WorldWideScience

Sample records for amine catalyzed silica

  1. Calcium(ii)-catalyzed enantioselective conjugate additions of amines.

    Science.gov (United States)

    Uno, Brice E; Dicken, Rachel D; Redfern, Louis R; Stern, Charlotte M; Krzywicki, Greg G; Scheidt, Karl A

    2018-02-14

    The direct enantioselective chiral calcium(ii)·phosphate complex (Ca[CPA] 2 )-catalyzed conjugate addition of unprotected alkyl amines to maleimides was developed. This mild catalytic system represents a significant advance towards the general convergent asymmetric amination of α,β-unsaturated electrophiles, providing medicinally relevant chiral aminosuccinimide products in high yields and enantioselectivities. Furthermore, the catalyst can be reused directly from a previously chromatographed reaction and still maintain both high yield and selectivity.

  2. Ruthenium-Catalyzed Aerobic Oxidation of Amines.

    Science.gov (United States)

    Ray, Ritwika; Hazari, Arijit Singha; Lahiri, Goutam Kumar; Maiti, Debabrata

    2018-01-18

    Amine oxidation is one of the fundamental reactions in organic synthesis as it leads to a variety of value-added products such as oximes, nitriles, imines, and amides among many others. These products comprise the key N-containing building blocks in the modern chemical industry, and such transformations, when achieved in the presence of molecular oxygen without using stoichiometric oxidants, are much preferred as they circumvent the production of unwanted wastes. In parallel, the versatility of ruthenium catalysts in various oxidative transformations is well-documented. Herein, this review focuses on aerobic oxidation of amines specifically by using ruthenium catalysts and highlights the major achievements in this direction and challenges that still need to be addressed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  4. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  5. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  6. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn; Sai, Hiroaki; Cohen, Roy; Wang, Suntao; Bradbury, Michelle; Baird, Barbara; Gruner, Sol M.; Wiesner, Ulrich

    2011-01-01

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  7. Copper-Catalyzed Electrophilic Amination of Organoaluminum Nucleophiles with O-Benzoyl Hydroxylamines.

    Science.gov (United States)

    Zhou, Shuangliu; Yang, Zhiyong; Chen, Xu; Li, Yimei; Zhang, Lijun; Fang, Hong; Wang, Wei; Zhu, Xiancui; Wang, Shaowu

    2015-06-19

    A copper-catalyzed electrophilic amination of aryl and heteroaryl aluminums with N,N-dialkyl-O-benzoyl hydroxylamines that affords the corresponding anilines in good yields has been developed. The catalytic reaction proceeds very smoothly under mild conditions and exhibits good substrate scope. Moreover, the developed catalytic system is also well suited for heteroaryl aluminum nucleophiles, providing facile access to heteroaryl amines.

  8. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng

    2017-03-13

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  9. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liu, Xiangqian; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  10. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng

    2017-03-15

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  11. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liao, Hsuan-Hung; Cai, Yunfei; Zhu, Chen; Rueping, Magnus

    2017-01-01

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  12. Iridium-Catalyzed Condensation of Primary Amines To Form Secondary Amines

    DEFF Research Database (Denmark)

    Lorentz-Petersen, Linda Luise Reeh; Jensen, Paw; Madsen, Robert

    2009-01-01

    Symmetric secondary amines are readily obtained by heating a neat primary amine with 0.5 mol% of bis(dichloro[eta(5)-pentamethylcyclopentadienyl]iridium). The products are isolated by direct distillation in good yields.......Symmetric secondary amines are readily obtained by heating a neat primary amine with 0.5 mol% of bis(dichloro[eta(5)-pentamethylcyclopentadienyl]iridium). The products are isolated by direct distillation in good yields....

  13. Silver-catalyzed synthesis of amides from amines and aldehydes

    Science.gov (United States)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  14. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    Science.gov (United States)

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Iridium‐Catalyzed Condensation of Amines and Vicinal Diols to Substituted Piperazines

    DEFF Research Database (Denmark)

    Lorentz-Petersen, Linda Luise Reeh; Nordstrøm, Lars Ulrik Rubæk; Madsen, Robert

    2012-01-01

    is believed to involve dehydrogenation of the 1,2‐diol to the α‐hydroxy aldehyde, which condenses with the amine to form the α‐hydroxy imine. The latter rearranges to the corresponding α‐amino carbonyl compound, which then reacts with another amine followed by reduction of the resulting imine.......A straightforward procedure is described for the synthesis of piperazines from amines and 1,2‐diols. The heterocyclization is catalyzed by [Cp*IrCl2]2 and sodium hydrogen carbonate and can be achieved with either toluene or water as solvent. The transformation does not require any stoichiometric...

  16. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  17. Nickel-Catalyzed Decarbonylative Silylation, Borylation, and Amination of Arylamides via a Deamidative Reaction Pathway

    KAUST Repository

    Rueping, Magnus; Lee, Shao-Chi; Guo, Lin; Yue, Huifeng; Liao, Hsuan-Hung

    2017-01-01

    A nickel-catalyzed decarbonylative silylation, borylation, and amination of amides has been developed. This new methodology allows the direct interconversion of amides to arylsilanes, arylboronates, and arylamines and enables a facile route for carbon–heteroatom bond formations in a straightforward and mild fashion.

  18. Nickel-Catalyzed Decarbonylative Silylation, Borylation, and Amination of Arylamides via a Deamidative Reaction Pathway

    KAUST Repository

    Rueping, Magnus

    2017-10-23

    A nickel-catalyzed decarbonylative silylation, borylation, and amination of amides has been developed. This new methodology allows the direct interconversion of amides to arylsilanes, arylboronates, and arylamines and enables a facile route for carbon–heteroatom bond formations in a straightforward and mild fashion.

  19. Mechanistic Investigation of the Ruthenium–N-Heterocyclic-Carbene-Catalyzed Amidation of Alcohols and Amines

    DEFF Research Database (Denmark)

    Makarov, Ilya; Fristrup, Peter; Madsen, Robert

    2012-01-01

    The mechanism of the ruthenium–N-heterocyclic-carbene-catalyzed formation of amides from alcohols and amines was investigated by experimental techniques (Hammett studies, kinetic isotope effects) and by a computational study by using dispersion-corrected density functional theory (DFT/ M06...

  20. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement

    Science.gov (United States)

    Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong

    2016-12-01

    In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.

  1. Silica metal-oxide vesicles catalyze comprehensive prebiotic chemistry.

    Science.gov (United States)

    Bizzarri, Bruno Mattia; Botta, Lorenzo; Pérez-Valverde, Maritza Iveth; Saladino, Raffaele; Di Mauro, Ernesto; Garcia Ruiz, Juan Manuel

    2018-03-30

    It has recently been demonstrated that mineral self-assembled structures catalyzing prebiotic chemical reactions may form in natural waters derived from serpentinization, a geological process widespread in the early stages of Earth-like planets. We have synthesized self-assembled membranes by mixing microdrops of metal solutions with alkaline silicate solutions in the presence of formamide (NH2CHO), a single carbon molecule, at 80ºC. We found that these bilayer membranes, made of amorphous silica and metal oxide-hydroxide nanocrystals, catalyze the condensation of formamide, yielding the four nucleobases of RNA, three aminoacids and several carboxylic acids in a single pot experiment. Besides manganese, iron and magnesium, two abundant elements in the earliest Earth crust that are key in serpentinization reactions, are enough to produce all these biochemical compounds. These results suggest that the transition from inorganic geochemistry to prebiotic organic chemistry is common on a universal scale and, most probably, earlier than ever thought for our planet. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    Science.gov (United States)

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  3. Mechanistic insight into benzenethiol catalyzed amide bond formations from thioesters and primary amines

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Bork, Nicolai; Strømgaard, Kristian

    2014-01-01

    The influence of arylthiols on cysteine-free ligation, i.e. the reaction between an alkyl thioester and a primary amine forming an amide bond, was studied in a polar aprotic solvent. We reacted the ethylthioester of hippuric acid with cyclohexylamine in the absence or presence of various quantities...... of thiophenol (PhSH) in a slurry of disodium hydrogen phosphate in dry DMF. Quantitative conversions into the resulting amide were observed within a few hours in the presence of equimolar amounts of thiophenol. Ab initio calculations showed that the reaction mechanism in DMF is similar to the well-known aqueous...... reaction mechanism. The energy barrier of the catalyzed amidation reaction is approximately 40 kJ mol(-1) lower than the non-catalyzed amidation reaction. At least partially this can be explained by a hydrogen bond from the amine to the π-electrons of the thiophenol, stabilizing the transition state...

  4. Palladium-Catalyzed Carbenylative Cross-Coupling and Carbenylative Amination Utilizing Vinylcarbenes

    OpenAIRE

    Agee, Christopher

    2017-01-01

    This work focuses on the use of N-tosylhydrazones derived from α,β-unsaturated aldehydes – precursors to vinylcarbene ligands – in palladium-catalyzed carbenylative cross-coupling and carbenylative amination reactions. These carbenylative reactions were used to form η3-allylpalladium intermediates that generate stereogenic centers at the carbene center. An initial acyclic model system was used to intercept a well-known prochiral 1,3-diphenylallyl intermediate to probe the feasibility of enant...

  5. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk

    2010-01-01

    The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N-heterocyclic carbene complexes. Three different catalyst systems...... are presented that all employ 1,3-diisopropylimidazol-2-ylidene (IiPr) as the carbene ligand. In addition, potassium tert-butoxide and a tricycloalkylphosphine are required for the amidation to proceed. In the first system, the active catalyst is generated in situ from [RuCl2(cod)] (cod = 1,5-cyclooctadiene), 1...... chloride and base. A range of different primary alcohols and amines have been coupled in the presence of the three catalyst systems to afford the corresponding amides in moderate to excellent yields. The best results are obtained with sterically unhindered alcohols and amines. The three catalyst systems do...

  6. Palladium-catalyzed three-component reaction of N-tosyl hydrazones, isonitriles and amines leading to amidines.

    Science.gov (United States)

    Dai, Qiang; Jiang, Yan; Yu, Jin-Tao; Cheng, Jiang

    2015-12-04

    A palladium-catalyzed three-component reaction between N-tosyl hydrazones, aryl isonitriles and amines was developed, leading to amidines in moderate to good yields. This procedure features the rapid construction of amidine frameworks with high diversity and complexity. Ketenimines serve as intermediates, which encounter nucleophilic attack by amines to produce amidines.

  7. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture

    Czech Academy of Sciences Publication Activity Database

    Zeleňák, V.; Badaničová, M.; Halamová, D.; Čejka, Jiří; Zukal, Arnošt; Murafa, Nataliya; Goerigk, G.

    2008-01-01

    Roč. 144, č. 2 (2008), s. 336-342 ISSN 1385-8947 R&D Projects: GA ČR GA203/08/0604 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : mesoporous silica * hexagonal * amine * carbon dioxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.813, year: 2008

  8. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    V. Zelenak; M. Badanicova; D. Halamova; J. Cejka; A. Zukal; N. Murafa; G. Goerigk [P.J. Safarik University, Kosice (Slovak Republic)

    2008-10-15

    Three mesoporous silica materials with different pore sizes and pore connectivity were prepared and functionalized with aminopropyl (AP) ligands by post-synthesis treatment. The materials were characterized by small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and nitrogen adsorption/desorption experiments. The carbon dioxide sorption on modified mesoporous molecular sieves was investigated by using of microbalances at 25{sup o}C, and the influence of pore size and pore architecture on CO{sub 2} sorption was discussed. The large pore silica, SBA-15, showed the largest carbon dioxide sorption capacity (1.5 mmol/g), relating to highest amine surface density in this material. On the other hand, three-dimensional accessibility of amine sites inside the pores of SBA-12 silica resulted in a faster response to CO{sub 2} uptake in comparison with MCM-41 and SBA-15 molecular sieves

  9. Acid-base equilibria inside amine-functionalized mesoporous silica.

    Science.gov (United States)

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  10. Transglutaminase-catalyzed amination of pea protein peptides using the biogenic amines histamine and tyramine.

    Science.gov (United States)

    Lu, Xinyao; Hrynets, Yuliya; Betti, Mirko

    2017-06-01

    Biogenic amines (BAs) are produced by the enzymatic decarboxylation of amino acids, and are well-known for their toxicity to humans. This study describes a new method using microbial transglutaminase (MTGase) to covalently link BAs such as histamine (HIS) and tyramine (TYR) to the glutamine residues of alcalase-hydrolyzed pea protein (PPH). The incubation of PPH and HIS and TYR in the presence of MTGase at 37 °C led to the formation of conjugates, as determined by liquid chromatography, after derivatization with dansyl chloride. Seventy-six % of HIS and 65% of TYR were covalently incorporated to PPH by MTGase. The incubation of PPH and TYR in the presence of MTGase exhibited a 52% DPPH radical scavenging activity at 10 mg mL -1 . Conjugation via MTGase improved the antioxidant status by reducing lipid peroxidation. This study emphasizes that the application of MTGase can effectively reduce histamine and tyramine content while simultaneously enhancing antioxidative capacity of PPH. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Asymmetric Formal Aza-Diels-Alder Reaction of Trifluoromethyl Hemiaminals with Enones Catalyzed by Primary Amines.

    Science.gov (United States)

    Zhang, Sheng; Cha, Lide; Li, Lijun; Hu, Yanbin; Li, Yanan; Zha, Zhenggen; Wang, Zhiyong

    2016-04-15

    A primary amine-catalyzed asymmetric formal aza-Diels-Alder reaction of trifluoromethyl hemiaminals with enones was developed via a chiral gem-diamine intermediate. This novel protocol allowed facile access to structurally diverse trifluoromethyl-substituted piperidine scaffolds with high stereoselectivity. The utility of this method was further demonstrated through a concise approach to biologically active 4-hydroxypiperidine. More importantly, a stepwise mechanism involving an asymmetric induction process was proposed to rationalize the positive correlation between the chirality of the gem-diamine intermediate and the formal aza-Diels-Alder product.

  12. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei, E-mail: weidong@njust.edu.cn

    2016-11-30

    Highlights: • Fe{sub 3}O{sub 4}@SiO{sub 2}@EDPS with uniform size and good dispersity is prepared. • We fabricated MMSN@EDPS with distinct core-shell–shell triple-layer composition. • DNA adsorption capacity of MMSN@EDPS is considerable. - Abstract: We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  13. Myeloperoxidase-catalyzed incorporation of amines into proteins: role of hypochlorous acid and dichloramines.

    Science.gov (United States)

    Thomas, E L; Jefferson, M M; Grisham, M B

    1982-11-23

    Myeloperoxidase-catalyzed oxidation of chloride (Cl-) to hypochlorous acid (HOCl) resulted in formation of mono- and dichloramine derivatives (RNHCl and RNCl2) of primary amines. The RNCl2 derivatives could undergo a reaction that resulted in incorporation of the R moiety into proteins. The probable mechanism was attack of RNCl2 or an intermediate formed in the decomposition of RNCl2 on histidine, tyrosine, and cystine residues and on lysine residues at high pH. Incorporation of radioactivity from labeled amines into stable, high molecular weight derivatives of proteins was measured by acid or acetone precipitation and by gel chromatography and electrophoresis. Whereas formation of RNCl2 was favored at low pH, the subsequent incorporation reaction was favored at high pH. Up to several hours were required for the maximum amount of incorporation, which was less than 10% of the label in RNCl2. For the amines tested, incorporation was in the order histamine greater than 1,2-diaminoethane greater than putrescine greater than taurine greater than lysine greater than glucosamine greater than leucine greater than methylamine. Initiation of the reaction required HOCl, and oxidized forms of bromide, iodide, or thiocyanate did not substitute. Inhibitors of incorporation fell into three classes. First, ammonia or amines competed with the labeled amine for reaction with HOCl, so that larger amounts of HOCl were required. Second, readily oxidized substances such as sulfhydryl or diketo compounds or thioethers (methionine) reduced RNCl2. Third, certain compounds competed with protein as the acceptor for the incorporation reaction. The amount required to block incorporation into protein depended on protein concentration. Among these inhibitors were imidazole compounds (histidine), phenols (tyrosine), and disulfides (glutathione disulfide, GSSG). Low yields of derivatives of histidine, tyrosine, and GSSG were detected by thin-layer chromatography. Acid-precipitable derivatives were

  14. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  15. Highly efficient and diastereoselective gold(I)-catalyzed synthesis of tertiary amines from secondary amines and alkynes: substrate scope and mechanistic insights.

    Science.gov (United States)

    Liu, Xin-Yuan; Guo, Zhen; Dong, Sijia S; Li, Xiao-Hua; Che, Chi-Ming

    2011-11-11

    An efficient method for the synthesis of tertiary amines through a gold(I)-catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %), a variety of secondary amines bearing electron-deficient and electron-rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron-deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one-pot reaction from simple and readily available starting materials without the need of isolation of air/moisture-sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI-MS, isotope labeling studies, and DFT calculations on this gold(I)-catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)-alkyne intermediate is more likely than a gold(I)-amine intermediate, a three-coordinate gold(I) intermediate, or a dinuclear gold(I)-alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)-coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of efficient amine-modified mesoporous silica SBA-15 for CO2 capture

    International Nuclear Information System (INIS)

    Zhang, Xiaoyun; Qin, Hongyan; Zheng, Xiuxin; Wu, Wei

    2013-01-01

    Graphical abstract: - Highlights: • A secondary amine AN-TEPA is used to modify the SBA-15. • CO 2 adsorption capacity (180.1 mg g −1 -adsorbent for 70% amine loading) is high. • The sorbent exhibits a high stability after 12 cycling runs. • The modified SBA-15 achieves complete desorption at low temperature (100 °C). - Abstract: A novel CO 2 sorbent was prepared by impregnating mesoporous silica, SBA-15, with acrylonitrile (AN)-modified tetraethylenepentamine (TEPA) in order to increase CO 2 adsorption capacity and improve cycling stability. The mesoporous silica with pre- and post-surface modification was investigated by X-ray diffraction characterization (XRD), N 2 adsorption–desorption test (N 2 -BET), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The adsorption/desorption performance of S-TN (TN: AN modified TEPA) and S-TEPA was studied by dynamic adsorption. Test results showed that the solid base-impregnated SBA-15 demonstrated high CO 2 adsorption capacity (180.1 mg g −1 -adsorbent for 70% amine loading level). Compared to S-TEPA (24.1% decrease of initial capacity), S-TN with 50% amine loading exhibited improved cycling stability, 99.9% activity reserved (from initial 153.0 mg g −1 to 151.3 mg g −1 ) after 12 cycles of adsorption/desorption at 100 °C. A mechanism of molecular structure of the loaded amine was attributed to the improved performance

  17. Preparation of amine-impregnated silica foams using agar as the gelling agent

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, Iara M., E-mail: iaramj01@yahoo.com.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais – UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG, CEP: 31270-901, Escola de Engenharia, bloco 2, sala, 2230 (Brazil); Department of Chemical Engineering, Federal University of Minas Gerais – UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG, CEP: 31270-901, Escola de Engenharia, bloco 2, 5° andar (Brazil); Souza, Douglas F.; Vasconcelos, Daniela C.L.; Nunes, Eduardo H.M. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais – UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG, CEP: 31270-901, Escola de Engenharia, bloco 2, sala, 2230 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais – UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG, CEP: 31270-901, Escola de Engenharia, bloco 2, sala, 2230 (Brazil)

    2016-10-15

    In this work we successfully prepared amine-impregnated gel-cast silica foams using agar and atmospheric air as the gelling agent and heat treatment atmosphere, respectively. The concentration of 3,6-anhydrogalactose in agar was evaluated by ultraviolet–visible spectroscopy (UV–Vis). The obtained foams were examined by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) coupled to mass spectrometry (TG-MS), scanning electron microscopy (SEM), X-ray microtomography (micro-CT), and Archimedes method. The cold crushing strength of the materials prepared in this work was assessed using a mechanical testing stage available in the micro-CT system. The obtained foams exhibited a highly interconnected pore network, with an expressive presence of open pores. Samples heat-treated at 1300 °C for 2 h showed both an expressive porosity (≈ 77%) and a significant cold crushing strength (≈ 1.4 MPa). It was observed that the calcination of the prepared materials at 1200 °C for times as long as 16 h may lead to the rupture of pore walls. FTIR and TG-MS revealed that amine groups were properly incorporated into the foams structure. - Highlights: •Successful preparation of amine-impregnated gel-cast silica foams •Agar used as the gelling agent •Samples with expressive porosity and cold crushing strength •Sintering times as long as 16 h led to the rupture of the pore network.

  18. Preparation of amine-impregnated silica foams using agar as the gelling agent

    International Nuclear Information System (INIS)

    Jardim, Iara M.; Souza, Douglas F.; Vasconcelos, Daniela C.L.; Nunes, Eduardo H.M.; Vasconcelos, Wander L.

    2016-01-01

    In this work we successfully prepared amine-impregnated gel-cast silica foams using agar and atmospheric air as the gelling agent and heat treatment atmosphere, respectively. The concentration of 3,6-anhydrogalactose in agar was evaluated by ultraviolet–visible spectroscopy (UV–Vis). The obtained foams were examined by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) coupled to mass spectrometry (TG-MS), scanning electron microscopy (SEM), X-ray microtomography (micro-CT), and Archimedes method. The cold crushing strength of the materials prepared in this work was assessed using a mechanical testing stage available in the micro-CT system. The obtained foams exhibited a highly interconnected pore network, with an expressive presence of open pores. Samples heat-treated at 1300 °C for 2 h showed both an expressive porosity (≈ 77%) and a significant cold crushing strength (≈ 1.4 MPa). It was observed that the calcination of the prepared materials at 1200 °C for times as long as 16 h may lead to the rupture of pore walls. FTIR and TG-MS revealed that amine groups were properly incorporated into the foams structure. - Highlights: •Successful preparation of amine-impregnated gel-cast silica foams •Agar used as the gelling agent •Samples with expressive porosity and cold crushing strength •Sintering times as long as 16 h led to the rupture of the pore network.

  19. Multifunctional Amine Mesoporous Silica Spheres Modified with Multiple Amine as Carriers for Drug Release

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-01-01

    Full Text Available Mesoporous silica spheres were synthesized by using Stöber theory (MSN-40. Calcination of the mesostructured phase resulted in the starting solid. Organic modification with aminopropyl groups resulted in two MSN-40 materials: named MSN-NH2 and MSN-DQ-40, respectively. These two kinds of samples with different pore sizes (obtained from 3-[2-(2-aminoethylaminoethylamino]propyl-trimethox-ysilane (NQ-62 and modified NQ-62 showed control of the delivery rate of ibuprofen (IBU from the siliceous matrix. The obtained sample from modified NQ-62 has an increased loading rate and shows better control of the delivery rate of IBU than the obtained sample from NQ-62. These three solids were characterized using standard solid state procedures. During tests of in vitro drug release, an interesting phenomenon was observed: at high pH (pH 7.45, IBU in all carriers was released slowly; at low pH (pH 4.5, only a part of the IBU was slowly released from this carrier within 25 hours; most IBU was effectively confined in mesoporous material, but the remaining IBU was released rapidly and completely after 25 hours.

  20. Dehydrogenative Synthesis of Imines from Alcohols and Amines Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    2012-01-01

    A new method for the direct synthesis of imines from alcohols and amines is described where hydrogen gas is liberated. The reaction is catalyzed by the ruthenium N-heterocyclic carbene complex [RuCl2(IiPr)(p-cymene)] in the presence of the ligand DABCO and molecular sieves. The imination can...... be applied to a variety of primary alcohols and amines and can be combined with a subsequent addition reaction. A deuterium labeling experiment indicates that the catalytically active species is a ruthenium dihydride. The reaction is believed to proceed by initial dehydrogenation of the alcohol...

  1. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry.

    Science.gov (United States)

    Cano, Manuel; de la Cueva-Méndez, Guillermo

    2015-02-28

    The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants.

  2. Design, Synthesis and Biological Activity of Novel Reversible Peptidyl FVIIa Inhibitors Rh-Catalyzed Enantioselective Synthesis of Diaryl Amines

    DEFF Research Database (Denmark)

    Storgaard, Morten

    functional group tolerance. Unfortunately, these -aryl tetramic acids were too unreactive and ring opening toward the synthesis of the building block did not succeed. However, -aryl tetramic acids are still interesting compounds due to their potential biological activity. The building block 3.15 (P1......-catalyzed enantioselective synthesis of diaryl amines, which is an important class of compounds (Chapter 4). For example it is found in the third generation anti-histaminic agent levocetirizine. Development of efficient synthetic routes is therefore of considerably interest. The rhodium-catalyzed enantioselective synthesis...

  3. Yb(OTf){sub 3}-catalyzed one-pot three component synthesis for tertiary amines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bum Seok; Kim, Ji Hye; Nam, Tae Kyu; Jang, Doo Ok [Dept. of Chemistry, Yonsei University, Wonju (Korea, Republic of)

    2015-07-15

    Tertiary amine functionality is found in many natural bioactive products such as alkaloids, amino acids, nucleic acids, pharmaceuticals, and agrochemicals. Tertiary amines have also been used as building blocks for nitrogen-containing organic compounds and synthetic polymers. A one-pot method for direct reductive amination of aldehydes has been developed to synthesize tertiary amines using HMDS as a nitrogen source in the presence of Yb(OTf ){sub 3}. With a stoichiometric amount of HMDS, the reaction afforded the desired tertiary amines without competitive reduction of the parent carbonyl compounds. This reaction offers a convenient and efficient protocol for synthesizing aromatic and aliphatic tertiary amines under mild reaction conditions.

  4. Pd-Catalyzed Acetoxylation of γ-C(sp3)-H Bonds of Amines Directed by a Removable Bts-Protecting Group.

    Science.gov (United States)

    Zheng, Yong; Song, Weibin; Zhu, Yefu; Wei, Bole; Xuan, Lijiang

    2018-02-16

    Pd-catalyzed acetoxylation of γ-C(sp 3 )-H bonds directed by Bts-protected amines using inexpensive PhI(OAc) 2 as oxidant is reported. The Bts-protecting group is easily introduced and removed under mild conditions. This protocol provides an important strategy for the construction of γ-hydroxyl amine derivatives.

  5. (E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation.

    Science.gov (United States)

    Shi, Renyi; Zhang, Hua; Lu, Lijun; Gan, Pei; Sha, Yuchen; Zhang, Heng; Liu, Qiang; Beller, Matthias; Lei, Aiwen

    2015-02-21

    A novel Pd/Cu-catalyzed chemoselective aerobic oxidative N-dealkylation/carbonylation reaction has been developed. Tertiary amines are utilized as a "reservoir" of "active" secondary amines in this transformation, which inhibits the formation of undesired by-products and the deactivation of the catalysts. This protocol allows for an efficient and straightforward construction of synthetically useful and bioactive (E)-α,β-unsaturated amide derivatives from easily available tertiary amines, olefins and CO.

  6. Impact behavior of f-silica and amine terminated polybutadiene co-acrylonitrile rubber modified novolac epoxy/Kevlar nanocomposites

    Science.gov (United States)

    Kavita, Pal, Vijayeta; Tiwari, R. K.

    2018-05-01

    In the present work, nano-fumed silica treated with 3-Glycidoxypropyl trimethoxy silane (f-silica) was used as a nanoreinforcement in the fabrication of amine terminated polybutadiene co-acrylonitrile rubber (ATBN) modified Kevlar/epoxy based nanocomposites. Nanocomposites with different f-silica loading (0, 0.5, 1.0 and 2.0 wt. %) and having same ATBN (10 wt. %) were made and characterized by Izod impact test for evaluating impact strength values. All the nanocomposites showed better impact strength than neat Kevlar/novolac epoxy based composite.

  7. Important Roles of Enthalpic and Entropic Contributions to CO 2 Capture from Simulated Flue Gas and Ambient Air Using Mesoporous Silica Grafted Amines

    KAUST Repository

    Alkhabbaz, Mustafa A.; Bollini, Praveen; Foo, Guo Shiou; Sievers, Carsten; Jones, Christopher W.

    2014-01-01

    © 2014 American Chemical Society. The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0- 0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropylfunctionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less effi cient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  8. Important Roles of Enthalpic and Entropic Contributions to CO 2 Capture from Simulated Flue Gas and Ambient Air Using Mesoporous Silica Grafted Amines

    KAUST Repository

    Alkhabbaz, Mustafa A.

    2014-09-24

    © 2014 American Chemical Society. The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0- 0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropylfunctionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less effi cient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  9. Important roles of enthalpic and entropic contributions to CO2 capture from simulated flue gas and ambient air using mesoporous silica grafted amines.

    Science.gov (United States)

    Alkhabbaz, Mustafa A; Bollini, Praveen; Foo, Guo Shiou; Sievers, Carsten; Jones, Christopher W

    2014-09-24

    The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0-0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropyl-functionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less efficient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

  10. Preparation, characterization and photocatalytic applications of amine-functionalized mesoporous silica impregnated with transition-metal-monosubstituted polyoxometalates

    International Nuclear Information System (INIS)

    Li Li; Liu, Chunming; Geng Aifang; Jiang Chunjie; Guo Yihang; Hu Changwen

    2006-01-01

    Amine-functionalized mesoporous silica materials impregnated with transition-metal-monosubstituted polyoxometalates, K 5 [M(H 2 O)PW 11 O 39 ]-(EtO) 3 SiCH 2 CH 2 CH 2 NH 2 -MCM-48 (M = Co/Ni), were prepared by coordination of nickel/cobalt centers in the clusters with the amine surface groups in amine-functionalized mesoporous silica supports. The materials obtained were characterized by powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis-DR), infrared (IR) spectra, magic-angle spinning 31 P MAS NMR, transmission electron microscopy (TEM) and nitrogen adsorption measurements, indicating that the primary Keggin structures remained intact in as-prepared composites, and the composites possessed mesoporous structures. The composites exhibited UV-photocatalytic activity to degrade dye rhodamine B (RB), and the pesticides including hexachlorobenzene (HCB) and methylparathion (MPT). Leakage of K 5 [M(H 2 O)PW 11 O 39 ] from the support was hardly observed during the photocatalytic tests, attributed to strong coordination interactions between the Keggin units and the amine-functionalized silica surface. -- Graphical abstract: The K 5 [M(H 2 O)PW 11 O 39 ]-(EtO) 3 SiCH 2 CH 2 CH 2 NH 2 -SiO 2 composites were prepared by coordination of M centers in the Keggin units with the amine surface groups in amine-functionalized mesoporous silica supports, and the composites exhibited photocatalytic activity to degrade aqueous rhodamine B, hexachlorobenzene and methyl parathion

  11. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    Science.gov (United States)

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Decomposition of formic acid over silica encapsulated and amine functionalised gold nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kunov-Kruse, Andreas Jonas; Kegnæs, Søren

    2017-01-01

    Formic acid has recently attracted considerable attention as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage. Here, we show that silica encapsulated and amine functionalised gold nanoparticles are highly active catalysts for the production...... of hydrogen by vapour phase decomposition of formic acid. The core-shell catalysts are prepared in a reverse micelle system that makes it possible to control the size of the Au nanoparticles and the thickness of the SiO2 shells, which has a large impact on the catalytic activity. The smallest gold...... nanoparticles are 2.2 ± 0.3 nm in diameter and have a turnover frequency (TOF) of up to 958 h−1 at a temperature of 130 °C. Based on detailed in situ ATR-FTIR studies and results from kinetic isotope labelling experiments we propose that the active site is a low-coordinated and amine functionalised Au atom...

  13. α,β-Unsaturated imines via Ru-catalyzed coupling of allylic alcohols and amines.

    Science.gov (United States)

    Rigoli, Jared W; Moyer, Sara A; Pearce, Simon D; Schomaker, Jennifer M

    2012-03-07

    A convenient synthesis of α,β-unsaturated imines requiring only an allylic alcohol, an amine and a Ru catalyst has been developed. The use of large excesses of oxidant and the purification of sensitive intermediates can be avoided.

  14. Alkylselenite-catalyzed Oxidative Carbonylation of Amines: Density Functional Theory Study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sun; Kim, Hoon Sik; Cheong, Minserk [Kyung Hee Univ., Seoul (Korea, Republic of)

    2012-11-15

    Ureas and carbamates have been conventionally produced by the reaction of amines with phosgene. However, phosgenation processes raise severe environmental concerns, which are attributed to the toxicity of phosgene and the formation of corrosive hydrogen chloride as a co-product. The considerable industrial interest in replacing current phosgene-based processes prompted several methods using non-phosgene routes including carbonylation of amines or nitro compounds and carbomethoxylation of amines with dialkylcarbonates. Among these, catalytic oxidative carbonylation of an amine in the presence of alcohol has been studied most extensively. Catalytic systems based on precious metals such as Rh and Pd are commonly used for this purpose, but most of these catalytic systems suffer from either low reactivity or severe reaction conditions such as high temperature and pressures. In conclusion, the facile change of selenium oxidation state by CO and O{sub 2} might be the main reason for the activity of the selenium catalyst for this reaction.

  15. Alkylselenite-catalyzed Oxidative Carbonylation of Amines: Density Functional Theory Study

    International Nuclear Information System (INIS)

    Hwang, Sun; Kim, Hoon Sik; Cheong, Minserk

    2012-01-01

    Ureas and carbamates have been conventionally produced by the reaction of amines with phosgene. However, phosgenation processes raise severe environmental concerns, which are attributed to the toxicity of phosgene and the formation of corrosive hydrogen chloride as a co-product. The considerable industrial interest in replacing current phosgene-based processes prompted several methods using non-phosgene routes including carbonylation of amines or nitro compounds and carbomethoxylation of amines with dialkylcarbonates. Among these, catalytic oxidative carbonylation of an amine in the presence of alcohol has been studied most extensively. Catalytic systems based on precious metals such as Rh and Pd are commonly used for this purpose, but most of these catalytic systems suffer from either low reactivity or severe reaction conditions such as high temperature and pressures. In conclusion, the facile change of selenium oxidation state by CO and O 2 might be the main reason for the activity of the selenium catalyst for this reaction

  16. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines.

    Science.gov (United States)

    Zultanski, Susan L; Zhao, Jingyi; Stahl, Shannon S

    2016-05-25

    A modular Cu/ABNO catalyst system has been identified that enables efficient aerobic oxidative coupling of alcohols and amines to amides. All four permutations of benzylic/aliphatic alcohols and primary/secondary amines are viable in this reaction, enabling broad access to secondary and tertiary amides. The reactions exhibit excellent functional group compatibility and are complete within 30 min-3 h at rt. All components of the catalyst system are commercially available.

  17. Amine-Functionalized Mesoporous Silica Nanoparticles: A New Nanoantibiotic for Bone Infection Treatment

    Directory of Open Access Journals (Sweden)

    Pedraza Daniel

    2018-01-01

    Full Text Available This manuscript reports an effective new alternative for the management of bone infection by the development of an antibiotic nanocarrier able to penetrate bacterial biofilm, thus enhancing antimicrobial effectiveness. This nanosystem, also denoted as “nanoantibiotic”, consists in mesoporous silica nanoparticles (MSNs loaded with an antimicrobial agent (levofloxacin, LEVO and externally functionalized with N-(2-aminoethyl-3- aminopropyltrimethoxysilane (DAMO as targeting agent. This amine functionalization provides MSNs of positive charges, which improves the affinity towards the negatively charged bacteria wall and biofilm. Physical and chemical properties of the nanoantibiotic were studied using different characterization techniques, including Xray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption porosimetry, elemental chemical analysis, dynamic light scattering (DLS, zeta (ζ-potential and solid-state nuclear magnetic resonance (NMR. “In vial” LEVO release profiles and the in vitro antimicrobial effectiveness of the different released doses were investigated. The efficacy of the nanoantibiotic against a S. aureus biofilm was also determined, showing the practically total destruction of the biofilm due to the high penetration ability of the developed nanosystem. These findings open up promising expectations in the field of bone infection treatment.

  18. Amine-Functionalized Mesoporous Silica Nanoparticles: A New Nanoantibiotic for Bone Infection Treatment

    Directory of Open Access Journals (Sweden)

    Pedraza Daniel

    2017-12-01

    Full Text Available This manuscript reports an effective new alternative for the management of bone infection by the development of an antibiotic nanocarrier able to penetrate bacterial biofilm, thus enhancing antimicrobial effectiveness. This nanosystem, also denoted as “nanoantibiotic”, consists in mesoporous silica nanoparticles (MSNs loaded with an antimicrobial agent (levofloxacin, LEVO and externally functionalized with N-(2-aminoethyl-3-aminopropyltrimethoxysilane (DAMO as targeting agent. This amine functionalization provides MSNs of positive charges, which improves the affinity towards the negatively charged bacteria wall and biofilm. Physical and chemical properties of the nanoantibiotic were studied using different characterization techniques, including Xray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption porosimetry, elemental chemical analysis, dynamic light scattering (DLS, zeta (ζ -potential and solid-state nuclear magnetic resonance (NMR. “In vial” LEVO release profiles and the in vitro antimicrobial effectiveness of the different released doses were investigated. The efficacy of the nanoantibiotic against a S. aureus biofilm was also determined, showing the practically total destruction of the biofilm due to the high penetration ability of the developed nanosystem. These findings open up promising expectations in the field of bone infection treatment.

  19. Homologation of methanol catalyzed by transition metal complexes in the presence of tertiary amines

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masato; Ogata, Ikuei

    1987-12-18

    This paper describes the homologation of methanol by transition metal carbonyl catalysts in the presence of tertiary amines. Methanol was reacted with amine using a catalyst at 180/sup 0/C under 100 atm in the atmosphere of CO and H/sub 2/ mixed at the ratio of 4 in an autoclave. The reaction activities and selectivities of ethanol using iron carbonyl and Co carbonyl catalysts are superior. Only the iron catalyst was used hereafter because phosphine is required for the latter catalyst. N-methyl- piperidine, a cyclic amine, is superior to the other amines. The selectivity of ethanol is higher under higher partial pressure of H/sub 2/ and lower partial pressure of CO. The conversion rate is optimum at 180/sup 0/ and it goes down with increasing the temperature from it. Since the selectivity is markedly decreased with increasing amine, the reaction activity must be balanced with the amount of amine. The presence of solvent affects it. (3 figs, 6 tabs, 15 refs)

  20. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  1. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.

    Science.gov (United States)

    Kim, Jinho; Stahl, Shannon S

    2013-07-05

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.

  2. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

    OpenAIRE

    Kim, Jinho; Stahl, Shannon S.

    2013-01-01

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst...

  3. o-Naphthoquinone-Catalyzed Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst Approach.

    Science.gov (United States)

    Goriya, Yogesh; Kim, Hun Young; Oh, Kyungsoo

    2016-10-07

    A modular aerobic oxidation of amines to imines has been achieved using an ortho-naphthoquinone (o-NQ) catalyst. The cooperative catalyst system of o-NQ and Cu(OAc) 2 enabled the formation of homocoupled imines from benzylamines, while the presence of TFA helped the formation of cross-coupled imines in excellent yields. The current mild aerobic oxidation protocol could also be applied to the oxidation of secondary amines to imines or ketimines with the help of cocatalyst, Ag 2 CO 3 , with excellent yields.

  4. Ready synthesis of free N-H 2-arylindoles via the copper-catalyzed amination of 2-bromo-arylacetylenes with aqueous ammonia and sequential intramolecular cyclization.

    Science.gov (United States)

    Wang, Huifeng; Li, Yaming; Jiang, Linlin; Zhang, Rong; Jin, Kun; Zhao, Defeng; Duan, Chunying

    2011-07-07

    A wide range of free N-H 2-arylindoles were synthesised via the copper(II)-catalyzed amination of 2-bromo-arylacetylenes with aqueous ammonia and sequential intramolecular cyclization. The convenience and atom economy of aqueous ammonia, and the low cost of the copper catalytic system make this protocol readily superior in practical application.

  5. General synthesis of C-glycosyl amino acids via proline-catalyzed direct electrophilic alpha-amination of C-glycosylalkyl aldehydes.

    Science.gov (United States)

    Nuzzi, Andrea; Massi, Alessandro; Dondoni, Alessandro

    2008-10-16

    Non-natural axially and equatorially linked C-glycosyl alpha-amino acids (glycines, alanines, and CH2-serine isosteres) with either S or R alpha-configuration were prepared by D- and L-proline-catalyzed (de >95%) alpha-amination of C-glycosylalkyl aldehydes using dibenzyl azodicarboxylate as the electrophilic reagent.

  6. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.

    Science.gov (United States)

    Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho

    2012-11-28

    A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.

  7. Acid-catalyzed reductive amination of aldoses with 8-aminopyrene-1,3,6-trisulfonate.

    Science.gov (United States)

    Evangelista, R A; Guttman, A; Chen, F T

    1996-02-01

    The reductive amination of monosaccharides with 8-aminopyrene-1,3,6-trisulfonate (APTS) in seven different organic acids including the commonly used acetic acid was investigated by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection. The correlation between the yields of the saccharide-APTS adducts and pKa of the organic acid catalyst is consistent with general acid catalysis of the rate-determining step of the reductive amination reaction. Derivatization in the presence of organic acids of higher strength than acetic acid produced substantially higher yields of APTS-sugar adducts, an effect which is more pronounced for N-acetylamino sugars. Optimum yields were obtained using citric acid as a catalyst. Conversion of a few nanomoles of neutral saccharides to the APTS derivatives is achieved at 75 degrees C in less than 60 min.

  8. Cu(OAc)2 catalyzed Sonogashira cross-coupling reaction in amines

    Institute of Scientific and Technical Information of China (English)

    Sheng Mei Guo; Chen Liang Deng; Jin Heng Li

    2007-01-01

    A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired products in moderate to excellent yields, using Cu(OAc)2 as the catalyst and Et3N as the solvent.

  9. Ligand-controlled, tunable silver-catalyzed C-H amination.

    Science.gov (United States)

    Alderson, Juliet M; Phelps, Alicia M; Scamp, Ryan J; Dolan, Nicholas S; Schomaker, Jennifer M

    2014-12-03

    The development of readily tunable and regioselective C-H functionalization reactions that operate solely through catalyst control remains a challenge in modern organic synthesis. Herein, we report that simple silver catalysts supported by common nitrogenated ligands can be used to tune a nitrene transfer reaction between two different types of C-H bonds. The results reported herein represent the first example of ligand-controlled and site-selective silver-promoted C-H amination.

  10. Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes.

    Science.gov (United States)

    Sun, Shutao; Mao, Ying; Lou, Hongxiang; Liu, Lei

    2015-07-07

    The first catalytic asymmetric alkylation of N-acyl quinoliniums with aldehydes has been described. A copper/amine synergistic catalytic system has been developed, allowing the addition of functionalized aldehydes to a wide range of electronically varied N-acyl quinoliniums in good yields with excellent enantiocontrol. The synergistic catalytic system was also effective for N-acyl dihydroisoquinoliniums and β-caboliniums, demonstrating the general applicability of the protocol in the enantioselective alkylation of diverse cyclic N-acyl hemiaminals.

  11. Amine-modified ordered mesoporous silica: The effect of pore size on CO{sub 2} capture performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin; Yao, Manli [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Hu, Xin [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Hu, Gengshen, E-mail: gshu@zjnu.edu.cn [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Lu, Jiqing; Luo, Mengfei [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Fan, Maohong, E-mail: mfan@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2015-01-01

    Highlights: • Larger pore size could decrease the mass transfer resistance and increase the interaction between CO{sub 2} and TEPA. • The CO{sub 2} uptakes of sorbents were enhanced in the presence of moisture. • The sorbents are stable and regenerable under test conditions. - Abstract: The objective of current research is to investigate the effect of pore size of mesoporous silica supports on the CO{sub 2} capture performance of solid amine sorbents. Two ordered mesoporous silicas (OMS) with different pore sizes (5.6 nm and 7.6 nm) were synthesized as tetraethylenepentamine (TEPA) supports. A serious of techniques, such as physical adsorption, infrared spectroscopy and thermal gravimetric analysis were used to characterize the solid amine sorbents. The CO{sub 2} capture performances of the sorbents were evaluated using breakthrough method with a fixed-bed reactor equipped with an online mass spectrometer. The experimental results indicate that the pore size has significant influence on CO{sub 2} capture performance. Larger pore size could decrease the mass transfer resistance and increase the interaction between CO{sub 2} and TEPA. Therefore, OMS-7.6 is better than OMS-5.6 as amine support. The highest CO{sub 2} sorption capacities achieved with OMS-7.6 with 50 wt% TEPA loading (OMS-7.6-50) in the absence and presence of moisture are 3.45 mmol/g and 4.28 mmol/g, respectively, under the conditions of 10.0% CO{sub 2}/N{sub 2} mixture at 75 °C. Cyclic CO{sub 2} adsorption–desorption experiments indicate that the solid amine sorbents are fairly stable and regenerable.

  12. Chromo- and fluorophoric water-soluble polymers and silica particles by nucleophilic substitution reaction of poly(vinyl amine

    Directory of Open Access Journals (Sweden)

    Katja Hofmann

    2010-07-01

    Full Text Available Novel chromophoric and fluorescent carbonitrile-functionalized poly(vinyl amine (PVAm and PVAm/silica particles were synthesized by means of nucleophilic aromatic substitution of 8-oxo-8H-acenaphtho[1,2-b]pyrrol-9-carbonitrile (1 with PVAm in water. The water solubility of 1 has been mediated by 2,6-O-β-dimethylcyclodextrin or by pre-adsorption onto silica particles. Furthermore, 1 was converted with isopropylamine into the model compound 1-M. All new compounds were characterized by NMR, FTIR, UV–vis and fluorescence spectroscopy. The solvent-dependent UV–vis absorption and fluorescence emission band positions of the model compound and the carbonitrile-functionalized PVAm were studied and interpreted using the empirical Kamlet–Taft solvent parameters π* (dipolarity/polarizability, α (hydrogen-bond donating capacity and β (hydrogen-accepting ability in terms of the linear solvation energy relationship (LSER. The solvent-independent regression coefficients a, b and s were determined using multiple linear correlation analysis. It is shown, that the chains of the polymer have a significant influence on the solvatochromic behavior of 1-P. The structure of the carbonitrile 1-Si bound to polymer-modified silica particles was studied by means of X-ray photoelectron spectroscopy (XPS and Brunauer–Emmett–Teller (BET measurements. Fluorescent silica particles were obtained as shown by fluorescence spectroscopy with a diffuse reflectance technique.

  13. An iron/amine-catalyzed cascade process for the enantioselective functionalization of allylic alcohols.

    Science.gov (United States)

    Quintard, Adrien; Constantieux, Thierry; Rodriguez, Jean

    2013-12-02

    Three is a lucky number: An enantioselective transformation of allylic alcohols into β-chiral saturated alcohols has been developed by combining two distinct metal- and organocatalyzed catalytic cycles. This waste-free triple cascade process merges an iron-catalyzed borrowing-hydrogen step with an aminocatalyzed nucleophilic addition reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Amine-catalyzed direct aldol reactions of hydroxy- and dihydroxyacetone: biomimetic synthesis of carbohydrates.

    Science.gov (United States)

    Popik, Oskar; Pasternak-Suder, Monika; Leśniak, Katarzyna; Jawiczuk, Magdalena; Górecki, Marcin; Frelek, Jadwiga; Mlynarski, Jacek

    2014-06-20

    This article presents comprehensive studies on the application of primary, secondary, and tertiary amines as efficient organocatalysts for the de novo synthesis of ketoses and deoxyketoses. Mimicking the actions of aldolase enzymes, the synthesis of selected carbohydrates was accomplished in aqueous media by using proline- and serine-based organocatalysts. The presented methodology also provides direct access to unnatural L-carbohydrates from the (S)-glyceraldehyde precursor. Determination of the absolute configuration of all obtained sugars was feasible using a methodology consisting of concerted ECD and VCD spectroscopy.

  15. "Nanorust"-catalyzed benign oxidation of amines for selective synthesis of nitriles.

    Science.gov (United States)

    Jagadeesh, Rajenahally V; Junge, Henrik; Beller, Matthias

    2015-01-01

    Organic nitriles constitute key precursors and central intermediates in organic synthesis. In addition, nitriles represent a versatile motif found in numerous medicinally and biologically important compounds. Generally, these nitriles are synthesized by traditional cyanation procedures using toxic cyanides. Herein, we report the selective and environmentally benign oxidative conversion of primary amines for the synthesis of structurally diverse aromatic, aliphatic and heterocyclic nitriles using a reusable "nanorust" (nanoscale Fe2 O3 )-based catalysts applying molecular oxygen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation

    Science.gov (United States)

    2015-01-01

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C–H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C–H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C–H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration. PMID:24999765

  17. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation.

    Science.gov (United States)

    Osberger, Thomas J; White, M Christina

    2014-08-06

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C-H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C-H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C-H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration.

  18. Comparative analyses of laccase-catalyzed amination reactions for production of novel β-lactam antibiotics.

    Science.gov (United States)

    Mikolasch, Annett; Manda, Katrin; Schlüter, Rabea; Lalk, Michael; Witt, Sabine; Seefeldt, Simone; Hammer, Elke; Schauer, Frieder; Jülich, Wolf-Dieter; Lindequist, Ulrike

    2012-01-01

    Seven novel β-lactam antibiotics with activities against Gram-positive bacterial strains, among them methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, were synthesized by amination of 2,5-dihydroxyphenylacetic acid in usable yields (30-60%). These products protected mice against an infection with S. aureus lethal to the control animals. The results show the usefulness of laccase for the synthesis of potential new antibiotics, in addition to the interdependence of the laccase substrates, the amino coupling partners, and the product formation, yield, and activity. The syntheses of β-lactam antibiotics with 2,5-dihydroxyaromatic acid substructures (para-substituted) are then compared with those of 3,4-dihydroxyaromatic acid substructures (ortho-substituted). Para-substituted laccase substrates were better reaction partners in these syntheses than ortho-substituted compounds. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  19. The impact of aminated surface ligands and silica shells on the stability, uptake, and toxicity of engineered silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bonventre, Josephine A.; Pryor, Joseph B.; Harper, Bryan J.; Harper, Stacey L., E-mail: stacey.harper@oregonstate.edu [Oregon State University, Department of Environmental and Molecular Toxicology (United States)

    2014-12-15

    Inherent nanomaterial characteristics, composition, surface chemistry, and primary particle size, are known to impact particle stability, uptake, and toxicity. Nanocomposites challenge our ability to predict nanoparticle reactivity in biological systems if they are composed of materials with contrasting relative toxicities. We hypothesized that toxicity would be dominated by the nanoparticle surface (shell vs core), and that modulating the surface ligands would have a direct impact on uptake. We exposed developing zebrafish (Danio rerio) to a series of ∼70 nm amine-terminated silver nanoparticles with silica shells (AgSi NPs) to investigate the relative influence of surface amination, composition, and size on toxicity. Like-sized aminated AgSi and Si NPs were more toxic than paired hydroxyl-terminated nanoparticles; however, both AgSi NPs were more toxic than the Si NPs, indicating a significant contribution of the silver core to the toxicity. Incremental increases in surface amination did not linearly increase uptake and toxicity, but did have a marked impact on dispersion stability. Mass-based exposure metrics initially supported the hypothesis that smaller nanoparticles (20 nm) would be more toxic than larger particles (70 nm). However, surface area-based metrics revealed that toxicity was independent of size. Our studies suggest that nanoparticle surfaces play a critical role in the uptake and toxicity of AgSi NPs, while the impact of size may be a function of the exposure metric used. Overall, uptake and toxicity can be dramatically altered by small changes in surface functionalization or exposure media. Only after understanding the magnitude of these changes, can we begin to understand the biologically available dose following nanoparticle exposure.

  20. Ti-Catalyzed Hydroamination for the Synthesis of Amine-Containing π-Conjugated Materials.

    Science.gov (United States)

    Hao, Han; Thompson, Kyle A; Hudson, Zachary M; Schafer, Laurel L

    2018-04-11

    A series of conjugated enamines were prepared by Ti catalyzed anti-Markovnikov hydroamination. The synthetic route is efficient with yields of up to 94 % and the 100 % atom efficiency of the reaction means that these products are easily isolated and purified. Due to the extended conjugated system, the enamine tautomers were observed exclusively in both solid and solution phases, as determined by X-ray crystallography and NMR spectroscopy. These new conjugated molecules, with N incorporated into the backbone, show interesting photophysical properties including photo-luminescent quantum yields of up to 0.26. Notably, through the incorporation of B to give a donor-acceptor π-conjugated system, a redshift of approximately 100 nm is observed for the emission maximum along with the anticipated solvatochromic shifts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation of Benzo[c]carbazol-6-amines via Manganese-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Oxidative Cyclization.

    Science.gov (United States)

    Zhou, Xiaorong; Li, Zhenmin; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2018-03-02

    Manganese-catalyzed C 2 -H enaminylation of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. A migration of the directing group pyrimidinyl occurred during this process. The synthesized 2-enaminyl indoles could be conveniently converted into 5-aryl-7H-benzo[c]carbazol-6-amines.

  2. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and

  3. Synthesis of nanocrystalline LaF3 doped silica glasses by hydrofluoric acid catalyzed sol–gel process

    International Nuclear Information System (INIS)

    Nagayama, Shuhei; Kajihara, Koichi; Kanamura, Kiyoshi

    2012-01-01

    Highlights: ► Silica glasses doped by LaF 3 nanocrystals are obtained by HF-catalyzed sol–gel method. ► The processing time (∼1 week) is much shorter than that of previous studies. ► The uptake of SiF groups in the glass matrix greatly reduces the SiOH concentration. ► Effects of sintering conditions and properties of Er 3+ -doped samples are presented. - Abstract: Silica glasses doped with LaF 3 nanocrystals were prepared by HF-catalyzed sol–gel method. HF was used both as fluorine source and as catalyst of the sol–gel reaction, making it possible to shorten the processing time with reducing the concentration of SiOH groups to ∼10 18 cm −3 . The resultant glasses are transparent at visible spectral range, and the optical loss at the ultraviolet absorption edge is dominated by the Rayleigh scattering from LaF 3 crystallites. The size of LaF 3 crystallites increases with an increase in the sintering temperature and time, and is smaller than ∼40 nm in samples showing good visible transparency. Green upconversion photoluminescence is observed in an Er 3+ -doped sample under excitation at 980 nm.

  4. Palladium-catalyzed aryl amination-heck cyclization cascade: A one-flask approach to 3-substituted Indoles

    DEFF Research Database (Denmark)

    Jensen, Thomas; Pedersen, Henrik; Bang-Andersen, B.

    2008-01-01

    Two for the price of one: A Pd/dppf-based catalyst provides access to the title compounds from 1,2-dihalogenated aromatic compounds and allylic amines in a single reaction flask. The initial aryl amination step occurs with excellent selectivity for the aryl iodide to ensure the formation of a sin......Two for the price of one: A Pd/dppf-based catalyst provides access to the title compounds from 1,2-dihalogenated aromatic compounds and allylic amines in a single reaction flask. The initial aryl amination step occurs with excellent selectivity for the aryl iodide to ensure the formation...

  5. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Talbi, Karima; Basset, Jean-Marie

    2015-01-01

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate

  6. Desorption Kinetics and Mechanisms of CO2 on Amine-Based Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Yang Teng

    2017-01-01

    Full Text Available Tetraethylenepentamine (TEPA-based mesoporous MCM-41 is used as the adsorbent to determine the CO2 desorption kinetics of amine-modified materials after adsorption. The experimental data of CO2 desorption as a function of time are derived by zero-length column at different temperatures (35, 50, and 70 °C and analyzed by Avrami’s fractional-order kinetic model. A new method is used to distinguish the physical desorption and chemical desorption performance of surface-modified mesoporous MCM-41. The activation energy Ea of CO2 physical desorption and chemical desorption calculated from Arrhenius equation are 15.86 kJ/mol and 57.15 kJ/mol, respectively. Furthermore, intraparticle diffusion and Boyd’s film models are selected to investigate the mechanism of CO2 desorption from MCM-41 and surface-modified MCM-41. For MCM-41, there are three rate-limiting steps during the desorption process. Film diffusion is more prominent for the CO2 desorption rates at low temperatures, and pore diffusion mainly governs the rate-limiting process under higher temperatures. Besides the surface reaction, the desorption process contains four rate-limiting steps on surface-modified MCM-41.

  7. Functionalized nanostructured silica by tetradentate-amine chelating ligand as efficient heavy metals adsorbent : Applications to industrial effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, Afsaneh [Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Younesi, Habibollah [Tarbiat Modares University, Noor (Iran, Islamic Republic of); Badiei, Alireza [University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Organofunctionalized nanostructured silica SBA-15 with tri(2-aminoethyl)amine tetradentate-amine ligand was synthesized and applied as adsorbent for the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from both synthetic wastewater and real paper mill and electroplating industrial effluents. The prepared materials were characterized by XRD, N{sub 2} adsorption-desorption, TGA, and FT-IR analysis. The Tren-SBA-15 was found to be a fast adsorbent for heavy metal ions from single solution with affinity for Cu{sup 2+}, Pb{sup 2+}, than for Cd{sup 2+} due to the complicated impacts of metal ion electronegativity. The kinetic rate constant decreased with increasing metal ion concentration due to increasing of ion repulsion force. The equilibrium batch experimental data is well described by the Langmuir isotherm. The maximum adsorption capacity was 1.85 mmol g{sup -1} for Cu{sup 2+}, 1.34 mmol g{sup -1} for Pb{sup 2+}, and 1.08 mmol g{sup -1} for Cd{sup 2+} at the optimized adsorption conditions (pH=4, T=323 K, t=2 h, C0=3 mmol L{sup -1}, and adsorbent dose=1 g L{sup -1}). All Gibbs energy was negative as expected for spontaneous interactions, and the positive entropic values from 103.7 to 138.7 J mol{sup -1} K{sup -1} also reinforced this favorable adsorption process in heterogeneous system. Experiment with real wastewaters showed that approximately a half fraction of the total amount of studied metal ions was removed within the first cycle of adsorption. Hence, desorption experiments were performed by 0.3M HCl eluent, and Tren-SBA-15 successfully reused for four adsorption/desorption cycles to complete removal of metal ions from real effluents. The regenerated Tren-SBA-15 displayed almost similar adsorption capacity of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} even after four recycles. The results suggest that Tren-SBA-15 is a good candidate as an adsorbent in the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from aqueous solutions.

  8. YCl3-Catalyzed Highly Selective Ring Opening of Epoxides by Amines at Room Temperature and under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Wuttichai Natongchai

    2017-11-01

    Full Text Available A simple, efficient, and environmentally benign approach for the synthesis of β-amino alcohols is herein described. YCl3 efficiently carried out the ring opening of epoxides by amines to produce β-amino alcohols under solvent-free conditions at room temperature. This catalytic approach is very effective, with several aromatic and aliphatic oxiranes and amines. A mere 1 mol % concentration of YCl3 is enough to deliver β-amino alcohols in good to excellent yields with high regioselectivity.

  9. Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs

    International Nuclear Information System (INIS)

    Rehman, Fozia; Ahmed, Khalid; Airoldi, Claudio; Gaisford, Simon; Buanz, Asma; Rahim, Abdur; Muhammad, Nawshad; Volpe, Pedro L.O.

    2017-01-01

    Hybrid mesoporous silica SBA-15, with surface incorporated cross-linked long hydrophobic organic bridges was synthesized using stepwise synthesis. The synthesized materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-rays diffraction, thermogravimetry and scanning and transmission electron microscopy. The functionalized material showed highly ordered mesoporous network with a surface area of 629.0 m 2 g −1 . The incorporation of long hydrophobic amine chains on silica surface resulted in high drug loading capacity (21% Mass/Mass) and prolonged release of ibuprofen up till 75.5 h. The preliminary investigations suggests that the synthesized materials could be proposed as controlled release devices to prolong the therapeutic effect of short life drugs such as ibuprofen to increase its efficacy and to reduce frequent dosage. - Highlights: • Silica SBA-15 was synthesized and modified with long hydrophobic amine linkers. • These materials were characterized using different techniques. • The modified material showed high drug loading capacity and control ibuprofen release in biological fluids.

  10. Amine bridges grafted mesoporous silica, as a prolonged/controlled drug release system for the enhanced therapeutic effect of short life drugs

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Fozia, E-mail: foziaics@yahoo.com [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084–971 Campinas, SP (Brazil); Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Ahmed, Khalid; Airoldi, Claudio [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084–971 Campinas, SP (Brazil); Gaisford, Simon; Buanz, Asma [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Rahim, Abdur; Muhammad, Nawshad [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Volpe, Pedro L.O. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084–971 Campinas, SP (Brazil)

    2017-03-01

    Hybrid mesoporous silica SBA-15, with surface incorporated cross-linked long hydrophobic organic bridges was synthesized using stepwise synthesis. The synthesized materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-rays diffraction, thermogravimetry and scanning and transmission electron microscopy. The functionalized material showed highly ordered mesoporous network with a surface area of 629.0 m{sup 2} g{sup −1}. The incorporation of long hydrophobic amine chains on silica surface resulted in high drug loading capacity (21% Mass/Mass) and prolonged release of ibuprofen up till 75.5 h. The preliminary investigations suggests that the synthesized materials could be proposed as controlled release devices to prolong the therapeutic effect of short life drugs such as ibuprofen to increase its efficacy and to reduce frequent dosage. - Highlights: • Silica SBA-15 was synthesized and modified with long hydrophobic amine linkers. • These materials were characterized using different techniques. • The modified material showed high drug loading capacity and control ibuprofen release in biological fluids.

  11. MICROWAVE-ASSISTED CU (I) CATALYZED SOLVENT-FREE THREE COMPONENT COUPLING OF ALDEHYDE, ALKYNE AND AMINE

    Science.gov (United States)

    Direct Grignard type addition of terminal alkynes to in situ generated imines, from aldehydes and amines, occurs under microwave irradiation using CuBr alone in a one-pot operation. This solventless approach provides ready access to propargylamines and is applicable both...

  12. A computational mechanistic study of Pd(ii)-catalyzed γ-C(sp3)-H olefination/cyclization of amines: the roles of bicarbonate and ligand effect.

    Science.gov (United States)

    Liu, Jian-Biao; Tian, Ying-Ying; Zhang, Xin; Wang, Lu-Lin; Chen, De-Zhan

    2018-04-03

    The detailed mechanism of palladium-catalyzed γ-C(sp3)-H olefination/cyclization of triflyl-protected amines was investigated by density functional theory (DFT) calculations. The olefinated intermediate was initially formed in the first catalytic cycle involving ligand exchange, bicarbonate-assisted C(sp3)-H bond cleavage, alkene insertion and 'reductive β-hydride elimination'. The following syn-addition and reductive elimination furnish the aza-Wacker product. The first step of reductive elimination is the rate-determining step. The mechanism unveils the important roles of bicarbonate: aiding the C-H activation and abstracting the β-proton in the second step of reductive elimination. The parallel bridging mode in the metal-olefin intermediate facilitates the syn-addition, explaining the experimentally observed stereoselectivity. The effect of the monodentate pyridine-based ligands is also discussed.

  13. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  14. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  15. Silica-gel Catalyzed Facile Synthesis of 3,4-Dihydropyrimidinones

    International Nuclear Information System (INIS)

    Agarwal, Sameer; Aware, Umesh; Patil, Amit; Rohera, Vinita; Jain, Mukul; Patel, Pankaj; Ghate, Manjunath

    2012-01-01

    We have developed a mild and highly effective procedure for the one-pot synthesis of substituted dihydropyrimidinones in high yields using silica gel as a green, highly efficient and recyclable heterogeneous catalyst. Our approach can be applied to the preparation of a wide range of synthetic analogues for structure-activity studies. Investigations in this direction are ongoing. The pyrimidinone ring is a basic substructure of numerous biologically active alkaloids and pharmaceutical products. These cores are regarded as one of the most important groups of drug-like scaffolds. 3,4-dihydropyrimidinones above are known to exhibit variety of pharmacological activity such as calcium channel modulation, mitotic kinesin Eg5 inhibition, antiviral, anti-inflammatory, antibacterial activity, etc

  16. Silica-gel Catalyzed Facile Synthesis of 3,4-Dihydropyrimidinones

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Sameer; Aware, Umesh; Patil, Amit; Rohera, Vinita; Jain, Mukul; Patel, Pankaj [Zydus Research Centre, Sarkhej-Bavla N.H., Ahmedabad (India); Ghate, Manjunath [Nirma University, Ahmedabad (India)

    2012-02-15

    We have developed a mild and highly effective procedure for the one-pot synthesis of substituted dihydropyrimidinones in high yields using silica gel as a green, highly efficient and recyclable heterogeneous catalyst. Our approach can be applied to the preparation of a wide range of synthetic analogues for structure-activity studies. Investigations in this direction are ongoing. The pyrimidinone ring is a basic substructure of numerous biologically active alkaloids and pharmaceutical products. These cores are regarded as one of the most important groups of drug-like scaffolds. 3,4-dihydropyrimidinones above are known to exhibit variety of pharmacological activity such as calcium channel modulation, mitotic kinesin Eg5 inhibition, antiviral, anti-inflammatory, antibacterial activity, etc.

  17. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water

    NARCIS (Netherlands)

    Krzyzaniak, A.; Weggemans, W.M.A.; Schuur, B.; Haan, de A.B.

    2011-01-01

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct

  18. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis or primary amines in water

    NARCIS (Netherlands)

    Krzyzaniak, A.; Weggemans, W.; Schuur, Boelo; de Haan, A.B.

    2011-01-01

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct

  19. Hydroformylation of dihydrofurans catalyzed by rhodium complex encapsulated hexagonal mesoporous silica

    KAUST Repository

    Khokhar, Munir; Shukla, Ram S.; Jasra, Raksh Vir

    2015-01-01

    HRh(CO)(PPh3)3 encapsulated hexagonal mesoporous silica (HMS) is found to be an efficient heterogeneous catalyst for the selective hydroformylation of 2,3-dihydrofuran (2,3DHF) and 2,5-dihydrofuran (2,5DHF). The Rh-complex encapsulated in situ in the organic phase of template inside the pores of HMS was found to act as nano phase reactors. Conversion of 2,3-DHF and 2,5-DHF and selectivity of the corresponding aldehydes were thoroughly investigated by studying the reaction parameters: catalyst amount, substrate concentration, partial as well as total pressure of CO and H2, and temperature. The selectivity for the formation of tetrahydrofuran-2-carbaldehyde (THF-2-carbaldehyde) from the hydroformylation of 2,3-DHF was found to be more than the selectivity of the formation of tetrahydrofuran-3-carbaldehyde (THF-3-carbaldehyde) from 2,5-DHF. The reaction paths are suggested and discussed for the selective formation of the corresponding aldehydes. The catalyst was elegantly separated and effectively recycled for six times.

  20. Hydroformylation of dihydrofurans catalyzed by rhodium complex encapsulated hexagonal mesoporous silica

    KAUST Repository

    Khokhar, Munir

    2015-05-01

    HRh(CO)(PPh3)3 encapsulated hexagonal mesoporous silica (HMS) is found to be an efficient heterogeneous catalyst for the selective hydroformylation of 2,3-dihydrofuran (2,3DHF) and 2,5-dihydrofuran (2,5DHF). The Rh-complex encapsulated in situ in the organic phase of template inside the pores of HMS was found to act as nano phase reactors. Conversion of 2,3-DHF and 2,5-DHF and selectivity of the corresponding aldehydes were thoroughly investigated by studying the reaction parameters: catalyst amount, substrate concentration, partial as well as total pressure of CO and H2, and temperature. The selectivity for the formation of tetrahydrofuran-2-carbaldehyde (THF-2-carbaldehyde) from the hydroformylation of 2,3-DHF was found to be more than the selectivity of the formation of tetrahydrofuran-3-carbaldehyde (THF-3-carbaldehyde) from 2,5-DHF. The reaction paths are suggested and discussed for the selective formation of the corresponding aldehydes. The catalyst was elegantly separated and effectively recycled for six times.

  1. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  2. Copper sulfate-pentahydrate-1,10-phenanthroline catalyzed amidations of alkynyl bromides. Synthesis of heteroaromatic amine substituted ynamides.

    Science.gov (United States)

    Zhang, Yanshi; Hsung, Richard P; Tracey, Michael R; Kurtz, Kimberly C M; Vera, Eymi L

    2004-04-01

    A practical cross-coupling of amides with alkynyl bromides using catalytic CuSO(4).5H(2)O and 1,10-phenanthroline is described here. This catalytic protocol is more environmentally friendly than the use of CuCN or copper halides and provides a general entry for syntheses of ynamides including various new sulfonyl and heteroaromatic amine substituted ynamides. Given the interest in ynamides, this N-alkynylation of amides should be significant for the future of ynamides in organic synthesis.

  3. Copper-Catalyzed Domino Three-Component Approach for the Assembly of 2-Aminated Benzimidazoles and Quinazolines.

    Science.gov (United States)

    Tran, Lam Quang; Li, Jihui; Neuville, Luc

    2015-06-19

    A copper-promoted three-component synthesis of 2-aminobenzimidazoles (1) or of 2-aminoquinazolines (2) involving cyanamides, arylboronic acids, and amines has been developed. The operationally simple oxidative process, performed in the presence of K2CO3, a catalytic amount of CuCl2·2H2O, 2,2'-bipyridine, and an O2 atmosphere (1 atm), allows the rapid assembly of either benzimidazoles or quinazolines starting from aryl- or benzyl-substituted cyanamides, respectively. In this process, the copper promotes the formation of three bonds, two C-N bonds, and an additional bond resulting from C-H functionalization event.

  4. CYP-450 isoenzymes catalyze the generation of hazardous aromatic amines after reaction with the azo dye Sudan III.

    Science.gov (United States)

    Zanoni, Thalita Boldrin; Lizier, Thiago M; Assis, Marilda das Dores; Zanoni, Maria Valnice B; de Oliveira, Danielle Palma

    2013-07-01

    This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1 × 10(-4)molL(-1) and generation of 7.6 × 10(-7)molL(-1) to 0.31 × 10(-4)molL(-1) of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. OMS-2-Supported Cu Hydroxide-Catalyzed Benzoxazoles Synthesis from Catechols and Amines via Domino Oxidation Process at Room Temperature.

    Science.gov (United States)

    Meng, Xu; Wang, Yanmin; Wang, Yuanguang; Chen, Baohua; Jing, Zhenqiang; Chen, Gexin; Zhao, Peiqing

    2017-07-07

    In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH) x /OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH) x /OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH) x /OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.

  6. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water.

    Science.gov (United States)

    Krzyżaniak, Agnieszka; Weggemans, Wilko; Schuur, Boelo; de Haan, André B

    2011-12-16

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Complementation of biotransformations with chemical C-H oxidation: copper-catalyzed oxidation of tertiary amines in complex pharmaceuticals.

    Science.gov (United States)

    Genovino, Julien; Lütz, Stephan; Sames, Dalibor; Touré, B Barry

    2013-08-21

    The isolation, quantitation, and characterization of drug metabolites in biological fluids remain challenging. Rapid access to oxidized drugs could facilitate metabolite identification and enable early pharmacology and toxicity studies. Herein, we compared biotransformations to classical and new chemical C-H oxidation methods using oxcarbazepine, naproxen, and an early compound hit (phthalazine 1). These studies illustrated the low preparative efficacy of biotransformations and the inability of chemical methods to oxidize complex pharmaceuticals. We also disclose an aerobic catalytic protocole (CuI/air) to oxidize tertiary amines and benzylic CH's in drugs. The reaction tolerates a broad range of functionalities and displays a high level of chemoselectivity, which is not generally explained by the strength of the C-H bonds but by the individual structural chemotype. This study represents a first step toward establishing a chemical toolkit (chemotransformations) that can selectively oxidize C-H bonds in complex pharmaceuticals and rapidly deliver drug metabolites.

  8. Palladium-catalyzed Asymmetric Hydrosilylation of Styrene and Its Derivatives with Chiral Phosphoramidite Ligands Containing Chiral Ferrocenyl Amine

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Sub; Kim, Min Young; Ahn, Hyo Jin; Han, Jin Wook [Hanyang University, Seoul (Korea, Republic of)

    2016-06-15

    Asymmetric hydrosilylation was one of the most effective methods, which provided optically active organosilanes as a synthetically useful intermediate in organic synthesis. One useful transformation is the Tamao-Fleming oxidation, which is an oxidation reaction of carbon[BOND]silicone bond to afford optically active alcohols with retention of configuration. It is demonstrated that a palladium catalyst coordinating with phosphoramidite ligand (S {sub a},R {sub c},R {sub c,})-L3a from (S)-BINOL and chiral bis((R)-1-ferrocenylethyl) amine shows a high catalytic activity and enantioselectivity up to 97% ee in asymmetric hydrosilylation of styrene and its derivatives. The hydrosilylation of various olefin substrates using these ligands is in progress.

  9. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.

    Science.gov (United States)

    Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain; Haiges, Ralf; Jones, John-Paul; May, Robert B; Prakash, G K Surya; Olah, George A

    2015-04-24

    Due to the intermittent nature of most renewable energy sources, such as solar and wind, energy storage is increasingly required. Since electricity is difficult to store, hydrogen obtained by electrochemical water splitting has been proposed as an energy carrier. However, the handling and transportation of hydrogen in large quantities is in itself a challenge. We therefore present here a method for hydrogen storage based on a CO2 (HCO3 (-) )/H2 and formate equilibrium. This amine-free and efficient reversible system (>90 % yield in both directions) is catalyzed by well-defined and commercially available Ru pincer complexes. The formate dehydrogenation was triggered by simple pressure swing without requiring external pH control or the change of either the solvent or the catalyst. Up to six hydrogenation-dehydrogenation cycles were performed and the catalyst performance remained steady with high selectivity (CO free H2 /CO2 mixture was produced). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Method for the production of primary amines

    NARCIS (Netherlands)

    Baldenius, Kai-Uwe; Ditrich, Klaus; Breurer, Michael; Navickas, Vaidotas; Janssen, Dick; Crismaru, Ciprian; Bartsch, Sebastian

    2014-01-01

    The present invention relates to a novel enzymatically catalyzed method for the production of aliphatic primary amines, which method comprises the enzymatic oxidation of a primary aliphatic alcohol catalyzed by an alcohol dehydrogenase, amination of the resulting oxocompound catalyzed by a

  11. Characterization of silica particles prepared via urease-catalyzed urea hydrolysis and activity of urease in sol–gel silica matrix

    International Nuclear Information System (INIS)

    Kato, Katsuya; Nishida, Masakazu; Ito, Kimiyasu; Tomita, Masahiro

    2012-01-01

    Highlights: ► Silica precipitation occurred via urease-catalytic reactions. ► Higher urease activity for silica synthesis enables mesostructure of silica–urease composites. ► Urease encapsulating in silica matrix retained high activity. - Abstract: Urease templated precipitation of silica synthesized by sol–gel chemistry produces a composite material allowing high urease activity. This study investigates the structural properties of the composite material that allow for the retention of the urease hydrolysis activity. Scanning (SEM) and transmission (TEM) electron microscopy reveal that the composite has a mesoporous structure composed of closely packed spherical structures ∼20–50 nm in diameter. Brunauer–Emmett–Teller (BET) analysis revealed that the surface area and pore volume of the composite prepared under the conditions of 50 mM urea and 25 °C is relatively high (324 m 2 /g and 1.0 cm 3 /g). These values are equivalent to those of usual mesoporous silica materials synthesized from the self-assembly of triblock copolymers as organic templates. In addition, after encapsulating in a sol–gel silica matrix, urease retained high activity (∼90% of the activity compared with native urease). Our results suggest a new method for synthesizing mesoporous silica materials with highly tunable pore sizes and shapes under mild conditions.

  12. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    Science.gov (United States)

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO 2 Adsorbents Upon Exposure to Steam

    KAUST Repository

    Li, Wen

    2010-11-24

    Three classes of amine-functionalized mesocellular foam (MCF) materials are prepared and evaluated as CO2 adsorbents. The stability of the adsorbents under steam/air and steam/nitrogen conditions is investigated using a Parr autoclave reactor to simulate, in an accelerated manner, the exposure that such adsorbents will see under steam stripping regeneration conditions at various temperatures. The CO2 capacity and organic content of all adsorbents decrease after steam treatment under both steam/air and steam/nitrogen conditions, primarily due to structural collapse of the MCF framework, but with additional contributions likely associated with amine degradation during treatment under harsh conditions. Treatment with steam/air is found to have stronger effect on the CO2 capacity of the adsorbents compared to steam/nitrogen. © 2010 American Chemical Society.

  14. Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO 2 Adsorbents Upon Exposure to Steam

    KAUST Repository

    Li, Wen; Bollini, Praveen; Didas, Stephanie A.; Choi, Sunho; Drese, Jeffrey H.; Jones, Christopher W.

    2010-01-01

    Three classes of amine-functionalized mesocellular foam (MCF) materials are prepared and evaluated as CO2 adsorbents. The stability of the adsorbents under steam/air and steam/nitrogen conditions is investigated using a Parr autoclave reactor to simulate, in an accelerated manner, the exposure that such adsorbents will see under steam stripping regeneration conditions at various temperatures. The CO2 capacity and organic content of all adsorbents decrease after steam treatment under both steam/air and steam/nitrogen conditions, primarily due to structural collapse of the MCF framework, but with additional contributions likely associated with amine degradation during treatment under harsh conditions. Treatment with steam/air is found to have stronger effect on the CO2 capacity of the adsorbents compared to steam/nitrogen. © 2010 American Chemical Society.

  15. [Fe(F20 TPP)Cl]-catalyzed amination with arylamines and {[Fe(F20 TPP)(NAr)](PhI=NAr)} + . Intermediate assessed by high-resolution ESI-MS and DFT calculations.

    Science.gov (United States)

    Liu, Yungen; Chen, Guo-Qiang; Tse, Chun-Wai; Guan, Xianguo; Xu, Zheng-Jiang; Huang, Jie-Sheng; Che, Chi-Ming

    2015-01-01

    Amination of CH bonds catalyzed by transition metal complexes via nitrene/imide insertion is an appealing strategy for CN bond formation, and the use of iminoiodinanes, or their in situ generated forms from 'PhI(OAc)2 +primary amides (such as sulfonamides, sulfamates, and carbamates)', as nitrogen sources for the amination reaction has been well documented. In this work, a 'metal catalyst+PhI(OAc)2 +primary arylamines' amination protocol has been developed using [Fe(F20 TPP)Cl] (H2 F20 TPP=meso-tetrakis(pentafluorophenyl)porphyrin) as a catalyst. This catalytic method is applicable for both intra- and intermolecular amination of sp(2) and sp(3) CH bonds (>27 examples), affording the amination products, including natural products such as rutaecarpine, in moderate-to-good yields. ESI-MS analysis and DFT calculations lend support for the involvement of {[Fe(F20 TPP)(NC6 H4 -p-NO2 )](PhI=NC6 H4 -p-NO2 )} + . intermediate in the catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Entrapment of Enzymes and Carbon Nanotubes in Biologically Synthesized Silica: Glucose Oxidase-catalyzed Direct Electron Transfer, Preprint

    National Research Council Canada - National Science Library

    Invitski, Dmitri; Artyuskova, Kateryna; Rincon, Rosalba A; Atanassov, Plamen; Luckarift, Heather R; Johnson, Glenn R

    2007-01-01

    This work demonstrates a new approach for building bio-inorganic interfaces by integrating biomimetically-derived silica with single-walled carbon nanotubes to create a conductive matrix for immobilization of enzymes...

  17. Differently-catalyzed silica-based precursors as functional additives for the epoxy-based hybrid materials

    Czech Academy of Sciences Publication Activity Database

    Perchacz, Magdalena; Beneš, Hynek; Zhigunov, Alexander; Serkis, Magdalena; Pavlova, Ewa

    2016-01-01

    Roč. 99, 2 September (2016), s. 434-446 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA14-05146S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid material * solvent-free sol-gel process * silica-based precursor Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.684, year: 2016

  18. Direct measurement of the interaction energy between solids and gases--3. Comparison of the calorimetric titration method with the amine titration method for the determination of acid strength distribution of the silica-alumina surface

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, H.; Masuda, T.; Tsutsumi, K.; Takahashi, H.

    1978-07-01

    Comparison of the calorimetric titration method with the amine titration method for the determination of acid strength distribution of the silica-alumina surface was carried out for a catalyst containing 13% by wt alumina and evacuated at 400/sup 0/C at 0.00001 mm Hg for five hours. The heats of adsorption of ammonia on silica-alumina poisoned with Hammett indicators of 8.2 to 3.3 pK/sub a/ were also measured to obtain the relation between the dissociation constant of the acid (pK/sub a/) and the heat of adsorption. At pK/sub a/ values of -5.6 and +3.3, the differential heats of adsorption were 76.1 and 55.1 kj/mole, respectively. The number of acid sites calculated from the heat vs. adsorbed-amount curve was about twice as large as that determined by amine titration. The discrepancy is discussed.

  19. Cyclooctane metathesis catalyzed by silica-supported tungsten pentamethyl [(ΞSiO)W(Me)5]: Distribution of macrocyclic alkanes

    KAUST Repository

    Riache, Nassima

    2014-10-03

    Metathesis of cyclic alkanes catalyzed by the new surface complex [(ΞSiO)W(Me)5] affords a wide distribution of cyclic and macrocyclic alkanes. The major products with the formula CnH2n are the result of either a ring contraction or ring expansion of cyclooctane leading to lower unsubstituted cyclic alkanes (5≤n≤7) and to an unprecedented distribution of unsubstituted macrocyclic alkanes (12≤n≤40), respectively, identified by GC/MS and by NMR spectroscopies.

  20. A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shahabi, Shakiba [University of Bremen, Advanced Ceramics (Germany); Treccani, Laura, E-mail: treccani@petroceramics.com [Petroceramics S.p.A., Kilometro Rosso Science Park (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics (Germany)

    2016-01-15

    The synthesis of fluorophore-doped silica nanoparticles (FDS NPs) with two conventional approaches, Stöber and microemulsion, as well as a novel amino acid-catalyzed seeds regrowth technique (ACSRT) is presented. The efficiency of each applied synthesis route toward incorporation of selected hydrophilic fluorophores, including rhodamine B isothiocyanate and fluorescein isothiocyanate, without and with an amine-containing crosslinker, into silica matrix was systematically studied. Our results clearly highlight the advantages of ACSRT to obtain FDS NPs with a remarkable encapsulation efficiency, high quantum yield, and enhanced stability against bleaching and dye leaking due to efficient embedding of the dyes inside silica network even without the amine-containing silane reagent. Moreover, evaluation of photostability of FDNPs internalized in human bone cells demonstrates the merits of ACSRT.

  1. Dimerization of Terminal Aryl Alkynes Catalyzed by Iron(II) Amine-Pyrazolyl Tripodal Complexes with E/Z Selectivity Controlled by tert-Butoxide

    KAUST Repository

    Xue, Fei

    2018-05-09

    The catalytic activity of iron(II) complexes with functionalized amine-pyrazolyl tripodal ligands toward dimerization of terminal alkynes in the presence a base (KOtBu or NaOtBu) has been studied. An unusual E/Z selectivity of the reaction determined by tert-butoxide was observed.

  2. Dimerization of Terminal Aryl Alkynes Catalyzed by Iron(II) Amine-Pyrazolyl Tripodal Complexes with E/Z Selectivity Controlled by tert-Butoxide

    KAUST Repository

    Xue, Fei; Song, Xiaolu; Lin, Ting Ting; Munkerup, Kristin; Albawardi, Saad Fahad; Huang, Kuo-Wei; Hor, T. S. Andy; Zhao, Jin

    2018-01-01

    The catalytic activity of iron(II) complexes with functionalized amine-pyrazolyl tripodal ligands toward dimerization of terminal alkynes in the presence a base (KOtBu or NaOtBu) has been studied. An unusual E/Z selectivity of the reaction determined by tert-butoxide was observed.

  3. Coupling Reagent for UV/vis Absorbing Azobenzene-Based Quantitative Analysis of the Extent of Functional Group Immobilization on Silica.

    Science.gov (United States)

    Choi, Ra-Young; Lee, Chang-Hee; Jun, Chul-Ho

    2018-05-18

    A methallylsilane coupling reagent, containing both a N-hydroxysuccinimidyl(NHS)-ester group and a UV/vis absorbing azobenzene linker undergoes acid-catalyzed immobilization on silica. Analysis of the UV/vis absorption band associated with the azobenzene group in the adduct enables facile quantitative determination of the extent of loading of the NHS groups. Reaction of NHS-groups on the silica surface with amine groups of GOx and rhodamine can be employed to generate enzyme or dye-immobilized silica for quantitative analysis.

  4. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.

    Science.gov (United States)

    Ikawa, Takashi; Fujita, Yuki; Mizusaki, Tomoteru; Betsuin, Sae; Takamatsu, Haruki; Maegawa, Tomohiro; Monguchi, Yasunari; Sajiki, Hironao

    2012-01-14

    Nitriles were found to be highly effective alkylating reagents for the selective N-alkylation of amines under catalytic hydrogenation conditions. For the aromatic primary amines, the corresponding secondary amines were selectively obtained under Pd/C-catalyzed hydrogenation conditions. Although the use of electron poor aromatic amines or bulky nitriles showed a lower reactivity toward the reductive alkylation, the addition of NH(4)OAc enhanced the reactivity to give secondary aromatic amines in good to excellent yields. Under the same reaction conditions, aromatic nitro compounds instead of the aromatic primary amines could be directly transformed into secondary amines via a domino reaction involving the one-pot hydrogenation of the nitro group and the reductive alkylation of the amines. While aliphatic amines were effectively converted to the corresponding tertiary amines under Pd/C-catalyzed conditions, Rh/C was a highly effective catalyst for the N-monoalkylation of aliphatic primary amines without over-alkylation to the tertiary amines. Furthermore, the combination of the Rh/C-catalyzed N-monoalkylation of the aliphatic primary amines and additional Pd/C-catalyzed alkylation of the resulting secondary aliphatic amines could selectively prepare aliphatic tertiary amines possessing three different alkyl groups. According to the mechanistic studies, it seems reasonable to conclude that nitriles were reduced to aldimines before the nucleophilic attack of the amine during the first step of the reaction.

  5. Immobilized Candida antarctica lipase B on ZnO nanowires/macroporous silica composites for catalyzing chiral resolution of (R,S)-2-octanol.

    Science.gov (United States)

    Shang, Chuan-Yang; Li, Wei-Xun; Zhang, Rui-Feng

    2014-01-01

    ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m(2)/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3-4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60°C for 8h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    Science.gov (United States)

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.

    2017-09-01

    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  7. Oxidation of amines by flavoproteins.

    Science.gov (United States)

    Fitzpatrick, Paul F

    2010-01-01

    Many flavoproteins catalyze the oxidation of primary and secondary amines, with the transfer of a hydride equivalent from a carbon-nitrogen bond to the flavin cofactor. Most of these amine oxidases can be classified into two structural families, the D-amino acid oxidase/sarcosine oxidase family and the monoamine oxidase family. This review discusses the present understanding of the mechanisms of amine and amino acid oxidation by flavoproteins, focusing on these two structural families. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Ionic liquid-silica precursors via solvent-free sol-gel process and their application in epoxy-amine network: a theoretical/experimental study

    Czech Academy of Sciences Publication Activity Database

    Perchacz, Magdalena; Donato, R. K.; Seixas, L.; Zhigunov, Alexander; Konefal, Rafal; Serkis-Rodzen, Magdalena; Beneš, Hynek

    2017-01-01

    Roč. 9, č. 19 (2017), s. 16474-16487 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA17-08273S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : 3D POSS structures * epoxy-silica hybrid material * IL-silica precursor Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.504, year: 2016

  9. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    Science.gov (United States)

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  10. Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models.

    Science.gov (United States)

    Zeng, Huiying; Cao, Dawei; Qiu, Zihang; Li, Chao-Jun

    2018-03-26

    Lignin is the second most abundant organic matter on Earth, and is an underutilized renewable source for valuable aromatic chemicals. For future sustainable production of aromatic compounds, it is highly desirable to convert lignin into value-added platform chemicals instead of using fossil-based resources. Lignins are aromatic polymers linked by three types of ether bonds (α-O-4, β-O-4, and 4-O-5 linkages) and other C-C bonds. Among the ether bonds, the bond dissociation energy of the 4-O-5 linkage is the highest and the most challenging to cleave. To date, 4-O-5 ether linkage model compounds have been cleaved to obtain phenol, cyclohexane, cyclohexanone, and cyclohexanol. The first example of direct formal cross-coupling of diaryl ether 4-O-5 linkage models with amines is reported, in which dual C(Ar)-O bond cleavages form valuable nitrogen-containing derivatives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sillica Gel-Amine from Geothermal Sludge

    Science.gov (United States)

    Muljani, S.; Pujiastuti, C.; Wicaksono, P.; Lutfianingrum, R.

    2018-01-01

    Silica Gel-Amine (SGA) has been made from geothermal sludge by grafting amine method. Sodium silicate solution is prepared by extracted geothermal sludge powder using sodium hidroxide solution then acidification in the range of pH 5 - 9 by using tartaric acid 1N. The grafting process uses 1 ml of ammonia solution and 10 ml of toluene at a rate of 0.1 ml min-1 accompanied by a reflux process. The amine grafting is done in two methods. The first method is grafting amine in silicate solution and the second method is grafting amine in washed gel. Product SGA was confirmed by FTIR, TGA-DTG and BET characterization. The results show that the pH affects the amount of amine that is grafted onto silica gel. Differences in grafting method affect the size of the pore and surface area. SGA product prepared by grafting washed gel at pH 8 have pore diameter of 12.06 nm, surface area of 173.44 m2g-1, and mass of decomposed amine compound 0.4 mg. In the presence of amine groups on the silica gel surface, these adsorbents may be able to selectively adsorb CO2 gas from natural gas.

  12. Bioinspired thermo- and pH-responsive polymeric amines: multimolecular aggregates in aqueous media and matrices for silica/polymer nanocomposites.

    Science.gov (United States)

    Danilovtseva, Elena N; Aseyev, Vladimir; Belozerova, Olga Yu; Zelinskiy, Stanislav N; Annenkov, Vadim V

    2015-05-15

    Polymeric amines have been intensively studied for application in smart systems and as matrices for the design of composite materials, including bioinspired substances. A new thermo- and pH-responsive polymer was obtained by radical polymerization of N-(3-(diethylamino)propyl)-N-methylacrylamide. Upon heating, the polymer precipitated from aqueous solutions above pH 9; the observed cloud point was dependent on the polymer concentration and decreased from 95°C at pH 9 to 40°C at pH 11. The basicity of the polymer decreased at elevated temperatures owing to an increase in the hydrophobicity-driven compaction of the macromolecules. Dynamic light scattering analysis demonstrated that the formation of large multimolecular associates with radius 1000-2000 nm was initiated from 1 to 2°C below the cloud point. The new polymer is demonstrated to be an effective matrix for various siliceous composite structures, including 200-300 nm solid spherical raspberry-like particles and hollow hemispherical particles of more than 1000 nm diameter. Condensation of silicic acid in the presence of polymeric amines is a model reaction in biosilicification studies, and the obtained data are also discussed from the perspective of the matrix hypothesis for biosilica formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll).

  14. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen; Didas, Stephanie A.; Jones, Christopher W.

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams

  15. Selective Oxidation of Cyclohexene, Toluene and Ethyl Benzene Catalyzed by Bis-(L-tyrosinatocopper(II, Immersed in a Magnetite-Infused Silica Matrix

    Directory of Open Access Journals (Sweden)

    Massomeh Ghorbanloo

    2016-01-01

    Full Text Available Bis-(L-tyrosinatocopper(II was reacted with 3-(chloropropyl-trimethoxysilane functionalized silica that has infused magnetite to yield a magnetically separable catalyst in which the copper carboxylate is covalently linked to the silica matrix through the silane linkage. The immobilized catalyst has been characterized by spectroscopic studies (such as FT-IR, EPR, Magnetic Measurement, SEM and chemical analyses. The immobilized catalytic system functions as an efficient heterogeneous catalyst for oxidation of cyclohexene, toluene and ethyl benzene in the presence of hydrogen peroxide (as an oxidant and sodium bicarbonate (a co-catalyst. The reaction conditions have been optimized for solvent, temperature and amount of oxidant and catalyst. Comparison of the encapsulated catalyst with the corresponding homogeneous catalyst showed that the heterogeneous catalyst had higher activity and selectivity than the homogeneous catalyst. The immobilized catalyst could be readily recovered from the reaction mixture by using a simple magnet, and  reused up to five times without any loss of activity.

  16. Dual C-H functionalization of N-aryl amines: synthesis of polycyclic amines via an oxidative Povarov approach.

    Science.gov (United States)

    Min, Chang; Sanchawala, Abbas; Seidel, Daniel

    2014-05-16

    Iminium ions generated in situ via copper(I) bromide catalyzed oxidation of N-aryl amines readily undergo [4 + 2] cycloadditions with a range of dienophiles. This method involves the functionalization of both a C(sp(3))-H and a C(sp(2))-H bond and enables the rapid construction of polycyclic amines under relatively mild conditions.

  17. New solid phase extractors for selective separation and preconcentration of mercury (II) based on silica gel immobilized aliphatic amines 2-thiophenecarboxaldehyde Schiff's bases

    International Nuclear Information System (INIS)

    Soliman, Ezzat M.; Saleh, Mohamed B.; Ahmed, Salwa A.

    2004-01-01

    2-Thiophenecarboxaldhyde is chemically bonded to silica gel surface immobilized monoamine, ethylenediamine and diethylenetriamine by a simple Schiff's base reaction to produce three new SP-extractors, phases (I-III). The selectivity properties of these phases toward Hg(II) uptake as well as eight other metal ions: Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) were extensively studied and evaluated as a function of pH of metal ion solution and equilibrium shaking time by the batch equilibrium technique. The data obtained clearly indicate that the new SP-extractors have the highest affinity for retention of Hg(II) ion. Their Hg(II) uptake in mmol g -1 and distribution coefficient as log K d values are always higher than the uptake of any other metal ion along the range of pH used (pH 1.0-10.0). The uptake of Hg(II) using phase I was 2.0 mmol g -1 (log K d 6.6) at pH 1.0 and 2.0. 1.8 mmol g -1 (log K d 4.25), 1.6 mmol g -1 (log K d 3.90) and 1.08 mmol g -1 (log K d 3.37) at pH 3.0, 5.0 and 8.0, respectively. Selective separation of Hg(II) from the other eight coexisting metal ions under investigation was achieved successfully using phase I at pH 2.0 either under static or dynamic conditions. Hg(II) was completely retained while Ca(II), Co(II) and Cd(II) ions were not retained. Ni(II), Cu(II), Zn(II), Pb(II) and Fe(III) showed very low percentage retention values to be 0.74, 0.97, 3.5 and 6.3%, respectively. Moreover, the high recovery values (95.5 ± 0.5, 95.8 ± 0.5 and 99.0% ± 1.0) of percolating two liters of doubly distilled water, drinking tap water and Nile river water spiked with 5 ng/l of Hg(II) over 100 mg of phase I packed in a minicolumn and used as a thin layer enrichment bed demonstrate the accuracy and validity of the new SP-extractors for preconcentration of the ultratrace amount of spiked Hg(II) prior to the determination by borohydride generation atomic absorption spectrometry (AAS) with no matrix interference. The detection

  18. Tandem catalytic allylic amination and [2,3]-Stevens rearrangement of tertiary amines.

    Science.gov (United States)

    Soheili, Arash; Tambar, Uttam K

    2011-08-24

    We have developed a catalytic allylic amination involving tertiary aminoesters and allylcarbonates, which is the first example of the use of tertiary amines as intermolecular nucleophiles in metal-catalyzed allylic substitution chemistry. This process is employed in a tandem ammonium ylide generation/[2,3]-rearrangement reaction, which formally represents a palladium-catalyzed Stevens rearrangement. Low catalyst loadings and mild reaction conditions are compatible with an unprecedented substrate scope for the ammonium ylide functionality, and products are generated in high yields and diastereoselectivities. Mechanistic studies suggested the reversible formation of an ammonium intermediate.

  19. Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-09-01

    Full Text Available Crude bio-oil from pine chip fast pyrolysis was upgraded with olefins (1-octene, cyclohexene, 1,7-octadiene, and 2,4,4-trimethylpentene plus 1-butanol (iso-butanol, t-butanol and ethanol at 120 °C using a silica sulfuric acid (SSA catalyst that possesses a good catalytic activity and stability. Gas chromatography-mass spectrometry (GC-MS, Fourier transform infrared spectroscopy (FT-IR and proton nuclear magnetic resonance (1H-NMR analysis showed that upgrading sharply increased ester content and decreased the amounts of levoglucosan, phenols, polyhydric alcohols and carboxylic acids. Upgrading lowered acidity (pH value rose from 2.5 to >3.5, removed the unpleasant odor and increased hydrocarbon solubility. Water content dramatically decreased from 37.2% to about 7.0% and the heating value increased from 12.6 MJ·kg−1 to about 31.9 MJ·kg−1. This work has proved that bio-oil upgrading with a primary olefin plus 1-butanol is a feasible route where all the original heating value of the bio-oil plus the added olefin and alcohol are present in the resulting fuel.

  20. Thermal behavior of poly(2-hydroxyethyl methacrylate-bis-[trimethoxysilylpropyl]amine) networks

    International Nuclear Information System (INIS)

    Bustos Figueroa, L A; Salgado Delgado, R; García Hernandez, E; Vargas Galarza, Z; Rubio Rosas, E; Salgado Rodriguez, R

    2013-01-01

    Poly(HEMA-BisSi) networks were prepared by using acid-catalyzed sol-gel of bis-[trimethoxysilylpropyl]amine (BisSi) and free radical polymerization of 2-hydroxyethyl methacrylate (HEMA). The thermal properties of the poly(HEMA-BisSi) networks were investigated with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The thermal behavior of these networks was also compared with homopolymers (The networks formed in both PHEMA and PBisSi gels were identified). The glass transition temperature (T g ) of PHEMA homopolymer was found as 103.74 °C. The thermal degradation of the poly(HEMA-BisSi) networks with different silica contents (e.g. 10, 15 and 25 wt%) were evaluated with use of DTG. It was observed that the thermal degradation temperature of poly(HEMA-BisSi) networks changed much with the BisSi content.

  1. Ruthenium-complex catalyzed N-(cyclo)alkylation of aromatic amines with diols. Selective synthesis of N-(n-hydroixyalkyl)anilines of type PhNH(CH2)nOH and of some bioactive arylpiperazines,

    NARCIS (Netherlands)

    Koten, G. van; Abbenhuis, R.A.T.M.; Boersma, J.

    1998-01-01

    A new class of well-defined neutral mono-, and dicationic ruthenium(II) complexes containing a neutral terdentate donor system [C5H3N(CH2E)(2)-2,6] (E = PPh2 (PNP) or NMe2 (NN'N)) has been found effective as catalyst precursor in N-(cyclo)alkylation reactions of aromatic amines with diols

  2. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  3. Detection of amines with extended distyrylbenzenes by strip assays.

    Science.gov (United States)

    Kumpf, Jan; Freudenberg, Jan; Fletcher, Katharyn; Dreuw, Andreas; Bunz, Uwe H F

    2014-07-18

    We herein describe the synthesis and property evaluation of three novel aldehyde-substituted pentameric phenylenevinylenes carrying branched oligo(ethylene glycol) (swallowtail, Sw) substituents. The targets were synthesized by a combination of Heck coupling and Wittig or Horner reactions of suitable precursor modules. If the pentameric phenylenevinylene carries only two of these Sw substituents, it is no longer water-soluble. When six of the Sw substituents are attached, regardless of their position, the pentameric phenylenevinylenes are well water-soluble. The dialdehydes were investigated with respect to their amine-sensing capabilities both in water as well as in the solid state, sprayed onto thin layer chromatography (TLC) plates (alox, silica gel, reversed phase silica gel). The recognition of amine vapors using the sprayed-on phenylenevinylene dialdehydes is superb and allows the identification of different amines on regular silica TLC plates via color changes, analyzed by a statistical tool, the multivariate analysis of variance (MANOVA) protocol.

  4. Catalyst Deactivation Reactions : The Role of Tertiary Amines Revisited

    NARCIS (Netherlands)

    Novarino, Elena; Rios, Itzel Guerrero; van der Veer, Siebe; Meetsma, Auke; Hessen, Bart; Bouwkamp, Marco W.

    2011-01-01

    Decamethylzirconocene cation [Cp*2ZrMe](+) (2) decomposes in bromobenzene-d(5) solution to generate sigma-aryl species [Cp*Zr-2(2-C6H4Br-kappa Br,C)][B(C6F5)(4)] (3). This a-bond metathesis reaction is catalyzed by tertiary amines via a two-step mechanism, in which the amine acts as a proton relay.

  5. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    Science.gov (United States)

    Silva Mojica, Ernesto

    Porous materials comprising polymeric and inorganic segments have attracted interest from the scientific community due to their unique properties and functionalities. The physical and chemical characteristics of these materials can be effectively exploited for adsorption applications. This dissertation covers the experimental techniques for fabrication of poly(vinyl alcohol) (PVA) and silica (SiO2) porous supports, and their functionalization with polyamines for developing adsorbents with potential applications in separation of CO2 and catalysis of organic reactions. The supports were synthesized by processes involving (i) covalent cross-linking of PVA, (ii) hydrolysis and poly-condensation of silica precursors (i,e,. sol-gel synthesis), and formation of porous structures via (iii) direct templating and (iv) phase inversion techniques. Their physical structure was controlled by the proper combination of the preparation procedures, which resulted in micro-structured porous materials in the form of micro-particles, membranes, and pellets. Their adsorption characteristics were tailored by functionalization with polyethyleneimine (PEI), and their physicochemical properties were characterized by vibrational spectroscopy (FTIR, UV-vis), microscopy (SEM), calorimetry (TGA, DSC), and adsorption techniques (BET, step-switch adsorption). Spectroscopic investigations of the interfacial cross-linking reactions of PEI and PVA with glutaraldehyde (GA) revealed that PEI catalyzes the cross-linking reactions of PVA in absence of external acid catalysts. In-situ IR spectroscopy coupled with a focal plane array (FPA) image detector allowed the characterization of a gradient interface on a PEI/PVA composite membrane and the investigation of the cross-linking reactions as a function of time and position. The results served as a basis to postulate possible intermediates, and propose the reaction mechanisms. The formulation of amine-functionalized CO2 capture sorbents was based on the

  6. Method for Preparation of Amides from Alcohols and Amines by Extrusion of Hydrogen

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a method for preparation of carboxamides using alcohols and amines as starting materials in a dehydrogenative coupling reaction catalyzed by a ruthenium N-heterocyciic carbene (NHC) complex, which may be prepared in situ....

  7. N-formylation of amines via the aerobic oxidation of methanol over supported gold nanoparticles.

    Science.gov (United States)

    Ishida, Tamao; Haruta, Masatake

    2009-01-01

    Dress code: formyl. Gold nanoparticles supported on NiO catalyze the one-pot N-formylation of amines with methanol and molecular oxygen to produce formamide at a selectivity of 90 %. This process generates methyl formate in situ, followed by reaction with amines.

  8. Synthesis of propargylic and allenic carbamates via the C-H amination of alkynes.

    Science.gov (United States)

    Grigg, R David; Rigoli, Jared W; Pearce, Simon D; Schomaker, Jennifer M

    2012-01-06

    Propargylic amines are important intermediates for the synthesis of nitrogen-containing heterocycles. The insertion of a nitrene into a propargylic C-H bond has not been explored, despite the attention directed toward the Rh-catalyzed amination of other types of C-H bonds. In this communication, the conversion of a series of homopropargylic carbamates to propargylic carbamates and aminated allenes is described. © 2011 American Chemical Society

  9. Development of chiral terminal-alkene-phosphine hybrid ligands for palladium-catalyzed asymmetric allylic substitutions.

    Science.gov (United States)

    Liu, Zhaoqun; Du, Haifeng

    2010-07-02

    A variety of novel chiral terminal-alkene-phosphine hybrid ligands were successfully developed from diethyl L-tartrate for palladium-catalyzed asymmetric allylic alkylations, etherifications, and amination to give the desired products in excellent yields and ee's.

  10. Microwave assisted highly efficient one-pot multi-component synthesis of novel 2-(tetrasubstituted-1H-pyrrol-3-yl-4H-chroman-4-ones catalyzed by heterogeneous reusable silica gel supported polyphosphoric acid (PPA/SiO2

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2018-02-01

    Full Text Available A solvent-free, eco-friendly and facile approach for the synthesis of highly functionalized tetrasubstituted pyrroles has been reported through one-pot four-component reaction of aldehyde, amine, nitroalkane and 1,3-diketone using silica gel supported polyphosphoric acid (PPA–SiO2 under microwave condition. The reaction occured through the in situ formation of β-keto enamine and nitrostyrene analog following Michael addition and finally intramolecular annulation affording the products in good yields. The key features of the present method include clean reaction, mild conditions, low catalyst loading, straightforward, high to excellent yields, short reaction time, avoiding use of harmful metal catalyst and organic solvent, environmentally friendly compared to the existing methods, recovery and reusability of catalyst and easy workup procedure.

  11. Enzymatic network for production of ether amines from alcohols

    NARCIS (Netherlands)

    Palacio, Cyntia M.; Crismaru, Gica Ciprian; Bartsch, Sebastian; Navickas, Vaidotas; Ditrich, Klaus; Breuer, Michael; Abu, Rohana; Woodley, John; Baldenius, Kai-Uwe; Wu, Bian; Janssen, Dick

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production of the

  12. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  13. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected beta-Amino Aldehydes

    NARCIS (Netherlands)

    Dong, Jiajia; Harvey, Emma C.; Fananas-Mastral, Martin; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    A general method for the preparation of N-protected beta-amino aldehydes from allylic amines or linear allylic alcohols is described. Here the Pd(II)-catalyzed oxidation of N-protected allylic amines with benzoquinone is achieved in tBuOH under ambient conditions with excellent selectivity toward

  14. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air.

    Science.gov (United States)

    Didas, Stephanie A; Kulkarni, Ambarish R; Sholl, David S; Jones, Christopher W

    2012-10-01

    A fundamental study on the adsorption properties of primary, secondary, and tertiary amine materials is used to evaluate what amine type(s) are best suited for ultradilute CO(2) capture applications. A series of comparable materials comprised of primary, secondary, or tertiary amines ligated to a mesoporous silica support via a propyl linker are used to systematically assess the role of amine type. Both CO(2) and water adsorption isotherms are presented for these materials in the range relevant to CO(2) capture from ambient air and it is demonstrated that primary amines are the best candidates for CO(2) capture from air. Primary amines possess both the highest amine efficiency for CO(2) adsorption as well as enhanced water affinity compared to other amine types or the bare silica support. The results suggest that the rational design of amine adsorbents for the extraction of CO(2) from ambient air should focus on adsorbents rich in primary amines. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ligand-Enabled γ-C(sp(3))-H Olefination of Amines: En Route to Pyrrolidines.

    Science.gov (United States)

    Jiang, Heng; He, Jian; Liu, Tao; Yu, Jin-Quan

    2016-02-17

    Pd(II)-catalyzed olefination of γ-C(sp(3))-H bonds of triflyl (Tf) and 4-nitrobenzenesulfonyl (Ns) protected amines is achieved. Subsequent aza-Wacker oxidative cyclization or conjugate addition of the olefinated intermediates provides a variety of C-2 alkylated pyrrolidines. Three pyridine- and quinoline-based ligands are developed to match different classes of amine substrates, demonstrating a rare example of ligand-enabled C(sp(3))-H olefination reactions. The use of Ns protecting group to direct C(sp(3))-H activation of alkyl amines is also a significant step toward practical C-H functionalizations of alkyl amines.

  16. One-Pot and Efficient Synthesis of Triazolo[1,2-a]indazole-triones via Reaction of Arylaldehydes with Urazole and Dimedone Catalyzed by Silica Nanoparticles Prepared from Rice Husk

    Directory of Open Access Journals (Sweden)

    Asadollah Hassankhani

    2011-10-01

    Full Text Available A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  17. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk.

    Science.gov (United States)

    Hamidian, Hooshang; Fozooni, Samieh; Hassankhani, Asadollah; Mohammadi, Sayed Zia

    2011-10-26

    A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  18. Amines, Astrocytes and Arousal

    OpenAIRE

    Bazargani, N.; Attwell, D.

    2017-01-01

    Amine neurotransmitters, such as noradrenaline, mediate arousal, attention, and reward in the CNS. New data suggest that, from flies to mammals, a major mechanism for amine transmitter action is to raise astrocyte [Ca2+]i and release gliotransmitters that modulate neuronal activity and behavior.

  19. Modular functionalization of allenes to aminated stereotriads.

    Science.gov (United States)

    Adams, Christopher S; Boralsky, Luke A; Guzei, Ilia A; Schomaker, Jennifer M

    2012-07-04

    Nitrogen-containing stereotriads, compounds with three adjacent stereodefined carbons, are commonly found in biologically important molecules. However, the preparation of molecules bearing these motifs can be challenging. Herein, we describe a modular oxidation protocol which converts a substituted allene to a triply functionalized amine of the form C-X/C-N/C-Y. The key step employs a Rh-catalyzed intramolecular conversion of the allene to a strained bicyclic methylene aziridine. This reactive intermediate is further elaborated to the target products, often in one reaction vessel and with effective transfer of the axial chirality of the allene to point chirality in the stereotriad.

  20. Synthesis of benzimidazoles via iridium-catalyzed acceptorless dehydrogenative coupling.

    Science.gov (United States)

    Sun, Xiang; Lv, Xiao-Hui; Ye, Lin-Miao; Hu, Yu; Chen, Yan-Yan; Zhang, Xue-Jing; Yan, Ming

    2015-07-21

    Iridium-catalyzed acceptorless dehydrogenative coupling of tertiary amines and arylamines has been developed. A number of benzimidazoles were prepared in good yields. An iridium-mediated C-H activation mechanism is suggested. This finding represents a novel strategy for the synthesis of benzimidazoles.

  1. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  2. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting

    International Nuclear Information System (INIS)

    Bhagiyalakshmi, Margandan; Yun, Lee Ji; Anuradha, Ramani; Jang, Hyun Tae

    2010-01-01

    Mesoporous MCM-41, MCM-48 and SBA-15 were synthesized using Rice husk ash (RHA) as the silica source and their defective Si-OH sites were functionalized by 3-cholropropyltrimethoxysilane (CPTMS) which was subsequently grafted with amine compounds, Tris(2-aminoethyl)amine (TREN) and Tetraethylenepentamine (TEPA). X-ray powder diffraction (XRD) and BET results of the parent mesoporous silica suggested their closeness of structural properties to those obtained from conventional silica sources. CO 2 adsorption of branched amine TREN and straight chain amine TEPA at 25, 50 and 75 deg. C was obtained by Thermogravimetric Analyser (TGA) at atmospheric pressure. TREN grafted mesoporous silica showed 7% of CO 2 adsorption while TEPA grafted mesoporous silicas showed less CO 2 adsorption, which is due to the presence of isolated amine groups in TREN. TREN grafted mesoporous silicas were also observed to be selective towards CO 2 , thermally stable and recyclable. The order of CO 2 adsorption with respect to amount of amine grafting was observed to be MCM-48/TREN > MCM-41/TREN > SBA-15/TREN.

  3. Chlorodiethylaluminum supported on silica: A dinuclear aluminum surface species with bridging μ2-Cl-ligand as a highly efficient co-catalyst for the Ni-catalyzed dimerization of ethene

    KAUST Repository

    Kermagoret, Anthony

    2014-05-01

    Silica-supported chloro alkyl aluminum co-catalysts (DEAC@support) were prepared via Surface Organometallic Chemistry by contacting diethylaluminum chloride (DEAC) and high specific surface silica materials, i.e. SBA-15, MCM-41, and Aerosil SiO2. Such systems efficiently activate NiCl 2(PBu3)2 for catalytic ethene dimerization, with turnover frequency (TOF) reaching up to 498,000 molC2H4/ (molNi h) for DEAC@MCM-41. A detailed analysis of the DEAC@SBA-15 co-catalyst structure by solid-state aluminum-27 NMR at high-field (17.6 T and 20.0 T) and ultrafast spinning rates allows to detect six sites, characterized by a distribution of quadrupolar interaction principal values CQ and isotropic chemical shifts δiso. Identification of the corresponding Al-grafted structures was possible by comparison of the experimental NMR signatures with these calculated by DFT on a wide range of models for the aluminum species (mono- versus di-nuclear, mono- versus bis-grafted with bridging Cl or ethyl). Most of the sites were identified as dinuclear species with retention of the structure of DEAC, namely with the presence of μ2-Cl-ligands between two aluminum, and this probably explains the high catalytic performance of this silica-supported co-catalysts. © 2014 Elsevier Inc. All rights reserved.

  4. Oxidation of 2,4,6,-tri-chlorophenol catalyzed by iron phthalocyanines covalently bound to silica. Oxydation du 2,4,6-trichlorophenol catalyse par des phtalocyanines de fer greffees sur silice par liaisons covalentes

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, M.; Hadasch, A.; Meunier, B. (Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Laboratoire de Chimie de Coordination); Rabion, A. (Elf-Atochem, 64 - Artix (France). Centre de Recherche)

    1999-04-01

    The degradation of recalcitrant pollutants remains a high priority in order to preserve our environment. For example, chlorinated aromatic compounds are extremely persistent in the environment because of their slow biodegradation by microorganisms. One of the most notable toxic offenders is 2,4,6-tri-chlorophenol (TCP) which is produced by paper mills and also used as a biocide. Thus TCP is an obvious benchmark for research on the decontamination of waste waters. In this work, the covalent attachment of an iron phthalocyanine with chloro-sulfonyl substituents (FePcSO[sub 2]Cl) onto a functionalized 3-amino-propyl-silica has been achieved. This supported catalyst FePcSO[sub 2]Cl-silica is able to degrade a recalcitrant pollutant like TCP with hydrogen peroxide as oxidant. In order to improve the catalytic efficiency of the grafted iron phthalocyanine complex, modifications of the macrocycle substituents, passivation of the silica surface, variation of the loading of the carrier and addition of an organic co solvent to the reaction mixture were carried out. (authors) 21 refs.

  5. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  6. Sponges with covalently tethered amines for high-efficiency carbon capture

    KAUST Repository

    Qi, Genggeng

    2014-12-12

    © 2014 Macmillan Publishers Limited. All rights reserved. Adsorption using solid amine sorbents is an attractive emerging technology for energy-efficient carbon capture. Current syntheses for solid amine sorbents mainly based on physical impregnation or grafting-to methods (for example, aminosilane-grafting) lead to limited sorbent performance in terms of stability and working capacity, respectively. Here we report a family of solid amine sorbents using a grafting-from synthesis approach and synthesized by cationic polymerization of oxazolines on mesoporous silica. The sorbent with high amount of covalently tethered amines shows fast adsorption rate, high amine efficiency and sorbent capacity well exceeding the highest value reported to date for lowerature carbon dioxide sorbents under simulated flue gas conditions. The demonstrated efficiency of the new amine-immobilization chemistry may open up new avenues in the development of advanced carbon dioxide sorbents, as well as other nitrogen-functionalized systems.

  7. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed; Guillerm, Vincent; Weselinski, Lukasz Jan; Alkordi, Mohamed H.; Mohideen, Mohamed Infas Haja; Belmabkhout, Youssef

    2015-01-01

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  8. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed

    2015-05-28

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  9. Benzylamines via Iron-Catalyzed Direct Amination of Benzyl Alcohols

    NARCIS (Netherlands)

    Yan, Tao; Feringa, Ben L.; Barta, Katalin

    Benzylamines play a prominent role in numerous pharmaceutically active compounds. Thus, the development of novel, sustainable catalytic methodologies to provide access to these privileged structural motifs is of central importance. Herein we describe a systematic study for the construction of a

  10. Zinc catalyzed Guanylation reaction of Amines with Carbodiimides ...

    Indian Academy of Sciences (India)

    We report the highly chemo-selective catalytic addition of N–H bonds from ... an important class of compounds present in biologi- cally and pharmaceutically active molecules. They have received considerable attention due to their electronic.

  11. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    Science.gov (United States)

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Shu-wen; Liu, Li-jun; Zhang, Qian; Wang, Liang-yin [Liaocheng University, Liaocheng (China)

    2012-04-15

    Silica supported Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40} catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40} particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology

  13. Concise Redox Deracemization of Secondary and Tertiary Amines with a Tetrahydroisoquinoline Core via a Nonenzymatic Process.

    Science.gov (United States)

    Ji, Yue; Shi, Lei; Chen, Mu-Wang; Feng, Guang-Shou; Zhou, Yong-Gui

    2015-08-26

    A concise deracemization of racemic secondary and tertiary amines with a tetrahydroisoquinoline core has been successfully realized by orchestrating a redox process consisted of N-bromosuccinimide oxidation and iridum-catalyzed asymmetric hydrogenation. This compatible redox combination enables one-pot, single-operation deracemization to generate chiral 1-substituted 1,2,3,4-tetrahydroisoquinolines with up to 98% ee in 93% yield, offering a simple and scalable synthetic technique for chiral amines directly from racemic starting materials.

  14. Enzymatic network for production of ether amines from alcohols

    DEFF Research Database (Denmark)

    Palacio, Cyntia M.; Crismaru, Ciprian G.; Bartsch, Sebastian

    2016-01-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production...... of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed...... for reactions containing 10mM alcohol and up to 280mM ammonia corresponded well to predicted conversions. The results indicate that efficient amination can be driven by high concentrations of ammonia and may require improving enzyme robustness for scale-up....

  15. Fluorinated Amine Stereotriads via Allene Amination.

    Science.gov (United States)

    Liu, Lu; Gerstner, Nels C; Oxtoby, Lucas J; Guzei, Ilia A; Schomaker, Jennifer M

    2017-06-16

    The incorporation of fluorine into organic scaffolds often improves the bioactivity of pharmaceutically relevant compounds. C-F/C-N/C-O stereotriad motifs are prevalent in antivirals, neuraminidase inhibitors, and modulators of androgen receptors, but are challenging to install. An oxidative allene amination strategy using Selectfluor rapidly delivers triply functionalized triads of the form C-F/C-N/C-O, exhibiting good scope and diastereoselectivity for all syn products. The resulting stereotriads are readily transformed into fluorinated pyrrolidines and protected α-, β-, and γ-amino acids.

  16. Photooxidation of ethylene over Cu-modified and unmodified silica

    OpenAIRE

    Ichihashi, Yuichi; Matsumura, Yasuyuki

    2003-01-01

    Silica catalyzes photooxidation of ethylene to carbon dioxide and modification of copper on silica results in the lower reaction rate and partial production of ethylene oxide. The reaction does not proceed by the light irradiation through a color filter (λ>280 nm). ESR measurement indicates that radical oxygen species assignable T-shape Si − O3− can be produced on silica by UV irradiation at 77 K. The same species are also found on silica modified with copper by UV irradiation whi...

  17. Metal-Mediated Couplings of Primary Alcohols with Amines and Carbohydrates

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    . The reaction is proposed to proceed by initial dehydrogenation of the alcohol to the aldehyde, which stays coordinated to the ruthenium centre. Then, nucleophilic attack of the amine affords the hemiaminal, which is released from ruthenium and converted into the imine. Project 2: Tin-mediated regioselective 6...... from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex. The successful method development and application of a convenient and direct (one step) synthesis of imines from alcohols and amines is described. The developed method provides quick andextended access to structurally...... and amines have been coupled in the presence of the catalyst to afford the corresponding imines in moderate to good yields. Optically pure amines gave the corresponding imines without any sign of racemization. Moreover, the one-pot diastereoselective addition of different organometallic reagents to the imine...

  18. Environmentally friendly chemoselective oxidation of primary aliphatic amines by using a biomimetic electrocatalytic system.

    Science.gov (United States)

    Largeron, Martine; Chiaroni, Angèle; Fleury, Maurice-Bernard

    2008-01-01

    Environmentally friendly oxidation of primary aliphatic amines to imines has been successfully achieved, under metal-free conditions, by the use of diverse electrogenerated o-azaquinone mediators. High catalytic performance, together with high chemoselectivity, were observed with electron-poor o-azaquinone catalysts generated from 2-aminoresorcinol derivatives. Similar to copper amine oxidase enzymes, these mediators exhibited lower reactivity toward alpha-branched primary amines and no reactivity toward secondary amines. In the case of 3,4-aminophenol derivatives lacking a 2-hydroxy group, the generated o-azaquinone species failed to catalyze the oxidation of the amine to the corresponding imine. Further mechanistic considerations allowed a rationalization of the crucial role of the 2-hydroxy group in converting a catalytically inert species into a highly effective biomimetic catalyst.

  19. Iridium- and Ruthenium-Catalyzed N-alkylation of Amines with Alcohols and Amines

    DEFF Research Database (Denmark)

    Lorentz-Petersen, Linda Luise Reeh

    -helical propensity. Hereby, it was believed that more stable proteins would be obtained. Folding of the mutants was studied in terms of thermodynamics and kinetics by guanidine hydrochloride denaturation monitored by fluorescence. The results were unfortunately unreliable due to errors in the spectrofluorometer....... in the reaction, as ethyleneglycol and 1,2-ethylenediamine failed to produce piperazine. Introduction of a C-substituent on one or both of the starting materials gave Csubstituted piperazines in high yields. Synthesis of N-benzylpiperazine from ethyleneglycol and N-benzylethylenediamine was also successful. Self...... experiments were conducted and emphasized the importance of the Voigt reaction in the formation of the product. Protein folding During an external stay at The Scripps Research Institute, San Diego, California, USA, folding of the well-known protein CI2 was studied. Several mutants were synthetically prepared...

  20. Factors influencing phase-disengagement rates in solvent-extraction systems employing tertiary amine extractants

    International Nuclear Information System (INIS)

    Moyer, B.A.; McDowell, W.J.

    1981-01-01

    The primary purpose of the present investigation was to examine the effects of amine size and structure on phase disengagement. Nine commercial tertiary amines were tested together with four laboratory-quality amines for uranium extraction and both organic-continuous (OC) and aqueous-continuous (AC) phase disengagement under Amex-type conditions. Synthetic acid sulfate solutions with and without added colloidal silica and actual ore leach solutions were used as the aqueous phases. Phase disengagement results were correlated with amine size and branching and solution wetting behavior on a silicate (glass) surface. The results suggest that the performance of some Amex systems may be improved by using branched chain tertiary amine extractants of higher molecular weight than are now normally used

  1. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  2. The interaction of encapsulated pharmaceutical drugs with a silica matrix.

    Science.gov (United States)

    Morais, Everton C; Correa, Gabriel G; Brambilla, Rodrigo; Radtke, Claudio; Baibich, Ione Maluf; dos Santos, João Henrique Z

    2013-03-01

    A series of seven drugs, namely, fluoxetine, gentamicin, lidocaine, morphine, nifedipine, paracetamol and tetracycline, were encapsulated. The encapsulated systems were characterized using a series of complementary techniques: Fourier-transform infrared spectroscopy (FT-IR), diffusive reflectance spectroscopy in the UV-vis region (DRS) and X-ray photoelectron spectroscopy (XPS). According to the DRS spectra, most of the encapsulated systems showed a band shift of the maximum absorption when compared with the corresponding bare pharmaceutical. Additionally, after encapsulation, the drugs exhibited infrared band shifts toward higher wavenumbers, which in turn provided insight into potential sites for interaction with the silica framework. The amine group showed a band shift in the spectra of almost all the drugs (except nifedipine and tetracycline). This finding indicates the possibility of a hydrogen bonding interaction between the drug and the silica via electron donation from the amine group to the silica framework. XPS confirmed this interaction between the pharmaceuticals and the silica through the amine group. A correlation was observed between the textural characteristics of the solids and the spectroscopic data, suggesting that the amine groups from the pharmaceuticals were more perturbed upon encapsulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles.

    Science.gov (United States)

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-08-10

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

  4. Characterization of particulate amines

    International Nuclear Information System (INIS)

    Gundel, L.A.; Chang, S.G.; Clemenson, M.S.; Markowitz, S.S.; Novakov, T.

    1979-01-01

    The reduced nitrogen compounds associated with ambient particulate matter are chemically characterized by means of ESCA and proton activation analysis. Ambient particulate samples collected on silver filters in Berkeley, California were washed with water and organic solvents, and ESCA and proton activation analysis were performed in order to determine the composition of various nitrogen compounds and the total nitrogen content. It is found that 85% of the amines originally present in ambient particulate matter can be removed by water extraction, whereas the ammonium and nitrate are completely removed. An observed increase in ammonium ion in the extract, compared with its concentration in the original sample, coupled with the commensurate decrease in amine concentration, is attributed to the hydrolysis of amide groups, which may cause analytical methods based on extraction to yield erroneous results

  5. Organocatalytic asymmetric allylic amination of Morita–Baylis–Hillman carbonates of isatins

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2012-08-01

    Full Text Available The investigation of a Lewis base catalyzed asymmetric allylic amination of Morita–Baylis–Hillman carbonates derived from isatins afforded an electrophilic pathway to access multifunctional oxindoles bearing a C3-quaternary stereocenter, provided with good to excellent enantioselectivity (up to 94% ee and in high yields (up to 97%.

  6. Direct C-H amination and C-H chloroamination of 7-deazapurines

    Czech Academy of Sciences Publication Activity Database

    Sabat, Nazarii; Klečka, Martin; Slavětínská, Lenka; Klepetářová, Blanka; Hocek, Michal

    2014-01-01

    Roč. 4, č. 107 (2014), s. 62140-62143 ISSN 2046-2069 Grant - others:GA ČR(CZ) GAP207/12/0205 Institutional support: RVO:61388963 Keywords : catalyzed direct amination * cross - coupling reactions * 7-deazapurines Subject RIV: CC - Organic Chemistry Impact factor: 3.840, year: 2014

  7. Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations.

    Science.gov (United States)

    Ju, Minsoo; Weatherly, Cale D; Guzei, Ilia A; Schomaker, Jennifer M

    2017-08-07

    Asymmetric nitrene-transfer reactions are a powerful tool for the preparation of enantioenriched amine building blocks. Reported herein are chemo- and enantioselective silver-catalyzed aminations which transform di- and trisubstituted homoallylic carbamates into [4.1.0]-carbamate-tethered aziridines in good yields and with ee values of up to 92 %. The effects of the substrate, silver counteranion, ligand, solvent, and temperature on both the chemoselectivity and ee value were explored. Stereochemical models were proposed to rationalize the observed absolute stereochemistry of the aziridines, which undergo nucleophilic ring opening to yield enantioenriched amines with no erosion in stereochemical integrity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An efficient catalytic reductive amination: A facile one-pot access to ...

    Indian Academy of Sciences (India)

    An efficient catalytic reductive amination: A facile one-pot access to ... itors and in the manufacture of detergents and plastics.1 ... ammoniaborane/Ti(OiPr)4,5e ... demonstrated the first method for synthesis of 1,2- ... and column chromatography (Silica gel, n-hexane/ethyl .... supporting information at www.ias.ac.in/chemsci.

  9. The economics of amine usage

    International Nuclear Information System (INIS)

    Fountain, M.J.

    1994-01-01

    The EPRI computer programm, 'Aminemod', a PWR chemistry model, has been used to compare the technical advantages of the 'advanced' amines, ethanolamine, 1,2 diaminoethane and 5 aminopentanol over morpholine in generating an elevated pH in the moisture separator and the economics of using these amines has been assessed by using an MS Excel spreadsheet in conjunction with Aminemod. The advanced amines are capable of achieving 1 pH unit above neutrality, the EPRI target for prevention of erosion-corrison, at acceptable cost and, compared with 'conventional' amines, at considerably reduced ionic load on the condensate polisher. The exercise demonstrates that it is essential to evaluate the effect of an amine dosing regime on the total operating cost and that it is not possible to prejudge the economic outcome on the basis of an amine's purchase price. (orig.)

  10. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  11. Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C–N Cross-Coupling

    Science.gov (United States)

    2011-01-01

    A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N′-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C–N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores. PMID:22091952

  12. Quantitative Analysis and Efficient Surface Modification of Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hak-Sung Jung

    2012-01-01

    Full Text Available Aminofunctional trialkoxysilanes such as aminopropyltrimethoxysilane (APTMS and (3-trimethoxysilylpropyldiethylenetriamine (DETAS were employed as a surface modification molecule for generating monolayer modification on the surface of silica (SiO2 nanoparticles. We were able to quantitatively analyze the number of amine functional groups on the modified SiO2 nanoparticles by acid-base back titration method and determine the effective number of amine functional groups for the successive chemical reaction by absorption measurements after treating with fluorescent rhodamine B isothiocyanate (RITC molecules. The numbers of amine sites measured by back titration were 2.7 and 7.7 ea/nm2 for SiO2-APTMS and SiO2-DETAS, respectively, while the numbers of effective amine sites measured by absorption calibration were about one fifth of the total amine sites, namely, 0.44 and 1.3 ea/nm2 for SiO2-APTMS(RITC and SiO2-DETAS(RITC, respectively. Furthermore, it was confirmed that the reactivity of amino groups on the surface-modified silica nanoparticles could be maintained in ethanol for more than 1.5 months without showing any significant differences in the reactivity.

  13. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.

    Science.gov (United States)

    Liu, Lianghui; Wang, Zikuan; Fu, Xuefeng; Yan, Chun-Hua

    2012-11-16

    In the presence of a catalytic amount of radical initiator AIBN, primary amines are oxidatively coupled to imines and tertiary amines are cyanated to α-aminonitriles. These "metal-free" aerobic oxidative coupling reactions may find applications in a wide range of "green" oxidation chemistry.

  14. The economics of amine usage

    International Nuclear Information System (INIS)

    Fountain, M.J.

    1994-01-01

    Research carried out over the past decade in the USA (funded by EPRI) and by the CEGB/Nuclear Electric in the UK has identified several thermally stable, low-toxicity 'advanced' amines with good high-temperature basicity and low steam-water distribution ratio. As a direct result of this work several US PWR stations are now evaluating monoethanolamine (ETA) and Nuclear Electric's Wylfa Power Station (magnox) now doses 5 aminopentanol (5AP) instead of AMP, which had successfully combated erosion-corrosion for the past nine years. It has recently been stated that the use of 5AP ''...could save Nuclear Electric up to 1.5M pounds per year''. To provide US power station chemists with a tool for tailoring amine dosage to their own plant requirements EPRI has developed a computer model, Aminmod, which can, with user-defined circuit parameters and amine feed concentrations, calculate amine concentrations and pH(t) values at various points around the circuit. To complement this model a user-friendly spreadsheet program is being developed which will work in conjunction with Aminmod, via active links, to calculate the total operating cost associated with the selected amine dosing regime and compare alternative scenarios. This paper discusses the relationship between the technical and economic aspects of choosing an amine dosing regime and draws on combined Aminmod/spreadsheet results to illustrate how differences in amine properties can influence the optimum economic solution for a typical PWR. (author). 3 figs., 2 tabs., 5 refs

  15. Ordered mesoporous silica-based inorganic nanocomposites

    International Nuclear Information System (INIS)

    Wang Qingqing; Shantz, Daniel F.

    2008-01-01

    This article reviews the synthesis and characterization of nanoparticles and nanowires grown in ordered mesoporous silicas (OMS). Summarizing work performed over the last 4 years, this article highlights the material properties of the final nanocomposite in the context of the synthesis methodology employed. While certain metal-OMS systems (e.g. gold in MCM-41) have been extensively studied this article highlights that there is a rich set of chemistries that have yet to be explored. The article concludes with some thoughts on future developments and challenges in this area. - Graphical abstract: HAADF TEM image of gold nanoparticles in amine-functionalized MCM-41 (from Ref. [22])

  16. Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst

    KAUST Repository

    Bouhrara, Mohamed; Ranga, Chanakya; Fihri, Aziz; Shaikh, Rafik; Sarawade, Pradip; Emwas, Abdul-Hamid M.; Hedhili, Mohamed N.; Polshettiwar, Vivek

    2013-01-01

    We observed that support morphology has dramatic effects on the performance of nitridated silica as a base. By simply replacing conventional silica supports (such as SBA-15 and MCM-41) with fibrous nanosilica (KCC-1), we observed multifold enhancement in the catalytic activity of the nitridated solid base for Knoevenagel condensations and transesterification reactions. This enhancement of the activity can be explained by amine accessibility, which is excellent in KCC-1 due to its open and flexible fibrous structure, that facilitates penetration and interaction with basic amine sites. © 2013 American Chemical Society.

  17. Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst

    KAUST Repository

    Bouhrara, Mohamed

    2013-09-03

    We observed that support morphology has dramatic effects on the performance of nitridated silica as a base. By simply replacing conventional silica supports (such as SBA-15 and MCM-41) with fibrous nanosilica (KCC-1), we observed multifold enhancement in the catalytic activity of the nitridated solid base for Knoevenagel condensations and transesterification reactions. This enhancement of the activity can be explained by amine accessibility, which is excellent in KCC-1 due to its open and flexible fibrous structure, that facilitates penetration and interaction with basic amine sites. © 2013 American Chemical Society.

  18. Amine synergism in uranium extraction

    International Nuclear Information System (INIS)

    Rinelli, G.; Abbruzzese, C.

    1977-01-01

    Commercial products based on C 8 to C 12 tertiary amine mixtures are now widely used in the solvent extraction of uranium from sulphuric pregnant solutions. The satisfactory results generally obtained have never required an analysis of the synergistic effects of amine combinations similar to that carried out for the organo-phosphorus compounds. In the research described the increase in the extraction power of an organic phase composed of an amine binary mixture was studied with regard to an aqueous solution from the sulphuric acid treatment of uranium ore. On the basis of the experimental results obtained, it is possible to select the best composition of the amine mixture to ensure a percentage increase in uranium recovery. Bearing in mind the tendency for the yellow-cake price to rise, the study is considered to be a useful contribution in the context of commercial products currently available on the market. (author)

  19. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.

    Science.gov (United States)

    Wendlandt, Alison E; Stahl, Shannon S

    2012-06-01

    Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.

  20. Rhodium Catalyzed Decarbonylation

    DEFF Research Database (Denmark)

    Garcia Suárez, Eduardo José; Kahr, Klara; Riisager, Anders

    2017-01-01

    Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope...

  1. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    Science.gov (United States)

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  2. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  3. Dynamics of CO 2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    Packed bed breakthrough experiments are reported for commercial zeolite 13X and 3-aminopropyl-functionalized SBA-15 silica materials with three different amine loadings. Mass and heat transfer dynamics for all four materials are modeled successfully. Amine adsorbents with open pores are found to exhibit faster mass diffusion rates compared to zeolite 13X. When amine loading is increased by coupling aminopropyl groups, premature breakthrough combined with a long tail is observed. Contrary to conventional physisorbants, finite heat losses to the column wall do not explain the long breakthrough tail. A rate model that accounts for heterogeneity in diffusion was found to accurately capture the breakthrough shape of the high loading material. Batch uptake measurements support the hypothesis that slow diffusion through the polymer phase is what hampers adsorption kinetics in the high amine loading adsorbent. The results emphasize the importance of designing materials that are not overloaded with amine sites, as excessive amine loadings can lead to depressed adsorption kinetics and premature column breakthrough. © 2012 American Chemical Society.

  4. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, Roman Vladimirovich [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a β-hydrogen in the vinylic halide results in β-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the α-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  5. Amine Swingbed Payload Project Management

    Science.gov (United States)

    Walsch, Mary; Curley, Su

    2013-01-01

    The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the Orion Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the Orion vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6 ]person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload-the swingbed unit itself-launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open -loop Orion application as well as the closed-loop ISS application.

  6. Study of Catalyst, Aging Time and Surfactant Effects on Silica Inorganic Polymer Characteristics

    Directory of Open Access Journals (Sweden)

    M. Pakizeh

    2007-06-01

    Full Text Available In the present study the sol-gel method is used for synthesis of amorphous nanostructure silica polymer using tetraethoxysilane (TEOS as silicon source. This polymer can be used in manufacturing of nanoporous asymmetricmembranes. The effect of catalyst on silica particle size has been studied under acidic and basic conditions.زAcid-catalyzed reaction leads to the formation of fine particles while the base-catalyzed reaction produceslarger particles. The presence of cationic template surfactant namely cetyl pyridinium bromide (CPBزdirects the structural formation of the polymer by preventing the highly branched polymeric clusters. This will increase the effective area of the produced silica membrane. Nitrogen physisorption tests by Brunaver- Emmett-Teller (BET and Barrett-Joyner-Halenda (BJH methods revealed that the surface area of the membrane increases significantly around 5-folds when acid-catalyzed reaction is used. 29Si-NMR test is also used to study the aging time effect on the level of silica polymer branching. The results show that in acidic condition, aging time up to three weeks can still affect branching. The calcinations process in which the organic materials and CPB (surfactant are burned and released from the silica particles, is studied on template free silica materials as well as templated silica materials using TGA and DTA techniques.

  7. Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer

    International Nuclear Information System (INIS)

    Pospiskova, K.; Sebela, M.; Safarik, I.; Kuncova, G.

    2013-01-01

    We have developed a fibre optic biosensor with incorporated magnetic microparticles for the determination of biogenic amines. The enzyme diamine oxidase from Pisum sativum was immobilized either on chitosan-coated magnetic microparticles or on commercial microbeads modified with a ferrofluid. Both the immobilized enzyme and the ruthenium complex were incorporated into a UV-cured inorganic-organic polymer composite and deposited on a lens that was connected, by optical fibres, to an electro-optical detector. The enzyme catalyzes the oxidation of amines under consumption of oxygen. The latter was determined by measuring the quenched fluorescence lifetime of the ruthenium complex. The limits of detection for the biogenic amines putrescine and cadaverine are 25-30 μmol L -1 , and responses are linear up to a concentration of 1 mmol L -1 . (author)

  8. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C-H amination.

    Science.gov (United States)

    Hyster, Todd K; Farwell, Christopher C; Buller, Andrew R; McIntosh, John A; Arnold, Frances H

    2014-11-05

    We recently demonstrated that variants of cytochrome P450BM3 (CYP102A1) catalyze the insertion of nitrogen species into benzylic C-H bonds to form new C-N bonds. An outstanding challenge in the field of C-H amination is catalyst-controlled regioselectivity. Here, we report two engineered variants of P450BM3 that provide divergent regioselectivity for C-H amination-one favoring amination of benzylic C-H bonds and the other favoring homo-benzylic C-H bonds. The two variants provide nearly identical kinetic isotope effect values (2.8-3.0), suggesting that C-H abstraction is rate-limiting. The 2.66-Å crystal structure of the most active enzyme suggests that the engineered active site can preorganize the substrate for reactivity. We hypothesize that the enzyme controls regioselectivity through localization of a single C-H bond close to the iron nitrenoid.

  9. Ligand-Enabled γ-C(sp3)–H Olefination of Amines: En Route to Pyrrolidines

    Science.gov (United States)

    Jiang, Heng; He, Jian; Liu, Tao

    2016-01-01

    Pd(II)-catalyzed olefination of γ-C(sp3)–H bonds of triflyl (Tf) and 4-nitrobenzenesulfonyl (Ns) protected amines is achieved. Subsequent aza-Wacker oxidative cyclization or conjugate addition of the olefinated intermediates provides a variety of C-2 alkylated pyrrolidines. Three pyridine- and quinoline-based ligands are developed to match different classes of amine substrates, demonstrating a rare example of ligand-enabled C(sp3)–H olefination reaction. The use of Ns protecting group to direct C(sp3)–H activation of alkyl amine is also a significant step towards practical C–H functionalizations of alkyl amines. PMID:26796676

  10. CO_2 capture by amine-functionalized nanoporous materials: A review

    International Nuclear Information System (INIS)

    Chen, Chao; Kim, Jun; Ahn, Wha-Seung

    2014-01-01

    Amine-functionalized nanoporous materials can be prepared by the incorporation of diverse organic amine moieties into the pore structures of a range of support materials, such as mesoporous silica and alumina, zeolite, carbon and metal organic frameworks (MOFs), either by direct functionalization or post-synthesis through physical impregnation or grafting. These hybrid materials have great potential for practical applications, such as dry adsorbents for postcombustion CO_2 capture, owing to their high CO_2 capture capacity, high capture selectivity towards CO_2 compared to other gases, and excellent stability. This paper summarizes the preparation methods and CO_2 capture performance based on the equilibrium CO_2 uptake of a range of amine-functionalized nanoporous materials

  11. Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids.

    KAUST Repository

    Fernandes, Nikhil J

    2013-02-04

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent.

  12. Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids.

    KAUST Repository

    Fernandes, Nikhil J; Akbarzadeh, Johanna; Peterlik, Herwig; Giannelis, Emmanuel P

    2013-01-01

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent.

  13. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  14. Sodium Perborate Oxidation of an Aromatic Amine

    Science.gov (United States)

    Juestis, Laurence

    1977-01-01

    Describes an experiment involving the oxidation of aromatic primary amines to the corresponding azo compound; suggests procedures for studying factors that influence the yield of such a reaction, including the choice of solvent and the oxidant-amine ratio. (MLH)

  15. Surface functionalization of microwave plasma-synthesized silica nanoparticles for enhancing the stability of dispersions

    Science.gov (United States)

    Sehlleier, Yee Hwa; Abdali, Ali; Schnurre, Sophie Marie; Wiggers, Hartmut; Schulz, Christof

    2014-08-01

    Gas phase-synthesized silica nanoparticles were functionalized with three different silane coupling agents (SCAs) including amine, amine/phosphonate and octyltriethoxy functional groups and the stability of dispersions in polar and non-polar dispersing media such as water, ethanol, methanol, chloroform, benzene, and toluene was studied. Fourier transform infrared spectroscopy showed that all three SCAs are chemically attached to the surface of silica nanoparticles. Amine-functionalized particles using steric dispersion stabilization alone showed limited stability. Thus, an additional SCA with sufficiently long hydrocarbon chains and strong positively charged phosphonate groups was introduced in order to achieve electrosteric stabilization. Steric stabilization was successful with hydrophobic octyltriethoxy-functionalized silica nanoparticles in non-polar solvents. The results from dynamic light scattering measurements showed that in dispersions of amine/phosphonate- and octyltriethoxy-functionalized silica particles are dispersed on a primary particle level. Stable dispersions were successfully prepared from initially agglomerated nanoparticles synthesized in a microwave plasma reactor by designing the surface functionalization.

  16. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  17. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  18. Copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines: synthesis of imidazopyridine derivatives.

    Science.gov (United States)

    Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua

    2013-12-02

    A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Caffeine-catalyzed gels.

    Science.gov (United States)

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Copper-catalyzed oxidative Heck reactions between alkyltrifluoroborates and vinyl arenes.

    Science.gov (United States)

    Liwosz, Timothy W; Chemler, Sherry R

    2013-06-21

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification, and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented.

  1. γ-Alumina Nanoparticle Catalyzed Efficient Synthesis of Highly Substituted Imidazoles

    Directory of Open Access Journals (Sweden)

    Bandapalli Palakshi Reddy

    2015-10-01

    Full Text Available γ-Alumina nano particle catalyzed multi component reaction of benzil, arylaldehyde and aryl amines afforded the highly substituted 1,2,4,5-tetraaryl imidazoles with good to excellent yield in less reaction time under the sonication as well as the conventional methods. Convenient operational simplicity, mild conditions and the reusability of catalyst were the other advantages of this developed protocol.

  2. Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea.

    Science.gov (United States)

    Zhao, Qingyang; Wen, Jialin; Tan, Renchang; Huang, Kexuan; Metola, Pedro; Wang, Rui; Anslyn, Eric V; Zhang, Xumu

    2014-08-04

    Asymmetric hydrogenation of unprotected NH imines catalyzed by rhodium/bis(phosphine)-thiourea provided chiral amines with up to 97% yield and 95% ee. (1)H NMR studies, coupled with control experiments, implied that catalytic chloride-bound intermediates were involved in the mechanism through a dual hydrogen-bonding interaction. Deuteration experiments proved that the hydrogenation proceeded through a pathway consistent with an imine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  4. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

    International Nuclear Information System (INIS)

    Cebrián, Virginia; Yagüe, Clara; Arruebo, Manuel; Martín-Saavedra, Francisco M.; Santamaría, Jesus; Vilaboa, Nuria

    2011-01-01

    Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle–plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

  5. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, Virginia [Hospital Universitario La Paz-IdiPAZ (Spain); Yaguee, Clara; Arruebo, Manuel, E-mail: arruebom@unizar.es [University of Zaragoza, Aragon Nanoscience Institute (INA), C/Mariano Esquillor, Edif. I-D (Spain); Martin-Saavedra, Francisco M. [Hospital Universitario La Paz-IdiPAZ (Spain); Santamaria, Jesus [CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ (Spain)

    2011-09-15

    Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle-plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

  6. Solid amine sorbents for CO2 capture by chemical adsorption: A review

    Directory of Open Access Journals (Sweden)

    Elif Erdal Ünveren

    2017-03-01

    Full Text Available Amines are well-known for their reversible reactions with CO2, which make them ideal for CO2 capture from several gas streams, including flue gas. In this respect, selective CO2 absorption by aqueous alkanolamines is the most mature technology but the process is energy intensive and has also corrosion problems. Both disadvantages can be diminished to a certain extent by chemical adsorption of CO2 selectively. The most important element of the chemical adsorption of CO2 involves the design and development of a suitable adsorbent which consist of a porous support onto which an amine is attached or immobilized. Such an adsorbent is often called as solid amine sorbent. This review covers solid amine-based studies which are developed and published in recent years. First, the review examines several different types of porous support materials, namely, three mesoporous silica (MCM-41, SBA-15 and KIT-6 and two polymeric supports (PMMA and PS for CO2 adsorption. Emphasis is given to the synthesis, modifications and characterizations -such as BET and PXRD data-of them. Amination of these supports to obtain a solid amine sorbent through impregnation or grafting is reviewed comparatively. Focus is given to the adsorption mechanisms, material characteristics, and synthesis methods which are discussed in detail. Significant amount of original data are also presented which makes this review unique. Finally, relevant CO2 adsorption (or equilibrium capacity data, and cyclic adsorption/desorption performance and stability of important classes of solid amine sorbents are critically reviewed. These include severa PEI or TEPA impregnated adsorbents and APTES-grafted systems.

  7. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  8. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved......, the networks of environmental professionals that work in the environmental organisation, in consulting and regulatory enforcement, and dominating business cultures. These have previously been identified in the literature as individually significant in relation to the evolving environmental agendas...... they are implemented in and how the changing context is reflected in the environmental objectives that are established and prioritised. Our argument is, that the ability of the standard to achieve an impact is dependant on the constitution of ’coherent’ environmental issues in the context, where the management system...

  9. Variability of biological effects of silicas: Different degrees of activation of the fifth component of complement by amorphous silicas

    International Nuclear Information System (INIS)

    Governa, Mario; Amati, Monica; Fenoglio, Ivana; Valentino, Matteo; Coloccini, Sabrina; Bolognini, Lucia; Carlo Botta, Gian; Emanuelli, Monica; Pierella, Francesca; Volpe, Anna Rita; Astolfi, Paola; Carmignani, Marco; Fubini, Bice

    2005-01-01

    A biogenic and a pyrogenic amorphous silica were incubated in normal human plasma and compared on a per unit surface basis for their ability to split C5 molecules and yield small C5a peptides. Since C5a peptides induce selective chemotactic attraction of polymorphonuclear leukocytes (PMN), measurement of PMN-induced chemotaxis was used as an index of C5 activation. Though to a lesser extent than the crystalline forms, amorphous silicas can promote the cleavage of C5 protein and generation of C5a-like fragment. The biogenic silica, which differs from the pyrogenic variety in particle shape, level of contaminants, and degree of surface hydrophilicity, besides specific surface, induced a greater response. Both silicas activated C5 through a process which seems to involve multiple events similar to those induced by crystalline silica. C5 molecules are adsorbed and hydroxyl radicals are generated through Haber Weiss cycles catalyzed by the redox-active iron present at the particle surface either as trace impurities or chelated from plasma by silanol groups. In turn, these radicals convert native C5 to an oxidized C5-like form C5(H 2 O 2 ). Finally, C5(H 2 O 2 ) is cleaved by protease enzymatic action of plasma kallikrein activated by the same silica dusts, yielding a product, C5a(H 2 O 2 ), having the same functional characteristic as C5a

  10. Molecular imprinting at walls of silica nanotubes for TNT recognition.

    Science.gov (United States)

    Xie, Chenggen; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Guan, Guijian; Zhang, Zhongping

    2008-01-15

    This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid-base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a better site accessibility and lower mass-transfer resistance. Therefore, greater capacity and faster kinetics of uptaking target species were achieved. The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.

  11. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams. In particular, these materials are being extensively studied for the adsorption of CO 2 from simulated flue gas streams, with an eye towards utilizing these materials as part of a post-combustion carbon capture process at large flue gas producing installations, such as coal-fired electricity-generating power plants. In this Application Article, the utilization of amine-modified organic-inorganic hybrid materials is discussed, focusing on important attributes of the materials, such as (i) CO 2 adsorption capacities, (ii) adsorption and desorption kinetics, and (iii) material stability, that will determine if these materials may one day be useful adsorbents in practical CO 2 capture applications. Specific research needs and limitations associated with the current body of work are identified. © 2011 The Royal Society of Chemistry.

  12. Supported polytertiary amines: highly efficient and selective SO2 adsorbents.

    Science.gov (United States)

    Tailor, Ritesh; Abboud, Mohamed; Sayari, Abdelhamid

    2014-01-01

    Tertiary amine containing poly(propyleneimine) second (G2) and third (G3) generation dendrimers as well as polyethyleneimine (PEI) were developed for the selective removal of SO2. N-Alkylation of primary and secondary amines into tertiary amines was confirmed by FTIR and NMR analysis. Such modified polyamines were impregnated on two nanoporous supports, namely, SBA-15PL silica with platelet morphology and ethanol-extracted pore-expanded MCM-41 (PME) composite. In the presence of 0.1% SO2/N2 at 23 °C, the uptake of modified PEI, G2, and G3 supported on SBA-15PL was 2.07, 2.35, and 1.71 mmol/g, respectively; corresponding to SO2/N ratios of 0.22, 0.4, and 0.3. Under the same conditions, the SO2 adsorption capacity of PME-supported modified PEI and G3 was significantly higher, reaching 4.68 and 4.34 mmol/g, corresponding to SO2/N ratios of 0.41 and 0.82, respectively. The working SO2 adsorption capacity decreased with increasing temperature, reflecting the exothermic nature of the process. The adsorption capacity of these materials was enhanced dramatically in the presence of humidity in the gas mixture. FTIR data before SO2 adsorption and after adsorption and regeneration did not indicate any change in the materials. Nonetheless, the SO2 working capacity decreased in consecutive adsorption/regeneration cycles due to evaporation of impregnated polyamines, rather than actual deactivation. FTIR and (13)C and (15)N CP-MAS NMR of fresh and SO2 adsorbed modified G3 on PME confirmed the formation of a complexation adduct.

  13. Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines.

    Science.gov (United States)

    Tang, Xinxin; Jia, Xiangqing; Huang, Zheng

    2018-03-21

    Alkanes, the main constituents of petroleum, are attractive feedstocks for producing value-added chemicals. Linear aldehydes and amines are two of the most important building blocks in the chemical industry. To date, there have been no effective methods for directly converting n-alkanes to linear aldehydes and linear amines. Here, we report a molecular dual-catalyst system for production of linear aldehydes via regioselective carbonylation of n-alkanes. The system is comprised of a pincer iridium catalyst for transfer-dehydrogenation of the alkane using t-butylethylene or ethylene as a hydrogen acceptor working sequentially with a rhodium catalyst for olefin isomerization-hydroformylation with syngas. The system exhibits high regioselectivity for linear aldehydes and gives high catalytic turnover numbers when using ethylene as the acceptor. In addition, the direct conversion of light alkanes, n-pentane and n-hexane, to siloxy-terminated alkyl aldehydes through a sequence of Ir/Fe-catalyzed alkane silylation and Ir/Rh-catalyzed alkane carbonylation, is described. Finally, the Ir/Rh dual-catalyst strategy has been successfully applied to regioselective alkane aminomethylation to form linear alkyl amines.

  14. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  15. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  16. Manganese-Catalyzed Aminomethylation of Aromatic Compounds with Methanol as a Sustainable C1 Building Block.

    Science.gov (United States)

    Mastalir, Matthias; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2017-07-05

    This study represents the first example of a manganese-catalyzed environmentally benign, practical three-component aminomethylation of activated aromatic compounds including naphtols, phenols, pyridines, indoles, carbazoles, and thiophenes in combination with amines and MeOH as a C1 source. These reactions proceed with high atom efficiency via a sequence of dehydrogenation and condensation steps which give rise to selective C-C and C-N bond formations, thereby releasing hydrogen and water. A well-defined hydride Mn(I) PNP pincer complex, recently developed in our laboratory, catalyzes this process in a very efficient way, and a total of 28 different aminomethylated products were synthesized and isolated yields of up to 91%. In a preliminary study, a related Fe(II) PNP pincer complex was shown to catalyze the methylation of 2-naphtol rather than its aminomethylation displaying again the divergent behavior of isoelectronic Mn(I) and Fe(II) PNP pincer systems.

  17. Low-temperature specific-heat and thermal-conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    Specific heat, C(p), and thermal conductivity, lambda, have been measured on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Results for both C(p)(T) and lambda(T) confirm that the different length-scale regions observed in the aerogel structure are reflected...

  18. Low-temperature specific heat and thermal conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Sleator, T.; Bernasconi, A.; Posselt, D.

    1991-01-01

    Specific-heat and thermal-conductivity measurements were made on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Evidence for a crossover between regimes of characteristically different excitations was observed. The data analysis indicates a "bump" in the density...

  19. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.

    Science.gov (United States)

    Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros

    2015-05-18

    We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.

  20. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  1. Novel bioreducible poly(amido amine)s for highly efficient gene delivery

    NARCIS (Netherlands)

    Lin, C.; Zhong, Zhiyuan; Lok, Martin C.; Jiang, Xulin; Hennink, Wim E.; Feijen, Jan; Engbersen, Johannes F.J.

    2007-01-01

    A series of novel bioreducible poly(amido amine)s containing multiple disulfide linkages (SS-PAAs) were synthesized and evaluated as nonviral gene vectors. These linear SS-PAAs could be easily obtained by Michael-type polyaddition of various primary amines to the disulfide-containing cystamine

  2. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    Science.gov (United States)

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  3. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  4. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    Science.gov (United States)

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  5. Interferences of Silica Nanoparticles in Green Fluorescent Protein Folding Processes.

    Science.gov (United States)

    Klein, Géraldine; Devineau, Stéphanie; Aude, Jean Christophe; Boulard, Yves; Pasquier, Hélène; Labarre, Jean; Pin, Serge; Renault, Jean Philippe

    2016-01-12

    We investigated the relationship between unfolded proteins, silica nanoparticles and chaperonin to determine whether unfolded proteins could stick to silica surfaces and how this process could impair heat shock protein activity. The HSP60 catalyzed green fluorescent protein (GFP) folding was used as a model system. The adsorption isotherms and adsorption kinetics of denatured GFP were measured, showing that denaturation increases GFP affinity for silica surfaces. This affinity is maintained even if the surfaces are covered by a protein corona and allows silica NPs to interfere directly with GFP folding by trapping it in its unstructured state. We determined also the adsorption isotherms of HSP60 and its chaperonin activity once adsorbed, showing that SiO2 NP can interfere also indirectly with protein folding through chaperonin trapping and inhibition. This inhibition is specifically efficient when NPs are covered first with a layer of unfolded proteins. These results highlight for the first time the antichaperonin activity of silica NPs and ask new questions about the toxicity of such misfolded proteins/nanoparticles assembly toward cells.

  6. Intolerance to dietary biogenic amines: A review

    NARCIS (Netherlands)

    Jansen, S.C.; Dusseldorp, M. van; Bottema, K.C.; Dubois, A.E.J.

    2003-01-01

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allerg*, intoler*, and

  7. Intolerance to dietary biogenic amines : a review

    NARCIS (Netherlands)

    Jansen, SC; van Dusseldorp, M; Bottema, KC; Dubois, AEJ

    Objective: To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. Data Sources: MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allergen intoler*, and

  8. Silica encapsulation of luminescent silicon nanoparticles: stable and biocompatible nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Vincent [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France); Rivolta, Ilaria [University of Milano-Bicocca, Department of Experimental Medicine (DIMS) (Italy); Vincent, Julien [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France); Raccurt, Olivier [CEA Grenoble, Department of Nano Materials, NanoChemistry and NanoSafety Laboratory (DRT/LITEN/DTNM/LCSN) (France); Rouzaud, Jean-Noel [Ecole Normale superieure de Paris, Laboratoire de Geologie (France); Miserrochi, Giuseppe [University of Milano-Bicocca, Department of Experimental Medicine (DIMS) (Italy); Doris, Eric [CEA, Service de Chimie Bioorganique et de Marquage, iBiTecS (France); Reynaud, Cecile; Herlin-Boime, Nathalie, E-mail: nathalie.herlin@cea.fr [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France)

    2012-02-15

    This article presents a process for surface coating and functionalization of luminescent silicon nanoparticles. The particles were coated with silica using a microemulsion process that was adapted to the fragile silicon nanoparticles. The as-produced core-shell particles have a mean diameter of 35 nm and exhibit the intrinsic photoluminescence of the silicon core. The silica layer protects the core from aqueous oxidation for several days, thus allowing the use of the nanoparticles for biological applications. The nanoparticles were further coated with amines and functionalized with polyethylene glycol chains and the toxicity of the particles has been evaluated at the different stages of the process. The core-shell nanoparticles exhibit no acute toxicity towards lung cells, which is promising for further development.

  9. Catalytic silica particles via template-directed molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.S.; Clark, D.S.; Gaber, B.P.

    2000-02-22

    The surfaces of silica particle were molecularly imprinted with an {alpha}-chymotrypsin transition-state analogue (TSA) by utilizing the technique of template-directed synthesis of mineralized materials. The resulting catalytic particles hydrolyzed amides in an enantioselective manner. A mixture of a nonionic surfactant and the acylated chymotrysin TSA, with the TSA acting as the headgroup at the surfactant-water interface, was used to form a microemulsion for silica particle formation. Incorporation of amine-, dihydroimidazole-, and carboxylate-terminated trialkoxysilanes into the particles during imprinting resulted in enhancement of the rates of amide hydrolysis. Acylated imprint molecules formed more effective imprints in the presence of the functionalized silanes than nonacylated imprint molecules. Particles surface-imprinted with the chymotrypsin TSA were selective for the trypsin substrate, and particles surface-imprinted with the L-isomer of the enzyme TSA were enantioselective for the D-isomer of the substrate.

  10. Amine Measurements in Boreal Forest Air

    Science.gov (United States)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  11. Dynamics of CO 2 Adsorption on Amine Adsorbents. 1. Impact of Heat Effects

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    The packed bed heat and mass transfer dynamics of CO2 adsorption onto a 3-aminopropylsilyl-functionalized SBA-15 silica material are reported. Concentration measurements at the outlet of the packed bed and temperature profiles inside the bed are measured simultaneously. Heat and mass transfer models in conjunction with the linear driving force rate model are used to simulate the concentration and temperature profiles in the bed. The heat and mass transfer processes in the amine adsorbent packed bed are successfully captured by the model, and comparison of isothermal and nonisothermal models reveals that isothermal models provide an accurate description of the dynamic mass transport behavior in the adsorption column under the experimental conditions used in this study. The results help establish that under certain experimental conditions, heat effects in amine adsorbent packed beds have a negligible effect on CO2 breakthrough, and simple isothermal models can be used to accurately assess adsorption kinetics. © 2012 American Chemical Society.

  12. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    International Nuclear Information System (INIS)

    Majewski, Peter; Keegan, Alexandra

    2012-01-01

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g silica . Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10 2 and 10 4 cfu/mL.

  13. Extraction of sulphates by long chain amines

    International Nuclear Information System (INIS)

    Boirie, Ch.

    1959-05-01

    The extraction of sulphuric acid by long chain amines in organic solution has been studied with a view to determining the value of the stability constants of the amine sulphates and bi-sulphates formed. We have concentrated chiefly on uranium sulphate and thorium sulphate. The formulae of the complexes extractable with amines have been established, as well as the corresponding dissociation constants. We have observed that for uranium sulphate the formula of the complex depends only on the nature of the amine, whereas for thorium this formula varies with the amine structure. From the formulae determined and the value of the constants calculated, we have been able to establish the best conditions for uranium and thorium extraction and also for a separation of these two elements. Finally we propose an application of this study to the determination of uranium in ores, where the separation of uranium by this method is particularly easy and complete. (author) [fr

  14. Investigation into the role of silica in lithium polysulfide adsorption for lithium sulfur battery

    International Nuclear Information System (INIS)

    Kim, Miso; Kang, Sung-Hwan; Manuel, James; Zhao, Xiaohui; Cho, Kwon Koo; Ahn, Jou Hyeon

    2015-01-01

    Highlights: • Amine functionalized silica nanoparticles (AFSN) were prepared. • Polysulfide adsorption studies were carried out with silica nanoparticles and AFSN. • Sulfur cathodes were prepared with SN and AFSN for Li–S batteries. • AFSN showed excellent polysulfide adsorption. - Abstract: A new type of sulfur electrodes with the ability for polysulfide adsorption was prepared by incorporating silica nanoparticles (SN) or amine functionalized silica nanoparticles (AFSN). AFSN was synthesized by a simple and cost-effective method. The functionalization and surface morphology of silica were confirmed with Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. Polysulfide adsorption studies were carried out using UV–vis spectrometer, which confirmed the excellent adsorption of polysulfides by AFSN. Interaction of polysulfides with SN or AFSN was studied using FTIR and FT-Raman spectroscopy. The effective polysulfide adsorption by SN and AFSN leads to good and stable cycle performance of lithium sulfur cells. The results show that the incorporation of SN or AFSN with sulfur is a promising method to prepare cathode material for lithium sulfur batteries

  15. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  16. Primary amine/CSA ion pair: A powerful catalytic system for the asymmetric enamine catalysis

    KAUST Repository

    Liu, Chen; Zhu, Qiang; Huang, Kuo-Wei; Lu, Yixin

    2011-01-01

    A novel ion pair catalyst containing a chiral counteranion can be readily derived by simply mixing cinchona alkaloid-derived diamine with chiral camphorsulfonic acid (CSA). A mixture of 9-amino(9-deoxy)epi-quinine 8 and (-)-CSA was found to be the best catalyst with matching chirality, enabling the direct amination of α-branched aldehydes to proceed in quantitative yields and with nearly perfect enantioselectivities. A 0.5 mol % catalyst loading was sufficient to catalyze the reaction, and a gram scale enantioselective synthesis of biologically important α-methyl phenylglycine has been successfully demonstrated. © 2011 American Chemical Society.

  17. Primary amine/CSA ion pair: A powerful catalytic system for the asymmetric enamine catalysis

    KAUST Repository

    Liu, Chen

    2011-05-20

    A novel ion pair catalyst containing a chiral counteranion can be readily derived by simply mixing cinchona alkaloid-derived diamine with chiral camphorsulfonic acid (CSA). A mixture of 9-amino(9-deoxy)epi-quinine 8 and (-)-CSA was found to be the best catalyst with matching chirality, enabling the direct amination of α-branched aldehydes to proceed in quantitative yields and with nearly perfect enantioselectivities. A 0.5 mol % catalyst loading was sufficient to catalyze the reaction, and a gram scale enantioselective synthesis of biologically important α-methyl phenylglycine has been successfully demonstrated. © 2011 American Chemical Society.

  18. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie

    2014-03-01

    Organic-inorganic hybrid materials functionalized with amine-containing reagents are emerging as an important class of materials for capturing carbon dioxide from flue gas. Polymeric silica hollow fiber sorbents are fabricated through the proven dry-jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly(ethyleneimine) to the polymeric silica hybrid material support to improve the CO2 sorption capacity due to the added amine groups. The poly(ethyleneimine) infused and functionalized hollow fiber sorbents are also characterized by a thermal gravimetric analyzer (TGA) to assess their CO2 sorption capacities. © 2014 Elsevier Ltd. All rights reserved.

  19. Thermodynamics of mixtures containing amines

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan Antonio [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain)], E-mail: jagl@termo.uva.es; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain); Riesco, Nicolas [Department of Chemical Engineering, Loughborough University, Loughborough, LE113TU Leicestershire (United Kingdom)

    2008-01-30

    Mixtures with dimethyl or trimethylpyridines and alkane, aromatic compound or 1-alkanol have been examined using different theories: DISQUAC, Flory, the concentration-concentration structure factor, S{sub CC}(0), or the Kirkwood-Buff formalism. DISQUAC represents fairly well the available experimental data, and improves theoretical calculations from Dortmund UNIFAC. Two important effects have been investigated: (i) the effect of increasing the number of methyl groups attached to the aromatic ring of the amine; (ii) the effect of modifying the position of the methyl groups in this ring. The molar excess enthalpy, H{sup E}, and the molar excess volume, V{sup E}, decrease in systems with alkane or methanol as follows: pyridine > 3-methylpyridine > 3,5-dimethylpyridine and pyridine > 2-methylpyridine > 2,4-dimethylpyridine > 2,4,6-trimethylpyridine, which has been attributed to a weakening of the amine-amine interactions in the same sequences. This is in agreement with the relative variation of the effective dipole moment, {mu}-bar, and of the differences between the boiling temperature of a pyridine base and that of the homomorphic alkane. For heptane solutions, the observed H{sup E} variation, H{sup E} (3,5-dimethylpyridine) > H{sup E} (2,4-dimethylpyridine) > H{sup E} (2,6-dimethylpyridine), is explained similarly. Calculations on the basis of the Flory model confirm that orientational effects become weaker in systems with alkane in the order: pyridine > methylpyridine > dimethylpyridine > trimethylpyridine. S{sub CC}(0) calculations show that steric effects increase with the number of CH{sub 3}- groups in the pyridine base, and that the steric effects exerted by methyl groups in positions 2 and 6 are higher than when they are placed in positions 3 and 5. The hydrogen bond energy in methanol mixtures is independent of the pyridine base, and it is estimated to be -35.2 kJ mol{sup -1}. Heterocoordination in these solutions is due in part to size effects. Their

  20. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    Science.gov (United States)

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-04

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  2. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Witoon, Thongthai, E-mail: fengttwi@ku.ac.th [National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand)

    2012-11-15

    In this work, bimodal (meso-macro) porous silicas with different mesopore diameters synthesized by using rice husk ash as a low-cost silica source and chitosan as a natural template were used as a polyethyleneimine (PEI) support for CO{sub 2} capture. Unimodal porous silica supports with equivalent mesopore diameters to bimodal porous silica supports have been prepared for purpose of comparison. Effects of different PEI contents (10, 20, 30, 40 and 50 wt%) on CO{sub 2} sorption capacity have been systematically investigated. The porous silica supports and the PEI-loaded porous silica supports were characterized by N{sub 2}-sorption analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. CO{sub 2} sorption measurements of all PEI-loaded porous silica supports were performed at different adsorption temperatures (60, 75, 85, 90, 95 and 105 Degree-Sign C). At low PEI contents (10-20 wt%), the CO{sub 2} sorption of all adsorbents was found to decrease as a function of adsorption temperature, which was a characteristic of a thermodynamically-controlled regime. A transition from the thermodynamically-controlled regime to a kinetically-controlled regime was found when the PEI content was increased up to 30 wt% for PEI-loaded unimodal porous silicas and 40 wt% for PEI-loaded bimodal porous silicas. At high PEI contents (40-50 wt%), the CO{sub 2} capturing efficiency of the PEI-loaded bimodal porous silicas was found to be considerably greater than that of the PEI-loaded unimodal porous silicas, indicating that most of the amine groups of PEI molecules loaded on the unimodal porous silica supports was useless, and thus the appeared macroporosity of the bimodal porous silica supports could provide a higher effective amine density to adsorb CO{sub 2}. Highlights: Black-Right-Pointing-Pointer PEI-impregnated bimodal porous silica as low-cost sorbent for CO{sub 2} capture. Black-Right-Pointing-Pointer Macropores enhances

  3. Synthesis of Novel Aliphatic N-sulfonylamidino Thymine Derivatives by Cu(I)-catalyzed Three-component Coupling Reaction

    OpenAIRE

    Krstulović, Luka; Ismaili, Hamit; Višnjevac, Aleksandar; Glavaš-Obrovac, Ljubica; Žinić, Biserka

    2012-01-01

    A series of new aliphatic N-sulfonylamidino thymine derivatives containing nucleobase, N-sulfonyl and amidine pharmacophores in the structure were synthesized by Cu(I)-catalyzed threecomponent coupling of 1-propargyl thymine, benzenesulfonyl azides and amines or ammonium salts. Preliminary in vitro antitumor screening (human cervix adenocarcinoma -HeLa and leukemia cells - Jurkat) revealed promising activities of N,N-diethyl- (2) and N-4-cyanobenzyl- (6) derivatives of 4-acetamido...

  4. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    Science.gov (United States)

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  5. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  6. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  7. Immobilization of cardioprotective drug phosphocreatine on a surface of nanoparticles of silica

    Science.gov (United States)

    Korolev, D. V.; Evreinova, N. V.; Zakharova, E. V.; Gareev, K. G.; Naumysheva, E. B.; Postnov, V. N.; Galagudza, M. M.

    2017-11-01

    In this work silica aminated nanoparticles were used to show capability for chemisorbing organic compound having a carboxyl group. Phosphocreatine (creatine phosphate) was used as an active ingredient. Since the method for determination of phosphocreatine with the sample analysis using Jaffe reaction didn’t give a positive result, the definition of free phosphocreatine was carried out by the method of diacetyl in the presence of α-naphthol.

  8. Tunable, chemoselective amination via silver catalysis.

    Science.gov (United States)

    Rigoli, Jared W; Weatherly, Cale D; Alderson, Juliet M; Vo, Brian T; Schomaker, Jennifer M

    2013-11-20

    Organic N-containing compounds, including amines, are essential components of many biologically and pharmaceutically important molecules. One strategy for introducing nitrogen into substrates with multiple reactive bonds is to insert a monovalent N fragment (nitrene or nitrenoid) into a C-H bond or add it directly to a C═C bond. However, it has been challenging to develop well-defined catalysts capable of promoting predictable and chemoselective aminations solely through reagent control. Herein, we report remarkable chemoselective aminations that employ a single metal (Ag) and a single ligand (phenanthroline) to promote either aziridination or C-H insertion by manipulating the coordination geometry of the active catalysts.

  9. Biogenic amines and radiosensitivity of solitary cells

    International Nuclear Information System (INIS)

    Goncharenko, E.N.

    1978-01-01

    Different stability of cells to ionizing radiation is considered from a position of the ''elevated biochemical radioresistance background'' concept. Experimental evidence presented indicates an important role of endogenic amines (serotonin and histamine) possessing radioprotector properties in the cell radioresistance formation. The concept about their effect as being solely a result of circulatory hypoxia is critically discussed. The experimental results favor the existence of a ''cellular'' component, along with the ''hypoxic'' one, in the mechanism of action of biogenic amines. These compounds can affect the initial stages of peroxide oxidation of lipids, thereby favoring a less intensive oxidation induced by radiation. Biogenic amines can also exert influence on the cyclic nucleotide system

  10. Ligand-Controlled Synthesis of Azoles via Ir-Catalyzed Reactions of Sulfoxonium Ylides with 2-Amino Heterocycles.

    Science.gov (United States)

    Phelps, Alicia M; Chan, Vincent S; Napolitano, José G; Krabbe, Scott W; Schomaker, Jennifer M; Shekhar, Shashank

    2016-05-20

    An iridium-catalyzed method was developed for the synthesis of imidazo-fused pyrrolopyrazines. The presence or absence of a nitrogenated ligand controlled the outcome of the reaction, leading to simple β-keto amine products in the absence of added ligand and the cyclized 7- and 8-substituted-imidazo[1,2-a]pyrrolo[2,3-e]pyrazine products in the presence of ligand. This catalyst control was conserved across a variety of ylide and amine coupling partners. The substrate was shown to act as a ligand for the iridium catalyst in the absence of other ligands via NMR spectroscopy. Kinetic studies indicated that formation of the Ir-carbene was reversible and the slow step of the reaction. These mechanistic investigations suggest that the β-keto amine products form via an intramolecular carbene N-H insertion, and the imidazopyrrolopyrazines form via an intermolecular carbene N-H insertion.

  11. Regio- and Stereoselective Conjugate Addition of Aldehydes to β-Tosyl Enones under the Catalysis of a Binaphthyl-Modified Chiral Amine.

    Science.gov (United States)

    Kano, Taichi; Sugimoto, Hisashi; Maruyama, Hiroki; Maruoka, Keiji

    2015-07-13

    A simple axially chiral amine catalyst promoted the regio-, diastereo-, and enantioselective conjugate addition of aldehydes to β-tosyl enones, which serve as ynone surrogates. The adducts were readily converted by treatment with L-selectride into less accessible enones with a γ stereogenic center. Such compounds cannot be prepared through the amine-catalyzed conjugate addition of aldehydes to ynones. The obtained enones underwent further conjugate addition of diorganozinc compounds in the presence of a copper catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Heterocycles by Transition Metals Catalyzed Intramolecular Cyclization of Acetylene Compounds

    International Nuclear Information System (INIS)

    Vizer, S.A.; Yerzhanov, K.B.; Dedeshko, E.C.

    2003-01-01

    Review shows the new strategies in the synthesis of heterocycles, having nitrogen, oxygen and sulfur atoms, via transition metals catalyzed intramolecular cyclization of acetylenic compounds on the data published at the last 30 years, Unsaturated heterocyclic compounds (pyrroles and pyrroline, furans, dihydro furans and benzofurans, indoles and iso-indoles, isoquinolines and isoquinolinones, aurones, iso coumarins and oxazolinone, lactams and lactones with various substitutes in heterocycles) are formed by transition metals, those salts [PdCl 2 , Pd(OAc) 2 , HgCl 2 , Hg(OAc) 2 , Hg(OCOCF 3 ) 2 , AuCl 3 ·2H 2 O, NaAuCl 4 ·2H 2 O, CuI, CuCl], oxides (HgO) and complexes [Pd(OAc) 2 (PPh 3 )2, Pd(PPh 3 ) 4 , PdCl 2 (MeCN) 2 , Pd(OAc ) 2 /TPPTS] catalyzed intramolecular cyclization of acetylenic amines, amides, ethers, alcohols, acids, ketones and βdiketones. More complex hetero polycyclic systems typical for natural alkaloids can to obtain similar. Proposed mechanisms of pyrroles, isoquinolines, iso indoles and indoles, benzofurans and iso coumarins, thiazolopyrimidinones formation are considered. (author)

  13. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  14. Highly hydrated poly(allylamine)/silica magnetic resin

    International Nuclear Information System (INIS)

    Johnson, Andrew K.; Kaczor, Jozef; Han, Hongmei; Kaur, Maninder; Tian, Guoxin; Rao, Linfeng; Qiang, You; Paszczynski, Andrzej J.

    2011-01-01

    The creation of multifunctional nanomaterials by combining organic and inorganic components is a growing trend in nanoscience. The unique size-dependent properties of magnetic nanoparticles (MNPs) make them amenable to numerous applications such as carriers of expensive biological catalysts, in magnetically assisted chemical separation of heavy metals and radionuclides from contaminated water sources. The separation of minor actinides from high-level radionuclide waste requires a sorbent stable in acidic pH, with ease of surface functionalization, and a high capacity for binding the molecules of interest. For the described experiments, the MNPs with 50 nm average size were used (size distribution from 20 to 100 nm and an iron content of 80–90 w/w%). The MNPs that have been double coated with an initial silica coating for protection against iron solubilization and oxidation in nitric acid solution (pH 1) and a second silica/polymer composite coating incorporating partially imbedded poly(allylamine) (PA). The final product is magnetic, highly swelling, containing >95% water, with >0.5 mmol amines g −1 available for functionalization. The amine groups of the magnetic resin were functionalized with the chelating molecules diethylenetriaminepentaacetic acid (DTPA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) for separation of minor actinides from used nuclear fuel.

  15. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Science.gov (United States)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-10-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks' balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle's activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  16. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  17. Enhancing the muon-catalyzed fusion yield

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Much has been learned about muon-catalyzed fusion since the last conference on emerging nuclear energy systems. Here the authors consider what they have learned about enhancing the muon-catalyzed fusion energy yield

  18. Structural evolution of silica sols modified with formamide

    Directory of Open Access Journals (Sweden)

    Lenza R.F.S.

    2001-01-01

    Full Text Available In this work we investigated the influence of formamide on the acid-catalyzed sol-gel process by Fourier transform infrared spectroscopy (FTIR. Three silica sols were studied: Sol catalyzed with nitric acid without formamide, sol catalyzed with nitric acid containing formamide and sol catalyzed with a mixture of nitric acid and hydrofluoric acid and modified with formamide. Following the time evolution of both the Si-(OH stretching vibration at around 950 cm-1 and the Si-O-(Si vibration between 1040 cm-1 and 1200 cm-1 we were able to describe the structural evolution of each sol. The curve of evolution of Si-(OH stretching vibration corresponding to sol A has a simple asymptotic evolution. In the case of formamide containing sol, we observed a two-step structural evolution indicating that for the system containing formamide the polymerization goes through a temporary stabilization of oligomers, which can explain the non-variation of the Si-O(H bond wavenumber for a certain time. Gelation times were of several days for gels without formamide and few hours for gels containing additive. The presence of additive resulted in a highly interconnected gel.

  19. Anodic selective functionalization of cyclic amine derivatives

    OpenAIRE

    Onomura, Osamu

    2012-01-01

    Anodic reactions are desirable methods from the viewpoint of Green Chemistry, since no toxic oxidants are necessary for the oxidation of organic molecules. This review introduces usefulness of anodic oxidation and successive reaction for selective functionalization of cyclic amine derivatives.

  20. Transition metals in the amination of chloroarenes

    Energy Technology Data Exchange (ETDEWEB)

    Serdyuk, O V [Leibniz-Institut fuer Katalyse an der Universitaet Rostock (Germany); Abaev, Vladimir T [North-Ossetia State University, Vladikavkaz (Russian Federation)

    2009-11-30

    The review is devoted to the catalytic amination of chloroarenes and chlorohetarenes. Examples of the formation of the C-N bond in the presence of iron-, nickel- and copper-based catalytic systems are given.

  1. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    Science.gov (United States)

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click

  2. Investigation of transition metal-catalyzed nitrene transfer reactions in water.

    Science.gov (United States)

    Alderson, Juliet M; Corbin, Joshua R; Schomaker, Jennifer M

    2018-04-11

    Transition metal-catalyzed nitrene transfer is a powerful method for incorporating new CN bonds into relatively unfunctionalized scaffolds. In this communication, we report the first examples of site- and chemoselective CH bond amination reactions in aqueous media. The unexpected ability to employ water as the solvent in these reactions is advantageous in that it eliminates toxic solvent use and enables reactions to be run at increased concentrations with lower oxidant loadings. Using water as the reaction medium has potential to expand the scope of nitrene transfer to encompass a variety of biomolecules and highly polar substrates, as well as enable pH control over the site-selectivity of CH bond amination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Highly selective formation of imines catalyzed by silver nanoparticles supported on alumina

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Poreddy, Raju; Engelbrekt, Christian

    2014-01-01

    The oxidative dehydrogenation of alcohols to aldehydes catalyzed by Ag nanoparticles supported on Al2O3 was studied. The catalyst promoted the direct formation of imines by tandem oxidative dehydrogenation and condensation of alcohols and amines. The reactions were performed under mild conditions......-2 in the gas phase. The use of an efficient and selective Ag catalyst for the oxidative dehydrogenation of alcohol in the presence of amines gives a new green reaction protocol for imine synthesis. (C) 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B...... and afforded the imines in high yield (up to 99%) without any byproducts other than H2O. The highest activity was obtained over 5 wt% Ag/Al2O3 in toluene with air as oxidant. The reactions were also performed under oxidant-free conditions where the reaction was driven to the product side by the production of H...

  4. Synthesis and bioelectrochemical behavior of aromatic amines.

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Bolte, Michael; McKee, Vickie

    2017-12-01

    Four aromatic amines 1-amino-4-phenoxybenzene (A 1 ), 4-(4-aminophenyloxy) biphenyl (A 2 ), 1-(4-aminophenoxy) naphthalene (A 3 ) and 2-(4-aminophenoxy) naphthalene (A 4 ) were synthesized and characterized by elemental, spectroscopic (FTIR, NMR), mass spectrometric and single crystal X-ray diffraction methods. The compounds crystallized in monoclinic crystal system with space group P2 1 . Intermolecular hydrogen bonds were observed between the amine group and amine/ether acceptors of neighboring molecules. Electrochemical investigations were done using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). CV studies showed that oxidation of aromatic amines takes place at about 0.9 V (vs. Ag/AgCl) and the electron transfer (ET) process has irreversible nature. After first scan reactive intermediate were generated electrochemically and some other cathodic and anodic peaks also appeared in the succeeding scans. DPV study revealed that ET process is accompanied by one electron. DNA binding study of aromatic amines was performed by CV and UV-visible spectroscopy. These investigations revealed groove binding mode of interaction of aromatic amines with DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Production of margarine fats by enzymatic interesterification with silica-granulated Thermomyces lanuginosa lipase in a large-scale study

    DEFF Research Database (Denmark)

    Zhang, Hong; Xu, Xuebing; Nilsson, Jörgen

    2001-01-01

    Interesterification of a blend of palm stearin and coconut oil (75:25, w/w), catalyzed by an immobilized Thermomyces lanuginosa lipase by silica granulation, Lipozyme TL IM, was studied for production of margarine fats in a 1- or 300-kg pilot-scale batch-stirred tank reactor. Parameters...

  6. Zirconium amine tris(phenolate): A more effective initiator for biomedical lactide.

    Science.gov (United States)

    Jones, Matthew D; Wu, Xujun; Chaudhuri, Julian; Davidson, Matthew G; Ellis, Marianne J

    2017-11-01

    Here a zirconium amine tris(phenolate) is used as the initiator for the production of polylactide for biomedical applications, as a replacement for a tin initiator (usually tin octanoate). The ring opening polymerization (ROP) was carried out in the melt at 130°C. The zirconium-catalyzed PLA (PLA-Zr) required 30min, resulting in a polydispersity index (PDI) of 1.17, compared to 1h and PDI=1.77 for tin-catalyzed PLA (PLA-Sn). PLA-Zr and PLA-Sn supported osteosarcoma cell (MG63) culture to the same extent (cell number, morphology, extracellular matrix production and osteogenic function) until day 14 when the PLA-Zr showed increased cell number, overall extracellular matrix production and osteogenic function. To conclude, the reduction in reaction time, controllable microstructure and biologically benign nature of the zirconium amine tris(phenolate) initiator shows that it is a more effective initiator for ROP of polylactide for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Enhancing amine terminals in an amine-deprived collagen matrix.

    LENUS (Irish Health Repository)

    Tiong, William H C

    2008-10-21

    Collagen, though widely used as a core biomaterial in many clinical applications, is often limited by its rapid degradability which prevents full exploitation of its potential in vivo. Polyamidoamine (PAMAM) dendrimer, a highly branched macromolecule, possesses versatile multiterminal amine surface groups that enable them to be tethered to collagen molecules and enhance their potential. In this study, we hypothesized that incorporation of PAMAM dendrimer in a collagen matrix through cross-linking will result in a durable, cross-linked collagen biomaterial with free -NH 2 groups available for further multi-biomolecular tethering. The aim of this study was to assess the physicochemical properties of a G1 PAMAM cross-linked collagen matrix and its cellular sustainability in vitro. Different amounts of G1 PAMAM dendrimer (5 or 10 mg) were integrated into bovine-derived collagen matrices through a cross-linking process, mediated by 5 or 25 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in 5 mM N-hydroxysuccinimide (NHS) and 50 mM 2-morpholinoethane sulfonic acid buffer at pH 5.5. The physicochemical properties of resultant matrices were investigated with scanning electron microscopy (SEM), collagenase degradation assay, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectra, and ninhydrin assay. Cellular sustainability of the matrices was assessed with Alamar Blue assay and SEM. There was no significant difference in cellular behavior between the treated and nontreated groups. However, the benefit of incorporating PAMAM in the cross-linking reaction was limited when higher concentrations of either agent were used. These results confirm the hypothesis that PAMAM dendrimer can be incorporated in the collagen cross-linking process in order to modulate the properties of the resulting cross-linked collagen biomaterial with free -NH 2 groups available for multi-biomolecular tethering.

  8. Cooperative Metal–Ligand Catalyzed Intramolecular Hydroamination and Hydroalkoxylation of Allenes Using a Stable Iron Catalyst

    KAUST Repository

    El-Sepelgy, Osama

    2018-01-18

    A new iron-catalyzed chemoselective intramolecular hydroamination and hydroalkoxylation of the readily available α-allenic amines and alcohols to valuable unsaturated 5-membered heterocycles, 2,3-dihydropyrrole and 2,3-dihydrofuran, is reported. Effective selectivity control is achieved by a metal–ligand cooperative activation of the substrates. The mild reaction conditions and the use of low amounts of an air and moisture stable iron catalyst allow for the hydrofunctionalization of a wide range of allenes bearing different functional groups in good yields in the absence of base or any sensitive additives.

  9. Cooperative Metal–Ligand Catalyzed Intramolecular Hydroamination and Hydroalkoxylation of Allenes Using a Stable Iron Catalyst

    KAUST Repository

    El-Sepelgy, Osama; Brzozowska, Aleksandra; Sklyaruk, Jan; Jang, Yoon Kyung; Zubar, Viktoriia; Rueping, Magnus

    2018-01-01

    A new iron-catalyzed chemoselective intramolecular hydroamination and hydroalkoxylation of the readily available α-allenic amines and alcohols to valuable unsaturated 5-membered heterocycles, 2,3-dihydropyrrole and 2,3-dihydrofuran, is reported. Effective selectivity control is achieved by a metal–ligand cooperative activation of the substrates. The mild reaction conditions and the use of low amounts of an air and moisture stable iron catalyst allow for the hydrofunctionalization of a wide range of allenes bearing different functional groups in good yields in the absence of base or any sensitive additives.

  10. Synthesis of phenanthridines via palladium-catalyzed picolinamide-directed sequential C–H functionalization

    Directory of Open Access Journals (Sweden)

    Ryan Pearson

    2013-05-01

    Full Text Available We report a new synthesis of phenanthridines based on palladium-catalyzed picolinamide-directed sequential C–H functionalization reactions starting from readily available benzylamine and aryl iodide precursors. Under the catalysis of Pd(OAc2, the ortho-C–H bond of benzylpicolinamides is first arylated with an aryl iodide. The resulting biaryl compound is then subjected to palladium-catalyzed picolinamide-directed intramolecular dehydrogenative C–H amination with PhI(OAc2 oxidant to form the corresponding cyclized dihydrophenanthridines. The benzylic position of these dihydrophenanthridines could be further oxidized with Cu(OAc2, removing the picolinamide group and providing phenathridine products. The cyclization and oxidation could be carried out in a single step and afford phenathridines in moderate to good yields.

  11. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    Science.gov (United States)

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bioreducible poly(amido amine)s for non-viral gene delivery

    NARCIS (Netherlands)

    Lin, C.

    2008-01-01

    This thesis describes the design and development of bioreducible poly(amido amine)s as non-viral vectors for gene delivery in vitro and in vivo. The structural influences of these polymers on their physico-chemical properties and gene delivery properties, transfection capability and cytotoxicity in

  13. Synthesis, Characterization, and Catalytic Activity of Pd(II Salen-Functionalized Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Rotcharin Sawisai

    2017-01-01

    Full Text Available Salen ligand synthesized from 2-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde was used as a palladium chelating ligand for the immobilization of the catalytic site. Mesoporous silica supported palladium catalysts were prepared by immobilizing Pd(OAc2 onto a mesoporous silica gel through the coordination of the imine-functionalized mesoporous silica gel. The prepared catalysts were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray (EDX, inductivity couple plasma (ICP, nitrogen adsorption-desorption, and Fourier transform infrared (FT-IR spectroscopy. The solid catalysts showed higher activity for the hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosylallene with aromatic amines compared with the corresponding homogenous catalyst. The heterogeneous catalytic system can be easily recovered by simple filtration and reused for up to five cycles with no significant loss of catalytic activity.

  14. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  15. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Alexander A. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Anderson, Thomas M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Michaelis, David J. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Jiang, Guilin [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Savage, Paul B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Linford, Matthew R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)]. E-mail: mrlinford@chem.byu.edu

    2006-07-30

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups.

  16. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    International Nuclear Information System (INIS)

    Parent, Alexander A.; Anderson, Thomas M.; Michaelis, David J.; Jiang, Guilin; Savage, Paul B.; Linford, Matthew R.

    2006-01-01

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups

  17. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    Science.gov (United States)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  18. Serpentinization processes: Influence of silica

    Science.gov (United States)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  19. Copper-catalyzed azide alkyne cycloaddition polymer networks

    Science.gov (United States)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  20. BIOGENIC AMINES CONTENT IN DIFFERENT WINE SAMPLES

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2015-02-01

    Full Text Available Twenty-five samples of different Slovak wines before and after filtration were analysed in order to determine the content of eight biogenic amines (tryptamine, phenylalanine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine. The method involves extraction of biogenic amines from wine samples with used dansyl chloride. Ultra-high performance liquid chromatography (UHPLC was used for determination of biogenic amines equipped with a Rapid Resolution High Definition (RRHD, DAD detectors and Extend-C18 LC column (50 mm x 3.0 mm ID, 1.8 μm particle size. In this study the highest level of biogenic amine in all wine samples represent tryptamine (TRM with the highest content 170.9±5.3 mg/L in Pinot Blanc wine. Phenylalanine (PHE cadaverine (CAD, histamine (HIS and spermidine (SPD were not detected in all wines; mainly SPD was not detected in 16 wines, HIS not detected in 14 wines, PHE and CAD not detected in 2 wines. Tyramine (TYR, spermine (SPN and putrescine (PUT were detected in all wines, but PUT and SPN in very low concentration. The worst wine samples with high biogenic amine content were Saint Laurent (BF, Pinot Blanc (S and Pinot Noir (AF.

  1. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  2. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  3. Extraction of some acids using aliphatic amines

    International Nuclear Information System (INIS)

    Matutano, L.

    1964-06-01

    Hydrochloric, nitric, sulphuric, perchloric, phosphoric, acetic and formic acids in aqueous solution (0.05 to 10 M) are extracted by amberlite LA2 and trilaurylamine in solution, 5 per cent by volume, in kerosene and xylene respectively. The extraction process consists of: neutralization of the amine salt; a 'molecular extraction', i.e. an extraction using an excess of acid with respect to the stoichiometry of the amine salt. According to the behaviour of the acid during the extraction, three groups may be distinguished: completely dissociated acids, carboxylic acids, phosphoric acid. This classification is also valid for the extraction of the water which occurs simultaneously with that of the acid. An extraction mechanism is put forward for formic acid and the formation constant of its amine salt is calculated. (author) [fr

  4. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  5. Supramolecular Recognition Allows Remote, Site-Selective C-H Oxidation of Methylenic Sites in Linear Amines.

    Science.gov (United States)

    Olivo, Giorgio; Farinelli, Giulio; Barbieri, Alessia; Lanzalunga, Osvaldo; Di Stefano, Stefano; Costas, Miquel

    2017-12-18

    Site-selective C-H functionalization of aliphatic alkyl chains is a longstanding challenge in oxidation catalysis, given the comparable relative reactivity of the different methylenes. A supramolecular, bioinspired approach is described to address this challenge. A Mn complex able to catalyze C(sp 3 )-H hydroxylation with H 2 O 2 is equipped with 18-benzocrown-6 ether receptors that bind ammonium substrates via hydrogen bonding. Reversible pre-association of protonated primary aliphatic amines with the crown ether selectively exposes remote positions (C8 and C9) to the oxidizing unit, resulting in a site-selective oxidation. Remarkably, such control of selectivity retains its efficiency for a whole series of linear amines, overriding the intrinsic reactivity of C-H bonds, no matter the chain length. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Base metal dehydrogenation of amine-boranes

    Science.gov (United States)

    Blacquiere, Johanna Marie [Ottawa, CA; Keaton, Richard Jeffrey [Pearland, TX; Baker, Ralph Thomas [Los Alamos, NM

    2009-06-09

    A method of dehydrogenating an amine-borane having the formula R.sup.1H.sub.2N--BH.sub.2R.sup.2 using base metal catalyst. The method generates hydrogen and produces at least one of a [R.sup.1HN--BHR.sup.2].sub.m oligomer and a [R.sup.1N--BR.sup.2].sub.n oligomer. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources, such as, but not limited to, fuel cells.

  7. Catalyst for hydrogen-amine D exchange

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  8. Corrosion inhibition of brass by aliphatic amines

    International Nuclear Information System (INIS)

    Taha, K. K.; Sheshadri, B. S; Ahmed, M. F.

    2005-01-01

    Aliphatic amines hexylamine (HCA), octylamine (OCA) and decylamine (DCA) have been used as corrosion inhibitors for (70/30) brass in 0.I M HCIO 4 . The inhibitor efficiency (%P) calculated using weight loss, Tafel extrapolation, linear polarization and impedance methods was found to be in the order DCA> OCA> HCA. These adsorb on brass surface following bockris-swinkels' isotherm. DCA, OCA and HCA displaced 4, 3 and 2 molecules of water from interface respectively. Displacement of water molecules brought a great reorganization of double layer at the interface. These amines during corrosion form complexes with dissolved zinc and copper ions.(Author)

  9. Extraction of uranyl sulfate with primary amine

    International Nuclear Information System (INIS)

    Mrnka, M.; Bizek, V.; Nekovar, P.; Cizevska, S.; Schroetterova, D.

    1984-01-01

    PRIMENE JM-T was used for extraction. Its composition was found to approach the general formula C 21 H 43 NH 2 . It was found that the extraction of uranyl sulfate is lower in case of a higher steady-state concentration of sulfuric acid in the aqueous phase. Extraction is accompanied with coextraction of water. The results obtained showed that uranyl sulfate passes into the organic phase by two mechanisms: extraction with amine sulfate and extraction with free amine. A mathematical description of the process was made based on the obtained results. (E.S.)

  10. Enantioselective catalytic syntheses of alpha-branched chiral amines

    DEFF Research Database (Denmark)

    Brase, S.; Baumann, T.; Dahmen, S.

    2007-01-01

    Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....

  11. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES. 2. QSAR DEVELOPMENT

    Science.gov (United States)

    The fate of aromatic amines in soils and sediments is dominated by irreversible binding through nucleophilic addition and oxidative radical coupling. Despite the common occurrence of the aromatic amine functional group in organic chemicals, the molecular properties useful for pr...

  12. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  13. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  14. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    Science.gov (United States)

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  15. Reductive amination with zinc powder in aqueous media

    Directory of Open Access Journals (Sweden)

    Giovanni B. Giovenzana

    2011-08-01

    Full Text Available Zinc powder in aqueous alkaline media was employed to perform reductive amination of aldehydes with primary amines. The corresponding secondary amines were obtained in good yields along with minor amounts of hydrodimerization byproducts. The protocol is a green alternative to the use of complex hydrides in chlorinated or highly flammable solvents.

  16. Direct electrochemical imidation of aliphatic amines via anodic oxidation.

    Science.gov (United States)

    Zhang, Li; Su, Ji-Hu; Wang, Sujing; Wan, Changfeng; Zha, Zhenggen; Du, Jiangfeng; Wang, Zhiyong

    2011-05-21

    Direct electrochemical synthesis of sulfonyl amidines from aliphatic amines and sulfonyl azides was realized with good to excellent yields. Traditional tertiary amine substrates were broadened to secondary and primary amines. The reaction intermediates were observed and a reaction mechanism was proposed and discussed. © The Royal Society of Chemistry 2011

  17. Development of new microporous silica membranes for gas separation

    International Nuclear Information System (INIS)

    Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Serge de Perthuis; Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Anne Julbe; Jose Sanchez

    2006-01-01

    This paper presents the synthesis and the application of molecular sieving ceramic membranes to purify hydrogen or helium from various gas mixtures. The membranes prepared in this work consist of an ultra-microporous silica-based separative layer produced via a sol-gel process. Ultra microporous silica containing boron is synthesized by the acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate in ethanol. The layer is deposited inside a tubular asymmetric alumina support with a meso-porous y alumina inner layer. The thickness of the silica layers after treatment is about 200 nm, estimated from their cross-section SEM micrographs. Ultra-microporous membranes (with pore sizes less than 0.7 nm) are thus required to get high selectivity. Such membranes enable to carry out gas separation up to 500 deg C under a transmembrane pressure lower than 8 bars. He and H 2 permeance values close to 10 -7 mol.m -2 s -1 Pa -1 are obtained, associated with ideal selectivities α(He/CO 2 ) and α(H 2 /CO 2 ) between 10 and 20 at 300 deg C. (authors)

  18. The Synthesis of Methyl Salicylate: Amine Diazotization.

    Science.gov (United States)

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  19. Microbiological, physicochemical properties and biogenic amine ...

    African Journals Online (AJOL)

    Thirty three strained yoghurt samples were collected from local open markets in different provinces of Turkey (Afyon [AF], Aydın [AY], Burdur [B], Isparta [I] and Muğla [M]). Physicochemical and microbiological properties, as well as biogenic amine content, were examined in each of the samples. The dry matter (17.90 to ...

  20. Direct amination of secondary alcohols using Ammonia

    NARCIS (Netherlands)

    Pingen, D.L.L.; Müller, C.; Vogt, D.

    2010-01-01

    Hydrogen shuttle: For the first time secondary alcohols and ammonia can be directly converted into primary amines with a selectivity of up to 99¿% by using a simple ruthenium/phosphine catalyst (see scheme; R1, R2= alkyl, aryl, alkenyl; M=[Ru3(CO)12]; and L=phosphine ligand).

  1. Direct Amination of alpha-Hydroxy Amides

    NARCIS (Netherlands)

    Chandgude, Ajay L.; Dömling, Alexander

    A TiCl4-mediated reaction for the direct amination of alpha-hydroxy amides has been developed. This simple, general, additive/base/ligand-free reaction is mediated by economical TiCl4. The reaction runs under mild conditions. This highly efficient C-N bond formation protocol is valid for diverse

  2. Uranium diphosphonates templated by interlayer organic amines

    International Nuclear Information System (INIS)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Albrecht-Schmitt, Thomas E.; Ewing, Rodney C.

    2013-01-01

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 °C results in the crystallization of a series of layered uranium diphosphonate compounds, [C 10 H 9 N 2 ]{UO 2 (H 2 O)[CH 2 (PO 3 )(PO 3 H)]} (Ubip2), [C 6 H 14 N 2 ]{(UO 2 ) 2 [CH 2 (PO 3 )(PO 3 H)] 2 ·2H 2 O} (UDAB), [C 2 H 10 N 2 ] 2 {(UO 2 ) 2 (H 2 O) 2 [CH 2 (PO 3 ) 2 ] 2 ·0.5H 2 O} (Uethyl), and [C 12 H 9 N 2 ]{UO 2 (H 2 O)[CH 2 (PO 3 )(PO 3 H)]} (Uphen). The crystal structures of the compounds are based on UO 7 units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C 6 H 14 N 2 ]{(UO 2 ) 2 [CH 2 (PO 3 )(PO 3 H)] 2 ·2H 2 O} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also shown. The structure is constructed from UO 7 pentagonal bipyramids (yellow), oxygen=red, phosphorus=magenta, carbon=black, and nitrogen=blue. Highlights: ► Organic amines act both as charge-balancing and as structure-directing agents. ► Extensive hydrogen bonding interactions with solvent water molecules and amines

  3. Innovative Route to Prepare of Au/C Catalysts by Replication of Gold-containing Mesoporous Silicas

    KAUST Repository

    Kerdi, Fatmé

    2011-12-23

    Gold-catalyzed aerobic epoxidations in the liquid phase are generally performed in low-polarity solvents, in which conventional oxide-supported catalysts are poorly dispersed. To improve the wettability of the catalytic powder and, thus, the efficiency of the catalyst, gold nanoparticles (NPs) have been dispersed on meso-structured carbons. Gold is first introduced in functionalized mesostructured silica and particles are formed inside the porosity. Silica pores are then impregnated with a carbon precursor and the composite material is heated at 900 °C under vacuum or nitrogen. Silica is then removed by acid leaching, leading to partially encapsulated gold particles in mesoporous carbon. Carbon prevents aggregation of gold particles at high temperature, both the mean size and distribution being similar to those observed in silica. However, while Au@SiO2 exhibit significant catalytic activity in the aerobic oxidation of trans-stilbene in the liquid phase, its Au@C mesostructured replica is quite inactive.

  4. Synthesis of ketene N,N-acetals by copper-catalyzed double-amidation of 1,1-dibromo-1-alkenes.

    Science.gov (United States)

    Coste, Alexis; Couty, François; Evano, Gwilherm

    2009-10-01

    An efficient procedure for the preparation of ketene N,N-acetals by copper-catalyzed double amidation of 1,1-dibromo-1-alkenes is reported. The reaction was found to be general, and ketene aminals could be obtained in good yields when potassium phosphate in toluene was used at 80 degrees C. The reaction was found to proceed through a regioselective monocoupling reaction followed by dehydrobromination and hydroamidation.

  5. Cyclic aldimines as superior electrophiles for Cu-catalyzed decarboxylative Mannich reaction of β-ketoacids with a broad scope and high enantioselectivity.

    Science.gov (United States)

    Zhang, Heng-Xia; Nie, Jing; Cai, Hua; Ma, Jun-An

    2014-05-02

    A novel Cu-catalyzed enantioselective decarboxylative Mannich reaction of cyclic aldimines with β-ketoacids is described. The cyclic structure of these aldimines, in which the C═N bond is constrained in the Z geometry, appears to be important, allowing Mannich condensation to proceed in high yields with excellent enantioselectivities. A chiral chroman-4-amine was synthesized from the decarboxylative Mannich product in several steps without loss of enantioselectivity.

  6. Intolerance to dietary biogenic amines: a review.

    Science.gov (United States)

    Jansen, Sophia C; van Dusseldorp, Marijke; Bottema, Kathelijne C; Dubois, Anthony E J

    2003-09-01

    To evaluate the scientific evidence for purported intolerance to dietary biogenic amines. MEDLINE was searched for articles in the English language published between January 1966 and August 2001. The keyword biogenic amin* was combined with hypersens*, allerg*, intoler*, and adverse. Additionally, the keywords histamine, tyramine, and phenylethylamine were combined with headache, migraine, urticaria, oral challenge, and oral provocation. Articles were also selected from references in relevant literature. Only oral challenge studies in susceptible patients were considered. Studies with positive results (ie, studies in which an effect was reported) were only eligible when a randomized, double-blind, placebo-controlled design was used. Eligible positive result studies were further evaluated according to a number of scientific criteria. Studies with negative results (ie, studies in which no effect was reported) were examined for factors in their design or methods that could be responsible for a false-negative outcome. Results of methodologically weak or flawed studies were considered inconclusive. A total of 13 oral challenge studies (5 with positive results and 8 with negative results) were found. Three of them (all with positive results) were considered ineligible. By further evaluation of the 10 eligible studies, 6 were considered inconclusive. The 4 conclusive studies all reported negative results. One conclusive study showed no relation between biogenic amines in red wine and wine intolerance. Two conclusive studies found no effect of tyramine on migraine. One conclusive study demonstrated no relation between the amount of phenylethylamine in chocolate and headache attacks in individuals with headache. The current scientific literature shows no relation between the oral ingestion of biogenic amines and food intolerance reactions. There is therefore no scientific basis for dietary recommendations concerning biogenic amines in such patients.

  7. Silica research in Glasgow

    International Nuclear Information System (INIS)

    Barr, B W; Cagnoli, G; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lueck, H; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 -19 m Hz -1/2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented

  8. Rh-catalyzed linear hydroformylation of styrene

    NARCIS (Netherlands)

    Boymans, E.H.; Janssen, M.C.C.; Mueller, C.; Lutz, M.; Vogt, D.

    2012-01-01

    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong p-acceptor ligands. Binaphthol-based diphosphite and bis(dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed

  9. Extraction of sulphates by long chain amines; Extraction des sulfates par les amines a longues chaines

    Energy Technology Data Exchange (ETDEWEB)

    Boirie, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-05-15

    The extraction of sulphuric acid by long chain amines in organic solution has been studied with a view to determining the value of the stability constants of the amine sulphates and bi-sulphates formed. We have concentrated chiefly on uranium sulphate and thorium sulphate. The formulae of the complexes extractable with amines have been established, as well as the corresponding dissociation constants. We have observed that for uranium sulphate the formula of the complex depends only on the nature of the amine, whereas for thorium this formula varies with the amine structure. From the formulae determined and the value of the constants calculated, we have been able to establish the best conditions for uranium and thorium extraction and also for a separation of these two elements. Finally we propose an application of this study to the determination of uranium in ores, where the separation of uranium by this method is particularly easy and complete. (author) [French] L'extraction de l'acide sulfurique par des amines a longues chaines en solution organique a ete etudiee en vue de la determination de la valeur des constantes de stabilite des sulfates et bisulfates d'amines formes. Parmi les sulfates, nous nous sommes particulierement interesses au sulfate d'uranium et au sulfate de thorium. Nous avons determine les formules des complexes extractibles avec les amines, ainsi que les constantes de dissociation correspondantes. Nous avons remarque que pour le sulfate d'uranium, la formule du complexe ne depend que de la nature de l'amine, alors que pour le thorium cette formule varie avec la structure de l'amine. Les formules determinees et la valeur des constantes calculees, nous ont permis de decrire les meilleures conditions d'extraction de l'uranium et du thorium ainsi que celles d'une separation de ces deux elements. Nous proposons enfin une application de cette etude au dosage de l'uranium dans les minerais, ou la separation de l'uranium par cette methode est

  10. Effect of Synthesis Time on Morphology of Hollow Porous Silica Microspheres

    Directory of Open Access Journals (Sweden)

    Qian CHEN

    2012-03-01

    Full Text Available Hollow porous silica microspheres may be applicable as containers for the controlled release in drug delivery systems (DDS, foods, cosmetics, agrochemical, textile industry, and in other technological encapsulation use. In order to control the surface morphological properties of the silica microspheres, the effect of synthesis time on their formation was studied by a method of water-in-oil (W/O emulsion mediated sol-gel techniques. An aqueous phase of water, ammonium hydroxide and a surfactant Tween 20 was emulsified in an oil phase of 1-octanol with a stabilizer, hydroxypropyl cellulose (HPC, and a surfactant, sorbitan monooleate (Span 80 with low hydrophile-lipophile balance (HLB value. Tetraethyl orthosilicate (TEOS as a silica precursor was added to the emulsion. The resulting silica particles at different synthesis time 24, 48, and 72 hours were air-dried at room temperature and calcinated at 773 K for 3 hours. The morphology of the particles was characterized by scanning electron microscopy and the particle size distribution was measured by laser diffraction. The specific surface areas were studied by 1-point BET method, and pore sizes were measured by Image Tool Software. Both dense and porous silica microspheres were observed after all three syntheses. Hollow porous silica microspheres were formed at 24 and 48 hours synthesis time. Under base catalyzed sol-gel solution, the size of silica particles was in the range of 5.4 μm to 8.2 μm, and the particles had surface area of 111 m2/g – 380 m2/g. The longer synthesis time produced denser silica spheres with decreased pore sizes.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1344

  11. Ternary mixed-mode silica sorbent of solid-phase extraction for determination of basic, neutral and acidic drugs in human serum.

    Science.gov (United States)

    Jin, Shupei; Qiao, Yinghua; Xing, Jun

    2018-06-01

    In this study, a ternary mixed-mode silica sorbent (TMSS) with octamethylene, carboxyl, and amino groups was prepared via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction and a subsequent reduction of azide to primary amine. While used in solid-phase extraction (SPE), the retention behavior of TMSS towards a total of nine kinds of basic, neutral, and acidic drugs was investigated in detail. The results revealed that hydrophobic, ion-exchange interaction, and electrostatic repulsion between TMSS and the analytes were closely related to the retention behavior of TMSS. Besides, the log K ow value of the analyte was also a factor influencing the retention behavior of analytes on TMSS. The nine analytes could be retained by TMSS simultaneously and then, were eluted into two fractions according to the acid-base property of the analytes for further determinations. The acidic and neutral analytes were in one fraction, and the basic ones in the other fraction. When used to treat the human serum spiked with the nine drugs, TMSS offered higher recoveries than BakerBond CBA and comparable recoveries to Oasis WCX. It should be noted TMSS had better purifying capability for human serum than Oasis WCX. Under the optimized SPE conditions, a method of SPE hyphenated to high-performance liquid chromatography-ultraviolet detection (HPLC-UV) for determination of the basic, neutral, and acidic drugs spiked in human serum was established. For the nine drugs, the linear ranges were all between 5.0 and 1000 μg L -1 with correlation coefficients (R 2 ) above 0.9990, and the limits of detection (LODs) were in the range of 0.8-2.3 μg L -1 . The intra-day and inter-day relative standard deviations (RSDs) were less than 5.3 and 8.8%, respectively. Graphical abstract Treating drugs in human serum by SPE with ternary mixed-mode silica sorbent.

  12. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek

    2011-02-18

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek; Thivolle-Cazat, Jean; Taoufik, Mostafa; Stoffelbach, Franç ois; Norsic, Sé bastien; Basset, Jean-Marie

    2011-01-01

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of four-component synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles: free permutation and combination of aromatic and aliphatic amines.

    Science.gov (United States)

    Lv, Longyun; Zheng, Sichao; Cai, Xiaotie; Chen, Zhipeng; Zhu, Qiuhua; Liu, Shuwen

    2013-04-08

    We previously reported the novel efficient proton/heat-promoted four-component reactions (4CRs) of but-2-ynedioates, two same/different primary amines, and aldehydes for the synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles. If aromatic and aliphatic amines were used as reagents, four different series of products should be obtained via the permutation and combination of aromatic and aliphatic primary amines. However, only three/two rather four different series of tetra-/pentasubstisuted dihydropyrroles could be prepared via the proton/heat-promoted 4CRs. Herein, Cu(OAc)2·H2O, a Lewis acid being stable in air and water, was found to be an efficient catalyst for the 4CR synthesis of all the four different series of tetra-/pentasubstisuted dihydropyrroles. The copper-catalyzed 4CR could produce target products at room temperature in good to excellent yields. Interestingly, benzaldehyde, in addition to being used as a useful reactant for the synthesis of pentasubstituted dihydropyrroles, was found to be an excellent additive for preventing the oxidation of aromatic amines with copper(II) and ensuring the sooth conduct of the 4CRs for the synthesis of tetrasubstituted dihydropyrroles with aryl R(3). In addition, salicylic acid was found to be needed to increase the activities and yields of the copper-catalyzed 4CRs for the synthesis of petasubstituted diyhydropyrroles. On the basis of experimental results, the enamination/amidation/intramolecular cyclization mechanism was proposed and amidation is expected to be the rate-limited step in the copper-catalyzed 4CRs.

  15. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions.

    Science.gov (United States)

    Corbin, Joshua R; Schomaker, Jennifer M

    2017-04-13

    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  16. Extraction of some acids using aliphatic amines; Extraction de quelques acides par des amines aliphatiques

    Energy Technology Data Exchange (ETDEWEB)

    Matutano, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    Hydrochloric, nitric, sulphuric, perchloric, phosphoric, acetic and formic acids in aqueous solution (0.05 to 10 M) are extracted by amberlite LA2 and trilaurylamine in solution, 5 per cent by volume, in kerosene and xylene respectively. The extraction process consists of: neutralization of the amine salt; a 'molecular extraction', i.e. an extraction using an excess of acid with respect to the stoichiometry of the amine salt. According to the behaviour of the acid during the extraction, three groups may be distinguished: completely dissociated acids, carboxylic acids, phosphoric acid. This classification is also valid for the extraction of the water which occurs simultaneously with that of the acid. An extraction mechanism is put forward for formic acid and the formation constant of its amine salt is calculated. (author) [French] Les acides chlorhydrique, nitrique, sulfurique, perchlorique, phosphorique, acetique et formique, en solution aqueuse - 0,05 a 10 M - sont extraits par l'amberlite LA2 et la trilaurylamine en solution, a 5 pour cent en volume, dans le kerosene et le xylene respectivement. L'extraction comprend: une neutralisation de l'amine par l'acide avec formation d'un sel d'amine; une 'extraction moleculaire', c'est-a-dire une extraction d'acide en exces par rapport a la stoechiometrie du sel d'amine. Suivant le comportement des acides au cours de l'extraction nous distinguons trois groupes: acides entierement dissocies, acides carboxyliques, acide phosphorique. Cette classification est egalement valable pour l'extraction de l'eau qui est simultanee a celle de l'acide. Un mecanisme d'extraction pour l'acide formique est propose et nous calculons la constante de formation de son sel d'amine. (auteur)

  17. Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines

    Science.gov (United States)

    2011-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group, to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs and, thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review article, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and

  18. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin.

    Science.gov (United States)

    Engels, Christina; Schwab, Clarissa; Zhang, Jianbo; Stevens, Marc J A; Bieri, Corinne; Ebert, Marc-Olivier; McNeill, Kristopher; Sturla, Shana J; Lacroix, Christophe

    2016-11-07

    Glycerol/diol dehydratases catalyze the conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA), the basis of a multi-component system called reuterin. Reuterin has antimicrobial properties and undergoes chemical conjugation with dietary heterocyclic amines (HCAs). In aqueous solution reuterin is in dynamic equilibrium with the toxicant acrolein. It was the aim of this study to investigate the extent of acrolein formation at various physiological conditions and to determine its role in biological and chemical activities. The application of a combined novel analytical approach including IC-PAD, LC-MS and NMR together with specific acrolein scavengers suggested for the first time that acrolein, and not 3-HPA, is the active compound responsible for HCA conjugation and antimicrobial activity attributed to reuterin. As formation of the HCA conjugate was observed in vivo, our results imply that acrolein is formed in the human gut with implications on detoxification of HCAs. We propose to re-define the term reuterin to include acrolein.

  19. RuO4-mediated oxidation of secondary amines: Part 1. Are hydroxylamines main intermediates?

    Directory of Open Access Journals (Sweden)

    Florea Cristina A.

    2016-01-01

    Full Text Available The RuO4-catalyzed oxidation of secondary amines Bn-NH-CH2R (1a-b; R=H, Me gave mainly amides, but minute amounts of nitrones PhCH=N(O-CH2R (9a-b and traces of Bn-N(OH-CH2R (R=H, 4a were also detected. In the presence of cyanide, up to 22 reaction products were identified, but mainly α-aminonitriles. Comparison of the oxidation products of 1a-b with those of 4a-b, 9a-b, and Bn-N(O=CHR (10a-b showed that 4a-b cannot be main reaction intermediates formed from 1a-b.

  20. Fullerene-catalyzed reduction of azo derivatives in water under UV irradiation

    KAUST Repository

    Guo, Yong; Li, Wengang; Yan, Jingjing; Moosa, Basem; Amad, Maan H.; Werth, Charles; Khashab, Niveen M.

    2012-01-01

    Metal-free fullerene (C60) was found to be an effective catalyst for the reduction of azo groups in basic aqueous solution under UV irradiation in the presence of NaBH4. Use of NaBH4 by itself is not sufficient to reduce the azo dyes without the assistance of a metal catalyst such as Pd and Ag. Experimental and theoretical results suggest that C 60 catalyzes this reaction by using its vacant orbital to accept the electron in the bonding orbital of azo dyes, which leads to the activation of the N=N bond. UV irradiation increases the ability of C60 to interact with electron-donor moieties in azo dyes. Filling a vacancy: Experimental and theoretical methods have been combined to show that C60-catalyzed reductions of azo compounds form aromatic amines under UV irradiation (see scheme). The obtained results show that C60 acts as an electron acceptor to catalyze the reduction of azo compounds, and the role of UV irradiation is to increase the ability of C60 to interact with electron-donor moieties in azo compounds. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fullerene-catalyzed reduction of azo derivatives in water under UV irradiation

    KAUST Repository

    Guo, Yong

    2012-09-27

    Metal-free fullerene (C60) was found to be an effective catalyst for the reduction of azo groups in basic aqueous solution under UV irradiation in the presence of NaBH4. Use of NaBH4 by itself is not sufficient to reduce the azo dyes without the assistance of a metal catalyst such as Pd and Ag. Experimental and theoretical results suggest that C 60 catalyzes this reaction by using its vacant orbital to accept the electron in the bonding orbital of azo dyes, which leads to the activation of the N=N bond. UV irradiation increases the ability of C60 to interact with electron-donor moieties in azo dyes. Filling a vacancy: Experimental and theoretical methods have been combined to show that C60-catalyzed reductions of azo compounds form aromatic amines under UV irradiation (see scheme). The obtained results show that C60 acts as an electron acceptor to catalyze the reduction of azo compounds, and the role of UV irradiation is to increase the ability of C60 to interact with electron-donor moieties in azo compounds. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Deuterium exchange between hydrofluorocarbons and amines

    International Nuclear Information System (INIS)

    Hammond, W.B.; Bigeleisen, J.; Tuccio, S.A.

    1983-01-01

    The invention consists of a process for obtaining a compound enriched in deuterium which comprises the known method of exposing a gaseous hydrofluorocarbon to infrared laser radiation of a predetermined frequency to selectively cause a chemical reaction involving hydrofluorocarbon molecules containing deuterium without substantially affecting hydrofluorocarbon molecules not containing deuterium, thereby producing, as reaction products, a compound enriched in deuterium and hydrofluorocarbon depleted in deuterium; combined with a new method, which comprises enriching the deuterium content of the depleted hydrofluorocarbon by contacting the depleted hydrofluorocarbon with an alkali metal amide and an amine having a concentration of deuterium at least that which will yield an increase in deuterium concentration of the hydrofluorocarbon upon equilibration, whereby the amine becomes depleted in deuterium

  3. Amine chemistry. Update on impact on resin

    International Nuclear Information System (INIS)

    Bachman, Gregory; Kellogg, Douglas; Wilkes, Marty

    2012-01-01

    Impurity removal in the steam cycle and the associated prevention of corrosion and/or fouling of system components are the goals of ion exchange resins. However, in many instances (such as a switch to amine chemistry or a change in product specifications), resins do not remove, and, in fact, contribute impurities to the steam cycle. This paper reviews recent data compiled to determine the direct and indirect effects of amines on ion exchange resins used in the power industry. Water chemistries have improved in recent years, in large part due to changes in chemistry and resins, but it is necessary to continue to develop products, processes and techniques to reduce impurities and improve overall water chemistry in power plant systems. (orig.)

  4. Amine chemistry. Update on impact on resin

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, Gregory; Kellogg, Douglas [Siemens Industry, Inc., Rockford, IL (United States). Technology and Lab Services; Wilkes, Marty [Siemens Industry, Inc., Rockford, IL (United States). Water Technologies Div.

    2012-03-15

    Impurity removal in the steam cycle and the associated prevention of corrosion and/or fouling of system components are the goals of ion exchange resins. However, in many instances (such as a switch to amine chemistry or a change in product specifications), resins do not remove, and, in fact, contribute impurities to the steam cycle. This paper reviews recent data compiled to determine the direct and indirect effects of amines on ion exchange resins used in the power industry. Water chemistries have improved in recent years, in large part due to changes in chemistry and resins, but it is necessary to continue to develop products, processes and techniques to reduce impurities and improve overall water chemistry in power plant systems. (orig.)

  5. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng; Wang, Yanbing; Estevez, Luis; Duan, Xiaonan; Anako, Nkechi; Park, Ah-Hyung Alissa; Li, Wen; Jones, Christopher W.; Giannelis, Emmanuel P.

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  6. Rate phenomena in uranium extraction by amines

    International Nuclear Information System (INIS)

    Coleman, C.F.; McDowell, W.J.

    1979-01-01

    Kinetics studies and other rate measurements are reviewed in the amine extraction of uranium and of some other related and associated metal ions. Equilibration is relatively fast in the uranium sulfate systems most important to uranium hydrometallurgy. Significantly slow equilibration has been encountered in some other systems. Most of the recorded rate information, both qualitative and quantitative, has come from exploratory and process-development work, while some kinetics studies have been directed specifically toward elucidation of extraction mechanisms. 71 references

  7. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David M., E-mail: d.brown@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom); Varet, Julia, E-mail: julia.varet@IOM-world.org [Institute of Occupational Medicine (United Kingdom); Johnston, Helinor, E-mail: h.johnston@hw.ac.uk; Chrystie, Alison; Stone, Vicki, E-mail: v.stone@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom)

    2015-10-15

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  8. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    International Nuclear Information System (INIS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-01-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed

  9. Thermometric titrations of amines with nitrosyl perchlorate in acetonitrile solvent.

    Science.gov (United States)

    Gündüz, T; Kiliç, E; Cakirer, O

    1996-05-01

    Thirteen aliphatic and four aromatic amines, namely diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-butylamine, isopropylamine, di-isopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, aniline, N,N-dimethylaniline, 2-nitroaniline and 4-nitroaniline were titrated thermometrically with nitrosyl perchlorate in acetonitrile solvent. All the aliphatic amines gave very well-shaped thermometric titration curves. The calculated recovery values of the amines were very good. In comparison, the aromatic amines, aniline and N,N-dimethylaniline gave rather well-shaped titration curves, but the recovery values were fairly low. 2-Nitro- and 4-nitro anilines gave no thermometric response at all. The heats of reaction of the amines with nitrosyl perchlorate are rather high. However, the average heat of reaction of the aromatic amines is approximately two-thirds that of the average heat of the aliphatic amines. To support this method all the amines were also titrated potentiometrically and very similar results to those obtained with the thermometric method are seen. The nitrosyl ion is a Lewis acid, strong enough to titrate quantitatively aliphatic amines in acetonitrile solvent, but not strong enough to titrate aromatic amines at the required level in the same solvent.

  10. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

    Directory of Open Access Journals (Sweden)

    Sandip A. Ghuge

    2015-07-01

    Full Text Available Polyamines (PAs are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs, including copper amine oxidases (CuAOs and flavin adenine dinucleotide (FAD-dependent polyamine oxidases (PAOs. The biologically-active hydrogen peroxide (H2O2 is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  11. Silica research in Glasgow

    CERN Document Server

    Barr, B W; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lück, H B; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 sup - sup 1 sup 9 m Hz sup - sup 1 sup / sup 2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented.

  12. Iron(II)-catalyzed intermolecular amino-oxygenation of olefins through the N-O bond cleavage of functionalized hydroxylamines.

    Science.gov (United States)

    Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao

    2014-09-24

    An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.

  13. Recent advances in the ruthenium(ii)-catalyzed chelation-assisted C-H olefination of substituted aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2017-08-08

    The transition-metal-catalyzed chelation-assisted alkenylation at the inert C-H bond of aromatics with alkenes is one of the efficient methods to synthesize substituted vinylarenes in a highly regio- and stereoselective manner. Palladium, rhodium and ruthenium complexes are frequently used as catalysts for this type of transformation. The present review describes the recent advances in the ruthenium-catalyzed chelation-assisted alkenylation at the C-H bond of aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway. Several directing groups including 2-pyridyl, carbonyl, amidine, amide, amine, imidate, sulphonic acid, triazole, cyano, oxazolidinone and hydontoin are widely used in the reaction. The scope, limitation and mechanistic investigation of the alkenylation reactions are discussed elaborately. This feature article includes all the reported ruthenium-catalyzed alkenylation reactions via the deprotonation pathway until the end of March 2017.

  14. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  15. Efficient CO2 sorbents based on silica foam with ultra-large mesopores

    KAUST Repository

    Qi, Genggeng; Fu, Liling; Choi, Brian Hyun; Giannelis, Emmanuel P.

    2012-01-01

    A series of high-capacity, amine impregnated sorbents based on a cost-effective silica foam with ultra-large mesopores is reported. The sorbents exhibit fast CO2 capture kinetics, high adsorption capacity (of up to 5.8 mmol g-1 under 1 atm of dry CO2), as well as good stability over multiple adsorption-desorption cycles. A simple theoretical analysis is provided relating the support structure to sorbent performance. © 2012 The Royal Society of Chemistry.

  16. Fibrous nano-silica (KCC-1)-supported palladium catalyst: Suzuki coupling reactions under sustainable conditions

    KAUST Repository

    Fihri, Aziz; Cha, Dong Kyu; Bouhrara, Mohamed; Al Mana, Noor; Polshettiwar, Vivek

    2011-01-01

    Noble amines recycled: Fibrous high-surface-area nano-silica functionalized with aminopropyl groups and loaded with well-dispersed Pd nanoparticles is evaluated for the Suzuki coupling of aromatic halides. It is active for the reaction of a range of aryl bromides and iodides as well as chlorides with aryl boronic acids in good to excellent yields. The catalyst can be recovered and reused for a number of cycles with negligible loss in activity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fibrous nano-silica (KCC-1)-supported palladium catalyst: Suzuki coupling reactions under sustainable conditions

    KAUST Repository

    Fihri, Aziz

    2011-11-15

    Noble amines recycled: Fibrous high-surface-area nano-silica functionalized with aminopropyl groups and loaded with well-dispersed Pd nanoparticles is evaluated for the Suzuki coupling of aromatic halides. It is active for the reaction of a range of aryl bromides and iodides as well as chlorides with aryl boronic acids in good to excellent yields. The catalyst can be recovered and reused for a number of cycles with negligible loss in activity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Influence of the silica fillers on the ageing of epoxy resins under irradiations

    International Nuclear Information System (INIS)

    Benard, F.

    2004-01-01

    Various studies were carried out on the ageing of epoxy resins under irradiations. In all cases, pure polymers were studied. The aim of our work managed by the CEA and the CNRS consists on studying the part of fillers and particularly the part of silica on ageing process under electron beam irradiations. Because of their wide use in industrial applications and especially in nuclear environment, the DGEBA-TETA resins (Diglycidylether of Bisphenol A - Triethylenetetramine) were chosen. Those epoxy resins are difficult to analyse because of their insolubility. Some pure and nano-metric silica filled chemical models which chemical structure very close to the one the DGEBA/TETA resin were synthesized and analysed with classical methods in organic chemistry. A major phenomenon of rupture of the C-O and C-N chemical bonds with creation of phenolic extremities, methylketone extremities, of primary and tertiary amines and notably enamine functions were revealed by the analyses. The quantitative 1 H and 13 C NMR analyses revealed the screen effect due to the silica and the reactions between the chemical species created by the irradiations and the silica surface. Thermic and thermodynamic analyses of the different epoxy resins in function of the irradiation dose and of the kind of silica showed the decrease of the glass transition temperature, of the relaxation temperature and of the crosslink density confirming the major phenomenon of bond ruptures during irradiations. With silica, the decrease of the crosslink density is slowed. This phenomenon can be explained with interactions between the nano-metric silica surface and the epoxy resin offsetting the effect of the chain rupture on the resin mechanical properties. The 13 C solid state NMR analyses confirmed the choice of the chemical models and permitted to detect the chemical species created by the irradiations. The analyse of the polarization transfers with 13 C CP-MAS NMR spectroscopy revealed the stiffening of the nano

  19. Post-column derivatization capillary electrochromatography for detection of biogenic amines in tuna-meat.

    Science.gov (United States)

    Oguri, Shigeyuki; Okuya, Yukie; Yanase, Yukiko; Suzuki, Sayaka

    2008-08-15

    A system to perform post-column derivatization capillary electrochromatography (CEC) was developed for the first time. The system mainly included a 4-microm (O.D.) silica packed column (200 mm effective length x 0.1 mm inner diameter I.D.) with micro-magnetic particles (MMPs) frits, a T-junction connector, an in-line fluorescence detector and a high-voltage power supply. The system was evaluated by using histamine (HA) as a standard biogenic amine for this study. A 5 microM HA solution was loaded at the anodic site of the capillary column by applying 3 kV for 5s. Then, HA was electrophoretically eluted with a 20mM phosphate buffer (pH 7) by applying 3 kV, and was derivatized with 3mM o-phthalaldehyde (OPA)/N-acetylcysteine (NAC) in 100 mM borate (pH 10), which was continuously delivered through the reagent-loading capillary tube by gravity into the T-junction connector. HA derivative was finally detected with the in-line fluorescence detector (lambda(Ex)=340 nm, lambda(Em)=450 nm) at 9.7 min after sample loading. To test the utility of this system, it was next employed for its ability to detect the presence of HA and other kinds of biogenic amines, including cadaverine (Cad), spermidine (Spm) and tyramine (Tyr) in tuna-meat, once the validity of the method had been confirmed.

  20. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  1. Uranium diphosphonates templated by interlayer organic amines

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Anna-Gay D., E-mail: nelsoa@umich.edu [Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556 (United States); Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005 (United States); Alekseev, Evgeny V. [Institute of Energy and Climate Research (IEK-6), Forschungszentrum Juelich Wilhelm-Johnen-Strasse, 52428 Juelich (Germany); Institut fuer Kristallographie, RWTH Aachen University, D-52066 Aachen (Germany); Albrecht-Schmitt, Thomas E. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556 (United States); Ewing, Rodney C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005 (United States)

    2013-02-15

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 Degree-Sign C results in the crystallization of a series of layered uranium diphosphonate compounds, [C{sub 10}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Ubip2), [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} (UDAB), [C{sub 2}H{sub 10}N{sub 2}]{sub 2}{l_brace}(UO{sub 2}){sub 2}(H{sub 2}O){sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sub 2}{center_dot}0.5H{sub 2}O{r_brace} (Uethyl), and [C{sub 12}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Uphen). The crystal structures of the compounds are based on UO{sub 7} units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also

  2. Mesoporous silica nanoparticles for treating spinal cord injury

    Science.gov (United States)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2013-02-01

    An estimated 12,000 new cases of spinal cord injury (SCI) occur every year in the United States. A small oxidative molecule responsible for secondary injury, acrolein, is an important target in SCI. Acrolein attacks essential proteins and lipids, creating a feed-forward loop of oxidative stress in both the primary injury area and the surrounding areas. A small molecule used and FDA-approved for hypertension, hydralazine, has been found to "scavenge" acrolein after injury, but its delivery and short half-life, as well as its hypertension effects, hinder its application for SCI. Nanomedical systems broaden the range of therapeutic availability and efficacy over conventional medicine. They allow for targeted delivery of therapeutic molecules to tissues of interest, reducing side effects of untargeted therapies in unwanted areas. Nanoparticles made from silica form porous networks that can carry therapeutic molecules throughout the body. To attenuate the acrolein cascade and improve therapeutic availability, we have used a one-step, modified Stober method to synthesize two types of silica nanoparticles. Both particles are "stealth-coated" with poly(ethylene) glycol (PEG) (to minimize interactions with the immune system and to increase circulation time), which is also a therapeutic agent for SCI by facilitating membrane repair. One nanoparticle type contains an amine-terminal PEG (SiNP-mPEG-Am) and the other possesses a terminal hydrazide group (SiNP-mPEG-Hz). The former allows for exploration of hydralazine delivery, loading, and controlled release. The latter group has the ability to react with acrolein, allowing the nanoparticle to scavenge directly. The nanoparticles have been characterized and are being explored using neuronal PC-12 cells in vitro, demonstrating the potential of novel silica nanoparticles for use in attenuating secondary injury after SCI.

  3. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  4. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  5. Rapid and clean amine functionalization of carbon nanotubes in a dielectric barrier discharge reactor for biosensor development

    International Nuclear Information System (INIS)

    Khodadadei, Fatemeh; Ghourchian, Hedayatollah; Soltanieh, Mansour; Hosseinalipour, Mohammad; Mortazavi, Yadollah

    2014-01-01

    Multiwalled carbon nanotubes (MWCNTs) were amine-functionalized using the process of dielectric barrier discharge (DBD) plasma treatment. The scanning electron microscope micrographs and Fourier transform infra-red spectroscopy clearly demonstrated that the carbon skeleton structure of the plasma-treated MWCNTs was preserved and amine groups were coupled to MWCNTs during this process. The amine-functionalized MWCNTs were then fixed on glassy carbon (GC) electrode and glucose oxidase (GO X ) as a model enzyme was immobilized on the modified GC electrode. Direct electron transfer between the redox active center of the immobilized GO X and the plasma-treated MWCNTs was investigated through cyclic voltammetry. The well-defined, quasi-reversible redox peaks of the immobilized GO X revealed that GO X retained its activity such that it could specifically catalyze the oxidation of glucose with great efficiency. The obtained enzyme electrode was used for glucose biosensing with the linear range from 17 to 646 μM and sensitivity of 12.3 μA/mM cm 2 . Based on the signal to noise ratio of 3, the detection limit was estimated to be 9 μM. The Michaelis–Menten constant for immobilized GO X was as low as 480 μM

  6. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase.

    Science.gov (United States)

    Klema, Valerie J; Wilmot, Carrie M

    2012-01-01

    Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O(2) to H(2)O(2). These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer's disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.

  7. The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase

    Directory of Open Access Journals (Sweden)

    Carrie M. Wilmot

    2012-05-01

    Full Text Available Copper amine oxidases (CAOs are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ, that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.

  8. Iron Catalyzed Cycloaddition of Alkynenitriles and Alkynes

    Science.gov (United States)

    D’Souza, Brendan R.; Lane, Timothy K.

    2011-01-01

    The combination of Fe(OAc)2 and an electron-donating, sterically-hindered pyridyl bisimine ligand catalyzes the cycloaddition of alkynenitriles and alkynes. A variety of substituted pyridines were obtained in good yields. PMID:21557582

  9. New potential of the reductive alkylation of amines

    International Nuclear Information System (INIS)

    Gusak, K N; Ignatovich, Zh V; Koroleva, E V

    2015-01-01

    Available data on the reductive alkylation of amines with carbonyl compounds — a key method for the preparation of secondary and tertiary amines — are described systematically. The review provides information on the relevant reducing agents and catalysts and on the use of chiral catalysts in stereo- and enantiocontrolled reactions of amine synthesis. The effect of the reactant and catalyst structures on the reaction rates and chemo- and stereo(enantio)selectivity is considered. The bibliography includes 156 references

  10. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    Energy Technology Data Exchange (ETDEWEB)

    Stanger, Keith James [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-α-acetamidocinnamate (MAC), has the illustrated structure as established by 31P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]4, [Rh(COD)2]+BF4-, [Rh(COD)Cl]2, and RhCl3• 3H2O, adsorbed on SiO2 are optimally activated for toluene hydrogenation by pretreatment with H2 at 200 C. The same complexes on Pd-SiO2 are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH2)3s-]Re(O)(Me)(PPh3) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  11. Ordered cubic nanoporous silica support MCM-48 for delivery of poorly soluble drug indomethacin

    Science.gov (United States)

    Zeleňák, Vladimír; Halamová, Dáša; Almáši, Miroslav; Žid, Lukáš; Zeleňáková, Adriána; Kapusta, Ondrej

    2018-06-01

    Ordered MCM-48 nanoporous silica (SBET = 923(3) m2·g-1, VP = 0.63(2) cm3·g-1) with cubic Ia3d symmetry was used as a support for drug delivery of anti-inflammatory poorly soluble drug indomethacin. The delivery from parent, unmodified MCM-48, and 3-aminopropyl modified silica carrier was studied into the simulated body fluids with the pH = 2 and pH = 7.4. The studied samples were characterized by thermal analysis (TG/DTG-DTA), N2 adsorption/desorption, infrared spectroscopy (FT-IR), powder XRD, SEM, HRTEM methods, measurements of zeta potential (ζ) and dynamic light scattering (DLS). The determined content of indomethacin in pure MCM-48 was 21 wt.% and in the amine-modified silica MCM-48A-I the content was 45 wt.%. The release profile of the drug, in the time period up to 72 h, was monitored by TLC chromatographic method. It as shown, that by the modification of the surface, the drug release can be controlled. The slower release of indomethacin was observed from amino modified sample MCM-48A-I in the both types of studied simulated body fluids (slightly alkaline intravenous solution with pH = 7.4 and acidic gastric fluid with pH = 2), which was supported and explained by zeta potential and DLS measurements. The amount of the released indomethacin into the fluids with various pH was different. The maximum released amount of the drug was 97% for sample containing unmodified silica, MCM-48-I at pH = 7.4 and lowest released amount, 57%, for amine modified sample MCM-48A-I at pH = 2. To compare the indomethacin release profile four kinetic models were tested. Results showed, that that the drug release based on diffusion Higuchi model, mainly governs the release.

  12. Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal

    International Nuclear Information System (INIS)

    Wang Yangang; Huang Sujun; Kang Shifei; Zhang Chengli; Li Xi

    2012-01-01

    Graphical abstract: A simple and low-cost route to synthesize mesoporous silica materials with high silanol groups has been demonstrated by means of a sol–gel process using citric acid as the template and acid catalyst, further studies on the adsorption of Cu(II) onto the representative amine-functionalized mesoporous silica showed that it had a high Cu(II) removal efficiency. Highlights: ► A low-cost route to synthesize mesoporous silica with high silanol groups was demonstrated. ► Citric acid as the template and acid catalyst for the reaction of tetraethylorthosilicate. ► Water extraction method was an effective technique to remove template which can be recycled. ► The mesoporous silica with high silanol groups was easily modified by functional groups. ► A high Cu(II) removal efficiency on the amine-functionalized mesoporous silica. - Abstract: We report a simple and low-cost route for the synthesis of mesoporous silica materials with high silanol groups by means of a sol–gel process using citric acid as the template, tetraethylorthosilicate (TEOS) as the silica source under aqueous solution system. The citric acid can directly work as an acid catalyst for the hydrolysis of TEOS besides the function as a pore-forming agent in the synthesis. It was found that by using a water extraction method the citric acid template in as-prepared mesoporous silica composite can be easily removed and a high degree of silanol groups were retained in the mesopores, moreover, the citric acid template in the filtrate can be recycled after being dried. The structural properties of the obtained mesoporous silica materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption–desorption analysis. Furthermore, an adsorption of Cu(II) from aqueous solution on the representative amine-functionalized mesoporous silica was investigated

  13. Pumping Iron and Silica Bodybuilding

    Science.gov (United States)

    Mcnair, H.; Brzezinski, M. A.; Krause, J. W.; Parker, C.; Brown, M.; Coale, T.; Bruland, K. W.

    2016-02-01

    The availability of dissolved iron influences the stoichiometry of nutrient uptake by diatoms. Under nutrient replete conditions diatoms consume silicic acid and nitrate in a 1:1 ratio, this ratio increases under iron stress. Using the tracers 32Si and PDMPO, the total community and group-specific silica production rates were measured along a gradient of dissolved iron in an upwelling plume off the California coast. At each station, a control (ambient silicic acid) and +20 µM silicic acid treatment were conducted with each tracer to determine whether silicic acid limitation controlled the rate of silica production. Dissolved iron was 1.3 nmol kg-1 nearshore and decreased to 0.15 nmol kg-1 offshore. Silicic acid decreased more rapidly than nitrate, it was nearly 9 µM higher in the nearshore and 7 µM lower than nitrate in the middle of the transect where the iron concentration had decreased. The rate of diatom silica production decreased in tandem with silicic acid concentration, and silica production limitation by low silicic acid was most pronounced when iron concentrations were >0.4 nmol kg-1. The composition of the diatom assemblage shifted from Chaetoceros spp. dominated nearshore to a more sparse pennate-dominated assemblage offshore. Changes in taxa-specific silica production rates will be reported based on examination of PDMPO labeled cells using confocal microscopy.

  14. Fluorescence quenching of Rhodamine B base by two amines

    Science.gov (United States)

    Bakkialakshmi, S.; Selvarani, P.; Chenthamarai, S.

    2013-03-01

    Fluorescence quenching of Rhodamine B base (RhB) in DMF solution has been studied at different concentrations of the amine Triethyl amine (TEA) and n-butyl amine (NBA) at room temperature. It has been observed that the fluorescence intensity of RhB decrease with increase in the concentration of the TEA and NBA. It has been observed that the quenching due to amines proceeds via dynamic quenching process. The rate constants for the quenching process have been calculated using Stern-Volmer equation. Time resolved fluorescence study and 1H NMR spectral study have also been carried out and discussed.

  15. Evaluation of amine inhibitors for suitability as crevice buffering agents

    International Nuclear Information System (INIS)

    Jayaweera, P.; Hettiarachchi, S.

    1994-03-01

    This report describes the results of a research effort to evaluate the suitability of some selected amines and amino acids as a crevice-buffering agents in pressurized water reactor (PWR) steam generators. The amines may be useful for buffering acid crevices, and the amino acids, because they contain both acidic and basic groups, may be useful for acidic and caustic crevices. Five commercially available amines and two amino acids were studied during this research. The study involved (1) the hydrolysis of these commercially available amines and amino acids, including measurement of their kinetics of decomposition, in simulated steam generator bulk water at 290 C, and (2) determination of their thermal stability in a simulated crevice environment. The study showed that, although the high-molecular-weight amines undergo hydrothermal decomposition, they have a better buffering capacity than their low-molecular-weight counterparts at 290 C. The amines provide effective crevice buffering by increasing the pH of the crevice solution by as much as 2.84 and to 4.24 units in the experimental setup used in this program. It was concluded that polyamines provide excellent buffering of the simulated crevice environment at 290 C and morpholine remains the best low-molecular-weight amine investigated. However, detailed volatility studies of the amines were not considered in this work. Such data would be needed before in-plant testing to ensure that the amines can concentrate in steam generator crevices to the levels assumed in this study

  16. Organic transformations catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolin [Iowa State Univ., Ames, IA (United States)

    1995-10-06

    Methylrhenium trioxide (MTO), CH3ReO3, was first prepared in 1979. MTO forms stable or unstable adducts with electron-rich ligands, such as amines (quinuclidine, 1,4-diazabicyclo-octane, pyridine, aniline, 2,2'-bipyridine), alkynes, olefins, 1,2-diols, catechols, hydrogen peroxide, water, thiophenols, 1,2-dithiols, triphenylphosphine, 2-aminophenols, 2-aminothiophenols, 8-hydroxyquinoline and halides (Cl-, Br-, I-). After coordination, different further reactions will occur for different reagents. Reactions described in this report include the dehydration of alcohols, direct amination of alcohols, activation of hydrogen peroxide, oxygen transfer, and decomposition of ethyl diazoacetate.

  17. Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior

    Science.gov (United States)

    Park, Ho Bum; Lee, Sun Yong; Lee, Young Moo

    2005-04-01

    Pyrolytic carbon membrane containing silica (C-SiO 2) is a new-class material for gas separation, and in the present work we will deal with it in view of the morphological changes arising from the difference in the molecular structure of the polymeric precursors. The silica embedded carbon membranes were fabricated by a predetermined pyrolysis step using imide-siloxane copolymers (PISs) that was synthesized from benzophenone tetracarboxylic dianhydrides (BTDA), 4,4'-oxydianiline (ODA), and amine-terminated polydimethylsiloxane (PDMS). To induce different morphologies at the same chemical composition, the copolymers were prepared using one-step (preferentially a random segmented copolymer) sand two-step polymerization (a block segmented copolymer) methods. The polymeric precursors and their pyrolytic C-SiO 2 membranes were analyzed using thermal analysis, atomic force microscopy, and transmission electron microscopy, etc. It was found that the C-SiO 2 membrane derived from the random PIS copolymer showed a micro-structure containing small well-dispersed silica domains, whereas the C-SiO 2 membrane from the block PIS copolymer exhibited a micro-structure containing large silica domains in the continuous carbon matrix. Eventually, the gas transport through these C-SiO 2 membranes was significantly affected by the morphological changes of the polymeric precursors.

  18. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling

    OpenAIRE

    Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.; MacMillan, David W. C.

    2013-01-01

    The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Important...

  19. Poly(Amido Amine)s containing agmatine and butanol side chains as efficient gene carriers

    NARCIS (Netherlands)

    Won, Young-Wook; Ankone, Martinus J.K.; Engbersen, Johannes F.J.; Feijen, Jan; Kim, S.W.

    2016-01-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of

  20. Silica nanoparticle stability in biological media revisited.

    Science.gov (United States)

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  1. Amine reactivity with charged sulfuric acid clusters

    Directory of Open Access Journals (Sweden)

    B. R. Bzdek

    2011-08-01

    Full Text Available The distribution of charged species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS. Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid neutralization is cluster size-dependent. With increasing cluster size (and, therefore, a decreasing role of charge, both positively- and negatively-charged cluster compositions converge toward ammonium bisulfate. The reactivity of negatively-charged sulfuric acid-ammonia clusters with dimethylamine and ammonia is also investigated by FTICR-MS. Two series of negatively-charged clusters are investigated: [(HSO4(H2SO4x] and [(NH4x(HSO4x+1(H2SO43]. Dimethylamine substitution for ammonia in [(NH4 x(HSO4 x+1(H2SO43] clusters is nearly collision-limited, and subsequent addition of dimethylamine to neutralize H2SO4 to bisulfate is within one order of magnitude of the substitution rate. Dimethylamine addition to [(HSO4 (H2SO4 x] clusters is either not observed or very slow. The results of this study indicate that amine chemistry will be evident and important only in large ambient negative ions (>m/z 400, whereas amine chemistry may be evident in small ambient positive ions. Addition of ammonia to unneutralized clusters occurs at a rate that is ~2–3 orders of magnitude slower than incorporation of dimethylamine either by substitution or addition

  2. Interaction of biogenic amines with ethanol.

    Science.gov (United States)

    Smith, A A

    1975-01-01

    Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response

  3. Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO₂ Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater.

    Science.gov (United States)

    Dai, Ning; Mitch, William A

    2015-07-21

    Formation of nitrosamines and nitramines from reactions between flue gas NOx and the amines used in CO2 capture units has arisen as a significant concern. Washwater scrubbers can capture nitrosamines and nitramines. They can also capture amines, preventing formation of nitrosamines and nitramines downwind by amine reactions with ambient NOx. The continuous application of UV alone, or a combination of UV and ozone to the return line of a washwater treatment unit was evaluated to control the accumulation of nitrosamines, nitramines and amines in a laboratory-scale washwater unit. With model secondary amine solvents ranging from nonvolatile diethanolamine to volatile morpholine, application of 272-537 mJ/cm(2) UV incident fluence alone reduced the accumulation of nitrosamines and nitramines by approximately an order of magnitude. Modeling indicated that the gains achieved by UV treatment should increase over time, because UV treatment converts the time dependence of nitrosamine accumulation from a quadratic to a linear function. Ozone (21 mg/L) maintained low steady-state concentrations of amines in the washwater. While modeling indicated that more than 80% of nitrosamine accumulation in the washwater was associated with reaction of washwater amines with residual NOx, a reduction in nitrosamine accumulation rates due to ozone oxidation of amines was not fully realized because the ozonation products of amines reduced nitrosamine photolysis rates by competing for photons.

  4. Solid-State NMR and DFT Studies on the Formation of Well-Defined Silica-Supported Tantallaaziridines: From Synthesis to Catalytic Application

    KAUST Repository

    Hamzaoui, Bilel

    2016-01-27

    Single-site, well-defined, silica-supported tantallaaziridine intermediates [≡Si-O-Ta(η2-NRCH2)(NMe2)2] [R=Me (2), Ph (3)] were prepared from silica-supported tetrakis(dimethylamido)tantalum [≡Si-O-Ta(NMe2)4] (1) and fully characterized by FTIR spectroscopy, elemental analysis, and 1H,13C HETCOR and DQ TQ solid-state (SS) NMR spectroscopy. The formation mechanism, by β-H abstraction, was investigated by SS NMR spectroscopy and supported by DFT calculations. The C-H activation of the dimethylamide ligand is favored for R=Ph. The results from catalytic testing in the hydroaminoalkylation of alkenes were consistent with the N-alkyl aryl amine substrates being more efficient than N-dialkyl amines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of silica RO membranes

    International Nuclear Information System (INIS)

    Ikeda, Ayumi; Kawamoto, Takashi; Matsuyama, Emi; Utsumi, Keisuke; Nomura, Mikihiro; Sugimoto, Masaki; Yoshikawa, Masato

    2012-01-01

    Silica based membranes have been developed by using a counter diffusion CVD method. Effects of alkyl groups in the silica precursors and deposition temperatures had investigated in order to control pore sizes of the silica membranes. In this study, this type of a silica membrane was applied for RO separation. Effects of silica sources, deposition temperatures and post treatments had been investigated. Tetramethoxysilane (TMOS), Ethyltrimethoxysilane (ETMOS) and Phenyltrimethoxysilane (PhTMOS) were used as silica precursors. A counter diffusion CVD method was carried out for 90 min at 270 - 600degC on γ-alumina capillary substrates (effective length: 50 mm, φ: 4 nm: NOK Co.). O 3 or O 2 was introduced into the inside of the substrate at the O 2 rate of 0.2 L min -1 . Ion beam irradiation was carried out for a post treatment using Os at 490 MeV for 1.0 x 10 10 ions cm -2 or 3.0 x 10 10 ions cm -2 . Single gas permeance was measured by using H 2 , N 2 and SF 6 . RO tests were employed at 3.0 or 5.4 MPa for 100 mg L -1 of feed NaCl solution. First, effects of the silica sources were investigated. The total fluxes increased by increasing N 2 permeance through the silica membrane deposited by ETMOS. The maximum NaCl rejection was 28.2% at 12.2 kg m -2 h -1 of the total flux through the membrane deposited at 270degC. N 2 permeance was 9.6 x 10 -9 mol m -2 s -1 Pa -1 . While, total fluxes through the membrane deposited by using PhTMOS were smaller than those through the ETMOS membranes. The phenyl groups for the PhTMOS membrane must be important for the hydrophobic properties through the membrane. Next, effects of ion beam irradiation were tested for the TMOS membranes. Water is difficult to permeate through the TMOS membranes due to the low N 2 permeance through the membrane (3.1 x 10 -11 mol m -2 s -1 Pa -1 ). N 2 permeance increased to 7.3 x 10 -9 mol m -2 s -1 Pa -1 by the irradiation. Irradiation amounts had little effects on N 2 permeance. However, NaCl rejections

  6. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Yue ePei

    2016-04-01

    Full Text Available Biogenic amines are a collection of endogenous molecules that play pivotal roles as neurotransmitters and hormones. In addition to the classical biogenic amines resulting from decarboxylation of aromatic acids, including dopamine (DA, norepinephrine, epinephrine, serotonin (5-HT and histamine, other biogenic amines, present at much lower concentrations in the central nervous system (CNS, and hence referred to as trace amines (TAs, are now recognized to play significant neurophysiological and behavioural functions. At the turn of the century, the discovery of the trace amine-associated receptor 1 (TAAR1, a phylogenetically conserved G protein-coupled receptor that is responsive to both TAs, such as β-phenylethylamine, octopamine and tyramine, and structurally-related amphetamines, unveiled mechanisms of action for TAs other than interference with aminergic pathways, laying the foundations for deciphering the functional significance of TAs and its mammalian CNS receptor, TAAR1. Although its molecular interactions and downstream targets have not been fully elucidated, TAAR1 activation triggers accumulation of intracellular cAMP, modulates PKA and PKC signalling and interferes with the β-arrestin2-dependent pathway via G protein-independent mechanisms. TAAR1 is uniquely positioned to exert direct control over DA and 5-HT neuronal firing and release, which has profound implications for understanding the pathophysiology of, and therefore designing more efficacious therapeutic interventions for, a range of neuropsychiatric disorders that involve aminergic dysregulation, including Parkinson’s disease, schizophrenia, mood disorders and addiction. Indeed, the recent development of novel pharmacological tools targeting TAAR1 has uncovered the remarkable potential of TAAR1-based medications as new generation pharmacotherapies in neuropsychiatry. This review summarizes recent developments in the study of TAs and TAAR1, their intricate neurochemistry and

  7. Bifunctional (cyclopentadienone)iron-tricarbonyl complexes: Synthesis, computational studies and application in reductive amination

    KAUST Repository

    Moulin, Solenne; Dentel, Hé lè ne; Pagnoux-Ozherelyeva, Anastassiya; Gaillard, Sylvain; Poater, Albert; Cavallo, Luigi; Lohier, Jean Franç ois; Renaud, Jean Luc

    2013-01-01

    . Festival of amination: Two series of modified Knölker's complexes were synthesised and applied in the reductive amination of various carbonyl derivatives with primary or secondary amines (see scheme, TIPS = triisopropylsilyl). For a mechanistic insight

  8. Niobia-silica and silica membranes for gas separation

    NARCIS (Netherlands)

    Boffa, V.

    2008-01-01

    This thesis describes the development of ceramic membranes suitable for hydrogen separation and CO2 recovery from gaseous streams. The research work was focused on the three different parts of which gas selective ceramic membranes are composed, i.e., the microporous gas selective silica layer, the

  9. Ceria-Based Mixed Oxide Supported Nano-Gold as an Efficient and Durable Heterogeneous Catalyst for Oxidative Dehydrogenation of Amines to Imines Using Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad Dar

    2012-06-01

    Full Text Available The present work is intended to determine the catalytic activity of Mixed Oxide supported gold for aerobic oxidative dehydrogenation of amines to imines using Ceria as a main constituent of the each support. The model catalysts Au/CeO2:TiO2 Au/CeO2:SiO2, Au/CeO2:ZrO2 and Au/CeO2:Al2Os were prepared by deposition co-precipitation method and deposition of gold was determined by EDEX analysis. The supported nano-gold catalyzes the dehydrogenation of secondary amines to imines without loss of activity. On recycling good amount of product yield is obtained. Oxidation of secondary amines to imines is carried at 100˚C and almost 90 % conversion was obtained with >99% selectivity. © 2012 BCREC UNDIP. All rights reservedReceived: 26th December 2011; Revised: 7th June 2012; Accepted: 13rd June 2012[How to Cite: B.A. Dar, M. Sharma, B. Singh. (2012. Ceria-Based Mixed Oxide Supported Nano-Gold as an Efficient and Durable Heterogeneous Catalyst for Oxidative Dehydrogenation of Amines to Imines Using Molecular Oxygen. Bulletin of Chemical Reaction Engineering & Catalysis, 7(1: 79-84.  doi:10.9767/bcrec.7.1.1257.79-84][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1257.79-84 ] | View in 

  10. Sonochemical coating of magnetite nanoparticles with silica.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  11. 21 CFR 584.700 - Hydrophobic silicas.

    Science.gov (United States)

    2010-04-01

    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  12. Zirconium(IV)-Catalyzed Ring Opening of on-DNA Epoxides in Water.

    Science.gov (United States)

    Fan, Lijun; Davie, Christopher P

    2017-05-04

    DNA-encoded library technology (ELT) has spurred wide interest in the pharmaceutical industry as a powerful tool for hit and lead generation. In recent years a number of "DNA-compatible" chemical modifications have been published and used to synthesize vastly diverse screening libraries. Herein we report a newly developed, zirconium tetrakis(dodecyl sulfate) [Zr(DS) 4 ] catalyzed ring-opening of on-DNA epoxides in water with amines, including anilines. Subsequent cyclization of the resulting on-DNA β-amino alcohols leads to a variety of biologically interesting, nonaromatic heterocycles. Under these conditions, a library of 137 million on-DNA β-amino alcohols and their cyclization products was assembled. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    International Nuclear Information System (INIS)

    Paik, Seung Uk; Jung, Myoung Geun

    2012-01-01

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions

  14. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)

    2012-02-15

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  15. Recent advances in the ruthenium-catalyzed hydroarylation of alkynes with aromatics: synthesis of trisubstituted alkenes.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2015-11-14

    The hydroarylation of alkynes with substituted aromatics in the presence of a metal catalyst via chelation-assisted C-H bond activation is a powerful method to synthesize trisubstituted alkenes. Chelation-assisted C-H bond activation can be done by two ways: (a) an oxidative addition pathway and (b) a deprotonation pathway. Generally, a mixture of cis and trans stereoisomeric as well as regioisomeric trisubstituted alkenes was observed in an oxidative addition pathway. In the deprotonation pathway, the hydroarylation reaction can be done in a highly regio- and stereoselective manner, and enables preparation of the expected trisubstituted alkenes in a highly selective manner. Generally, ruthenium, rhodium and cobalt complexes are used as catalysts in the reaction. In this review, a ruthenium-catalyzed hydroarylation of alkynes with substituted aromatics is covered completely. The hydroarylation reaction of alkynes with amide, azole, carbamate, phosphine oxide, amine, acetyl, sulfoxide and sulphur directed aromatics is discussed.

  16. Copper-Catalyzed Chan-Lam Cyclopropylation of Phenols and Azaheterocycles.

    Science.gov (United States)

    Derosa, Joseph; O'Duill, Miriam L; Holcomb, Matthew; Boulous, Mark N; Patman, Ryan L; Wang, Fen; Tran-Dubé, Michelle; McAlpine, Indrawan; Engle, Keary M

    2018-04-06

    Small molecules containing cyclopropane-heteroatom linkages are commonly needed in medicinal chemistry campaigns yet are problematic to prepare using existing methods. To address this issue, a scalable Chan-Lam cyclopropylation reaction using potassium cyclopropyl trifluoroborate has been developed. With phenol nucleophiles, the reaction effects O-cyclopropylation, whereas with 2-pyridones, 2-hydroxybenzimidazoles, and 2-aminopyridines the reaction brings about N-cyclopropylation. The transformation is catalyzed by Cu(OAc) 2 and 1,10-phenanthroline and employs 1 atm of O 2 as the terminal oxidant. This method is operationally convenient to perform and provides a simple, strategic disconnection toward the synthesis of cyclopropyl aryl ethers and cyclopropyl amine derivatives bearing an array of functional groups.

  17. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Direct evidence of charge separation in a metal-organic framework: efficient and selective photocatalytic oxidative coupling of amines via charge and energy transfer.

    Science.gov (United States)

    Xu, Caiyun; Liu, Hang; Li, Dandan; Su, Ji-Hu; Jiang, Hai-Long

    2018-03-28

    The selective aerobic oxidative coupling of amines under mild conditions is an important laboratory and commercial procedure yet a great challenge. In this work, a porphyrinic metal-organic framework, PCN-222, was employed to catalyze the reaction. Upon visible light irradiation, the semiconductor-like behavior of PCN-222 initiates charge separation, evidently generating oxygen-centered active sites in Zr-oxo clusters indicated by enhanced porphyrin π-cation radical signals. The photogenerated electrons and holes further activate oxygen and amines, respectively, to give the corresponding redox products, both of which have been detected for the first time. The porphyrin motifs generate singlet oxygen based on energy transfer to further promote the reaction. As a result, PCN-222 exhibits excellent photocatalytic activity, selectivity and recyclability, far superior to its organic counterpart, for the reaction under ambient conditions via combined energy and charge transfer.

  19. Thermodynamics of organic mixtures containing amines

    International Nuclear Information System (INIS)

    Gonzalez, Juan Antonio; Mozo, Ismael; Fuente, Isaias Garcia de la; Cobos, Jose Carlos

    2006-01-01

    Binary mixtures containing pyridine (PY), or 2-methylpyridine (2MPY) or 3-methylpyridine (3MPY) or 4-methylpyridine (4MPY) and an organic solvent as benzene, toluene, alkane, or 1-alkanol are investigated in the framework of DISQUAC. The corresponding interaction parameters are reported. The model describes accurately a whole set of thermodynamic properties: vapor-liquid equilibria (VLE), liquid-liquid equilibria (LLE), solid-liquid equilibria (SLE), molar excess Gibbs energies (G E ), molar excess enthalpies (H E ), molar excess heat capacities at constant pressure (C P E ) and the concentration-concentration structure factor (S CC (0)). It is remarkable that DISQUAC correctly predicts the W-shaped curve of the C P E of the pyridine + n-hexadecane system. The model can be applied successfully to mixtures with strong positive or negative deviations from the Raoult's law. DISQUAC improves the theoretical results from UNIFAC (Dortmund version). The replacement of pyridine by a methylpyridine leads to a weakening of the amine-amine interactions, ascribed to the steric effect caused by the methyl group attached to the aromatic ring. This explains that for a given solvent (alkane, 1-alkanol) H E (pyridine)>H E (methylpyridine)

  20. Reducing tube bundle deposition with alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Frattini, P.L.

    1998-01-01

    Particle deposition rates have been measured in a high-temperature loop for magnetite and hematite depositing onto Inconel-600 under flow-boiling conditions with pH controlled using one of the following amines: morpholine, ammonia, ethanolamine, or dimethylamine. Hematite particles deposited at rates an order of magnitude greater than those measured for magnetite, although the hematite deposition rate dropped when the loop was operated under reducing conditions. The magnetite deposition rate was influenced by the amine used to control the pH, with the relative rate decreasing in the following series: morpholine (1) : ethanolamine (0.72) ammonia (0.51) : dimethylamine (0.25). These trends in deposition rate are discussed in terms of the surface chemistry of the corrosion products. Deposition rates for both magnetite and hematite increased significantly once the mixture quality exceeded about 0.3, which may be related to a change in the heat transfer mechanism from nucleate boiling to two-phase forced convection through a thin film. (author)

  1. Reducing tube bundle deposition using alternative amines

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.; Frattini, P.L.

    1999-07-01

    Particle deposition rates were measured in a high-temperature loop for magnetite and hematite depositing onto Inconel-600 under flow-boiling conditions with pH controlled, using one of the following amines: morpholine, ammonia, ethanolamine, or dimethylamine. Hematite particles deposited at rates 10 times greater than those measured for magnetite although the hematite deposition rate dropped when the loop was operated under reducing conditions. The magnetite deposition rate was influenced by the amine used to control the pH, with the relative rate decreasing in the following series: morpholine (1) : ethanolamine (0.72) : ammonia (0.51) dimethylamine (0.25). These trends in deposition rate are discussed in terms of the surface chemistry of the corrosion products. Deposition rates for both magnetite and hematite increased significantly once the mixture quality exceeded about 0.3, which may be related to a change in the heat-transfer mechanism from nucleate boiling to 2-phase forced-convection through a thin film. (author)

  2. Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples.

    Science.gov (United States)

    Xiang, Guoqiang; Wang, Yule; Zhang, Heng; Fan, Huanhuan; Fan, Lu; He, Lijun; Jiang, Xiuming; Zhao, Wenjie

    2018-09-15

    In this work, a simple and effective strategy for designing a ratiometric fluorescent nanosensor was described. A carbon dots (CDs) based dual-emission nanosensor for nitrite was prepared by coating the CDs on to dye-doped silica nanoparticles. Dual-emission silica nanoparticles fluorescence was quenched in sulfuric acid using potassium bromate (KBrO 3 ). The nitrite present catalyzed the KBrO 3 oxidation, resulting in ratiometric fluorescence response of the dual-emission silica nanoparticles. Several important parameters affecting the performance of the nanosensor were investigated. Under optimized conditions, the limit of detection was 1.0 ng mL -1 and the linear range 10-160 ng mL -1 . Furthermore, the sensor was suitable for nitrite determination in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Conditions allowing the formation of biogenic amines in cheese

    NARCIS (Netherlands)

    Joosten, H.M.L.J.

    1988-01-01

    A study was undertaken to reveal the conditions that allow the formation of biogenic amines in cheese.

    The starters most commonly used in the Dutch cheese industry do not have decarboxylative properties. Only if the milk or curd is contaminated with non-starter bacteria, amine

  4. Amine-selective bioconjugation using arene diazonium salts.

    Science.gov (United States)

    Diethelm, Stefan; Schafroth, Michael A; Carreira, Erick M

    2014-08-01

    A novel bioconjugation strategy is presented that relies on the coupling of diazonium terephthalates with amines in proteins. The diazonium captures the amine while the vicinal ester locks it through cyclization, ensuring no reversibility. The reaction is highly efficient and proceeds under mild conditions and short reaction times. Densely functionalized, complex natural products were directly coupled to proteins using low concentrations of coupling partners.

  5. Effects of dietary amines on the gut and its vasculature.

    Science.gov (United States)

    Broadley, Kenneth J; Akhtar Anwar, M; Herbert, Amy A; Fehler, Martina; Jones, Elen M; Davies, Wyn E; Kidd, Emma J; Ford, William R

    2009-06-01

    Trace amines, including tyramine and beta-phenylethylamine (beta-PEA), are constituents of many foods including chocolate, cheeses and wines and are generated by so-called 'friendly' bacteria such as Lactobacillus, Lactococcus and Enterococcus species, which are found in probiotics. We therefore examined whether these dietary amines could exert pharmacological effects on the gut and its vasculature. In the present study we examined the effects of tyramine and beta-PEA on the contractile activity of guinea-pig and rat ileum and upon the isolated mesenteric vasculature and other blood vessels. Traditionally, these amines are regarded as sympathomimetic amines, exerting effects through the release of noradrenaline from sympathetic nerve endings, which should relax the gut. A secondary aim was therefore to confirm this mechanism of action. However, contractile effects were observed in the gut and these were independent of noradrenaline, acetylcholine, histamine and serotonin receptors. They were therefore probably due to the recently described trace amine-associated receptors. These amines relaxed the mesenteric vasculature. In contrast, the aorta and coronary arteries were constricted, a response that was also independent of a sympathomimetic action. From these results, we propose that after ingestion, trace amines could stimulate the gut and improve intestinal blood flow. Restriction of blood flow elsewhere diverts blood to the gut to aid digestion. Thus, trace amines in the diet may promote the digestive process through stimulation of the gut and improved gastrointestinal circulation.

  6. Mesoporous amine-bridged polysilsesquioxane for CO2 capture

    KAUST Repository

    Qi, Genggeng; Fu, Liling; Duan, Xiaonan; Choi, Brian Hyun; Abraham, Michael; Giannelis, Emmanuel P.

    2011-01-01

    A novel class of amine-supported sorbents based on amine-bridged mesoporous polysilsesquioxane was developed via a simple one-pot sol-gel process. The new sorbent allows the incorporation of a large amount of active groups without sacrificing

  7. Astramol polypropyleneimine dendrimers as Norrish Type II amine synergists

    NARCIS (Netherlands)

    Jansen, J.F.G.A.; Dias, A.A.; Hartwig, H.; Janssen, R.A.J.

    2000-01-01

    UV-curable coatings for various applications . In most of these applications they serve a dual role ie as initiator and as oxygen scavenger. Dimethylethanolamine is one of the more frequently employed aliphatic amines. However, this amine is a highly volatile . AstramolTM polypropyleneimine

  8. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde

    Directory of Open Access Journals (Sweden)

    Ioannis Metaxas

    2017-12-01

    Full Text Available A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO2-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction proceeds via the formation of an intermediate hemiacetal or hemiaminal, respectively, followed by the Au nanoparticle-catalyzed aerobic oxidation of the intermediate. Typically, the oxidative coupling between formaldehyde (2 equiv and amines occurs quantitatively at room temperature within 4 h, and there is no need to add a base as in analogous coupling reactions. The oxidative coupling between formaldehyde (typically 3 equiv and alcohols is unprecedented and occurs more slowly, yet in good to excellent yields and selectivity. Minor side-products (2–12% from the acetalization of formaldehyde by the alcohol are also formed. The catalyst is recyclable and can be reused after a simple filtration in five consecutive runs with a small loss of activity.

  9. Poling of Planar Silica Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Jensen, Jesper Bo

    1999-01-01

    UV-written planar silica waveguides are poled using two different poling techniques, thermal poling and UV-poling. Thermal poling induces an electro-optic coefficient of 0.067 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. The induced electro-optic effect shows a linear dependence...

  10. Functionalized silica materials for electrocatalysis

    Indian Academy of Sciences (India)

    To increase the efficiency of the electrocatalytic process and to increase the electrochemical accessibility of the immobilized electrocatalysts, functionalized and non-functionalized mesoporous organo-silica (MCM41-type-materials) are used in this study. These materials possess several suitable properties to be durable ...

  11. Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles.

    Science.gov (United States)

    Idros, Noorhayati; Ho, Man Yi; Pivnenko, Mike; Qasim, Malik M; Xu, Hua; Gu, Zhongze; Chu, Daping

    2015-06-03

    This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine-TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10-12 to 10-4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range.

  12. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  13. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Keegan, Alexandra [Microbiology Research, Australian Water Quality Centre, South Australian Water Corporation, Adelaide (Australia)

    2012-01-15

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g{sub silica}. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10{sup 2} and 10{sup 4} cfu/mL.

  14. Biogenic amines degradation by microorganisms isolated from cheese

    Directory of Open Access Journals (Sweden)

    Irena Butor

    2017-01-01

    Full Text Available The aim of this study was the isolation and characterization of microorganisms able to degrade biogenic amines and their identification. Individual microorganisms were obtained by isolation from commercially available foodstuffs and food produced in the technological laboratories of Faculty of Technology, Tomas Bata University in Zlín and subsequently identified by MALDI-TOF MS. The results of MALDI-TOF MS identification were verified by 16S rRNA sequenation. In this work was studied the ability of 5 bacterial strains positive to biogenic amines degradation isolated from dairy products to decrease biogenic amines content in vitro and quantified reduction in the concentration of biogenic amines tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine and tyramine. The level of degradation (decrease of biogenic amines was determined on the base of the ability to grow in media with biogenic amines as the sole source carbon and nitrogen. The isolated strains with the ability of degradation of one or more biogenic amines were cultured in medium supplemented with relevant biogenic amines, the media derivatized with dansyl chloride and these amines separated by HPLC at a wavelength of 254 nm. From five tested strains identified as Bacillus subtilis, Bacillus pumilus, Enterobacter cloacae, Rhizobium radiobacter and Acinetobacter pitii, isolated from gouda type cheese, the greatest ability of degradation was observed in Bacillus subtilis, which was capable to degrade almost all amount of histamine, cadaverine and putrescine. Other four strains showed a lower rate of degradation than Bacillus subtilis, but the ability to degrade biogenic amines with these microorganisms was still significant.

  15. Organo catalysis reactions with chiral amines: mechanistic aspects and uses on organic synthesis; Reacoes de organocatalise com aminas quirais: aspectos mecanisticos e aplicacoes em sintese organica

    Energy Technology Data Exchange (ETDEWEB)

    Amarante, Giovanni W.; Coelho, Fernando [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica]. E-mail: coelho@iqm.unicamp.br

    2009-07-01

    The philosophy of organocatalysis is based on the utilization of organic compounds to catalyze organic transformations without the intervention of metals. This area has attracted much attention of the synthetic chemistry community on the last years, which can be confirmed by the explosion of published papers dealing with this subject. Phosphorus compounds, urea and thiourea derivatives, alkaloids, guanidine derivatives, for example, have already been used as organocatalysts. In this review we have focused on the use of chiral amines as organocatalyst. We have also chosen some outstanding examples to demonstrate the potentiality of this strategy in the synthesis of natural products and biologically active compounds. (author)

  16. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Song, Y.; Engbersen, Johannes F.J.; Lok, Martin C.; Hennink, Wim E.; Feijen, Jan

    2005-01-01

    A variety of degradable hyperbranched poly(ester amine)s containing primary, secondary and tertiary amino groups, were synthesized and evaluated as non-viral gene carriers. The polymers were obtained in high yields through a Michael-type conjugate addition of diacrylate monomers with trifunctional

  17. Organically Modified Silica Nanoparticles Interaction with Macrophage Cells: Assessment of Cell Viability on the Basis of Physicochemical Properties.

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Keshvan, Prashant C; Bhat, Madhusudan; Dinda, Amit K; Mitra, Susmita

    2015-11-01

    Silica nanoparticles have drawn a lot of attention for nanomedicine application, and this is attributed to their biocompatibility and ease of surface functionalization. However, successful utilization of these inorganic systems for biomedical application depends on their physicochemical properties. This study, therefore, discusses in vitro toxicity of organically modified silica nanoparticles on the basis of size, shape, and surface properties of silica nanoparticles. Spherical- and oval-shaped nanoparticles having hydroxyl and amine groups were synthesized in Tween 80 micelles using different organosilanes. Nanoparticles of similar size and morphology were considered for comparative assessment. "As-prepared" nanoparticles were characterized in terms of size, shape, and surface properties using ZetaSizer, transmission electron microscopy, and Fourier transform infrared to establish the above parameters. In vitro analysis in terms of nanoparticle-based toxicity was performed on J-774 (macrophage) cell line using propidium iodide-4',6-diamidino-2-phenylindol and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Fluorescent dye-entrapped nanoparticles were used to visualize the uptake of the nanoparticles by macrophage cells. Results from cell studies suggested low levels of toxicity for different nanoparticle formulations studied, therefore are suitable for nanocarrier application for poorly soluble molecules. On the contrary, the nanoparticles of similar size and shape, having amine groups and low net negative charge, do not exhibit any in vitro cytotoxicity. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    The specific heat C(p) and the thermal conductivity lambda of a series of base-catalyzed silica aerogels have been measured at temperatures between 0.05 and 20 K. The results confirm that the different length-scale regions observed in the aerogel structure are reflected in the dynamic behavior of...... SiO2 are most likely not due to fractal behavior....... the possibility of two spectral dimensions characterizing the fracton modes. Our data imply important differences between the physical mechanisms dominating the low-temperature behavior of aerogels and dense glasses, respectively. From our analysis we also conclude that the low-temperature properties of amorphous...

  19. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  20. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part I: Design of a reference catalyst

    KAUST Repository

    Guillois, Kevin

    2012-02-01

    The kinetics of the heterogeneous gold-catalyzed aerobic epoxidation of stilbene in the liquid phase has been shown to be hindered by diffusion limitations, due to the use of supports which are unsuitable to apolar reaction media. The choice of these supports is generally dictated by the ability of standard methods of preparation to stabilize highly dispersed gold nanoparticles on them. Hence, new methods need to be designed in order to produce catalytically active gold nanoparticles on hydrophobic supports in general and on passivated silicas in particular. By investigating Tsukuda\\'s method to produce colloidal solutions of gold nanoparticles upon reduction of the triphenylphosphine gold chloride complex in solution, we found that direct reduction of AuPPh3Cl in the presence of a commercially available silica support functionalized with dimethylsiloxane, Aerosil R972, leads, in a highly reproducible and potentially scalable way, to the best catalyst ever reported for this reaction. (C) 2011 Elsevier BM. All rights reserved.

  1. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part I: Design of a reference catalyst

    KAUST Repository

    Guillois, Kevin; Burel, Laurence; Tuel, Alain; Caps, Valerie

    2012-01-01

    The kinetics of the heterogeneous gold-catalyzed aerobic epoxidation of stilbene in the liquid phase has been shown to be hindered by diffusion limitations, due to the use of supports which are unsuitable to apolar reaction media. The choice of these supports is generally dictated by the ability of standard methods of preparation to stabilize highly dispersed gold nanoparticles on them. Hence, new methods need to be designed in order to produce catalytically active gold nanoparticles on hydrophobic supports in general and on passivated silicas in particular. By investigating Tsukuda's method to produce colloidal solutions of gold nanoparticles upon reduction of the triphenylphosphine gold chloride complex in solution, we found that direct reduction of AuPPh3Cl in the presence of a commercially available silica support functionalized with dimethylsiloxane, Aerosil R972, leads, in a highly reproducible and potentially scalable way, to the best catalyst ever reported for this reaction. (C) 2011 Elsevier BM. All rights reserved.

  2. Electrochemical characterization of aminated acrylic conducting polymer

    International Nuclear Information System (INIS)

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-01-01

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study

  3. Electrochemical characterization of aminated acrylic conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Norma Mohammad [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Heng, Lee Yook [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ling, Tan Ling [Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  4. Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers.

    Science.gov (United States)

    Won, Young-Wook; Ankoné, Marc; Engbersen, Johan F J; Feijen, Jan; Kim, Sung Wan

    2016-04-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    Science.gov (United States)

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  6. Lipase catalyzed ester synthesis for food processing industries

    Directory of Open Access Journals (Sweden)

    Aravindan Rajendran

    2009-02-01

    Full Text Available Lipases are one of the most important industrial biocatalyst which catalyzes the hydrolysis of lipids. It can also reverse the reaction at minimum water activity. Because of this pliable nature, it is widely exploited to catalyze the diverse bioconversion reactions, such as hydrolysis, esterification, interesterification, alcoholysis, acidolysis and aminolysis. The property to synthesize the esters from the fatty acids and glycerol promotes its use in various ester synthesis. The esters synthesized by lipase finds applications in numerous fields such as biodiesel production, resolution of the recemic drugs, fat and lipid modification, flavour synthesis, synthesis of enantiopure pharmaceuticals and nutraceuticals. It plays a crucial role in the food processing industries since the process is unaffected by the unwanted side products. Lipase modifications such as the surfactant coating, molecular imprinting to suit for the non-aqueous ester synthesis have also been reported. This review deals with lipase catalyzed ester synthesis, esterification strategies, optimum conditions and their applications in food processing industries.Lipases são catalizadores industriais dos mais importantes, os quais catalizam a hidrólise de lipídeos. Também podem reverter a reação a um mínimo de atividade de água. Devido sua natureza flexível, é amplamente explorada para catalizar uma diversidade de reações de bioconversão como hidrólise, esterificação, interesterificação, alcoólise, acidólise e aminólise. A propriedade de síntese de esteres a partir de ácidos graxos e glicerol promoveu seu uso em várias sínteses de esteres. Os esteres sintetizados por lipases encontram aplicação em numerosos campos como a produção de biodiesel, resolução de drogas racêmicas, modificação de gorduras e lipídios, sintese de aromas, síntese de produtos farmacêuticos enantiopuro e nutracêuticos. As lipases possuem um papel crucial nas indústrias de

  7. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  8. Solvent-free functionalization of carbon nanotube buckypaper with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Ramírez-Calera, Itzel J.; Meza-Laguna, Victor; Abarca-Morales, Edgar; Pérez-Rey, Luis A.; Re, Marilena; Prete, Paola; Lovergine, Nico

    2015-01-01

    Graphical abstract: - Abstract: We demonstrate the possibility of fast and efficient solvent-free functionalization of buckypaper (BP) mats prefabricated from oxidized multiwalled carbon nanotubes (MWCNTs-ox), by using three representative amines of different structure: one monofunctional aliphatic amine, octadecylamine (ODA), one monofunctional aromatic amine, 1-aminopyrene (AP), and one aromatic diamine, 1,5-diaminonaphthalene (DAN). The functionalization procedure, which relies on the formation of amide bonds with carboxylic groups of MWCNTs-ox, is performed at 150–180 °C under reduced pressure and takes about 4 h including auxiliary degassing. The amine-treated BP samples (BP-ODA, BP-AP and BP-DAN, respectively) were characterized by means of a variety of analytical techniques such as Fourier-transform infrared and Raman spectroscopy, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, scanning helium ion microscopy, and atomic force microscopy. The highest amine content was found for BP-ODA, and the lowest one was observed for BP-DAN, with a possible contribution of non-covalently bonded amine molecules in all three cases. Despite of some differences in spectral and morphological characteristics for amine-functionalized BP samples, they have in common a dramatically increased stability in water as compared to pristine BP and, on the other hand, a relatively invariable electrical conductivity.

  9. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  10. Silica aerogel and space astrophysics

    International Nuclear Information System (INIS)

    Koch-Miramond, L.

    1985-09-01

    Silica aerogels have been produced in large and transparent blocks for space astrophysics experiments since the beginning of the 1970's. They were used in cosmic ray experiments on board balloons by the Saclay group. A new space venture where aerogel Cerenkov radiators will play a decisive role is currently being prepared by a large collaboration of European and US Institutes. It will be part of the so-called International Solar Polar Mission (ISPM) which will explore the heliosphere over the full range of solar latitudes from the ecliptic (equatorial) plane to the magnetic poles of the sun. Comments on properties and long term behaviour of silica aerogel cerenkov radiators in space environment are given

  11. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  12. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  13. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  14. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  15. Biodiesel production by enzyme-catalyzed transesterification

    Directory of Open Access Journals (Sweden)

    Stamenković Olivera S.

    2005-01-01

    Full Text Available The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial application, the factors which influence the kinetics of chemically-catalysed transesterification are also considered. The advantages of lipase-catalyzed transesterification compared to the chemically-catalysed reaction, are pointed out. The cost of down-processing and ecological problems are significantly reduced by applying lipases. It was also emphasized that lipase-catalysed transesterification should be greatly improved in order to make it commercially applicable. The further optimization of lipase-catalyzed transesterification should include studies on the development of new reactor systems with immobilized biocatalysts and the addition of alcohol in several portions, and the use of extra cellular lipases tolerant to organic solvents, intracellular lipases (i.e. whole microbial cells and genetically-modified microorganisms ("intelligent" yeasts.

  16. Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth

    International Nuclear Information System (INIS)

    Hopper, A P; Dugan, J M; Gill, A A; Haycock, J W; Claeyssens, F; Fox, O J L; May, P W

    2014-01-01

    In this study, we report the production of amine functionalized nanodiamond. The amine functionalized nanodiamond forms a conformal monolayer on a negatively charged surface produced via plasma polymerization of acrylic acid. Nanodiamond terminated surfaces were studied as substrates for neuronal cell culture. NG108-15 neuroblastoma-glyoma hybrid cells were successfully cultured upon amine functionalized nanodiamond coated surfaces for between 1 and 7 d. Additionally, primary dorsal root ganglion (DRG) neurons and Schwann cells isolated from Wistar rats were also successfully cultured over a period of 21 d illustrating the potential of the coating for applications in the treatment of peripheral nerve injury. (paper)

  17. BIOGENIC AMINES CONTENT IN SELECTED WINES DURING WINEMAKING

    Directory of Open Access Journals (Sweden)

    Radka Flasarová

    2012-02-01

    Full Text Available The aim of this study was to describe the development of selected biogenic amines (histamine; tyramine; phenylethylamine; putrescine; agmatine; and cadaverine during the winemaking in 10 selected species grown in Central Europe in 2008. The analysis was performed using ion-exchange chromatography by the sodium-citrate buffers with the post-column ninhydrin derivatization and photometric detection. A comparison of the content of biogenic amines in red and wine varieties showed that red wines have higher concentrations of biogenic amines.

  18. Silica Nanofiber Combat Hemostat (SINCH)

    Science.gov (United States)

    2008-10-13

    1.5mg 0.6 65 205 High aspect ratio silica fibers (30um x 60nm) 9mg 0.63 58.9 140 Kaolin (TEG control) 0.2mg n/a 59.8 155 TiO2 high aspect ratio...high surface area to volume ratio and thus the material is difficult to handle in an uncontrolled environment. It is easily dispersed and is not easy

  19. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  20. Scope and Limitations of Auxiliary-Assisted, Palladium-Catalyzed Arylation and Alkylation of sp2 and sp3 C-H Bonds

    Science.gov (United States)

    Nadres, Enrico T.; Santos, Gerson Ivan Franco; Shabashov, Dmitry; Daugulis, Olafs

    2013-01-01

    The scope of palladium-catalyzed, auxiliary-assisted direct arylation and alkylation of sp2 and sp3 C-H bonds of amine and carboxylic acid derivatives has been investigated. The method employs a palladium acetate catalyst, substrate, aryl, alkyl, benzyl, or allyl halide, and inorganic base in t-amyl alcohol or water solvent at 100-140 °C. Aryl and alkyl iodides as well as benzyl and allyl bromides are competent reagents in this transformation. Picolinic acid auxiliary is used for amine γ-functionalization and 8-aminoquinoline auxiliary is used for carboxylic acid β-functionalization. Some optimization of base, additives, and solvent is required for achieving best results. PMID:24090404

  1. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Lin Zhenquan

    2008-01-01

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels I n (n = 1,2,3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkj v and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k,j)=Lkj v , where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species a k (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v k (t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, a k (t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely

  2. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS).

    Science.gov (United States)

    Nielsen, Claus J; Herrmann, Hartmut; Weller, Christian

    2012-10-07

    This critical review addresses the atmospheric gas phase and aqueous phase amine chemistry that is relevant to potential emissions from amine-based carbon capture and storage (CCS). The focus is on amine, nitrosamine and nitramine degradation, and nitrosamine and nitramine formation processes. A comparison between the relative importance of the various atmospheric sinks for amines, nitrosamines and nitramines is presented.

  3. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.

    Science.gov (United States)

    Qin, Yan; Zhang, Long; Lv, Jian; Luo, Sanzhong; Cheng, Jin-Pei

    2015-03-20

    A simple bioinspired ortho-quinone catalyst for the aerobic oxidative dehydrogenation of amines to imines is reported. Without any metal cocatalysts, the identified optimal ortho-quinone catalyst enables the oxidations of α-branched primary amines and cyclic secondary amines. Mechanistic studies have disclosed the origins of different performances of ortho-quinone vs para-quinone in biomimetic amine oxidations.

  4. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    Science.gov (United States)

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  5. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    Science.gov (United States)

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Sustainable Pathways to Pyrroles through Iron-Catalyzed N-Heterocyclization from Unsaturated Diols and Primary Amines

    NARCIS (Netherlands)

    Yan, Tao; Barta, Katalin

    2016-01-01

    Pyrroles are prominent scaffolds in pharmaceutically active compounds and play an important role in medicinal chemistry. Therefore, the development of new, atom-economic, and sustainable catalytic strategies to obtain these moieties is highly desired. Direct catalytic pathways that utilize readily

  7. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei

    2018-01-04

    The present invention provides a class of catalyst compounds that can safely and effectively release hydrogen gas from a chemical substrate without producing either noxious byproducts or byproducts that will deactivate the catalyst. The present invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain stable under the reaction conditions required for an effective hydrogen production system. Described herein are compounds for use as catalysts, as well as methods for producing hydrogen from formic acid and/or a formate using the disclosed catalysts. The methods include contacting formic acid and/or a formate with a catalyst as described herein, as well as methods of producing formic acid and/or a formate using the disclosed catalyst and methods for generating electricity using the catalysts described herein.

  8. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei; Guan, Chao; Pan, Yupeng; Hu, Jinsong; Li, Huaifeng

    2018-01-01

    invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain

  9. MASS BALANCE OF SILICA IN STRAW FROM THE PERSPECTIVE OF SILICA REDUCTION IN STRAW PULP

    Directory of Open Access Journals (Sweden)

    Celil Atik,

    2012-06-01

    Full Text Available The high silica content of wheat straw is an important limiting factor for straw pulping. High silica content complicates processing and black liquor recovery, wears out factory installations, and lowers paper quality. Each section of wheat straw has different cells and chemical compositions and thus different silica content. In this work, the silica content of balled straw samples were examined according to their physical components, including internodes, nodes, leaves (sheath and blade, rachis, grain, other plant bodies, and other plant spikes. Mass distribution of silica was determined by a dry ashing method. Half (50.90% of the silica comes from leaves, and its mechanical separation will reduce the silica content in wheat straw pulp significantly. Destroying silica bodies by sonication will increase the strength properties of straw pulp.

  10. Characteristic of Hybrid Cellulose-Amino Functionalized POSS-Silica Nanocomposite and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Sivalingam Ramesh

    2015-01-01

    Full Text Available Recently, cellulose has much attention as an emerging renewable nanomaterial which holds promising properties having unique piezoelectricity, insulating, and biodegradable nature for various applications. Also, the modified properties of cellulose by appropriate chemical modifications in various functional groups with outstanding properties or significantly improved physical, chemical, biological, and electronic properties will widen the way for it to be utilized in different usages. Therefore, in this paper, cellulose-functionalized polyhedral oligomeric silsesquioxanes (POSS based materials were considered an important class of high-performance hybrid nanocomposite materials. To functionalize the regenerated cellulose, amino functionalized POSS material was synthesized via sol-gel covalent crosslinking process in presence of amino coupling agent. In this reaction, tetraethoxsilane (TEOS and γ-aminopropyltriethoxy silane (γ-APTES as coupling agent for metal precursors were selected. The chemical structure of cellulose-amine functionalized bonding and covalent crosslinking hybrids was confirmed by FTIR and 1H NMR spectral analysis. From the TEM results, well-dispersed hybrid cellulose-functionalized POSS-silica composites are observed. The resulting cellulose-POSS-silica hybrid nanocomposites materials provided significantly improved the optical transparency, and thermal and morphological properties to compare the cellulose-silica hybrid materials. Further, antimicrobial test against pathogenic bacteria was carried out.

  11. Addition of silica nanoparticles to tailor the mechanical properties of nanofibrillated cellulose thin films.

    Science.gov (United States)

    Eita, Mohamed; Arwin, Hans; Granberg, Hjalmar; Wågberg, Lars

    2011-11-15

    Over the last decade, the use of nanocellulose in advanced technological applications has been promoted both due the excellent properties of this material in combination with its renewability. In this study, multilayered thin films composed of nanofibrillated cellulose (NFC), polyvinyl amine (PVAm) and silica nanoparticles were fabricated on polydimethylsiloxane (PDMS) using a layer-by-layer adsorption technique. The multilayer build-up was followed in situ by quartz crystal microbalance with dissipation, which indicated that the PVAm-SiO(2)-PVAm-NFC system adsorbs twice as much wet mass material compared to the PVAm-NFC system for the same number of bilayers. This is accompanied with a higher viscoelasticity for the PVAm-SiO(2)-PVAm-NFC system. Ellipsometry indicated a dry-state thickness of 2.2 and 3.4 nm per bilayer for the PVAm-NFC system and the PVAm-SiO(2)-PVAm-NFC system, respectively. Atomic force microscopy height images indicate that in both systems, a porous network structure is achieved. Young's modulus of these thin films was determined by the Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) technique. The Young's modulus of the PVAm/NFC films was doubled, from 1 to 2 GPa, upon incorporation of silica nanoparticles in the films. The introduction of the silica nanoparticles lowered the refractive index of the films, most probably due to an increased porosity of the films. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  13. Efficient acetylation of primary amines and amino acids in ...

    Indian Academy of Sciences (India)

    bDepartment of Clinical and Experimental Pharmacology, School of Tropical Medicine ... As a result ... methods of acetylation of amines are known using ace- ... vents we report here, environmentally benign, eco- ... It was filtered under suction,.

  14. Preparation and adsorption property of aminated cross linking ...

    Indian Academy of Sciences (India)

    Administrator

    city and blood compatible and biocompatible. The preliminary study on the ... der reduced pressure before being used. Polyvinyl .... above, the difference of the amount of amine groups ... varying of connecting arm in length. Bilirubin mole-.

  15. Two simple amine hydrochlorides from the soft coral Lobophytum strictum

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik; Das, B.; Kamat, S.Y.

    Two simple amine hydrochlorides, viz., 1-amino-1, 1-dimethyl-3-oxo-butane hydrochloride (1) (Diacetonamine) and 2, 2, 6, 6-tetramethylpiperidone hydrochloride (2) have been isolated from the fraction of the methanolic extract of the soft coral...

  16. Next Generation Life Support (NGLS): Rapid Cycle Amine Swing Bed

    Data.gov (United States)

    National Aeronautics and Space Administration — The Rapid Cycle Amine (RCA) swingbed has been identified as a technology with high potential to meet the stringent requirements for the next generation spacesuit's...

  17. Structure and activity of Aspergillus nidulans copper amine oxidase

    DEFF Research Database (Denmark)

    McGrath, Aaron P; Mithieux, Suzanne M; Collyer, Charles A

    2011-01-01

    Aspergillus nidulans amine oxidase (ANAO) has the unusual ability among the family of copper and trihydroxyphenylalanine quinone-containing amine oxidases of being able to oxidize the amine side chains of lysine residues in large peptides and proteins. We show here that in common with the related...... enzyme from the yeast Pichia pastoris, ANAO can promote the cross-linking of tropoelastin and oxidize the lysine residues in α-casein proteins and tropoelastin. The crystal structure of ANAO, the first for a fungal enzyme in this family, has been determined to a resolution of 2.4 Å. The enzyme is a dimer...... with the archetypal fold of a copper-containing amine oxidase. The active site is the most open of any of those of the structurally characterized enzymes in the family and provides a ready explanation for its lysine oxidase-like activity....

  18. Extraction separation studies of uranium(VI) by amine oxides

    International Nuclear Information System (INIS)

    Ejaz, M.

    1975-01-01

    The extraction of uranium(VI) by two amine oxides, 4-(5-nonyl)pyridine oxide and trioctylamine oxide has been studied. The extraction behavior of these two N-oxides is compared. The dependence of extraction on the type of amine oxide and acid, nature of organic diluent, and amine oxide concentration has been investigated. The influence of the concentration of the metal and salting-out agents is described. The possible mechanism of extraction is discussed in the light of the results of extraction isotherms, loading radiodata, and log-log plots of amine oxide concentration vs distribution ratio. The separation factors for a number of metal ions are reported, and the separation of uranium from some fission elements has also been achieved

  19. COOH-functionalisation of silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Albrecht, Trent [Ian Wark Research Institute, University of South Australia, Adelaide (Australia); Weber, Siegfried [Department of Biotechnology, University of Applied Sciences, Mannheim (Germany)

    2011-09-01

    In this study COOH-functionalised silica is synthesised using phosphonateN-(phosphonomethyl)iminodiacetic acid (PMIDA) in an aqueous solution. The presence of PMIDA on the silica particles was verified using Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and titration. Experimentally, surface concentrations of COOH functional groups of up to about 3 mmol/g{sub silica} were achieved, whereas theoretical calculation of the maximum COOH functional group concentration gave about 1 mmol/g{sub silica}. The discrepancy may be caused by PMIDA multilayer formation on the particle.

  20. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  1. Practical Hydrogen Loading of Air Silica Fibres

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Jensen, Jesper Bevensee; Jensen, Jesper Bo Damm

    2005-01-01

    A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown.......A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown....

  2. Investigation of interaction between the Pt(II) ions and aminosilane-modified silica surface in heterogeneous system

    Science.gov (United States)

    Nowicki, Waldemar; Gąsowska, Anna; Kirszensztejn, Piotr

    2016-05-01

    UV-vis spectroscopy measurements confirmed the reaction in heterogeneous system between Pt(II) ions and ethylenediamine type ligand, n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, immobilized at the silica surface. The formation of complexes is a consequence of interaction between the amine groups from the ligand grafted onto SiO2 and ions of platinum. A potentiometric titration technique was to determine the stability constants of complexes of Pt(II) with immobilized insoluble ligand (SG-L), on the silica gel. The results show the formation of three surface complexes of the same type (PtHSG-L, Pt(HSG-L)2, PtSG-L) with SG-L ligand, in a wide range of pH for different Debye length. The concentration distribution of the complexes in a heterogeneous system is evaluated.

  3. Solvent extraction of cerium (III) with high molecular weight amines

    International Nuclear Information System (INIS)

    Chatterjee, A.; Basu, S.

    1992-01-01

    The use of high molecular weight amines in the extraction of cerium (III) as EDTA complex from neutral aqueous medium is reported. The extraction condition was optimised from the study of effects of several variables like concentration of amine and EDTA pH nature of diluents etc. The method has been applied for the determination of cerium in few mineral samples. (author). 7 refs., 5 tabs

  4. Effects of dietary amines on the gut and its vasculature

    OpenAIRE

    Broadley, Kenneth John; Anwar, Mohammad Akhtar; Herbert, Amy Angharad; Fehler, Martina; Jones, Elen M.; Davies, W. E.; Kidd, Emma Jane; Ford, William Richard

    2009-01-01

    Trace amines, including tyramine and β-phenylethylamine (β-PEA), are constituents of many foods including chocolate, cheeses and wines and are generated by so-called ‘friendly’ bacteria such as Lactobacillus, Lactococcus and Enterococcus species, which are found in probiotics. We therefore examined whether these dietary amines could exert pharmacological effects on the gut and its vasculature. In the present study we examined the effects of tyramine and β-PEA on the contractile activity of gu...

  5. Biogenic amines in dry fermented sausages: a review.

    Science.gov (United States)

    Suzzi, Giovanna; Gardini, Fausto

    2003-11-15

    Biogenic amines are compounds commonly present in living organisms in which they are responsible for many essential functions. They can be naturally present in many foods such as fruits and vegetables, meat, fish, chocolate and milk, but they can also be produced in high amounts by microorganisms through the activity of amino acid decarboxylases. Excessive consumption of these amines can be of health concern because their not equilibrate assumption in human organism can generate different degrees of diseases determined by their action on nervous, gastric and intestinal systems and blood pressure. High microbial counts, which characterise fermented foods, often unavoidably lead to considerable accumulation of biogenic amines, especially tyramine, 2-phenylethylamine, tryptamine, cadaverine, putrescine and histamine. However, great fluctuations of amine content are reported in the same type of product. These differences depend on many variables: the quali-quantitative composition of microbial microflora, the chemico-physical variables, the hygienic procedure adopted during production, and the availability of precursors. Dry fermented sausages are worldwide diffused fermented meat products that can be a source of biogenic amines. Even in the absence of specific rules and regulations regarding the presence of these compounds in sausages and other fermented products, an increasing attention is given to biogenic amines, especially in relation to the higher number of consumers with enhanced sensitivity to biogenic amines determined by the inhibition of the action of amino oxidases, the enzymes involved in the detoxification of these substances. The aim of this paper is to give an overview on the presence of these compounds in dry fermented sausages and to discuss the most important factors influencing their accumulation. These include process and implicit factors as well as the role of starter and nonstarter microflora growing in the different steps of sausage production

  6. Facile and Green Synthesis of Saturated Cyclic Amines

    Directory of Open Access Journals (Sweden)

    Arruje Hameed

    2017-10-01

    Full Text Available Single-nitrogen containing saturated cyclic amines are an important part of both natural and synthetic bioactive compounds. A number of methodologies have been developed for the synthesis of aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes. This review highlights some facile and green synthetic routes for the synthesis of unsubstituted, multisubstituted and highly functionalized saturated cyclic amines including one-pot, microwave assisted, metal-free, solvent-free and in aqueous media.

  7. A Highly Stereocontrolled, One-Pot Approach toward Pyrrolobenzoxazinones and Pyrroloquinazolinones through a Lewis Acid-Catalyzed [3 + 2]-Cycloannulation Process.

    Science.gov (United States)

    Boomhoff, Michael; Ukis, Rostyslav; Schneider, Christoph

    2015-08-21

    We report herein a stereocontrolled [3 + 2]-cycloheteroannulation of bis-silyl dienediolate 1 with 2-aminobenzoic acid- and 2-aminobenzamide-derived imines to furnish highly substituted pyrrolo[1,2-a]benzoxazinones 3 and pyrrolo[1,2-a]quinazolinones 4, respectively, in good overall yields. This one-pot process rapidly generates molecular complexity and comprises a Lewis acid-catalyzed, vinylogous Mannich reaction of 1 followed by an intramolecular N,O-acetal- and N,N-aminal formation, respectively, which proceeds with good to excellent stereocontrol.

  8. Production of biogenic amines in "Salamini italiani alla cacciatora PDO".

    Science.gov (United States)

    Coı X0308 Sson, Jean Daniel; Cerutti, Caterina; Travaglia, Fabiano; Arlorio, Marco

    2004-06-01

    Various fermented and seasoned foods such as cheese, sauerkraut, wine, beer and meat products may contain biogenic amines. The aim of this paper was to describe the presence of some biogenic amines (histamine, tyramine, tryptamine, 2-phenylethylamine) in "Salamini italiani alla cacciatora PDO", a typical fermented-ripened dry sausage widely consumed in Italy. Total level of biogenic amines in commercial samples ranged from 71 to 586 mg kg(-1). The amine recovered in higher concentrations was tyramine (372 mg kg(-1)) followed by histamine (165 mg kg(-1)). The second aim of this work was the quality control of the production in order to determine the parameters influencing the presence of biogenic amines in ripened salami. Sausages sampled for analysis during production, manipulation and ripening showed the presence of tyramine (64.4 mg kg(-1)) only after 15 days of fermentation. All investigated biogenic amines were detected in "Salamini" after 21 days of fermentation. We suggest the control of biogenic as important tool to establish the better condition of preservation of "Salamini italiani alla cacciatore PDO" during their shelf-life.

  9. STUDIES ON VINYL POLYMERIZATION WITH INITIATION SYSTEM CONTAINING AMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)

    1983-01-01

    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  10. Biogenic amine formation and bacterial contribution in Natto products.

    Science.gov (United States)

    Kim, Bitna; Byun, Bo Young; Mah, Jae-Hyung

    2012-12-01

    Twenty-one Natto products currently distributed in Korea were analysed for biogenic amine contents and tested to determine physicochemical and bacterial contributions to biogenic amine formation. Among them, nine products (about 43%) had β-phenylethylamine or tyramine contents greater than the toxic dose (30mg/kg and 100mg/kg, respectively) of each amine, although no products showed total amounts of biogenic amines above the harmful level (1000mg/kg), which indicates that the amounts of biogenic amines in some Natto products are not within the safe level for human health. From four different Natto products, that contained noticeable levels of β-phenylethylamine and tyramine, 80 bacterial strains were isolated. All the strains were identified to be Bacillus subtilis and highly capable of producing β-phenylethylamine and tyramine. Therefore, it seems likely that the remarkable contents of β-phenylethylamine and tyramine in Natto predominantly resulted from the strains highly capable of producing those amines present in the food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Hashmath I., E-mail: hashmath.i@deakin.edu.au [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia); Yi, Zhifeng [Deakin University, Institute for Frontier Materials (Australia); Rookes, James E. [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia); Kong, Lingxue X. [Deakin University, Institute for Frontier Materials (Australia); Cahill, David M. [Deakin University, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences (Australia)

    2013-06-15

    We report the uptake by wheat, lupin and Arabidopsis of mesoporous silica nanoparticles functionalised with amine cross-linked fluorescein isothiocyanate (MSN-APTES-FITC). The preparation of these particles at room temperature enabled the synthesis of 20 nm particles that contained a network of interconnected pores around 2 nm in diameter. The uptake and distribution of these nanoparticles were examined during seed germination, in roots of plants grown in a hydroponic system and in whole leaves and roots of plants via vacuum infiltration. The nanoparticles did not affect seed germination in lupin and there was no phytotoxicity. Following germination of wheat and lupin grown in a nutrient solution containing nanoparticles, they were found within cells and cell walls of the emerging root and in the vascular transport elements, the xylem, and in other associated cells. In leaves and roots of Arabidopsis the nanoparticles were found, following vacuum infiltration of whole seedlings, to be taken up by the entire leaf and they were principally found in the intercellular spaces of the mesophyll but also throughout much of the root system. We propose that MSNs could be used as a novel delivery system for small molecules in plants.

  12. Facile Synthesis of N-Tosyl Aza-Baylis-Hillman Adducts of Acrylamide via a Pd-Catalyzed Hydration of Nitrile to Amide

    International Nuclear Information System (INIS)

    Kim, Eun Sun; Kim, Yu Mi; Kim, Jae Nyoung

    2010-01-01

    We developed an efficient palladium-catalyzed two-step protocol for the synthesis of N-tosyl aza-Baylis-Hillman adducts of acrylamide. The method involved the preparation of the corresponding Baylis-Hillman adducts of acrylonitrile and the following Pd-catalyzed hydration of nitrile with acetaldoxime. The Baylis-Hillman reaction, which involves the coupling of activated vinyl compounds with electrophiles under the catalytic influence of a tertiary amine, gives rise to adducts, so called Baylis-Hillman adducts, with a new stereocenter and has proven to be a very useful carbon-carbon bond-forming method in the synthesis of highly functionalized molecules. As the activated vinyl compounds, various compounds have been used in the Baylis-Hillman reaction including acrylates, acrylonitrile, vinyl ketones, vinyl sulfones and acrylamides. However, among the activated vinyl compounds acrylamide has not been used much for the synthesis of the corresponding Baylis-Hillman adducts due to its sluggish reactivity

  13. Heterocyclic amines in meat and meat products

    Directory of Open Access Journals (Sweden)

    Aliye BULGAN

    2013-06-01

    Full Text Available Heterocyclic amines (HA are the mutagenic/carcinogenic compounds which generate as a result of cooking of red meat, poultry meat and fish fillets at high temperatures. Up to 20 different HAs were detected and classified in the researches that conducted on these types of meats cooked at high temperatures. HAs are the products of Maillard reactions and the Strecker degredation of main precursors such as creatine/creatinine, aminoacid and the polysaccharides. Many physical and chemical factors effect the formation of HAs. Thus, it was reported by many researchers that utilizing coating and marination processes in addition to using natural and synthetic antioxidants and seasonings-plant extracts were effective on inhibiting/decreasing the formation of HAs. Additionally, boiling/steaming and microwave cooking methodologies were recommended instead of barbecuing, grilling or frying to inhibit/decrease the formation of HAs. The HAs formed in meat and meat products and the factors which have effects on the formation of HAs are presented in this review.

  14. Brain perfusion imaging with iodinated amines

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Traditional nuclear medicine brain study using 99m Tc pertechnetate, glucoheptonate or diethlenetriaminepentacetic acid (DTPA) and planar imaging has experienced a significant decline in the past 10 years. This is mainly due to the introduction of X-ray CT and more recently the nuclear magnetic resonance (NMR) imaging, by which detailed morphology of the brain, including the detection of breakdown of the blood-brain barrier, can be obtained. The nuclear medicine brain imaging is only prescribed as a complementary test when X-ray CT is negative or equivocal and clinical suspicion remains. The attention of nuclear medicine brain imaging has been shifted from the detection of the breakdown of the blood-brain barrier to the study of brain function-perfusion, metabolism, and receptor binding, etc. The functional brain imaging provides diagnostic information usually unattainable by other radiological techniques. In this article, the iodinated amines as brain perfusion imaging agents are reviewed. Potential clinical application of these agents is discussed

  15. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guohou [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Dong, Hua [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China)

    2013-10-15

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. {sup 29}Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. - Graphical abstract: The morphologies and microstructures of acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were observed by scanning electron microscope and transmission electron microscope. MBGMs-A exhibits a dense structure and a porous can be observed in MBGMs-B. The microspheres have a quick inducing-apatite formation ability and show a sustained release of alendronate (AL). Highlights: • A rapid method was reported to prepare mesoporous bioactive glass microspheres. • The addition of ammonia significantly shortens the preparation time. • Acid and acid-alkali co-catalyzed microspheres were studied for the first time. • The materials exhibited excellent in vitro bioactivity and

  16. On-column nitrosation of amines observed in liquid chromatography impurity separations employing ammonium hydroxide and acetonitrile as mobile phase.

    Science.gov (United States)

    Myers, David P; Hetrick, Evan M; Liang, Zhongming; Hadden, Chad E; Bandy, Steven; Kemp, Craig A; Harris, Thomas M; Baertschi, Steven W

    2013-12-06

    The availability of high performance liquid chromatography (HPLC) columns capable of operation at pH values up to 12 has allowed a greater selectivity space to be explored for method development in pharmaceutical analysis. Ammonium hydroxide is of particular value in the mobile phase because it is compatible with direct interfacing to electrospray mass spectrometers. This paper reports an unexpected N-nitrosation reaction that occurs with analytes containing primary and secondary amines when ammonium hydroxide is used to achieve the high pH and acetonitrile is used as the organic modifier. The nitrosation reaction has generality. It has been observed on multiple columns from different vendors and with multiple amine-containing analytes. Ammonia was established to be the source of the nitroso nitrogen. The stainless steel column frit and metal ablated from the frit have been shown to be the sites of the reactions. The process is initiated by removal of the chromium oxide protective film from the stainless steel by acetonitrile. It is hypothesized that the highly active, freshly exposed metals catalyze room temperature oxidation of ammonia to NO but that the actual nitrosating agent is likely N(2)O(3). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Development of I-123-labeled amines for brain studies: localization of I-123 iodophenylalkyl amines in rat brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Baldwin, R.M.; Lin, T.H.

    1980-01-01

    Localization in rat brain of forty iodophenylalkyl amines labeled with I-123 was evaluated in an attempt to develop I-123-labeled amines useful for brain studies. For the amines studied, the highest activity in brain and the brain-to-blood activity ratios ranked p > m > o as related to iodine position on the benzene ring: for alkyl groups the rank order was α-methylethyl > ethyl > methyl > none; for N additions it was single lipophilic group > H > two lipophilic groups. It is suggested that introduction of a halogen into the ring structure of many amines results in greater concentration of the agent in brain than is seen with the nonhalogenated parent compound. The agent N-isopropyl-p-iodoamphetamine was chosen for further study because, in the rat, it showed high brain activity (1.57%/g) and brain-blood ratio (12.6) at 5 min

  18. Nanostructural control of the release of macromolecules from silica sol–gels

    Science.gov (United States)

    Radin, Shula; Bhattacharyya, Sanjib; Ducheyne, Paul

    2013-01-01

    The therapeutic use of biological molecules such as growth factors and monoclonal antibodies is challenging in view of their limited half-life in vivo. This has elicited the interest in delivery materials that can protect these molecules until released over extended periods of time. Although previous studies have shown controlled release of biologically functional BMP-2 and TGF-β from silica sol–gels, more versatile release conditions are desirable. This study focuses on the relationship between room temperature processed silica sol–gel synthesis conditions and the nanopore size and size distribution of the sol–gels. Furthermore, the effect on release of large molecules with a size up to 70 kDa is determined. Dextran, a hydrophilic polysaccharide, was selected as a large model molecule at molecular sizes of 10, 40 and 70 kDa, as it enabled us to determine a size effect uniquely without possible confounding chemical effects arising from the various molecules used. Previously, acid catalysis was performed at a pH value of 1.8 below the isoelectric point of silica. Herein the silica synthesis was pursued using acid catalysis at either pH 1.8 or 3.05 first, followed by catalysis at higher values by adding base. This results in a mesoporous structure with an abundance of pores around 3.5 nm. The data show that all molecular sizes can be released in a controlled manner. The data also reveal a unique in vivo approach to enable release of large biological molecules: the use more labile sol–gel structures by acid catalyzing above the pH value of the isoelectric point of silica; upon immersion in a physiological fluid the pores expand to reach an average size of 3.5 nm, thereby facilitating molecular out-diffusion. PMID:23643607

  19. Cold fusion catalyzed by muons and electrons

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as ''Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed

  20. In-Situ Immobilization of Ni Complex on Amine-Grafted SiO₂ for Ethylene Polymerization.

    Science.gov (United States)

    Lee, Sang Yun; Ko, Young Soo

    2018-02-01

    The results on the In-Situ synthesis of Ni complex on amine-grafted SiO2 and its ethylene polymerization were explained. SiO2/2NS/(DME)NiBr2 and SiO2/3NS/(DME)NiBr2(Ni(II) bromide ethylene glycol dimethyl ether) catalysts were active for ethylene polymerization. The highest activity was shown at the polymerization temperature of 25 °C, and SiO2/2NS/(DME)NiBr2 exhibited higher activity than SiO2/3NS/(DME)NiBr2. The PDI values of SiO2/2NS/(DME)NiBr2 were in the range of 8~18. The aminosilane compounds and Ni were evenly grafted and distributed in the silica. It was proposed that DME ligand was mostly removed during the supporting process, and only NiBr2 was complexed with the amine group of 2NS based on the results of FT-IR and ethylene polymerization.

  1. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    Science.gov (United States)

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  2. Desaturation reactions catalyzed by soluble methane monooxygenase.

    Science.gov (United States)

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  3. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao Liang [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Song Chaojun; Sun Yuanjie [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Li Xiaohua; Li Yunyun [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Jin Boquan [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Zhang Zhujun, E-mail: zhangzj@snnu.edu.cn [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Yang Kun, E-mail: yangkunkun@fmmu.edu.cn [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer Difunctional amino mesoporous silica nanoparticles (FCMSN) were synthesized. Black-Right-Pointing-Pointer The fluorescence and chemiluminescence properties of the FCMSN were studied. Black-Right-Pointing-Pointer The NaIO{sub 4} oxidation method was used for modification of the FCMSN. Black-Right-Pointing-Pointer Liver cancer 7721 cell was detected. Black-Right-Pointing-Pointer The specificity affected by FCMSN's amino groups was studied. - Abstract: A new kind of ultrabright fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle (FCMSN) is reported. A luminescent dye, Rhodamine 6G or tris(2,2 Prime -bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), is doped inside nanochannels of a silica matrix. The hydrophobic groups in the silica matrix avoid the leakage of dye from open channels. The amines groups on the surface of the FCMSN improve the modification performance of the nanoparticle. Because the nanochannels are isolated by a network skeleton of silica, fluorescence quenching based on the inner filter effect of the fluorescent dyes immobilized in nanochannels is weakened effectively. The Quantum Yield of obtained 90 nm silica particles was about 61%. Compared with the fluorescent core-shell nanoparticle, the chemiluminescence reagents can freely enter the nanoparticles to react with fluorescent dyes to create chemiluminescence. The results show that the FCMSN are both fluorescent labels and chemiluminescent labels. In biological applications, the NaIO{sub 4} oxidation method was proven to be superior to the glutaraldehyde method. The amount of amino could affect the specificity of the FCMSN. The fluorescence microscopy imaging demonstrated that the FCMSN is viable for biological applications.

  4. Synthesis of uniform carbon at silica nanocables and luminescent silica nanotubes with well controlled inner diameters

    International Nuclear Information System (INIS)

    Qian Haisheng; Yu Shuhong; Ren Lei; Yang Yipeng; Zhang Wei

    2006-01-01

    Uniform carbon at silica nanocables and silica nanotubes with well-controlled inner diameters can be synthesized in an easy way by a sacrificial templating method. This was performed using carbon nanofibres as hard templates that were synthesized previously by a hydrothermal carbonization process. Silica nanotubes with well-controlled inner diameters were synthesized from carbon at silica core-shell nanostructures by removal of the core carbon component. The inner diameters of the as-prepared silica nanotubes can be well controlled from several nanometres to hundreds of nanometres by adjusting the diameters of the carbon nanofibres. The silica nanotubes synthesized by this method display strong photoluminescence in ultraviolet at room temperature. Such uniform silica nanotubes might find potential applications in many fields such as encapsulation, catalysis, chemical/biological separation, and sensing

  5. Silica gel matrix immobilized Chlorophyta hydrodictyon africanum ...

    African Journals Online (AJOL)

    Chlorophyta hydrodictyon africanum was immobilized on a silica gel matrix to improve its mechanical properties. The algae-silica gel adsorbent was used for batch sorption studies of a cationic dye, methylene blue (MB). Optimum adsorption was obtained with a dosage of 0.8 g bio sorbent. Results from sorption studies ...

  6. Nanoporous silica membranes with high hydrothermal stability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Magnacca, Giualiana; Yue, Yuanzheng

    to improve the stability of nanoporous silica structure. This work is a quantitative study on the impact of type and concentration of transition metal ions on the microporous structure and stability of amorphous silica-based membranes, which provides information on how to design chemical compositions...

  7. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  8. Chemical immobilisation of humic acid on silica

    NARCIS (Netherlands)

    Koopal, L.K.; Yang, Y.; Minnaard, A.J.; Theunissen, P.L.M.; Riemsdijk, W.H. van

    1998-01-01

    Immobilisation of purified Aldrich humic acid (PAHA) on aminopropyl silica and glutaraldehyde-activated aminopropyl silica has been investigated. In general the humic acid is bound to the solid by both physical and chemical bonds. The physically adsorbed HA can be released to a large extent at high

  9. Silica artificial opal incorporated with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  10. Silica artificial opal incorporated with silver nanoparticles

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  11. Refractive index dispersion law of silica aerogel

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Perego, D.L.; Storaci, B.

    2007-01-01

    This paper presents measurements of the refractive index of a hygroscopic silica aerogel block at several wavelengths. The measurements, performed with a monochromator, have been compared with different parameterisations for n(λ), in order to determine the best chromaticity law for the aerogel. This is an important input for design and operation of RICH detectors with silica aerogel radiator. (orig.)

  12. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  13. Stereochemical probes of bovine plasma amine oxidase: evidence for mirror image processing and a syn abstraction of hydrogens from C-1 and C-2 of dopamine

    International Nuclear Information System (INIS)

    Farnum, M.F.; Klinman, J.P.

    1986-01-01

    Bovine plasma amine oxidase (PAO) has previously been shown to catalyze a nonstereospecific loss of tritium from [2(R)- 3 H]- and [2(S)- 3 H]dopamines, attributed to multiple, catalytically active binding sites for substrate. Analysis of products formed from incubation of dopamine with PAO in tritiated water indicates a stereospecific, pro-R, incorporation of label at C-2. Thus, tritium washout (random) and washin (pro-R) are not the microscopic reverse of one another. We conclude that the (enamine) intermediates leading to tritium washin are nonequivalently bound. The observation of pro-R incorporation has provided a straightforward synthetic route to [1(R)- 2 H,2(R)- 3 H]- and [1(S)- 2 H,2(R)- 3 H]dopamines, which upon oxidation with PAO are expected to be processed preferentially by 1S and 1R cleavage, respectively. From previously measured isotope effects, we predict the loss of tritium from the 1(R)-2H and 1(S)-2H samples to be 74:8 for a syn relationship between cleavage at C-1 and C-2 vs. 21:90 for an anti relationship. The observation of a 68:18 ratio at 100% conversion provides strong evidence for a syn cleavage. The data support a mechanism in which a single base catalyzes a 1,3-prototrophic shift of hydrogen from C-1 of the substrate to cofactor, followed by exchange from C-2. Additionally, the results confirm the presence of alternate binding modes for dopamine at the active site of bovine plasma amine oxidase. This interaction of dopamine with plasma amine oxidase is a rare example of mirror-image catalysis in which a single substrate has two functional binding orientations on an enzyme surface

  14. Determination of rate constants of N-alkylation of primary amines by 1H NMR spectroscopy.

    Science.gov (United States)

    Li, Chenghong

    2013-09-05

    Macromolecules containing N-diazeniumdiolates of secondary amines are proposed scaffolds for controlled nitrogen oxide (NO) release medical applications. Preparation of these compounds often involves converting primary amine groups to secondary amine groups through N-alkylation. However, N-alkylation results in not only secondary amines but tertiary amines as well. Only N-diazeniumdiolates of secondary amines are suitable for controlled NO release; therefore, the yield of secondary amines is crucial to the total NO load of the carrier. In this paper, (1)H NMR spectroscopy was used to estimate the rate constants for formation of secondary amine (k1) and tertiary amine (k2) for alkylation reagents such as propylene oxide (PO), methyl acrylate (MA), and acrylonitrile (ACN). At room temperature, the ratio of k2/k1 for the three reactions was found to be around 0.50, 0.026, and 0.0072.

  15. Detection of cometary amines in samples returned by Stardust

    Science.gov (United States)

    Glavin, D. P.; Dworkin, J. P.; Sandford, S. A.

    2008-02-01

    The abundances of amino acids and amines, as well as their enantiomeric compositions, were measured in samples of Stardust comet-exposed aerogel and foil using liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC-FD/ToF-MS). A suite of amino acids and amines including glycine, L-alanine, β-alanine (BALA), γ-amino-n-butyric acid (GABA), ɛ-amino-n-caproic acid (EACA), ethanolamine (MEA), methylamine (MA), and ethylamine (EA) were identified in acid-hydrolyzed, hot-water extracts of these Stardust materials above background levels. With the exception of MA and EA, all other primary amines detected in cometexposed aerogel fragments C2054,4 and C2086,1 were also present in the flight aerogel witness tile that was not exposed to the comet, indicating that most amines are terrestrial in origin. The enhanced relative abundances of MA and EA in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (C2054,4: 1.0 ± 0.2; C2086,1: 1.8 ± 0.2) that are distinct from preflight aerogels (E243-13C and E243-13F: 7 ± 3), suggest that these volatile amines were captured from comet Wild 2. MA and EA were present predominantly in an acid-hydrolyzable bound form in the aerogel, rather than as free primary amines, which is consistent with laboratory analyses of cometary ice analog materials. It is possible that Wild 2 MA and EA were formed on energetically processed icy grains containing ammonia and approximately equal abundances of methane and ethane. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organic carbon and nitrogen on the early Earth.

  16. The ozonolysis of primary aliphatic amines in fine particles

    Science.gov (United States)

    Zahardis, J.; Geddes, S.; Petrucci, G. A.

    2008-02-01

    The oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2- and NO3- ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3- (HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3≥3×10-7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10-3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  17. The ozonolysis of primary aliphatic amines in fine particles

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2008-02-01

    Full Text Available The oxidative processing by ozone of the particulate amines octadecylamine (ODA and hexadecylamine (HDA is reported. Ozonolysis of these amines resulted in strong NO2 and NO3 ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3 (HNO3. For ozonized mixed particles containing ODA or HDA + oleic acid (OL, with pO3≥3×10–7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines and stabilized Criegee intermediates (SCI or secondary ozonides (for amides from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10−3 atm for 17 s. This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3, formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  18. Biogenic amines in Italian Pecorino cheese

    Directory of Open Access Journals (Sweden)

    Maria eSchirone

    2012-05-01

    Full Text Available The quality of distinctive artisanal cheeses is closely associated with the territory of production and its traditions. Pedoclimatic characteristics, genetic autochthonous variations and anthropic components create an environment so specific that it would be extremely difficult to reproduce elsewhere. Pecorino cheese is included in this sector of the market and is widely diffused in Italy (approximately 53.727t of production. Pecorino is a common name given to indicate Italian cheeses made exclusively from pure ewes' milk characterized by a high content of fat matter and it is mainly produced in the middle and south of Italy by traditional procedures from raw or thermized milk. The microbiota plays a major role in the development of the organoleptic characteristics of the cheese but it can also be responsible for the accumulation of undesirable substances, such as biogenic amines (BA. Several factors can contribute to the qualitative and quantitative profiles of BA’s in Pecorino cheese such as environmental hygienic conditions, pH, salt concentration, aw, fat content, pasteurization of milk, decarboxylase microorganisms, starter cultures, temperature and time of ripening, storage, part of the cheese (core, edge and the presence of cofactor. Generally, the total content of BA’s can range from about 100-2400 mg/kg, with a prevalence of toxicologically important BA’s, tyramine and histamine. The presence of BA in Pecorino cheeses is becoming increasingly important to consumers and cheese-maker alike, due to the potential threats of toxicity to humans and consequent trade implications.

  19. The Pozzolanic reaction of silica fume

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2012-01-01

    Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone. In the ......Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone....... In the present paper different aspects of the pozzolanic reaction of silica fume are investigated. These include chemical shrinkage, isothermal heat development and strength development. Key data for these are given and compared with theoretical calculations, and based on presented measurements the energy...

  20. HDO of Methyl Palmitate over Silica-Supported Ni Phosphides: Insight into Ni/P Effect

    Directory of Open Access Journals (Sweden)

    Irina V. Deliy

    2017-10-01

    Full Text Available Two sets of silica-supported nickel phosphide catalysts with a nickel content of about 2.5 and 10 wt % and Ni/P molar ratio 2/1, 1/1 and 1/2 in each set, were prepared by way of a temperature-programmed reduction method using (Ni(CH3COO2 and ((NH42HPO4 as a precursor. The NixPy/SiO2 catalysts were characterized using chemical analysis N2 physisorption, XRD, TEM, 31P MAS NMR. Methyl palmitate hydrodeoxygenation (HDO was performed in a trickle-bed reactor at 3 MPa and 290 °C with LHSV ranging from 0.3 to 16 h−1. The Ni/P ratio was found to affect the nickel phosphide phase composition, POx groups content and catalytic properties in methyl palmitate HDO with the TOF increased along with a decline of Ni/P ratio and a growth of POx groups’ content. Taking into account the possible routes of methyl palmitate conversion (metal-catalyzed hydrogenolysis or acid-catalyzed hydrolysis, we proposed that the enhancement of acid POx groups’ content with the Ni/P ratio decrease provides an enhancement of the rate of methyl palmitate conversion through the acceleration of acid-catalyzed hydrolysis.