewater containing a high concentration (4460 ± 52 mg L -1 ) of aniline. In this system, H 2 O 2 was in situ electro-synthesized from O 2 reduction on the graphite cathode and was simultaneously used as source of OH for the oxidation of aniline wastewater under an acidic condition maintained by the bipolar membrane. The aniline was effectively degraded following first-order kinetics at a rate constant of 0.0166 h -1 under an applied voltage of 0.5 V. Meanwhile, a total organic carbon (TOC) removal efficiency of 93.1 ± 1.2% was obtained, revealing efficient mineralization of aniline. The applicability of bipolar membrane MEC-Fenton system was successfully demonstrated with actual aniline wastewater. Moreover, energy balance showed that the system could be a promising technology for removal of biorefractory organic pollutants from wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Aniline is an inducer, and not a precursor, for indole derivatives in Rubrivivax benzoatilyticus JA2.

    Directory of Open Access Journals (Sweden)

    Mohammed Mujahid

    Full Text Available Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA and indole 3-aldehyde (IAld, the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.

  7. Magnetism of aniline modified graphene-based materials

    Science.gov (United States)

    Komlev, A. A.; Makarova, T. L.; Lahderanta, E.; Semenikhin, P. V.; Veinger, A. I.; Tisnek, T. V.; Magnani, G.; Bertoni, G.; Pontiroli, D.; Ricco, M.

    2016-10-01

    The possibility of producing magnetic graphene nanostructures by functionalization with aromatic radicals has been investigated. Functionalization of graphene basal plane was performed with three types of anilines: 4-bromoaniline, 4-nitroaniline and 4-chloroaniline. The samples were examined by composition analysis with energy-dispersive X-ray spectroscopy and magnetic measurements by SQUID magnetometry and electron paramagnetic resonance. Initial graphene was produced by thermal exfoliation. Both pristine and functionalized samples demonstrate strong paramagnetic contribution at low temperatures, which originates from intrinsic defects. Attachment of an organic molecule with the formation of a covalent bond with carbon atom on the basal plane generates a delocalized spin in the graphene π - electron system. Nitroaniline proved to be the most suitable and sufficiently reactive to attach to the basal plane carbon atoms in large amounts. Functionalization of graphene with nitroaniline resulted in appearance both ferromagnetic and antiferromagnetic features with a clear antiferromagnetic transition near 120 K.

  8. Alkylselenite-catalyzed Oxidative Carbonylation of Amines: Density Functional Theory Study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sun; Kim, Hoon Sik; Cheong, Minserk [Kyung Hee Univ., Seoul (Korea, Republic of)

    2012-11-15

    Ureas and carbamates have been conventionally produced by the reaction of amines with phosgene. However, phosgenation processes raise severe environmental concerns, which are attributed to the toxicity of phosgene and the formation of corrosive hydrogen chloride as a co-product. The considerable industrial interest in replacing current phosgene-based processes prompted several methods using non-phosgene routes including carbonylation of amines or nitro compounds and carbomethoxylation of amines with dialkylcarbonates. Among these, catalytic oxidative carbonylation of an amine in the presence of alcohol has been studied most extensively. Catalytic systems based on precious metals such as Rh and Pd are commonly used for this purpose, but most of these catalytic systems suffer from either low reactivity or severe reaction conditions such as high temperature and pressures. In conclusion, the facile change of selenium oxidation state by CO and O{sub 2} might be the main reason for the activity of the selenium catalyst for this reaction.

  9. Alkylselenite-catalyzed Oxidative Carbonylation of Amines: Density Functional Theory Study

    International Nuclear Information System (INIS)

    Hwang, Sun; Kim, Hoon Sik; Cheong, Minserk

    2012-01-01

    Ureas and carbamates have been conventionally produced by the reaction of amines with phosgene. However, phosgenation processes raise severe environmental concerns, which are attributed to the toxicity of phosgene and the formation of corrosive hydrogen chloride as a co-product. The considerable industrial interest in replacing current phosgene-based processes prompted several methods using non-phosgene routes including carbonylation of amines or nitro compounds and carbomethoxylation of amines with dialkylcarbonates. Among these, catalytic oxidative carbonylation of an amine in the presence of alcohol has been studied most extensively. Catalytic systems based on precious metals such as Rh and Pd are commonly used for this purpose, but most of these catalytic systems suffer from either low reactivity or severe reaction conditions such as high temperature and pressures. In conclusion, the facile change of selenium oxidation state by CO and O 2 might be the main reason for the activity of the selenium catalyst for this reaction

  10. Synthesis of Various Polyaniline / Clay Nanocomposites Derived from Aniline and Substituted Aniline Derivatives by Mechanochemical Intercalation Method

    Directory of Open Access Journals (Sweden)

    N. Kalaivasan

    2010-01-01

    Full Text Available Polyaniline clay nanocomposite can be prepared by mechano-chemical method in which intercalation of anilinium ion into the clay lattices accomplished by mechanical grinding of sodium montmorillonite (Na+MMT in presence of anilinium hydrochloride at room temperature using mortar & pestle for about 30 min and subsequent grinding with oxidizing agent, ammonium peroxysulfate. The appearance of green colour indicates the formation of polyaniline/clay nanocomposite (PANI/Clay. Similarly aniline derivatives like o-toludine and o-anisidine in the form of HCl salt can form intercalation into the clay lattices. The intercalated aniline derivatives were ground mechanically in presence of oxidizing agent ammonium peroxysulfate lead to formation of substituted polyaniline/ clay nanocomposites. The characteristics of various polyaniline-clay nanocomposites were investigated using UV-Visible, FT-IR, cyclic voltammetry studies.

  11. Photochemical removal of aniline in aqueous solutions: switching from photocatalytic degradation to photo-enhanced polymerization recovery.

    Science.gov (United States)

    Tang, Heqing; Li, Jing; Bie, Yeqiang; Zhu, Lihua; Zou, Jing

    2010-03-15

    Organic pollutants may be treated by either a degradation process or a recovery process in the view point of sustainable chemistry. Photocatalytic removal of aniline was investigated in aqueous solutions. It was found that the photocatalytic oxidation of aniline resulted in its degradation or polymerization, depending on its concentration. Hence a new treatment strategy was proposed in combination of photocatalytic degradation and polymerization, where the polymerization was in fact a recovery process. When aniline concentration was as low as 0.1 mmol L(-1), it was possible to photocatalytically degrade aniline, which could be further enhanced by increasing solution pH, modifying TiO(2) surface with the addition of anions, or coupling with the photoreduction of added oxidants. When aniline concentration was increased to about 1 mmol L(-1), the photocatalytic oxidation was observed to yield the polymerization of aniline, leading to nanocomposites of polyaniline (PAN) and TiO(2). Alternatively, the photo-enhanced chemical polymerization of aniline at higher concentrations (>or=50 mmol L(-1)) in the presence of chemical oxidants produced PAN nanostructures. The conversion of pollutant aniline to valuable PAN nanostructures or nano-PAN/TiO(2) composites is suggestive for possible applications in the treatment of aniline wastewaters as a sustainable environmental protection measure. (c) 2009 Elsevier B.V. All rights reserved.

  12. On the electrodeposition of /sup 80m/Br, /sup 80/Br and /sup 82/Br species from (eta, gamma) activated dibromoethane - N,N-dimethyl aniline mixture

    International Nuclear Information System (INIS)

    Zaman, M.R.

    1997-01-01

    Thermal neutron activation have been carried out in dibromomethane (DBM)-n,n-dimethyl aniline (N,N-DMA) system and the /sup 80m/Br, /sup 82/Br species have been electrodeposited on Ag/AgBr electrodes under a constant electric field of 175 volts cm/sup -1/. With the addition of N,N-DMA, anodic deposition has been severely decreased for all the radiobromines and cathode plate shows zero activities. Results are critically discussed by explaining the chemical reactivity of the amine. Electrode deposition pattern and the chemical stabilization mode of the nucleogenic bromine species in this system are deduced to some extents. (author)

  13. Molecular Structure And Vibrational Frequencies of 2,3,4 Nitro anilines By Hartree-Fock And Density Functional Theory Calculations

    International Nuclear Information System (INIS)

    Sert, Y.

    2008-01-01

    The optimised molecular structure, vibrational frequencies and corresponding vibrational assignments of 2-, 3- and 4- nitro anilines have been calculated using the Hartree-Fock (HF) and density functional methods (B3LYP) with 6-311++G (d, p) basis set. The calculations were adapted to the C S symmetries of all the molecules. The calculated vibrational frequencies and geometric parameters (bond lengths and bond angles) were seen to be in good agreement with the experimental data. The comparison of the experimental and theoretical results showed that the HF method is superior to the B3LYP method for both the vibrational frequencies and geometric parameters

  14. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis.

    Science.gov (United States)

    Ang, Ee L; Obbard, Jeffrey P; Zhao, Huimin

    2007-02-01

    Aniline dioxygenase is a multicomponent Rieske nonheme-iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA. Saturation mutagenesis of the substrate-binding pocket residues, which were identified using a homology model of the alpha subunit of the terminal dioxygenase (AtdA3), was used to probe the molecular determinants of AtdA substrate specificity. The V205A mutation widened the substrate specificity of aniline dioxygenase to include 2-isopropylaniline, for which the wild-type enzyme has no activity. The V205A mutation also made 2-isopropylaniline a better substrate for the enzyme than 2,4-dimethylaniline, a native substrate of the wild-type enzyme. The I248L mutation improved the activity of aniline dioxygenase against aniline and 2,4-dimethylaniline approximately 1.7-fold and 2.1-fold, respectively. Thus, it is shown that the alpha subunit of the terminal dioxygenase indeed plays a part in the substrate specificity as well as the activity of aniline dioxygenase. Interestingly, the equivalent residues of V205 and I248 have not been previously reported to influence the substrate specificity of other Rieske dioxygenases. These results should facilitate future engineering of the enzyme for bioremediation and industrial applications.

  15. Metal and base free synthesis of primary amines via ipso amination of organoboronic acids mediated by [bis(trifluoroacetoxy)iodo]benzene (PIFA).

    Science.gov (United States)

    Chatterjee, Nachiketa; Goswami, Avijit

    2015-08-07

    A metal and base free synthesis of primary amines has been developed at ambient temperature through ipso amination of diversely functionalized organoboronic acids, employing a combination of [bis(trifluoroacetoxy)iodo]benzene (PIFA)-N-bromosuccinimide (NBS) and methoxyamine hydrochloride as the aminating reagent. The amines were primarily obtained as their trifluoroacetate salts which on subsequent aqueous alkaline work up provided the corresponding free amines. The combination of PIFA-NBS is found to be the mildest choice compared to the commonly used strong bases (e.g. n-BuLi, Cs2CO3) for activating the aminating agent. The reaction is expected to proceed via activation of the aminating reagent followed by B-N 1,2-aryl migration.

  16. Tuning the acid/base properties of nanocarbons by functionalization via amination.

    Science.gov (United States)

    Arrigo, Rosa; Hävecker, Michael; Wrabetz, Sabine; Blume, Raoul; Lerch, Martin; McGregor, James; Parrott, Edward P J; Zeitler, J Axel; Gladden, Lynn F; Knop-Gericke, Axel; Schlögl, Robert; Su, Dang Sheng

    2010-07-21

    The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the preparation methods on the surface acid-base properties was investigated by potentiometric titration, microcalorimetry, and zeta potential measurements. The impact of the N-functionalization on the electronic properties was measured by THz-Time Domain spectroscopy. The samples functionalized via amination are characterized by the coexistence of acidic and basic O and N sites. The population of O and N species is temperature dependent. In particular, at 873 K nitrogen is stabilized in substitutional positions within the graphitic structure, as heterocyclic-like moieties. The surface presents heterogeneously distributed and energetically different basic sites. A small amount of strong basic sites gives rise to a differential heat of CO(2) adsorption of 150 kJ mol(-1). However, when functionalization is carried out at 473 K, nitrogen moieties with basic character are introduced and the maximum heat of adsorption is significantly lower, at approximately 90 kJ mol(-1). In the latter sample, energetically different basic sites coexist with acidic oxygen groups introduced during the oxidative step. Under these conditions, a bifunctional acidic and basic surface is obtained with high hydrophilic character. N-functionalization carried out at higher temperature changes the electronic properties of the CNFs as evaluated by THz-TDS. The functionalization procedure presented in this work allows high versatility and flexibility in tailoring the surface chemistry of nanocarbon material to specific needs. This work shows the potential of the N-containing nanocarbon materials obtained via amination in catalysis as well as electronic

  17. Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups

    International Nuclear Information System (INIS)

    Yang, Guo; Chen, Honglin; Qin, Hangdao; Feng, Yujun

    2014-01-01

    To study the contribution of different nitrogen-containing functional groups to enhancement of phenol adsorption, the aminated activated carbons (AC) were characterized by N2 adsorption/desorption, XPS, Boehm titration, and pH drift method and tested for adsorption behaviors of phenol. Adsorption isotherm fitting revealed that the Langmuir model was preferred for the aminated ACs. The adsorption capacity per unit surface area (q m /SSA BET ) was linearly correlated with the amount of pyridinic and pyrrolic N, which suggested that these two functional groups played a critical role in phenol adsorption. The enhancement of adsorption capacity was attributed to the strengthened π–π dispersion between phenol and basal plane of AC by pyridinic, pyrrolic N. The adsorption kinetics was found to follow the pseudo-second-order kinetic model, and intraparticle diffusion was one of the rate-controlling steps in the adsorption process.

  18. Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Le [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Zeng, Zhong [Safety Environment Quality Surveillance and Inspection Research Institute of CNPC Chuanqing Drilling & Exploration Corporation, Chengdu 618300 (China); Zou, Huawei, E-mail: hwzou@163.com [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Liang, Mei, E-mail: liangmeiww@163.com [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China)

    2015-08-20

    Highlights: • Functional graphite oxide with amine-rich surface was prepared and characterized. • Kinetic parameters were calculated by Kissinger method and autocatalytic model. • The incorporation of GO and DGO brings in an effect of inhibition on curing. • The inhibition effect weakens for its good compatibility and catalytic effect of DGO. - Abstract: Functional graphite oxide (DGO) with amine-rich surface was successfully prepared through the amidation reaction and characterized by X-ray diffraction analyses (XRD), Fourier transform infrared spectra (FTIR) and Raman spectra. The effects of functional graphite oxide on the curing kinetics of epoxy (EP) were investigated by means of differential scanning calorimetry (DSC). The curing kinetic parameters of EP, EP/graphite oxide (GO) and EP/functional graphite oxide were obtained. There was not much difference in total heat of reaction ΔH and peak temperature T{sub p} with the incorporation of GO or DGO. However, the activation energy, E{sub a}, and the overall order of reaction m + n were enhanced. Comprehensive kinetic analyses indicated that the incorporation of GO sheets brought in an effect of inhibition on curing process. While the inhibition effect weaken when the GO is modified with amine-rich surface. The possible curing mechanism and reaction pathways were proposed to provide a reasonable explanation.

  19. Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface

    International Nuclear Information System (INIS)

    Li, Le; Zeng, Zhong; Zou, Huawei; Liang, Mei

    2015-01-01

    Highlights: • Functional graphite oxide with amine-rich surface was prepared and characterized. • Kinetic parameters were calculated by Kissinger method and autocatalytic model. • The incorporation of GO and DGO brings in an effect of inhibition on curing. • The inhibition effect weakens for its good compatibility and catalytic effect of DGO. - Abstract: Functional graphite oxide (DGO) with amine-rich surface was successfully prepared through the amidation reaction and characterized by X-ray diffraction analyses (XRD), Fourier transform infrared spectra (FTIR) and Raman spectra. The effects of functional graphite oxide on the curing kinetics of epoxy (EP) were investigated by means of differential scanning calorimetry (DSC). The curing kinetic parameters of EP, EP/graphite oxide (GO) and EP/functional graphite oxide were obtained. There was not much difference in total heat of reaction ΔH and peak temperature T p with the incorporation of GO or DGO. However, the activation energy, E a , and the overall order of reaction m + n were enhanced. Comprehensive kinetic analyses indicated that the incorporation of GO sheets brought in an effect of inhibition on curing process. While the inhibition effect weaken when the GO is modified with amine-rich surface. The possible curing mechanism and reaction pathways were proposed to provide a reasonable explanation

  20. Conductive nano composites based on cellulose nano fiber coated poly aniline via in situ polymerization

    International Nuclear Information System (INIS)

    Silva, Michael J. da; Sanches, Alex O.; Malmonge, Luiz F.; Malmonge, Jose A.; Medeiros, Eliton S. de; Rosa, Morsyleide F.

    2011-01-01

    Cellulose nano fiber (CNF) was extracted by acid hydrolysis from cotton microfibril and nano composites of CNF/PANI-DBSA were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA/aniline and aniline/oxidant were varied and the nano composites were characterized by four probes direct current (dc) electrical conductivity, ultraviolet-visible (UV-Vis-NIR) and FTIR spectroscopy and X-ray diffraction (XRD). Electrical conductive about ∼10 -1 S/cm was research and was independent of DBSA/aniline molar ratio between 2-4 and the aniline/oxidant molar ratio between 1-5. X-ray patterns of the samples show crystalline peaks characteristic of cellulose I. The FTIR spectra confirmed the presence of PANI and CNF in all samples. (author)

  1. Synthesis and characterization of poly iodine anilines by plasma; Sintesis y caracterizacion de poliyodoanilinas por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez P, M A

    2003-07-01

    The polymers and organic materials present a numberless quantity of applications. However, it has not been but until recent times that it has been found that some of these materials can possess semiconductor properties. This has generated a great interest for the investigation in the area of semiconductor polymers. The poly aniline (Pan) it is one of the main semiconductor polymers because their electric properties change depending on the doping and of the state of oxidation to the one the molecules are subjected. The synthesis of this material has been carried out by means of chemical oxidation or electrochemistry. In this work a study is presented on the formation of poly aniline polymers with halogens chemically united to the aniline ring, poly(m-iodine aniline) (m-PAnI) and poly(m-chloroaniline) (m-PAnCI) for plasma. The plasma is generated by means of discharges of splendor with an r f amplifier to 13.5 MHz to drops pressures (10{sup -2} mbar). The synthesized polymers were obtained in form of thin film in the walls of the reactor and in the substrate introduced in the one. The electric properties of the polymers were evaluated in function of the time of reaction. Also, the conductivity of the polymers was compared synthesized in this work with reported data of synthesized poly aniline and doped with iodine for plasma. The highest values in conductivity are obtained in the poly aniline where the halogens are chemically connected to the ring that if it is doped with iodine. The atomic proportion in the surface of the polymers was analyzed by dispersive energy spectroscopy with which is deduced that the halogens come off of the molecules of the monomers or of the polymer in formation and that the atoms of iodine get lost more easily than those of chlorine. Other techniques that were used to characterize to the poly aniline were scanning electron microscopy, infrared spectroscopy, thermal gravimetric analysis and X-ray diffraction. The results are presented in

  2. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    International Nuclear Information System (INIS)

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-01-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ∼ 1.3 fold in the nuclear protein extracts (NE) and ∼ 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ∼ 1.5 fold higher, whereas in the MEs it was ∼ 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative

  3. Synthesis and characterization of nanometal-ordered mesoporous carbon composites as heterogeneous catalysts for electrooxidation of aniline

    International Nuclear Information System (INIS)

    Duan, Xiaoyue; Chen, Yawen; Liu, Xinyue; Chang, Limin

    2017-01-01

    Highlights: •NM-OMC catalysts were prepared for electrochemical oxidation of aniline. •The oxidation of aniline was studied with NM-OMC catalysts suspended in solution. •The Cu-OMC exhibited the highest catalytic activity for aniline degradation. •The mineralization current efficiency was improved by 2 times with Cu-OMC catalyst. •An electrochemical mineralization pathway of aniline was proposed. -- Abstract: The Cu, Co and Ni nanometal embedded ordered mesoporous carbons (NM-OMCs) were fabricated by a soft-template method using phenol/formaldehyde as carbon source and triblock copolymer F127 as template agent. The morphology, structure, surface physicochemical properties and pore structure of the NM-OMCs were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption-desorption isotherms. Their potential application to the electrocatalytic degradation of aniline was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and ·OH radicals generation test. Furthermore, the electrochemical oxidation process of aniline was also investigated in the presence of the OMC-based catalyst particles suspended in a Na 2 SO 4 solution using a PbO 2 anode. Results revealed that the NM-OMCs inherited the ordered mesostructure of pristine OMC and the metal nanoparticles (Cu, Co or Ni) were embedded in the carbon framework. The Cu-OMC exhibited significantly higher catalytic activity than OMC and other NM-OMCs for the electrooxidation of aniline. In electrochemical oxidation process of aniline, nearly all of aniline could be degraded after 120 min of electrolysis with Cu-OMC particles as catalyst, while 89%, 92%, and 97% with OMC, Co-OMC and Ni-OMC catalysts, respectively, obviously higher than 76% of electrochemical oxidation without assistance of catalysts. After

  4. Removal of aniline and phenol from water using raw and aluminum hydroxide-modified diatomite.

    Science.gov (United States)

    Wu, C D; Zhang, J Y; Wang, L; He, M H

    2013-01-01

    The feasibility of using raw diatomite and aluminum hydroxide-modified diatomite (Al-diatomite) for removal of aniline and phenol from water was investigated. Their physicochemical characteristics such as pHsolution, point of zero charge (pHPZC), surface area, Fourier transform infrared (FT-IR) and scanning electron microscopy was determined. After the raw diatomite was modified, the surface area of Al-diatomite increases from 26.67 to 82.65 m(2) g(-1). The pHPZC and pHsolution (10%) occurred around pH 5.2 and pH 8.6, respectively. The removal rates of aniline and phenol on diatomite and Al-diatomite decreased with increasing solution pH, while surface charge density decreased. The adsorption of aniline and phenol on diatomite presented a good fit to the Langmuir and Freundlich models, but the models are not fit to forecast the adsorption of aniline and phenol on Al-diatomite. The study indicated that electrostatic interaction was a dominating mechanism of aniline and phenol sorption onto Al-diatomite.

  5. Simultaneous determination of various aromatic amines and metabolites of aromatic nitro compounds in urine for low level exposure using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Weiss, Tobias; Angerer, Jürgen

    2002-10-05

    A newly developed method permits the simultaneous quantitative determination of various aromatic amines (or metabolites of aromatic nitro compounds, respectively) in human urine in one analytical run. Applying this method it is possible to determine aniline, toluidines, 4-isopropylaniline, o-anisidine, 3- and 4-chloroaniline, 4-bromoaniline, aminonitrotoluenes, aminodinitrotoluenes, 3,5- and 3,4-dichloroaniline, alpha- and beta-naphtylamine and 4-aminodiphenyl. After separation from the urinary matrix by a simple liquid-liquid extraction at pH 6.2-6.4 the analytes are converted into their pentafluoropropionic acid amides. Separation and quantitative analysis is carried out by capillary gas chromatography and mass-selective detection in the single ion monitoring mode. The limits of detection were within the range from 0.05 microg/l (4-aminobiphenyl, o-anisidine, 3,5-dichloroaniline) to 2 microg/l urine (4-amino-2,6-dinitrotoluene). The relative standard deviation of the within-series imprecision (determined at spiked concentrations of 2.0 microg/l and 10 microg/l) was between 2.9 and 13.6% depending on analyte and concentration. The relative recovery rates were in the range of 70-121%. The analytes that do not contain a nitro function showed better performance regarding the analytical reliability criteria. In order to determine the suitability of this new method for biological monitoring we analysed 20 12-h urine samples of persons without known exposure to aromatic amines, nitroaromatics or precursors in a pilot study. In these samples various aromatic amines could be clearly identified. The general population renally excretes aniline (median: 3.5 microg/l; 95th percentile: 7.9 microg/l), o- (0.12 microg/l; 2.7 microg/l), m- (0.17 microg/l; 2.2 microg/l) and p-toluidine (0.11 microg/l; 0.43 microg/l), and o-anisidine (0.22 microg/l; 0.68 microg/l). Additionally, we found that the persons investigated also excrete 3- (<0.05 microg/l; 0.55 microg/l) and 4

  6. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    Science.gov (United States)

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Delnavaz, M. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ayati, B., E-mail: ayati_bi@modares.ac.ir [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ganjidoust, H. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of)

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds.

  8. Analysis of primary aromatic amines using precolumn derivatization by HPLC fluorescence detection and online MS identification.

    Science.gov (United States)

    Zhao, Xianen; Suo, Yourui

    2008-03-01

    2-(2-phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA) and 2-(9-acridone)-acetic acid (AAA), two novel precolumn fluorescent derivatization reagents, have been developed and compared for analysis of primary aromatic amines by high performance liquid chromatographic fluorescence detection coupled with online mass spectrometric identification. PPIA and AAA react rapidly and smoothly with the aromatic amines on the basis of a condensation reaction using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) as dehydrating catalyst to form stable derivatives with emission wavelengths at 380 and 440 nm, respectively. Taking six primary aromatic amines (aniline, 2-methylaniline, 2-methoxyaniline, 4-methylaniline, 4-chloroaniline, and 4-bromoaniline) as testing compounds, derivatization conditions such as coupling reagent, basic catalyst, reaction temperature and time, reaction solvent, and fluorescent labeling reagent concentration have also been investigated. With the better PPIA method, chromatographic separation of derivatized aromatic amines exhibited a good baseline resolution on an RP column. At the same time, by online mass spectrometric identification with atmospheric pressure chemical ionization (APCI) source in positive ion mode, the PPIA-labeled derivatives were characterized by easy-to-interpret mass spectra due to the prominent protonated molecular ion m/z [M + H](+) and specific fragment ions (MS/MS) m/z 335 and 295. The linear range is 24.41 fmol-200.0 pmol with correlation coefficients in the range of 0.9996-0.9999, and detection limits of PPIA-labeled aromatic amines are 0.12-0.21 nmol/L (S/N = 3). Method repeatability, precision, and recovery were evaluated and the results were excellent for the efficient HPLC analysis. The most important argument, however, was the high sensitivity and ease-of-handling of the PPIA method. Preliminary experiments with wastewater samples collected from the waterspout of a paper mill and its nearby soil where

  9. Tandem catalytic allylic amination and [2,3]-Stevens rearrangement of tertiary amines.

    Science.gov (United States)

    Soheili, Arash; Tambar, Uttam K

    2011-08-24

    We have developed a catalytic allylic amination involving tertiary aminoesters and allylcarbonates, which is the first example of the use of tertiary amines as intermolecular nucleophiles in metal-catalyzed allylic substitution chemistry. This process is employed in a tandem ammonium ylide generation/[2,3]-rearrangement reaction, which formally represents a palladium-catalyzed Stevens rearrangement. Low catalyst loadings and mild reaction conditions are compatible with an unprecedented substrate scope for the ammonium ylide functionality, and products are generated in high yields and diastereoselectivities. Mechanistic studies suggested the reversible formation of an ammonium intermediate.

  10. Uptake and fate of phenol, aniline and quinoline in terrestrial plants

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Bean, R.M.; Fellows, R.J.

    1987-06-01

    The bioavailability and chemical fate of xenobiotics in terrestrial plants can influence the impact of fossil fuel development on the human food chain. To determine the relative behavior of organic residues representing a range of chemical classes, we compared the rates of root absorption, tissue distribution and chemical fate of phenol, aniline and quinoline in soybean plants. Root absorption rates for these compounds were 180, 13 and 30 μg/g (fresh weight) root/day, respectively. Following uptake, aniline was concentrated in the root, while phenol and quinoline were evenly distributed in roots and leaves. After accumulation, phenol was readily decomposed, and its carbon was respired. While aniline was susceptible to oxidative decomposition, it persisted in leaves and roots; 25% of the soluble activity represented aniline, and a significant fraction was bound or conjugated to cell constitutents. Quinoline persisted both in the parent form and as metabolic products. However, in leaves, additional compounds were found that were chemically similar to quinoline; these were not found in unexposed plants. A substantial fraction of the quinoline accumulated by leaves was emitted to the atmosphere by volatilization. 12 refs., 5 tabs., 2 figs

  11. Functional expression of amine oxidase from Aspergillus niger (AO-I) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kolaríková, Katerina; Galuszka, Petr; Sedlárová, Iva; Sebela, Marek; Frébort, Ivo

    2009-01-01

    The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.

  12. Effect of ortho-substituted aniline on the corrosion protection of aluminum in 2 mol/L H2SO4 solution

    KAUST Repository

    El-Deeb, Mohamed M.

    2017-02-13

    Corrosion protection of aluminum in 2 mol/L HSO solution is examined in the presence of ortho-substituted aniline derivatives using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Density function theory (DFT) calculations are performed to investigate the aluminum-electrolyte interface relationship in the absence and presence of both ortho-substituted aniline derivatives and sulphate anions, as well as their roles in the protection efficiency at the atomic level. Our results show that ortho-aniline derivatives are good inhibitors and that their efficiencies improved as the concentration increased. SEM-EDX analysis is used to confirm the adsorption thermodynamics of the studied compounds on the aluminum surface. The best inhibitory effect is exhibits in the presence of the methyl group in ortho-position followed by ortho-carboxilic compared to aniline. The adsorption of these compounds on the aluminum surface is well described by Langmuir adsorption isotherm as well as the experimental and the theoretical adosrption energies are in a good agreement. DFT calculations also show that the interaction between the inhibitors and the aluminum surface is mainly electrostatic and depends on the type of the ortho-substituted group in addition to the sulphate anions.

  13. Chemical and Molecular Descriptors for the Reactivity of Amines with CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Anita S.; Kitchin, John R.

    2012-10-24

    Amine-based solvents are likely to play an important role in CO{sub 2} capture applications in the future, and the identification of amines with superior performance will facilitate their use in CO{sub 2} capture. While some improvements in performance will be achieved through process modifications, modifying the CO{sub 2} capture performance of an amine also implies in part an ability to modify the reactions between the amine and CO{sub 2} through development of new functionalized amines. We present a computational study of trends in the reactions between CO{sub 2} and functionalized amines with a focus on identifying molecular descriptors that determine trends in reactivity. We examine the formation of bicarbonate and carbamate species on three classes of functionalized amines: alkylamines, alkanolamines, and fluorinated alkylamines including primary, secondary and tertiary amines in each class. These functional groups span electron-withdrawing to donating behavior, hydrogen-bonding, extent of functionalization, and proximity effects of the functional groups. Electron withdrawing groups tend to destabilize CO{sub 2} reaction products, whereas electron-donating groups tend to stabilize CO{sub 2} reaction products. Hydrogen bonding stabilizes CO{sub 2} reaction products. Electronic structure descriptors based on electronegativity were found to describe trends in the bicarbonate formation energy. A chemical correlation was observed between the carbamate formation energy and the carbamic acid formation energy. The local softness on the reacting N in the amine was found to partially explain trends carbamic acid formation energy.

  14. A Modular Flow Design for the meta‐Selective C−H Arylation of Anilines

    Science.gov (United States)

    Gemoets, Hannes P. L.; Laudadio, Gabriele; Verstraete, Kirsten; Hessel, Volker

    2017-01-01

    Abstract Described herein is an effective and practical modular flow design for the meta‐selective C−H arylation of anilines. The design consists of four continuous‐flow modules (i.e., diaryliodonium salt synthesis, meta‐selective C−H arylation, inline copper extraction, and aniline deprotection) which can be operated either individually or consecutively to provide direct access to meta‐arylated anilines. With a total residence time of 1 hour, the desired product could be obtained in high yield and excellent purity without the need for column chromatography, and the residual copper content meets the standards for parenterally administered pharmaceutical substances. PMID:28543979

  15. Rapid and clean amine functionalization of carbon nanotubes in a dielectric barrier discharge reactor for biosensor development

    International Nuclear Information System (INIS)

    Khodadadei, Fatemeh; Ghourchian, Hedayatollah; Soltanieh, Mansour; Hosseinalipour, Mohammad; Mortazavi, Yadollah

    2014-01-01

    Multiwalled carbon nanotubes (MWCNTs) were amine-functionalized using the process of dielectric barrier discharge (DBD) plasma treatment. The scanning electron microscope micrographs and Fourier transform infra-red spectroscopy clearly demonstrated that the carbon skeleton structure of the plasma-treated MWCNTs was preserved and amine groups were coupled to MWCNTs during this process. The amine-functionalized MWCNTs were then fixed on glassy carbon (GC) electrode and glucose oxidase (GO X ) as a model enzyme was immobilized on the modified GC electrode. Direct electron transfer between the redox active center of the immobilized GO X and the plasma-treated MWCNTs was investigated through cyclic voltammetry. The well-defined, quasi-reversible redox peaks of the immobilized GO X revealed that GO X retained its activity such that it could specifically catalyze the oxidation of glucose with great efficiency. The obtained enzyme electrode was used for glucose biosensing with the linear range from 17 to 646 μM and sensitivity of 12.3 μA/mM cm 2 . Based on the signal to noise ratio of 3, the detection limit was estimated to be 9 μM. The Michaelis–Menten constant for immobilized GO X was as low as 480 μM

  16. Effect of substitution on aniline in inducing growth of anionic micelles

    International Nuclear Information System (INIS)

    Garg, Gunjan; Kulshreshtha, S.K.; Hassan, P.A.; Aswal, V.K.

    2004-01-01

    Small-angle neutron scattering (SANS) measurements were carried out on sodium dodecyl sulfate (SDS) micelles in the presence of three different hydrophobic salts, i.e. aniline hydrochloride, o-toluidine hydrochloride and m-toluidine hydrochloride. All these salts induce a uniaxial growth of micelles to form prolate ellipsoidal structures. A progressive decrease in the surface charge of the micelles was observed with the addition of salts followed by a rapid growth of the micelles. The presence of a methyl substitution at the ortho position of aniline does not alter the growth behavior significantly. However, when the substitution is at meta position micellar growth is favored at lower salt concentration than that is observed for aniline. This can be explained in terms of the difference in the chemical environments of the substituents at the ortho and meta positions. (author)

  17. An Enzyme Switch Employing Direct Electrochemical Communication between Horseradish Peroxidase and a Poly(aniline) Film.

    Science.gov (United States)

    Bartlett, P N; Birkin, P R; Wang, J H; Palmisano, F; De Benedetto, G

    1998-09-01

    An enzyme switch, or microelectrochemical enzyme transistor, responsive to hydrogen peroxide was made by connecting two carbon band electrodes (∼10 μm wide, 4.5 mm long separated by a 20-μm gap) with an anodically grown film of poly(aniline). Horseradish peroxidase (EC 1.11.1.7) was either adsorbed onto the poly(aniline) film or immobilized in an insulating poly(1,2-diaminobenzene) polymer grown electrochemically on top of the poly(aniline) film to complete the device. In the completed device, the conductivity of the poly(aniline) film changes from conducting (between - 0.05 and + 0.3 V vs SCE at pH 5) to insulating (>+0.3 V vs SCE at pH 5) on addition of hydrogen peroxide. The change in conductivity is brought about by oxidation of the poly(aniline) film by direct electrochemical communication between the enzyme and the conducting polymer. This was confirmed by measuring the potential of the poly(aniline) film during switching of the conductivity in the presence of hydrogen peroxide. The devices can be reused by rereducing the poly(aniline) electrochemically to a potential below +0.3 V vs SCE. A blind test showed that the device can be used to determine unknown concentrations of H(2)O(2) in solution and that, when used with hydrogen peroxide concentrations below 0.5 mmol dm(-)(3), the same device maybe reused several times. The possible development of devices of this type for use in applications requiring the measurement of low levels of hydrogen peroxide or horseradish peroxidase is discussed.

  18. Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO₂ Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater.

    Science.gov (United States)

    Dai, Ning; Mitch, William A

    2015-07-21

    Formation of nitrosamines and nitramines from reactions between flue gas NOx and the amines used in CO2 capture units has arisen as a significant concern. Washwater scrubbers can capture nitrosamines and nitramines. They can also capture amines, preventing formation of nitrosamines and nitramines downwind by amine reactions with ambient NOx. The continuous application of UV alone, or a combination of UV and ozone to the return line of a washwater treatment unit was evaluated to control the accumulation of nitrosamines, nitramines and amines in a laboratory-scale washwater unit. With model secondary amine solvents ranging from nonvolatile diethanolamine to volatile morpholine, application of 272-537 mJ/cm(2) UV incident fluence alone reduced the accumulation of nitrosamines and nitramines by approximately an order of magnitude. Modeling indicated that the gains achieved by UV treatment should increase over time, because UV treatment converts the time dependence of nitrosamine accumulation from a quadratic to a linear function. Ozone (21 mg/L) maintained low steady-state concentrations of amines in the washwater. While modeling indicated that more than 80% of nitrosamine accumulation in the washwater was associated with reaction of washwater amines with residual NOx, a reduction in nitrosamine accumulation rates due to ozone oxidation of amines was not fully realized because the ozonation products of amines reduced nitrosamine photolysis rates by competing for photons.

  19. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  20. Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology

    Czech Academy of Sciences Publication Activity Database

    Plachý, T.; Sedlačík, M.; Pavlínek, V.; Trchová, Miroslava; Morávková, Zuzana; Stejskal, Jaroslav

    2014-01-01

    Roč. 256, 15 November (2014), s. 398-406 ISSN 1385-8947 R&D Projects: GA ČR GAP205/12/0911; GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : aniline * aniline oligomers * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.321, year: 2014

  1. Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH

    International Nuclear Information System (INIS)

    Maduraiveeran, Govindhan; Ramaraj, Ramasamy

    2011-01-01

    Silver nanoparticles embedded in amine-functionalized silicate sol–gel network were synthesized and used for sensing biomolecules such as cysteine, adenosine, and β-nicotinamide adenine dinucleotide (NADH). The sensing of these biomolecules by the assembly of silver nanoparticles was triggered by the optical response of the surface plasmon resonance (SPR) of the silver nanoparticles. The optical sensor exhibited the lowest detection limit (LOD) of 5, 20, and 5 μM for cysteine, adenosine, and NADH, respectively. The sensing of biomolecules in the micromolar range by using the amine-functionalized silicate sol–gel embedded silver nanoparticles was studied in the presence of interference molecules like uridine, glycine, guanine, and guanosine. Thus, the present approach might open up a new avenue for the development of silver nanoparticles-based optical sensor devices for biomolecules.

  2. Primary aromatic amines (PAAs) in black nylon and other food-contact materials, 2004-2009

    DEFF Research Database (Denmark)

    Trier, Xenia Thorsager; Okholm, B.; Foverskov, Annie

    2010-01-01

    Primary aromatic amines (PAAs) were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in migrates from 234 samples of food-contact materials, including black nylon (polyamide) kitchen utensils (n = 136), coloured plastics (28), and clear/printed multilayer film/laminates (41......), from retailers, importers, and food producers. A further 29 utensils in use were obtained from colleagues. Very high PAA migration was found from black nylon kitchen utensils to the food simulant 3% acetic acid: the 'non-detectable' limit (20 mu g aniline equivalents kg-1 food) was exceeded by up...... migration test conditions influenced the final test results. Long-term release of PAAs was fitted by diffusion modelling experiments and long-term release was also seen as expected from used utensils. Toxicologists consider these migration levels of the suspected carcinogenic PAAs as a problem of major...

  3. Magnetism of aniline modified graphene-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Komlev, A.A., E-mail: KomlevAnton@hotmail.com [St. Petersburg State Electrotechnical University, St. Petersburg, 197376 (Russian Federation); Lappeenranta University of Technology, 53851 Lappeenranta (Finland); Makarova, T.L. [St. Petersburg State Electrotechnical University, St. Petersburg, 197376 (Russian Federation); Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Lahderanta, E. [St. Petersburg State Electrotechnical University, St. Petersburg, 197376 (Russian Federation); Semenikhin, P.V.; Veinger, A.I.; Tisnek, T.V. [Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Magnani, G. [Università degli studi di Parma, Dipartimento di Fisica e Scienze della Terra, 43124 Parma (Italy); Bertoni, G. [Istituto dei Materiali per l’Elettronica e il Magnetismo(IMEM-CNR), 43124 Parma (Italy); Pontiroli, D.; Ricco, M. [Università degli studi di Parma, Dipartimento di Fisica e Scienze della Terra, 43124 Parma (Italy)

    2016-10-01

    The possibility of producing magnetic graphene nanostructures by functionalization with aromatic radicals has been investigated. Functionalization of graphene basal plane was performed with three types of anilines: 4-bromoaniline, 4-nitroaniline and 4-chloroaniline. The samples were examined by composition analysis with energy-dispersive X-ray spectroscopy and magnetic measurements by SQUID magnetometry and electron paramagnetic resonance. Initial graphene was produced by thermal exfoliation. Both pristine and functionalized samples demonstrate strong paramagnetic contribution at low temperatures, which originates from intrinsic defects. Attachment of an organic molecule with the formation of a covalent bond with carbon atom on the basal plane generates a delocalized spin in the graphene π – electron system. Nitroaniline proved to be the most suitable and sufficiently reactive to attach to the basal plane carbon atoms in large amounts. Functionalization of graphene with nitroaniline resulted in appearance both ferromagnetic and antiferromagnetic features with a clear antiferromagnetic transition near 120 K. - Highlights: • Graphene was produced and functionalized by chloro-, bromo- and nitroaniline. • Nitroaniline was found to be the most suitable compound for functionalization. • Both SQUID and EPR revealed a carbon-related antiferromagnetic transition near 120 K. • Antiferomagnetic interactions are attributed to the extended defects on basal plane.

  4. Magnetism of aniline modified graphene-based materials

    International Nuclear Information System (INIS)

    Komlev, A.A.; Makarova, T.L.; Lahderanta, E.; Semenikhin, P.V.; Veinger, A.I.; Tisnek, T.V.; Magnani, G.; Bertoni, G.; Pontiroli, D.; Ricco, M.

    2016-01-01

    The possibility of producing magnetic graphene nanostructures by functionalization with aromatic radicals has been investigated. Functionalization of graphene basal plane was performed with three types of anilines: 4-bromoaniline, 4-nitroaniline and 4-chloroaniline. The samples were examined by composition analysis with energy-dispersive X-ray spectroscopy and magnetic measurements by SQUID magnetometry and electron paramagnetic resonance. Initial graphene was produced by thermal exfoliation. Both pristine and functionalized samples demonstrate strong paramagnetic contribution at low temperatures, which originates from intrinsic defects. Attachment of an organic molecule with the formation of a covalent bond with carbon atom on the basal plane generates a delocalized spin in the graphene π – electron system. Nitroaniline proved to be the most suitable and sufficiently reactive to attach to the basal plane carbon atoms in large amounts. Functionalization of graphene with nitroaniline resulted in appearance both ferromagnetic and antiferromagnetic features with a clear antiferromagnetic transition near 120 K. - Highlights: • Graphene was produced and functionalized by chloro-, bromo- and nitroaniline. • Nitroaniline was found to be the most suitable compound for functionalization. • Both SQUID and EPR revealed a carbon-related antiferromagnetic transition near 120 K. • Antiferomagnetic interactions are attributed to the extended defects on basal plane.

  5. Photocatalytic Degradation of Aniline Using TiO2 Nanoparticles in a Vertical Circulating Photocatalytic Reactor

    Directory of Open Access Journals (Sweden)

    F. Shahrezaei

    2012-01-01

    Full Text Available Photocatalytic degradation of aniline in the presence of titanium dioxide (TiO2 and ultraviolet (UV illumination was performed in a vertical circulating photocatalytic reactor. The effects of catalyst concentration (0–80 mg/L, initial pH (2–12, temperature (293–323 K, and irradiation time (0–120 min on aniline photodegradation were investigated in order to obtain the optimum operational conditions. The results reveal that the aniline degradation efficiency can be effectively improved by increasing pH from 2 to 12 and temperature from 313 to 323 K. Besides, the effect of temperature on aniline photo degradation was found to be unremarkable in the range of 293–313 K. The optimum catalyst concentration was about 60 mg/L. The Langmuir Hinshelwood kinetic model could successfully elucidate the effects of the catalyst concentration, pH, and temperature on the rate of heterogeneous photooxidation of aniline. The data obtained by applying the Langmuir Hinshelwood treatment are consistent with the available kinetic parameters. The activated energy for the photocatalytic degradation of aniline is 20.337 kj/mol. The possibility of the reactor use in the treatment of a real petroleum refinery wastewater was also investigated. The results of the experiments indicated that it can therefore be potentially applied for the treatment of wastewater contaminated by different organic pollutants.

  6. Programming MIL-101Cr for selective and enhanced CO2 adsorption at low pressure by postsynthetic amine functionalization.

    Science.gov (United States)

    Khutia, Anupam; Janiak, Christoph

    2014-01-21

    MIL-101Cr fully or partially (p) postsynthetically modified with nitro (-NO2) or amino (-NH2) groups was shown to be a robust, water stable, selective and enhanced carbon dioxide (CO2) adsorption material with the amine-functionality. The highly microporous amine-modified frameworks (up to 1.6 cm(3) g(-1) total pore volume) exhibit excellent thermal stability (>300 °C) with BET surface areas up to 2680 m(2) g(-1). At 1 bar (at 273 K) the gases CO2, CH4 and N2 are adsorbed up to 22.2 wt%, 1.67 wt% and 2.27 wt%, respectively. The two amine-modified MIL-101Cr-NH2 (4) and MIL-101Cr-pNH2 (5) showed the highest gas uptake capacities in the series with high ratios for the CO2 : N2 and CO2 : CH4 selectivities (up to 119 : 1 and 75 : 1, respectively, at 273 K). Comparison with non-modified MIL-101Cr traces the favorable CO2 adsorption properties of MIL-101Cr-NH2 (4) and MIL-101Cr-pNH2 (5) to the presence of the Lewis-basic amine groups. MIL-101Cr-NH2 (4) has a high isosteric heat of adsorption of 43 kJ mol(-1) at zero surface coverage and also >23 kJ mol(-1) over the entire adsorption range, which is well above the heat of liquefaction of bulk CO2. Large CO2 uptake capacities of amine-functionalized 4 and 5, coupled with high adsorption enthalpy, high selectivities and proven long-term water stability, make them suitable candidates for capturing CO2 at low pressure from gas mixtures including the use as a CO2 sorbent from moist air.

  7. Functional evolution of the trace amine associated receptors in mammals and the loss of TAAR1 in dogs

    Directory of Open Access Journals (Sweden)

    Westmoreland Susan V

    2010-02-01

    Full Text Available Abstract Background The trace amine associated receptor family is a diverse array of GPCRs that arose before the first vertebrates walked on land. Trace amine associated receptor 1 (TAAR1 is a wide spectrum aminergic receptor that acts as a modulator in brain monoaminergic systems. Other trace amine associated receptors appear to relate to environmental perception and show a birth-and-death pattern in mammals similar to olfactory receptors. Results Across mammals, avians, and amphibians, the TAAR1 gene is intact and appears to be under strong purifying selection based on rates of amino acid fixation compared to neutral mutations. We have found that in dogs it has become a pseudogene. Our analyses using a comparative genetics approach revealed that the pseudogenization event predated the emergence of the Canini tribe rather than being coincident with canine domestication. By assessing the effects of the TAAR1 agonist β-phenylethylamine on [3H]dopamine uptake in canine striatal synaptosomes and comparing the degree and pattern of uptake inhibition to that seen in other mammals, including TAAR1 knockout mice, wild type mice and rhesus monkey, we found that the TAAR1 pseudogenization event resulted in an uncompensated loss of function. Conclusion The gene family has seen expansions among certain mammals, notably rodents, and reductions in others, including primates. By placing the trace amine associated receptors in an evolutionary context we can better understand their function and their potential associations with behavior and neurological disease.

  8. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Yue ePei

    2016-04-01

    Full Text Available Biogenic amines are a collection of endogenous molecules that play pivotal roles as neurotransmitters and hormones. In addition to the classical biogenic amines resulting from decarboxylation of aromatic acids, including dopamine (DA, norepinephrine, epinephrine, serotonin (5-HT and histamine, other biogenic amines, present at much lower concentrations in the central nervous system (CNS, and hence referred to as trace amines (TAs, are now recognized to play significant neurophysiological and behavioural functions. At the turn of the century, the discovery of the trace amine-associated receptor 1 (TAAR1, a phylogenetically conserved G protein-coupled receptor that is responsive to both TAs, such as β-phenylethylamine, octopamine and tyramine, and structurally-related amphetamines, unveiled mechanisms of action for TAs other than interference with aminergic pathways, laying the foundations for deciphering the functional significance of TAs and its mammalian CNS receptor, TAAR1. Although its molecular interactions and downstream targets have not been fully elucidated, TAAR1 activation triggers accumulation of intracellular cAMP, modulates PKA and PKC signalling and interferes with the β-arrestin2-dependent pathway via G protein-independent mechanisms. TAAR1 is uniquely positioned to exert direct control over DA and 5-HT neuronal firing and release, which has profound implications for understanding the pathophysiology of, and therefore designing more efficacious therapeutic interventions for, a range of neuropsychiatric disorders that involve aminergic dysregulation, including Parkinson’s disease, schizophrenia, mood disorders and addiction. Indeed, the recent development of novel pharmacological tools targeting TAAR1 has uncovered the remarkable potential of TAAR1-based medications as new generation pharmacotherapies in neuropsychiatry. This review summarizes recent developments in the study of TAs and TAAR1, their intricate neurochemistry and

  9. Effect of ortho-substituted aniline on the corrosion protection of aluminum in 2 mol/L H2SO4 solution

    KAUST Repository

    El-Deeb, Mohamed M.; Alshammari, Hamed M.; Abdel-Azeim, Safwat

    2017-01-01

    Corrosion protection of aluminum in 2 mol/L HSO solution is examined in the presence of ortho-substituted aniline derivatives using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Density function theory (DFT

  10. Nano ZnO/amine composites antimicrobial additives to acrylic paints

    Directory of Open Access Journals (Sweden)

    H.B. Kamal

    2015-12-01

    Full Text Available Nano ZnO has been widely used as an antimicrobial agent not only for food packaging purposes but also in many coating processes. The present work is meant to enhance such functions through the preparation of sustainable and safe conduct of nano ZnO composites with amine derivatives that are characterized by their antimicrobial and anti-fouling functional activities. The results obtained revealed a more comprehensive approach to the antimicrobial function based on the reported active oxide species role. The oxide/amine composites and the acrylic emulsion paint were characterized chemically and structurally through FT-IR, TGA and TEM supported by biological assessment of each ZnO/amine composite action. Results of the study concluded that equilibrium between the nano ZnO particles size, their dispersion form, and amine ability to stabilize the actively produced oxygen species responsible for the antimicrobial function, should all be accounted for when persistence of antimicrobial agent efficiency is regarded.

  11. A novel solid-state electrochemiluminescence quenching sensor for detection of aniline based on luminescent composite nanofibers

    International Nuclear Information System (INIS)

    Wang, Xiaoying; Yang, Yu; Gao, Huiwen

    2014-01-01

    A novel solid-state electrochemiluminescence (ECL) quenching sensor based on the luminescent composite nanofibers for detection of aniline has been developed. The gold nanoparticles (AuNPs) and Ruthenium (II) tris-(bipyridine) (Ru(bpy) 3 2+ ) doped nylon 6 (PA6) luminescent composite nanofibers (Ru–AuNPs–PA6) were successfully deposited to the bare glassy carbon (GC) electrode by a one-step electrospinning technique. The Ru–AuNPs–PA6 nanofibers maintained the photoelectric properties of the Ru(bpy) 3 2+ ions completely and exhibited excellent ECL behaviors. A high quenching effect on the ECL signal of the Ru–AuNPs–PA6/C 2 O 4 2− system was obtained with the presence of low concentration aniline compounds. The potential of analytical application was explored by use of the inhibited ECL. The quenching efficiencies of the five kinds of aniline compounds were compared by monitoring the aniline-dependent ECL intensity change. The magnitude of quenching depended linearly upon the concentration of aniline in the investigated concentration range of 10–10 µM. The detection limit for aniline is 5.0 nM, which is comparable or better than that in the reported assays. The solid-state ECL quenching sensor exhibited high sensitivity and good stability. This study may provide new insight into the design of advanced electrospun nanofibers-based ECL sensors for detection and analysis of a variety of active molecules. - Highlights: • The Ru–AuNPs–PA6 nanofibers were first prepared by one-step electrospinning technique. • The Ru–AuNPs–PA6 nanofibers exhibited excellent ECL behaviors on GC electrodes. • It is the first solid-state ECL sensor based on nanofibers for aniline detection. • The quenching efficiencies of the five kinds of aniline compounds were compared. • The strategy could be extended to develop various nanofibers-based ECL sensors

  12. Novel non-viral vectors for gene delivery: synthesis of a second-generation library of mono-functionalized poly-(guanidinium)amines and their introduction into cationic lipids.

    Science.gov (United States)

    Byk, G; Soto, J; Mattler, C; Frederic, M; Scherman, D

    1998-01-01

    The development of new gene delivery technologies is a prerequisite towards gene therapy clinical trials. Because gene delivery mediated by viral vectors remains of limited scope due to immunological and propagation risks, the development of new non-viral gene delivery systems is of crucial importance. We have synthesized a secondary library of mono-functionalized poly-(guanidinium)amines generated from a library of mono-functionalized polyamines applying the concept of "libraries from libraries." The method allows a quick and easy access to mono-functionalized geometrically varied poly-(guanidinium)amines. The new building blocks were introduced into cationic lipids to obtain novel poly-(guanidinium)amine lipids, which are potential DNA vectors for gene delivery. Copyright 1998 John Wiley & Sons, Inc.

  13. Synthesis and electrochemical analysis of polyaniline/TiO2 composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid

    International Nuclear Information System (INIS)

    Oh, Misoon; Kim, Seok

    2012-01-01

    Graphical abstract: Polyaniline (PANI)/TiO 2 composites were prepared by in situ polymerization using para-toluenesulfonic acid (p-TSA). The composites showed different morphology and specific capacitances as a function of aniline concentration, which are related to the morphology (shape or size) of particles. Scheme of the formation of composites consisting of PANI film and the micelle structures is shown. Highlights: ► PANI/TiO 2 composite were prepared with a different concentration of monomer and dopant. ► Aniline/acid ratio influenced the morphological and electrochemical properties. ► The composites showed different capacitances as a function of aniline concentrations. ► Aniline/acid ratio could influence on the dispersion and surface roughness of particles. - Abstract: Polyaniline (PANI)/titanium dioxide (TiO 2 ) composites were prepared with a chemical oxidation polymerization of aniline monomer (ANI) with various molar ratios between ANI and para toluenesulfonic acid (p-TSA). To find an effect of the [ANI]:[p-TSA] molar ratio on the electrochemical properties of the prepared PANI/TiO 2 composites, the composites were synthesized under same conditions except the p-TSA concentrations. The prepared composite films had more homogeneous TiO 2 dispersion with changing [ANI]:[p-TSA] molar ratios from 6:1 to 1:1. p-TSA surfactant-like doping acid helped the dispersion of TiO 2 particles in the PANI matrix. PANI covering the TiO 2 surfaces was confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Prepared PANI films on the TiO 2 particles had the smoothest surface when the ANI and p-TSA had 1:1 molar ratio in the reaction solution. The composite prepared with molar ratio [ANI]:[p-TSA] of 3:1 had the highest capacitance (800 F g −1 ) among the prepared composites.

  14. Fluorinated Amine Stereotriads via Allene Amination.

    Science.gov (United States)

    Liu, Lu; Gerstner, Nels C; Oxtoby, Lucas J; Guzei, Ilia A; Schomaker, Jennifer M

    2017-06-16

    The incorporation of fluorine into organic scaffolds often improves the bioactivity of pharmaceutically relevant compounds. C-F/C-N/C-O stereotriad motifs are prevalent in antivirals, neuraminidase inhibitors, and modulators of androgen receptors, but are challenging to install. An oxidative allene amination strategy using Selectfluor rapidly delivers triply functionalized triads of the form C-F/C-N/C-O, exhibiting good scope and diastereoselectivity for all syn products. The resulting stereotriads are readily transformed into fluorinated pyrrolidines and protected α-, β-, and γ-amino acids.

  15. Iridium-Catalyzed Condensation of Primary Amines To Form Secondary Amines

    DEFF Research Database (Denmark)

    Lorentz-Petersen, Linda Luise Reeh; Jensen, Paw; Madsen, Robert

    2009-01-01

    Symmetric secondary amines are readily obtained by heating a neat primary amine with 0.5 mol% of bis(dichloro[eta(5)-pentamethylcyclopentadienyl]iridium). The products are isolated by direct distillation in good yields.......Symmetric secondary amines are readily obtained by heating a neat primary amine with 0.5 mol% of bis(dichloro[eta(5)-pentamethylcyclopentadienyl]iridium). The products are isolated by direct distillation in good yields....

  16. A Modular Flow Design for the meta-Selective C-H Arylation of Anilines.

    Science.gov (United States)

    Gemoets, Hannes P L; Laudadio, Gabriele; Verstraete, Kirsten; Hessel, Volker; Noël, Timothy

    2017-06-12

    Described herein is an effective and practical modular flow design for the meta-selective C-H arylation of anilines. The design consists of four continuous-flow modules (i.e., diaryliodonium salt synthesis, meta-selective C-H arylation, inline copper extraction, and aniline deprotection) which can be operated either individually or consecutively to provide direct access to meta-arylated anilines. With a total residence time of 1 hour, the desired product could be obtained in high yield and excellent purity without the need for column chromatography, and the residual copper content meets the standards for parenterally administered pharmaceutical substances. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Post-synthesis amine borane functionalization of metal-organic framework and its unusual chemical hydrogen release phenomenon

    KAUST Repository

    Berke, Heinz

    2017-05-11

    We report a novel strategy for post-synthesis amine borane functionalization of MOFs under gas-solid phase transformation utilizing gaseous diborane. The covalently confined amine borane derivative decorated on the framework backbone is stable when preserved at low temperature, but spontaneously liberates soft chemical hydrogen at room temperature leading to the development of an unusual borenium type species (-NH=BH2+) ion-paired with hydroborate anion. Furthermore, the unsaturated amino borane (-NH=BH2) and the -iminodiborane ((--NHB2H5) were detected as final products. A combination of DFT based molecular dynamics simulations and solid state NMR spectroscopy, utilizing isotopically enriched materials, were undertaken to unequivocally elucidate the mechanistic pathways for H2 liberation.

  18. Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon-Sulfur Composites for Lithium-Sulfur Battery Cathodes.

    Science.gov (United States)

    Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho

    2018-02-07

    Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

  19. A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications.

    Science.gov (United States)

    Zarrintaj, Payam; Urbanska, Aleksandra M; Gholizadeh, Saman Seyed; Goodarzi, Vahabodin; Saeb, Mohammad Reza; Mozafari, Masoud

    2018-04-15

    An innovative drug-loaded colloidal hydrogel was synthesized for applications in neural interfaces in tissue engineering by reacting carboxyl capped aniline dimer and gelatin molecules. Dexamethasone was loaded into the gelatin-aniline dimer solution as a model drug to form an in situ drug-loaded colloidal hydrogel. The conductivity of the hydrogel samples fluctuated around 10 -5  S/cm which appeared suitable for cellular activities. Cyclic voltammetry was used for electroactivity determination, in which 2 redox states were observed, suggesting that the short chain length and steric hindrance prevented the gel from achieving a fully oxidized state. Rheological data depicted the modulus decreasing with aniline dimer increment due to limited hydrogen bonds accessibility. Though the swelling ratio of pristine gelatin (600%) decreased by the introduction and increasing the concentration of aniline dimer because of its hydrophobic nature, it took the value of 300% at worst, which still seems promising for drug delivery uses. Degradation rate of hydrogel was similarly decreased by adding aniline dimer. Drug release was evaluated in passive and stimulated patterns demonstrating tendency of aniline dimer to form a vesicle that controls the drug release behavior. The optimal cell viability, proper cell attachment and neurite extension was achieved in the case of hydrogel containing 10 wt% aniline dimer. Based on tissue/organ behavior, it was promisingly possible to adjust the characteristics of the hydrogels for an optimal drug release. The outcome of this simple and effective approach can potentially offer additional tunable characteristics for recording and stimulating purposes in neural interfaces. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Biosorption of aniline violet from aqueous solution on moringa oleifera saw dust (abstract)

    International Nuclear Information System (INIS)

    Javed, T.; Mirza, M.L.

    2011-01-01

    Batch adsorption studies were carried out to evaluate the potential of Moringa Oleifera wood saw dust for the removal of aniline violet dye from aqueous solution by optimizing different parameters such as effect of shaking time, adsorbent dose, initial adsorbate concentration etc. The experimental data was subjected to different types of linearized isotherm models such as Freundlich, Langmuir and Dubinin-Radushkevich. The Freundlich isotherm was fitted well with the data. The maximum adsorption capacity of 8.92 m mol./g of aniline violet has been observed through Freundlich isotherm by using the optimized parameters of 50 mg of adsorbent, 5 minutes of shaking time at room temperature of 25 deg. C. The sorption mean free energy from Dubinin-Radushkevich isotherm is 13.36 kJ mol 1 indicating chemisorption. Pseudo-first and Pseudo-second order kinetics models were tested for the adsorption of 1.23 X 10/sup -5) mol L/sup -1) of aniline violet onto Moringa Oleifera wood saw dust. The experimental data fitted well for Pseudo-second order model with coefficient of correlation R/sup 2/ greater or equal to 0.999. The uptake of aniline violet was also studied with the rise in temperature. Thermodynamic parameters have been evaluated and the adsorption process seems to be endothermic. The results indicate that the Moringa Oleifera wood saw dust is an efficient adsorbent for aniline violet from aqueous solutions. (author)

  1. An Electrochemical Study of Two Self-Dopable Water-Soluble Aniline Derivatives: Electrochemical Deposition of Copolymers

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2012-01-01

    Full Text Available An electrochemical study of two water-soluble aniline derivatives, N-(3-sulfopropyl aniline (AnPS and N-(3-sulfopropyl p-aminodiphenylamine (DAnPS, in aqueous acidic electrolytic solutions containing different kinds of doping anions (Cl −, SO4 2−, and ClO4 − was carried out. At sufficiently high anodic potential, the sulfonated aniline derivatives undergo oxidation processes yielding cation-radical and dimer intermediates, but no polymer deposition was observed on the working electrode surface. Experimental results showed that both aniline derivatives are electroactive compounds exhibiting redox behaviour in the range of potential of −0.2 V–1.6 V. Due to the self-doping effect induced by sulfonic groups, AnPS and DAnPS compounds have good electroactivity even in neat water solution. By adding a small amount of aniline into electrolytic system, thin layers of copolymers were deposited on the working electrode surface. The copolymer layers formed on the electrodes show a highly orientational and positional order, confirmed by AFM and XRD spectroscopic techniques. During the anodic oxidation processes some distinct colour changes were observed.

  2. Ultraviolet relaxation dynamics of aniline, N, N-dimethylaniline and 3,5-dimethylaniline at 250 nm

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James O. F.; Saalbach, Lisa; Crane, Stuart W. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Paterson, Martin J. [Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Townsend, Dave, E-mail: D.Townsend@hw.ac.uk [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2015-03-21

    Time-resolved photoelectron imaging was used to investigate the electronic relaxation dynamics of gas-phase aniline, N, N-dimethylaniline, and 3,5-dimethylaniline following ultraviolet excitation at 250 nm. Our analysis was supported by ab initio coupled-cluster calculations evaluating excited state energies and (in aniline) the evolution of a range of excited state physical properties as a function of N–H bond extension. Due to a lack of consistency between several earlier studies undertaken in aniline, the specific aim of this present work was to gain new insight into the previously proposed non-adiabatic coupling interaction between the two lowest lying singlet excited states S{sub 1}(ππ{sup ∗}) and S{sub 2}(3s/πσ{sup ∗}). The methyl-substituted systems N, N-dimethylaniline and 3,5-dimethylaniline were included in order to obtain more detailed dynamical information about the key internal molecular coordinates that drive the S{sub 1}(ππ{sup ∗})/S{sub 2}(3s/πσ{sup ∗}) coupling mechanism. Our findings suggest that in all three systems, both electronic states are directly populated during the initial excitation, with the S{sub 2}(3s/πσ{sup ∗}) state then potentially decaying via either direct dissociation along the N–X stretching coordinate (X = H or CH{sub 3}) or internal conversion to the S{sub 1}(ππ{sup ∗}) state. In aniline and N, N-dimethylaniline, both pathways most likely compete in the depletion of S{sub 2}(3s/πσ{sup ∗}) state population. However, in 3,5-dimethylaniline, only the direct dissociation mechanism appears to be active. This is rationalized in terms of changes in the relative rates of the two decay pathways upon methylation of the aromatic ring system.

  3. Resolved multisite OH-attack on aqueous aniline studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Solar, S.; Solar, W.; Getoff, N.

    1986-01-01

    The individual formation and decay kinetics as well as the absorption characteristics of the simultaneously formed primary species by OH attack on aniline in aqueous solution (pH 8-9.6), saturated with N 2 O, have been determined by pulse radiolysis combined with a computer optimization procedure. Further the rate constant of e - sub(aq) with aniline was determined to (3.0+-0.1) x l0 7 dm 3 mol -1 cm -1 . Qualitative analysis of final products were also performed. (author)

  4. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES. 2. QSAR DEVELOPMENT

    Science.gov (United States)

    The fate of aromatic amines in soils and sediments is dominated by irreversible binding through nucleophilic addition and oxidative radical coupling. Despite the common occurrence of the aromatic amine functional group in organic chemicals, the molecular properties useful for pr...

  5. Removal of Cu(II) metal ions from aqueous solution by amine functionalized magnetic nanoparticles

    Science.gov (United States)

    Kothavale, V. P.; Karade, V. C.; Waifalkar, P. P.; Sahoo, Subasa C.; Patil, P. S.; Patil, P. B.

    2018-04-01

    The adsorption behavior of Cu(II) metal cations was investigated on the amine functionalized magnetic nanoparticles (MNPs). TheMNPs were synthesized by thesolvothermal method and functionalized with (3-Aminopropyl)triethoxysilane (APTES). MNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). The MNPs have pure magnetite phase with particle size around 10-12 nm. MNPs exhibits superparamagnetic behavior with asaturation magnetization of 68 emu/g. The maximum 38 % removal efficiency was obtained for Cu(II) metal ions from the aqueous solution.

  6. SYNTHESIS, CHARACTERIZATION AND DENSITY FUNCTIONAL ...

    African Journals Online (AJOL)

    Preferred Customer

    We synthesized a number of aniline derivatives containing acyl groups to compare their barriers of rotation around ... KEY WORDS: Monoacyl aniline, Synthesis, Density functional theory, Rotation barrier. INTRODUCTION. Developments in ...

  7. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal. Copyright © 2016. Published by Elsevier B.V.

  8. Photoactivated bioconjugation between ortho-azidophenols and anilines: a facile approach to biomolecular photopatterning.

    Science.gov (United States)

    El Muslemany, Kareem M; Twite, Amy A; ElSohly, Adel M; Obermeyer, Allie C; Mathies, Richard A; Francis, Matthew B

    2014-09-10

    Methods for the surface patterning of small molecules and biomolecules can yield useful platforms for drug screening, synthetic biology applications, diagnostics, and the immobilization of live cells. However, new techniques are needed to achieve the ease, feature sizes, reliability, and patterning speed necessary for widespread adoption. Herein, we report an easily accessible and operationally simple photoinitiated reaction that can achieve patterned bioconjugation in a highly chemoselective manner. The reaction involves the photolysis of 2-azidophenols to generate iminoquinone intermediates that couple rapidly to aniline groups. We demonstrate the broad functional group compatibility of this reaction for the modification of proteins, polymers, oligonucleotides, peptides, and small molecules. As a specific application, the reaction was adapted for the photolithographic patterning of azidophenol DNA on aniline glass substrates. The presence of the DNA was confirmed by the ability of the surface to capture living cells bearing the sequence complement on their cell walls or cytoplasmic membranes. Compared to other light-based DNA patterning methods, this reaction offers higher speed and does not require the use of a photoresist or other blocking material.

  9. Reduction of graphene oxide by aniline with its concomitant oxidative polymerization.

    Science.gov (United States)

    Xu, Li Qun; Liu, Yi Liang; Neoh, Koon-Gee; Kang, En-Tang; Fu, Guo Dong

    2011-04-19

    Graphene oxide (GO) nanosheets are readily reduced by aniline above room temperature in an aqueous acid medium, with the aniline simultaneously undergoing oxidative polymerization to produce the reduced graphene oxide-polyaniline nanofiber (RGO-PANi) composites. The resulting RGO-PANi composites and RGO (after dissolution of PANi) were characterized by XPS, XRD analysis, TGA, UV-visible absorption spectroscopy, and TEM. It was also found that the RGO-PANi composites exhibit good specific capacitance during galvanostatic charging-discharging when used as capacitor electrodes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Amine-selective bioconjugation using arene diazonium salts.

    Science.gov (United States)

    Diethelm, Stefan; Schafroth, Michael A; Carreira, Erick M

    2014-08-01

    A novel bioconjugation strategy is presented that relies on the coupling of diazonium terephthalates with amines in proteins. The diazonium captures the amine while the vicinal ester locks it through cyclization, ensuring no reversibility. The reaction is highly efficient and proceeds under mild conditions and short reaction times. Densely functionalized, complex natural products were directly coupled to proteins using low concentrations of coupling partners.

  11. A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid

    Science.gov (United States)

    Andrews, Keith G.; Faizova, Radmila; Denton, Ross M.

    2017-06-01

    Amines are a fundamentally important class of biologically active compounds and the ability to manipulate their physicochemical properties through the introduction of fluorine is of paramount importance in medicinal chemistry. Current synthesis methods for the construction of fluorinated amines rely on air and moisture sensitive reagents that require special handling or harsh reductants that limit functionality. Here we report practical, catalyst-free, reductive trifluoroethylation reactions of free amines exhibiting remarkable functional group tolerance. The reactions proceed in conventional glassware without rigorous exclusion of either moisture or oxygen, and use trifluoroacetic acid as a stable and inexpensive fluorine source. The new methods provide access to a wide range of medicinally relevant functionalized tertiary β-fluoroalkylamine cores, either through direct trifluoroethylation of secondary amines or via a three-component coupling of primary amines, aldehydes and trifluoroacetic acid. A reduction of in situ-generated silyl ester species is proposed to account for the reductive selectivity observed.

  12. [Influence of pH on Kinetics of Anilines Oxidation by Permanganate].

    Science.gov (United States)

    Wang, Hui; Sun, Bo; Guan, Xiao-hong

    2016-02-15

    To investigate the effect of pH on the oxidation of anilines by potassium permanganate, aniline and p-Chloroaniline were taken as the target contaminants, and the experiments were conducted under the condition with potassium permanganate in excess over a wide pH range. The reaction displayed remarkable autocatalysis, which was presumably ascribed to the formation of complexes by the in situ generated MnOx and the target contaminants on its surface, and thereby improved the oxidation rate of the target contaminants by permanganate. The reaction kinetics was fitted with the pseudo-first-order kinetics at different pH to obtain the pseudo-first-order reaction constants (k(obs)). The second-order rate constants calculated from permanganate concentration and k,b, increased with the increase of pH and reached the maximum near their respective pKa, after which they decreased gradually. This tendency is called parabola-like shaped pH-rate profile. The second-order rate constants between permanganate and anilines were well fitted by the proton transfer model proposed by us in previous work.

  13. A bioinspired catalytic aerobic oxidative C-H functionalization of primary aliphatic amines: synthesis of 1,2-disubstituted benzimidazoles.

    Science.gov (United States)

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-09-01

    Aerobic oxidative CH functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons Attribution NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  14. C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.

    Science.gov (United States)

    Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu

    2013-04-17

    We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.

  15. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hao, E-mail: realking163@163.com [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China); Wang, Chao; Shi, Jiaqi [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Chen, Lei [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China)

    2014-08-30

    Highlights: • Cd has different effects on joint toxicity when in different concentrations. • The toxicity of most binary mixtures decreases when Cd concentration rises. • Different QSAR models are developed to predict the joint toxicity. • Descriptors in QSARs can help to elucidate the joint toxicity mechanism. • Van der Waals’ force or complexation may reduce the toxicity of mixtures. - Abstract: The individual IC{sub 50} (the concentrations causing a 50% inhibition of bioluminescence after 15 min exposure) of cadmium ion (Cd) and nine chlorinated anilines to Photobacterium phosphoreum (P. phosphoreum) were determined. In order to evaluate the combined effects of the nine chlorinated anilines and Cd, the toxicities of chlorinated anilines combined with different concentrations of Cd were determined, respectively. The results showed that the number of chlorinated anilines manifesting synergy with Cd decreased with the increasing Cd concentration, and the number manifesting antagonism decreased firstly and then increased. The joint toxicity of mixtures at low Cd concentration was weaker than that of most binary mixtures when combined with Cd at medium and high concentrations as indicated by TU{sub Total}. QSAR analysis showed that the single toxicity of chlorinated anilines was related to the energy of the lowest unoccupied molecular orbital (E{sub LUMO}). When combined with different concentrations of Cd, the toxicity was related to the energy difference (E{sub HOMO} − E{sub LUMO}) with different coefficients. Van der Waals’ force or the complexation between chlorinated anilines and Cd had an impact on the toxicity of combined systems, which could account for QSAR models with different physico-chemical descriptors.

  16. Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO 2 Adsorbents Upon Exposure to Steam

    KAUST Repository

    Li, Wen

    2010-11-24

    Three classes of amine-functionalized mesocellular foam (MCF) materials are prepared and evaluated as CO2 adsorbents. The stability of the adsorbents under steam/air and steam/nitrogen conditions is investigated using a Parr autoclave reactor to simulate, in an accelerated manner, the exposure that such adsorbents will see under steam stripping regeneration conditions at various temperatures. The CO2 capacity and organic content of all adsorbents decrease after steam treatment under both steam/air and steam/nitrogen conditions, primarily due to structural collapse of the MCF framework, but with additional contributions likely associated with amine degradation during treatment under harsh conditions. Treatment with steam/air is found to have stronger effect on the CO2 capacity of the adsorbents compared to steam/nitrogen. © 2010 American Chemical Society.

  17. Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO 2 Adsorbents Upon Exposure to Steam

    KAUST Repository

    Li, Wen; Bollini, Praveen; Didas, Stephanie A.; Choi, Sunho; Drese, Jeffrey H.; Jones, Christopher W.

    2010-01-01

    Three classes of amine-functionalized mesocellular foam (MCF) materials are prepared and evaluated as CO2 adsorbents. The stability of the adsorbents under steam/air and steam/nitrogen conditions is investigated using a Parr autoclave reactor to simulate, in an accelerated manner, the exposure that such adsorbents will see under steam stripping regeneration conditions at various temperatures. The CO2 capacity and organic content of all adsorbents decrease after steam treatment under both steam/air and steam/nitrogen conditions, primarily due to structural collapse of the MCF framework, but with additional contributions likely associated with amine degradation during treatment under harsh conditions. Treatment with steam/air is found to have stronger effect on the CO2 capacity of the adsorbents compared to steam/nitrogen. © 2010 American Chemical Society.

  18. Stepwise Nucleation of Aniline: Emergence of Spectroscopic Fingerprints of the Liquid Phase.

    Science.gov (United States)

    Leon, Iker; Usabiaga, Imanol; Arnaiz, Pedro Felipe; Lesarri, Alberto; Fernández, Jose Andres

    2018-06-11

    We deal here with the controlled nucleation of aniline from the isolated molecule until formation of a moderately large aggregate: aniline nonamer. The structure of the cluster at each step of the nucleation was unravelled combining mass-resolved IR spectroscopy and computational chemistry, demonstrating that aggregation is primarily guided by formation of extensive N-H···N hydrogen bond networks that give the aggregates a sort of branched backbone, in clear competition with multiple N-H/C-H···pi and pi···pi interactions. The result is the co-existence of close nucleation paths connecting relational aggregates. The delicate balance of molecular forces makes the aniline clusters a challenge for molecular orbital calculations and an ideal system to refine the present nucleation models. Noticeably, spectroscopic signatures characteristic of the condensed phase are apparent in the nanometer-size aggregates formed in this work. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [2- (2, 4-dimethylphenylthio) phenyl] aniline and it

    Indian Academy of Sciences (India)

    Sambhaji

    MgSO4, 0.5 g aspargine and 2 ml glycerol in distilled water (100 ml) followed by pH ..... aniline and its derivatives with the crystal structure of. Page 13. 13. Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) (PDB ID: 4TZK).

  20. Multi-signalling cation sensing behaviour of a bis(pyridin-2-yl methyl)aniline based hetarylazo dye

    International Nuclear Information System (INIS)

    Kaur, Paramjit; Sareen, Divya; Kaur, Mandeep; Singh, Kamaljit

    2013-01-01

    Graphical abstract: The chromogenic and electrochemical behaviour of bis(pyridine-2-yl methyl)aniline based hetarylazo dye gets perturbed in the presence of cations, most effective being Cu 2+ . The conversion of ICT to ICT/MLCT is witnessed by TD-DFT calculations. -- Highlights: •Cation sensing of hetarylazo dye based upon visual, absorption and electrochemical changes is described. •Sensing mechanism is based upon perturbation in intramolecular charge-transfer upon interaction with cations. •Sensing protocol is supported by 1 H NMR studies as well as theoretical calculations. •Hetarylazo dye acts as a multichannel sensor. •Response of the dye towards various cations has also been explored in acidic pH window. -- Abstract: We investigated the cation sensing behaviour of a bis(pyridin-2-yl methyl)aniline appended hetarylazo dye via chromogenic and electrochemical transduction channels. The binding pocket constituting both the pyridyl as well as aniline nitrogen atoms acts as recognition site for the cations and consequent perturbation in the intramolecular charge-transfer prevailing in the dye results in the chromogenic response manifested in the form of hypsochromic shift in the intramolecular charge-transfer band and the attendant naked-eye color changes. The dye exhibits significant changes in its electrochemical behaviour in the presence of cations. The experimental results are also rationalized by time-dependent density functional theory (TD-DFT) calculations

  1. Ionic networks derived from the protonation of dendritic amines with carboxylic acid end‐functionalized PEGs

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2013-01-01

    The synthesis and characterization of novel ionic networks linked by the ammonium salts of poly(propylene imine) (PPI) dendrimers of the first (PPI G1) and second (PPI G2) generation and two short bis carboxymethyl ether terminated poly(ethylene glycol)s (DiCOOH‐PEG) with different molecular...... weights (Mn ∼ 250 and Mn ∼ 600) are reported. Likewise, an ionic network based on PPI G1 and a long αω‐dicarboxylic acid functionalized PEG (Mn ∼ 4800) were evaluated. Simpler ionic structures based on tris(2‐aminoethyl)amine or hexamethylene diamine and the short DiCOOH‐PEGs are also investigated....... The ionic structures formed were confirmed by differential scanning calorimetry, Fourier Transform Infrared spectroscopy in the attenuated‐total‐reflection mode, and 1H‐13C NMR spectroscopy. A comprehensive 1H NMR analysis revealed that only the primary amines of the PPI G1 dendrimer residing...

  2. Novel bioreducible poly(amido amine)s for highly efficient gene delivery

    NARCIS (Netherlands)

    Lin, C.; Zhong, Zhiyuan; Lok, Martin C.; Jiang, Xulin; Hennink, Wim E.; Feijen, Jan; Engbersen, Johannes F.J.

    2007-01-01

    A series of novel bioreducible poly(amido amine)s containing multiple disulfide linkages (SS-PAAs) were synthesized and evaluated as nonviral gene vectors. These linear SS-PAAs could be easily obtained by Michael-type polyaddition of various primary amines to the disulfide-containing cystamine

  3. Study of the rearrangement of N-alkylanilines to P-aminoalkylbencene. III. N-n-propil-l-14C aniline

    International Nuclear Information System (INIS)

    Molera, J. M.; Gamboa, J. M.; Val del Cob, M.; Ortin, N.

    1964-01-01

    The rearrangement of N-n-propyl aniline to p-amino propylbenzene has been studied at 250 degree centigrade using several catalysts: CoCl 2 , ZnCl 2 and HBr. N-propyl-1-14 C -aniline has been synthesized from sodium propionate-1-14 C through conversion to n-propyl-1-14 C -iodide and further reaction with aniline. After the rearrangement and among the reaction products both p-aminopropylbenzene and p-aminoisopropylbencene were found. To determine the 14 C position in both the starting aniline and reaction products two degradation schemes are followed. In the light of experimental evidence a mechanism is set forth based on the assumption of an organic cation as intermediate. (Author) 13 refs

  4. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    Science.gov (United States)

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Wanna, Yongyuth, E-mail: yongyuth.wanna@gmail.com [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Nara Machinery Co., Ltd., 2-5-7, Jonan-Jima, Ohta-ku, Tokyo 143-0002 (Japan); Chindaduang, Anon; Tumcharern, Gamolwan [National Nanotechnology Center (NANOTEC), 111 Thailand Science Park, Pahol Yothin Rd, Klong Luang, Pathum Thani 12120 (Thailand); Phromyothin, Darinee [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Porntheerapat, Supanit [NECTEC, National Science and Technology Development Agency (NSTDA), 112 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120 (Thailand); Nukeaw, Jiti [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Hofmann, Heirich [Laboratory of Powder Technology, Ecole Polytechnique Fédérale de Lausanne (Switzerland); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand)

    2016-09-15

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group. - Highlights: • We synthesis hybrid magnetic nanoparticles for heavy metal removal. • The efficiency of hybrid nanoparticles for heavy metal removal is proposed. • We investigated the characteristic of hybrid nanoparticle. • The heavy metal removal efficiency of the hybrid nanoparticle was founded that depend on the heavy metal cation radius.

  6. Sponges with covalently tethered amines for high-efficiency carbon capture

    KAUST Repository

    Qi, Genggeng

    2014-12-12

    © 2014 Macmillan Publishers Limited. All rights reserved. Adsorption using solid amine sorbents is an attractive emerging technology for energy-efficient carbon capture. Current syntheses for solid amine sorbents mainly based on physical impregnation or grafting-to methods (for example, aminosilane-grafting) lead to limited sorbent performance in terms of stability and working capacity, respectively. Here we report a family of solid amine sorbents using a grafting-from synthesis approach and synthesized by cationic polymerization of oxazolines on mesoporous silica. The sorbent with high amount of covalently tethered amines shows fast adsorption rate, high amine efficiency and sorbent capacity well exceeding the highest value reported to date for lowerature carbon dioxide sorbents under simulated flue gas conditions. The demonstrated efficiency of the new amine-immobilization chemistry may open up new avenues in the development of advanced carbon dioxide sorbents, as well as other nitrogen-functionalized systems.

  7. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.C.G. [Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P" 2CEM, São Cristovão/SE (Brazil); Pedrosa, A.M.Garrido [Federal University of Sergipe, Departament of Chemistry (DQI), São Cristovão/SE (Brazil); Souza, M.J.B., E-mail: mjbsufs@gmail.com [Federal University of Sergipe, Department of Chemical Engineering (DEQ), Av. Marechal Rondon S/N, 49100-000, São Cristovão/SE (Brazil); Cecilia, J.A.; Rodríguez-Castellón, E. [University of Málaga, Department of Inorganic Chemistry, Crystallography and Mineralogy, Faculty of Sciences, 29071, Málaga (Spain)

    2015-10-15

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO{sub 2} capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO{sub 2} capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO{sub 2} and for the composites with amine the amount of amine was that influenced in the adsorption capacity.

  8. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    International Nuclear Information System (INIS)

    2CEM, São Cristovão/SE (Brazil))" data-affiliation=" (Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P2CEM, São Cristovão/SE (Brazil))" >Santos, S.C.G.; Pedrosa, A.M.Garrido; Souza, M.J.B.; Cecilia, J.A.; Rodríguez-Castellón, E.

    2015-01-01

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO 2 capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO 2 capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO 2 and for the composites with amine the amount of amine was that influenced in the adsorption capacity

  9. Carbon Dioxide-Mediated C(sp3)-H Arylation of Amine Substrates.

    Science.gov (United States)

    Kapoor, Mohit; Liu, Daniel; Young, Michael C

    2018-05-25

    Elaborating amines via C-H functionalization has been an important area of research over the past decade but has generally relied on an added directing group or sterically hindered amine approach. Since free-amine-directed C(sp 3 )-H activation is still primarily limited to cyclization reactions and to improve the sustainability and reaction scope of amine-based C-H activation, we present a strategy using CO 2 in the form of dry ice that facilitates intermolecular C-H arylation. This methodology has been used to enable an operationally simple procedure whereby 1° and 2° aliphatic amines can be arylated selectively at their γ-C-H positions. In addition to potentially serving as a directing group, CO 2 has also been demonstrated to curtail the oxidation of sensitive amine substrates.

  10. CYP-450 isoenzymes catalyze the generation of hazardous aromatic amines after reaction with the azo dye Sudan III.

    Science.gov (United States)

    Zanoni, Thalita Boldrin; Lizier, Thiago M; Assis, Marilda das Dores; Zanoni, Maria Valnice B; de Oliveira, Danielle Palma

    2013-07-01

    This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1 × 10(-4)molL(-1) and generation of 7.6 × 10(-7)molL(-1) to 0.31 × 10(-4)molL(-1) of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Study on synthesis, application and mechanism of benzophenone/amine initiator

    International Nuclear Information System (INIS)

    Xiong Wei; Liu Jinshui; Wen Yinjun; Wan Qizhong; Zhou Xianyan; Xiao Hanling; Yang Jianwen

    1999-01-01

    Through Michael addition reaction of trimethylolpropane triacrylate (TMPTA) with diethylamine (DEA), a new kind of tertiary amine derivative was synthesized and its structure was identified by 'H-NMR. When used in combination with benzophenone, this amine presented excellent curing speed and could be a substitute for initiator Darocur R 1173, which is effective but expensive. If so, the cost of UV-curable coatings can descend apparently. The functioning mechanism of benzophenone/amine bimolecular initiator was studied

  12. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  13. Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose biosensing

    Science.gov (United States)

    Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza

    2011-12-01

    The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.

  14. Horseradish Peroxidase (HRP Immobilized Poly(aniline-co-m-aminophenol Film Electrodes–fabrication and Evaluation as Hydrogen Peroxide Sensor

    Directory of Open Access Journals (Sweden)

    Seong-Ho Choi

    2007-05-01

    Full Text Available Enzyme modified electrodes were fabricated with poly(aniline-co-m-aminophenol. Electrochemical polymerization of aniline and m-aminophenol wasperformed to get the film of copolymer on the surface of gold electrode. Modifiedelectrodes were fabricated by two methods, physical entrapment and covalent cross-linking.In one of the method, gold nanoparticles were loaded into the copolymer film andhorseradish peroxidase (HRP was immobilized into the Au nanoparticle loaded copolymerfilm through physical entrapment. In the other method, the amino and -OH groups in thecopolymer are utilized to form covalent functionalization with HRP via glutaric dialdehydeas cross-linker/mediator. The conducting copolymer/enzyme modified electrodes preparedby physical entrapment/covalent functionalization of enzyme were tested forelectrocatalytic activities towards sensing of H2O2. Amperometric results indicate thatenzyme modified electrode via physical entrapment possesses better electrocatalyticperformance over covalent functionalized enzyme electrode.

  15. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering.

    Science.gov (United States)

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-22

    In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.

  16. Unexpected Biotransformation of the HDAC Inhibitor Vorinostat Yields Aniline-Containing Fungal Metabolites.

    Science.gov (United States)

    Adpressa, Donovon A; Stalheim, Kayla J; Proteau, Philip J; Loesgen, Sandra

    2017-07-21

    The diversity of genetically encoded small molecules produced by filamentous fungi remains largely unexplored, which makes these fungi an attractive source for the discovery of new compounds. However, accessing their full chemical repertoire under common laboratory culture conditions is a challenge. Epigenetic manipulation of gene expression has become a well-established tool for overcoming this obstacle. Here, we report that perturbation of the endophytic ascomycete Chalara sp. 6661, producer of the isofusidienol class of antibiotics, with the HDAC inhibitor vorinostat resulted in the production of four new modified xanthones. The structures of chalanilines A (1) and B (2) and adenosine-coupled xanthones A (3) and B (4) were determined by extensive NMR spectroscopic analyses, and the bioactivities of 1-4 were tested in antibiotic and cytotoxicity assays. Incorporation studies with deuterium-labeled vorinostat indicate that the aniline moiety in chalalanine A is derived from vorinostat itself. Our study shows that Chalara sp. is able to metabolize the HDAC inhibitor vorinostat to release aniline. This is a rare report of fungal biotransformation of the popular epigenetic modifier vorinostat into aniline-containing polyketides.

  17. Fabrication of amine-functionalized magnetite nanoparticles for water treatment processes

    International Nuclear Information System (INIS)

    Chan, Candace C. P.; Gallard, Hervé; Majewski, Peter

    2012-01-01

    Amine-functionalized magnetite nanoparticles are synthesized by a one pot water based process using N-[3-(trimethoxysilyl)propyl]diethylenetriamine (TRIS) as surfactant. The prepared functionalised nanoparticles are characterised by BET surface area measurements, X-ray diffraction, zeta potential measurement, and X-ray photoelectron spectrometry (XPS). The results clearly show the presence of TRIS on the surface of the nanoparticles. XPS analysis indicates the presence of very small amounts of maghemite on the surface of the magnetite nanoparticles. Water treatment test shows that the prepared nanoparticles are capable to remove natural organic matter (NOM) from natural water samples. The removal of NOM by the prepared particles is characterized by analysing the dissolved organic carbon (DOC) content and UV absorbance at 254 nm (UV 254 ) after the treatment of the water samples at various doses and treatment times.

  18. Fabrication of amine-functionalized magnetite nanoparticles for water treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Candace C. P. [University of South Australia, Ian Wark Research Institute (Australia); Gallard, Herve [Universite de Poitiers, Laboratoire de Chimie et Microbiologie de l' Eau (LCME)-UMR CNRS 6008 (France); Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [Mawson Institute, University of South Australia, School of Advanced Manufacturing and Mechanical Engineering (Australia)

    2012-03-15

    Amine-functionalized magnetite nanoparticles are synthesized by a one pot water based process using N-[3-(trimethoxysilyl)propyl]diethylenetriamine (TRIS) as surfactant. The prepared functionalised nanoparticles are characterised by BET surface area measurements, X-ray diffraction, zeta potential measurement, and X-ray photoelectron spectrometry (XPS). The results clearly show the presence of TRIS on the surface of the nanoparticles. XPS analysis indicates the presence of very small amounts of maghemite on the surface of the magnetite nanoparticles. Water treatment test shows that the prepared nanoparticles are capable to remove natural organic matter (NOM) from natural water samples. The removal of NOM by the prepared particles is characterized by analysing the dissolved organic carbon (DOC) content and UV absorbance at 254 nm (UV{sub 254}) after the treatment of the water samples at various doses and treatment times.

  19. Yb(OTf){sub 3}-catalyzed one-pot three component synthesis for tertiary amines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bum Seok; Kim, Ji Hye; Nam, Tae Kyu; Jang, Doo Ok [Dept. of Chemistry, Yonsei University, Wonju (Korea, Republic of)

    2015-07-15

    Tertiary amine functionality is found in many natural bioactive products such as alkaloids, amino acids, nucleic acids, pharmaceuticals, and agrochemicals. Tertiary amines have also been used as building blocks for nitrogen-containing organic compounds and synthetic polymers. A one-pot method for direct reductive amination of aldehydes has been developed to synthesize tertiary amines using HMDS as a nitrogen source in the presence of Yb(OTf ){sub 3}. With a stoichiometric amount of HMDS, the reaction afforded the desired tertiary amines without competitive reduction of the parent carbonyl compounds. This reaction offers a convenient and efficient protocol for synthesizing aromatic and aliphatic tertiary amines under mild reaction conditions.

  20. Charge transport and dielectric relaxation processes in anilin-based oligomers

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Moučka, R.; Ilčíková, M.; Bober, Patrycja; Kazantseva, N.; Špitálský, Z.; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Roč. 192, June (2014), s. 37-42 ISSN 0379-6779 Institutional support: RVO:61389013 Keywords : aniline-based oligomers * conductivity * dielectric properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  1. Influence of Biofield Energy Treatment on Isotopic Abundance Ratio in Aniline Derivatives

    OpenAIRE

    Nayak, Gopal; Trivedi, Mahendra Kumar; Trivedi, Dahryn; Branton, Alice

    2015-01-01

    The aim of this study was to evaluate the impact of biofield energy treatment on the isotopic abundance of 13C/12C or 2H/1H or 15N/14N ≡ (PM+1)/PM in aniline; and (PM+1)/PM and 81Br/79Br ≡ (PM+2)/PM in 4-bromoaniline using Gas Chromatography-Mass Spectrometry (GC-MS). Aniline and 4-bromoaniline samples were divided into two parts: control and treated. The control part remained as untreated, while the treated part was subjected to Mr. Trivedi’s biofield energy treatment. The treated samples we...

  2. Influence of Biofield Energy Treatment on Isotopic Abundance Ratio in Aniline Derivatives

    OpenAIRE

    Trivedi , Mahendra Kumar; Branton , Alice; Trivedi , Dahryn; Nayak , Gopal; Saikia , Gunin; Jana , Snehasis

    2015-01-01

    International audience; The aim of this study was to evaluate the impact of biofield energy treatment on the isotopic abundance of 13C/12C or 2H/1H or 15N/14N ≡ (PM+1)/PM in aniline; and (PM+1)/PM and 81Br/79Br ≡ (PM+2)/PM in 4-bromoaniline using Gas Chromatography-Mass Spectrometry (GC-MS). Aniline and 4-bromoaniline samples were divided into two parts: control and treated. The control part remained as untreated, while the treated part was subjected to Mr. Trivedi’s biofield energy treatment...

  3. Influence of Biofield Energy Treatment on Isotopic Abundance Ratio in Aniline Derivatives

    OpenAIRE

    Mahendra, Trivedi; Alice, Branton; Dahryn, Trivedi; Gopal, Nayak

    2015-01-01

    The aim of this study was to evaluate the impact of biofield energy treatment on the isotopic abundance of 13C/12C or 2H/1H or 15N/14N ≡ (PM+1)/PM in aniline; and (PM+1)/PM and 81Br/79Br ≡ (PM+2)/PM in 4-bromoaniline using Gas Chromatography-Mass Spectrometry (GC-MS). Aniline and 4-bromoaniline samples were divided into two parts: control and treated. The control part remained as untreated, while the treated part was subjected to Mr. Trivedi's biofield energy treatment. The treated samples we...

  4. Study of the rearrangement of N-alkylaniline to p-aminoalkylbencene. I. N-ethyl-l-14C-aniline

    International Nuclear Information System (INIS)

    Molera, M. J.; Gamboa, J. M.; Val Cob, M. del

    1961-01-01

    The rearrangement of N-ethylaniline to p-aminoethylbenzene has been studied over the temperature range 200-300 degree centigrade using different catalysts: Cl 2 Co, Cl 2 Zn, Cl 2 Ni, Cl 3 Al, Cl 2 Cd and Br H.N-ethyl-1- 1 4C-aniline has been synthesized from ethyl-1- 1 4C-iodide and aniline and its rearrangement to p-aminoethyl-benzene proves that the ethyl group does not rearrange itself during the reaction. A scheme for the degradation of both the N-ethyl-1- 1 4C aniline and the p-aminoethylbenzene produces is described. (Author) 14 refs

  5. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.

    Science.gov (United States)

    Ikawa, Takashi; Fujita, Yuki; Mizusaki, Tomoteru; Betsuin, Sae; Takamatsu, Haruki; Maegawa, Tomohiro; Monguchi, Yasunari; Sajiki, Hironao

    2012-01-14

    Nitriles were found to be highly effective alkylating reagents for the selective N-alkylation of amines under catalytic hydrogenation conditions. For the aromatic primary amines, the corresponding secondary amines were selectively obtained under Pd/C-catalyzed hydrogenation conditions. Although the use of electron poor aromatic amines or bulky nitriles showed a lower reactivity toward the reductive alkylation, the addition of NH(4)OAc enhanced the reactivity to give secondary aromatic amines in good to excellent yields. Under the same reaction conditions, aromatic nitro compounds instead of the aromatic primary amines could be directly transformed into secondary amines via a domino reaction involving the one-pot hydrogenation of the nitro group and the reductive alkylation of the amines. While aliphatic amines were effectively converted to the corresponding tertiary amines under Pd/C-catalyzed conditions, Rh/C was a highly effective catalyst for the N-monoalkylation of aliphatic primary amines without over-alkylation to the tertiary amines. Furthermore, the combination of the Rh/C-catalyzed N-monoalkylation of the aliphatic primary amines and additional Pd/C-catalyzed alkylation of the resulting secondary aliphatic amines could selectively prepare aliphatic tertiary amines possessing three different alkyl groups. According to the mechanistic studies, it seems reasonable to conclude that nitriles were reduced to aldimines before the nucleophilic attack of the amine during the first step of the reaction.

  6. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.

    Science.gov (United States)

    Liu, Lianghui; Wang, Zikuan; Fu, Xuefeng; Yan, Chun-Hua

    2012-11-16

    In the presence of a catalytic amount of radical initiator AIBN, primary amines are oxidatively coupled to imines and tertiary amines are cyanated to α-aminonitriles. These "metal-free" aerobic oxidative coupling reactions may find applications in a wide range of "green" oxidation chemistry.

  7. Facile and Green Synthesis of Saturated Cyclic Amines

    Directory of Open Access Journals (Sweden)

    Arruje Hameed

    2017-10-01

    Full Text Available Single-nitrogen containing saturated cyclic amines are an important part of both natural and synthetic bioactive compounds. A number of methodologies have been developed for the synthesis of aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes. This review highlights some facile and green synthetic routes for the synthesis of unsubstituted, multisubstituted and highly functionalized saturated cyclic amines including one-pot, microwave assisted, metal-free, solvent-free and in aqueous media.

  8. Aquatic fate of synfuel residuals: bioaccumulation of aniline and phenol by the freshwater phytoplankter Scenedesmus quadricauda

    International Nuclear Information System (INIS)

    Hardy, J.T.; Dauble, D.D.; Felice, L.J.

    1985-01-01

    Coal liquefaction compounds could, through accidental release, enter aquatic environments. Experiments were conducted to determine the kinetics, degree of bioconcentration and stability of two of these compounds at the first level of aquatic food web. The authors exposed the freshwater phytoplankter Scenedesmus quadricauda to sublethal concentrations of 14 C-labeled phenol and aniline. Both accumulation and elimination occurred within a few hours and followed hyperbolic kinetics. Results indicate that substantial quantities of accumulated compounds remain as the parent compound (22% for phenol and 52% for aniline) for up to 24 h and could be available to animals higher in the food web. Bioconcentration factors were 3.5 for phenol and 91 for aniline. 24 references, 2 figures, 1 table

  9. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24.

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Lee

    Full Text Available Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs, including benzene, toluene, and xylene (BTX, as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.

  10. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    Science.gov (United States)

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  11. Isotope exchange study of nickel xanthate in presence of aniline and isomeric toluidines

    International Nuclear Information System (INIS)

    Naidu, G.R.K.; Naidu, P.R.

    1982-01-01

    Isotopic exchange behaviour of nickel xanthate is studied in the presence of aniline and three isomeric toluidines at 18degC. The effect of base concentration is also studied on the exchange rate. The results show that the complex is labile in the kinetic sense in the presence of aniline meta and para toluidines. The rate of exchange increases with and para toluidines. The rate of exchange increases with increase in concentration of the base. The complex displays inert behaviour in the presence of o-toluidine and it is ascribed to dominant steric effect. (author)

  12. Liquid chromatographic determination of aniline and derivatives in environmental waters at nanogram per litre levels using fluorescamine pre-column derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Djozan, D. [Univ. of Tabriz (Iran, Islamic Republic of). Dept. of Analytical Chemistry; Faraj-Zadeh, M.A. [Univ. of Tabriz (Iran, Islamic Republic of). Dept. of Analytical Chemistry

    1995-11-01

    Fluorescamine (fluram) has been used as a fluorogenic compound for pre-column derivatization of aniline and some derivatives. Anilines were derivatized with fluram in citrate buffer media (pH 5.5) to form pyrrolinones. The highly fluorescence pyrrolinones were isolated and pre-concentrated by solid phase extraction. A reversed phase, Spherisorb RP-8 column and tetrahydrofuran: Water:formic acid (42:56:2) mobile phase was used for separation. Detection method was by a sensitive fluorimetric method and quantitation was at 395 and 495 nm. The various parameters such as reaction conditions between anilines and fluram, solid phase extraction and chromatographic separation were optimized. Calibrations were linear over the range considered with excellent correlation coefficients (r>0.999). Relative standard deviations are less than 2.5% and detection limits for aniline, p-toluidine, 4-chloroaniline and 4-bromoaniline were 6, 30, 6 and 8 ng L{sup -1}, respectively. This method has been used successfully for the determination of anilines in environmental waters. (orig.)

  13. Saponification of esters of chiral alpha-amino acids anchored through their amine function on solid support.

    Science.gov (United States)

    Cantel, Sonia; Desgranges, Stéphane; Martinez, Jean; Fehrentz, Jean-Alain

    2004-06-01

    Anchoring an alpha-amino acid residue by its amine function onto a solid support is an alternative to develop chemistry on its carboxylic function. This strategy can involve the use of amino-acid esters as precursors of the carboxylic function. A complete study on the Wang-resin was performed to determine the non racemizing saponification conditions of anchored alpha-amino esters. The use of LiOH, NaOH, NaOSi(Me)3, various solvents and temperatures were tested for this reaction. After saponification and cleavage from the support, samples were examined through their Marfey's derivatives by reversed phase HPLC to evaluate the percentage of racemization.

  14. Study of RBC Efficiency in Aniline Removal by Increasing Contactor Specific Surface

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Mousavi Aliani

    2011-01-01

    Full Text Available Aniline is a first type amino aromatic compound and has various applications in different pharmaceutical, synthetic dye, plastic, and petrochemical industries. It is poisonous and its discharge into the environment causes serious hazards that warrant it removal by an efficient treatment process.  In this study, the efficiency of rotating biological contactors in aniline removal was investigated using four 3-liter parallel systems (in two series. Two reactors in the first series had 27 disks. The second series had 14 discs with packings in each reactor with the same specific surfaces as compared to the first system.Aniline concentrations from 100 to 1200 mg/L and hydraulic loading rates from 1.57 to 6.28 L/m2.d were used throughout the study period in two treatments. The effect of disc rotation speed on system efficiency was also investigated. The results indicated that COD removal efficiency decreased with increasing hydraulic loading rate but increased with increasing disc speed from 5 to 15 rpm. The best removal efficiencies of 88 and 86 percent for RBCI and RBCII, respectively, were obtained for an aniline concentration of 400 mg/L, a hydraulic loading rate of 1.57 L/m2.d, and a disc speed of 15 rpm. Based on the results, although both systems yield almost equal efficiencies, the start-up period was shorter in RBCII with a clearer effluent due to the lower quantity of suspended microorganisms in the reactor than that in RBCI. Use of packing may decrease energy consumption for disc rotation due to the overall weight reduction of the system.

  15. Porous organic polymers with anchored aldehydes: A new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties

    KAUST Repository

    Guillerm, Vincent; Weselinski, Lukasz Jan; Al Kordi, Mohamed; Haja Mohideen, Mohamed Infas; Belmabkhout, Youssef; Cairns, Amy; Eddaoudi, Mohamed

    2014-01-01

    A novel porous organic polymer has been synthesized using the molecular building block approach to deliberately encompass aldehyde functionalities amenable to post functionalization. The resultant porous framework allows a facile, one-step quantitative and post-synthetic functionalization by amines, permitting enhanced CO2 sorption properties. © 2014 The Royal Society of Chemistry.

  16. Facile synthesis of amine-functional reduced graphene oxides as modified quick, easy, cheap, effective, rugged and safe adsorbent for multi-pesticide residues analysis of tea.

    Science.gov (United States)

    Ma, Guicen; Zhang, Minglu; Zhu, Li; Chen, Hongping; Liu, Xin; Lu, Chengyin

    2018-01-05

    Amine-functional reduced graphene oxide (amine-rGO) with different carbon chain length amino groups were successfully synthesized. The graphene oxides (GO) reduction as well as amino grafting were achieved simultaneously in one step via a facile solvothermal synthetic strategy. The obtained materials were characterized by X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy to confirm the modification of GO with different amino groups. The adsorption performance of catechins and caffeine from tea acetonitrile extracts on different amine functional rGO samples were evaluated. It was found that tributylamine-functional rGO (tri-BuA-rGO) exhibited the highest adsorption ability for catechins and caffeine compared to GO and other amino group functional rGO samples. It was worth to note that the adsorption capacity of catechins on tri-BuA-rGO was 11 times higher than that of GO (203.7mgg -1 vs 18.7mgg -1 ). Electrostatic interaction, π-π interaction and surface hydrophilic-hydrophobic properties of tri-BuA-rGO played important roles in the adsorption of catechins as well as caffeine. The gravimetric analysis confirmed that the tri-BuA-rGO achieved the highest efficient cleanup preformance compared with traditional dispersive solid phase extraction (dSPE) adsorbents like primary-secondary amine (PSA), graphitized carbon black (GCB) or C18. A multi-pesticides analysis method based on tri-BuA-rGO is validated on 33 representative pesticides in tea using gas chromatography coupled to tandem mass spectrometry or high-performance liquid chromatography coupled with tandem mass spectrometry. The analysis method gave a high coefficient of determination (r 2 >0.99) for each pesticide and satisfactory recoveries in a range of 72.1-120.5%. Our study demonstrated that amine functional rGO as a new type of QuEChERS adsorbent is expected to be widely applied for analysis of pesticides at trace levels. Copyright © 2017

  17. Functional electrospun nanofibers for multimodal sensitive detection of biogenic amines in food via a simple dipstick assay.

    Science.gov (United States)

    Yurova, Nadezhda S; Danchuk, Alexandra; Mobarez, Sarah N; Wongkaew, Nongnoot; Rusanova, Tatiana; Baeumner, Antje J; Duerkop, Axel

    2018-01-01

    Electrospun nanofibers (ENFs) are promising materials for rapid diagnostic tests like lateral flow assays and dipsticks because they offer an immense surface area while excluding minimal volume, a variety of functional surface groups, and can entrap functional additives within their interior. Here, we show that ENFs on sample pads are superior in comparison to standard polymer membranes for the optical detection of biogenic amines (BAs) in food using a dipstick format. Specifically, cellulose acetate (CA) fibers doped with 2 mg/mL of the chromogenic and fluorogenic amine-reactive chameleon dye Py-1 were electrospun into uniform anionic mats. Those extract cationic BAs from real samples and Py-1 transduces BA concentrations into a change of color, reflectance, and fluorescence. Dropping a BA sample onto the nanofiber mat converts the weakly fluorescent pyrylium dye Py-1 into a strongly red emitting pyridinium dye. For the first time, a simple UV lamp excites fluorescence and a digital camera acts as detector. The intensity ratio of the red to the blue channel of the digital image is dependent on the concentration of most relevant BAs indicating food spoilage from 10 to 250 μM. This matches the permitted limits for BAs in foods and no false positive signals arise from secondary and tertiary amines. BA detection in seafood samples was also demonstrated successfully. The nanofiber mat dipsticks were up to sixfold more sensitive than those using a polymer membrane with the same dye embedded. Hence, nanofiber-based tests are not only superior to polymer-based dipstick assays, but will also improve the performance of established tests related to food safety, medical diagnostics, and environmental testing. Graphical Absract ᅟ.

  18. Effect of template in MCM-41 on the adsorption of aniline from aqueous solution.

    Science.gov (United States)

    Yang, Xinxin; Guan, Qingxin; Li, Wei

    2011-11-01

    The effect of the surfactant template cetyltrimethylammonium bromide (CTAB) in MCM-41 on the adsorption of aniline was investigated. Various MCM-41 samples were prepared by controlling template removal using an extraction method. The samples were then used as adsorbents for the removal of aniline from aqueous solution. The results showed that the MCM-41 samples with the template partially removed (denoted as C-MCM-41) exhibited better adsorption performance than MCM-41 with the template completely removed (denoted as MCM-41). The reason for this difference may be that the C-MCM-41 samples had stronger hydrophobic properties and selectivity for aniline because of the presence of the template. The porosity and cationic sites generated by the template play an important role in the adsorption process. The optimal adsorbent with moderate template was achieved by changing the ratio of extractant; it has the potential for promising applications in the field of water pollution control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H2O2

    International Nuclear Information System (INIS)

    Dong, Xinbo; Wang, Danjun; Li, Kebin; Zhen, Yanzhong; Hu, Huaiming; Xue, Ganglin

    2014-01-01

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H 2 O 2 , featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH 2 ) are prepared and characterized by FT-IR, XRD, N 2 adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H 2 O 2 as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H 5 [PV 2 W 10 O 40 ] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H 2 O 2

  20. Bioreducible poly(amido amine)s for non-viral gene delivery

    NARCIS (Netherlands)

    Lin, C.

    2008-01-01

    This thesis describes the design and development of bioreducible poly(amido amine)s as non-viral vectors for gene delivery in vitro and in vivo. The structural influences of these polymers on their physico-chemical properties and gene delivery properties, transfection capability and cytotoxicity in

  1. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    Science.gov (United States)

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  2. Amine functionalization of carbon nanotubes for the preparation of CNT based polyactide composites - A comparative study

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2011-11-01

    Full Text Available . They are proven to have unique electronic, mechanical, and physical properties.1,2 However, the limited solubility of CNTs in most organic solvents limits their chemical manipulation, quantitative characterization, and wide application. In recent years... (SWCNTs) can be solubilized in common organic solvents by noncovalent (ionic) functionalization of the carboxylic acid groups by using octadecyl amine (ODA). They found that the same dissolution process applied to arc-produced MWCNTs, average length < 1...

  3. The influence of the matrix structure on the oxidation of aniline in a silica sol-gel composite

    International Nuclear Information System (INIS)

    Widera, J.; Kijak, A.M.; Ca, D.V.; Pacey, G.E.; Taylor, R.T.; Perfect, H.; Cox, J.A.

    2005-01-01

    Mesoporous and microporous silica matrices were formed on indium tin oxide electrodes for liquid-phase voltammetry and as monoliths for solid-state voltammetry of aniline. The pore structure, which was verified by scanning probe microscopy and by surface area measurement, was directed by either control of pH during sol-gel processing or by inclusion of a templating agent. Whether aniline was included as a dopant in the sol-gel or as a component of the contacting liquid, the pore size influenced the coupling of the product of its electrochemical oxidation. With microporous silica, the dominant products were dimers and related short-chain products whereas with mesoporous silica, polymerization was suggested. As a step toward the formation of polyaniline (PANI) that is covalently anchored to the sol-gel, the electrochemistry of aniline was investigated using composites prepared from sols comprising tetraethyl orthosilicate (TEOS), 3-aminophenyl-[3-triethoxylsilyl)-propyl] urea (ormosil), and aniline in various ratios. Combinatorial chemistry identified that the optimum combination of silica precursors in terms of obtaining PANI was a 1:12 mole ratio of ormosil:TEOS

  4. [2-(2,4-dimethylphenylthio)phenyl] aniline and its amide derivatives ...

    Indian Academy of Sciences (India)

    YOGESH PATIL

    2018-02-15

    Feb 15, 2018 ... These derivatives could be considered as a precursor structure for further design of antituberculosis agent. Keywords. [2-(2,4-dimethylphenylthio)phenyl] aniline; antituberculosis activity; cytotoxicity. 1. Introduction. Tuberculosis (TB) is a contagious disease caused by the. Mycobacterium tuberculosis (MTB).

  5. Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids

    DEFF Research Database (Denmark)

    Zahrtmann, Nanette; Claver, Carmen; Godard, Cyril

    2018-01-01

    A catalytic system for the selective oxidative carbonylation of aniline to diphenylurea based on Pd complexes in combination with imidazolium ionic liquids is presented. Both oxidants, Pd complexes and ionic liquids affect the activity of the reaction while the choice of oxidant determines...

  6. Redox self-sufficient whole cell biotransformation for amination of alcohols.

    Science.gov (United States)

    Klatte, Stephanie; Wendisch, Volker F

    2014-10-15

    Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Clustering of amines and hydrazines in atmospheric nucleation

    Science.gov (United States)

    Li, Siyang; Qu, Kun; Zhao, Hailiang; Ding, Lei; Du, Lin

    2016-06-01

    It has been proved that the presence of amines in the atmosphere can enhance aerosol formation. Hydrazine (HD) and its substituted derivatives, monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH), which are organic derivatives of amine and ammonia, are common trace atmospheric species that may contribute to the growth of nucleation clusters. The structures of the hydrazine and amine clusters containing one or two common nucleation molecules (ammonia, water, methanol and sulfuric acid) have been optimized using density functional theory (DFT) methods. The clusters growth mechanism has been explored from the thermochemistry by calculating the Gibbs free energies of adding an ammonia, water, methanol or sulfuric acid molecule step by step at room temperature, respectively. The results show that hydrazine and its derivatives could enhance heteromolecular homogeneous nucleation in the earth's atmosphere.

  8. Influence of both ion bombardment and chemical treatment processes on the electrical conductivity of PVC/poly aniline composites

    International Nuclear Information System (INIS)

    Gad, E.A.M.; Ashour, A.H.; Abdel-Hamid, H.M.; Sayed, W.M.

    1999-01-01

    In this article the changes in the electrical conductivity of PVC/poly aniline composites, as temperature consecutively increases, have been measured. The measurement were taken with correspondence to a control series of the composites under two processes:A. Composite samples bombarded with Ar + ions with fluence 2.44 x 10 13 beam ions /cm 2 ., sec 4 of 4 ke V beam energy where argon atoms can induce defects in the surface layer take place. Composite samples treated chemically with concentrated H 2 SO 4 as dopant which reacts with nitrogen atom in aniline. The measurements were also, done with the composites as the ratio of poly(aniline) stepped upward

  9. Poly(aniline-co-m-aminobenzoic acid) deposited on poly(vinyl ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have deposited poly(aniline-co-m-aminobenzoic acid) on poly(vinyl alcohol) (PVA) by in situ ... along the polyaniline (PANI) chain results in self dop- ing of PANI and ..... The value of electrical conductivity is found to be ...

  10. The economics of amine usage

    International Nuclear Information System (INIS)

    Fountain, M.J.

    1994-01-01

    The EPRI computer programm, 'Aminemod', a PWR chemistry model, has been used to compare the technical advantages of the 'advanced' amines, ethanolamine, 1,2 diaminoethane and 5 aminopentanol over morpholine in generating an elevated pH in the moisture separator and the economics of using these amines has been assessed by using an MS Excel spreadsheet in conjunction with Aminemod. The advanced amines are capable of achieving 1 pH unit above neutrality, the EPRI target for prevention of erosion-corrison, at acceptable cost and, compared with 'conventional' amines, at considerably reduced ionic load on the condensate polisher. The exercise demonstrates that it is essential to evaluate the effect of an amine dosing regime on the total operating cost and that it is not possible to prejudge the economic outcome on the basis of an amine's purchase price. (orig.)

  11. Benzimidazoles and benzoxazoles via the nucleophilic addition of anilines to nitroalkanes.

    Science.gov (United States)

    Aksenov, Alexander V; Smirnov, Alexander N; Aksenov, Nicolai A; Bijieva, Asiyat S; Aksenova, Inna V; Rubin, Michael

    2015-04-14

    PPA-induced umpolung triggers efficient nucleophilic addition of unactivated anilines to nitroalkanes to produce N-hydroxyimidamides. The latter undergo sequential acid-promoted cyclocondensation with ortho-OH or ortho-NHR moieties to afford benzoxazoles and benzimidazoles, respectively.

  12. Factors influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Plutschack, Matthew B; Gilmore, Kerry; Seeberger, Peter H

    2015-04-20

    Aerobic amine oxidation is an attractive and elegant process for the α functionalization of amines. However, there are still several mechanistic uncertainties, particularly the factors governing the regioselectivity of the oxidation of asymmetric secondary amines and the oxidation rates of mixed primary amines. Herein, it is reported that singlet-oxygen-mediated oxidation of 1° and 2° amines is sensitive to the strength of the α-C-H bond and steric factors. Estimation of the relative bond dissociation energy by natural bond order analysis or by means of one-bond C-H coupling constants allowed the regioselectivity of secondary amine oxidations to be explained and predicted. In addition, the findings were utilized to synthesize highly regioselective substrates and perform selective amine cross-couplings to produce imines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Kinetic investigation of the oxidation of N-alkyl anilines by ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 112; Issue 6. Kinetic investigation of the oxidation of N-alkyl anilines by peroxomonophosphoric acid in anionic surfactant sodium lauryl sulphate. G P Panigrahi Jagannath Panda. Physical and Theoretical Volume 112 Issue 6 December 2000 pp 615-622 ...

  14. Biogenic amines in dry fermented sausages: a review.

    Science.gov (United States)

    Suzzi, Giovanna; Gardini, Fausto

    2003-11-15

    Biogenic amines are compounds commonly present in living organisms in which they are responsible for many essential functions. They can be naturally present in many foods such as fruits and vegetables, meat, fish, chocolate and milk, but they can also be produced in high amounts by microorganisms through the activity of amino acid decarboxylases. Excessive consumption of these amines can be of health concern because their not equilibrate assumption in human organism can generate different degrees of diseases determined by their action on nervous, gastric and intestinal systems and blood pressure. High microbial counts, which characterise fermented foods, often unavoidably lead to considerable accumulation of biogenic amines, especially tyramine, 2-phenylethylamine, tryptamine, cadaverine, putrescine and histamine. However, great fluctuations of amine content are reported in the same type of product. These differences depend on many variables: the quali-quantitative composition of microbial microflora, the chemico-physical variables, the hygienic procedure adopted during production, and the availability of precursors. Dry fermented sausages are worldwide diffused fermented meat products that can be a source of biogenic amines. Even in the absence of specific rules and regulations regarding the presence of these compounds in sausages and other fermented products, an increasing attention is given to biogenic amines, especially in relation to the higher number of consumers with enhanced sensitivity to biogenic amines determined by the inhibition of the action of amino oxidases, the enzymes involved in the detoxification of these substances. The aim of this paper is to give an overview on the presence of these compounds in dry fermented sausages and to discuss the most important factors influencing their accumulation. These include process and implicit factors as well as the role of starter and nonstarter microflora growing in the different steps of sausage production

  15. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  16. Amine Measurements in Boreal Forest Air

    Science.gov (United States)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  17. Photocatalytic mineralisation of aniline derivatives in aquatic systems using semiconductor oxides.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Khaledisardashti, Mohammad; Montazerozohori, Morteza

    2004-01-01

    Photocatalytic degradation of aqueous solution of aniline derivatives such as ortho-nitroaniline (ONA), meta-nitroaniline (MNA), para-nitroaniline (PNA), 4-bromoaniline (4-BrA) and 2-chloroaniline (2-ClA) were carried out over ZnO or TiO2 (anatase and rutile) in a photocatalytic reactor. The observed results revealed that the order of photocatalytic activity for degradation of selected compound was ZnO > TiO2 (rutile) > TiO2 (anatase) with the ratio of the rate constants to the surface area of 3.2 x 10(-3), 1.9 x 10(-3) and 1.0 x 10(-3) respectively. The effect of some physical and chemical parameters such as amount of photocatalyst, pH, time of irradiation and solvent were studied. Degradation kinetic was according to Longmuir behaviour. Spectrophotometric methods and TOC analysis supported that aniline derivatives almost completely mineralized.

  18. Disposition and metabolism of aniline in Fischer 344 rats and C57BL/6 X C3H F1 mice

    International Nuclear Information System (INIS)

    McCarthy, D.J.; Waud, W.R.; Struck, R.F.; Hill, D.L.

    1985-01-01

    We examined the metabolism and disposition of aniline, which induces spleen hemangiosarcomas in rats but no tumors in mice, in normal and predosed Fischer 344 rats, and C57BL/6 X C3H F1 mice administered low (50 and 100 mg/kg, respectively) or high (250 and 500 mg/kg, respectively) doses. Of 11 tissues examined, the highest levels of binding of [ 14 C]aniline to DNA were in the kidney, large intestine, and spleen of high-dose rats that had received prior dosing; these tissues had covalent binding indices of 14.2, 4.3, and 3.7 mumol/mol nucleotides/dose, respectively. Protein and RNA were the major macromolecular targets for binding of radioactivity from [ 14 C]aniline. Relative to controls, most tissues from predosed mice (low dose and high dose) showed less binding to protein and RNA; but for most tissues from predosed rats administered 50-mg/kg doses of [ 14 C]aniline, there was more extensive binding. Also relative to controls, binding of radioactivity in the spleen of predosed rats given [ 14 C]aniline (50 mg/kg) was 148% greater for protein and 302% greater for RNA. For rats administered 250 mg of [ 14 C]aniline per kg, however, there were no outstanding differences in binding to RNA and protein between normal and predosed animals. The profiles of urinary metabolites produced by rats and mice were not appreciably different in animals predosed with aniline. For rats, however, the profiles were different for the low and high doses, suggesting that the main metabolic pathway was saturated at the higher dose. p-Acetamidophenyl sulfate represented over 70% of the total radioactivity recovered from the urine of rats dosed with 50 mg of aniline per kg but only 30% in the urine of those dosed with 250 mg/kg. The urine of the high-dose rats contained greater percentages of p-aminophenyl sulfate, p-acetamidophenyl glucuronide, and unconjugated metabolites

  19. Interaction between D-fructose dehydrogenase and methoxy-substituent-functionalized carbon surface to increase productive orientations

    International Nuclear Information System (INIS)

    Xia, Hong-qi; Hibino, Yuya; Kitazumi, Yuki; Shirai, Osamu; Kano, Kenji

    2016-01-01

    Highlights: • Methoxy-functionalized surface improves the DET-type bioelectrocatalysis of FDH. • Methoxy-functionalized surface increases productive orientations. • The total catalytic activity of FDH is almost independent of the modification. • High current density as well as good stability is useful for biofuel cells. - Abstract: D-Fructose dehydrogenase (FDH) from Gluconobacter japonicus NBRC3260 catalyzes the two-electron oxidation of D-fructose to 5-keto-D-fructose, and it is widely used in biofuel cells and biosensors. In this study, methoxy-substituent-functionalized carbon electrodes are constructed by electrochemical oxidation of methoxy-aniline derivatives on Ketjen Black (KB)-modified electrodes to improve the immobilization and bioelectrocatalysis of FDH. It is proposed that the specific interaction between FDH, especially the heme c moiety, and methoxy substituent(s) of amines on carbon electrode increases the proportion of the productively oriented FDH molecules to the total FDHs. Consequently, the limiting catalytic current density of the D-fructose oxidation increases to as much as 23 ± 2 mA cm −2 in FDH/2,4-dimethoxyaniline/KB/glassy carbon electrode, for example.

  20. Atomic-Level Organization of Vicinal Acid-Base Pairs through the Chemisorption of Aniline and Derivatives onto Mesoporous SBA15

    KAUST Repository

    Basset, Jean-Marie

    2016-06-09

    The design of novel heterogeneous catalysts with multiple adjacent functionalities is of high interest for heterogeneous catalysis. Herein, we report a method to obtain a majority bifunctional acid-base pairs on SBA15. Aniline reacts with SBA15 by opening siloxane bridges leading to N-phenylsilanamine-silanol pairs. In contrast with ammonia treated surfaces, the material is stable under air/moisture. Advanced solid state MAS NMR: 2D ¹H-¹H double-quantum, ¹H-¹³C HETCOR experiments and dynamic nuclear polarization enhanced ²⁹Si and ¹⁵N spectra demonstrate both the close proximity between the two moieties and the formation of a covalent Si-N surface bond and confirm the design of vicinal acid-base pairs. This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. A correlation of the substituents effects on the aromatic ring (Hammet parameters) on the kinetics of the model reaction of Knoevenagel is observed.

  1. Occupational contact dermatitis caused by aniline epoxy resins in the aircraft industry.

    Science.gov (United States)

    Pesonen, Maria; Suuronen, Katri; Jolanki, Riitta; Aalto-Korte, Kristiina; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Valtanen, Ilona; Alanko, Kristiina

    2015-08-01

    Tetraglycidyl-4,4'-methylenedianiline (TGMDA) is an aniline epoxy resin used in, for example, resin systems of pre-impregnated composite materials (prepregs) of the aircraft industry. Allergic contact dermatitis caused by TGMDA in prepregs has been described previously. To report on 9 patients with occupational allergic contact dermatitis caused by TGMDA in epoxy glues used in helicopter assembly. The patients were examined with patch testing at the Finnish Institute of Occupational Health in 2004-2009. The first patient was diagnosed by testing both components of two epoxy glues from the workplace, and was also tested with glue ingredients, including TGMDA. The following patients were tested with the glues and TGMDA. The resin parts of the glues were analysed for their epoxy compounds, including TGMDA. All of the patients had a patch test reaction to one or both of the resin parts of the TGMDA-containing glues. Eight of them had a strong allergic reaction to TGMDA, and one had a doubtful reaction to TGMDA. Two of the patients also had an allergic reaction to triglycidyl-p-aminophenol (TGPAP), another aniline epoxy resin, which was not present in the TGMDA-containing glues. In aircraft industry workers with suspected occupational dermatitis, aniline epoxy resins should be considered and patch tested as possible contact allergens. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Study of charge transfer complexes of menadione (vitamin K 3) with a series of anilines

    Science.gov (United States)

    Pal, Purnendu; Saha, Avijit; Mukherjee, Asok K.; Mukherjee, Dulal C.

    2004-01-01

    Menadione (vitamin K 3) has been shown to form charge transfer complexes with N, N-dimethyl aniline, N, N-dimethyl p-toluidine and N, N-dimethyl m-toluidine in CCl 4 medium. The CT transition energies are well correlated with the ionisation potentials of the anilines. The formation constants of the complexes have been determined at a number of temperatures from which the enthalpies and entropies of formation have been obtained. The formation constants exhibit a very good linear free energy relationship (Hammett) at all the temperatures studied.

  3. Synthesis of Poly aniline-Montmorillonite Nano composites Using H2O2 as the Oxidant

    International Nuclear Information System (INIS)

    Binitha, N.; Binitha, N.; Suraja, V.; Zahira Yaakob; Sugunan, S.

    2011-01-01

    Poly aniline montmorillonite nano composite was prepared using H 2 O 2 as the oxidant. The catalytic environment of montmorillonite favours polymerization. Intercalation and composite formation was proven from various techniques such as XRD, FTIR, DRS and thermal analysis. XRD patterns give the dimension of the intercalated PANI, from the shift of 2θ values, which is in the nano range. FTIR showed that PANI composite formation occurred without affecting the basic clay layer structure. Thus the successful development of an alternative cheap route for poly aniline-montmorillonite nano composite was well established. (author)

  4. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xinbo [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Wang, Danjun [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Li, Kebin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Zhen, Yanzhong [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Hu, Huaiming [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Xue, Ganglin, E-mail: xglin707@163.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China)

    2014-09-15

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.

  5. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen; Didas, Stephanie A.; Jones, Christopher W.

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams

  6. Additive impairment of the barrier function and irritation by biogenic amines and sodium lauryl sulphate: a controlled in vivo tandem irritation study.

    Science.gov (United States)

    Fluhr, J W; Kelterer, D; Fuchs, S; Kaatz, M; Grieshaber, R; Kleesz, P; Elsner, P

    2005-01-01

    Biogenic amines are potential irritants e.g. in fish-, meat-, milk- and egg-processing professions like cooks, butchers and bakers. The aim of this study was to test the irritative and barrier-disrupting properties of the biogenic amines ammonium hydroxide (AM), dimethylamine (DMA) and trimethylamine (TMA). A repeated sequential irritation of 30 min twice per day was performed over a total of 4 days (tandem repeated irritation test) on the back of 20 healthy volunteers of both sexes with AM, DMA, TMA and sodium lauryl sulphate (SLS). The epidermal barrier function was assessed with a Tewameter TM 210, stratum corneum surface pH was measured with a Skin-pH-Meter 900, inflammation was assessed with a Chromameter CR-300 on the a* axis for redness and a visual score was recorded. All tested biogenic amines (AM, DMA and TMA) induced a barrier disruption and a pH increase paralleled with a 1-day-delayed onset of inflammatory signs. These effects were further enhanced and accelerated by a sequential application of SLS together with the biogenic amines, and inflammation occurred earlier than with the single compounds. Acetic acid (AA) in contrast did only show mild barrier disruption and no significant inflammatory signs. Our system allowed a ranking of the different compounds in their irritative potential in the tandem irritation with SLS: SLS > NaOH > TMA > AA > AM > DMA. The results are suggestive that in the food-processing industry the simultaneous contact with biogenic amines and harmful detergents like SLS should be minimized. Copyright 2005 S. Karger AG, Basel.

  7. Mechanism of the N-Hydroxylation of Primary and Secondary Amines by Cytochrome P450

    DEFF Research Database (Denmark)

    Seger, Signe T.; Rydberg, Patrik; Olsen, Lars

    2015-01-01

    Cytochrome P450 enzymes (CYPs) metabolize alkyl- and arylamines, generating several different products. For the primary and secondary amines, some of these reactions result in hydroxylated amines, which may be toxic. Thus, when designing new drugs containing amine groups, it is important to be able...... to predict if a given compound will be a substrate for CYPs, in order to avoid toxic metabolites, and hence to understand the mechanism that is utilized by CYPs. Two possible mechanisms, for the N-hydroxylation of primary and secondary amines mediated by CYPs, are studied by density functional theory (DFT...

  8. Ligand-Enabled γ-C(sp(3))-H Olefination of Amines: En Route to Pyrrolidines.

    Science.gov (United States)

    Jiang, Heng; He, Jian; Liu, Tao; Yu, Jin-Quan

    2016-02-17

    Pd(II)-catalyzed olefination of γ-C(sp(3))-H bonds of triflyl (Tf) and 4-nitrobenzenesulfonyl (Ns) protected amines is achieved. Subsequent aza-Wacker oxidative cyclization or conjugate addition of the olefinated intermediates provides a variety of C-2 alkylated pyrrolidines. Three pyridine- and quinoline-based ligands are developed to match different classes of amine substrates, demonstrating a rare example of ligand-enabled C(sp(3))-H olefination reactions. The use of Ns protecting group to direct C(sp(3))-H activation of alkyl amines is also a significant step toward practical C-H functionalizations of alkyl amines.

  9. Combustion synthesis by reaction and characterization of nano ferrites: study of fuel aniline, citric and its mixture

    International Nuclear Information System (INIS)

    Silva, M.C. da; Coutinho, J.P.; Costa, A.C.F.M.; Kiminami, R.H.G.A.; Freitas, N.L. de

    2012-01-01

    The present study aims to evaluate the influence of aniline and citric acid used alone and combined in a ratio of 50% each in the characterization of NiZn ferrite synthesized by combustion reaction method in a muffle furnace. Measurements were made of temperature and reaction time. The nano-powders were characterized by XRD, EDX, textural analysis and SEM. The highest temperature was achieved by the reaction using the mixture of fuel and increased reaction time using citric acid. The nano ferrites using different fuels, and the mixture changed phases, the crystallite size and decreased surface area of the samples with aniline, citric acid and a mixture of both, respectively. The powder morphology ranged from presenting the formation of irregular blocks for the use of citric agglomerated in the form of skeins with aniline and a mixture to agglomerate larger particles. (author)

  10. Corrosion inhibition of aluminum with a series of aniline monomeric surfactants and their analog polymers in 0.5 M HCl solution

    Directory of Open Access Journals (Sweden)

    M.M. El-Deeb

    2015-07-01

    Full Text Available The inhibition effect of 3-(12-sodiumsulfonate dodecyloxy aniline monomeric surfactant (MC12 and its analog polymer Poly 3-(dodecyloxy sulfonic acid aniline (PC12 on the corrosion of aluminum in 0.5 M HCl solution was investigated using weight loss and potentiodynamic polarization techniques. The presence of these two compounds in 0.5 M HCl inhibits the corrosion of aluminum without modifying the mechanism of corrosion process. It was found that these inhibitors act as mixed-type inhibitors with anodic predominance as well as the inhibition efficiency increases with increasing inhibitor concentration, but decreases with raising temperature. Langmuir and Frumkin adsorption isotherms fit well with the experimental data. Thermodynamic functions for both dissolution and adsorption processes were determined. The obtained results from weight loss and potentiodynamic polarization techniques are in good agreement with contact angle measurements.

  11. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles

    Science.gov (United States)

    Ghalei, Behnam; Sakurai, Kento; Kinoshita, Yosuke; Wakimoto, Kazuki; Isfahani, Ali Pournaghshband; Song, Qilei; Doitomi, Kazuki; Furukawa, Shuhei; Hirao, Hajime; Kusuda, Hiromu; Kitagawa, Susumu; Sivaniah, Easan

    2017-07-01

    Mixed matrix membranes (MMMs) for gas separation applications have enhanced selectivity when compared with the pure polymer matrix, but are commonly reported with low intrinsic permeability, which has major cost implications for implementation of membrane technologies in large-scale carbon capture projects. High-permeability polymers rarely generate sufficient selectivity for energy-efficient CO2 capture. Here we report substantial selectivity enhancements within high-permeability polymers as a result of the efficient dispersion of amine-functionalized, nanosized metal-organic framework (MOF) additives. The enhancement effects under optimal mixing conditions occur with minimal loss in overall permeability. Nanosizing of the MOF enhances its dispersion within the polymer matrix to minimize non-selective microvoid formation around the particles. Amination of such MOFs increases their interaction with thepolymer matrix, resulting in a measured rigidification and enhanced selectivity of the overall composite. The optimal MOF MMM performance was verified in three different polymer systems, and also over pressure and temperature ranges suitable for carbon capture.

  12. Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer.

    Science.gov (United States)

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2010-04-12

    Two-, four-, and six-armed branched copolymers with electroactive and biodegradable properties were synthesized by coupling reactions between poly(l-lactides) (PLLAs) with different architecture and carboxyl-capped aniline trimer (CCAT). The aniline oligomer CCAT was prepared from amino-capped aniline trimer and succinic anhydride. FT-IR, NMR, and SEC analyses confirmed the structure of the branched copolymers. UV-vis spectra and cyclic voltammetry of CCAT and copolymer solution showed good electroactive properties, similar to those of polyaniline. The water contact angle of the PLLAs was the highest, followed by the undoped copolymer and the doped copolymers. The values of doped four-armed copolymers were 54-63 degrees . Thermal properties of the polymers were studied by DSC and TGA. The copolymers had better thermal stability than the pure PLLAs, and the T(g) between 48-58 degrees C and T(m) between 146-177 degrees C of the copolymers were lower than those of the pure PLLA counterparts. This kind of electroactive and biodegradable copolymer has a great potential for applications in cardiovascular or neuronal tissue engineering.

  13. Application of Functionalized SWCNTs for Increase of Degradation Resistance of Acrylic Paint for Cars

    Directory of Open Access Journals (Sweden)

    Osiel Lucas Flores

    2013-01-01

    Full Text Available Physical properties of automotive acrylic paint are improved by incorporation of three different types of carbon nanotubes: single-wall carbon nanotubes (SWCNTs, OH-functionalized single-wall carbon nanotubes (OH-SWCNTs, and aniline-functionalized single-wall carbon nanotubes (aniline-SWCNTs. The formed composites are studied by electron miscroscopy methods and Raman spectrometry. It is found that the acrylic paints with addition of OH-SWCNTs and aniline-SWCNTs show better quality for their applications. In particular, the resistance against degradation by electron beam increased in ~500%.

  14. A Hydrazone-Based exo-Directing-Group Strategy for β C-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Huang, Zhongxing; Wang, Chengpeng; Dong, Guangbin

    2016-04-18

    Described is a new hydrazone-based exo-directing group (DG) strategy developed for the functionalization of unactivated primary β C-H bonds of aliphatic amines. Conveniently synthesized from protected primary amines, the hydrazone DGs are shown to site-selectively promote the β-acetoxylation and tosyloxylation via five-membered exo-palladacycles. Amines with a wide scope of skeletons and functional groups are tolerated. Moreover, the hydrazone DG can be readily removed, and a one-pot C-H acetoxylation/DG removal protocol was also discovered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comparison of bacterial cells and amine-functionalized abiotic surfaces as support for Pd nanoparticle synthesis

    DEFF Research Database (Denmark)

    De Corte, Simon; Bechstein, Stefanie; Lokanathan, Arcot R.

    2013-01-01

    An increasing demand for catalytic Pd nanoparticles has motivated the search for sustainable production methods. An innovative approach uses bacterial cells as support material for synthesizing Pd nanoparticles by reduction of Pd(II) with e.g. hydrogen or formate. Nevertheless, drawbacks...... nanoparticles, and that abiotic surfaces could support the Pd particle synthesis as efficiently as bacteria. In this study, we explore the possibility of replacing bacteria with amine-functionalized materials, and we compare different functionalization strategies. Pd nanoparticles formed on the support...... on these surfaces was higher than for Pd particles formed on Shewanella oneidensis cells. Smaller Pd nanoparticles generally have better catalytic properties, and previous studies have shown that the particle size can be lowered by increasing the amount of support material used during Pd particle formation. However...

  16. Sillica Gel-Amine from Geothermal Sludge

    Science.gov (United States)

    Muljani, S.; Pujiastuti, C.; Wicaksono, P.; Lutfianingrum, R.

    2018-01-01

    Silica Gel-Amine (SGA) has been made from geothermal sludge by grafting amine method. Sodium silicate solution is prepared by extracted geothermal sludge powder using sodium hidroxide solution then acidification in the range of pH 5 - 9 by using tartaric acid 1N. The grafting process uses 1 ml of ammonia solution and 10 ml of toluene at a rate of 0.1 ml min-1 accompanied by a reflux process. The amine grafting is done in two methods. The first method is grafting amine in silicate solution and the second method is grafting amine in washed gel. Product SGA was confirmed by FTIR, TGA-DTG and BET characterization. The results show that the pH affects the amount of amine that is grafted onto silica gel. Differences in grafting method affect the size of the pore and surface area. SGA product prepared by grafting washed gel at pH 8 have pore diameter of 12.06 nm, surface area of 173.44 m2g-1, and mass of decomposed amine compound 0.4 mg. In the presence of amine groups on the silica gel surface, these adsorbents may be able to selectively adsorb CO2 gas from natural gas.

  17. Exploring Redox States, Doping and Ordering of Electroactive Star-Shaped Oligo(aniline)s.

    Science.gov (United States)

    Mills, Benjamin M; Fey, Natalie; Marszalek, Tomasz; Pisula, Wojciech; Rannou, Patrice; Faul, Charl F J

    2016-11-14

    We have prepared a simple star-shaped oligo(aniline) (TDPB) and characterised it in detail by MALDI-TOF MS, UV/Vis/NIR spectroscopy, time-dependent DFT, cyclic voltammetry and EPR spectroscopy. TDPB is part of an underdeveloped class of π-conjugated molecules with great potential for organic electronics, display and sensor applications. It is redox active and reacts with acids to form radical cations. Acid-doped TDPB shows behaviour similar to discotic liquid crystals, with X-ray scattering investigations revealing columnar self-assembled arrays. The combination of unpaired electrons and supramolecular stacking suggests that star-shaped oligo(aniline)s like TDPB have the potential to form conducting nanowires and organic magnetic materials. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Equilibrium and Transport Properties of Primary, Secondary and Tertiary Amines by Molecular Simulation

    International Nuclear Information System (INIS)

    Orozco, Gustavo A.; Nieto-Draghi, Carlos; Lachet, Veronique; Mackie, Allan D.

    2014-01-01

    Using molecular simulation techniques such as Monte Carlo (MC) and molecular dynamics (MD), we present several simulation results of thermodynamic and transport properties for primary, secondary and tertiary amines. These calculations are based on a recently proposed force field for amines that follows the Anisotropic United Atom approach (AUA). Different amine molecules have been studied, including n-Butylamine, di-n-Butylamine, tri-n-Butylamine and 1,4-Butanediamine for primary, secondary, tertiary and multi-functional amines respectively. For the transport properties, we have calculated the viscosity coefficients as a function of temperature using the isothermal-isobaric (NPT) ensemble. In the case of the pure components, we have investigated different thermodynamic properties using NVT Gibbs ensemble simulations such as liquid-vapor phase equilibrium diagrams, vaporization enthalpies, vapor pressures, normal boiling points, critical temperatures and critical densities. We have also calculated the excess enthalpies for water-n-Butylamine and n-heptane-n-Butylamine mixtures using Monte Carlo simulations in the NPT ensemble. In addition, we present the calculation of liquid-vapor surface tensions of n-Butylamine using a two-phase NVT simulation as well as the radial distribution functions. Finally, we have investigated the physical Henry constants of nitrous oxide (N 2 O) and nitrogen (N 2 ) in an aqueous solutions of n-Butylamine. In general, we found a good agreement between the available experimental information and our simulation results for all the studied properties, ratifying the predictive capability of the AUA force field for amines. (authors)

  19. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana; Prokeš, J.; Stejskal, Jaroslav

    2017-01-01

    Roč. 194, 15 June (2017), s. 206-218 ISSN 0254-0584 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : aniline * oxidants * polyaniline Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.084, year: 2016

  20. Organocatalyzed Asymmetric α-Oxidation, α-Aminoxylation and α-Amination of Carbonyl Compounds

    Directory of Open Access Journals (Sweden)

    Worawan Bhanthumnavin

    2010-02-01

    Full Text Available Organocatalytic asymmetric α-oxidation and amination reactions of carbonyl compounds are highly useful synthetic methodologies, especially in generating chiral building blocks that previously have not been easily accessible by traditional methods. The concept is relatively new and therefore the list of new catalysts, oxidizing and aminating reagents, as well as new substrates, are expanding at an amazing rate. The scope of this review includes new reactions and catalysts, mechanistic aspects and synthetic applications of α-oxidation, hydroxylation, aminoxylation, amination, hydrazination, hydroxyamination and related α-heteroatom functionalization of aldehydes, ketones and related active methylene compounds published during 2005–2009.

  1. Selective Grafting of Primary Amines onto Carbon Nanotubes via Free-Radical Treatment in Microwave Plasma Post-Discharge

    Directory of Open Access Journals (Sweden)

    Philippe Dubois

    2012-01-01

    Full Text Available A novel strategy to graft functional groups at the surface of carbon nanotubes (CNTs is discussed. Aiming at grafting nitrogen containing groups, and more specifically primary amine covalent functionalization, CNTs were exposed under atomic nitrogen flow arising from an Ar + N2 microwave plasma. The primary amine functions were identified and quantified through chemical derivatization with 4-(trifluoromethylbenzaldehyde and characterized through X-ray photoelectron spectroscopy. The increase of the selectivity in the primary amines grafting onto CNTs, up to 66.7% for treatment of CNT powder, was performed via the reduction of post-treatment oxygen contamination and the addition of hydrogen in the experimental set-up, more particularly in the plasma post-discharge chamber. The analyses of nitrogenated and primary amine functions grafting on the CNT surface suggest that atomic nitrogen (N• and reduced nitrogen species (NH• and NH2• react preferentially with defect sites of CNTs and, then, only atomic nitrogen continues to react on the CNT surface, creating defects.

  2. The economics of amine usage

    International Nuclear Information System (INIS)

    Fountain, M.J.

    1994-01-01

    Research carried out over the past decade in the USA (funded by EPRI) and by the CEGB/Nuclear Electric in the UK has identified several thermally stable, low-toxicity 'advanced' amines with good high-temperature basicity and low steam-water distribution ratio. As a direct result of this work several US PWR stations are now evaluating monoethanolamine (ETA) and Nuclear Electric's Wylfa Power Station (magnox) now doses 5 aminopentanol (5AP) instead of AMP, which had successfully combated erosion-corrosion for the past nine years. It has recently been stated that the use of 5AP ''...could save Nuclear Electric up to 1.5M pounds per year''. To provide US power station chemists with a tool for tailoring amine dosage to their own plant requirements EPRI has developed a computer model, Aminmod, which can, with user-defined circuit parameters and amine feed concentrations, calculate amine concentrations and pH(t) values at various points around the circuit. To complement this model a user-friendly spreadsheet program is being developed which will work in conjunction with Aminmod, via active links, to calculate the total operating cost associated with the selected amine dosing regime and compare alternative scenarios. This paper discusses the relationship between the technical and economic aspects of choosing an amine dosing regime and draws on combined Aminmod/spreadsheet results to illustrate how differences in amine properties can influence the optimum economic solution for a typical PWR. (author). 3 figs., 2 tabs., 5 refs

  3. Silicene Catalyzed Reduction of Nitrobenzene to Aniline: a Computational Study

    Science.gov (United States)

    Morrissey, Christopher; He, Haiying

    The reduction of nitrobenzene to aniline has a broad range of applications in the production of rubbers, dyes, agrochemicals, and pharmaceuticals. Currently, use of metal catalysts is the most popular method of performing this reaction on a large scale. These metal catalysts usually require high-temperature and/or high-pressure reaction conditions, and produce hazardous chemicals. This has led to a call for more environmentally friendly nonmetal catalysts. Recent studies suggest that silicene, the recently discovered silicon counterpart of graphene, could potentially work as a nonmetal catalyst due to its unique electronic property and strong interactions with molecules containing nitrogen and oxygen. In this computational study, we have investigated the plausibility of using silicene as a catalyst for the reduction of nitrobenzene. Possible reaction mechanisms will be discussed with a highlight of the difference between silicene and metal catalysts. . All calculations were performed in the framework of density functional theory.

  4. Amines in the Earth’s Atmosphere: A Density Functional Theory Study of the Thermochemistry of Pre-Nucleation Clusters

    Directory of Open Access Journals (Sweden)

    Jason Herb

    2011-02-01

    Full Text Available The impact of organic species which are present in the Earth’s atmosphere on the burst of new particles is critically important for the understanding of the molecular nature of atmospheric nucleation phenomena. Amines have recently been proposed as possible stabilizers of binary pre-nucleation clusters. In order to advance the understanding of atmospheric nucleation phenomena, a quantum-chemical study of hydrogen-bonded complexes of binary sulfuric acid-water clusters with methyl-, dimethyl- and trimethylamines representing common atmospheric organic species, vegetation products and laboratory impurities has been carried out. The thermochemical stability of the sulfuric acid-amines-water complexes was found to be higher than that of the sulfuric acid-ammonia-water complexes, in qualitative agreement with the previous studies. However, the enhancement in stability due to amines appears to not be large enough to overcome the difference in typical atmospheric concentrations of ammonia and amines. Further research is needed in order to address the existing uncertainties and to reach a final conclusion about the importance of amines for the atmospheric nucleation.

  5. Amines, Astrocytes and Arousal

    OpenAIRE

    Bazargani, N.; Attwell, D.

    2017-01-01

    Amine neurotransmitters, such as noradrenaline, mediate arousal, attention, and reward in the CNS. New data suggest that, from flies to mammals, a major mechanism for amine transmitter action is to raise astrocyte [Ca2+]i and release gliotransmitters that modulate neuronal activity and behavior.

  6. Extraction of sulphates by long chain amines; Extraction des sulfates par les amines a longues chaines

    Energy Technology Data Exchange (ETDEWEB)

    Boirie, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-05-15

    The extraction of sulphuric acid by long chain amines in organic solution has been studied with a view to determining the value of the stability constants of the amine sulphates and bi-sulphates formed. We have concentrated chiefly on uranium sulphate and thorium sulphate. The formulae of the complexes extractable with amines have been established, as well as the corresponding dissociation constants. We have observed that for uranium sulphate the formula of the complex depends only on the nature of the amine, whereas for thorium this formula varies with the amine structure. From the formulae determined and the value of the constants calculated, we have been able to establish the best conditions for uranium and thorium extraction and also for a separation of these two elements. Finally we propose an application of this study to the determination of uranium in ores, where the separation of uranium by this method is particularly easy and complete. (author) [French] L'extraction de l'acide sulfurique par des amines a longues chaines en solution organique a ete etudiee en vue de la determination de la valeur des constantes de stabilite des sulfates et bisulfates d'amines formes. Parmi les sulfates, nous nous sommes particulierement interesses au sulfate d'uranium et au sulfate de thorium. Nous avons determine les formules des complexes extractibles avec les amines, ainsi que les constantes de dissociation correspondantes. Nous avons remarque que pour le sulfate d'uranium, la formule du complexe ne depend que de la nature de l'amine, alors que pour le thorium cette formule varie avec la structure de l'amine. Les formules determinees et la valeur des constantes calculees, nous ont permis de decrire les meilleures conditions d'extraction de l'uranium et du thorium ainsi que celles d'une separation de ces deux elements. Nous proposons enfin une application de cette etude au dosage de l'uranium dans les minerais, ou la separation de l'uranium par cette methode est

  7. Dynamics of CO 2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    Packed bed breakthrough experiments are reported for commercial zeolite 13X and 3-aminopropyl-functionalized SBA-15 silica materials with three different amine loadings. Mass and heat transfer dynamics for all four materials are modeled successfully. Amine adsorbents with open pores are found to exhibit faster mass diffusion rates compared to zeolite 13X. When amine loading is increased by coupling aminopropyl groups, premature breakthrough combined with a long tail is observed. Contrary to conventional physisorbants, finite heat losses to the column wall do not explain the long breakthrough tail. A rate model that accounts for heterogeneity in diffusion was found to accurately capture the breakthrough shape of the high loading material. Batch uptake measurements support the hypothesis that slow diffusion through the polymer phase is what hampers adsorption kinetics in the high amine loading adsorbent. The results emphasize the importance of designing materials that are not overloaded with amine sites, as excessive amine loadings can lead to depressed adsorption kinetics and premature column breakthrough. © 2012 American Chemical Society.

  8. Activity of Aniline Methylation over Fe-Cu-Cr Ternary Spinel Systems

    Directory of Open Access Journals (Sweden)

    Reni George

    2014-03-01

    Full Text Available A series of spinels having thegeneral formula CuCr2-xFexO4 with x=0.25,0.75, 1.25, 1.75 were prepared by co-precipitation method. The catalysts werecharacterized by various physico-chemical methods like XRD, BET, UV-DRS, SEM,EDX, TPD etc. The reaction of aniline with methanol was studied in a fixed-bedreactor system as a potential source for the production of various methylanilines. It was observed that systems possessing low ‘x’ values are highlyselective and active for N-monoalkylation of aniline leading toN-methylaniline. Reaction parameters were properly varied to optimize thereaction conditions for obtaining N-methylaniline selectively and in betteryield. Among the systems CuCr1.75Fe0.25O4 isremarkable due to its very high activity and excellent stability. Under theoptimized conditions N-methylaniline selectivity exceeded 91%. CuCr1.25Fe0.75O4gives better conversion than CuCr1.75Fe0.25O4in CuCr2-xFexO4 series. The Lewis acid sitesof the catalysts are mainly responsible for the good catalytic performance. © 2014 BCREC UNDIP. All rights reservedSubmitted: 18th July 2013; Revised: 5th November 2013; Accepted: 1st December 2013[How to Cite: George, R., George, K., Sugunan, S. (2014. Activity of Aniline Methylation over Fe-Cu-Cr Ternary Spinel Systems. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 39-44. (doi:10.9767/bcrec.9.1.5169.39-44][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5169.39-44] 

  9. Amine-Functionalized Mesoporous Silica Nanoparticles: A New Nanoantibiotic for Bone Infection Treatment

    Directory of Open Access Journals (Sweden)

    Pedraza Daniel

    2018-01-01

    Full Text Available This manuscript reports an effective new alternative for the management of bone infection by the development of an antibiotic nanocarrier able to penetrate bacterial biofilm, thus enhancing antimicrobial effectiveness. This nanosystem, also denoted as “nanoantibiotic”, consists in mesoporous silica nanoparticles (MSNs loaded with an antimicrobial agent (levofloxacin, LEVO and externally functionalized with N-(2-aminoethyl-3- aminopropyltrimethoxysilane (DAMO as targeting agent. This amine functionalization provides MSNs of positive charges, which improves the affinity towards the negatively charged bacteria wall and biofilm. Physical and chemical properties of the nanoantibiotic were studied using different characterization techniques, including Xray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption porosimetry, elemental chemical analysis, dynamic light scattering (DLS, zeta (ζ-potential and solid-state nuclear magnetic resonance (NMR. “In vial” LEVO release profiles and the in vitro antimicrobial effectiveness of the different released doses were investigated. The efficacy of the nanoantibiotic against a S. aureus biofilm was also determined, showing the practically total destruction of the biofilm due to the high penetration ability of the developed nanosystem. These findings open up promising expectations in the field of bone infection treatment.

  10. Amine-Functionalized Mesoporous Silica Nanoparticles: A New Nanoantibiotic for Bone Infection Treatment

    Directory of Open Access Journals (Sweden)

    Pedraza Daniel

    2017-12-01

    Full Text Available This manuscript reports an effective new alternative for the management of bone infection by the development of an antibiotic nanocarrier able to penetrate bacterial biofilm, thus enhancing antimicrobial effectiveness. This nanosystem, also denoted as “nanoantibiotic”, consists in mesoporous silica nanoparticles (MSNs loaded with an antimicrobial agent (levofloxacin, LEVO and externally functionalized with N-(2-aminoethyl-3-aminopropyltrimethoxysilane (DAMO as targeting agent. This amine functionalization provides MSNs of positive charges, which improves the affinity towards the negatively charged bacteria wall and biofilm. Physical and chemical properties of the nanoantibiotic were studied using different characterization techniques, including Xray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption porosimetry, elemental chemical analysis, dynamic light scattering (DLS, zeta (ζ -potential and solid-state nuclear magnetic resonance (NMR. “In vial” LEVO release profiles and the in vitro antimicrobial effectiveness of the different released doses were investigated. The efficacy of the nanoantibiotic against a S. aureus biofilm was also determined, showing the practically total destruction of the biofilm due to the high penetration ability of the developed nanosystem. These findings open up promising expectations in the field of bone infection treatment.

  11. Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups

    KAUST Repository

    Bilić, Ante

    2012-09-06

    Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green\\'s function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction. © 2012 American Physical Society.

  12. Photodegradation of aniline by goethite doped with boron under ultraviolet and visible light irradiation

    International Nuclear Information System (INIS)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Liu, Linghua; Cheng, Dongsheng; Zhou, Huaidong

    2011-01-01

    Highlights: → Goethite modified by boron was prepared by sol-gel method in presence of boron acid at the low temperature. → B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. → The results showed that semiconductor photocatalytic reaction mechanism should exist in the process of aniline degradation with goethite and B-goethite as photocatalyst. -- Abstract: In the present study, goethite and goethite doped with boron (B-goethite) were employed to detect the presence or absence of semiconductor photocatalytic reaction mechanism in the reaction systems. B-goethite was prepared by sol-gel method in presence of boron acid in order to improve its photocatalystic efficiency under the ultraviolet and visible light irradiation. The optical properties of goethite and B-goethite were characterized by ultraviolet and visible absorption spectra and the result indicated that B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. Degradation of aniline was investigated in presence of goethite and B-goethite in aqueous solution. It was found that the B-goethite photocatalyst exhibited enhanced ultraviolet and visible light photocatalytic activity in degradation of aniline compared with the pristine goethite. The photocatalytic degradation mechanism of B-goethite was discussed.

  13. Photodissociation of aniline N–H bond in clusters of different nature

    Czech Academy of Sciences Publication Activity Database

    Poterya, Viktoriya; Nachtigallová, Dana; Lengyel, Jozef; Fárník, Michal

    2015-01-01

    Roč. 17, č. 38 (2015), s. 25004-25013 ISSN 1463-9076 R&D Projects: GA ČR GA14-14082S Institutional support: RVO:61388955 ; RVO:61388963 Keywords : NONADIABATIC COUPLING TERMS * MR-CI LEVEL * PHOTOEXCITED ANILIN E Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015

  14. Concentration of Biogenic Amines in ‘Pinot Noir’ Wines Produced in Croatia

    OpenAIRE

    Ana Jeromel; Karin Kovačević Ganić; Stanka Herjavec; Marin Mihaljević; Ana Marija Jagatić Korenika; Ivana Rendulic; Marijana Čolić

    2014-01-01

    The origins of biogenic amines are sound grapes, alcoholic fermentations, malolactic fermentation and microbial activities during wine storage. These biologically produced amines are essential at low concentrations for optimal metabolic and physiological functions in animals, plants and micro-organisms. During alcoholic fermentation the degree of maceration is the first factor that affects the extraction of compounds present in the grape skin, among them aminoacids, precursors of bioge...

  15. Towards directional assembly of hierarchical structures: aniline oligomers as the model precursors

    Czech Academy of Sciences Publication Activity Database

    Zhao, Y.; Stejskal, Jaroslav; Wang, J.

    2013-01-01

    Roč. 5, č. 7 (2013), s. 2620-2626 ISSN 2040-3364 R&D Projects: GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : aniline oligomers * hierarchical nanostructures * microflowers Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.739, year: 2013

  16. Effects of aniline concentrations on the electrical and mechanical properties of polyaniline polyvinyl alcohol blends

    Directory of Open Access Journals (Sweden)

    J. Bhadra

    2017-07-01

    Full Text Available In this work, we present an exclusive study on the effect of the feeding ratio of the monomer (aniline on the structural, thermal, mechanical and electrical properties of polyaniline (PANI polyvinyl alcohol (PVA blends. The films obtained from the blends are characterised to determine their surface properties and structural morphology (elemental analysis, SEM and FTIR, thermal properties (TGA and DSC and optical properties (UV–Vis spectroscopy. We study the effects of aniline on the mechanical and electrical properties of the composites by performing tensile, four probe and A.C. conductivity measurements, respectively. The SEM images reveal a heterogeneous distribution of conductive PANI particles in the continuous PVA matrix. During this experiment, the tensile strength of the blend films is maintained with an increase in the amount of aniline (up to 25 wt%, and this behaviour is attributed to intermolecular hydrogen bonding between PANI and PVA in the presence of the surfactant DBSA. The potential attraction of the experiment lies in the nature of the conductivity (of the blend films, which is found to increase from 10−8 to 10−3 S/cm with a percolation threshold of 0.78 wt%.

  17. Volumetric properties of dichloromethane with aniline or nitrobenzene at different temperatures: A theoretical and experimental study

    International Nuclear Information System (INIS)

    Su Liyan; Wang Haijun

    2009-01-01

    The densities for binary mixtures of dichloromethane with aniline, or nitrobenzene, respectively, including those of pure liquids, were measured over the entire composition range at T = (288.15, 293.15, 298.15, and 303.15) K and atmospheric pressure using a vibrating-tube densimeter. From the experimental results, the excess molar volumes, V m E , partial molar volumes, V i -bar, the apparent molar volume, V φi , and the partial molar excess volumes at infinite dilution, (V i E -bar) ∞ , were calculated over whole composition range. Negative values of V m E for (dichloromethane + aniline) attributed to the formation of the charge transfer complex, while for (dichloromethane + nitrobenzene) system, the free volume effect played a dominant role. The extent of negative deviations in V m E values follows the order: nitrobenzene > aniline. The Prigogine-Flory-Patterson (PFP) theory and its applicability in predicting V m E at T = 298.15 K were tested. There is a good agreement in general between the experimental V m E values and those predicted by PFP theory

  18. Nonlinear optical measurements of conducting copolymers of aniline under CW laser excitation

    Science.gov (United States)

    Pramodini, S.; Poornesh, P.

    2015-08-01

    Synthesis and measurements of third-order optical nonlinearity and optical limiting of conducting copolymers of aniline are presented. Single beam z-scan technique was employed for the nonlinear optical studies. Continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Copolymer samples exhibited reverse saturable absorption (RSA) process. The nonlinear refraction studies depict that the copolymers exhibit self-defocusing property. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm/W, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. A good optical limiting and clamping of power of ∼0.9 mW and ∼0.05 mW was observed. Therefore, copolymers of aniline emerge as a potential candidate for photonic device applications.

  19. Reaction of iminopropadienones with amines: mechanistic explanations of zwitterionic intermediate, ketene and ketenimine formation.

    Science.gov (United States)

    Koch, Rainer; Finnerty, Justin J; Bruhn, Torsten; Borget, Fabien; Wentrup, Curt

    2008-09-25

    The complex reaction of thermally generated iminopropadienones with amines in the gas phase and upon matrix deposition and its varying product composition is investigated using density functional theory. In the high energy gas phase addition a single amine molecule reacts readily with iminopropadienone with the decisive step being a 1,3-hydrogen shift and activation barriers of at least 100 kJ/mol. In accordance with the experiment, the formation of ketenes is favored. In the condensed phase of an amine matrix, the utilization of amine dimers both as reagents and as explicit solvents lowers the activation energy required to a feasible 20-30 kJ/mol and predicts ketenimines as the main products, as observed experimentally.

  20. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  1. Effect of methyl substituents on the electronic transitions in simple meso-aniline-BODIPY based dyes: RI-CC2 and TD-CAM-B3LYP computational investigation

    Science.gov (United States)

    Petrushenko, Igor K.; Petrushenko, Konstantin B.

    2018-02-01

    The S0 → Si, i = 1-5 electronic transitions of four 8-(4-aniline)-BODIPY and four 8-(N,N-dimethyl)-BODIPY dyes, differ by number and position of methyl substituents in the BODIPY frame, were investigated theoretically using ab initio the coupled cluster doubles (CC2) and TD-CAM-B3LYP methods. Methyl substituents in the BODIPY frame and the aniline fragment at the meso position disturb energy of local excitations S0 → S1, S0 → S3, and S0 → S4 weakly in comparison with the fully unsubstituted BODIPY molecule. These transitions in experimental spectra form the most long-wave absorption bands at ca. 500 nm as well as absorption bands in the region of 300-400 nm. At the same time, the presence of aniline fragments leads to the appearance of new S0 → S2 transitions of the charge transfer character in electronic spectra of BODIPYs. We also found a linear relationship between vertical energy of these charge transfer transitions and the electron donating power of an aniline fragment and electron accepting power of the BODIPY core depending on the number and position of methyl groups. The CC2 method provides the best overall description of the excitation energies in line with the experimental observations. On average, the quality of TD-CAM-B3LYP is almost equal to that of CC2, however the TD method with the CAM-B3LYP functional slightly underestimates the CT excitation energy.

  2. Recommended vapor pressures for aniline, nitromethane, 2-aminoethanol, and 1-methyl-2-pyrrolidone

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Mahnel, T.; Červinka, C.

    2015-01-01

    Roč. 406, Nov (2015), 34-46 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : recommended vapor pressure equations * heat capacity * ideal - gas thermodynamic properties * aniline * nitromethane Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  3. Ligand-Enabled γ-C(sp3)–H Olefination of Amines: En Route to Pyrrolidines

    Science.gov (United States)

    Jiang, Heng; He, Jian; Liu, Tao

    2016-01-01

    Pd(II)-catalyzed olefination of γ-C(sp3)–H bonds of triflyl (Tf) and 4-nitrobenzenesulfonyl (Ns) protected amines is achieved. Subsequent aza-Wacker oxidative cyclization or conjugate addition of the olefinated intermediates provides a variety of C-2 alkylated pyrrolidines. Three pyridine- and quinoline-based ligands are developed to match different classes of amine substrates, demonstrating a rare example of ligand-enabled C(sp3)–H olefination reaction. The use of Ns protecting group to direct C(sp3)–H activation of alkyl amine is also a significant step towards practical C–H functionalizations of alkyl amines. PMID:26796676

  4. Oxidation of amines by flavoproteins.

    Science.gov (United States)

    Fitzpatrick, Paul F

    2010-01-01

    Many flavoproteins catalyze the oxidation of primary and secondary amines, with the transfer of a hydride equivalent from a carbon-nitrogen bond to the flavin cofactor. Most of these amine oxidases can be classified into two structural families, the D-amino acid oxidase/sarcosine oxidase family and the monoamine oxidase family. This review discusses the present understanding of the mechanisms of amine and amino acid oxidation by flavoproteins, focusing on these two structural families. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Ester Sensing with Poly (Aniline-co-m-aminobenzoic Acid Deposited on Poly (Vinyl Alcohol

    Directory of Open Access Journals (Sweden)

    S. ADHIKARI

    2011-02-01

    Full Text Available Poly (aniline-co-m-aminobenzoic acid was deposited on poly (vinyl alcohol film by in situ oxidative polymerization of the monomers aniline and m-aminobenzoic acid. Sensing experiments were performed on the composite film with the injection of various concentrations of hexenyl acetate and hexenyl butyrate at room temperature. The sensor responded rapidly and reversibly in the presence of hexenyl acetate and hexenyl butyrate vapors which was detected by resistance change of the composite film upon exposure to the vapor. Selectivity tests revealed that the sensor selectively responded to hexenyl butyrate compared to hexenyl acetate. The sensing response has been explained on the basis of FT-IR spectroscopic analysis of the polymer film before and after exposure to the ester vapor.

  6. Análise de aminas aromáticas em amostras de interesse ambiental por cromatografia líquida de alta eficiência acoplada a detectores de arranjo de diodo, eletroquímico e espectrometria de massas: Thiago Mescoloto Lizier. -

    OpenAIRE

    Lizier,Thiago Mescoloto [UNESP

    2014-01-01

    This work investigates new analytical methods for analysis of aromatic amines selected because of their toxicological and/or mutagenic properties in samples of environmental interest using chromatographic techniques with various detectors. After optimization of chromatographic conditions as aromatic amines: 4,4'-oxydianiline, aniline, 2,4-diaminotoluidina, 4,4'- diaminobifenila, 4,4'-methylenebis-(2-chloroaniline), 3,3'-dichlorobenzidine, 2- aminonaphthalene, 2-methylaniline, 2-methoxyaniline...

  7. Extraction of some acids using aliphatic amines; Extraction de quelques acides par des amines aliphatiques

    Energy Technology Data Exchange (ETDEWEB)

    Matutano, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    Hydrochloric, nitric, sulphuric, perchloric, phosphoric, acetic and formic acids in aqueous solution (0.05 to 10 M) are extracted by amberlite LA2 and trilaurylamine in solution, 5 per cent by volume, in kerosene and xylene respectively. The extraction process consists of: neutralization of the amine salt; a 'molecular extraction', i.e. an extraction using an excess of acid with respect to the stoichiometry of the amine salt. According to the behaviour of the acid during the extraction, three groups may be distinguished: completely dissociated acids, carboxylic acids, phosphoric acid. This classification is also valid for the extraction of the water which occurs simultaneously with that of the acid. An extraction mechanism is put forward for formic acid and the formation constant of its amine salt is calculated. (author) [French] Les acides chlorhydrique, nitrique, sulfurique, perchlorique, phosphorique, acetique et formique, en solution aqueuse - 0,05 a 10 M - sont extraits par l'amberlite LA2 et la trilaurylamine en solution, a 5 pour cent en volume, dans le kerosene et le xylene respectivement. L'extraction comprend: une neutralisation de l'amine par l'acide avec formation d'un sel d'amine; une 'extraction moleculaire', c'est-a-dire une extraction d'acide en exces par rapport a la stoechiometrie du sel d'amine. Suivant le comportement des acides au cours de l'extraction nous distinguons trois groupes: acides entierement dissocies, acides carboxyliques, acide phosphorique. Cette classification est egalement valable pour l'extraction de l'eau qui est simultanee a celle de l'acide. Un mecanisme d'extraction pour l'acide formique est propose et nous calculons la constante de formation de son sel d'amine. (auteur)

  8. Binary liquid-liquid equilibria of aniline-paraffin and furfural-paraffin systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S.C.; Maity, S.; Ganguli, K.; Ray, P. (Calcutta Univ., (India))

    1991-12-01

    Liquid-liquid-equilibria (L-L-E) of hydrocarbon containing systems are of considerable commercial importance to refineries. But prediction of L-L-E of such systems is extremely difficult owing to the complex nature of the petroleum fluids. For treating such complex mixtures, a continuous component method is appropriate and for representing such liquids, a group contribution model like the UNIFAC is extremely convenient. It is, however, necessary to determine the appropriate group interaction parameters, and also to test the applicability of the UNIFAC method to these cases. Binary liquid-liquid-equilibria data for several aniline-paraffin and furfural-paraffin systems have been taken. These data along with data for other aniline-hydrocarbon and furfural-hydrocarbon systems from literature have been correlated using the UNIFAC model. The UNIFAC group interaction parameters have been found to have a linear temperature dependence. The CH{sub 2} groups in cyclo and non-cyclo paraffins require different interaction parameters. It was also found that a scaling of the combinatorial term is necessary for higher molecular weight hydrocarbons. 13 refs., 12 figs., 5 tabs.

  9. Immobilisation of enzymes on poly(aniline)-poly(anion) composite films. Preparation of bioanodes for biofuel cell applications.

    Science.gov (United States)

    Simon, Evelyne; Halliwell, Catherine M; Toh, Chee Seng; Cass, Anthony E G; Bartlett, Philip N

    2002-01-01

    Immobilisation of enzymes is important for applications such as biosensors or biofuel cells. A poly(histidine) tag had been introduced on the C terminus of a lactate dehydrogenase enzyme. This mutant enzyme was then immobilised onto poly(aniline) (PANi)-poly(anion) composite films, PANi-poly(vinylsulfonate) (PVS) or PANi-poly(acrylate) (PAA). The NADH produced by the immobilised enzyme in the presence of beta-nicotinamide adenine dinucleotide (NAD(+)) and lactate is oxidised at the poly(aniline)-coated electrode at 0.05 to 0.1 V vs. saturated calomel electrode (SCE) at 35 degrees C.

  10. C-H Bond Functionalization via Hydride Transfer: Formation of α-Arylated Piperidines and 1,2,3,4-Tetrahydroisoquinolines via Stereoselective Intramolecular Amination of Benzylic C-H Bonds

    OpenAIRE

    Vadola, Paul A.; Carrera, Ignacio; Sames, Dalibor

    2012-01-01

    We here report a study of the intramolecular amination of sp3 C-H bonds via the hydride transfer cyclization of N-tosylimines (HT-amination). In this transformation, 5-aryl-aldehydes are subjected to N-toluenesulfonamide in the presence of BF3•OEt2 to effect imine formation and HT-cyclization, leading to 2-aryl-piperidines and 3-aryl-1,2,3,4-tetrahydroisoquinolines in a one-pot procedure. We examined the reactivity of a range of aldehyde substrates as a function of their conformational flexib...

  11. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng

    2017-03-13

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  12. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liu, Xiangqian; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  13. Electrodeposition of amine-terminatedpoly(ethylene glycol) to titanium surface

    International Nuclear Information System (INIS)

    Tanaka, Yuta; Doi, Hisashi; Iwasaki, Yasuhiko; Hiromoto, Sachiko; Yoneyama, Takayuki; Asami, Katsuhiko; Imai, Hachiro; Hanawa, Takao

    2007-01-01

    The immobilization of poly(ethylene glycol), PEG, to a solid surface is useful to functionalize the surface, e.g., to prevent the adsorption of proteins. No successful one-stage technique for the immobilization of PEG to base metals has ever been developed. In this study, PEG in which both terminals or one terminal had been modified with amine bases was immobilized onto a titanium surface using electrodeposition. PEG was dissolved in a NaCl solution, and electrodeposition was carried out at 310 K with - 5 V for 300 min. The thickness of the deposited PEG layer was evaluated using ellipsometry, and the bonding manner of PEG to the titanium surface was characterized using X-ray photoelectron spectroscopy after electrodeposition. The results indicated that a certain amount of PEG was adsorbed on titanium through both electrodeposition and immersion when PEG was terminated by amine. However, terminated amines existed at the surface of titanium and were combined with titanium oxide as N-HO by electrodeposition, while amines randomly existed in the molecule and showed an ionic bond with titanium oxide by immersion. The electrodeposition of PEG was effective for the inhibition of albumin adsorption. This process is useful for materials that have electroconductivity and a complex morphology

  14. Fabrication of palladium nanoparticles immobilized on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yan; Chen, Rizhi [Nanjing Tech University, Nanjing (China)

    2015-09-15

    An efficient and reusable catalyst was developed by depositing palladium nanoparticles on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method. The as-prepared Pdloaded ceramic membrane support was characterized by XRD, SEM, EDS, TEM, XPS, ICP, and its catalytic properties were investigated in the liquid-phase p-nitrophenol hydrogenation. A comparative study was also made with the palladium nanoparticles deposited on an amine-functionalized ceramic membrane support by an impregnation-reduction method. The palladium nanoparticles could be homogeneously immobilized on the ceramic membrane support surface, and exhibited excellent catalytic performance in the p-nitrophenol hydrogenation. The catalytic activity of the Pdloaded ceramic membrane support prepared by the nanoparticulate colloidal impregnation method increased by 16.6% compared to that of impregnation-reduction method. In the nanoparticulate colloidal impregnation method, palladium nanoparticles were presynthesized, higher loading of Pd(0) could be obtained, resulting in better catalytic activity. The as-prepared Pd-loaded ceramic membrane support could be easily reused for several cycles without appreciable degradation of catalytic activity.

  15. Time resolved resonance Raman spectra of anilino radical and aniline radical cation

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.; Schuler, R.H.

    1987-01-01

    We report, in this paper, submicrosecond time resolved resonance Raman spectra of anilino radical and its radical cation as observed in pulse radiolytic studies of the oxidation of aniline in aqueous solution. By excitation in resonance with the broad and weak electronic transition of anilino radical at 400 nm (ε--1250 M -1 cm -1 ) we have observed, for the first time, the vibrational features of this radical. The Wilson ν 8 /sub a/ ring stretching mode at 1560 cm -1 is most strongly resonance enhanced. The ν 7 /sub a/ CN stretching band at 1505 cm -1 , which is shifted to higher frequency by 231 cm -1 with respect to aniline, is also prominent. The frequency of this latter mode indicates that the CN bond in the radical has considerable double bond character. The Raman spectrum of aniline radical cation, excited in resonance with the --425 nm electronic absorption (ε--4000 M -1 cm -1 ), shows features which are similar to phenoxyl radical. Most of the observed frequencies of this radical in solution are in good agreement with vibrational energies determined by recent laser photoelectron spectroscopic studies in the vapor phase. The bands most strongly enhanced in the resonance Raman spectrum are, however, weak in the photoelectron spectrum. While the vibrational frequencies observed for anilino radical and its isoelectronic cation are quite similar, the resonance enhancement patterns are very different. In particular the ν 14 b 2 mode of anilino radical observed at 1324 cm -1 is highly resonance enhanced because of strong vibronic coupling between the 400 nm 2 A 2 -- 2 B 1 and the higher 2 B 1 -- 2 B 1 electronic transitions

  16. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik, E-mail: niknizam@fbb.utm.my; Ibrahim, Zaharah

    2016-01-01

    Graphical abstract: - Highlights: • Functionalization of Ag-exchanged zeolite NaY with 3-aminopropyltriethoxysilane APTES (ZSA) as antibacterial agent. • Antibacterial assay of ZSA was performed against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538. • Functionalization of Ag-exchanged zeolite NaY with APTES significantly increased the antibacterial agent. • Different mechanisms of bacterial death were suggested for each bacteria type by the functionalized Ag-exchanged zeolite NaY. - Abstract: Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver

  17. Nucleophilic catalysis of MeON-neoglycoside formation by aniline derivatives.

    Science.gov (United States)

    Loskot, Steven A; Zhang, Jianjun; Langenhan, Joseph M

    2013-12-06

    Neoglycosylations are increasingly being employed in the synthesis of natural products, drug candidates, glycopeptide mimics, oligosaccharide analogues, and other applications, but the efficiency of these reactions is usually limited by slow reaction times. Here, we show that aniline derivatives such as 2-amino-5-methoxybenzoic acid enhance the rate of acid-catalyzed neoglycosylation for a range of sugar substrates up to a factor of 32 relative to the uncatalyzed reaction.

  18. Graphene/Poly(aniline-co-pyrrole) Nanocomposite: Potential Candidate for Supercapacitor and Microwave Absorbing Applications.

    Science.gov (United States)

    Sahoo, Sumanta; Bhattacharya, Pallab; Dhibar, Saptarshi; Hatui, Goutam; Das, Tanya; Das, Chapal Kumar

    2015-09-01

    A simple and cost-effective in-situ chemical route to prepare the nanocomposites based on graphene and Poly(aniline-co-pyrrole) [PPP] has been proposed. Introduction of graphene changes the morphology of copolymer from spherical to fiber like. Graphene/Poly(aniline-co-pyrrole) [GPPP] nanocomposite achieved highest specific capacitance of 351 F/g and energy density of 124.8 Wh/Kg at 10 mV/s scan rate. The composite also obtained moderate specific capacitance retention of 66% after 500 cycles, which establish its potentiality as supercapacitor electrode materials. The composite also exhibited high electrical conductivity and superior microwave absorbing properties (maximum reflection loss is -29.97 dB). The absorption range corresponding to ≥ 90% absorption (or -10 dB) is 2.72 GHz which is excellent for the microwave absorbing applications.

  19. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.

    Science.gov (United States)

    Wendlandt, Alison E; Stahl, Shannon S

    2012-06-01

    Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.

  20. Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization.

    Science.gov (United States)

    Wang, Xu-Sheng; Huang, Yuan-Biao; Lin, Zu-Jin; Cao, Rong

    2014-08-21

    Highly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) encapsulated in the mesocages of amine-functionalized metal-organic frameworks MIL-101(Cr)-NH2 has been prepared by an anion-exchange method. PTA anions (PW12O40(3-)) are stabilized in the mesocages via the electrostatic interaction with amino groups of the MIL-101(Cr)-NH2. The obtained catalyst (denoted PTA@MIL-101(Cr)-NH2) exhibits high catalytic activity in the extractive and catalytic oxidative desulfurization (ECODS) system under mild conditions. Moreover, it can be easily recovered and recycled several times without leaching and loss of activity.

  1. CO{sub 2} adsorption in amine-grafted zeolite 13X

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Diôgo P. [GPSA, Universidade Federal do Ceará (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus Ipanguaçu, Rio Grande do Norte (Brazil); Silva, Francisco W.M. da; Moura, Pedro A.S. de; Sousa, Allyson G.S.; Vieira, Rodrigo S. [GPSA, Universidade Federal do Ceará (Brazil); Rodriguez-Castellon, Enrique [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Azevedo, Diana C.S., E-mail: diana@gpsa.ufc.br [GPSA, Universidade Federal do Ceará (Brazil)

    2014-09-30

    Highlights: • CO{sub 2} adsorption mechanism in amine-grafted zeolite 13X was investigated. • The loaded amine tends to fill zeolite micropores and most of it is unaccessible to react with CO{sub 2}. • Part of loaded MEA binds covalently to the zeolitic structure and will not detach from the surface even at low pressures. • Chemisorption is likely to lead to CO{sub 2} higher uptakes upon a rise in temperature for solids with the highest amine load. - Abstract: The adsorption of CO{sub 2} on Zeolite 13X functionalized with amino groups was studied. Adsorbent functionalization was carried out by grafting with different loads of monoethanolamine (MEA). The adsorbents were characterized by N{sub 2} adsorption/desorption isotherms at 77 K, x-ray diffraction, TGA, in situ FTIR, XPS and adsorption microcalorimetry. CO{sub 2} isotherms were studied in a gravimetric device up to 10 bar at 298 and 348 K. It was found that increasing loads of amine to the adsorbent tend to reduce micropore volume of the resulting adsorbents by pore blocking with MEA. There is experimental evidence that part of the loaded MEA is effectively covalently bonded to the zeolitic structure, whereas there is also physisorbed excess MEA which will eventually be desorbed by raising the temperature beyond MEA boiling point. Heats of adsorption at nearly zero coverage indicate that some of the adsorbed CO{sub 2} reacts with available amino groups, which agrees with the finding that the adsorption capacity increases with increasing temperature for the modified zeolite with the highest MEA load.

  2. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling

    OpenAIRE

    Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.; MacMillan, David W. C.

    2013-01-01

    The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Important...

  3. Amine synergism in uranium extraction

    International Nuclear Information System (INIS)

    Rinelli, G.; Abbruzzese, C.

    1977-01-01

    Commercial products based on C 8 to C 12 tertiary amine mixtures are now widely used in the solvent extraction of uranium from sulphuric pregnant solutions. The satisfactory results generally obtained have never required an analysis of the synergistic effects of amine combinations similar to that carried out for the organo-phosphorus compounds. In the research described the increase in the extraction power of an organic phase composed of an amine binary mixture was studied with regard to an aqueous solution from the sulphuric acid treatment of uranium ore. On the basis of the experimental results obtained, it is possible to select the best composition of the amine mixture to ensure a percentage increase in uranium recovery. Bearing in mind the tendency for the yellow-cake price to rise, the study is considered to be a useful contribution in the context of commercial products currently available on the market. (author)

  4. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-01

    Roč. 6, č. 2 (2014), s. 942-950 ISSN 1944-8244 R&D Projects: GA ČR GAP205/12/0911; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * aniline oligomers * Raman spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.723, year: 2014

  5. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Directory of Open Access Journals (Sweden)

    Andreas Gansäuer

    2013-08-01

    Full Text Available The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG‡ and ΔGR are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  6. Extraction and purification of plutonium by a tertiary amine; Extraction et purification du plutonium par une amine tertiaire

    Energy Technology Data Exchange (ETDEWEB)

    Trentinian, M de; Chesne, A [Commissariat a l' Energie Atomique, Fontenay aux Roses, Section de Chimie des Actimides (France).Centre d' Etudes Nucleaires; Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Trilaurylamine diluted with a paraffinic solvent (dodecane) was studied as part of the research dealing with the separation and purification of plutonium. The physical properties (solubility of nitrates in the amine as a function of temperature) and the resistance to radiations of this substance were examined. The extraction characteristics of nitric solutions of plutonium, uranium and certain fission products are given as a function of the following factors: concentration of the various ions in solution, valency states. A method of plutonium purification based on these results is presented. (author) [French] La trilaurylamine diluee par un solvant paraffinique (dodecane) a ete etudiee dans le cadre des recherches concernant la separation et la purification du plutonium. Une etude des caracteres physiques (solubilite des nitrates dans l'amine en fonction de la temperature) s'ajoute a celle de la tenue aux radiations de ce corps. Les caracteristiques d'extraction de solutions nitriques de plutonium, uranium, et certains produits de fission, sont donnes en fonction des facteurs suivants: concentration des differents ions en solution, etats de valence. On presente une methode de purification du plutonium basee sur ces resultats. (auteur)

  7. A Simple Catalytic Mechanism for the Direct Coupling of α-Carbonyls with Functionalized Amines: A One-Step Synthesis of Plavix

    OpenAIRE

    Evans, Ryan W.; Zbieg, Jason R.; Zhu, Shaolin; Li, Wei; MacMillan, David W. C.

    2013-01-01

    The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst...

  8. Nanoparticle formation in a low pressure argon/aniline RF plasma

    Science.gov (United States)

    Pattyn, C.; Kovacevic, E.; Hussain, S.; Dias, A.; Lecas, T.; Berndt, J.

    2018-01-01

    The formation of nanoparticles in low temperature plasmas is of high importance for different fields: from astrophysics to microelectronics. The plasma based synthesis of nanoparticles is a complex multi-scale process that involves a great variety of different species and comprises timescales ranging from milliseconds to several minutes. This contribution focuses on the synthesis of nanoparticles in a low temperature, low pressure capacitively coupled plasma containing mixtures of argon and aniline. Aniline is commonly used for the production of polyaniline, a material that belongs to the family of conductive polymers, which has attracted increasing interest in the last few years due to the large number of potential applications. The nanoparticles which are formed in the plasma volume and levitate there due to the collection of negative charges are investigated in this contribution by means of in-situ FTIR spectroscopy. In addition, the plasma is analyzed by means of plasma (ion) mass spectroscopy. The experiments reveal the possibility to synthesize nanoparticles both in continuous wave and in pulsed discharges. The formation of particles in the plasma volume can be suppressed by pulsing the plasma in a specific frequency range. The in-situ FTIR analysis also reveals the influence of the argon plasma on the characteristics of the nanoparticles.

  9. Important roles of enthalpic and entropic contributions to CO2 capture from simulated flue gas and ambient air using mesoporous silica grafted amines.

    Science.gov (United States)

    Alkhabbaz, Mustafa A; Bollini, Praveen; Foo, Guo Shiou; Sievers, Carsten; Jones, Christopher W

    2014-09-24

    The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0-0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropyl-functionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less efficient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  10. Thermochemistry of adducts of some bivalent transition metal bromides with aniline

    International Nuclear Information System (INIS)

    Dunstan, Pedro Oliver

    2006-01-01

    The compounds [MBr 2 (an) 2 ] (where M is Mn(II), Fe(II), Co(II), Ni(II), Cu(II) or Zn(II); an=aniline) were synthesized and characterized by melting points, elemental analysis, thermal studies, and electronic and IR spectroscopy. The enthalpies of dissolution of the adducts, metal(II) bromides and aniline in methanol, aqueous 1.2M HCl or 25% (v/v) aqueous 1.2M HCl in methanol were measured. The following thermochemical parameters for the adducts have been determined by thermochemical cycles: the standard enthalpies for the Lewis acid/base reactions (Δ r H o ), the standard enthalpies of formation (Δ f H o ), the standard enthalpies of decomposition (Δ D H o ), the lattice standard enthalpies (Δ M H o ) and the standard enthalpies of the Lewis acid/base reactions in the gaseous phase (Δ r H o (g)). The mean bond dissociation enthalpies of the M(II)-nitrogen bonds (D-bar (M?N) ) and the enthalpies of formation of the adducts from the ions in the gaseous phase: M 2+ (g) +Br - (g) +an (g) ->[MBr 2 (an) 2 ] (g) (Δ fi H o ) have been estimated

  11. Biogenic amines degradation by microorganisms isolated from cheese

    Directory of Open Access Journals (Sweden)

    Irena Butor

    2017-01-01

    Full Text Available The aim of this study was the isolation and characterization of microorganisms able to degrade biogenic amines and their identification. Individual microorganisms were obtained by isolation from commercially available foodstuffs and food produced in the technological laboratories of Faculty of Technology, Tomas Bata University in Zlín and subsequently identified by MALDI-TOF MS. The results of MALDI-TOF MS identification were verified by 16S rRNA sequenation. In this work was studied the ability of 5 bacterial strains positive to biogenic amines degradation isolated from dairy products to decrease biogenic amines content in vitro and quantified reduction in the concentration of biogenic amines tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine and tyramine. The level of degradation (decrease of biogenic amines was determined on the base of the ability to grow in media with biogenic amines as the sole source carbon and nitrogen. The isolated strains with the ability of degradation of one or more biogenic amines were cultured in medium supplemented with relevant biogenic amines, the media derivatized with dansyl chloride and these amines separated by HPLC at a wavelength of 254 nm. From five tested strains identified as Bacillus subtilis, Bacillus pumilus, Enterobacter cloacae, Rhizobium radiobacter and Acinetobacter pitii, isolated from gouda type cheese, the greatest ability of degradation was observed in Bacillus subtilis, which was capable to degrade almost all amount of histamine, cadaverine and putrescine. Other four strains showed a lower rate of degradation than Bacillus subtilis, but the ability to degrade biogenic amines with these microorganisms was still significant.

  12. Metabolism and genotoxicity of aromatic amines in aquatic organisms

    International Nuclear Information System (INIS)

    Knezovich, J.P.; Krauter, P.W.; Lawton, M.P.; Harrison, F.L.

    1987-01-01

    Marine mussels (Mytilus edulis) and bullfrog tadpoles (Rana catesbeiana) were used to investigate the comparative metabolism and genotoxicity of aromatic amines in vivo. These organisms were selected because they possess distinctly different metabolic capabilities: mussels lack an active mixed-function-oxidase enzyme system that is present in most other organisms, including amphibians. Using 14 C-labeled chemical probes (o- and p-toluidine, 2-aminofluorene (2-AF), and 2-acetylaminofluorene (2-AAF)), mussels and tadpoles well dosed with individual compounds by direct immersion in aqueous solutions. The identities of metabolites were then determined by HPLC and GC/MS methods. Results indicate that the N-conjugating pathways used by mussels result primarily in the detoxification of aromatic amines by limiting the amount of primary amine available for activation. The tadpoles excreted a number of 2-AAF metabolites but did form DNA and protein adducts in the liver. Induction of micronuclei in the peripheral red blood cells was also demonstrated. The tadpole was shown to be a sensitive biological indicator of pollution in aquatic ecosystems

  13. Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines

    Science.gov (United States)

    2011-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group, to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs and, thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review article, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and

  14. Magnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives

    Directory of Open Access Journals (Sweden)

    Shahnaz Rostamizadeh

    2017-01-01

    Full Text Available The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2 nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES with magnetic graphene oxide (Fe3O4-GO. It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO along with the amine groups post grafted to the surface of Fe3O4-GO led to preparation of an acid-base bifunctional magnetically recyclable nanocatalyst. It proved to be efficient nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives under mild reaction conditions with good to excellent yields. This heterogeneous catalyst also exhibited higher activities than acid or base functionalized mesoporous silica, magnetic GO or basic Al2O3 an even higher than some basic homogeneous catalysts such as triethylamine and piperazine. More importantly, due to the loaded iron oxide nanoparticles, this catalyst could be easily recovered from the reaction mixture using an external magnet and reused without significant decrease in activity even after 7 runs.

  15. Iodine(III)-Mediated Selective Intermolecular C-H Amination for the Chemical Diversification of Tryptamines.

    Science.gov (United States)

    Bosnidou, Alexandra E; Millán, Alba; Ceballos, Javier; Martínez, Claudio; Muñiz, Kilian

    2016-08-05

    Defined hypervalent iodine reagents of the general structure PhI[N(SO2R)(SO2R')]2 promote the selective direct C-H-amination of the indole core of various tryptamines. Starting from a general C2-amination strategy, subsequent transformations enable a variety of site-selective functionalizations, which proceed with noteworthy high chemoselectivity and provide an overall access to structurally diversified products.

  16. Color test for selective detection of secondary amines on resin and in solution.

    Science.gov (United States)

    Boas, Ulrik; Mirsharghi, Sahar

    2014-11-21

    Resins for solid-phase synthesis give orange to red-brown resin beads selectively when secondary amines are present on the resin when treated with a solution of acetaldehyde and an Fmoc-amino acid in NMP. The method shows good specificity and gives colorless beads when exposed to a variety of other functional groups. Furthermore, the acetaldehyde/Fmoc amino acid method can be used as a selective colorimetric test for secondary amines in solution.

  17. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng; Wang, Yanbing; Estevez, Luis; Duan, Xiaonan; Anako, Nkechi; Park, Ah-Hyung Alissa; Li, Wen; Jones, Christopher W.; Giannelis, Emmanuel P.

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  18. In-situ synthesis of SiO2@MOF composites for high-efficiency removal of aniline from aqueous solution

    Science.gov (United States)

    Han, Tongtong; Li, Caifeng; Guo, Xiangyu; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-12-01

    A series of SiO2@aluminum-MOF(MIL-68) composites with different SiO2 loadings have been synthesized by a simple and mild compositing strategy for high-efficiency removal of aniline. As evidenced from SEM and TEM images as well as the particle size distribution, the incorporation of SiO2 can improve the dispersity of MIL-68(Al) in composites, and result in the smaller particle size than that of pristine MIL-68(Al). Besides, the adsorption of aniline over SiO2, MIL-68(Al), the physical mixture of these two materials, and SiO2@MIL-68(Al) composites was investigated comparatively, demonstrating a relatively high adsorption capacity (531.9 mg g-1) of 7% SiO2@MIL-68(Al) towards aniline. Combining the ultrafast adsorption dynamics (reaching equilibrium within 40 s) and great reusability, 7% SiO2@MIL-68(Al) shows excellent adsorption performance. This indicates that the SiO2@MIL-68(Al) composites possess great potential applications as a kind of fascinating adsorbent in water pollution protection.

  19. Gas chromatographic/mass spectrometric determination of aniline in foods oils associated with the Spanish toxic oil syndrome

    International Nuclear Information System (INIS)

    Hill, R.H. Jr.; Todd, G.D.; Kilbourne, E.M.; Cline, R.E.; McCraw, J.; Orti, D.L.; Bailey, S.L.; Needham, L.L.

    1987-01-01

    In 1981, a new disease, known today as the toxic oil syndrome (TOS), descended upon the people of Spin. A strong association between TOS and contaminated food oil was established early. Subsequent investigations implicated food oils containing rapeseed oil denatured with aniline. However, little aniline was found in the oils; some other etiologic agent in the oil had apparently produced the illness. Many researchers have investigated these oils, but the specific etiologic agent has not been identified. Significant progress in this research has been hampered by the difficulty in identifying the specific oil samples that produced illness in specific TOS cases. In 1984, the Spanish Government invited the Centers for Disease Control (CDC) to participate in its research efforts to study the TOS problem. One of the authors was detailed to Spain to assist in the study of the illness. Part of their work in this area has been an attempt in their laboratories to classify a group of blind-coded case and control oils according to selected chemical measurements. They report here a newly developed method for determining aniline in these oils and the results of these analyses

  20. The electrochemical synthesis and corrosion behaviour of TiO2/poly(indole-co-aniline multilayer coating: Experimental and theoretical approach

    Directory of Open Access Journals (Sweden)

    Serap Toprak Döşlü

    2018-01-01

    Full Text Available The aim of this study was to protect stainless steel against corrosion via poly (indole-co-aniline with the help of titanium dioxide pre-coating. Different monomer ratios (1:1 and 1:9 were applied in order to determine the suitable chain composition to synthesize the copolymer in lithium perchlorate containing acetonitrile. The structures, morphologies, electrochemical properties and corrosion resistances of the mono and multi-layer coatings were investigated by Fourier-transform infrared spectra, scanning electron microscope, energy dispersive X-ray spectrometer, electrochemical impedance spectroscopy and anodic polarization. Furthermore the geometric structure and electronic properties of indole, aniline, and indole-co-aniline (dimmer molecules have been investigated by quantum calculations. The results indicated that corrosion protection of copolymers was increased via titanium dioxide pre-coating. The 1:1 copolymer coating showed better corrosion prevention than 1:9 coating. The correlation was determined between experimental and theoretical parameters.

  1. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  2. A four-component coupling reaction of carbon dioxide, amines, cyclic ethers and 3-triflyloxybenzynes for the synthesis of functionalized carbamates.

    Science.gov (United States)

    Xiong, Wenfang; Qi, Chaorong; Cheng, Ruixiang; Zhang, Hao; Wang, Lu; Yan, Donghao; Jiang, Huanfeng

    2018-04-27

    A novel four-component coupling reaction of carbon dioxide, amines, cyclic ethers and 3-triflyloxybenzynes has been developed for the first time, providing an efficient method for the synthesis of a series of functionalized carbamate derivatives in moderate to high yields. The process proceeds under mild, transition metal-free and fluoride-free conditions, leading to the formation of two new C-O bonds, one new C-N bond and one C-H bond in a single step.

  3. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Song, Y.; Engbersen, Johannes F.J.; Lok, Martin C.; Hennink, Wim E.; Feijen, Jan

    2005-01-01

    A variety of degradable hyperbranched poly(ester amine)s containing primary, secondary and tertiary amino groups, were synthesized and evaluated as non-viral gene carriers. The polymers were obtained in high yields through a Michael-type conjugate addition of diacrylate monomers with trifunctional

  4. Protonation sites of aromatic compounds in (+) atmospheric pressure photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Ahmed, Arif [Dept. of Chemistry, Kyungpoo k National University, Daegu (Korea, Republic of)

    2017-02-15

    Reaction enthalpy of hydrogen transfer reactions of aromatic compounds has been observed to be greatly affected by the exact location of the protonation site. Therefore, to clearly identify the protonation location, each candidate protonation site for 43 aromatic compounds were theoretically determined and their location was compared with that determined based on experimental MS data. Only the basic nitrogen atom is favorable as a protonation site for pyridine-type aromatic compounds, whereas carbon atoms are preferable for the protonation of pyrrole-type compounds. The most favorable protonation sites for aniline or methylated aniline-type aromatic compounds are either the nitrogen atom in the amine group or the carbon atom at the para-position to the amine group. Like pyrrole-type compounds, aromatic compounds with amine groups also favor protonation at the carbon atom instead of at the nitrogen atom. In addition, hydrocarbons having an anthracene structural motif without heteroatoms produced higher or equal percentages of protonated ions compared to that achieved with molecular ions. The results of this study can be used to improve the analyses of aromatic compounds.

  5. Synthesis and bioelectrochemical behavior of aromatic amines.

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Bolte, Michael; McKee, Vickie

    2017-12-01

    Four aromatic amines 1-amino-4-phenoxybenzene (A 1 ), 4-(4-aminophenyloxy) biphenyl (A 2 ), 1-(4-aminophenoxy) naphthalene (A 3 ) and 2-(4-aminophenoxy) naphthalene (A 4 ) were synthesized and characterized by elemental, spectroscopic (FTIR, NMR), mass spectrometric and single crystal X-ray diffraction methods. The compounds crystallized in monoclinic crystal system with space group P2 1 . Intermolecular hydrogen bonds were observed between the amine group and amine/ether acceptors of neighboring molecules. Electrochemical investigations were done using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). CV studies showed that oxidation of aromatic amines takes place at about 0.9 V (vs. Ag/AgCl) and the electron transfer (ET) process has irreversible nature. After first scan reactive intermediate were generated electrochemically and some other cathodic and anodic peaks also appeared in the succeeding scans. DPV study revealed that ET process is accompanied by one electron. DNA binding study of aromatic amines was performed by CV and UV-visible spectroscopy. These investigations revealed groove binding mode of interaction of aromatic amines with DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Physical Absorption of Green House Gases in Amines: The Influence of Functionality, Structure, and Cross-Interactions.

    Science.gov (United States)

    Orozco, Gustavo A; Lachet, Véronique; Mackie, Allan D

    2016-12-29

    Monte Carlo simulations were performed in the isothermal-isobaric ensemble (NPT) to calculate the Henry constants of methane (CH 4 ), nitrous oxide (N 2 O), and carbon dioxide (CO 2 ) in pure H 2 O, amines, and alkanolamines using the classical Lorentz-Berthelot combining rules (L-B). The Henry constants of N 2 O and CO 2 in water are highly overestimated and motivated us to propose a new set of unlike interactions. Contrarily, the Henry constant of N 2 O in MEA is underestimated by around 40%, and again, a new reoptimized cross unlike parameter is able to reproduce the constant to within 10%. An analysis is given of the relationship between the physical absorption of these gases and the chemical structure or functionality of 12 molecules including amines and alkanolamines using the anisotropic united atom intermolecular potential (AUA4). Finally, the solubility of N 2 O in an aqueous solution of monoethanolamine (MEA) at 30% (wt) was also studied. A Henry constant within 7% of the experimental value was found by using the reoptimized parameters along with L-B to account for the MEA + H 2 O unlike interactions. This very good agreement without additional adjustments for the MEA + H 2 O system may be attributed to the good excess properties predictions found in previous works for the binary mixture (MEA + H 2 O). However, further work, including additional alkanolamines in aqueous solutions at several concentrations, is required to verify this particular point.

  7. Intermolecular vibronic spectroscopy of small van der Waals clusters: Phenol- and aniline-(argon)2 complexes

    International Nuclear Information System (INIS)

    Schmidt, M.; Mons, M.; Le Calve, J.

    1990-01-01

    We report the clear observation and assignment of the symmetric stretching and bending van der Waals modes in two three-body C 2ν complexes, phenol- and aniline-(Ar) 2 , using resonant two-photon ionization. (orig.)

  8. Amine Swingbed Payload Project Management

    Science.gov (United States)

    Walsch, Mary; Curley, Su

    2013-01-01

    The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the Orion Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the Orion vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6 ]person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload-the swingbed unit itself-launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open -loop Orion application as well as the closed-loop ISS application.

  9. Role of L-alanine for redox self-sufficient amination of alcohols.

    Science.gov (United States)

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-23

    In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578-5585, 2014), and the role of L-alanine for efficient amine functionalization of 1,10-decanediol to 1,10-diaminodecane were analyzed. The enzymes of the cascade for amine functionalization of alcohols were characterized in vitro to find optimal conditions for an efficient process. Transaminase from Chromobacterium violaceum, TaCv, showed three-fold higher catalytic efficiency than transaminase from Vibrio fluvialis, TaVf, and improved production at 37°C. At 42°C, TaCv was more active, which matched thermostable alcohol dehydrogenase and alanine dehydrogenase and improved the 1,10-diaminodecane production rate four-fold. To study the role of L-alanine in the whole cell biotransformation, the L-alanine concentration was varied and 1,10.diaminodecane formation tested with constant 10 mM 1,10- decanediol and 100 mM NH4Cl. Only 5.6% diamine product were observed without added L-alanine. L-alanine concentrations equimolar to that of the alcohol enabled for 94% product formation but higher L-alanine concentrations allowed for 100% product formation. L-alanine was consumed by the E. coli biocatalyst, presumably due to pyruvate catabolism since up to 16 mM acetate accumulated. Biotransformation employing E. coli strain YYC202/pTrc99a-ald-adh-ta Cv, which is unable to catabolize pyruvate, resulted in conversion with a selectivity of 42 mol-%. Biotransformation with E. coli strains only lacking pyruvate oxidase PoxB showed similar reduced amination of 1,10-decanediol indicating that oxidative decarboxylation of pyruvate to acetate by PoxB is primarily

  10. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    Science.gov (United States)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  11. Examination of Amine-Functionalised Anion-Exchange Membranes for Possible Use in the All-Vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Mallinson, Sarah L.; Varcoe, John R.; Slade, Robert C.T.

    2014-01-01

    The applicability of amine-functionalised anion-exchange membranes (AEMs) for use in the all-vanadium redox flow battery has been studied. A selection of radiation-grafted aminated membranes functionalised with dimethylamine, trimethylamine or diazabicyclo(2,2,2)octane were extensively tested. The success of each grafting process was confirmed by Raman and infrared spectroscopies, titrimetry and ionic conductivity measurements. The amine-functionalised membranes were found to have poor thermo-oxidative stability and high vanadium cation permeabilities. The results highlight the importance of balancing ionic conductivity with vanadium cation permeability and indicate that amine-based functional groups may not be suitably stable for the membranes to remain true AEMs when in use in the all-vanadium redox flow battery

  12. Extraction of sulphates by long chain amines

    International Nuclear Information System (INIS)

    Boirie, Ch.

    1959-05-01

    The extraction of sulphuric acid by long chain amines in organic solution has been studied with a view to determining the value of the stability constants of the amine sulphates and bi-sulphates formed. We have concentrated chiefly on uranium sulphate and thorium sulphate. The formulae of the complexes extractable with amines have been established, as well as the corresponding dissociation constants. We have observed that for uranium sulphate the formula of the complex depends only on the nature of the amine, whereas for thorium this formula varies with the amine structure. From the formulae determined and the value of the constants calculated, we have been able to establish the best conditions for uranium and thorium extraction and also for a separation of these two elements. Finally we propose an application of this study to the determination of uranium in ores, where the separation of uranium by this method is particularly easy and complete. (author) [fr

  13. Palladium-catalysed anti-Markovnikov selective oxidative amination

    Science.gov (United States)

    Kohler, Daniel G.; Gockel, Samuel N.; Kennemur, Jennifer L.; Waller, Peter J.; Hull, Kami L.

    2018-03-01

    In recent years, the synthesis of amines and other nitrogen-containing motifs has been a major area of research in organic chemistry because they are widely represented in biologically active molecules. Current strategies rely on a multistep approach and require one reactant to be activated prior to the carbon-nitrogen bond formation. This leads to a reaction inefficiency and functional group intolerance. As such, a general approach to the synthesis of nitrogen-containing compounds from readily available and benign starting materials is highly desirable. Here we present a palladium-catalysed oxidative amination reaction in which the addition of the nitrogen occurs at the less-substituted carbon of a double bond, in what is known as anti-Markovnikov selectivity. Alkenes are shown to react with imides in the presence of a palladate catalyst to generate the terminal imide through trans-aminopalladation. Subsequently, olefin isomerization occurs to afford the thermodynamically favoured products. Both the scope of the transformation and mechanistic investigations are reported.

  14. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

    OpenAIRE

    Kim, Jinho; Stahl, Shannon S.

    2013-01-01

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst...

  15. Redox reactions of Cu(II)-amine complexes in aqueous solutions

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Kishore, Kamal

    2003-01-01

    A number of amines can be employed for all volatile treatment (AVT) of steam generator (SG) systems of nuclear power reactors. These amines form complexes with Cu 2+ and Ni 2+ ions which come into water due to corrosion. The redox reactions of a number of Cu(II)-AVT amine complexes and the stability of the transient species formed have been studied by pulse radiolysis technique. Rate constants for the reaction of e aq - with a number of Cu(II)-amine complexes have been determined by following the decay of e aq - absorption. Stability of Cu(I)-amine complexes was studied by following the kinetics of the bleaching signal formed at the λ max of the Cu(II) amine complex. Except for Cu(I)-triethanolamine complex all other Cu(I)-amine complexes were found to be stable. One-electron oxidation of Cu(II) amine complexes was studied using azidyl radicals for the oxidation reaction as OH radicals react with the alcohol groups present in the amines used in this study. Cu(III)-amine complexes were found to be unstable and decayed by second-order kinetics

  16. Reduced Reactivity of Amines against Nucleophilic Substitution via Reversible Reaction with Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Fiaz S. Mohammed

    2015-12-01

    Full Text Available The reversible reaction of carbon dioxide (CO2 with primary amines to form alkyl-ammonium carbamates is demonstrated in this work to reduce amine reactivity against nucleophilic substitution reactions with benzophenone and phenyl isocyanate. The reversible formation of carbamates has been recently exploited for a number of unique applications including the formation of reversible ionic liquids and surfactants. For these applications, reduced reactivity of the carbamate is imperative, particularly for applications in reactions and separations. In this work, carbamate formation resulted in a 67% reduction in yield for urea synthesis and 55% reduction for imine synthesis. Furthermore, the amine reactivity can be recovered upon reversal of the carbamate reaction, demonstrating reversibility. The strong nucleophilic properties of amines often require protection/de-protection schemes during bi-functional coupling reactions. This typically requires three separate reaction steps to achieve a single transformation, which is the motivation behind Green Chemistry Principle #8: Reduce Derivatives. Based upon the reduced reactivity, there is potential to employ the reversible carbamate reaction as an alternative method for amine protection in the presence of competing reactions. For the context of this work, CO2 is envisioned as a green protecting agent to suppress formation of n-phenyl benzophenoneimine and various n-phenyl–n-alky ureas.

  17. Determination of the solid surface critical exponent β{sub 1} from contact-angle variation on approach to a wetting transition: Cyclohexane/aniline/quartz

    Energy Technology Data Exchange (ETDEWEB)

    Pallas, Norman R., E-mail: Sam-7-iam@hotmail.com [BP Research Centre Warrensville, 4440 Warrensville Center Road, Cleveland, Ohio 44128 (United States)

    2016-03-21

    The three-phase contact angle (θ) for the system cyclohexane/aniline/quartz has been measured from drop shapes as a function of temperature on approach to the cyclohexane/aniline upper consolute solution temperature T{sub c}. The experiments employed exacting criteria previously established for thermodynamic-quality measurements at fluid interfaces. A first-order wetting transition from partial wetting to complete wetting was observed at a temperature T{sub w}, 2.12 K below T{sub c}. The contact angle vanishes at T{sub w}, scaling as cos θ ∼ |T − T{sub c}|{sup β{sub 1}−μ} for T < T{sub w} and cos θ = 1.0 for T{sub w} < T < T{sub c}. The experimental results give a value for β{sub 1} = 0.74 ± 0.03, in agreement with theoretical calculations. The data clearly rule out higher order contributions to the change in the contact angle near the critical point for this system. These results are in marked contrast to previous measurements on this system from measurements of capillary rise and meniscus curvature.

  18. Polyvinylpyrrolidone/ Poly aniline Composite Based 36 degree YX LiTaO3 Surface Acoustic Wave H2 Gas Sensor

    International Nuclear Information System (INIS)

    Amir Sidek; Rashidah Arsat; Xiuli, He; Kalantar-zadeh, K.; Wlodarski, W.

    2013-01-01

    Poly-vinyl-pyrrolidone (PVP)/ poly aniline based surface acoustic wave (SAW) sensors were fabricated and characterized and their performances towards hydrogen gas were investigated. The PVP/ poly aniline fibers composite were prepared by electro spinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nano structure material was observed. From the dynamic response, frequency shifts of 6.243 kHz (1% H 2 ) and 8.051 kHz (1% H 2 ) were recorded for the sensors deposited with PVP/ ES and PVP/ EB, respectively. (author)

  19. DFT investigation on the adsorption behavior of dimethyl and trimethyl amine molecules on borophene nanotube

    Science.gov (United States)

    Bhuvaneswari, R.; Chandiramouli, R.

    2018-06-01

    The electronic properties of borophene nanotube (BNT) are witnessed and the adsorption properties of dimethyl amine (DMA) and trimethyl amine (TMA) molecules on borophene nanotube are explored through non-equilibrium Green's function (NEGF) and density functional theory (DFT) method. The device density of states spectrum interprets the change in peak maxima, thus indicating the electron transition between DMA, TMA molecules and BNT base material. I-V characteristics strengthen the adsorption property of DMA and TMA on BNT by pointing out the variation in the current. The present work assures that borophene nanotube (BNT) can be employed as DMA and TMA sensor.

  20. Reductive amination with zinc powder in aqueous media

    Directory of Open Access Journals (Sweden)

    Giovanni B. Giovenzana

    2011-08-01

    Full Text Available Zinc powder in aqueous alkaline media was employed to perform reductive amination of aldehydes with primary amines. The corresponding secondary amines were obtained in good yields along with minor amounts of hydrodimerization byproducts. The protocol is a green alternative to the use of complex hydrides in chlorinated or highly flammable solvents.

  1. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines.

    Science.gov (United States)

    Zultanski, Susan L; Zhao, Jingyi; Stahl, Shannon S

    2016-05-25

    A modular Cu/ABNO catalyst system has been identified that enables efficient aerobic oxidative coupling of alcohols and amines to amides. All four permutations of benzylic/aliphatic alcohols and primary/secondary amines are viable in this reaction, enabling broad access to secondary and tertiary amides. The reactions exhibit excellent functional group compatibility and are complete within 30 min-3 h at rt. All components of the catalyst system are commercially available.

  2. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.

    Science.gov (United States)

    Kim, Jinho; Stahl, Shannon S

    2013-07-05

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.

  3. A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water.

    Science.gov (United States)

    Chen, Ya; Wang, Bin; Wang, Xiaoqing; Xie, Lin-Hua; Li, Jinping; Xie, Yabo; Li, Jian-Rong

    2017-08-16

    Copper(II)-paddlewheel-based metal-organic frameworks (CP-MOFs) represent a unique subclass of MOFs with highly predictable porous structures, facile syntheses, and functional open metal sites. However, the lack of high hydrolytic stability is an obstacle for CP-MOFs in many practical applications. In this work, we report a new CP-MOF, [Cu 4 (tdhb)] (BUT-155), which is constructed from a judiciously designed carboxylate ligand with high coordination connectivity (octatopic), abundant hydrophobic substituents (six methyl groups), and substituent constrained geometry (tetrahedral backbone), tdhb 8- [H 8 tdhb = 3,3',5,5'-tetrakis(3,5-dicarboxyphenyl)-2,2',4,4',6,6'-hexamethylbiphenyl)]. BUT-155 shows high porosity with a Brunauer-Emmett-Teller surface area of 2070 m 2 /g. Quite interestingly, this CP-MOF retains its structural integrity after being treated in water for 10 days at room temperature or in boiling water for 24 h. To the best of our knowledge, BUT-155 represents the first CP-MOF that is demonstrated to retain its structural integrity in boiling water. The high hydrolytic stability of BUT-155 allowed us to carry out adsorption studies of water vapor and aqueous organic pollutants on it. Water-vapor adsorption reveals a sigmoidal isotherm and a high uptake (46.7 wt %), which is highly reversible and regenerable. In addition, because of the availability of soft-acid-type open Cu(II) sites, BUT-155 shows a high performance for selective adsorption of soft-base-type aniline over water or phenol, and a naked-eye detectable color change for the MOF sample accompanies this. The adsorption selectivity and high adsorption capacity of aniline in BUT-155 are also well-interpreted by single-crystal structures of the water- and aniline-included phases of BUT-155.

  4. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions.

    Science.gov (United States)

    Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G

    2013-12-16

    We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction

  5. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  6. Tunable, chemoselective amination via silver catalysis.

    Science.gov (United States)

    Rigoli, Jared W; Weatherly, Cale D; Alderson, Juliet M; Vo, Brian T; Schomaker, Jennifer M

    2013-11-20

    Organic N-containing compounds, including amines, are essential components of many biologically and pharmaceutically important molecules. One strategy for introducing nitrogen into substrates with multiple reactive bonds is to insert a monovalent N fragment (nitrene or nitrenoid) into a C-H bond or add it directly to a C═C bond. However, it has been challenging to develop well-defined catalysts capable of promoting predictable and chemoselective aminations solely through reagent control. Herein, we report remarkable chemoselective aminations that employ a single metal (Ag) and a single ligand (phenanthroline) to promote either aziridination or C-H insertion by manipulating the coordination geometry of the active catalysts.

  7. Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air-water interface.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-02-01

    The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Formation mechanism of NDMA from ranitidine, trimethylamine, and other tertiary amines during chloramination: a computational study.

    Science.gov (United States)

    Liu, Yong Dong; Selbes, Meric; Zeng, Chengchu; Zhong, Rugang; Karanfil, Tanju

    2014-01-01

    Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2-R(+) bond dissociation energy to release NDMA and carbocation R(+) was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure-activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor.

  9. Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation.

    Science.gov (United States)

    Ling, Ke-Qing; Li, Wen-Shan; Sayre, Lawrence M

    2008-01-23

    Although oxidations of aromatic amines by horseradish peroxidase (HRP) are well-known, typical aliphatic amines are not substrates of HRP. In this study, the reactions of N-benzyl and N-methyl cyclic amines with HRP were found to be slow, but reactions of N-(3-indoleethyl) cyclic amines were 2-3 orders of magnitude faster. Analyses of pH-rate profiles revealed a dominant contribution to reaction by the amine-free base forms, the only species found to bind to the enzyme. A metabolic study on a family of congeneric N-(3-indoleethyl) cyclic amines indicated competition between amine and indole oxidation pathways. Amine oxidation dominated for the seven- and eight-membered azacycles, where ring size supports the change in hybridization from sp3 to sp2 that occurs upon one-electron amine nitrogen oxidation, whereas only indole oxidation was observed for the six-membered ring congener. Optical difference spectroscopic binding data and computational docking simulations suggest that all the arylalkylamine substrates bind to the enzyme through their aromatic termini with similar binding modes and binding affinities. Kinetic saturation was observed for a particularly soluble substrate, consistent with an obligatory role of an enzyme-substrate complexation preceding electron transfer. The significant rate enhancements seen for the indoleethylamine substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range electron-transfer oxidation of the tertiary amine center by the HRP oxidants. This is the first systematic investigation to document aliphatic amine oxidation by HRP at rates consistent with normal metabolic turnover, and the demonstration that this is facilitated by an auxiliary electron-rich aromatic ring.

  10. Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Manakhov, Anton [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Nečas, David [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Čechal, Jan [CEITEC — Central European Institute of Technology, Brno University of Technology, Technická 3058/10, 616 00 Brno (Czech Republic); Pavliňák, David [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Eliáš, Marek [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); and others

    2015-04-30

    Amine-rich films are of high interest for the bio-applications including drug delivery and tissue engineering thanks to their high reactivity allowing the formation of the covalent linkages between biomolecules and a surface. However, the bio-applications of amine-rich films require their good stability in water which is often achieved at large expenses of the amine concentration. Recently, non-toxic cyclopropylamine (CPA) has been applied for the plasma polymerization of films bearing high NH{sub x} environment combined with the moderate thickness loss (20%) after water immersion for 48 h. In this work, the amine-rich film with the NH{sub x} concentration over 7 at.% was deposited on Si substrates and polycaprolactone nanofiber meshes by using CPA plasma polymerization (pulsed mode) in a vertically oriented stainless steel reactor. The substrates were placed at the radio frequency electrode and the ion bombardment caused by direct-current self-bias was suppressed by using high pressure of 50 Pa. Analysis of samples by scanning electron microscopy did not reveal any cracks in the deposited layer formed during a sample immersion in water. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed a slight oxidation of amine groups in water but the film still contained 5 at.% of NH{sub x} (according to the N1s XPS fitting) after the immersion. The rapid oxidation of amine groups was observed during the aging experiment carried out in air at room temperature because FTIR revealed an increase of amide peaks that increased progressively with aging time. However, this oxidation was significantly reduced if the plasma polymer was stored at − 20 °C. Since the films exhibit high amine concentration and very good water stability they have great potential for applications as biocompatible functional coatings. - Highlights: • Cyclopropylamine plasma polymers deposited on polycaprolactone nanofibers • Amine-rich films with high

  11. Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization

    International Nuclear Information System (INIS)

    Manakhov, Anton; Nečas, David; Čechal, Jan; Pavliňák, David; Eliáš, Marek

    2015-01-01

    Amine-rich films are of high interest for the bio-applications including drug delivery and tissue engineering thanks to their high reactivity allowing the formation of the covalent linkages between biomolecules and a surface. However, the bio-applications of amine-rich films require their good stability in water which is often achieved at large expenses of the amine concentration. Recently, non-toxic cyclopropylamine (CPA) has been applied for the plasma polymerization of films bearing high NH x environment combined with the moderate thickness loss (20%) after water immersion for 48 h. In this work, the amine-rich film with the NH x concentration over 7 at.% was deposited on Si substrates and polycaprolactone nanofiber meshes by using CPA plasma polymerization (pulsed mode) in a vertically oriented stainless steel reactor. The substrates were placed at the radio frequency electrode and the ion bombardment caused by direct-current self-bias was suppressed by using high pressure of 50 Pa. Analysis of samples by scanning electron microscopy did not reveal any cracks in the deposited layer formed during a sample immersion in water. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed a slight oxidation of amine groups in water but the film still contained 5 at.% of NH x (according to the N1s XPS fitting) after the immersion. The rapid oxidation of amine groups was observed during the aging experiment carried out in air at room temperature because FTIR revealed an increase of amide peaks that increased progressively with aging time. However, this oxidation was significantly reduced if the plasma polymer was stored at − 20 °C. Since the films exhibit high amine concentration and very good water stability they have great potential for applications as biocompatible functional coatings. - Highlights: • Cyclopropylamine plasma polymers deposited on polycaprolactone nanofibers • Amine-rich films with high water stability

  12. Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization.

    Science.gov (United States)

    Niu, Zhongwei; Bruckman, Michael; Kotakadi, Venkata S; He, Jinbo; Emrick, Todd; Russell, Thomas P; Yang, Lin; Wang, Qian

    2006-07-28

    One-dimensional composite nanofibres with narrow dispersity, high aspect ratio and high processibility have been fabricated by head-to-tail self-assembly of rod-like tobacco mosaic virus assisted by aniline polymerization, which can promote many potential applications including electronics, optics, sensing and biomedical engineering.

  13. Development of I-123-labeled amines for brain studies: localization of I-123 iodophenylalkyl amines in rat brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Baldwin, R.M.; Lin, T.H.

    1980-01-01

    Localization in rat brain of forty iodophenylalkyl amines labeled with I-123 was evaluated in an attempt to develop I-123-labeled amines useful for brain studies. For the amines studied, the highest activity in brain and the brain-to-blood activity ratios ranked p > m > o as related to iodine position on the benzene ring: for alkyl groups the rank order was α-methylethyl > ethyl > methyl > none; for N additions it was single lipophilic group > H > two lipophilic groups. It is suggested that introduction of a halogen into the ring structure of many amines results in greater concentration of the agent in brain than is seen with the nonhalogenated parent compound. The agent N-isopropyl-p-iodoamphetamine was chosen for further study because, in the rat, it showed high brain activity (1.57%/g) and brain-blood ratio (12.6) at 5 min

  14. New insights into controlling tube-bundle fouling using alternative amines

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Fruzzetti, K. [Atomic Energy of Canada Ltd. (Canada); Frattini, P.L. [Electric Power Research Inst. (United States)

    2002-07-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of deposit consolidation result in a low rate of deposit removal and a high fouling rate. Conversely, amines that tend to inhibit deposit consolidation produce a higher rate of deposit removal and a lower fouling rate. Dimethyl-amine and dodecyl-amine have been identified as two amines that inhibit the rate of deposit consolidation and, consequently, result in fouling rates that are up to 5 times lower than rates measured for amines that promote consolidation. A significant difference between morpholine (high fouling rate) and dimethyl-amine (low fouling rate) is that the latter desorbs more slowly from the surface of magnetite. How to account for a correlation between slow desorption kinetics and lower rate constants for deposition and

  15. New insights into controlling tube-bundle fouling using alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Fruzzetti, K.; Frattini, P.L.

    2002-01-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of deposit consolidation result in a low rate of deposit removal and a high fouling rate. Conversely, amines that tend to inhibit deposit consolidation produce a higher rate of deposit removal and a lower fouling rate. Dimethyl-amine and dodecyl-amine have been identified as two amines that inhibit the rate of deposit consolidation and, consequently, result in fouling rates that are up to 5 times lower than rates measured for amines that promote consolidation. A significant difference between morpholine (high fouling rate) and dimethyl-amine (low fouling rate) is that the latter desorbs more slowly from the surface of magnetite. How to account for a correlation between slow desorption kinetics and lower rate constants for deposition and

  16. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system

    DEFF Research Database (Denmark)

    Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan

    2017-01-01

    wastewater under an acidic condition maintained by the bipolar membrane. The aniline was effectively degraded following first-order kinetics at a rate constant of 0.0166 h−1 under an applied voltage of 0.5 V. Meanwhile, a total organic carbon (TOC) removal efficiency of 93.1 ± 1.2% was obtained, revealing...

  17. BIOGENIC AMINES CONTENT IN DIFFERENT WINE SAMPLES

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2015-02-01

    Full Text Available Twenty-five samples of different Slovak wines before and after filtration were analysed in order to determine the content of eight biogenic amines (tryptamine, phenylalanine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine. The method involves extraction of biogenic amines from wine samples with used dansyl chloride. Ultra-high performance liquid chromatography (UHPLC was used for determination of biogenic amines equipped with a Rapid Resolution High Definition (RRHD, DAD detectors and Extend-C18 LC column (50 mm x 3.0 mm ID, 1.8 μm particle size. In this study the highest level of biogenic amine in all wine samples represent tryptamine (TRM with the highest content 170.9±5.3 mg/L in Pinot Blanc wine. Phenylalanine (PHE cadaverine (CAD, histamine (HIS and spermidine (SPD were not detected in all wines; mainly SPD was not detected in 16 wines, HIS not detected in 14 wines, PHE and CAD not detected in 2 wines. Tyramine (TYR, spermine (SPN and putrescine (PUT were detected in all wines, but PUT and SPN in very low concentration. The worst wine samples with high biogenic amine content were Saint Laurent (BF, Pinot Blanc (S and Pinot Noir (AF.

  18. Biogenic amine formation and bacterial contribution in Natto products.

    Science.gov (United States)

    Kim, Bitna; Byun, Bo Young; Mah, Jae-Hyung

    2012-12-01

    Twenty-one Natto products currently distributed in Korea were analysed for biogenic amine contents and tested to determine physicochemical and bacterial contributions to biogenic amine formation. Among them, nine products (about 43%) had β-phenylethylamine or tyramine contents greater than the toxic dose (30mg/kg and 100mg/kg, respectively) of each amine, although no products showed total amounts of biogenic amines above the harmful level (1000mg/kg), which indicates that the amounts of biogenic amines in some Natto products are not within the safe level for human health. From four different Natto products, that contained noticeable levels of β-phenylethylamine and tyramine, 80 bacterial strains were isolated. All the strains were identified to be Bacillus subtilis and highly capable of producing β-phenylethylamine and tyramine. Therefore, it seems likely that the remarkable contents of β-phenylethylamine and tyramine in Natto predominantly resulted from the strains highly capable of producing those amines present in the food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Sodium Perborate Oxidation of an Aromatic Amine

    Science.gov (United States)

    Juestis, Laurence

    1977-01-01

    Describes an experiment involving the oxidation of aromatic primary amines to the corresponding azo compound; suggests procedures for studying factors that influence the yield of such a reaction, including the choice of solvent and the oxidant-amine ratio. (MLH)

  20. Transition Metal-Free Selective Double sp(3) C-H Oxidation of Cyclic Amines to 3-Alkoxyamine Lactams.

    Science.gov (United States)

    Osorio-Nieto, Urbano; Chamorro-Arenas, Delfino; Quintero, Leticia; Höpfl, Herbert; Sartillo-Piscil, Fernando

    2016-09-16

    The first chemical method for selective dual sp(3) C-H functionalization at the alpha-and beta positions of cyclic amines to their corresponding 3-alkoxyamine lactams is reported. Unlike traditional Cα-H oxidation of amines to amides mediated by transition metals, the present protocol, which involves the use of NaClO2/TEMPO/NaClO in either aqueous or organic solvent, not only allows the Cα-H oxidation but also the subsequent functionalization of the unreactive β-methylene group in an unprecedented tandem fashion and using environmentally friendly reactants.

  1. Mild and Efficient Deoxygenation of Amine-N-Oxides with FeCl3·6H2O-Indium System under Ultrasonication

    International Nuclear Information System (INIS)

    Yoo, Byung Woo; Hwang, Sun Kyun; Kim, Dong Yoon; Choi, Jin Woo; Kang, Sang Ook; Yoo, Byoung Seung; Choi, Kyung Il; Kim, Joong Hyup

    2004-01-01

    We believe that the mild and efficient method described here will present an attractive alternative to the existing methods available for the reduction of amine-N-oxides to the corresponding amines. Further investigations of FeCl 3 ·6H 2 O/In system as reducing agent in organic synthesis are currently in progress. The deoxygenation of amine-N-oxides to amines in the presence of other functional groups is an important transformation in the synthesis of nitrogenous aromatic heterocycles. Many reagents have been employed for the deoxygenation of amine-N-oxides, including agents such as: low-valent titanium, phosphorous and sulphur compounds, tributyltin hydride, Pd/C, tetrathiomolybdate, SmI 2 , indium/NH 4 Cl. Recently we reported that Cp 2 TiCl 2 /In system could be used for the deoxygenation of various amine-N-oxides

  2. Method for the production of primary amines

    NARCIS (Netherlands)

    Baldenius, Kai-Uwe; Ditrich, Klaus; Breurer, Michael; Navickas, Vaidotas; Janssen, Dick; Crismaru, Ciprian; Bartsch, Sebastian

    2014-01-01

    The present invention relates to a novel enzymatically catalyzed method for the production of aliphatic primary amines, which method comprises the enzymatic oxidation of a primary aliphatic alcohol catalyzed by an alcohol dehydrogenase, amination of the resulting oxocompound catalyzed by a

  3. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams. In particular, these materials are being extensively studied for the adsorption of CO 2 from simulated flue gas streams, with an eye towards utilizing these materials as part of a post-combustion carbon capture process at large flue gas producing installations, such as coal-fired electricity-generating power plants. In this Application Article, the utilization of amine-modified organic-inorganic hybrid materials is discussed, focusing on important attributes of the materials, such as (i) CO 2 adsorption capacities, (ii) adsorption and desorption kinetics, and (iii) material stability, that will determine if these materials may one day be useful adsorbents in practical CO 2 capture applications. Specific research needs and limitations associated with the current body of work are identified. © 2011 The Royal Society of Chemistry.

  4. The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation.

    Science.gov (United States)

    Selbes, Meric; Kim, Daekyun; Ates, Nuray; Karanfil, Tanju

    2013-02-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated and chlorinated drinking waters and wastewaters. Formation mechanisms and precursors of NDMA are still not well understood. The main objectives of this study were to systematically investigate (i) the effect of tertiary amine structure, (ii) the effect of background natural organic matter (NOM), and (iii) the roles of mono vs. dichloramine species on the NDMA formation. Dimethylamine (DMA) and 20 different tertiary aliphatic and aromatic amines were carefully examined based on their functional groups attached to the basic DMA structure. The wide range (0.02-83.9%) of observed NDMA yields indicated the importance of the structure of tertiary amines, and both stability and electron distribution of the leaving group of tertiary amines on NDMA formation. DMA associated with branched alkyl groups or benzyl like structures having only one carbon between the ring and DMA structure consistently gave higher NDMA yields. Compounds with electron withdrawing groups (EWG) reacted preferentially with monochloramine, whereas compounds with electron donating group (EDG) showed tendency to react with dichloramine to form NDMA. When the selected amines were present in NOM solutions, NDMA formation increased for compounds with EWG while decreased for compounds with EDG. This impact was attributed to the competitions between NOM and amines for chloramine species. The results provided additional information to the commonly accepted mechanism for NDMA formation including chloramine species reacting with tertiary amines and the role of the leaving group on overall NDMA conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Titanium dioxide modified with various amines used as sorbents of carbon dioxide

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Pirog, Ewa; Kusiak-Nejman, Ewelina; Wrobel, Rafal J.; Gesikiewicz-Puchalska, Andzelika; Morawski, Antoni W.; Narkiewicz, Urszula; Michalkiewicz, Beata

    2017-01-01

    In this study, titanium dioxide was modified with various amines through hydrothermal treatment for adsorption of CO_2. The carbon dioxide adsorption performance of the prepared samples was measured using an STA 449 C thermo-balance (Netzsch Company, Germany). The morphological structures, functional groups and elemental compositions of the unmodified and amine-modified titanium dioxide sorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR/DR) and scanning electron microscopy (SEM), respectively. The results showed that modification of TiO_2 with amines through hydrothermal treatment is a simple method to prepare CO_2 sorbents with high adsorption capacities. Moreover, the results revealed that TEPA-modified titanium dioxide shoved the highest adsorption capacity, enabling an increase in CO_2 uptake from 0.45 mmol CO_2 g"-"1 in the case of raw TiO_2 to 1.63 mmol CO_2 g"-"1. This result could be indirectly related to the fact that TEPA has the highest amino group content among the three amines used in our research. Additionally, durability tests performed by cyclic adsorption-desorption revealed that TEPA modified titanium dioxide also possesses excellent stability, despite a slight decrease in adsorption capacity over time. (authors)

  6. Poly aniline Nano fiber as Modified Cladding for Optical Fiber Sensor to Detect Acetone Vapor

    International Nuclear Information System (INIS)

    Akhiruddin maddu; Ahmad aminuddin; Setyanto Tri Wahyudi; Hamdani Zain

    2008-01-01

    In this research, we used poly aniline nano fiber as modified cladding material for a fiber optic sensor system to detect the acetone vapor. The sensor was designed based on variation of evanescent field absorption on the core-modified cladding interface when exposed with varied acetone vapor. Poly aniline nano fiber synthesized by interfacial polymerization was coated onto the un-cladded core and acts as sensing element. Response of the fiber optic sensor was investigated by measuring the transmission light intensity via fiber optic sensor system while exposed with acetone vapor. Based on the sensor response curve, it is obtained a very fast response time of 30 s and recovery time of 10 s. The fiber optic sensor also exhibits a good reversibility and repeatability. Sensitivity of the sensor to variation of acetone vapor pressure was obtained 1.25 %/mmHg, that means the transmission intensity of the sensor changes 1.25 % for acetone vapor change of 1 mmHg. (author)

  7. Excretion of amine nitrogen and ammonia in urine of pregnant women with type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Zulfiya Raisovna Alimetova

    2010-12-01

    Full Text Available Aim. To study excretion of amine nitrogen and ammonia in urine of pregnant women with type 1 diabetes mellitus depending on gestational ageand albuminuria level. Materials and methods. A total of 60 pregnant women with type 1 diabetes mellitus were examined. Proximal and distal tubular function was estimatedfrom daily excretion of amine nitrogen and ammonia respectively. Results. Daily excretion of amine nitrogen and ammonia in urine of pregnant women with type 1 diabetes mellitus was lower than in healthycontrols in the 2nd trimester regardless of albuminuria and in the 3rd trimester in patients with microalbuminuria (MAU and proteinuria (PU.Ammonia excretion was twice lower than normal in the 2nd trimester in women with MAU and PU, and in the 3rd trimester in patients with PU.Healthy pregnant women showed significant correlation between ammonia and amine nitrogen excretion throughout pregnancy (r?0.833,p

  8. Direct electrochemical imidation of aliphatic amines via anodic oxidation.

    Science.gov (United States)

    Zhang, Li; Su, Ji-Hu; Wang, Sujing; Wan, Changfeng; Zha, Zhenggen; Du, Jiangfeng; Wang, Zhiyong

    2011-05-21

    Direct electrochemical synthesis of sulfonyl amidines from aliphatic amines and sulfonyl azides was realized with good to excellent yields. Traditional tertiary amine substrates were broadened to secondary and primary amines. The reaction intermediates were observed and a reaction mechanism was proposed and discussed. © The Royal Society of Chemistry 2011

  9. The effects of Urtica dioica L. leaf extract on aniline 4-hydroxylase in mice.

    Science.gov (United States)

    Ozen, Tevfik; Korkmaz, Halil

    2009-01-01

    The effects of hydroalcoholic (80% ethanol-20% water) extract of Urtica dioica L. on microsomal aniline 4-hydroxylase (A4H) were investigated in the liver of Swiss albino mice (8- 10-weeks-old) treated with two doses (50 and 100 mg/kg body weight, given orally for 14 days ). The activities of A4H showed a significant increase in the liver at both dose levels of extract treatment. The hydroalcoholic extract of Urtica dioica induced the activities of A4H that had been increased by treatment of metal ions (Mg2+ and Ca2+) and the mixture of cofactors (NADH and NADPH). At saturated concentration of cofactor, microsomal A4H exhibited significantly even higher activities in the presence of the mixture of cofactors than NADPH and NADH. Mg2+ and Ca2+ ions acted as stimulants in vitro. The present results suggest that the hydroalcoholic extract of Urtica dioica may have modalatory effect on aniline hydroxylase at least in part and enhance the activity of A4H adding metals ions and cofactors.

  10. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng

    2017-03-15

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  11. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    Science.gov (United States)

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  12. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liao, Hsuan-Hung; Cai, Yunfei; Zhu, Chen; Rueping, Magnus

    2017-01-01

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  13. Intolerance to dietary biogenic amines: A review

    NARCIS (Netherlands)

    Jansen, S.C.; Dusseldorp, M. van; Bottema, K.C.; Dubois, A.E.J.

    2003-01-01

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allerg*, intoler*, and

  14. Intolerance to dietary biogenic amines : a review

    NARCIS (Netherlands)

    Jansen, SC; van Dusseldorp, M; Bottema, KC; Dubois, AEJ

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allergen intoler*, and

  15. Analysis of a Buchwald-Hartwig amination: reaction for pharmaceutical production

    DEFF Research Database (Denmark)

    Christensen, Henrik

    The Buchwald-Hartwig amination reaction is widely used in the production of N-arylated amines in the pharmaceutical industry. The reaction is betweenan aryl halogen and a primary or secondary amine in the presence of a base and a homogeneous catalyst giving the desired N-arylated amine. Due to mild...... is to increase the understanding of the chem­ical reaction mechanisms and kinetics for the Buchwald-Hartwig amination reaction. Also, to develop methods for application of these mechanisms and kinetics to optimize and scale up an organic synthesis to an industrial phar­maceutical production. The Buchwald...

  16. Analysis of a Buckwald-Hartwig amination: reaction for pharmaceutical production

    DEFF Research Database (Denmark)

    Christensen, Henrik; Kiil, Søren; Dam-Johansen, Kim

    The Buchwald-Hartwig amination reaction is widely used in the production of N-arylated amines in the pharmaceutical industry. The reaction is betweenan aryl halogen and a primary or secondary amine in the presence of a base and a homogeneous catalyst giving the desired N-arylated amine. Due to mild...... is to increase the understanding of the chem­ical reaction mechanisms and kinetics for the Buchwald-Hartwig amination reaction. Also, to develop methods for application of these mechanisms and kinetics to optimize and scale up an organic synthesis to an industrial phar­maceutical production. The Buchwald...

  17. Highly biocompatible and water-dispersible, amine functionalized magnetite nanoparticles, prepared by a low temperature, air-assisted polyol process: a new platform for bio-separation and diagnostics

    International Nuclear Information System (INIS)

    Das, Manasmita; Dhak, Prasanta; Gupta, Satyajit; Basak, Amit; Pramanik, Panchanan; Mishra, Debasish; Maiti, Tapas K

    2010-01-01

    A low temperature polyol process, based on glycolaldehyde mediated partial reduction of FeCl 3 ·6H 2 O at 120 deg. C in the presence of sodium acetate as an alkali source and 2, 2 ' -(ethylenedioxy)-bis-(ethylamine) as an electrostatic stabilizer has been used for the gram-scale preparation of biocompatible, water-dispersible, amine functionalized magnetite nanoparticles (MNPs) with an average diameter of 6 ± 0.75 nm. With a reasonably high magnetization (37.8 e.m.u.) and amine groups on the outer surface of the nanoparticles, we demonstrated the magnetic separation and concentration implications of these ultrasmall particles in immunoassay. MRI studies indicated that these nanoparticles had the desired relaxivity for T 2 contrast enhancement in vivo. In vitro biocompatibility, cell uptake and MR imaging studies established that these nanoparticles were safe in clinical dosages and by virtue of their ultrasmall sizes and positively charged surfaces could be easily internalized by cancer cells. All these positive attributes make these functional nanoparticles a promising platform for further in vitro and in vivo evaluations.

  18. Volumetric and transport properties of binary liquid mixtures of sulfolane with aniline, N,N-dimethylaniline and N,N-diethylaniline at different temperatures and atmospheric pressure

    International Nuclear Information System (INIS)

    Aftabuzzaman, M.; Islam, M. Monirul; Nasiruddin; Rima, Farhana Rahman; Islam, M. Nazrul; Ali, M. Azhar

    2016-01-01

    Highlights: • ρ and η of sulfolane + aniline, +N,N-DMA, +N,N-DEA binary mixtures were measured. • V"E values for sulfolane + aniline, +N,N-DMA, +N,N-DEA binary mixtures are negative. • Δη &d_1_2 are positive for sulfolane + aniline, and negative for +N,N-DMA, +N,N-DEA. • The chemical or strong specific interactions exist in sulfolane + aniline mixtures. • The structural effects are dominated in sulfolane +N,N-DMA, +N,N-DEA mixtures.​ - Abstract: Densities and viscosities of pure sulfolane, aniline, N,N-dimethylaniline, N,N-diethylaniline and their binary mixtures with sulfolane as common component were measured over the entire composition range at T = (303.15, 308.15, and 313.15) K and atmospheric pressure. A high precision vibrating-tube densitometer (DSA 5000, Anton-Paar, Austria) was used for the density measurements and a Cannon–Fenske routine type viscometer for the viscosity. The various thermodynamic properties such as excess molar volumes, deviation of viscosity, free energy and excess free energy of activation for viscous flow were calculated for each of the systems. The excess properties were fitted to the Redlich–Kister equation, and coefficients along with standard deviation of fit were also presented. All these properties were discussed in terms of molecular interactions. The experimental findings would be tremendous important for the accurate design of equipment, and controlling the process parameters of various chemical and industrial processes such as separation of chemicals, fluid flow, heat flow or chemical reactions.

  19. Zirconium amine tris(phenolate): A more effective initiator for biomedical lactide.

    Science.gov (United States)

    Jones, Matthew D; Wu, Xujun; Chaudhuri, Julian; Davidson, Matthew G; Ellis, Marianne J

    2017-11-01

    Here a zirconium amine tris(phenolate) is used as the initiator for the production of polylactide for biomedical applications, as a replacement for a tin initiator (usually tin octanoate). The ring opening polymerization (ROP) was carried out in the melt at 130°C. The zirconium-catalyzed PLA (PLA-Zr) required 30min, resulting in a polydispersity index (PDI) of 1.17, compared to 1h and PDI=1.77 for tin-catalyzed PLA (PLA-Sn). PLA-Zr and PLA-Sn supported osteosarcoma cell (MG63) culture to the same extent (cell number, morphology, extracellular matrix production and osteogenic function) until day 14 when the PLA-Zr showed increased cell number, overall extracellular matrix production and osteogenic function. To conclude, the reduction in reaction time, controllable microstructure and biologically benign nature of the zirconium amine tris(phenolate) initiator shows that it is a more effective initiator for ROP of polylactide for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions.

    Science.gov (United States)

    Jiang, Gaoxi; Chen, Jian; Huang, Jie-Sheng; Che, Chi-Ming

    2009-10-15

    A variety of secondary benzylic amines were oxidized to imines in 90% to >99% yields by singlet oxygen generated from oxygen and a porphyrin photosensitizer. On the basis of these reactions, a protocol was developed for oxidative Ugi-type reactions with singlet oxygen as the oxidant. This protocol has been used to synthesize C1- and N-functionalized benzylic amines in up to 96% yields.

  1. Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Qiu Linlin; Zhang Shichao; Zhang Lan; Sun, Mingming; Wang Weikun

    2010-01-01

    Poly(pyrrole-co-aniline) (PPyA) copolymer nanofibers were prepared by chemical oxidation method with cetyltrimethyl ammonium chloride (CTAC) as template, and the nano-sulfur/poly(pyrrole-co-aniline) (S/PPyA) composite material in lithium batteries was achieved via co-heating the mixture of PPyA and sublimed sulfur at 160 deg. C for 24 h. The component and structure of the materials were characterized by FTIR, Raman, XRD, and SEM. PPyA with nanofiber network structure was employed as a conductive matrix, adsorbing agent and firm reaction chamber for the sulfur cathode materials. The nano-dispersed composite exhibited a specific capacity up to 1285 mAh g -1 in the initial cycle and remained 866 mAh g -1 after 40 cycles.

  2. Electrospun aniline-tetramer-co-polycaprolactone fibres for conductive, biodegradable scaffolds.

    Science.gov (United States)

    Guex, A G; Spicer, C D; Armgarth, A; Gelmi, A; Humphrey, E J; Terracciano, C M; Harding, S; Stevens, M M

    2017-09-01

    Conjugated polymers have been proposed as promising materials for scaffolds in tissue engineering applications. The restricted processability and biodegradability of conjugated polymers limit their use for biomedical applications however. Here we synthesised a block- co -polymer of aniline tetramer and PCL (AT-PCL), and processed it into fibrous non-woven scaffolds by electrospinning. We showed that fibronectin (Fn) adhesion was dependant on the AT-PCL oxidative state, with a reduced Fn unfolding length on doped membranes. Furthermore, we demonstrated the cytocompatibility and potential of these membranes to support the growth and osteogenic differentiation of MC3T3-E1 over 21 days.

  3. Ligand-controlled, tunable silver-catalyzed C-H amination.

    Science.gov (United States)

    Alderson, Juliet M; Phelps, Alicia M; Scamp, Ryan J; Dolan, Nicholas S; Schomaker, Jennifer M

    2014-12-03

    The development of readily tunable and regioselective C-H functionalization reactions that operate solely through catalyst control remains a challenge in modern organic synthesis. Herein, we report that simple silver catalysts supported by common nitrogenated ligands can be used to tune a nitrene transfer reaction between two different types of C-H bonds. The results reported herein represent the first example of ligand-controlled and site-selective silver-promoted C-H amination.

  4. Cocaine affects foraging behaviour and biogenic amine modulated behavioural reflexes in honey bees

    Directory of Open Access Journals (Sweden)

    Eirik Søvik

    2014-11-01

    Full Text Available In humans and other mammals, drugs of abuse alter the function of biogenic amine pathways in the brain leading to the subjective experience of reward and euphoria. Biogenic amine pathways are involved in reward processing across diverse animal phyla, however whether cocaine acts on these neurochemical pathways to cause similar rewarding behavioural effects in animal phyla other than mammals is unclear. Previously, it has been shown that bees are more likely to dance (a signal of perceived reward when returning from a sucrose feeder after cocaine treatment. Here we examined more broadly whether cocaine altered reward-related behaviour, and biogenic amine modulated behavioural responses in bees. Bees developed a preference for locations at which they received cocaine, and when foraging at low quality sucrose feeders increase their foraging rate in response to cocaine treatment. Cocaine also increased reflexive proboscis extension to sucrose, and sting extension to electric shock. Both of these simple reflexes are modulated by biogenic amines. This shows that systemic cocaine treatment alters behavioural responses that are modulated by biogenic amines in insects. Since insect reward responses involve both octopamine and dopamine signalling, we conclude that cocaine treatment altered diverse reward-related aspects of behaviour in bees. We discuss the implications of these results for understanding the ecology of cocaine as a plant defence compound. Our findings further validate the honey bee as a model system for understanding the behavioural impacts of cocaine, and potentially other drugs of abuse.

  5. Evaluation of amine inhibitors for suitability as crevice buffering agents

    International Nuclear Information System (INIS)

    Jayaweera, P.; Hettiarachchi, S.

    1994-03-01

    This report describes the results of a research effort to evaluate the suitability of some selected amines and amino acids as a crevice-buffering agents in pressurized water reactor (PWR) steam generators. The amines may be useful for buffering acid crevices, and the amino acids, because they contain both acidic and basic groups, may be useful for acidic and caustic crevices. Five commercially available amines and two amino acids were studied during this research. The study involved (1) the hydrolysis of these commercially available amines and amino acids, including measurement of their kinetics of decomposition, in simulated steam generator bulk water at 290 C, and (2) determination of their thermal stability in a simulated crevice environment. The study showed that, although the high-molecular-weight amines undergo hydrothermal decomposition, they have a better buffering capacity than their low-molecular-weight counterparts at 290 C. The amines provide effective crevice buffering by increasing the pH of the crevice solution by as much as 2.84 and to 4.24 units in the experimental setup used in this program. It was concluded that polyamines provide excellent buffering of the simulated crevice environment at 290 C and morpholine remains the best low-molecular-weight amine investigated. However, detailed volatility studies of the amines were not considered in this work. Such data would be needed before in-plant testing to ensure that the amines can concentrate in steam generator crevices to the levels assumed in this study

  6. Electrochemical polymerization of an aniline-terminated self-assembled monolayer on indium tin oxide electrodes and its effect on polyaniline electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Silva, Rodolfo [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001Col. Chamilpa, CP 62210, Cuernavaca, Mor. (Mexico)], E-mail: rcruzsilva@uaem.mx; Nicho, Maria E.; Resendiz, Mary C.; Agarwal, Vivechana [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001Col. Chamilpa, CP 62210, Cuernavaca, Mor. (Mexico); Castillon, Felipe F.; Farias, Mario H. [Centro de Ciencias de la Materia Condensada de la UNAM, Apdo. Postal 2681 C.P. 22800 Ensenada, B.C. (Mexico)

    2008-06-02

    Indium tin oxide (ITO) transparent electrodes were surface modified by a self-assembled monolayer of N-phenyl-{gamma}-aminopropyl-trimethoxysilane (PAPTS). Cyclic voltammetry of the PAPTS monolayer in aniline-free aqueous electrolyte showed the typical shape of a surface-confined monomer, due to the oxidation of the aniline moieties. This process resulted in a two-dimensional polyaniline film with uniform thickness of 1.3 nm, as measured by atomic force microscopy. X-ray photoelectron and UV-visible spectroscopic techniques confirm the formation of a conjugated polymer film. The influence of the surface modification of ITO electrodes on polyaniline electrochemical deposition was also studied. The initial oxidation rate of aniline increased in the PAPTS-modified ITO electrodes, although the overall film formation rate was lower than that of unmodified ITO electrodes. The morphology of the electrodeposited polyaniline films on PAPTS-modified and unmodified ITO electrodes was studied by atomic force microscopy. Films of smaller grain were grown in the PAPTS-modified ITO as compared to films grown on unmodified ITO. A blocking effect due to the propyl spacer is proposed to explain the reduced electron transfer in PAPTS-modified electrodes.

  7. New potential of the reductive alkylation of amines

    International Nuclear Information System (INIS)

    Gusak, K N; Ignatovich, Zh V; Koroleva, E V

    2015-01-01

    Available data on the reductive alkylation of amines with carbonyl compounds — a key method for the preparation of secondary and tertiary amines — are described systematically. The review provides information on the relevant reducing agents and catalysts and on the use of chiral catalysts in stereo- and enantiocontrolled reactions of amine synthesis. The effect of the reactant and catalyst structures on the reaction rates and chemo- and stereo(enantio)selectivity is considered. The bibliography includes 156 references

  8. Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers.

    Science.gov (United States)

    Won, Young-Wook; Ankoné, Marc; Engbersen, Johan F J; Feijen, Jan; Kim, Sung Wan

    2016-04-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fluorescence quenching of Rhodamine B base by two amines

    Science.gov (United States)

    Bakkialakshmi, S.; Selvarani, P.; Chenthamarai, S.

    2013-03-01

    Fluorescence quenching of Rhodamine B base (RhB) in DMF solution has been studied at different concentrations of the amine Triethyl amine (TEA) and n-butyl amine (NBA) at room temperature. It has been observed that the fluorescence intensity of RhB decrease with increase in the concentration of the TEA and NBA. It has been observed that the quenching due to amines proceeds via dynamic quenching process. The rate constants for the quenching process have been calculated using Stern-Volmer equation. Time resolved fluorescence study and 1H NMR spectral study have also been carried out and discussed.

  10. Structure and spectroscopic properties of N,S-coordinating 2-methyl-sulfanyl-N-[(1H-pyrrol-2-yl)methyl-idene]aniline methanol monosolvate.

    Science.gov (United States)

    Richards, D Douglas; Ang, M Trisha C; McDonald, Robert; Bierenstiel, Matthias

    2015-10-01

    The reaction of pyrrole-2-carboxaldehyde and 2-(methyl-sulfan-yl)aniline in refluxing methanol gave an olive-green residue in which yellow crystals of the title compound, C12H12N2S·CH3OH, were grown from slow evaporation of methanol at 263 K. In the crystal, hydrogen-bonding inter-actions link the aniline mol-ecule and a nearby methanol solvent mol-ecule. These units are linked by a pair of weak C-H⋯Omethanol interactions, forming inversion dimers consisting of two main molecules and two solvent molecules.

  11. Synthesis of LDPE-g-AA-M [M=Cu(1), Fe(II) and Ni(II)] copolymers via gamma ray-radiation and their use as catalysts and support for poly aniline formation

    International Nuclear Information System (INIS)

    Urena N, F.; Sanchez M, V.; Lopez C, R.

    2009-01-01

    Coordination polymers have many current and potential uses as electrical materials, colorants, medical agents, among others. One of the most vigorously studied areas of application is the use of polymer supports for homogeneous catalysis of organic reactions as hydrogenation, carbonylation and hydroformylation. This kind of catalyst support show clear advantages as their chemical inert character, they can be easily functionalized and prepared with a wide range of properties. A common method to prepare organometallic polymers is the grafting of functionalized polymers onto a main polymer chain in order to fix subsequently electro attractive groups (metals in this case). The functionalized polymer may be grafted using UV, γ-radiation or high energy electrons. In this chapter, the preparation of a series of low density polyethylene (LDPE) grafted with acrylic acid is presented. The grafting reactions were initiated by different doses of γ-radiation. Subsequently, the LDPE-g-AA copolymers were coordinated with different metals such a cooper, iron and nickel. Finally, the organometallic polymers were supported with poly aniline. Samples were characterized by infrared spectroscopy, atomic absorption, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry. The electric conductivity of the supported poly aniline was determined by using an indirect method. (Author)

  12. Application of an amine functionalized biopolymer in the colonic delivery of glycyrrhizin: a design and in vivo efficacy study.

    Science.gov (United States)

    Kumar De, Amit; Datta, Sriparna; Mukherjee, Arup

    2013-01-01

    In our current study, a newer amine functionalized guar gum derivative was studied for its efficacy in colonic drug delivery. Glycyrrhizic acid mono-ammonium salt was used as the model drug. Drug-loaded microparticles were formulated by ionic crosslinking using sodium tripolyphosphate. The Scanning Electron Microscopic study revealed spherical particles of sizes from 4.9 ± 3.8 μm to 6.9 ± 3.9 μm. The FT-IR studies presented a possible interaction between the drug and the polymer. The drug was encapsulated in amorphous form as observed from the powder X-Ray Diffraction studies. A cumulative drug release study was carried out in simulated gastric, intestinal, and colonic fluids. The cumulative drug release studies presented a burst release followed by a sustained release of the drug in simulated colonic fluid containing rat cecal contents. The drug-polymer ratio was optimised using a 3(2) factorial design by taking the amounts of glycyrrhizic acid (X1) and guar gum alkyl amine (X2) as the independant variables. The percent cumulative drug release at 240 mins (Q240), 720 mins (Q720), and at 1,440 mins (Q1440) were considered as the dependant variables. The efficacy of the optimized formulation was studied in a 2,4,6-trinitrobenzene sulfonic acid-induced rat colitis model. The tissue's nitric oxide, malondialdehyde, and myeloperoxidase activities were found to be much lower in the microparticle-treated group compared to free drug-treated group. The histology of the colonic tissue from the treated group of animals revealed almost no infiltration of inflammatory cells in the tissue for the microparticle-treated group of animals. The synthesized amine derivative of guar gum was found to be better in vitro with a better in vivo efficacy in the colonic delivery of glycyrrhizic acid monoammonium salt and can be considered as a newer modified biopolymer for colonic drug delivery.

  13. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  14. BIOGENIC AMINES CONTENT IN SELECTED WINES DURING WINEMAKING

    Directory of Open Access Journals (Sweden)

    Radka Flasarová

    2012-02-01

    Full Text Available The aim of this study was to describe the development of selected biogenic amines (histamine; tyramine; phenylethylamine; putrescine; agmatine; and cadaverine during the winemaking in 10 selected species grown in Central Europe in 2008. The analysis was performed using ion-exchange chromatography by the sodium-citrate buffers with the post-column ninhydrin derivatization and photometric detection. A comparison of the content of biogenic amines in red and wine varieties showed that red wines have higher concentrations of biogenic amines.

  15. Important Roles of Enthalpic and Entropic Contributions to CO 2 Capture from Simulated Flue Gas and Ambient Air Using Mesoporous Silica Grafted Amines

    KAUST Repository

    Alkhabbaz, Mustafa A.; Bollini, Praveen; Foo, Guo Shiou; Sievers, Carsten; Jones, Christopher W.

    2014-01-01

    © 2014 American Chemical Society. The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0- 0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropylfunctionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less effi cient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  16. Important Roles of Enthalpic and Entropic Contributions to CO 2 Capture from Simulated Flue Gas and Ambient Air Using Mesoporous Silica Grafted Amines

    KAUST Repository

    Alkhabbaz, Mustafa A.

    2014-09-24

    © 2014 American Chemical Society. The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0- 0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropylfunctionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less effi cient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  17. Extraction and spectrophotometric determination of molybdenum with omicron-hydroxythiophenols and aromatic amines

    International Nuclear Information System (INIS)

    Zalov, A.Z.; Verdizade, N.A.

    2015-01-01

    The interaction of molybdenum (VI) with o-hydroxythiophenol derivatives (HTPDs) and aromatic amines (AAs) was studied. The following three HTPDs, which contain different halogen atoms at position 5, were used: 2-hydroxy-5-chlorothiophenol(HCTP), 2-hydroxy-5-bromothiophenol (HBTP), 2-hydroxy-5-iodothiophenol (HITP)). The examined AAs were aniline (An), Nmethylaniline (mAn) and N,N-dimethylaniline (dAn). The obtained ternary complexes have a composition of 1:2:2 (Mo(V):HBTP:AA). Optimal conditions for their liquid-liquid extraction (LLE) were found: organic solvent (chloroform), pH (4-6), concentration of the reagents 10-3moldm-3 (AA)) and 10-3moldm-3 (HTPD) and (1.2-1.5) ((1.3-1.5) extraction time(colour develops almost immediately after the reagents addition). The absorbance of the extracts is stable for at least 48 hours. The optimum shaking time is 10 min.). Under the optimal max) at 515-538 conditions, the complexes have absorption maxima ( 104dm3mol-1 cm-1. The max) between 3.1 nm and molar absorptivities ( 98.4%. The results suggested that linear degrees of extraction were max or relationships exist between the spectral characteristics ( max) and some fundamental properties of the halogen substituent in the HTPD (atomic mass and electronegativity). The effect of foreign ions on the LLE-spectrophotometric determination of molybdenum was examined and two sensitive, selective and precise procedures for molybdenum determination were proposed. The relative standard deviations for Mo 10-4 % were 4% (HCTP-An procedure) and 3% (HBTP-An content of (3-5) procedure). (author)

  18. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem.

    Science.gov (United States)

    Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L

    2010-06-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.

  19. Biogenic amines and radiosensitivity of solitary cells

    International Nuclear Information System (INIS)

    Goncharenko, E.N.

    1978-01-01

    Different stability of cells to ionizing radiation is considered from a position of the ''elevated biochemical radioresistance background'' concept. Experimental evidence presented indicates an important role of endogenic amines (serotonin and histamine) possessing radioprotector properties in the cell radioresistance formation. The concept about their effect as being solely a result of circulatory hypoxia is critically discussed. The experimental results favor the existence of a ''cellular'' component, along with the ''hypoxic'' one, in the mechanism of action of biogenic amines. These compounds can affect the initial stages of peroxide oxidation of lipids, thereby favoring a less intensive oxidation induced by radiation. Biogenic amines can also exert influence on the cyclic nucleotide system

  20. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    Science.gov (United States)

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  1. Ruthenium-catalysed synthesis of 2- and 3-substituted quinolines from anilines and 1,3-diols

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Madsen, Robert

    2011-01-01

    A straightforward synthesis of substituted quinolines is described by cyclocondensation of anilines with 1,3-diols. The reaction proceeds in mesitylene solution with catalytic amounts of RuCl3·xH 2O, PBu3 and MgBr2·OEt2. The transformation does not require any stoichiometric additives and only...

  2. A fluorescent combinatorial logic gate with Na+, H+-enabled OR and H+-driven low-medium-high ternary logic functions.

    Science.gov (United States)

    Spiteri, Jasmine M A; Mallia, Carl J; Scerri, Glenn J; Magri, David C

    2017-12-06

    A novel fluorescent molecular logic gate with a 'fluorophore-spacer 1 -receptor 1 -spacer 2 -receptor 2 ' format is demonstrated in 1 : 1 (v/v) methanol/water. The molecule consists of an anthracene fluorophore, and tertiary alkyl amine and N-(2-methoxyphenyl)aza-15-crown-5 ether receptors. In the presence of threshold concentrations of H + and Na + , the molecule switches 'on' as an AND logic gate with a fluorescence quantum yield of 0.21 with proton and sodium binding constants of log β H+ = 9.0 and log β Na+ = 3.2, respectively. At higher proton levels, protonation also occurs at the anilinic nitrogen atom ether with a log β H+ = 4.2, which allows for Na + , H + -enabled OR (OR + AND circuit) and H + -driven ternary logic functions. The reported molecule is compared and contrasted to classic anthracene-based Na + and H + logic gates. We propose that such logic-based molecules could be useful tools for probing the vicinity of Na + , H + antiporters in biological systems.

  3. Potential occupational risk of amines in carbon capture for power generation.

    Science.gov (United States)

    Gentry, P Robinan; House-Knight, Tamara; Harris, Angela; Greene, Tracy; Campleman, Sharan

    2014-08-01

    While CO2 capture and storage (CCS) technology has been well studied in terms of its efficacy and cost of implementation, there is limited available data concerning the potential for occupational exposure to amines, mixtures of amines, or degradation of by-products from the CCS process. This paper is a critical review of the available data concerning the potential effects of amines and CCS-degradation by-products. A comprehensive review of the occupational health and safety issues associated with exposure to amines and amine by-products at CCS facilities was performed, along with a review of the regulatory status and guidelines of amines, by-products, and CCS process vapor mixtures. There are no specific guidelines or regulations regarding permissible levels of exposure via air for amines and degradation products that could form atmospheric oxidation of amines released from post-combustion CO2 capture plants. While there has been a worldwide effort to develop legal and regulatory frameworks for CCS, none are directly related to occupational exposures. By-products of alkanolamine degradation may pose the most significant health hazard to workers in CCS facilities, with several aldehydes, amides, nitramines, and nitrosamines classified as either known or potential/possible human carcinogens. The absence of large-scale CCS facilities; absence and unreliability of reported data in the literature from pilot facilities; and proprietary amine blends make it difficult to estimate potential amine exposures and predict formation and exposure to degradation products.

  4. Oceurrence of fungi degrading aniline and its derivatives in biocenoses of wastewater treatment systems

    Directory of Open Access Journals (Sweden)

    Tomasz Słomczyński

    2014-08-01

    Full Text Available It has been found that numerous yeast-like microorganisms from the genera Geotrichum, Trichmporon, Candida, Rhodotorula and Sporobolomyces occurring in wastewater treatment systems biocenoses arę able to utilize aniline, p-nitroaniline and acetanilide as a sole C-source. High active in this respect were strains belonging to the species of Geoirichum candidum, G. sericeum and Candida boidinii.

  5. The chemistry of amine radical cations produced by visible light photoredox catalysis

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2013-10-01

    Full Text Available Amine radical cations are highly useful reactive intermediates in amine synthesis. They have displayed several modes of reactivity leading to some highly sought-after synthetic intermediates including iminium ions, α-amino radicals, and distonic ions. One appealing method to access amine radical cations is through one-electron oxidation of the corresponding amines under visible light photoredox conditions. This approach and subsequent chemistries are emerging as a powerful tool in amine synthesis. This article reviews synthetic applications of amine radical cations produced by visible light photocatalysis.

  6. Protonation site for anilines in aqueous media

    Directory of Open Access Journals (Sweden)

    INNA M. UCHAEVA

    2002-02-01

    Full Text Available By means of the PM3 method it has been shown that the protonation of 2-, 3-, 4-methoxyanilines, 4-methylthioaniline, 2-, 3-, 4-aminobenzoic acids, 2-, 3-, 4-nitroanilines in the gaseous phase proceeds via the amine nitrogen atom. The same result, attributed to the aqueous medium, was obtained for 4-methoxyaniline, 4-aminobenzoic acid and 4-nitroaniline.

  7. Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture.

    Science.gov (United States)

    Shah, Amisha D; Dai, Ning; Mitch, William A

    2013-03-19

    Although amine-based CO(2) absorption is a leading contender for full-scale postcombustion CO(2) capture at power plants, concerns have been raised about the potential release of carcinogenic N-nitrosamines and N-nitramines formed by reaction of exhaust gas NO(x) with the amines. Experiments with a laboratory-scale pilot unit suggested that washwater units meant to scrub contaminants from absorber unit exhaust could potentially serve as a source of N-nitrosamines via reactions of residual NO(x) with amines accumulating in the washwater. Dosage requirements for the continuous treatment of the washwater recycle line with ultraviolet (UV) light for destruction of N-nitrosamines and N-nitramines, and with ozone or hydroxyl radical-based advanced oxidation processes (AOPs) for destruction of amines and aldehydes, were evaluated. Although amine destruction. Ozone achieved 90% amine removal in washwaters at 5-12 molar excess of ozone, indicating transferred dosage levels of ∼100 mg/L for 90% removal in a first-stage washwater unit, but likely only ∼10 mg/L if applied to a second-stage washwater. Accurate dosage and cost estimates would require pilot testing to capture synergies between UV and ozone treatments.

  8. Induction by phenobarbital of aniline-p-hydroxylase in mouse liver under the influence of X-irradiation and 2,4,6-triethyleneimino-1,3,5-triazine

    International Nuclear Information System (INIS)

    Erger, M.; Hollatz, R.; Tempel, K.

    1977-01-01

    The phenobarbital-induced activity of aniline-p-hydroxylase in livers of mice was enhanced additionally when the animals were X-irradiated 4-16 hours before the administration of the inducer. The same effect could be demonstrated after repeated irradiation with low doses. 2,4,6-triethyleneimino-1,3,5-triazine (tretamine) inhibited the induction of aniline-p-hydroxylase only when administered in extremely high doses. Lower doses resulted in 'superinduciton'. (orig.) [de

  9. Mild and Efficient Deoxygenation of Amine-N-Oxides with FeCl{sub 3}·6H{sub 2}O-Indium System under Ultrasonication

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Woo; Hwang, Sun Kyun; Kim, Dong Yoon; Choi, Jin Woo; Kang, Sang Ook [Korea University, Jochiwon (Korea, Republic of); Yoo, Byoung Seung [Dongguk University, Seoul (Korea, Republic of); Choi, Kyung Il; Kim, Joong Hyup [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2004-11-15

    We believe that the mild and efficient method described here will present an attractive alternative to the existing methods available for the reduction of amine-N-oxides to the corresponding amines. Further investigations of FeCl{sub 3}·6H{sub 2}O/In system as reducing agent in organic synthesis are currently in progress. The deoxygenation of amine-N-oxides to amines in the presence of other functional groups is an important transformation in the synthesis of nitrogenous aromatic heterocycles. Many reagents have been employed for the deoxygenation of amine-N-oxides, including agents such as: low-valent titanium, phosphorous and sulphur compounds, tributyltin hydride, Pd/C, tetrathiomolybdate, SmI{sub 2}, indium/NH{sub 4}Cl. Recently we reported that Cp{sub 2}TiCl{sub 2}/In system could be used for the deoxygenation of various amine-N-oxides.

  10. Post-Synthesis Functionalization of Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Al Otaibi, Mona S.

    2014-01-01

    -aminoethyl)amine (Tris-amine) are three different amines used for aldehyde-POP functionalization. The produced networks were aminated via different amine species substitution the aldehyde group present within the network. Modification to these networks

  11. Mesoporous amine-bridged polysilsesquioxane for CO2 capture

    KAUST Repository

    Qi, Genggeng; Fu, Liling; Duan, Xiaonan; Choi, Brian Hyun; Abraham, Michael; Giannelis, Emmanuel P.

    2011-01-01

    A novel class of amine-supported sorbents based on amine-bridged mesoporous polysilsesquioxane was developed via a simple one-pot sol-gel process. The new sorbent allows the incorporation of a large amount of active groups without sacrificing

  12. Enantioselective catalytic syntheses of alpha-branched chiral amines

    DEFF Research Database (Denmark)

    Brase, S.; Baumann, T.; Dahmen, S.

    2007-01-01

    Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....

  13. BF3·Et2O-promoted cleavage of the Csp-Csp2 bond of 2-propynolphenols/anilines: route to C2-alkenylated benzoxazoles and benzimidazoles.

    Science.gov (United States)

    Song, Xian-Rong; Qiu, Yi-Feng; Song, Bo; Hao, Xin-Hua; Han, Ya-Ping; Gao, Pin; Liu, Xue-Yuan; Liang, Yong-Min

    2015-02-20

    A novel BF3·Et2O-promoted tandem reaction of easily prepared 2-propynolphenols/anilines and trimethylsilyl azide is developed to give C2-alkenylated benzoxazoles and benzimidazoles in moderate to good yields. Most reactions could be accomplished in 30 min at room temperature. This tandem process involves a Csp-Csp2 bond cleavage and a C-N bond formation. Moreover, both tertiary and secondary propargylic alcohols with diverse functional groups were tolerated under the mild conditions.

  14. Facile preparation of amine and amino acid adducts of [60]fullerene using chlorofullerene C60Cl6 as a precursor.

    Science.gov (United States)

    Kornev, Alexey B; Khakina, Ekaterina A; Troyanov, Sergey I; Kushch, Alla A; Peregudov, Alexander; Vasilchenko, Alexey; Deryabin, Dmitry G; Martynenko, Vyacheslav M; Troshin, Pavel A

    2012-06-04

    We report a general synthetic approach to the preparation of highly functionalized amine and amino acid derivatives of [60]fullerene starting from readily available chlorofullerene C(60)Cl(6). The synthesized water-soluble amino acid derivative of C(60) demonstrated pronounced antiviral activity, while the cationic amine-based compound showed strong antibacterial action in vitro.

  15. Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine + piperazine + water)

    International Nuclear Information System (INIS)

    Chung, P.-Y.; Soriano, Allan N.; Leron, Rhoda B.; Li, M.-H.

    2010-01-01

    In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol . m -3 and those of PZ's were (0.5, 1.0, and 1.5) kmol . m -3 . The solubility data (CO 2 loading in the amine solution) obtained were correlated as a function of CO 2 partial pressure, system temperature, and amine composition via the modified Kent-Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO 2 absorption into mixed aqueous solutions of TEA and PZ.

  16. Preparation and characterization of nanocomposite between poly(aniline-co-m-chloroaniline)–copper sulfide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Saeed J.; Rani, Mamta; Tripathi, S.K., E-mail: surya@pu.ac.in

    2014-06-15

    One dimensional nanostructures of poly(aniline-co-m-chloroaniline) nanocomposite (NC) with CuS nanoparticles (NPs) are prepared by template free method. CuS NPs are prepared by chemical method by using trisodium nitilotriacetate acid as a complexing agent. The materials are characterized by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Ultraviolet spectroscopy (UV-Vis), photoluminescence (PL) spectroscopy and thermogravimetric analysis (TGA). The hexagonal structure of CuS NPs is confirmed from XRD results with lattice parameters, a=3.78 Å and c=16.288 Å. The diameter of CuS NPs is found to be 16 nm from TEM measurements. Different shapes such as NPs, nanorods and nanotubes structures are observed for poly(aniline-co-m-chloroaniline) whereas its NC with CuS NPs have nanorod and nanotube shapes. Significant shift in the absorption edge of CuS NC is observed in comparison with copolymer and CuS NPs. Also the thermal stability of CuS NC is improved as compared with a copolymer and CuS NPs.

  17. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  18. Effects of dietary amines on the gut and its vasculature.

    Science.gov (United States)

    Broadley, Kenneth J; Akhtar Anwar, M; Herbert, Amy A; Fehler, Martina; Jones, Elen M; Davies, Wyn E; Kidd, Emma J; Ford, William R

    2009-06-01

    Trace amines, including tyramine and beta-phenylethylamine (beta-PEA), are constituents of many foods including chocolate, cheeses and wines and are generated by so-called 'friendly' bacteria such as Lactobacillus, Lactococcus and Enterococcus species, which are found in probiotics. We therefore examined whether these dietary amines could exert pharmacological effects on the gut and its vasculature. In the present study we examined the effects of tyramine and beta-PEA on the contractile activity of guinea-pig and rat ileum and upon the isolated mesenteric vasculature and other blood vessels. Traditionally, these amines are regarded as sympathomimetic amines, exerting effects through the release of noradrenaline from sympathetic nerve endings, which should relax the gut. A secondary aim was therefore to confirm this mechanism of action. However, contractile effects were observed in the gut and these were independent of noradrenaline, acetylcholine, histamine and serotonin receptors. They were therefore probably due to the recently described trace amine-associated receptors. These amines relaxed the mesenteric vasculature. In contrast, the aorta and coronary arteries were constricted, a response that was also independent of a sympathomimetic action. From these results, we propose that after ingestion, trace amines could stimulate the gut and improve intestinal blood flow. Restriction of blood flow elsewhere diverts blood to the gut to aid digestion. Thus, trace amines in the diet may promote the digestive process through stimulation of the gut and improved gastrointestinal circulation.

  19. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain.

    Science.gov (United States)

    Burchett, Scott A; Hicks, T Philip

    2006-08-01

    The trace amines are a structurally related group of amines and their isomers synthesized in mammalian brain and peripheral nervous tissues. They are closely associated metabolically with the dopamine, noradrenaline and serotonin neurotransmitter systems in mammalian brain. Like dopamine, noradrenaline and serotonin the trace amines have been implicated in a vast array of human disorders of affect and cognition. The trace amines are unique as they are present in trace concentrations, exhibit high rates of metabolism and are distributed heterogeneously in mammalian brain. While some are synthesized in their parent amine neurotransmitter systems, there is also evidence to suggest other trace amines may comprise their own independent neurotransmitter systems. A substantial body of evidence suggests that the trace amines may play very significant roles in the coordination of biogenic amine-based synaptic physiology. At high concentrations, they have well-characterized presynaptic "amphetamine-like" effects on catecholamine and indolamine release, reuptake and biosynthesis; at lower concentrations, they possess postsynaptic modulatory effects that potentiate the activity of other neurotransmitters, particularly dopamine and serotonin. The trace amines also possess electrophysiological effects that are in opposition to these neurotransmitters, indicating to some researchers the existence of receptors specific for the trace amines. While binding sites or receptors for a few of the trace amines have been advanced, the absence of cloned receptor protein has impeded significant development of their detailed mechanistic roles in the coordination of catecholamine and indolamine synaptic physiology. The recent discovery and characterization of a family of mammalian G protein-coupled receptors responsive to trace amines such as beta-phenylethylamine, tyramine, and octopamine, including socially ingested psychotropic drugs such as amphetamine, 3,4-methylenedioxymethamphetamine, N

  20. Decomposition of some amines and amino acids in steam generator environments

    International Nuclear Information System (INIS)

    Jayaweera, P.; Hettiarachchi, S.; Millett, P.J.

    1994-01-01

    Hydrothermal decomposition rate constants and high temperature pH values of some selected high-molecular weight amines and amino acids were measured under simulated steam generator conditions. These amines and amino acids were evaluated as potential crevice buffering agents for steam generator applications in pressurized water reactors. The study showed that, although the high molecular weight amines undergo hydrothermal decomposition, they have a better buffer capacity than their low molecular weight counterparts at 290 C. The amines provide effective crevice buffering by increasing the pH of the simulated crevice solution by as much as 2.84 to 4.24 units. However, volatility data for the amines and amino acids are needed before in-plant testing to ensure that amines can concentrate sufficiently in steam generator crevices to provide effective buffering

  1. Uranium diphosphonates templated by interlayer organic amines

    International Nuclear Information System (INIS)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Albrecht-Schmitt, Thomas E.; Ewing, Rodney C.

    2013-01-01

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 °C results in the crystallization of a series of layered uranium diphosphonate compounds, [C 10 H 9 N 2 ]{UO 2 (H 2 O)[CH 2 (PO 3 )(PO 3 H)]} (Ubip2), [C 6 H 14 N 2 ]{(UO 2 ) 2 [CH 2 (PO 3 )(PO 3 H)] 2 ·2H 2 O} (UDAB), [C 2 H 10 N 2 ] 2 {(UO 2 ) 2 (H 2 O) 2 [CH 2 (PO 3 ) 2 ] 2 ·0.5H 2 O} (Uethyl), and [C 12 H 9 N 2 ]{UO 2 (H 2 O)[CH 2 (PO 3 )(PO 3 H)]} (Uphen). The crystal structures of the compounds are based on UO 7 units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C 6 H 14 N 2 ]{(UO 2 ) 2 [CH 2 (PO 3 )(PO 3 H)] 2 ·2H 2 O} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also shown. The structure is constructed from UO 7 pentagonal bipyramids (yellow), oxygen=red, phosphorus=magenta, carbon=black, and nitrogen=blue. Highlights: ► Organic amines act both as charge-balancing and as structure-directing agents. ► Extensive hydrogen bonding interactions with solvent water molecules and amines

  2. Aqueous amine solution characterization for post-combustion CO_2 capture process

    International Nuclear Information System (INIS)

    El Hadri, Nabil; Quang, Dang Viet; Goetheer, Earl L.V.; Abu Zahra, Mohammad R.M.

    2017-01-01

    Highlights: • The CO_2 solubility of 30 aqueous amine solutions was measured at 30 wt% and 313.15 K. • The CO_2 loading of HMD is the highest, and that of TEA is the lowest. • 2DMAE, 3DMA1P, 1DMA2P, MDEA, TMPAD and 2EAE have a low heat of absorption with CO_2. • 2EAE can be used as an alternative to MEA in the CO_2 capture process. - Abstract: This article presents a thermodynamic and kinetic characterization of CO_2 absorption by 30 aqueous amine solutions. A solvent screening setup (S.S.S.) was used to find the CO_2 loading (α) for 30 different aqueous amine solutions (30 wt%) at a pressure of 1 bar with feed gas containing 15 vol% CO_2 and 85 vol% N_2 at 313.15 K to provide reliable absorber parameters. The structures of various amines (linear, non-linear, polyamines, sterically hindered, etc.) were tested and the S.S.S. results showed that hexamethylenediamine (HMD) has higher CO_2 loading at 1.35 moles of CO_2/mole of amine, and triethanolamine (TEA) has the lowest at 0.39 mole of CO_2/mole of amine. The heat of absorption indicates that MDEA has the lowest and HMD has the highest at −52.51 kJ/mole of CO_2 and −98.39 kJ/mole of CO_2, respectively. The combined data for the CO_2 loading and the absorption heat generated 6 amines that have good properties for the post-combustion CO_2 capture process in comparison with that of MEA. These amines are made up of one secondary amine (2-ethylaminoethanol, 2EAE) and 5 tertiary amines (N-methyldiethanolamine, MDEA, 1-dimethylamino-2-propanol, 1DMA2P, 2-dimethylaminoethanol, 2DMAE, 3-dimethylamino-1-propanol, 3DMA1P and N,N,N′,N′-tetramethyl-1,3-propanediamine, TMPDA). In comparison with the amine reference MEA (ΔH = −85.13 kJ/mole of CO_2 and α = 0.58 mole CO_2/mole of amine), the 6 amines have heats of absorption that are between −68.95 kJ/mole of CO_2 and −52.51 kJ/mole of CO_2, and their CO_2 loading is between 0.52 and 1.16 mole of CO_2/mole amine. The third important parameter, namely the

  3. Monomers for thermosetting and toughening epoxy resins. [glycidyl amine derivatives, propargyl-containing amines, and mutagenic testing of aromatic diamines

    Science.gov (United States)

    Pratt, J. R.

    1981-01-01

    Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air.

  4. Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Stephen C. [Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States; Bettis Homan, Stephanie [Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States; Weiss, Emily A. [Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States

    2016-01-28

    This paper describes the use of cadmium sulfide quantum dots (CdS QDs) as visible-light photocatalysts for the reduction of nitrobenzene to aniline through six sequential photoinduced, proton-coupled electron transfers. At pH 3.6–4.3, the internal quantum yield of photons-to-reducing electrons is 37.1% over 54 h of illumination, with no apparent decrease in catalyst activity. Monitoring of the QD exciton by transient absorption reveals that, for each step in the catalytic cycle, the sacrificial reductant, 3-mercaptopropionic acid, scavenges the excitonic hole in ~5 ps to form QD•–; electron transfer to nitrobenzene or the intermediates nitrosobenzene and phenylhydroxylamine then occurs on the nanosecond time scale. The rate constants for the single-electron transfer reactions are correlated with the driving forces for the corresponding proton-coupled electron transfers. This result suggests, but does not prove, that electron transfer, not proton transfer, is rate-limiting for these reactions. Nuclear magnetic resonance analysis of the QD–molecule systems shows that the photoproduct aniline, left unprotonated, serves as a poison for the QD catalyst by adsorbing to its surface. Performing the reaction at an acidic pH not only encourages aniline to desorb but also increases the probability of protonated intermediates; the latter effect probably ensures that recruitment of protons is not rate-limiting.

  5. Biogenic amines as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review).

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1987-01-01

    embryonic origin and that cells exhibiting an admixture of endocrine and proliferative properties exist in colonic tumours, but not in the normal intestinal epithelium. Thus, it appears that in the normal intestine a clear structural and functional distinction exists between the regulating cells (i.e. the sympathetic neurones and enteroendocrine cells) and the regulated cells (i.e. the undifferentiated crypt cells): cells that have acquired a regulating role are no longer able to divide and cells which are able to divide do not take up or store amines.(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Functional polyester materials with tunable degradability: Investigations into the use of reductive amination, ketoxime ether, and hydrazone linkages for functionalization, covalent stabilization and crosslinking of poly(epsilon-caprolactone) materials

    Science.gov (United States)

    van Horn, Brooke Angela

    Aliphatic polyesters represent one class of degradable, polymeric materials that is receiving significant attention in the search for, and design of, biocompatible and bioresorbable synthetic substances. Functional and crosslinked polyesters, having potential biomedical value, are the target of many avenues of current research. This dissertation work expands the utility of a specific aliphatic polyester, poly(epsilon-caprolactone-co-2-oxepane-1,5-dione) (P(CL-co-OPD)), which contains backbone ketone units that can be reacted with various functional, nucleophilic agents. Results presented in this dissertation convey both the successes had and the challenges encountered in the employment of different "iminyl" chemistries for the synthesis of functional and crosslinked materials. Specifically, the ketone-functionalized polyester was investigated as a general substrate designed to undergo solution-state intramolecular crosslinking and functionalization upon reductive amination with 1,6-hexanediamine and hexylamine, respectively, in the presence of NaCNBH3. Through detailed analysis of the products from these reactions, and simpler systems including small molecule model compounds, the polymeric gamma-keto ester functionality was determined to be incompatible with the reductive amination chemistry, resulting in chain cleavage via intramolecular lactam formation. Subsequent investigation of ketoxime ether formation using synthetic model hydroxylamines, 1-aminooxydodecane and 1,6-bis(aminooxy)hexane, in solution and in the presence of an acid catalyst, resulted in the targeted graft and crosslinked particulate/gel materials, respectively. With the significant interest in the development of synthetic polymer materials of increasing degrees of complexity, attention has been focused on the efficient and high-yielding conversion of polyesters into multi-functional materials. Facile conjugation of aminooxy- and sulfonyl hydrazide model ligands with P(CL-co-OPD) were also

  7. Production of biogenic amines in "Salamini italiani alla cacciatora PDO".

    Science.gov (United States)

    Coı X0308 Sson, Jean Daniel; Cerutti, Caterina; Travaglia, Fabiano; Arlorio, Marco

    2004-06-01

    Various fermented and seasoned foods such as cheese, sauerkraut, wine, beer and meat products may contain biogenic amines. The aim of this paper was to describe the presence of some biogenic amines (histamine, tyramine, tryptamine, 2-phenylethylamine) in "Salamini italiani alla cacciatora PDO", a typical fermented-ripened dry sausage widely consumed in Italy. Total level of biogenic amines in commercial samples ranged from 71 to 586 mg kg(-1). The amine recovered in higher concentrations was tyramine (372 mg kg(-1)) followed by histamine (165 mg kg(-1)). The second aim of this work was the quality control of the production in order to determine the parameters influencing the presence of biogenic amines in ripened salami. Sausages sampled for analysis during production, manipulation and ripening showed the presence of tyramine (64.4 mg kg(-1)) only after 15 days of fermentation. All investigated biogenic amines were detected in "Salamini" after 21 days of fermentation. We suggest the control of biogenic as important tool to establish the better condition of preservation of "Salamini italiani alla cacciatore PDO" during their shelf-life.

  8. Efficient SO2 capture by amine functionalized PEG.

    Science.gov (United States)

    Yang, Dezhong; Hou, Minqiang; Ning, Hui; Zhang, Jianling; Ma, Jun; Han, Buxing

    2013-11-07

    Polyethylene glycols (PEGs) are a class of non-toxic, non-volatile, biocompatible, and widely available polymers. In this work, we synthesized N-ethyl-N-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-2-aminoethanol (EE3AE) that combines the properties of PEG and amines, and N-decyl-N-ethyl-2-aminoethanol (DEAE). Their performances to capture SO2 were studied at different temperatures, pressures, and absorption times. The interaction between the absorbents and SO2 were characterized by NMR and FTIR techniques. It was demonstrated that both EE3AE and DEAE could absorb SO2 efficiently, and there existed chemical and physical interactions between the absorbents and SO2. In particular, the absorption capacity of EE3AE could be as high as 1.09 g SO2 per g EE3AE at 1 atm. The absorption capacity of EE3AE was much larger than that of DEAE because the ether group in the EE3AE interacted with SO2 more strongly than the alkyl group in the DEAE. The SO2 absorbed by EE3AE could be stripped out by bubbling N2 or by applying a vacuum and the EE3AE could be reused. Moreover, both absorbents exhibited a high SO2-CO2 selectivity.

  9. An efficient route towards the covalent functionalization of single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kakade, Bhalchandra A.; Pillai, Vijayamohanan K.

    2008-01-01

    A simple and efficient method of chemical functionalization of both single and multiwalled carbon nanotubes has been discussed to give enhanced water solubility by rapidly and efficiently generating an appreciable amount of hydrophilic functional groups using microwave radiation. Surface functionalization containing more than 30 wt% of oxygen has been achieved, resulting into solubility of 2-5 mg/mL. Further covalent functionalization of such soluble SWNTs provides a remarkable degree of aniline functionalization through amidation, where the formation of polyaniline has been avoided. Functionalization of SWNTs is confirmed by techniques like electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry, Raman spectroscopy, cyclic voltammetry and impedance spectroscopy. Electrochemical analysis suggests an enhanced double layer capacitance (∼110 F/g) of nanotubes after microwave treatment. Aniline functionalization of SWNTs shows possible variations on the nanotube topography with concomitant formation of a dynamic polymer layer on the nanotube surface

  10. Thermodynamic study of (heptane + amine) mixtures. III: Excess and partial molar volumes in mixtures with secondary, tertiary, and cyclic amines at 298.15 K

    International Nuclear Information System (INIS)

    Lepori, Luciano; Gianni, Paolo; Spanedda, Andrea; Matteoli, Enrico

    2011-01-01

    Graphical abstract: Highlights: → Excess volumes of (sec., tert., or cyclic amines + heptane) mixtures. → Excess volumes are positive for small size amines and decrease as the size increases. → Group contributions to predict the partial molar volumes of amines in heptane. → The void volume is larger for sec. and tert. than for linear amines in heptane. → The void volume is much smaller for cyclic than for linear amines in heptane. - Abstract: Excess molar volumes V E at 298.15 K were determined by means of a vibrating tube densimeter for binary mixtures of {heptane + open chain secondary (diethyl to dibutyl) and tertiary (triethyl to tripentyl) amines} as well as for cyclic imines (C 2 , C 3 , C 4 , C 6 , and C 7 ) and primary cycloalkylamines (C 5 , C 6 , C 7 , and C 12 ). The V E values were found positive for mixtures involving small size amines, with V E decreasing as the size increases. Negative V E 's were found for tributyl- and tripentylamine, heptamethylenimine, and cyclododecylamine. Mixtures of heptane with cycloheptylamine showed an s-shaped curve. Partial molar volumes V 0 of amines at infinite dilution in heptane were obtained from V E and compared with V 0 of hydrocarbons and other classes of organic compounds taken from literature. An additivity scheme, based on the intrinsic volume approach, was applied to estimate group (CH 3 , CH 2 , CH, C, NH 2 , NH, N, OH, O, CO, and COO) contributions to V 0 . These contributions, the effect of cyclization on V 0 , and the limiting slope of the apparent excess molar volumes were discussed in terms of solute-solvent and solute-solute interactions.

  11. New insights into controlling tube-bundle fouling using alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Guzonas, D.A.; Frattini, P.L.; Fruzzetti, K.

    2002-01-01

    A volatile amine is added to the secondary heat-transport system of a nuclear power plant to reduce the rate of corrosion and corrosion product transport in the feedwater and to protect steam generator (SG) crevices and materials exposed to steam condensate. Volatility and base strength of the amine at the SG operating temperature are two important considerations when choosing the optimum amine (or mixture of amines) for corrosion control in the steam cycle. Atomic Energy of Canada Limited (AECL) and Electric Power Research Institute (EPRI) have been collaborating in an extensive investigation of the effectiveness of amines at controlling the rate of tube-bundle fouling under SG operating conditions. Tests have been performed using a radiotracing technique in a high-temperature fouling loop facility at Chalk River Laboratories operated by AECL. This investigation has provided new insights into the role played by the amine in determining the rate of tube-bundle fouling in the SG. These insights are being used by AECL and EPRI to develop criteria for the selection of an amine that has optimum properties for both corrosion control and deposit control in the secondary heat transport system. The investigation has found that the rate of tube-bundle fouling is strongly dependent upon the surface chemistry of the corrosion products. For example, the fouling rates of fully oxidized iron oxides, such as hematite and lepidocrocite, are at least an order of magnitude greater than the fouling rate of magnetite under identical operating conditions. The difference is related to the sign of the surface charge on the corrosion products at temperature. The choice of amine for pH-control also influences the fouling rate. This was originally thought to be a surface-charge effect as well, but recent tests have suggested that it is related to the role that the amine plays in governing the rate of deposit consolidation on the heat-transfer surface. Amines that promote a high rate of

  12. Study of the degradation mechanisms of amines used for the capture of CO{sub 2} in industrial fumes; Etude des mecanismes de degradation des amines utilisees pour le captage du CO{sub 2} dans les fumees

    Energy Technology Data Exchange (ETDEWEB)

    Lepaumier, H

    2008-10-15

    Global warming leads to reduce greenhouse gas emissions. Post combustion CO{sub 2} capture with solvent is the most advanced technology to reduce CO{sub 2} emissions in industrial fumes. A major problem associated with chemical absorption of CO{sub 2} using the benchmark ethanolamine (MEA) is solvent degradation through irreversible side reactions with CO{sub 2} and O{sub 2} which leads to numerous harmful impacts to the process: corrosion, solvent loss, foaming, fouling, and viscosity increase. So, developing new amines with higher chemical stability is essential. This work is based on the chemical stability study of 17 different molecules. Their structures have been chosen in order to establish structure-property relationships: alkanolamines, known for gas treatment application (MEA, DEA, MDEA, AMP...), di-amines, and tri-amines without alcohol function. Impact of temperature, CO{sub 2}, and O{sub 2} on degradation has been studied. Strong experimental conditions have been used to observe significant degradation after a 15 days experiment. Separation, identification and quantification of degradation products have been performed by using different testing instructions such as gas chromatography, mass spectrometry, ionic chromatography and NMR. Different mechanisms are proposed to explain most of degradation compounds. Radical reactions (dealkylation, alkylation, ring-closure reactions and piperazinones formation) are involved under O{sub 2} pressure whereas CO{sub 2} induces ionic reactions (dealkylation, alkylation, addition, ring-closure reactions and oxazolidinones or imidazolidinones formation). Large discrepancies of stability are noticed among the different amines. Knowledge of degradation products and reaction mechanisms has thus permitted to establish some relationships between structure and chemical stability: for example, role of the amine function (primary, secondary, tertiary), impact of alkyl chain length between the two amino groups and steric

  13. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    Science.gov (United States)

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Extraction separation studies of uranium(VI) by amine oxides

    International Nuclear Information System (INIS)

    Ejaz, M.

    1975-01-01

    The extraction of uranium(VI) by two amine oxides, 4-(5-nonyl)pyridine oxide and trioctylamine oxide has been studied. The extraction behavior of these two N-oxides is compared. The dependence of extraction on the type of amine oxide and acid, nature of organic diluent, and amine oxide concentration has been investigated. The influence of the concentration of the metal and salting-out agents is described. The possible mechanism of extraction is discussed in the light of the results of extraction isotherms, loading radiodata, and log-log plots of amine oxide concentration vs distribution ratio. The separation factors for a number of metal ions are reported, and the separation of uranium from some fission elements has also been achieved

  15. Target analysis of primary aromatic amines combined with a comprehensive screening of migrating substances in kitchen utensils by liquid chromatography-high resolution mass spectrometry.

    Science.gov (United States)

    Sanchis, Yovana; Coscollà, Clara; Roca, Marta; Yusà, Vicent

    2015-06-01

    An analytical strategy including both the quantitative target analysis of 8 regulated primary aromatic amines (PAAs), as well as a comprehensive post-run target screening of 77 migrating substances, was developed for nylon utensils, using liquid chromatography-orbitrap-high resolution mass spectrometry (LC-HRMS) operating in full scan mode. The accurate mass data were acquired with a resolving power of 50,000 FWHM (scan speed, 2 Hz), and by alternating two acquisition events, ESI+ with and without fragmentation. The target method was validated after statistical optimization of the main ionization and fragmentation parameters. The quantitative method presented appropriate performance to be used in official monitoring with recoveries ranging from 78% to 112%, precision in terms of Relative Standard Deviation (RSD) was less than 15%, and the limits of quantification were between 2 and 2.5 µg kg(-1). For post-target screening, a customized theoretical database was built for food contact material migrants, including bisphenols, phthalates, and other amines. For identification purposes, accurate exact mass (<5 ppm) and some diagnostic ions including fragments were used. The strategy was applied to 10 real samples collected from different retailers in the Valencian Region (Spain) during 2014. Six out of eight target PAAs were detected in at least one sample in the target analysis. The most frequently detected compounds were 4,4'-methylenedianiline and aniline, with concentrations ranging from 2.4 to 19,715 µg kg(-1) and 2.5 to 283 µg kg(-1), respectively. Two phthalates were identified and confirmed in the post-run target screening analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effect of donor orientation on ultrafast intermolecular electron transfer in coumarin-amine systems

    International Nuclear Information System (INIS)

    Singh, P. K.; Nath, S.; Bhasikuttan, A. C.; Kumbhakar, M.; Mohanty, J.; Sarkar, S. K.; Mukherjee, T.; Pal, H.

    2008-01-01

    Effect of donor amine orientation on nondiffusive ultrafast intermolecular electron transfer (ET) reactions in coumarin-amine systems has been investigated using femtosecond fluorescence upconversion measurements. Intermolecular ET from different aromatic and aliphatic amines used as donor solvents to the excited coumarin-151 (C151) acceptor occurs with ultrafast rates such that the shortest fluorescence lifetime component (τ 1 ) is the measure of the fastest ET rate (τ 1 =τ ET fast =(k ET fast ) -1 ), assigned to the C151-amine contact pairs in which amine donors are properly oriented with respect to C151 to maximize the acceptor-donor electronic coupling (V el ). It is interestingly observed that as the amine solvents are diluted by suitable diluents (either keeping solvent dielectric constant similar or with increasing dielectric constant), the τ 1 remains almost in the similar range as long as the amine dilution does not cross a certain critical limit, which in terms of the amine mole fraction (x A ) is found to be ∼0.4 for aromatic amines and ∼0.8 for aliphatic amines. Beyond these dilutions in the two respective cases of the amine systems, the τ 1 values are seen to increase very sharply. The large difference in the critical x A values involving aromatic and aliphatic amine donors has been rationalized in terms of the largely different orientational restrictions for the ET reactions as imposed by the aliphatic (n-type) and aromatic (π-type) nature of the amine donors [A. K. Satpati et al., J. Mol. Struct. 878, 84 (2008)]. Since the highest occupied molecular orbital (HOMO) of the n-type aliphatic amines is mostly centralized at the amino nitrogen, only some specific orientations of these amines with respect to the close-contact acceptor dye [also of π-character; A. K. Satpati et al., J. Mol. Struct. 878, 84 (2008) and E. W. Castner et al., J. Phys. Chem. A 104, 2869 (2000)] can give suitable V el and thus ultrafast ET reaction. In contrary, the

  17. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles.

    Science.gov (United States)

    Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan

    2014-06-15

    A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Synthesis of (benzimidazol-2-yl)aniline derivatives as glycogen phosphorylase inhibitors.

    Science.gov (United States)

    Galal, Shadia A; Khattab, Muhammad; Andreadaki, Fotini; Chrysina, Evangelia D; Praly, Jean-Pierre; Ragab, Fatma A F; El Diwani, Hoda I

    2016-11-01

    A series of (benzimidazol-2-yl)-aniline (1) derivatives has been synthesized and evaluated as glycogen phosphorylase (GP) inhibitors. Kinetics studies revealed that compounds displaying a lateral heterocyclic residue with several heteroatoms (series 3 and 5) exhibited modest inhibitory properties with IC 50 values in the 400-600μM range. Arylsulfonyl derivatives 7 (Ar: phenyl) and 9 (Ar: o-nitrophenyl) of 1 exhibited the highest activity (series 2) among the studied compounds (IC 50 324μM and 357μM, respectively) with stronger effect than the p-tolyl analogue 8. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Metal-Mediated Couplings of Primary Alcohols with Amines and Carbohydrates

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    . The reaction is proposed to proceed by initial dehydrogenation of the alcohol to the aldehyde, which stays coordinated to the ruthenium centre. Then, nucleophilic attack of the amine affords the hemiaminal, which is released from ruthenium and converted into the imine. Project 2: Tin-mediated regioselective 6...... from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex. The successful method development and application of a convenient and direct (one step) synthesis of imines from alcohols and amines is described. The developed method provides quick andextended access to structurally...... and amines have been coupled in the presence of the catalyst to afford the corresponding imines in moderate to good yields. Optically pure amines gave the corresponding imines without any sign of racemization. Moreover, the one-pot diastereoselective addition of different organometallic reagents to the imine...

  20. Effect of molecular chain length on the mechanical and thermal properties of amine-functionalized graphene oxide/polyimide composite films prepared by in situ polymerization.

    Science.gov (United States)

    Liao, Wei-Hao; Yang, Shin-Yi; Wang, Jen-Yu; Tien, Hsi-Wen; Hsiao, Sheng-Tsung; Wang, Yu-Sheng; Li, Shin-Ming; Ma, Chen-Chi M; Wu, Yi-Fang

    2013-02-01

    This study fabricates amine (NH(2))-functionalized graphene oxide (GO)/polyimide(PI) composite films with high performance using in situ polymerization. Linear poly(oxyalkylene)amines with two different molecular weights 400 and 2000 (D400 and D2000) have been grafted onto the GO surfaces, forming two types of NH(2)-functionalized GO (D400-GO/D2000-GO). NH(2)-functionalized GO, especially D400-GO, demonstrated better reinforcing efficiency in mechanical and thermal properties. The observed property enhancement are due to large aspect ratio of GO sheets, the uniform dispersion of the GO within the PI matrix, and strong interfacial adhesion due to the chemical bonding between GO and the polymeric matrix. The Young's modulus of the composite films with 0.3 wt % D400-GO loading is 7.4 times greater than that of neat PI, and tensile strength is 240% higher than that of neat PI. Compared to neat PI, 0.3 wt % D400-GO/PI film exhibits approximately 23.96 °C increase in glass transition temperature (T(g)). The coefficient of thermal expansion below T(g) is significantly decreased from 102.6 μm/°C (neat PI) to 53.81 μm/°C (decreasing 48%) for the D400-GO/PI composites with low D400-GO content (0.1 wt %). This work not only provides a method to develop the GO-based polyimide composites with superior performances but also conceptually provides a chance to modulate the interfacial interaction between GO and the polymer through designing the chain length of grafting molecules on NH(2)-functionalized GO.

  1. Chromosomal localization of the human vesicular amine transporter genes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D.; Finn, P.; Liu, Y.; Roghani, A.; Edwards, R.H.; Klisak, I.; Kojis, T.; Heinzmann, C.; Sparkes, R.S. (UCLA School of Medicine, Los Angeles, CA (United States))

    1993-12-01

    The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, the authors have isolated a human cDNA for the brain transporter and localized the human vesciular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes. 26 refs., 3 figs., 1 tab.

  2. Characterization of particulate amines

    International Nuclear Information System (INIS)

    Gundel, L.A.; Chang, S.G.; Clemenson, M.S.; Markowitz, S.S.; Novakov, T.

    1979-01-01

    The reduced nitrogen compounds associated with ambient particulate matter are chemically characterized by means of ESCA and proton activation analysis. Ambient particulate samples collected on silver filters in Berkeley, California were washed with water and organic solvents, and ESCA and proton activation analysis were performed in order to determine the composition of various nitrogen compounds and the total nitrogen content. It is found that 85% of the amines originally present in ambient particulate matter can be removed by water extraction, whereas the ammonium and nitrate are completely removed. An observed increase in ammonium ion in the extract, compared with its concentration in the original sample, coupled with the commensurate decrease in amine concentration, is attributed to the hydrolysis of amide groups, which may cause analytical methods based on extraction to yield erroneous results

  3. Ruthenium-complex catalyzed N-(cyclo)alkylation of aromatic amines with diols. Selective synthesis of N-(n-hydroixyalkyl)anilines of type PhNH(CH2)nOH and of some bioactive arylpiperazines,

    NARCIS (Netherlands)

    Koten, G. van; Abbenhuis, R.A.T.M.; Boersma, J.

    1998-01-01

    A new class of well-defined neutral mono-, and dicationic ruthenium(II) complexes containing a neutral terdentate donor system [C5H3N(CH2E)(2)-2,6] (E = PPh2 (PNP) or NMe2 (NN'N)) has been found effective as catalyst precursor in N-(cyclo)alkylation reactions of aromatic amines with diols

  4. Methemoglobin Formation and Characterization of Hemoglobin Adducts of Carcinogenic Aromatic Amines and Heterocyclic Aromatic Amines.

    Science.gov (United States)

    Pathak, Khyatiben V; Chiu, Ting-Lan; Amin, Elizabeth Ambrose; Turesky, Robert J

    2016-03-21

    Arylamines (AAs) and heterocyclic aromatic amines (HAAs) are structurally related carcinogens formed during the combustion of tobacco or cooking of meat. They undergo cytochrome P450 mediated N-hydroxylation to form metabolites which bind to DNA and lead to mutations. The N-hydroxylated metabolites of many AAs also can undergo a co-oxidation reaction with oxy-hemolgobin (HbO2) to form methemoglobin (met-Hb) and the arylnitroso intermediates, which react with the β-Cys(93) chain of Hb to form Hb-arylsulfinamide adducts. The biochemistry of arylamine metabolism has been exploited to biomonitor certain AAs through their Hb arylsulfinamide adducts in humans. We examined the reactivity of HbO2 with the N-hydroxylated metabolites of 4-aminobiphenyl (ABP, HONH-ABP), aniline (ANL, HONH-ANL), and the HAAs 2-amino-9H-pyrido[2,3-b]indole (AαC, HONH-AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP, HONH-PhIP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx, HONH-MeIQx). HONH-ABP, HO-ANL, and HONH-AαC induced methemoglobinemia and formed Hb sulfinamide adducts. However, HONH-MeIQx and HONH-PhIP did not react with the oxy-heme complex, and met-Hb formation and chemical modification of the β-Cys(93) residue were negligible. Molecular modeling studies showed that the distances between the H-ON-AA or H-ON-HAA substrates and the oxy-heme complex of HbO2 were too far away to induce methemoglobinemia. Different conformational changes in flexible helical and loop regions around the heme pocket induced by the H-ON-AA or H-ON-HAAs may explain the different proclivities of these chemicals to induce methemoglobinemia. Hb-Cys(93β) sulfinamide and sulfonamide adducts of ABP, ANL, and AαC were identified, by Orbitrap MS, following the proteolysis of Hb with trypsin, Glu-C, or Lys-C. Hb sulfinamide and sulfonamide adducts of ABP were identified in the blood of mice exposed to ABP, by Orbitrap MS. This is the first report of the identification of intact Hb

  5. The ozonolysis of primary aliphatic amines in fine particles

    Science.gov (United States)

    Zahardis, J.; Geddes, S.; Petrucci, G. A.

    2008-02-01

    The oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2- and NO3- ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3- (HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3≥3×10-7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10-3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  6. Delineation of G-Quadruplex Alkylation Sites Mediated by 3,6-Bis(1-methyl-4-vinylpyridinium iodide)carbazole-Aniline Mustard Conjugates.

    Science.gov (United States)

    Chen, Chien-Han; Hu, Tsung-Hao; Huang, Tzu-Chiao; Chen, Ying-Lan; Chen, Yet-Ran; Cheng, Chien-Chung; Chen, Chao-Tsen

    2015-11-23

    A new G-quadruplex (G-4)-directing alkylating agent BMVC-C3M was designed and synthesized to integrate 3,6-bis(1-methyl-4-vinylpyridinium iodide)carbazole (BMVC) with aniline mustard. Various telomeric G-4 structures (hybrid-2 type and antiparallel) and an oncogene promoter, c-MYC (parallel), were constructed to react with BMVC-C3M, yielding 35 % alkylation yield toward G-4 DNA over other DNA categories (alkylation adducts by electrospray ionization mass spectroscopy (ESI-MS) revealed the stepwise DNA alkylation mechanism of aniline mustard for the first time. Furthermore, the monoalkylation sites and intrastrand cross-linking sites were determined and found to be dependent on G-4 topology based on the results of footprinting analysis in combination with mass spectroscopic techniques and in silico modeling. The results indicated that BMVC-C3M preferentially alkylated at A15 (H26), G12 (H24), and G2 (c-MYC), respectively, as monoalkylated adducts and formed A15-C3M-A21 (H26), G12-C3M-G4 (H24), and G2-C3M-G4/G17 (c-MYC), respectively, as cross-linked dialkylated adducts. Collectively, the stability and site-selective cross-linking capacity of BMVC-C3M provides a credible tool for the structural and functional characterization of G-4 DNAs in biological systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Alexander A. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Anderson, Thomas M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Michaelis, David J. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Jiang, Guilin [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Savage, Paul B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Linford, Matthew R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)]. E-mail: mrlinford@chem.byu.edu

    2006-07-30

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups.

  8. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    International Nuclear Information System (INIS)

    Parent, Alexander A.; Anderson, Thomas M.; Michaelis, David J.; Jiang, Guilin; Savage, Paul B.; Linford, Matthew R.

    2006-01-01

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups

  9. Study of the degradation mechanisms of amines used for the capture of CO2 in industrial fumes

    International Nuclear Information System (INIS)

    Lepaumier, H.

    2008-10-01

    Global warming leads to reduce greenhouse gas emissions. Post combustion CO 2 capture with solvent is the most advanced technology to reduce CO 2 emissions in industrial fumes. A major problem associated with chemical absorption of CO 2 using the benchmark ethanolamine (MEA) is solvent degradation through irreversible side reactions with CO 2 and O 2 which leads to numerous harmful impacts to the process: corrosion, solvent loss, foaming, fouling, and viscosity increase. So, developing new amines with higher chemical stability is essential. This work is based on the chemical stability study of 17 different molecules. Their structures have been chosen in order to establish structure-property relationships: alkanolamines, known for gas treatment application (MEA, DEA, MDEA, AMP...), di-amines, and tri-amines without alcohol function. Impact of temperature, CO 2 , and O 2 on degradation has been studied. Strong experimental conditions have been used to observe significant degradation after a 15 days experiment. Separation, identification and quantification of degradation products have been performed by using different testing instructions such as gas chromatography, mass spectrometry, ionic chromatography and NMR. Different mechanisms are proposed to explain most of degradation compounds. Radical reactions (dealkylation, alkylation, ring-closure reactions and piperazinones formation) are involved under O 2 pressure whereas CO 2 induces ionic reactions (dealkylation, alkylation, addition, ring-closure reactions and oxazolidinones or imidazolidinones formation). Large discrepancies of stability are noticed among the different amines. Knowledge of degradation products and reaction mechanisms has thus permitted to establish some relationships between structure and chemical stability: for example, role of the amine function (primary, secondary, tertiary), impact of alkyl chain length between the two amino groups and steric hindrance. (author)

  10. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans.

    Science.gov (United States)

    Song, Xuezheng; Johns, Brian A; Ju, Hong; Lasanajak, Yi; Zhao, Chunmei; Smith, David F; Cummings, Richard D

    2013-11-15

    Glycans that are fluorescently tagged by reductive amination have been useful for functional glycomic studies. However, the existing tags can introduce unwanted properties to the glycans and complicate structural and functional studies. Here, we describe a facile method using N-bromosuccinimide (NBS) to remove the tags and efficiently regenerate free reducing glycans. The regenerated free reducing glycans can be easily analyzed by routine mass spectrometry or retagged with different tags for further studies. This new method can be used to efficiently remove a variety of fluorescent tags installed by reductive amination, including 2-aminobenzoic acid and 2-aminopyridine. NBS treatment essentially transforms the commonly used 2-aminobenzoic linkage to a cleavable linkage. It can be used to cleave printed glycans from microarrays and cleave neoglycopeptides containing a 2-aminobenzoic linker.

  11. STUDIES ON VINYL POLYMERIZATION WITH INITIATION SYSTEM CONTAINING AMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)

    1983-01-01

    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  12. Base metal dehydrogenation of amine-boranes

    Science.gov (United States)

    Blacquiere, Johanna Marie [Ottawa, CA; Keaton, Richard Jeffrey [Pearland, TX; Baker, Ralph Thomas [Los Alamos, NM

    2009-06-09

    A method of dehydrogenating an amine-borane having the formula R.sup.1H.sub.2N--BH.sub.2R.sup.2 using base metal catalyst. The method generates hydrogen and produces at least one of a [R.sup.1HN--BHR.sup.2].sub.m oligomer and a [R.sup.1N--BR.sup.2].sub.n oligomer. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources, such as, but not limited to, fuel cells.

  13. A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    International Nuclear Information System (INIS)

    Bagheri, Habib; Daliri, Rasoul; Roostaie, Ali

    2013-01-01

    Graphical abstract: -- Highlights: •A Fe 3 O 4 –aniline-naphthylamine nanocomposite was prepared via a simple route. •The magnetic nanocomposite was applied for isolation of RhB from water. •The nanocomposite applicability was compared with other pristine polymers. •The method was applied for the determination of RhB in different samples. -- Abstract: A novel Fe 3 O 4 –poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50 nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe 3 O 4 /poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35–5.00 μg L −1 with R 2 = 0.9991 was obtained. The limits of detection (3S b ) and limits of quantification (10S b ) of the method were 0.10 μg L −1 and 0.35 μg L −1 (n = 3), respectively. The relative standard deviation for water sample with 0.5 μg L −1 of RhB was 4.2% (n = 5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94–99%

  14. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  15. Photocatalytic degradation of aniline using an autonomous rotating drum reactor with both solar and UV-C artificial radiation.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I; Merino, S

    2018-03-15

    The aim of this work was to evaluate the performance of a novel self-autonomous reactor technology (capable of working with solar irradiation and artificial UV light) for water treatment using aniline as model compound. This new reactor design overcomes the problems of the external mass transfer effect and the accessibility to photons occurring in traditional reaction systems. The UV-light source is located inside the rotating quartz drums (where TiO 2 is immobilized), allowing light to easily reach the water and the TiO 2 surface. Several processes (UV, H 2 O 2 , Solar, TiO 2 , Solar/TiO 2 , Solar/TiO 2 /H 2 O 2 and UV/Solar/H 2 O 2 /TiO 2 ) were tested. The synergy between Solar/H 2 O 2 and Solar/TiO 2 processes was quantified to be 40.3% using the pseudo-first-order degradation rate. The apparent photonic efficiency, ζ, was also determined for evaluating light utilization. For the Solar/TiO 2 /H 2 O 2 process, the efficiency was found to be practically constant (0.638-0.681%) when the film thickness is in the range of 1.67-3.87 μm. However, the efficiency increases up to 2.67% when artificial UV light was used in combination, confirming the efficient design of this installation. Thus, if needed, lamps can be switched on during cloudy days to improve the degradation rate of aniline and its mineralization. Under the optimal conditions selected for the Solar/TiO 2 /H 2 O 2 process ([H 2 O 2 ] = 250 mg/L; pH = 4, [TiO 2 ] = 0.65-1.25 mg/cm 2 ), 89.6% of aniline is degraded in 120 min. If the lamps are switched on, aniline is completely degraded in 10 min, reaching 85% of mineralization in 120 min. TiO 2 was re-used during 5 reaction cycles without apparent loss in activity (Solar/TiO 2 /H 2 O 2 process was found to have lower operation costs than other systems described in literature (0.67 €/m 3 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Extraction of some acids using aliphatic amines

    International Nuclear Information System (INIS)

    Matutano, L.

    1964-06-01

    Hydrochloric, nitric, sulphuric, perchloric, phosphoric, acetic and formic acids in aqueous solution (0.05 to 10 M) are extracted by amberlite LA2 and trilaurylamine in solution, 5 per cent by volume, in kerosene and xylene respectively. The extraction process consists of: neutralization of the amine salt; a 'molecular extraction', i.e. an extraction using an excess of acid with respect to the stoichiometry of the amine salt. According to the behaviour of the acid during the extraction, three groups may be distinguished: completely dissociated acids, carboxylic acids, phosphoric acid. This classification is also valid for the extraction of the water which occurs simultaneously with that of the acid. An extraction mechanism is put forward for formic acid and the formation constant of its amine salt is calculated. (author) [fr

  17. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  18. Mechanistic Investigation of the Ruthenium–N-Heterocyclic-Carbene-Catalyzed Amidation of Alcohols and Amines

    DEFF Research Database (Denmark)

    Makarov, Ilya; Fristrup, Peter; Madsen, Robert

    2012-01-01

    The mechanism of the ruthenium–N-heterocyclic-carbene-catalyzed formation of amides from alcohols and amines was investigated by experimental techniques (Hammett studies, kinetic isotope effects) and by a computational study by using dispersion-corrected density functional theory (DFT/ M06...

  19. A metal-free general procedure for oxidation of secondary amines to nitrones.

    Science.gov (United States)

    Gella, Carolina; Ferrer, Eric; Alibés, Ramon; Busqué, Félíx; de March, Pedro; Figueredo, Marta; Font, Josep

    2009-08-21

    An efficient and metal-free protocol for direct oxidation of secondary amines to nitrones has been developed, using Oxone in a biphasic basic medium as the sole oxidant. The method is general and tolerant with other functional groups or existing stereogenic centers, providing rapid access to enantiomerically pure compounds in good yields.

  20. Charge stabilization by reaction center protein immobilized to carbon nanotubes functionalized by amine groups and poly(3-thiophene acetic acid) conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, T.; Magyar, M.; Nagy, L. [Department of Medical Physics and Informatics, University of Szeged, H-6720 Szeged (Hungary); Nemeth, Z.; Hernadi, K. [Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged (Hungary); Endrodi, B.; Bencsik, G.; Visy, Cs. [Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged (Hungary); Horvath, E.; Magrez, A.; Forro, L. [Institute of Physics of Complex Matter, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2012-12-15

    A large number of studies have indicated recently that photosynthetic reaction center proteins (RC) bind successfully to nanostructures and their functional activity is largely retained. The major goal of current research is to find the most efficient systems and conditions for the photoelectric energy conversion and for the stability of this bio-nanocomposite. In our studies, we immobilized the RC protein on multiwalled carbon nanotubes (MWNT) through specific chemical binding to amine functional groups and through conducting polymer (poly(3-thiophene acetic acid), PTAA). Both structural (TEM, AFM) and functional (absorption change and conductivity) measurements has shown that RCs could be bound effectively to functionalized CNTs. The kinetics of the light induced absorption change indicated that RCs were still active in the composite and there was an interaction between the protein cofactors and the CNTs. The light generated photocurrent was measured in an electrochemical cell with transparent CNT electrode designed specially for this experiment. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)