WorldWideScience

Sample records for americanum proteinase inhibitor

  1. The Characterization of SaPIN2b, a Plant Trichome-Localized Proteinase Inhibitor from Solanum americanum

    Directory of Open Access Journals (Sweden)

    Zeng-Fu Xu

    2012-11-01

    Full Text Available Proteinase inhibitors play an important role in plant resistance of insects and pathogens. In this study, we characterized the serine proteinase inhibitor SaPIN2b, which is constitutively expressed in Solanum americanum trichomes and contains two conserved motifs of the proteinase inhibitor II (PIN2 family. The recombinant SaPIN2b (rSaPIN2b, which was expressed in Escherichia coli, was demonstrated to be a potent proteinase inhibitor against a panel of serine proteinases, including subtilisin A, chymotrypsin and trypsin. Moreover, rSaPIN2b also effectively inhibited the proteinase activities of midgut trypsin-like proteinases that were extracted from the devastating pest Helicoverpa armigera. Furthermore, the overexpression of SaPIN2b in transgenic tobacco plants resulted in enhanced resistance against H. armigera. Taken together, our results demonstrated that SaPIN2b is a potent serine proteinase inhibitor that may act as a protective protein in plant defense against insect attacks.

  2. The characterization of SaPIN2b, a plant trichome-localized proteinase inhibitor from Solanum americanum.

    Science.gov (United States)

    Luo, Ming; Ding, Ling-Wen; Ge, Zhi-Juan; Wang, Zhen-Yu; Hu, Bo-Lun; Yang, Xiao-Bei; Sun, Qiao-Yang; Xu, Zeng-Fu

    2012-11-16

    Proteinase inhibitors play an important role in plant resistance of insects and pathogens. In this study, we characterized the serine proteinase inhibitor SaPIN2b, which is constitutively expressed in Solanum americanum trichomes and contains two conserved motifs of the proteinase inhibitor II (PIN2) family. The recombinant SaPIN2b (rSaPIN2b), which was expressed in Escherichia coli, was demonstrated to be a potent proteinase inhibitor against a panel of serine proteinases, including subtilisin A, chymotrypsin and trypsin. Moreover, rSaPIN2b also effectively inhibited the proteinase activities of midgut trypsin-like proteinases that were extracted from the devastating pest Helicoverpa armigera. Furthermore, the overexpression of SaPIN2b in transgenic tobacco plants resulted in enhanced resistance against H. armigera. Taken together, our results demonstrated that SaPIN2b is a potent serine proteinase inhibitor that may act as a protective protein in plant defense against insect attacks.

  3. Proteinase inhibitors in Brazilian leguminosae

    Directory of Open Access Journals (Sweden)

    C. A. M. Sampaio

    1991-01-01

    Full Text Available Serine proteinase inhitors, in the seeds of several Leguminosae from the Pantanal region (West Brazil, were studied using bovine trypsin, a digestive enzyme, Factor XIIa and human plasma Kallikrein, two blood clotting factors. The inhibitors were purified from Enterolobium contortisiliquum (Mr=23,000, Torresea cearensis (Mr = 13,000, Bauhinia pentandra (Mr = 20,000 and Bauhinia bauhinioides (Mr = 20,000. E. contortisiliquum inhibitor inactivates all three enzymes, whereas the T. cearensis inhibitor inactivates trypsin and Factor XSSa, but does nor affect plasma kallikrein; both Bauhinia inhibitors, on the other hand, inactivate trypsin and plasma kallikrein but only the Bpentandra inhibitor affects Factor XIIa. Ki values were calculated between 10 [raised to the power of] -7 and 10 [raised to the power of] -8 M.

  4. Evolutionary mechanisms acting on proteinase inhibitor variability.

    Science.gov (United States)

    Christeller, John T

    2005-11-01

    The interaction of proteinase inhibitors produced, in most cases, by host organisms and the invasive proteinases of pathogens or parasites or the dietary proteinases of predators, results in an evolutionary 'arms race' of rapid and ongoing change in both interacting proteins. The importance of these interactions in pathogenicity and predation is indicated by the high level and diversity of observable evolutionary activity that has been found. At the initial level of evolutionary change, recruitment of other functional protein-folding families has occurred, with the more recent evolution of one class of proteinase inhibitor from another, using the same mechanism and proteinase contact residues. The combination of different inhibitor domains into a single molecule is also observed. The basis from which variation is possible is shown by the high rate of retention of gene duplication events and by the associated process of inhibitory domain multiplication. At this level of reorganization, mutually exclusive splicing is also observed. Finally, the major mechanism by which variation is achieved rapidly is hypervariation of contact residues, an almost ubiquitous feature of proteinase inhibitors. The diversity of evolutionary mechanisms in a single class of proteins is unlikely to be common, because few systems are under similar pressure to create variation. Proteinase inhibitors are therefore a potential model system in which to study basic evolutionary process such as functional diversification.

  5. Proteolytic Cleavage of Various Human Serum Proteinase Inhibitors by Candida albicans Aspartic Proteinase

    OpenAIRE

    Tsushima, Hirofumi; MINE, Hiroko

    2008-01-01

    The secreted Candida albicans aspartic proteinase (SAP) is presumed to be one of the putative Candida virulence factors, while serum proteinase inhibitors depend on host defense mechanisms. We examined the interaction between SAP and serum proteinase inhibitors, such as C1-inhibitor, α2 plasmin inhibitor, and antithrombin III. SAP progressively inactivated plasmin inhibitory activity of C1-inhibitor and α2 plasmin inhibitor. It also inactivated thrombin inhibitory activity of antithrombin III...

  6. Novel proteinase inhibitor promotes resistance to insects

    Science.gov (United States)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  7. Inhibition of the 20S proteosome by a protein proteinase inhibitor: evidence that a natural serine proteinase inhibitor can inhibit a threonine proteinase.

    Science.gov (United States)

    Yabe, Kimihiko; Koide, Takehiko

    2009-02-01

    The 20S proteasome (20S) is an intracellular threonine proteinase (Mr 750,000) that plays important roles in many cellular regulations. Several synthetic peptide inhibitors and bacteria-derived inhibitors such as lactacystin and epoxomicin have been identified as potent proteasome inhibitors. However, essentially no protein proteinase inhibitor has been characterized. By examining several small size protein proteinase inhibitors, we found that a well-known serine proteinase inhibitor from bovine pancreas, basic pancreatic trypsin inhibitor (BPTI), inhibits the 20S in vitro and ex vivo. Inhibition of the 20S by BPTI was time- and concentration-dependent, and stoichiometric. To inhibit the 20S activity, BPTI needs to enter into the interior of the 20S molecule. The molar ratio of BPTI to the 20S in the complex was estimated as approximately six BPTI to one 20S, thereby two sets of three peptidase activities (trypsin-like, chymotrypsin-like and caspase-like) of the 20S were all inhibited. These results indicate that an entrance hole to the 20S formed by seven alpha-subunits is sufficiently large for BPTI to enter. This report is essentially the initial description of the inhibition of a threonine proteinase by a protein serine proteinase inhibitor, suggesting a common mechanism of inhibition between serine and threonine proteinases by a natural protein proteinase inhibitor.

  8. Proteinase activity in human and murine saliva as a biomarker for proteinase inhibitor efficacy.

    Science.gov (United States)

    Fingleton, Barbara; Menon, Ramkumar; Carter, Kathy J; Overstreet, P Dawn; Hachey, David L; Matrisian, Lynn M; McIntyre, J Oliver

    2004-12-01

    As molecularly targeted agents reach the clinic, there is a need for assays to detect their presence and effectiveness against target molecules in vivo. Proteinase inhibitors are one example of a class of therapeutic agent for which satisfactory methods of identifying successful target modulation in vivo are lacking. This is of particular importance while these drugs are in clinical trials because standard maximum-tolerated dose-finding studies often are not suitable due to lack of toxicity. Saliva represents a readily accessible bodily fluid that can be repeatedly sampled and used for assaying in vivo effects of systemic drugs. Here we show the development of a simple assay that can be used to measure proteinase activity in saliva and proteinase inhibition after systemic treatment with three different proteinase inhibitors. A variety of gelatinolytic activities present in human and murine saliva have been assayed with a fluorescent dye-labeled substrate and assigned to different proteinase categories by inclusion of specific classes of inhibitors. Treatment of mice with either matrix metalloproteinase inhibitors or a urokinase inhibitor for a period as short as 48 hours results in levels of the drugs that can be detected in saliva by mass spectrometry and concomitant decreases in salivary proteinase activity, thus demonstrating that these inhibitors successfully modulate their targets in vivo.

  9. Limited proteolysis by macrophage elastase inactivates human alpha 1- proteinase inhibitor

    OpenAIRE

    1980-01-01

    Inflammatory mouse peritoneal macrophages secrete a metalloproteinase that is not inhibited by alpha 1-proteinase inhibitor. This proteinase, macrophage elastase, recognizes alpha 1-proteinase inhibitor with macrophage elastase does not involve a stable proteinase-inhibitor complex and results in the proteolytic removal of a peptide of apparent molecular weight 4,000-5,000 from the inhibitor. After degradation by macrophage elastase, alpha 1-proteinase inhibitor is no longer able to inhibit h...

  10. Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor.

    Science.gov (United States)

    Prasad, C V S Siva; Gupta, Saurabh; Gaponenko, Alex; Tiwari, Murlidhar

    2013-08-01

    Many plants do produce various defense proteins like proteinase inhibitors (PIs) to protect them against various pests. PIs function as pseudosubstrates of digestive proteinase, which inhibits proteolysis in pests and leads to amino acid deficiency-based mortality. This work reports the structural interaction studies of serine proteinase of Heterodera glycines (SPHG) with Vigna mungo proteinase inhibitor (VMPI). 3D protein structure modeling, validation of SPHG and VMPI, and their putative protein-protein binding sites were predicted. Protein-protein docking followed by molecular dynamic simulation was performed to find the reliable confirmation of SPHG-VMPI complex. Trajectory analysis of each successive conformation concludes better interaction of first loop in comparison with second loop. Lysine residues of first loop were actively participating in complex formation. Overall, this study discloses the structural aspects and interaction mechanisms of VMPI with SPHG, and it would be helpful in the development of pest-resistant genetically modified crops.

  11. Action of plant proteinase inhibitors on enzymes of physiopathological importance.

    Science.gov (United States)

    Oliva, Maria Luiza V; Sampaio, Misako U

    2009-09-01

    Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized, exhibiting different properties. Although proteins from this group share high structural similarity, they present differences in proteinase inhibition, explored in studies using diverse biological models.

  12. A serine proteinase inhibitor from frog eggs with bacteriostatic activity.

    Science.gov (United States)

    Han, Yaoping; Yu, Haining; Yang, Xinbo; Rees, Huw H; Liu, Jingze; Lai, Ren

    2008-01-01

    By Sephadex G-50 gel filtration, Resource Q anionic exchange and C4 reversed phase liquid high performance liquid chromatography, a proteinase inhibitor protein (Ranaserpin) was identified and purified from the eggs of the odour frog, Rana grahami. The protein displayed a single band adjacent to the molecular weight marker of 14.4 kDa analyzed by SDS-PAGE. The inhibitor protein homogeneity and its molecular weight were confirmed again by MALDI-TOF mass spectrometry analysis. The MALDI-TOF mass spectrum analysis gave this inhibitor protein an m/z of 14422.26 that was matched well with the result from SDS-PAGE. This protein is a serine proteinase inhibitor targeting multiple proteinases including trypsin, elastase, and subtilisin. Ranaserpin inhibited the proteolytic activities of trypsin, elastase, and subtilisin. It has an inhibitory constant (K(i)) of 6.2 x 10(-8) M, 2.7 x 10(-7) M and 2.2 x 10(-8) M for trypsin, elastase, and subtilisin, respectively. This serine proteinase inhibitor exhibited bacteriostatic effect on Gram-positive bacteria Bacillus subtilis (ATCC 6633). It was suggested that ranaserpin might act as a defensive role in resistance to invasion of pests or pathogens. This is the first report of serine proteinase inhibitor and its direct defensive role from amphibian eggs.

  13. Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitor 6.

    Science.gov (United States)

    Barrie, Mahmoud B; Stout, Heather W; Abougergi, Marwan S; Miller, Bonnie C; Thiele, Dwain L

    2004-05-15

    Expression of the granzyme B inhibitors, human proteinase inhibitor 9 (PI-9), or the murine orthologue, serine proteinase inhibitor 6 (SPI-6), confers resistance to CTL or NK killing by perforin- and granzyme-dependent effector mechanisms. In light of prior studies indicating that virally infected hepatocytes are selectively resistant to this CTL effector mechanism, the present studies investigated PI-9 and SPI-6 expression in hepatocytes and hepatoma cells in response to adenoviral infection and to cytokines produced during antiviral immune responses. Neither PI-9 nor SPI-6 expression was detected by immunoblotting in uninfected murine or human hepatocytes. Similarly, human Huh-7 hepatoma cells were found to express only very low levels of PI-9 relative to levels detected in perforin- and granzyme-resistant CTL or lymphokine-activated killer cells. Following in vivo adenoviral infection or in vitro culture with IFN-alphabeta or IFN-gamma, SPI-6 expression was induced in murine hepatocytes. Similarly, after culture with IFN-alpha, induction of PI-9 mRNA and protein expression was observed in human hepatocytes and Huh-7 cells. IFN-gamma and TNF-alpha also induced 4- to 10-fold higher levels of PI-9 mRNA expression in Huh-7 cells, whereas levels of mRNA encoding a related serine proteinase inhibitor, proteinase inhibitor 8, were unaffected by culture of Huh-7 cells with IFN-alpha, IFN-gamma, or TNF-alpha. These findings indicate that cytokines that promote antiviral cytopathic responses also regulate expression of the cytoprotective molecules, PI-9 and SPI-6, in hepatocytes that are potential targets of CTL and NK effector mechanisms.

  14. Action of plant proteinase inhibitors on enzymes of physiopathological importance

    Directory of Open Access Journals (Sweden)

    Maria Luiza V. Oliva

    2009-09-01

    Full Text Available Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized, exhibiting different properties. Although proteins from this group share high structural similarity, they present differences in proteinase inhibition, explored in studies using diverse biological models.Obtidas de sementes leguminosas, várias proteínas inibem proteinases de origem animal, incluindo humanas, e podem ser consideradas para o desenvolvimento de compostos com atividade biológica. Inibidores da família Bowman-Birk e da família Kunitz vegetal tem sido caracterizados em relação a especificidade para proteinase, estrutura primária e sitio reativo. O nosso grupo majoritariamente vem estudando o gênero Bauhinia, principalmente as espécies bauhinioides, rufa, ungulatae variegata. Em algumas espécies, mais de um inibidor com propriedades diferentes foi caracterizado. Embora tais proteínas apresentem alta similaridade estrutural, diferem quanto à inibição de proteinases, e foram exploradas em estudos utilizando diversos modelos biológicos.

  15. Purification and characterization of native and recombinant SaPIN2a, a plant sieve element-localized proteinase inhibitor.

    Science.gov (United States)

    Wang, Zhen-Yu; Ding, Ling-Wen; Ge, Zhi-Juan; Wang, Zhaoyu; Wang, Fanghai; Li, Ning; Xu, Zeng-Fu

    2007-01-01

    SaPIN2a encodes a proteinase inhibitor in nightshade (Solanum americanum), which is specifically localized to the enucleate sieve elements. It has been proposed to play an important role in phloem development by regulating proteolysis in sieve elements. In this study, we purified and characterized native SaPIN2a from nightshade stems and recombinant SaPIN2a expressed in Escherichia coli. Purified native SaPIN2a was found as a charge isomer family of homodimers, and was weakly glycosylated. Native SaPIN2a significantly inhibited serine proteinases such as trypsin, chymotrypsin, and subtilisin, with the most potent inhibitory activity on subtilisin. It did not inhibit cysteine proteinase papain and aspartic proteinase cathepsin D. Recombinant SaPIN2a had a strong inhibitory effect on chymotrypsin, but its inhibitory activities toward trypsin and especially toward subtilisin were greatly reduced. In addition, native SaPIN2a can effectively inhibit midgut trypsin-like activities from Trichoplusia ni and Spodoptera litura larvae, suggesting a potential for the production of insect-resistant transgenic plants.

  16. Silk gland-specific proteinase inhibitor serpin16 from the Bombyx mori shows cysteine proteinase inhibitory activity.

    Science.gov (United States)

    Guo, Peng-Chao; Dong, Zhaoming; Xiao, Li; Li, Tao; Zhang, Yan; He, Huawei; Xia, Qingyou; Zhao, Ping

    2015-01-30

    Serpins (serine proteinase inhibitors) are widely distributed in different species and are well known for their inhibitory activities towards serine proteinases. Here, we report the functional characterization of Bombyx mori serpin16. Expression analysis showed that serpin16 was specifically expressed at high levels in the silk gland at both the transcriptional and translational levels. Moreover, homology modeling and multi-sequence alignment suggested that serpin16 had a canonical serpin fold, but it contained a unique reactive center loop, which was obviously shorter than that of typical serpins. Inhibitory activity analyses revealed that the target proteinase of serpin18 is a cysteine proteinase, rather than a serine proteinase. Furthermore, a Michaelis complex model of serpin16 with its target proteinase was constructed to explain the structural basis of how serpin16 recognizes the cysteine proteinase and its target specificity.

  17. Immunomodulation by α(1)-proteinase inhibitor: lack of chemotactic effects of recombinant human α(1)-proteinase inhibitor from yeast on human peripheral blood granulocytes

    OpenAIRE

    Mosheimer, Birgit; Alzner, Reinhard; Wiedermann, Christian J.

    2007-01-01

    Introduction: Recombinant α(1)-proteinase inhibitor, clinically developed for inhalative augmentation therapy in patients with α(1)-proteinase inhibitor deficiency or cystic fibrosis, may directly contribute to leukocyte accumulation as it may function as a chemoattractant. The migratory effects of yeast-derived human recombinant α(1)-proteinase inhibitor on human peripheral blood neutrophils and eosinophils were therefore tested in vitro. Materials and Methods: Human peripheral blood leukocy...

  18. Biochemical characterization of Acacia schweinfurthii serine proteinase inhibitor.

    Science.gov (United States)

    Odei-Addo, Frank; Frost, Carminita; Smith, Nanette; Ogawa, Tomohisa; Muramoto, Koji; Oliva, Maria Luiza Vilela; Gráf, László; Naude, Ryno

    2014-10-01

    One of the many control mechanisms of serine proteinases is their specific inhibition by protein proteinase inhibitors. An extract of Acacia schweinfurthii was screened for potential serine proteinase inhibition. It was successfully purified to homogeneity by precipitating with 80% (v/v) acetone and sequential chromatographic steps, including ion-exchange, affinity purification and reversed-phase high performance liquid chromatography. Reducing sodium dodecyl sulphate polyacrylamide gel electrophoresis conditions revealed an inhibitor (ASTI) consisting of two polypeptide chains A and B of approximate molecular weights of 16 and 10 kDa, respectively, and under non-reducing conditions, 26 kDa was observed. The inhibitor was shown to inhibit bovine trypsin (Ki of 3.45 nM) at an approximate molar ratio of inhibitor:trypsin (1:1). The A- and B-chains revealed complete sequences of 140 and 40 amino acid residues, respectively. Sequence similarity (70%) was reported between ASTI A-chain and ACTI A-chain (Acacia confusa) using ClustalW. The B-chain produced a 76% sequence similarity between ASTI and Leucaena leucocephala trypsin inhibitor.

  19. Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana.

    Science.gov (United States)

    Pariani, Sebastián; Contreras, Marisol; Rossi, Franco R; Sander, Valeria; Corigliano, Mariana G; Simón, Francisco; Busi, María V; Gomez-Casati, Diego F; Pieckenstain, Fernando L; Duschak, Vilma G; Clemente, Marina

    2016-04-01

    Many different types of serine proteinase inhibitors have been involved in several kinds of plant physiological processes, including defense mechanisms against phytopathogens. Kazal-type serine proteinase inhibitors, which are included in the serine proteinase inhibitor family, are present in several organisms. These proteins play a regulatory role in processes that involve serine proteinases like trypsin, chymotrypsin, thrombin, elastase and/or subtilisin. In the present work, we characterized two putative Kazal-type serine proteinase inhibitors from Arabidopsis thaliana, which have a single putative Kazal-type domain. The expression of these inhibitors is transiently induced in response to leaf infection by Botrytis cinerea, suggesting that they play some role in defense against pathogens. We also evaluated the inhibitory specificity of one of the Kazal-type serine proteinase inhibitors, which resulted to be induced during the local response to B. cinerea infection. The recombinant Kazal-type serine proteinase inhibitor displayed high specificity for elastase and subtilisin, but low specificity for trypsin, suggesting differences in its selectivity. In addition, this inhibitor exhibited a strong antifungal activity inhibiting the germination rate of B. cinerea conidia in vitro. Due to the important role of proteinase inhibitors in plant protection against pathogens and pests, the information about Kazal-type proteinase inhibitors described in the present work could contribute to improving current methods for plant protection against pathogens.

  20. The granzyme B inhibitor proteinase inhibitor 9 (PI9) is expressed by human mast cells.

    NARCIS (Netherlands)

    Bladergroen, B.A.; Strik, M.C.; Wolbink, A.M.; Wouters, D.; Broekhuizen, R.; Kummer, J.A.; Hack, C.E.

    2005-01-01

    The activity of granzyme B, a main effector molecule of cytotoxic T lymphocytes (CTL) and natural killer cells, is regulated by the human intracellular serpin proteinase inhibitor 9 (PI9). This inhibitor is particularly expressed by CTL and dendritic cells, in which it serves to protect these cells

  1. An electroblotting, two-step procedure for the detection of proteinases and the study of proteinase/inhibitor complexes in gelatin-containing polyacrylamide gels.

    Science.gov (United States)

    Visal-Shah, S; Vrain, T C; Yelle, T C; Nguyen-Quoc, B; Michaud, D

    2001-08-01

    A two-step gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE) procedure was devised for the detection of proteinases and the study of proteinase/inhibitor interactions in complex biological extracts. The proteins are first resolved by sodium dodecyl sulfate (SDS)-PAGE under reducing or nonreducing conditions, and electrotransferred into a 0.75 mm-thick accompanying polyacrylamide slab gel containing 0.1% w/v porcine gelatin. The active proteinase bands are developed by a gelatin proteolysis step in the accompanying gel in the presence or absence of diagnostic proteinase inhibitors, allowing the assessment of proteinase classes and the visual discrimination of inhibitor-'sensitive' and -'insensitive' proteinases in complex extracts. Alternatively, protein extracts are preincubated with specific reversible inhibitors before electrophoresis, allowing a rapid discrimination of strong and weak interactions implicating proteinases and reversible inhibitors. In comparison with the standard gelatin/PAGE procedure, that involves copolymerization of gelatin with acrylamide in the resolving gel, this new procedure simplifies proteinase patterns, avoids overestimation of proteinase numbers in complex extracts, and allows in certain conditions the estimation of proteinase molecular weights. Stem bromelain (EC 3.4.22.32), bovine trypsin (EC 3.4.21.4), papain (EC 3.4.22.2), and the extracellular (digestive) cysteine proteinases of five herbivorous pests are used as model enzymes to illustrate the usefulness of this approach in detecting proteinases and in studying their interactions with specific proteinaceous inhibitors potentially useful in biotechnology.

  2. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley

    DEFF Research Database (Denmark)

    Roberts, T.H.; Marttila, S.; Rasmussen, S.K.;

    2003-01-01

    Proteins of the serpin superfamily (similar to43 kDa) from mature cereal grains are in vitro suicide-substrate inhibitors of specific mammalian serine proteinases of the chymotrypsin family. However, unlike the 'standard-mechanism' serine proteinase inhibitors (

  3. Gelatinases and serine proteinase inhibitors of seminal plasma and the reproductive tract of turkey (Meleagris gallopavo).

    Science.gov (United States)

    Kotłowska, M; Kowalski, R; Glogowski, J; Jankowski, J; Ciereszko, A

    2005-04-01

    This study examined proteolytic enzymes and serine proteinase inhibitors in turkey seminal plasma with relation to their distribution within the reproductive tract and to yellow semen syndrome (YSS). Proteases of blood plasma, extracts from the reproductive tract, and seminal plasma were analyzed by gelatin zymography. We found a clear regional distribution of proteolytic enzymes in the turkey reproductive tract. Each part was characterized by a unique profile of serine proteolytic enzymes of molecular weights ranging from 29 to 88 kDa. The ductus deferens was found to be a site of very intense proteolytic activity. Two metalloproteases of 58 and 66 kDa were detected in all parts of the reproductive tract and seminal plasma. Using electrophoretic methods for detection of anti-trypsin activity, we found three serine proteinase inhibitors in turkey seminal plasma. Two inhibitors were found in the testis and epididymis and a third in the ductus deferens and seminal plasma. Blood plasma was characterized by the presence of two metalloproteinases and one serine proteinase inhibitor (of low migration rate) that were also detected in the reproductive tract. Amidase and anti-trypsin activities (expressed per gram of protein) differed for yellow and white seminal plasma. We concluded that turkey seminal plasma contains metalloproteases, serine proteinases, and serine proteinase inhibitors. The metalloproteases and one proteinase inhibitor are related to blood proteinases but the other two inhibitors and serine proteinases seem to be unique for the reproductive tract.

  4. Serine proteinase inhibitors in the Compositae: distribution, polymorphism and properties.

    Science.gov (United States)

    Konarev, Alexander V; Anisimova, Irina N; Gavrilova, V A; Vachrusheva, T E; Konechnaya, G Yu; Lewis, Mervyn; Shewry, Peter R

    2002-02-01

    Multiple molecular forms of inhibitors of trypsin (TI) and chymotrypsin (CI), which are typical digestive enzymes of insects, mammals and micro-organisms, and subtilisin (SI), a proteinase of many bacteria and phytopathogenic fungi, were identified in seeds and vegetative organs of the majority of 128 wild and cultivated species representing 65 genera of three of the subfamilies of the Compositae. Inhibitors with M(r) ranging from 7450 to 7800 and combining activities towards subtilisin and trypsin and/or chymotrypsin (T/C/SI) had the widest distribution and may be involved in plant defense mechanisms. They were found in many species of the subfamilies Carduoideae (genera Carthamus, Centaurea, Cirsium), Cichorioideae (Lactuca, Taraxacum) and Asteroideae (Helianthus, Cosmos, Bidens). Partial amino acid sequencing showed that the safflower (Carthamus tinctorius) T/C/SI and Cosmos bipinnatus T/C/SI, T/SI and C/SI belonged to the potato I inhibitor family. The most active, variable and heterogeneous inhibitors were found in species of the tribe Heliantheae, which is placed in the evolutionary advanced subfamily Asteroideae. Seeds of Helianthus species, Eclipta prostrata, Gailardia aristata, Zinnia elegans and Silphium perfoliatum contained various TI with M(r) ranging from 1500 to 14,750, with some also containing SI. H. annuus seeds contain a unique cyclic TI of M(r) 1514 and similar TI were also present in other Helianthus spp. and the related species Tithonia diversifolia. Zinnia elegans contained a TI with M(r) 11,350 which appeared to represent a novel type of inhibitor distantly related to the cereal subgroup of Bowman-Birk inhibitors. TI and T/SI varied widely in H. annuus lines and wild Helianthus species in their presence or absence and composition. Similar T/SI components were found in the cultivated diploid H. annuus and annual diploid species with the B genome but not in perennials with the A genome. Some T/SI, SI and TI were detected in vegetative organs

  5. Digestive duet: Midgut digestive proteinases of Manduca sexta ingesting Nicotiana attenuata with manipulated trypsin proteinase inhibitor expression

    NARCIS (Netherlands)

    Zavala, J.A.; Giri, A.P.; Jongsma, M.A.; Baldwin, I.T.

    2008-01-01

    The defensive effect of endogenous trypsin proteinase inhibitors (NaTPIs) on the herbivore Manduca sexta was demonstrated by genetically altering NaTPI production in M. sexta's host plant, Nicotiana attenuata. To understand how this defense works, we studied the effects of NaTPI on M. sexta gut prot

  6. Structure and function of invertebrate Kazal-type serine proteinase inhibitors.

    Science.gov (United States)

    Rimphanitchayakit, Vichien; Tassanakajon, Anchalee

    2010-04-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. The proteinase inhibitors function as modulators for controlling the extent of deleterious proteinase activity. The Kazal-type proteinase inhibitors (KPIs) in family I1 are among the well-known families of proteinase inhibitors, widely found in mammals, avian and a variety of invertebrates. Like those classical KPIs, the invertebrate KPIs can be single or multiple domain proteins containing one or more Kazal inhibitory domains linked together by peptide spacers of variable length. All invertebrate Kazal domains of about 40-60 amino acids in length share a common structure which is dictated by six conserved cysteine residues forming three intra-domain disulfide cross-links despite the variability of amino acid sequences between the half-cystines. Invertebrate KPIs are strong inhibitors as shown by their extremely high association constant of 10(7)-10(13)M(-1). The inhibitory specificity of a Kazal domain varies widely with a different reactive P(1) amino acid. Different invertebrate KPI domains may arise from gene duplication but several KPI proteins can also be derived from alternative splicing. The invertebrate KPIs function as anticoagulants in blood-sucking animals such as leech, mosquitoes and ticks. Several KPIs are likely involved in protecting host from microbial proteinases while some from the parasitic protozoa help protecting the parasites from the host digestive proteinase enzymes. Silk moths produce KPIs to protect their cocoon from predators and microbial destruction.

  7. Digestive duet: midgut digestive proteinases of Manduca sexta ingesting Nicotiana attenuata with manipulated trypsin proteinase inhibitor expression.

    Directory of Open Access Journals (Sweden)

    Jorge A Zavala

    Full Text Available BACKGROUND: The defensive effect of endogenous trypsin proteinase inhibitors (NaTPIs on the herbivore Manduca sexta was demonstrated by genetically altering NaTPI production in M. sexta's host plant, Nicotiana attenuata. To understand how this defense works, we studied the effects of NaTPI on M. sexta gut proteinase activity levels in different larval instars of caterpillars feeding freely on untransformed and transformed plants. METHODOLOGY/ PRINCIPAL FINDINGS: Second and third instars larvae that fed on NaTPI-producing (WT genotypes were lighter and had less gut proteinase activity compared to those that fed on genotypes with either little or no NaTPI activity. Unexpectedly, NaTPI activity in vitro assays not only inhibited the trypsin sensitive fraction of gut proteinase activity but also halved the NaTPI-insensitive fraction in third-instar larvae. Unable to degrade NaTPI, larvae apparently lacked the means to adapt to NaTPI in their diet. However, caterpillars recovered at least part of their gut proteinase activity when they were transferred from NaTPI-producing host plants to NaTPI-free host plants. In addition extracts of basal leaves inhibited more gut proteinase activity than did extracts of middle stem leaves with the same protein content. CONCLUSIONS/ SIGNIFICANCE: Although larvae can minimize the effects of high NaTPI levels by feeding on leaves with high protein and low NaTPI activity, the host plant's endogenous NaTPIs remain an effective defense against M. sexta, inhibiting gut proteinase and affecting larval performance.

  8. Stress inducible proteinase inhibitor diversity in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    Mishra Manasi

    2012-11-01

    Full Text Available Abstract Background Wound-inducible Pin-II Proteinase inhibitors (PIs are one of the important plant serine PIs which have been studied extensively for their structural and functional diversity and relevance in plant defense against insect pests. To explore the functional specialization of an array of Capsicum annuum (L. proteinase inhibitor (CanPIs genes, we studied their expression, processing and tissue-specific distribution under steady-state and induced conditions. Inductions were performed by subjecting C. annuum leaves to various treatments, namely aphid infestation or mechanical wounding followed by treatment with either oral secretion (OS of Helicoverpa armigera or water. Results The elicitation treatments regulated the accumulation of CanPIs corresponding to 4-, 3-, and 2-inhibitory repeat domains (IRDs. Fourty seven different CanPI genes composed of 28 unique IRDs were identified in total along with those reported earlier. The CanPI gene pool either from uninduced or induced leaves was dominated by 3-IRD PIs and trypsin inhibitory domains. Also a major contribution by 4-IRD CanPI genes possessing trypsin and chymotrypsin inhibitor domains was specifically revealed in wounded leaves treated with OS. Wounding displayed the highest number of unique CanPIs while wounding with OS treatment resulted in the high accumulation of specifically CanPI-4, -7 and −10. Characterization of the PI protein activity through two dimensional gel electrophoresis revealed tissue and induction specific patterns. Consistent with transcript abundance, wound plus OS or water treated C. annuum leaves exhibited significantly higher PI activity and isoform diversity contributed by 3- and 4-IRD CanPIs. CanPI accumulation and activity was weakly elicited by aphid infestation yet resulted in the higher expression of CanPI-26, -41 and −43. Conclusions Plants can differentially perceive various kinds of insect attacks and respond appropriately through activating

  9. Domain 15 of the serine proteinase inhibitor LEKTI blocks HIV infection in vitro

    Directory of Open Access Journals (Sweden)

    David Palesch

    2013-08-01

    Full Text Available Background: Lympho-epithelial Kazal-type-related inhibitor (LEKTI is a 15-domain serine proteinase inhibitor, parts of which have first been isolated from human blood filtrate. It is encoded by the gene SPINK5. In the past, different groups reported antiviral activities of certain serine proteinase inhibitors, such as mucous proteinase inhibitor and alpha1-proteinase inhibitor. The purpose of this study was to test two representative domains of the proteinase inhibitor LEKTI for anti-HIV activities.Methods: LEKTI domains 6 and 15 were recombinantly produced in E.coli. To test their inhibitory activity against HIV infection, the reporter cell line P4-R5 MAGI carrying an HIV-inducible reporter gene was infected by a CCR5-tropic HIV strain in the presence of different inhibitor concentrations. After three days, infection rates were determined by quantifying ß-galactosidase activities using the Galacto-Light Plus™ ß-Galactosidase Reporter Gene Assay.Results: In contrast to LEKTI domain 6, LEKTI domain 15 suppressed HIV-induced reporter gene activities with an IC50 value of approximately 29 µM.Conclusion: LEKTI domain 15 represents an inhibitor of HIV infection. (Med J Indones. 2013;22:131-5. doi: 10.13181/mji.v22i3.580Keywords: HIV, inhibition, LEKTI, P4-R5 MAGI

  10. Cloning of a serine proteinase inhibitor from bovine brain: expression in the brain and characterization of its target proteinases.

    Science.gov (United States)

    Nakaya, N; Nishibori, M; Kawabata, M; Saeki, K

    1996-12-01

    A cDNA encoding of the serine proteinase inhibitor (serpin), B-43, was cloned from the cDNA library of the bovine brain. It encoded 378 amino acids, and the MW of the protein was estimated to be 42.6 kDa, which is consistent with that of the native B-43 purified from the bovine brain. The homology search revealed that B-43 belongs to the ovalbumin branch of the serpin superfamily. Among them, B-43 was most homologous to human placental thrombin inhibitor (PI-6) and its murine counterpart, with the amino acid identity of 76% and 71%, respectively. Northern blot analysis showed that the size of the transcript was 1.4 kb, and that the expression of B-43 in the bovine brain varied depending on the brain regions, i.e. a lower level of expression was observed in the cerebral cortex and the hippocampus compared to the level of expression that was observed in the medulla oblongata. [35S]-labeled B-43 protein was synthesized in vitro by using a rabbit reticulocyte lysate system, which formed complexes with proteinases such as thrombin, trypsin, alpha-chymotrypsin, and 7S nerve growth factor (NGF), but not with urokinase or plasmin. These results, together with the immunohistochemical localization of B-43 in astrocytes and in some neurons which was observed in the previous study suggest that B-43 may be involved in the regulation of serine proteinases present in the brain or extravasated from the blood.

  11. General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor.

    Science.gov (United States)

    Brioschi, Daniela; Nadalini, Larissa D; Bengtson, Mario H; Sogayar, Mari Cleide; Moura, Daniel S; Silva-Filho, Marcio C

    2007-12-01

    The existence of a diverse serine proteinase gene family in lepidopteran insects suggests they play a significant role in the insect adaptation to plant proteinase inhibitors. These proteinases have been shown to be involved in the process of proteolytic digestion in insect larvae. We carried out a selective transcriptome study of midguts from Spodoptera frugiperda larvae fed on a diet supplemented with soybean proteinase inhibitor (SPI). Using subtracted cDNA libraries made of gut-expressed transcripts, a total of 2100 partial sequences were obtained, of those 38% were related to digestive process. Two large and diverse groups of chymotrypsins and trypsins were obtained, and some of these proteinase-encoding genes were further characterized by quantitative RT-PCR. The transcription analyses revealed two groups: one group of genes constitutively expressed in the control larvae that is up regulated by introducing SPI to the diet, and a second group that is absent in the control but is induced by the SPI-rich diet. This observation suggests that adaptation of S. frugiperda to SPI involves de novo synthesis and also up regulation of existing enzymes. Proteases from intestines of larvae reared on a diet with SPI showed insensitivity to the inhibitor. The proteases were also insensitive to a broad-spectrum potato proteinase inhibitor preparation. We propose that adaptation of S. frugiperda to SPI follows a "shotgun" approach, based on a general up regulation of a large set of endoproteinases.

  12. Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination

    Directory of Open Access Journals (Sweden)

    Lepelley Maud

    2012-03-01

    Full Text Available Abstract Background Cysteine proteinases perform multiple functions in seeds, including participation in remodelling polypeptides and recycling amino acids during maturation and germination. Currently, few details exist concerning these genes and proteins in coffee. Furthermore, there is limited information on the cysteine proteinase inhibitors which influence the activities of these proteinases. Results Two cysteine proteinase (CP and four cysteine proteinase inhibitor (CPI gene sequences have been identified in coffee with significant expression during the maturation and germination of coffee grain. Detailed expression analysis of the cysteine proteinase genes CcCP1 and CcCP4 in Robusta using quantitative RT-PCR showed that these transcripts accumulate primarily during grain maturation and germination/post germination. The corresponding proteins were expressed in E. coli and purified, but only one, CcCP4, which has a KDDL/KDEL C-terminal sequence, was found to be active after a short acid treatment. QRT-PCR expression analysis of the four cysteine proteinase inhibitor genes in Robusta showed that CcCPI-1 is primarily expressed in developing and germinating grain and CcCPI-4 is very highly expressed during the late post germination period, as well as in mature, but not immature leaves. Transcripts corresponding to CcCPI-2 and CcCPI-3 were detected in most tissues examined at relatively similar, but generally low levels. Conclusions Several cysteine proteinase and cysteine proteinase inhibitor genes with strong, relatively specific expression during coffee grain maturation and germination are presented. The temporal expression of the CcCP1 gene suggests it is involved in modifying proteins during late grain maturation and germination. The expression pattern of CcCP4, and its close identity with KDEL containing CP proteins, implies this proteinase may play a role in protein and/or cell remodelling during late grain germination, and that it is

  13. Expression of human α1-proteinase inhibitor in Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Punt Peter J

    2007-10-01

    Full Text Available Abstract Background Human α1-proteinase inhibitor (α1-PI, also known as antitrypsin, is the most abundant serine protease inhibitor (serpin in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger, a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2, separated by dibasic processing site (N-V-I-S-K-R that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size

  14. Serine proteinase inhibitors in seeds of Cycas siamensis and other gymnosperms.

    Science.gov (United States)

    Konarev, Alexander V; Lovegrove, Alison; Shewry, Peter R

    2008-10-01

    Seeds of 32 species selected from two of the four major groups of gymnosperms, the ancient Cycadales and the economically important Coniferales, were analysed for inhibitors (I) of the serine proteinases trypsin (T), chymotrypsin (C), subtilisin (S) and elastase (E) using isoelectric focusing (IEF) combined with gelatin replicas. Subtilisin inhibitors were detected in 17 species, being particularly active in the Cycadales. Several species of the genera Cephalotaxus, Pseudotsuga and Cycas contained inhibitors active against elastase while strong CSTIs and CSIs were also present in Cycas pectinata and C. siamensis. No inhibitors were detected in seeds of Chamaecyparis, Thuja, Abies, Larix, Picea and Pinus spp. Serine proteinase inhibitors were purified from seeds of C. siamensis by affinity chromatography using trypsin and chymotrypsin, IEF and SDS-PAGE. Several CSTI components with M(r) ranging from 4000 to 18,000 were partially sequenced using Edman degradation and mass spectrometry. Most of the sequences were similar to a hypothetical protein encoded by an mRNA from sporophylls of C. rumphii which in turn was similar to Kunitz-type proteinase inhibitors from flowering plants. Analysis of expressed sequence tag (EST) databases confirmed the presence of mRNAs encoding Kunitz-type inhibitors in the Cycadales and Coniferales and also demonstrated their presence in a third major group of gymnosperms, the Ginkgoales. This is the first report of Kunitz-type serine proteinase inhibitors from plants other than Angiosperms.

  15. Secretory leukocyte proteinase inhibitor-competent DNA deposits are potent stimulators of plasmacytoid dendritic cells

    DEFF Research Database (Denmark)

    Skrzeczynska-Moncznik, Joanna; Wlodarczyk, Agnieszka; Zabieglo, Katarzyna;

    2012-01-01

    Secretory leukocyte proteinase inhibitor (SLPI) is a well-established inhibitor of serine proteases such as human neutrophil elastase (HNE) and a NF-κB regulatory agent in immune cells. In this paper, we report that SLPI plays a previously uncharacterized role in regulating activation...

  16. Several properties of the partially purified proteinase inhibitor in eggplant exocarp.

    Science.gov (United States)

    Kanamori, M; Ibuki, F; Yamada, M; Tashiro, M; Miyoshi, M

    1975-01-01

    A proteinase inhibitor was isolated and partially purified from the exocarp of eggplant, Solanum melongena L., by means of acetate buffer extraction, heat treatment, salting-out and column chromatography on DEAE-cellulose. This preparation showed inhibitory activities on various proteinases; trypsin [EC 3.4.4.4] and Pronase were strongly inhibited while alpha-chymotrypsin [EC 3.4.4.5] and Nagarse were weakly inhibited. The inhibitor was a protein substance, and, therefore, it was gradually inactivated by the long-time incubation with Pronase. The inhibition mode was non-competitive on trypsin and competitive on Pronase on the basis of Lineweaver-Burk plots. The investigations on the inhibition behavior in the co-existence of two kinds of proteinases suggested that the inhibitor was not of multi-headed type.

  17. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Directory of Open Access Journals (Sweden)

    Leah Theresa Sigle

    2013-09-01

    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  18. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors.

    Science.gov (United States)

    Paulillo, L C; Lopes, A R; Cristofoletti, P T; Parra, J R; Terra, W R; Silva-Filho, M C

    2000-06-01

    The development of transgenic maize plants expressing soybean proteinase inhibitors could reduce the economic damage of one of the major maize pests in Brazil, the fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797). We examined the influence of soybean proteinase inhibitors on digestive enzyme properties and development of S. frugiperda larvae. The inhibition of trypsin and chymotrypsin activities in vitro by soybean proteinase inhibitors suggested that either Kunitz (SBTI) or Bowman-Birk (SBBI) would have a potential antimetabolic effect when ingested by insect larvae. However, chronic ingestion of semipurified soybean inhibitors did not result in a significant reduction of growth and development of fall armyworm. Therefore, digestive serine proteinase activities (trypsin and chymotrypsin) of fall armyworm larvae were characterized. The results suggest that S. frugiperda was able to physiologically adapt to dietary proteinase inhibitors by altering the complement of proteolytic enzymes in the insect midguts.

  19. LEKTI domain 15 is a functional Kazal-type proteinase inhibitor.

    Science.gov (United States)

    Vitzithum, Klaus; Lauber, Thomas; Kreutzmann, Peter; Schulz, Axel; Sommerhoff, Christian P; Rösch, Paul; Marx, Ute C

    2008-01-01

    The multidomain proteinase inhibitor LEKTI (lympho-epithelial Kazal-type related inhibitor) consists of 15 potential serine proteinase inhibitory domains. In various diseases such as the severe skin disorder Netherton syndrome as well as atopy, defects in the gene encoding LEKTI have been identified that generate premature termination codons of translation, suggesting a specific role of the COOH-terminal part of LEKTI in healthy individuals. We overexpressed and purified a sequence comprising the 15th domain of LEKTI for further characterisation. Here, we present a high yield expression system for recombinant production and efficient purification of LEKTI domain 15 as a highly soluble protein with a uniform disulfide pattern that is identical to that of other known Kazal-type inhibitors. Also, the expected P1P1' site was confirmed. LEKTI domain 15 is a well-structured protein as verified by circular dichroism (CD) spectroscopy and a tight-binding and stable inhibitor of the serine proteinase trypsin. These findings confirm the designation of domain 15 as a proteinase inhibitor of the Kazal family.

  20. Granzyme M is a regulatory protease that inactivates proteinase inhibitor 9, an endogenous inhibitor of granzyme B.

    Science.gov (United States)

    Mahrus, Sami; Kisiel, Walter; Craik, Charles S

    2004-12-24

    Granzyme M is a trypsin-fold serine protease that is specifically found in the granules of natural killer cells. This enzyme has been implicated recently in the induction of target cell death by cytotoxic lymphocytes, but unlike granzymes A and B, the molecular mechanism of action of granzyme M is unknown. We have characterized the extended substrate specificity of human granzyme M by using purified recombinant enzyme, several positional scanning libraries of coumarin substrates, and a panel of individual p-nitroanilide and coumarin substrates. In contrast to previous studies conducted using thiobenzyl ester substrates (Smyth, M. J., O'Connor, M. D., Trapani, J. A., Kershaw, M. H., and Brinkworth, R. I. (1996) J. Immunol. 156, 4174-4181), a strong preference for leucine at P1 over methionine was demonstrated. The extended substrate specificity was determined to be lysine = norleucine at P4, broad at P3, proline > alanine at P2, and leucine > norleucine > methionine at P1. The enzyme activity was found to be highly dependent on the length and sequence of substrates, indicative of a regulatory function for human granzyme M. Finally, the interaction between granzyme M and the serpins alpha(1)-antichymotrypsin, alpha(1)-proteinase inhibitor, and proteinase inhibitor 9 was characterized by using a candidate-based approach to identify potential endogenous inhibitors. Proteinase inhibitor 9 was effectively hydrolyzed and inactivated by human granzyme M, raising the possibility that this orphan granzyme bypasses proteinase inhibitor 9 inhibition of granzyme B.

  1. Purification and characters' analysis of specific proteinase inhibitorⅡ from phloem of Solanum americanum%龙葵韧皮部特异Ⅱ型蛋白酶抑制剂的分离纯化和部分特性分析

    Institute of Scientific and Technical Information of China (English)

    王震宇; 李佳

    2010-01-01

    龙葵蛋白酶抑制剂Ⅱa(Solanum americanum proteinase inhibitor Ⅱa,SaPIN2a)基因是第一个被发现在植物韧皮部中特异表达的蛋白酶抑制剂Ⅱ(PIN2)基因.以野生型龙葵的茎为材料,经过粉碎→浸提→超滤→(NH4)SO4沉淀→分子排阻层析→离子交换层析→胰蛋白酶亲和层析一系列的处理后,分离纯化得到一个丝氨酸蛋白酶抑制剂,SDS-PAGE结果显示其表观分子量约为20 kDa.对该纯化的丝氨酸蛋白酶抑制剂进行了蛋白质测序工作.结果得到该蛋白N端23个氨基酸残基的序列为:KACTRECGHFSYGICPRSEGSPQ,经过Blast比对分析发现这23个氨基酸残基为成熟型SaPIN2a(即不含信号肽的SaPIN2a)N端序列.

  2. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene.

    Directory of Open Access Journals (Sweden)

    Ann C Smigocki

    Full Text Available Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.

  3. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene.

    Science.gov (United States)

    Smigocki, Ann C; Ivic-Haymes, Snezana; Li, Haiyan; Savić, Jelena

    2013-01-01

    Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI) was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.

  4. Differential antibiosis against Helicoverpa armigera exerted by distinct inhibitory repeat domains of Capsicum annuum proteinase inhibitors.

    Science.gov (United States)

    Joshi, Rakesh S; Gupta, Vidya S; Giri, Ashok P

    2014-05-01

    Plant defensive serine proteinase inhibitors (PIs) are known to have negative impact on digestive physiology of herbivore insects and thus have a crucial role in plant protection. Here, we have assessed the efficacy and specificity of three previously characterized inhibitory repeat domain (IRD) variants from Capsicum annuum PIs viz., IRD-7, -9 and -12 against gut proteinases from Helicoverpa armigera. Comparative study of in silico binding energy revealed that IRD-9 possesses higher affinity towards H. armigera serine proteinases as compared to IRD-7 and -12. H. armigera fed on artificial diet containing 5 TIU/g of recombinant IRD proteins exhibited differential effects on larval growth, survival rate and other nutritional parameters. Major digestive gut trypsin and chymotrypsin genes were down regulated in the IRD fed larvae, while few of them were up-regulated, this indicate alterations in insect digestive physiology. The results corroborated with proteinase activity assays and zymography. These findings suggest that the sequence variations among PIs reflect in their efficacy against proteinases in vitro and in vivo, which also could be used for developing tailor-made multi-domain inhibitor gene(s).

  5. Human neutrophil defensins and secretory leukocyte proteinase inhibitor in squamous metaplastic epithelium of bronchial airways.

    NARCIS (Netherlands)

    Aarbiou, J.; Schadewijk, A. van; Stolk, J.; Sont, J.K.; Boer, W.I.; Rabe, K.F.; Krieken, J.H.J.M. van; Mauad, T.; Hiemstra, P.S.

    2004-01-01

    OBJECTIVE: The aim of this study was to analyze a possible contribution of human neutrophil defensins and secretory leukocyte proteinase inhibitor (SLPI) to the induction of airway epithelial changes such as squamous cell metaplasia. MATERIALS AND METHODS: The presence of these molecules and the num

  6. Insect resistance to sugar beet pests mediated by a Beta vulgaris proteinase inhibitor transgene

    Science.gov (United States)

    We transformed sugar beet (Beta vulgaris) hairy roots and Nicotiana benthamiana plants with a Beta vulgaris root gene (BvSTI) that codes for a serine proteinase inhibitor. BvSTI is a root gene cloned from the F1016 breeding line that has moderate levels of resistance to the sugar beet root maggot ...

  7. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Science.gov (United States)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  8. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E;

    2000-01-01

    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  9. Non enzymatic glycosylation of alpha-1-proteinase inhibitor of human plasma.

    Directory of Open Access Journals (Sweden)

    Phadke M

    1998-04-01

    Full Text Available Human plasma contains inhibitors, which control the activity of proteolytic enzymes. Alpha-1-proteinase inhibitor and alpha-2-macroglobulin are two of them present in high concentration in human plasma, which inhibit action of trypsin among other proteinases. The trypsin inhibitory capacity (TIC of human plasma is observed to be decreased in pathological conditions like diabetes mellitus. The mechanisms of decrease in TIC was due to nonenzymatic glycosylation of alpha-1-proteinase inhibitor (A1PI. A1PI was partially purified from normal human plasma by steps involving ammonium sulphate precipitation, DEAE Sepharose CL6B chromatography, Concanavalin A Sepharose Chromatography and Sephadex G-100 Gel filtration. Purified inhibitor was glycosylated in vitro by incubating it with varying glucose concentrations, under nitrogen for different periods of time in reducing conditions. After glycosylation, the molecular weight of inhibitor increased from 52 kDa to 57 KDa because of binding with glucose molecules. The percent free amino groups in the protein decreased with increasing glucose concentration and days of incubation. The TIC of such modified inhibitor decreased significantly. Decrease in TIC was dependent on the glucose concentration and period of incubation used during in-vitro glycosylation of native inhibitor.

  10. A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening

    Institute of Scientific and Technical Information of China (English)

    LUOCheng; CHENJing; LUOHai-Bin; CHENLi-Li; LIGuo-Wei; SUNTao; YUChang-Ying; YUELi-Duo; SHENJian-Hua; JIANGHua-Liang; XIONGBin; GUIChun-Shan; XUXiao-Ying; DUANWen-Hu; SHENJing-Kang; QINLei; SHITi-Liu; LIYi-Xue; CHENKai-Xian; LUOXiao-Min; SHENXu

    2003-01-01

    AIM:To constructed a three-dimensional (3D) model for the 3C like (3CL) proteinase of SARS coronavirus (SARS_CoV), and to design inhibitors of the 3CL proteinase based on the 3D model. METHODS: Bioinformatics analyses were performed to search the homologous proteins of the SARS_CoV 3CL proteinase from the GenBank and PDB database. A 3D model of the proteinase was constructed by using homology modeling technique. Targeting to the 3D model and its X-ray crystal structure of the main proteinase (Mpro) of transmissible gastroenteritis virus(TGEV), virtual screening was performed employing molecular docking method to identify possible 3CL proteinase inhibitors from small molecular databases. RESULTS:Sequence alignment indicated that the SARS_CoV 3CL proteinase was extremely homologous to TGEV Mpro, especially the substrate-binding pocket (active site). Accordingly, a 3D model for the SARS_CoV 3CL proteinase was constructed based on the crystal structure of TGEV Mpro. The 3D model adopts a similar fold of the TGEV mpro, its structure and binding pocket feature are almost as same as that of TGEV Mpro. The tested virtual screening indicated that 73 available proteinase inhibitors in the MDDR database might dock into both the binding pockets of the TGEV Mpro and the SARS_CoV 3CL proteinase. CONCLUSIONS:Either the 3D model of the SARS_CoV 3CL proteinase or the X-ray crystal stucture of the TGEV Mpro may be used as a starting point for design anti-SARS drugs. Screening the known proteinase inhibitors may be an appreciated shortcut to discover anti-SARS drugs.

  11. Solution structure of the squash aspartic acid proteinase inhibitor (SQAPI) and mutational analysis of pepsin inhibition.

    Science.gov (United States)

    Headey, Stephen J; Macaskill, Ursula K; Wright, Michele A; Claridge, Jolyon K; Edwards, Patrick J B; Farley, Peter C; Christeller, John T; Laing, William A; Pascal, Steven M

    2010-08-27

    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel beta-sheet gripping an alpha-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting beta-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S' side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp(32)-Asp(215) diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin.

  12. Solution Structure of the Squash Aspartic Acid Proteinase Inhibitor (SQAPI) and Mutational Analysis of Pepsin Inhibition

    Science.gov (United States)

    Headey, Stephen J.; MacAskill, Ursula K.; Wright, Michele A.; Claridge, Jolyon K.; Edwards, Patrick J. B.; Farley, Peter C.; Christeller, John T.; Laing, William A.; Pascal, Steven M.

    2010-01-01

    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel β-sheet gripping an α-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting β-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S′ side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp32–Asp215 diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin. PMID:20538608

  13. A practical total synthesis of the microbial alkaline proteinase inhibitor (MAPI).

    Science.gov (United States)

    Haebich, Dieter; Hillisch, Alexander; El Sheikh, Sherif

    2009-12-01

    Diverse serine and cysteine proteases as well as alkaline proteinases and elastases play a crucial role in numerous biological processes. Natural peptide aldehydes such as the "microbial alkaline proteinase inhibitor" (MAPI, 1) are valuable tools to characterize novel enzymes and to study their function in nature. Within a drug discovery program we wanted to design and explore non-natural MAPI congeners with novel biological profiles. To that end we devised a simple, practical, and scalable synthesis of MAPI 1 from readily available amino acid building blocks. The modular nature of our approach allows convenient structural modification of the MAPI backbone.

  14. A sycamore cell wall polysaccharide and a chemically related tomato leaf polysaccharide possess similar proteinase inhibitor-inducing activities.

    Science.gov (United States)

    Ryan, C A; Bishop, P; Pearce, G

    1981-09-01

    A large pectic polysaccharide, called rhamnogalacturonan I, that is solubilized by a fungal endo-alpha-1,4-polygalacturonase from the purified walls of suspension-cultured sycamore cells possesses proteinase inhibitor-inducing activity similar to that of the proteinase inhibitor-inducing factor, a pectic-like oligosaccharide fraction isolated from tomato leaves. This suggests that the proteinase inhibitor-inducing activity resides in particular polysaccharide fragments which can be released when plant cell walls are exposed to appropriate enzyme degradation as a result of either wounding or pest attack.

  15. Alkaline proteinase inhibitor of Pseudomonas aeruginosa: a mutational and molecular dynamics study of the role of N-terminal residues in the inhibition of Pseudomonas alkaline proteinase.

    Science.gov (United States)

    Feltzer, Rhona E; Trent, John O; Gray, Robert D

    2003-07-11

    Alkaline proteinase inhibitor of Pseudomonas aeruginosa is a 11.5-kDa, high affinity inhibitor of the serralysin class of zinc-dependent proteinases secreted by several Gram-negative bacteria. X-ray crystallography of the proteinase-inhibitor complex reveals that five N-terminal inhibitor residues occupy the extended substrate binding site of the enzyme and that the catalytic zinc is chelated by the alpha-amino and carbonyl groups of the N-terminal residue of the inhibitor. In this study, we assessed the effect of alteration of inhibitor residues 2-5 on its affinity for Pseudomonas alkaline proteinase (APR) as derived from the ratio of the dissociation and associate rate constants for formation of the enzyme-inhibitor complex. The largest effect was observed at position Ser-2, which occupies the S1' pocket of the enzyme and donates a hydrogen bond to the carboxyl group of the catalytic Glu-177 of the proteinase. Substitution of Asp, Arg, or Trp at this position increased the dissociation constant KD by 35-, 180-, and 13-fold, respectively. Mutation at positions 3-5 of the trunk also resulted in a reduction in enzyme-inhibitor affinity, with the exception of an I4W mutant, which exhibited a 3-fold increase in affinity. Molecular dynamics simulation of the complex formation between the catalytic domain of APR and the S2D mutant showed that the carboxyl of Asp-2 interacts with the catalytic zinc, thereby partially neutralizing the negative charge that otherwise would clash with the carboxyl group of Glu-177 of APR. Simulation of the interaction between the alkaline proteinase and the I4W mutant revealed a major shift in the loop comprised of residues 189-200 of the enzyme that allowed formation of a stacking interaction between the aromatic rings of Ile-4 of the inhibitor and Tyr-158 of the proteinase. This new interaction could account for the observed increase in enzyme-inhibitor affinity.

  16. The potency and specificity of the interaction between the IA3 inhibitor and its target aspartic proteinase from Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Phylip, L H; Lees, W E; Brownsey, B G;

    2001-01-01

    The yeast IA3 polypeptide consists of only 68 residues, and the free inhibitor has little intrinsic secondary structure. IA3 showed subnanomolar potency toward its target, proteinase A from Saccharomyces cerevisiae, and did not inhibit any of a large number of aspartic proteinases with similar...... sequences/structures from a wide variety of other species. Systematic truncation and mutagenesis of the IA3 polypeptide revealed that the inhibitory activity is located in the N-terminal half of the sequence. Crystal structures of different forms of IA3 complexed with proteinase A showed that residues...... by the nontarget aspartic proteinases, it was not cleaved by proteinase A. The random coil IA3 polypeptide escapes cleavage by being stabilized in a helical conformation upon interaction with the active site of proteinase A. This results, paradoxically, in potent selective inhibition of the target enzyme....

  17. Isolation and characterization of a proteinase inhibitor from marama beans.

    Science.gov (United States)

    Elfant, M; Bryant, L; Starcher, B

    1985-11-01

    A protease inhibitor was purified from the African marama bean (Tylosema esculenturm). The inhibitor is present in large amounts, representing about 10.5% of the total protein. The molecular weight is slightly larger than soybean trypsin inhibitor and was estimated at 23,000 by SDS-gel electrophoresis or 24,500 by amino acid analysis. The amino acid composition was atypical of most other plant inhibitors with a cysteine content of only one or possibly two residues/mole and a blocked amino terminus. Inhibition studies indicated virtually no inhibition of chymotrypsin activity. Elastase, however, was inhibited to the same extent as trypsin, requiring about 2 moles of inhibitor for complete inhibition of the enzyme.

  18. Structurally unique recombinant Kazal-type proteinase inhibitor retains activity when terminally extended and glycosylated.

    Science.gov (United States)

    Kludkiewicz, Barbara; Kodrík, Dalibor; Grzelak, Krystyna; Nirmala, Xavier; Sehnal, Frantisek

    2005-10-01

    Recombinant derivatives of the Kazal-type serine proteinase inhibitor GmSPI2 (36 amino acid residues), which is a component of insect silk, were prepared in the expression vector Pichia pastoris. The rhSPI2 had a C-terminal hexahistidine tag attached to the GmSPI2 sequence, rtSPI2 was extended with GluAlaAla at the N-terminus, and rfSPI2 included this N-terminal extension and a C-terminal tail of 22 residues (myc epitope and hexahistidine). A portion of the secreted rfSI2 was O-glycosylated with a trimannosyl or hexamannosyl. The native inhibitor was active slightly on trypsin and highly on subtilisin and proteinase K. The extended C-terminus in rhSPI2 and rfSPI2 enhanced activity on the two latter enzymes and rendered rfSPI2 active on elastase and pronase, but abolished the inhibition of trypsin. The glycosylation of rfSPI2 reduced its inhibitory activity to a level comparable with the native inhibitor. The rtSPI2 with tripeptide extension at the N-terminus and no C-terminal modification was clearly less active than the native inhibitor. None of the tested compounds inhibited alpha-chymotrypsin and the non-serine proteinases.

  19. A Kunitz proteinase inhibitor from corms of Xanthosoma blandum with bactericidal activity.

    Science.gov (United States)

    Lima, Thaís B; Silva, Osmar N; Migliolo, Ludovico; Souza-Filho, Carlos R; Gonçalves, Eduardo G; Vasconcelos, Ilka M; Oliveira, José T A; Amaral, André C; Franco, Octávio L

    2011-05-27

    Bacterial infections directly affect the world's population, and this situation has been aggravated by indiscriminate use of antimicrobial agents, which can generate resistant microorganisms. In this report, an initial screening of proteins with antibacterial activity from corms of 15 species of the Xanthosoma genus was conducted. Since Xanthosoma blandum corms showed enhanced activity toward bacteria, a novel protein with bactericidal activity was isolated from this particular species. Edman degradation was used for protein N-termini determination; the primary structure showed similarities with Kunitz inhibitors, and this protein was named Xb-KTI. This protein was further challenged against serine proteinases from different sources, showing clear inhibitory activities. Otherwise, no hemolytic activity was observed for Xb-KTI. The results demonstrate the biotechnological potential of Xb-KTI, the first proteinase inhibitor with antimicrobial activity described in the Xanthosoma genus.

  20. In situ localization of proteinase inhibitor mRNA in rice plant challenged by brown planthopper

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Proteinase inhibitor (PI) mRNA was localized by in situ hybridization in tissue sections of root, stem and leaf of the resistant rice (B5) plant fed by brown planthopper nymphs. In the rice material without BPH feeding, PI gene was expressed in the root, stem and leaf, while the abundance of PI mRNA was low. In the rice material fed by BPH, PI gene was expressed substantially in the parenchyma of rice stem and leaf, but weakly in the root. The results indicated that the PI gene was up-regulated in the rice plant challenged by brown planthopper. For the first time, we reported the expression changes of proteinase inhibitor gene in plant which was infested by a piercing/sucking insect.

  1. Primary structure of a cysteine proteinase inhibitor from the fruit of avocado (Persea americana Mill).

    Science.gov (United States)

    Kimura, M; Ikeda, T; Fukumoto, D; Yamasaki, N; Yonekura, M

    1995-12-01

    The complete amino acid sequence of a proteinaceous cysteine proteinase inhibitor from the fruit of avocado (avocado cystatin) is presented. The protein consists of 100 amino acid residues and has a molecular mass of 11,300 Da. Comparison of this sequence with sequences of plant cysteine proteinase inhibitors (phytocystatins), including oryzacystatins I and II from rice seeds, cowpea cystatin, and corn cystatin, showed that the avocado cystatin molecule has 60% and 54% residues identical with the two forms of the rice seed proteins, oryzacystatins I and II, respectively, and 64% and 63% with the cowpea and corn proteins, respectively. The totally conserved sequence, Gln-Val-Val-Ala-Gly, among several of the animal cystatins as well as phytocystatins, is at positions 47-51 in the avocado cystatin molecule.

  2. Identification and characterization of alpha-I-proteinase inhibitor from common carp sarcoplasmic proteins.

    Science.gov (United States)

    Siriangkanakun, Siriphon; Li-Chan, Eunice C Y; Yongsawadigul, Jirawat

    2016-02-01

    Purification of proteinase inhibitor from common carp (Cyprinus carpio) sarcoplasmic proteins resulted in 2.8% yield with purification fold of 111. Two inhibitors, namely inhibitor I and II, exhibited molecular mass of 47 and 52 kDa, respectively, based on non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both inhibitors I and II were identified to be alpha-1-proteinase inhibitor (α1-PI) based on LC-MS/MS. They were glycoproteins and molecular mass after peptide-N-glycosidase F treatment was 38 and 45 kDa, respectively. The N-glycosylation sites of both inhibitors were determined to be at N214 and N226. The inhibitors specifically inhibited trypsin. The common carp α1-PI showed high thermal stability with denaturation temperatures of 65.43 and 73.31 °C, which were slightly less than those of ovomucoid. High stability toward NaCl was also evident up to 3M. The common carp α1-PI effectively reduced autolytic degradation of bigeye snapper surimi at the concentration as low as 0.025%.

  3. Characterization of the Proteinase that Initiates the Degradation of the Trypsin Inhibitor in Germinating Mung Beans (Vigna radiata).

    Science.gov (United States)

    Wilson, K A; Tan-Wilson, A L

    1987-05-01

    The proteinase (proteinase F) responsible for the initial proteolysis of the mung bean (Vigna radiata) trypsin inhibitor (MBTI) during germination has been purified 1400-fold from dry beans. The enzyme acts as an endopeptidase, cleaving the native inhibitor, MBTI-F, to produce the first modified inhibitor form, MBTI-E. The cleavage of the Asp76-Lys77 peptide bond of MBTI-F occurs at a pH optimum of 4.5, with the tetrapeptide Lys-Asp-Asp-Asp being released. Proteinase F exhibited no activity against the modified inhibitor forms MBTI-E and MBTI-C. Vicilin, the major storage protein of the mung bean, does not serve as a substrate for proteinase F between pH 4 and 7. Proteinase F is inhibited by phenylmethylsulfonyl fluoride, chymostatin, p-hydroxymercuribenzoate, and p-chlorophenylsulfonate, but not by iodoacetate and CuCl(2). It is not activated by dithiothreitol, and is stable for extended periods of time (10 months, 4 degrees C, pH 4.0) in the absence of reducing agents. An apparent molecular weight of 65,000 was found for proteinase F by gel filtration. Subcellular fractionation in glycerol suggests that greater than 85% of the proteinase F activity is found in the protein bodies of the ungerminated mung bean. The same studies indicate that at least 56% of the MBTI of the seed is also localized in the protein bodies.

  4. Serpin alpha 1proteinase inhibitor probed by intrinsic tryptophan fluorescence spectroscopy.

    OpenAIRE

    1996-01-01

    Various conformational forms of the archetypal serpin human alpha 1proteinase inhibitor (alpha 1PI), including ordered polymers, active and inactive monomers, and heterogeneous aggregates, have been produced by refolding from mild denaturing conditions. These forms presumably originate by different folding pathways during renaturation, under the influence of the A and C sheets of the molecule. Because alpha 1PI contains only two Trp residues, at positions 194 and 238, it is amenable to fluore...

  5. Inhibition of tryptase and chymase induced nucleated cell infiltration by proteinase inhibitors

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Han-qiu CHEN; Jian ZHENG

    2004-01-01

    AIM: To investigate the ability of proteinase inhibitors to modulate nucleated cell infiltration into the peritoneum of mice induced by tryptase and chymase. METHODS: Human lung tryptase and skin chymase were purified by a similar procedure involving high salt extraction, heparin agarose affinity chromatography followed by S-200 Sephacryl gel filtration chromatography. The actions of proteinase inhibitors on tryptase and chymase induced nucleated cell accumulation were examined with a mouse peritoneum model. RESULTS: A selective chymase inhibitor Z-Ile-GluPro-Phe-CO2Me (ZIGPPF) was able to inhibit approximately 90% neutrophil, 73% eosinophil, 87% lymphocyte and 60% macrophage accumulation induced by chymase at 16 h following injection. Soy bean trypsin inhibitor (SBTI), chymostatin, and α1-antitrypsin showed slightly less potency than ZIGPPF in inhibition of the actions of chymase. While all tryptase inhibitors tested were able to inhibit neutrophil, eosinophil, and macrophage accumulation provoked by tryptase at 16 h following injection, only leupeptin, APC366, and aprotinin were capable of inhibiting tryptase induced lymphocyte accumulation. The inhibitiors of tryptase tested were also able to inhibit tryptase induced neutrophil and eosinophil accumulation at 6 h following injection. When being injected alone, all inhibitors of chymase and tryptase at the concentrations tested by themselves had no significant effect on the accumulation of nucleated cells in the peritoneum of mice at both 6 h and 16 h. CONCLUSION: Proteinase inhibitors significantly inhibited tryptase and chymase-induced nucleated cell accumulation in vivo, and therefore they are likely to be developed as a novel class of anti-inflammatory drugs.

  6. Proteinase inhibitory activities of two two-domain Kazal proteinase inhibitors from the freshwater crayfish Pacifastacus leniusculus and the importance of the P(2) position in proteinase inhibitory activity.

    Science.gov (United States)

    Donpudsa, Suchao; Söderhäll, Irene; Rimphanitchayakit, Vichien; Cerenius, Lage; Tassanakajon, Anchalee; Söderhäll, Kenneth

    2010-11-01

    Serine proteinase inhibitors are found ubiquitously in living organisms and involved in homeostasis of processes using proteinases as well as innate immune defense. Two two-domain Kazal-type serine proteinase inhibitors (KPIs), KPI2 and KPI8, have been identified from the hemocyte cDNA library of the crayfish Pacifastacus leniusculus. Unlike other KPIs from P. leniusculus, they are found specific to the hemocytes and contain an uncommon P(2) amino acid residue, Gly. To unveil their inhibitory activities, the two KPIs and their domains were over-expressed. By testing against subtilisin, trypsin, chymotrypsin and elastase, the KPI2 was found to inhibit strongly against subtilisin and weakly against trypsin, while the KPI8 was strongly active against only trypsin. With their P(1) Ser and Lys residues, the KPI2_domain2 and KPI8_domain2 were responsible for strong inhibition against subtilisin and trypsin, respectively. Mutagenesis of KPI8_domain1 at P(2) amino acid residue from Gly to Pro, mimicking the P(2) residue of KPI8_domain2, rendered the KPI8_domain1 strongly active against trypsin, indicating the important role of P(2) residue in inhibitory activities of the Kazal-type serine proteinase inhibitors. Only the KPI2 was found to inhibit against the extracellular serine proteinases from the pathogenic oomycete of the freshwater crayfish, Aphanomyces astaci.

  7. Enzymatic response of the eucalypt defoliator Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae) to a bis-benzamidine proteinase Inhibitor. i.

    Science.gov (United States)

    Marinho-Prado, Jeanne Scardini; Lourenção, A L; Guedes, R N C; Pallini, A; Oliveira, J A; Oliveira, M G A

    2012-10-01

    Ingestion of proteinase inhibitors leads to hyperproduction of digestive proteinases, limiting the bioavailability of essential amino acids for protein synthesis, which affects insect growth and development. However, the effects of proteinase inhibitors on digestive enzymes can lead to an adaptive response by the insect. In here, we assessed the biochemical response of midgut proteinases from the eucalypt defoliator Thyrinteina arnobia (Stoll) to different concentrations of berenil, a bis-benzamidine proteinase inhibitor, on eucalyptus. Eucalyptus leaves were immersed in berenil solutions at different concentrations and fed to larvae of T. arnobia. Mortality was assessed daily. The proteolytic activity in the midgut of T. arnobia was assessed after feeding on plants sprayed with aqueous solutions of berenil, fed to fifth instars of T. arnobia for 48 h before midgut removal for enzymatic assays. Larvae of T. arnobia were able to overcome the effects of the lowest berenil concentrations by increasing their trypsin-like activity, but not as berenil concentration increased, despite the fact that the highest berenil concentration resulted in overproduction of trypsin-like proteinases. Berenil also prevented the increase of the cysteine proteinases activity in response to trypsin inhibition.

  8. Comparison of concentrations of two proteinase inhibitors, porcine pancreatic elastase inhibitory capacity, and cell profiles in sequential bronchoalveolar lavage samples.

    Science.gov (United States)

    Morrison, H M; Kramps, J A; Dijkman, J H; Stockley, R A

    1986-06-01

    Bronchoalveolar lavage is used to obtain cells and proteins from the lower respiratory tract for diagnosis and research. Uncertainity exists about which site in the lung is sampled by the lavage fluid and what effect different lavage volumes have on recovery of the constituents of lavage fluid. Dilution of alveolar lining fluid by lavage fluid is variable and results are usually expressed as protein ratios to surmount this problem. We have compared cell profiles and the concentrations of two proteinase inhibitors--the low molecular weight bronchial protease inhibitor antileucoprotease and alpha 1 proteinase inhibitor, together with alpha 1 proteinase inhibitor function and its relationship to the cell profile in sequential bronchoalveolar lavage fluid samples from patients undergoing bronchoscopy. There was no difference in total or differential cell counts or albumin or alpha 1 proteinase inhibitor concentrations between the first and second halves of the lavage. Both the concentration of antileucoprotease and the ratio of antileucoprotease to albumin were, however, lower in the second half of the lavage (2p less than 0.01 and 2p less than 0.05 respectively). There was no difference in the function of alpha 1 proteinase inhibitor (assessed by inhibition of porcine pancreatic elastase--PPE) between aliquots (0.28 mole PPE inhibited/mol alpha 1 proteinase inhibitor; range 0-1.19 for the first half and 0.37 mol PPE inhibited/mol alpha 1 proteinase inhibitor; range 0.10-0.80 for the second half). About 60-70% of alpha 1 proteinase inhibitor in each half of the lavage fluid was inactive as an inhibitor. The function of alpha 1 proteinase inhibitor did not differ between bronchitic smokers and ex-smokers. Alpha 1 proteinase inhibitor function was not related to the number of total white cells, macrophages, or neutrophils in the lavage fluid. Contamination of lavage by red blood cells was found to alter the concentration of alpha 1 proteinase inhibitor but not its

  9. Suppression of collagen-induced arthritis with a serine proteinase inhibitor (serpin) derived from myxoma virus.

    Science.gov (United States)

    Brahn, Ernest; Lee, Sarah; Lucas, Alexandra; McFadden, Grant; Macaulay, Colin

    2014-08-01

    Many viruses encode virulence factors to facilitate their own survival by modulating a host's inflammatory response. One of these factors, secreted from cells infected with myxoma virus, is the serine proteinase inhibitor (serpin) Serp-1. Because Serp-1 had demonstrated anti-inflammatory properties in arterial injury models and viral infections, it was cloned and evaluated for therapeutic efficacy in collagen-induced arthritis (CIA). Clinical severity was significantly lower in the Serp-1 protocols (pproteinase inhibitors in inflammatory joint diseases, such as rheumatoid arthritis, should be investigated further.

  10. Isolation, characterization and cDNA sequencing of a Kazal family proteinase inhibitor from seminal plasma of turkey (Meleagris gallopavo).

    Science.gov (United States)

    Słowińska, Mariola; Olczak, Mariusz; Wojtczak, Mariola; Glogowski, Jan; Jankowski, Jan; Watorek, Wiesław; Amarowicz, Ryszard; Ciereszko, Andrzej

    2008-06-01

    The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.

  11. Specificity of an extracellular proteinase from Conidiobolus coronatus and its inhibition by an inhibitor from insect hemolymph.

    Science.gov (United States)

    Bania, Jacek; Samborski, Jaroslaw; Bogus, Mieczyslawa; Polanowski, Antoni

    2006-08-01

    The relatively little-investigated entomopathogen Conidiobolus coronatus secretes several proteinases into culture broth. Using a combination of ion-exchange and size-exclusion chromatography, we purified to homogeneity a serine proteinase of Mr 30,000-32,000, as ascertained by SDS-PAGE. The purified enzyme showed subtilisin-like activity. It very effectively hydrolyzed N-Suc-Ala(2)-Pro-Phe-pNa with a Km-1.36 x 10(-4) M and Kcat-24 s(-1), and N-Suc-Ala(2)-Pro-Leu-pNa with Km-6.65 x 10(-4) M and Kcat-11 s(-1). The specificity index k(cat)/K(m) for the tested substrates was calculated to be 176,340 s(-1) M(-1) and 17,030 s(-1) M(-1), respectively. Using oxidized insulin B chain as a substrate, the purified proteinase exhibited specificity to aromatic and hydrophobic amino-acid residues, such as Phe, Leu, and Gly at the P1 position, splitting primarily the peptide bonds: Phe(1)-Val(2), Leu(15)-Tyr(16), and Gly(23)-Phe(24). The proteinase appeared to be sensitive to the specific synthetic inhibitors of the serine proteinases DFP (diisopropyl flourophosphate) and PMSF (phenyl-methylsulfonyl fluoride) as well as to some naturally occurring protein inhibitors of chymotrypsin. It is worth noting that the enzyme exhibited the highest sensitivity to inhibition by AMCI-1 (with an association constant of 3 x 10(10) M(-1)), an inhibitor of cathepsin G/chymotrypsin from the larval hemolymph of Apis mellifera, reinforcing the possibility of involvement of inhibitors from hemolymph in insect innate immunity. The substrate specificity and proteinase inhibitor effects indicate that the purified proteinase from the fermentation broth of Conidiobolus coronatus is a subtilisin-like serine proteinase.

  12. A trypsin-like proteinase in the midgut of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae): purification, characterization, and host plant inhibitors.

    Science.gov (United States)

    Ranjbar, Mina; Zibaee, Arash; Sendi, Jalal Jalali

    2014-01-01

    A trypsin-like proteinase was purified and characterized in the midgut of Ectomyelois ceratoniae. A purification process that used Sepharyl G-100 and DEAE-cellulose fast flow chromatographies revealed a proteinase with specific activity of 66.7 μmol/min/mg protein, recovery of 27.04 and purification fold of 23.35. Molecular weight of the purified protein was found to be 35.8 kDa. Optimal pH and temperature were obtained 9 and 20°C for the purified trypsin proteinase, respectively. The purified enzyme was significantly inhibited by PMSF, TLCK, and SBTI as specific inhibitors of trypsins in which TLCK showed the highest inhibitory effect. Trypsin proteinase inhibitors were extracted from four varieties of pomegranate including Brait, Torsh-Sabz, May-Khosh, and Shirin by ion exchange chromatography. It was found that fractions 17-20 of Brait; fractions 18 and 21-26 of Torsh-Sabz; fractions 1-7, 11-17, and 19-21 of May-Khosh and fraction 8 for Shirin showed presence of trypsin inhibitor in these host. Comparison of their inhibitory effects on the purified trypsin proteinase of E. ceratoniae demonstrated that fractions from May-khosh variety had the highest effect on the enzyme among other extracted fractions. Characterization of serine proteinases of insects mainly trypsins is one of the promising methods to decrease population and damages via extracting their inhibitors and providing resistant varieties.

  13. Ethylene-regulated expression of a tomato fruit ripening gene encoding a proteinase inhibitor I with a glutamic residue at the reactive site.

    OpenAIRE

    Margossian, L J; Federman, A D; Giovannoni, J.J.; Fischer, R L

    1988-01-01

    We report the isolation from tomato (Lycopersicon esculentum) of an ethylene-responsive member of the proteinase inhibitor gene family. DNA sequence analysis of a full-length cDNA clone indicates that the ethylene-responsive gene is distantly related to the tomato proteinase inhibitor I gene, having 53% sequence identity. The predicted amino acid sequence reveals 47% and 45% sequence identity with the tomato and potato proteinase inhibitor I polypeptides, respectively. Additionally, the ethyl...

  14. Purification and characterization of proteinase inhibitors from wild soja (Glycine soja) seeds.

    Science.gov (United States)

    Deshimaru, Masanobu; Hanamoto, Ryuji; Kusano, Chiho; Yoshimi, Shingo; Terada, Shigeyuki

    2002-09-01

    Nine proteinase inhibitors, I-VIIa, VIIb, and VIII, were isolated from wild soja seeds by ammonium sulfate fractionation and successive chromatographies on SP-Toyopearl 650M, Sephacryl S-200SF, and DEAE-Toyopearl 650S columns. Reverse-phase HPLC finally gave pure inhibitors. All of the inhibitors inhibited trypsin with dissociation constants of 3.2-6.2 x 10(-9) M. Some of the inhibitors inhibited chymotrypsin and elastase as well. Two inhibitors (VIIb and VIII) with a molecular weight of 20,000 were classified as a soybean Kunitz inhibitor family. Others (I-VIla) had a molecular weight of about 8,000, and were stable to heat and extreme pH, suggesting that these belonged to the Bowman-Birk inhibitor family. Partial amino acid sequences of four inhibitors were also analyzed. The complete sequence of inhibitor IV was ascertained from the nucleotide sequences of cDNA clones encoding isoinhibitors homologous to soybean C-II.

  15. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases...... inhibitor. Another inhibitor, pepstatin A, which selectively blocks aspartic proteinases, did not block the presentation of dinitrophenyl-poly-L-lysine. The results identify cysteine proteinases, probably lysosomal, as one of the groups of enzymes involved in antigen processing....

  16. Kazal-type proteinase inhibitor from disk abalone (Haliotis discus discus): molecular characterization and transcriptional response upon immune stimulation.

    Science.gov (United States)

    Wickramaarachchi, W D Niroshana; De Zoysa, Mahanama; Whang, Ilson; Wan, Qiang; Lee, Jehee

    2013-09-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. Proteinase inhibitors play a key role in regulating the activity of the respective proteinases. Among serine proteinase inhibitors, kazal-type proteinase inhibitors (KPIs) are widely found in mammals, avians, and a variety of invertebrates. In this study, we describe the identification of a kazal-type serine proteinase inhibitor (Ab-KPI) from the disk abalone, Haliotis discus discus, which is presumably involved in innate immunity. The full-length cDNA of Ab-KPI includes 600 bp nucleotides with an open reading frame (ORF) encoding a polypeptide of 143 amino acids. The deduced amino acid sequence of Ab-KPI contains a putative 17-amino acid signal peptide and two tandem kazal domains with high similarity to other kazal-type SPIs. Each kazal domain consists of reactive site (P1) residue containing a leucine (L), and a threonine (T) located in the second amino acid position after the second conserved cysteine of each domain. Temporal expression of Ab-KPI was assessed by real time quantitative PCR in hemocytes and mantle tissue following bacterial and viral hemorrhagic septicemia virus (VHSV) challenge, and tissue injury. At 6 h post-bacterial and -VHSV challenge, Ab-KPI expression in hemocytes was increased 14-fold and 4-fold, respectively, compared to control samples. The highest up-regulations upon tissue injury were shown at 9 h and 12 h in hemocytes and mantle, respectively. The transcriptional modulation of Ab-KPI following bacterial and viral challenges and tissue injury indicates that it might be involved in immune defense as well as wound healing process in abalone.

  17. Proteinases involved in the degradation of trypsin inhibitor in germinating mung beans.

    Science.gov (United States)

    Wilson, K A; Tan-Wilson, A L

    1983-01-01

    The mung bean (Vigna radiata (L.) Wilczek) trypsin inhibitor (MBTI) is rapidly modified by limited proteolysis during the early stages of seedling growth. Using an electrophoretic assay that separates the unmodified inhibitor (MBTI-F) and the first two modified species (MBTI-E and -C), a pH optimum of approximately 4 was found for the modification reaction. The inhibitor modifying activity is initially low in ungerminated seeds, with the reaction F leads to E being the primary reaction catalyzed. Activity catalyzing the production of MBTI-C appears on the first day of germination. This activity (F leads to E leads to C) increases up to 6 days after inhibition, at which time the cotyledons begin to abscise. The activity converting MBTI-F and -E to MBTI-C was strongly inhibited by phenylmethylsulfonyl fluoride (3.3 mM) but only weakly by iodoacetate (9 mM) and not at all by pepstatin A (9 microM), leupeptin (18 microM), or EDTA (5 mM). These results suggest the involvement of proteinases other than the major endopeptidase of the germinating seed, vicilin peptidohydrolase. This conclusion is further supported by gel filtration of the extracts of cotyledons on Sephacryl S-200. At least three proteinases are present in germinated cotyledons capable of modifying MBTI-F to MBTI-C and/or -E. All are distinguishable from vicilin peptidohydrolase on the basis of their molecular weight and inhibition by low molecular weight organic reagents.

  18. Purification, crystallization and preliminary crystallographic studies of a Kunitz-type proteinase inhibitor from tamarind (Tamarindus indica) seeds.

    Science.gov (United States)

    Patil, Dipak N; Chaudhry, Anshul; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra

    2009-07-01

    A Kunitz-type proteinase inhibitor has been purified from tamarind (Tamarindus indica) seeds. SDS-PAGE analysis of a purified sample showed a homogeneous band corresponding to a molecular weight of 21 kDa. The protein was identified as a Kunitz-type proteinase inhibitor based on N-terminal amino-acid sequence analysis. It was crystallized by the vapour-diffusion method using PEG 6000. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 37.2, b = 77.1, c = 129.1 A. Diffraction data were collected to a resolution of 2.7 A. Preliminary crystallographic analysis indicated the presence of one proteinase inhibitor molecule in the asymmetric unit, with a solvent content of 44%.

  19. Bio-physical evaluation and in vivo delivery of plant proteinase inhibitor immobilized on silica nanospheres.

    Science.gov (United States)

    Khandelwal, Neha; Doke, Dhananjay S; Khandare, Jayant J; Jawale, Priyanka V; Biradar, Ankush V; Giri, Ashok P

    2015-06-01

    Recombinant expression of Capsicum annuum proteinase inhibitors (CanPI-13) and its application via synthetic carrier for the crop protection is the prime objective of our study. Herein, we explored proteinase inhibitor peptide immobilization on silica based nanospheres and rods followed by its pH mediated release in vitro and in vivo. Initial studies suggested silica nanospheres to be a suitable candidate for peptide immobilization. Furthermore, the interactions were characterized biophysically to ascertain their conformational stability and biological activity. Interestingly, bioactive peptide loading at acidic pH on nanospheres was found to be 62% and showed 56% of peptide release at pH 10, simulating gut milieu of the target pest Helicoverpa armigera. Additionally, in vivo study demonstrated significant reduction in insect body mass (158 mg) as compared to the control insects (265 mg) on 8th day after feeding with CanPI-13 based silica nanospheres. The study confirms that peptide immobilized silica nanosphere is capable of affecting overall growth and development of the feeding insects, which is known to hamper fecundity and fertility of the insects. Our study illustrates the utility and development of peptide-nanocarrier based platform in delivering diverse biologically active complexes specific to gut pH of H. armigera.

  20. Cloning of Proteinase Inhibitor Gene StPI in Diploid Potato and Its Expression Analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A full-length cDNA of proteinase inhibitor gene with completed open reading frame of 116 amino acids was cloned from Ralstonia solanacearum (Rs) resistant potato leaves using the rapid amplification of cDNA ends (RACE) method and designated as StPI. BLAST search against NCBI showed that the StPI gene shared 89% identity with potato proteinase inhibitor Ⅰ precursor in nucleotide and 74% in amino acid. Analysis of semi-quantitative RT-PCR indicated that this gene was induced by Rs as well as up-regulated by jasmonic acid (JA). The StPI gene expression reached the highest level during 6-12 h post Rs-inoculation or JA-treatment, and then leveled off. Moreover, this gene was strongly induced by JA and its mRNA accumulation increased more quickly than that of Rs-inoculation. The StPI gene may play a role in potato resistance against Rs. The induction of StPI by Rs invasion may have a similar signal transduction pathway with JA treatment.

  1. Cloning eleven midgut trypsin cDNAs and evaluating the interaction of proteinase inhibitors with Cry1Ac against the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Midgut trypsins are associated with Bt protoxin activation and toxin degradation. Proteinase inhibitors have potential insecticidal toxicity against a wide range of insect species. Proactive action to examine trypsin gene profiles and proteinase inhibitors for interaction with Bt toxin is necessary ...

  2. Design of dimerization inhibitors of HIV-1 aspartic proteinase: A computer-based combinatorial approach

    Science.gov (United States)

    Caflisch, Amedeo; Schramm, Hans J.; Karplus, Martin

    2000-02-01

    Inhibition of dimerization to the active form of the HIV-1 aspartic proteinase (HIV-1 PR) may be a way to decrease the probability of escape mutations for this viral protein. The Multiple Copy Simultaneous Search (MCSS) methodology was used to generate functionality maps for the dimerization interface of HIV-1 PR. The positions of the MCSS minima of 19 organic fragments, once postprocessed to take into account solvation effects, are in good agreement with experimental data on peptides that bind to the interface. The MCSS minima combined with an approach for computational combinatorial ligand design yielded a set of modified HIV-1 PR C-terminal peptides that are similar to known nanomolar inhibitors of HIV-1 PR dimerization. A number of N-substituted 2,5-diketopiperazines are predicted to be potential dimerization inhibitors of HIV-1 PR.

  3. Hepatocyte growth factor activator is a potential target proteinase for Kazal-type inhibitor in turkey (Meleagris gallopavo) seminal plasma.

    Science.gov (United States)

    Słowińska, Mariola; Bukowska, Joanna; Hejmej, Anna; Bilińska, Barbara; Kozłowski, Krzysztof; Jankowski, Jan; Ciereszko, Andrzej

    2015-08-01

    A peculiar characteristic of turkey seminal plasma is the increased activity of serine proteinases. It is of interest if the single-domain Kazal-type inhibitor controls the activity of turkey seminal plasma proteinases. Pure preparations of the Kazal-type inhibitor and anti-Kazal-type inhibitor monospecific immunoglobulin Gs were used as ligands in affinity chromatography for proteinase isolation from turkey seminal plasma. Gene expression and the immunohistochemical detection of the single-domain Kazal-type inhibitor in the reproductive tract of turkey toms are described. The hepatocyte growth factor activator (HGFA) was identified in the binding fraction in affinity chromatography. Hepatocyte growth factor activator activity was inhibited by the Kazal-type inhibitor in a dose-dependent manner. This protease was a primary physiological target for the single-domain Kazal-type inhibitor. Numerous proteoforms of HGFA were present in turkey seminal plasma, and phosphorylation was the primary posttranslational modification of HGFA. In addition to HGFA, acrosin was a target proteinase for the single-domain Kazal-type inhibitor. In seminal plasma, acrosin was present only in complexes with the Kazal-type inhibitor and was not present as a free enzyme. The single-domain Kazal-type inhibitor was specific for the reproductive tract. The germ cell-specific expression of Kazal-type inhibitors in the testis indicated an important function in spermatogenesis; secretion by the epithelial cells of the epididymis and the ductus deferens indicated that the Kazal-type inhibitor was an important factor involved in the changes in sperm membranes during maturation and in the maintenance of the microenvironment in which sperm maturation occurred and sperm was stored. The role of HGFA in these processes remains to be established.

  4. Effects of pH on the association between the inhibitor cystatin and the proteinase chymopapain.

    Science.gov (United States)

    Reyes-Espinosa, Francisco; Arroyo-Reyna, Alfonso; Garcia-Gutierrez, Ponciano; Serratos, Iris N; Zubillaga, Rafael A

    2014-01-01

    Cysteine proteinases are involved in many aspects of physiological regulation. In humans, some cathepsins have shown another function in addition to their role as lysosomal proteases in intracellular protein degradation; they have been implicated in the pathogenesis of several heart and blood vessel diseases and in cancer development. In this work, we present a fluorometric and computational study of the binding of one representative plant cysteine proteinase, chymopapain, to one of the most studied inhibitors of these proteinases: chicken cystatin. The binding equilibrium constant, Kb, was determined in the pH range between 3.5 and 10.0, revealing a maximum in the affinity at pH 9.0. We constructed an atomic model for the chymopapain-cystatin dimer by docking the individual 3D protein structures; subsequently, the model was refined using a 100 ns NPT molecular dynamics simulation in explicit water. Upon scrutiny of this model, we identified 14 ionizing residues at the interface of the complex using a cutoff distance of 5.0 Å. Using the pKa values predicted with PROPKA and a modified proton-linkage model, we performed a regression analysis on our data to obtain the composite pKavalues for three isoacidic residues. We also calculated the electrostatic component of the binding energy (ΔGb,elec) at different pH values using an implicit solvent model and APBS software. The pH profile of this calculated energy compares well with the experimentally obtained binding energy, ΔGb. We propose that the residues that form an interchain ionic pair, Lys139A from chymopapain and Glu19B from cystatin, as well as Tyr61A and Tyr67A from chymopapain are the main residues responsible for the observed pH dependence in the chymopapain- cystatin affinity.

  5. Effects of cysteine proteinase inhibitors scN and E-64 on southern corn rootworm larval development

    Science.gov (United States)

    The southern corn rootworm (SCRW) can be a serious pest of peanut pods. A laboratory bioassay was developed to test feeding cysteine proteinase inhibitors soyacystatin N (scN) and E-64 against southern corn rootworm reared on artificial diet to determine the effects on larvae development and mortal...

  6. The urinary excretion of epidermal growth factor in the rat is reduced by aprotinin, a proteinase inhibitor

    DEFF Research Database (Denmark)

    Jørgensen, P E; Raaberg, Lasse; Poulsen, Steen Seier

    1990-01-01

    The present study on the rat shows that i.v. administration of the proteinase inhibitor aprotinin reduces the urinary output of immunoreactive epidermal growth factor (EGF) while the amount of immunoreactive EGF in the kidneys is increased. This indicates that the EGF-precursor in the rat kidney ...

  7. Isolation of tomato proteinase inhibitor Ⅱ gene and the function of its intron

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The genomic DNA sequence of tomato proteinase inhibitor Ⅱ gene (named tin2i, whose accession number in GenBank is AF007240) was isolated by PCR techniques. The intron sequence (TPI), with a length of 109 bp, owns typical structures of GT/AG dinucleotides at both ends and high content of AT base pairs which accounts for 80.7% of the total nucleotides. As shown by recombination experiment, the TPI sequence could efficiently promote the expression of the reporter gene gusA and this effect was independent of the position and orientation of the intron, thus showing its role as an enhancer. Such experiments as gel retardation assays, GUS histochemical staining and GUS fluorometric assays further demonstrated that TPI sequence maybe has promoter-like activity.

  8. Cystein proteinase inhibitor stefin A as an indicator of efficiency of tumor treatment in mice.

    Science.gov (United States)

    Korolenko, T A; Poteryaeva, O N; Falameeva, O V; Levina, O A

    2003-07-01

    The concentration of stefin A (cystatin A in mice) was measured in animals with experimental tumors (LS lymphosarcoma, HA-1-hepatoma, and Lewis lung carcinoma) during effective antitumor therapy. In mice with these tumors serum concentrations of stefin A increased, while the concentration of cystatin C (extracellular cystein proteinase inhibitor) decreased. The concentration of stefin A in tumor tissue in Lewis lung carcinoma was higher than in LS lymphosarcoma and HA-1-hepatoma ascitic cells, which can be explained by the degree of their malignancy. The content of stefin A in tumor tissue was similar to that in the liver and spleen of tumor-bearing animals, while its concentration in the liver and spleen of tumor-bearing animals was lower than in intact mice. The level of stefin A is an important marker of malignancy and an indicator of the efficiency of antitumor therapy.

  9. High sequence variability among hemocyte-specific Kazal-type proteinase inhibitors in decapod crustaceans.

    Science.gov (United States)

    Cerenius, Lage; Liu, Haipeng; Zhang, Yanjiao; Rimphanitchayakit, Vichien; Tassanakajon, Anchalee; Gunnar Andersson, M; Söderhäll, Kenneth; Söderhäll, Irene

    2010-01-01

    Crustacean hemocytes were found to produce a large number of transcripts coding for Kazal-type proteinase inhibitors (KPIs). A detailed study performed with the crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon revealed the presence of at least 26 and 20 different Kazal domains from the hemocyte KPIs, respectively. Comparisons with KPIs from other taxa indicate that the sequences of these domains evolve rapidly. A few conserved positions, e.g. six invariant cysteines were present in all domain sequences whereas the position of P1 amino acid, a determinant for substrate specificity, varied highly. A study with a single crayfish animal suggested that even at the individual level considerable sequence variability among hemocyte KPIs produced exist. Expression analysis of four crayfish KPI transcripts in hematopoietic tissue cells and different hemocyte types suggest that some of these KPIs are likely to be involved in hematopoiesis or hemocyte release as they were produced in particular hemocyte types or maturation stages only.

  10. Transgenic tobacco plants harboring tomato proteinase inhibitor II gene and their insect resistance

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The plant expression vectors pBCT2 and pBT2 were constructed with the cDNA sequence (tin2) and genomic DNA sequence (tin2i) of tomato proteinase inhibitor II gene respectively. Then the two expression vectors were transferred into tobacco via the Agrobacterium tumefaciens strain LBA4404, and transgenic tobacco plants were generated. Molecular analysis and trypsin activity assay showed that both cDNA and genomic DNA were expressed properly in the transgenic plants. Insecticidal activities in these transgenic plants indicated that transgenic tobacco plants carrying tin2i sequence were more resistant to 2-instar larvae of Heliothis armigera Hubner than those carrying tin2 sequence. Therefore the intron of tin2i sequence might be a contributor to insecticidal activity of the transgenic tobacco.

  11. A feedback regulatory pathway between LDL and alpha-1 proteinase inhibitor in chronic inflammation and infection.

    Science.gov (United States)

    Bristow, Cynthia L; Modarresi, Rozbeh; Babayeva, Mariya A; LaBrunda, Michelle; Mukhtarzad, Roya; Trucy, Maylis; Franklin, Aaron; Reeves, Rudy E R; Long, Allegra; Mullen, Michael P; Cortes, Jose; Winston, Ronald

    2013-11-01

    Dietary lipids are transported via lymph to the liver and transformed to lipoproteins which bind to members of the low density lipoprotein receptor family (LDL-RFMs). Certain LDL-RFMs, e.g., very low density lipoprotein receptor (VLDLR), are also bound by inactivated proteinase inhibitors, the most abundant being α1proteinase inhibitor (α1PI, α1antitrypsin). Inflammation/infection, including HIV-1 infection, is accompanied by low levels of CD4+ T cells and active α1PI and high levels of inactivated α1PI. By inducing LDL-RFMs-mediated cellular locomotion, active α1PI regulates the number of CD4+ T cells. We sought to investigate whether CD4+ T cells and α1PI directly impact lipoprotein levels. At the cellular level, we show that active α1PI is required for VLDLR-mediated uptake of receptor-associated cargo, specifically CD4-bound HIV-1. We show that active α1PI levels linearly correlate with LDL levels in HIV-1 infected individuals (P<0.001) and that therapeutic, weekly infusions of active α1PI elevate the number of CD4+ T cells and HDL levels while lowering LDL levels in patients on antiretroviral therapy with controlled HIV-1. Based on the unusual combination of lipodystrophy and low levels of α1PI and CD4+ T cells in HIV-1 disease, we reveal that LDL and α1PI participate in a feedback regulatory pathway. We demonstrate integral roles for sequentially acting active and inactive α1PI in the uptake and recycling of receptors and cargo aggregated with VLDLR including CD4 and chemokine receptors. Evidence supports a role for α1PI as a primary sentinel to deploy the immune system as a consequence of its role in lipoprotein transport.

  12. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase.

    Science.gov (United States)

    Fook, J M S L L; Macedo, L L P; Moura, G E D D; Teixeira, F M; Oliveira, A S; Queiroz, A F S; Sales, M P

    2005-05-01

    Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors.

  13. Solution structure of PMP-C: a new fold in the group of small serine proteinase inhibitors.

    Science.gov (United States)

    Mer, G; Hietter, H; Kellenberger, C; Renatus, M; Luu, B; Lefèvre, J F

    1996-04-26

    The solution structure and the disulfide pairings of a 36-residue proteinase inhibitor isolated from the insect Locusta migratoria have been determined using NMR spectroscopy and simulated annealing calculations. The peptide, termed PMP-C, was previously shown to inhibit bovine alpha-chymotrypsin as well as human leukocyte elastase, and was also found to block high-voltage-activated Ca2+ currents in rat sensory neurones. PMP-C has a prolate ellipsoid shape and adopts a tertiary fold hitherto unobserved in the large group of small "canonical" proteinase inhibitors. The over-all fold consists mainly of three strands arranged in a right-handed twisted, antiparallel, beta-sheet that demarcates a cavity, together with a linear amino-terminal segment oriented almost perpendicular to the three strands of the beta-sheet. Inside the cavity a phenyl ring constitutes the centre of a hydrophobic core. The proteinase binding loop is located in the carboxy-terminal part of the molecule, between two cysteine residues involved in disulfide bridges. Its conformation resembles that found in other small canonical proteinase inhibitors. A comparison of PMP-C structure with the recently published solution structure of the related peptide PMP-D2 shows that the most significant differences are complementary changes involved in the stabilization of similar folds. This comparison led us to review the structure of PMP-D2 and to identify two salt bridges in PMP-D2.

  14. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide.

  15. Free-energy analysis of enzyme-inhibitor binding: aspartic proteinase-pepstatin complexes.

    Science.gov (United States)

    Kalra, P; Das, A; Jayaram, B

    2001-01-01

    Expeditious in silico determinations of the free energies of binding of a series of inhibitors to an enzyme are of immense practical value in structure-based drug design efforts. Some recent advances in the field of computational chemistry have rendered a rigorous thermodynamic treatment of biologic molecules feasible, starting from a molecular description of the biomolecule, solvent, and salt. Pursuing the goal of developing and making available a software for assessing binding affinities, we present here a computationally rapid, albeit elaborate, methodology to estimate and analyze the molecular thermodynamics of enzyme-inhibitor binding with crystal structures as the point of departure. The complexes of aspartic proteinases with seven inhibitors have been adopted for this study. The standard free energy of complexation is considered in terms of a thermodynamic cycle of six distinct steps decomposed into a total of 18 well-defined components. The model we employed involves explicit all-atom accounts of the energetics of electrostatic interactions, solvent screening effects, van der Waals components, and cavitation effects of solvation combined with a Debye-Huckel treatment of salt effects. The magnitudes and signs of the various components are estimated using the AMBER parm94 force field, generalized Born theory, and solvent accessibility measures. Estimates of translational and rotational entropy losses on complexation as well as corresponding changes in the vibrational and configurational entropy are also included. The calculated standard free energies of binding at this stage are within an order of magnitude of the observed inhibition constants and necessitate further improvements in the computational protocols to enable quantitative predictions. Some areas such as inclusion of structural adaptation effects, incorporation of site-dependent amino acid pKa shifts, consideration of the dynamics of the active site for fine-tuning the methodology are easily

  16. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick.

    Directory of Open Access Journals (Sweden)

    Sandra Macedo-Ribeiro

    Full Text Available Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine alpha-thrombin.boophilin complex, refined at 2.35 A resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S(1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9 degrees and is displaced by 6 A, while the C-terminal domain rotates almost 6 degrees accompanied by a 3 A displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P(1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin.boophilin.trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.

  17. Neutrophil elastase reduces secretion of secretory leukoproteinase inhibitor (SLPI by lung epithelial cells: role of charge of the proteinase-inhibitor complex

    Directory of Open Access Journals (Sweden)

    Hiemstra Pieter S

    2008-08-01

    Full Text Available Abstract Background Secretory leukoproteinase inhibitor (SLPI is an important inhibitor of neutrophil elastase (NE, a proteinase implicated in the pathogenesis of lung diseases such as COPD. SLPI also has antimicrobial and anti-inflammatory properties, but the concentration of SLPI in lung secretions in COPD varies inversely with infection and the concentration of NE. A fall in SLPI concentration is also seen in culture supernatants of respiratory cells exposed to NE, for unknown reasons. We investigated the hypothesis that SLPI complexed with NE associates with cell membranes in vitro. Methods Respiratory epithelial cells were cultured in the presence of SLPI, varying doses of proteinases over time, and in different experimental conditions. The likely predicted charge of the complex between SLPI and proteinases was assessed by theoretical molecular modelling. Results We observed a rapid, linear decrease in SLPI concentration in culture supernatants with increasing concentration of NE and cathepsin G, but not with other serine proteinases. The effect of NE was inhibited fully by a synthetic NE inhibitor only when added at the same time as NE. Direct contact between NE and SLPI was required for a fall in SLPI concentration. Passive binding to cell culture plate materials was able to remove a substantial amount of SLPI both with and without NE. Theoretical molecular modelling of the structure of SLPI in complex with various proteinases showed a greater positive charge for the complex with NE and cathepsin G than for other proteinases, such as trypsin and mast cell tryptase, that also bind SLPI but without reducing its concentration. Conclusion These data suggest that NE-mediated decrease in SLPI is a passive, charge-dependent phenomenon in vitro, which may correlate with changes observed in vivo.

  18. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.

    Science.gov (United States)

    Turra, David; Lorito, Matteo

    2011-08-01

    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology.

  19. Single-Step Purification and Characterization of A Recombinant Serine Proteinase Inhibitor from Transgenic Plants.

    Science.gov (United States)

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Amla, D V

    2016-05-01

    Expression of recombinant therapeutic proteins in transgenic plants has a tremendous impact on safe and economical production of biomolecules for biopharmaceutical industry. The major limitation in their production is downstream processing of recombinant protein to obtain higher yield and purity of the final product. In this study, a simple and rapid process has been developed for purification of therapeutic recombinant α1-proteinase inhibitor (rα1-PI) from transgenic tomato plants, which is an abundant serine protease inhibitor in human serum and chiefly inhibits the activity of neutrophil elastase in lungs. We have expressed rα1-PI with modified synthetic gene in transgenic tomato plants at a very high level (≃3.2 % of total soluble protein). The heterologous protein was extracted with (NH4)2SO4 precipitation, followed by chromatographic separation on different matrices. However, only immunoaffinity chromatography resulted into homogenous preparation of rα1-PI with 54 % recovery. The plant-purified rα1-PI showed molecular mass and structural conformation comparable to native serum α1-PI, as shown by mass spectrometry and optical spectroscopy. The results of elastase inhibition assay revealed biological activity of the purified rα1-PI protein. This work demonstrates a simple and efficient one-step purification of rα1-PI from transgenic plants, which is an essential prerequisite for further therapeutic development.

  20. Changes of balance between proteinase and their inhibitors in blood of pigs with high-velocity missile wounds

    Institute of Scientific and Technical Information of China (English)

    周元国; 朱佩芳; 周继红; 李晓炎

    2003-01-01

    Objective: To study the effect of imbalance between lysosomal enzymes and their inhibitors in blood on disturbance of the local and whole body after trauma. Methods: The dynamic changes of lysosomal enzymes and proteinase inhibitors were studied in 12 pigs with femoral comminuted fractures in both hind limbs caused by high velocity missiles. Four normal pigs served as controls. Results: After injury, the activity of Cathepsin D in arterial plasma increased gradually and reached the highest level at 8 hours, acid phosphatase in serum began to increase at 12 hours and the value of serum elastase did not change significantly. The level of α1-antitrypsin, a proteinase inhibitor in plasma, decreased significantly in the early stage after injury [73.5%±6.4% and 81.0%±5.1% of the baseline value (1.67 μmol*ml-1*min-1± 0.29 μmol*ml-1*min-1) at l and 2 hours after injury, respectively, P<0.05], then increased gradually and was higher than the baseline value at 12 hours after injury. Conclusions: Imbalance between lysosomal enzymes and proteinase inhibitors occurs soon after injury, which might result in continuous tissue damage and play an important role in the disturbance of general reaction after injury.

  1. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase.

    Science.gov (United States)

    Wei, Ping; Fan, Keqiang; Chen, Hao; Ma, Liang; Huang, Changkang; Tan, Lei; Xi, Dong; Li, Chunmei; Liu, Ying; Cao, Aoneng; Lai, Luhua

    2006-01-20

    The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1-7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.0microM by analytical ultracentrifugation method. The N-finger fragment of the enzyme plays an important role in enzyme dimerization as shown in the crystal structure. Key residues in the N-finger have been studied by site-directed mutagenesis, enzyme assay, and analytical ultracentrifugation. A single mutation of M6A was found to be critical to maintain the dimer structure of the enzyme. The N-terminal octapeptide N8 and its mutants were also synthesized and tested for their potency as dimerization inhibitors. Peptide cleavage assay confirms that peptide N8 is a dimerization inhibitor with a K(i) of 2.20mM. The comparison of the inhibitory activities of N8 and its mutants indicates that the hydrophobic interaction of Met-6 and the electrostatic interaction of Arg-4 contribute most for inhibitor binding. This study describes the first example of inhibitors targeting the dimeric interface of SARS 3CL proteinase, providing a novel strategy for drug design against SARS and other coronaviruses.

  2. [Molecular cloning and analysis of cDNA sequences encoding serine proteinase and Kunitz type inhibitor in venom gland of Vipera nikolskii viper].

    Science.gov (United States)

    Ramazanova, A S; Fil'kin, S Iu; Starkov, V G; Utkin, Iu N

    2011-01-01

    Serine proteinases and Kunitz type inhibitors are widely represented in venoms of snakes from different genera. During the study of the venoms from snakes inhabiting Russia we have cloned cDNAs encoding new proteins belonging to these protein families. Thus, a new serine proteinase called nikobin was identified in the venom gland of Vipera nikolskii viper. By amino acid sequence deduced from the cDNA sequence, nikobin differs from serine proteinases identified in other snake species. Nikobin amino acid sequence contains 15 unique substitutions. This is the first serine proteinase of viper from Vipera genus for which a complete amino acid sequence established. The cDNA encoding Kunitz type inhibitor was also cloned. The deduced amino acid sequence of inhibitor is homologous to those of other proteins from that snakes of Vipera genus. However there are several unusual amino acid substitutions that might result in the change of biological activity of inhibitor.

  3. Conformational changes of ovine α-1-proteinase inhibitor: The influence of heparin binding

    Science.gov (United States)

    Gupta, Vivek Kumar; Gowda, Lalitha R.

    2008-11-01

    α-1-Proteinase inhibitor (α-1-PI), the archetypal serpin causes rapid, irreversible stoichiometric inhibition of redundant circulating serine proteases and is associated with emphysema, inflammatory response and maintenance of protease-inhibitor equilibrium in vascular and peri-vascular spaces. A homogenous preparation of heparin octasaccharide binds to ovine and human α-1-PI and enhances their protease inhibitory activity phenomenally. Size-exclusion chromatography and dynamic light scattering experiments reveal that ovine α-1-PI undergoes a decrease in the Stokes' radius upon heparin binding. A strong binding; characterizes this α-1-PI-heparin interaction as revealed by the binding constant ( Kα) 1.98 ± 0.2 × 10 -6 M and 2.1 ± 0.2 × 10 -6 M determined by fluorescence spectroscopy and equilibrium dialysis, respectively. The stoichiometry of heparin binding to ovine α-1-PI was 1.1 ± 0.2:1. The Stern-Volmer constants ( Ksv) for heparin activated ovine and human α-1-PI were found to be 5.13 × 10 -6 M and 5.67 × 10 -6 M, respectively, significantly higher than the native inhibitors. FTIR and CD spectroscopy project the systematic structural reorientations that α-1-PI undergoes upon heparin binding characterized by a decrease in α-helical content and a concomitant increase in β-turn and random coil elements. It is likely that these conformational changes result in the movement of the α-1-PI reactive site loop into an extended structure that is better poised to combat the cognate protease and accelerate the inhibition.

  4. Bowman-Birk proteinase inhibitor from Clitoria fairchildiana seeds: Isolation, biochemical properties and insecticidal potential.

    Science.gov (United States)

    Dantzger, Miriam; Vasconcelos, Ilka Maria; Scorsato, Valéria; Aparicio, Ricardo; Marangoni, Sergio; Macedo, Maria Lígia Rodrigues

    2015-10-01

    Herein described is the biochemical characterisation, including in vitro and in vivo assays, for a proteinase inhibitor purified from Clitoria fairchildiana seeds (CFPI). Purification was performed by hydrophobic interaction and gel filtration chromatography. Kinetic studies of the purified inhibitor showed a competitive-type inhibitory activity against bovine trypsin and chymotrypsin, with an inhibition stoichiometry of 1:1 for both enzymes. The inhibition constants against trypsin and chymotrypsin were 3.3 × 10(-10) and 1.5 × 10(-10)M, respectively, displaying a tight binding property. SDS-PAGE showed that CFPI has a single polypeptide chain with an apparent molecular mass of 15 kDa under non-reducing conditions. However, MALDI-TOF analysis demonstrated a molecular mass of 7.973 kDa, suggesting that CFPI is dimeric in solution. The N-terminal sequence of CFPI showed homology with members of the Bowman-Birk inhibitor family. CFPI remained stable to progressive heating for 30 min to each temperature range of 37 up to 100 °C and CD analysis exhibited no changes in spectra at 207 nm after heating at 90 °C and subsequent cooling. Moreover, CFPI was active over a wide pH range (2-10). In contrast, reduction with DTT resulted in a loss of inhibitory activity against trypsin and chymotrypsin. CFPI also exhibited significant inhibitory activity against larval midgut trypsin enzymes from Anagasta kuehniella (76%), Diatraea saccharalis (59%) and Heliothis virescens (49%). Its insecticidal properties were further analysed by bioassays and confirmed by negative impact on A. kuehniella development.

  5. Structural and functional characteristics of plant proteinase inhibitor-II (PI-II) family.

    Science.gov (United States)

    Rehman, Shazia; Aziz, Ejaz; Akhtar, Wasim; Ilyas, Muhammad; Mahmood, Tariq

    2017-02-09

    Plant proteinase inhibitor-II (PI-II) proteins are one of the promising defensive proteins that helped the plants to resist against different kinds of unfavorable conditions. Different roles for PI-II have been suggested such as regulation of endogenous proteases, modulation of plant growth and developmental processes and mediating stress responses. The basic knowledge on genetic and molecular diversity of these proteins has provided significant insight into their gene structure and evolutionary relationships in various members of this family. Phylogenetic comparisons of these family genes in different plants suggested that the high rate of retention of gene duplication and inhibitory domain multiplication may have resulted in the expansion and functional diversification of these proteins. Currently, a large number of transgenic plants expressing PI-II genes are being developed for enhancing the defensive capabilities against insects, bacteria and pathogenic fungi. Much emphasis is yet to be given to exploit this ever expanding repertoire of genes for improving abiotic stress resistance in transgenic crops. This review presents an overview about the current knowledge on PI-II family genes, their multifunctional role in plant defense and physiology with their potential applications in biotechnology.

  6. Cystatin like thiol proteinase inhibitor from pancreas of Capra hircus: purification and detailed biochemical characterization.

    Science.gov (United States)

    Priyadarshini, Medha; Bano, Bilqees

    2010-04-01

    A thiol proteinase inhibitor from Capra hircus (goat) pancreas (PTPI) isolated by ammonium sulphate precipitation (20-80%) and gel filtration chromatography on Sephacryl S-100HR, with 20.4% yield and 500-fold purification, gave molecular mass of 44 kDa determined by its electrophoretic and gel filtration behavior, respectively. The stokes radius, diffusion and sedimentation coefficients of PTPI were 27.3 A, 7.87 x 10(-7) cm(2) s(-1) and 3.83 s, respectively. It was stable in pH range 3-10 and up to 70 degrees C (critical temperature, E (a) = 21 kJ mol(-1)). Kinetic analysis revealed reversible and competitive mode of inhibition with PTPI showing the highest inhibitory efficiency against papain (K ( i ) = 5.88 nM). The partial amino acid sequence analysis showed that it shared good homology with bovine parotid and skin cystatin C. PTPI possessed 17.18% alpha helical content assessed by CD spectroscopy. The hydropathy plot of first 24 residues suggested that most amino acids of this stretch might be in the hydrophobic core of the protein.

  7. Purification and partial characterization of α1-proteinase inhibitor in the common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Parambeth, Joseph Cyrus; Suchodolski, Jan S; Steiner, Jörg M

    2015-04-01

    Fecal alpha1-proteinase inhibitor (α1-PI) concentration has been to diagnose enteric protein loss in dogs and cats. Chronic lymphocytic enteritis is commonly seen in the marmoset (Callithrix jaccus) and is characterized by hypoalbuminemia. As a prelude to immunoassay development for detecting enteric protein loss, marmoset serum α1-PI was purified using immunoaffinity chromatography and ceramic hydroxyapatite chromatography. Partial characterization was performed by reducing gel electrophoresis and enzyme inhibitory assays. Protein identity was confirmed with peptide mass fingerprinting and N-terminal amino acid sequencing. Molecular mass, relative molecular mass, and isoelectric point for marmoset α1-PI were 54 kDa, 51,677, and 4.8-5.4, respectively. Trypsin, chymotrypsin, and elastase inhibitory activity were observed. N-terminal amino acid sequence for marmoset α1-PI was EDPQGDAAQKMDTSHH. In conclusion, marmoset α1-PI was successfully purified from serum with an overall yield of 12% using a rapid and efficient method. Purified marmoset α1-PI has characteristics similar to those of α1-PI reported for other species.

  8. Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colonic model.

    Science.gov (United States)

    Meléndez-López, Samuel G; Herdman, Scott; Hirata, Ken; Choi, Min-Ho; Choe, Youngchool; Craik, Charles; Caffrey, Conor R; Hansell, Elisabeth; Chávez-Munguía, Bibiana; Chen, Yen Ting; Roush, William R; McKerrow, James; Eckmann, Lars; Guo, Jianhua; Stanley, Samuel L; Reed, Sharon L

    2007-07-01

    Cysteine proteinases are key virulence factors of the protozoan parasite Entamoeba histolytica. We have shown that cysteine proteinases play a central role in tissue invasion and disruption of host defenses by digesting components of the extracellular matrix, immunoglobulins, complement, and cytokines. Analysis of the E. histolytica genome project has revealed more than 40 genes encoding cysteine proteinases. We have focused on E. histolytica cysteine proteinase 1 (EhCP1) because it is one of two cysteine proteinases unique to invasive E. histolytica and is highly expressed and released. Recombinant EhCP1 was expressed in Escherichia coli and refolded to an active enzyme with a pH optimum of 6.0. We used positional-scanning synthetic tetrapeptide combinatorial libraries to map the specificity of the P1 to P4 subsites of the active site cleft. Arginine was strongly preferred at P2, an unusual specificity among clan CA proteinases. A new vinyl sulfone inhibitor, WRR483, was synthesized based on this specificity to target EhCP1. Recombinant EhCP1 cleaved key components of the host immune system, C3, immunoglobulin G, and pro-interleukin-18, in a time- and dose-dependent manner. EhCP1 localized to large cytoplasmic vesicles, distinct from the sites of other proteinases. To gain insight into the role of secreted cysteine proteinases in amebic invasion, we tested the effect of the vinyl sulfone cysteine proteinase inhibitors K11777 and WRR483 on invasion of human colonic xenografts. The resultant dramatic inhibition of invasion by both inhibitors in this human colonic model of amebiasis strongly suggests a significant role of secreted amebic proteinases, such as EhCP1, in the pathogenesis of amebiasis.

  9. N-terminal extension of the yeast IA3 aspartic proteinase inhibitor relaxes the strict intrinsic selectivity.

    Science.gov (United States)

    Winterburn, Tim J; Phylip, Lowri H; Bur, Daniel; Wyatt, David M; Berry, Colin; Kay, John

    2007-07-01

    Yeast IA(3) aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA(3) to re-design the specificity. The IA(3) polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C-terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild-type and chimaeric polypeptides at its N-terminus by an MK(H)(7)MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain-in-function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side-chains, which were identified in the Pichia enzyme by modelling, may increase the local IA(3) concentration and create an anchor that enables the N-terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N-terminal extension of each IA(3) polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA(3) polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein.

  10. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice.

    Science.gov (United States)

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo

    2017-02-14

    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.

  11. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice

    Science.gov (United States)

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo

    2017-01-01

    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management. PMID:28216579

  12. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa).

    Science.gov (United States)

    Popovic, Milica; Andjelkovic, Uros; Burazer, Lidija; Lindner, Buko; Petersen, Arnd; Gavrovic-Jankulovic, Marija

    2013-10-01

    Plant proteinase inhibitors are considered important defense molecules against insect and pathogen attack. The cysteine proteinase inhibitor (CPI) from green kiwifruit (Actinidia deliciosa) belongs to the cystatin family and shows potent antifungal activity (in vitro and in vivo). However, the low abundance of this molecule in fruit (6μg/g of fresh fruit) seems to limit further investigations on the interaction between phytocystatin and photopathogenic fungi. In this paper the cDNA of the kiwi CPI was expressed in Escherichia coli. Fifteen N-terminal amino acids were identified by Edman degradation, and 77% of the rCPI primary structure was confirmed by mass fingerprint. The structural homology of recombinant CPI (rCPI) to its natural counterpart has been clearly demonstrated in immunological assays (immunoblot and ELISA inhibition). Biological activity of rCPI was demonstrated in inhibition assay with cysteine proteinase papain (EC50 2.78nM). In addition, rCPI reveals antifungal properties toward pathogenic fungi (Alternaria radicina and Botrytis cinerea), which designates it as an interesting model protein for the exploration of plant phytocystatins - pathogen interactions. Understanding the molecular mechanisms of natural plant resistance could lead to the development of ecologically safe fungicides for controlling post-harvest diseases and maintaining food quality.

  13. Distortion of the catalytic domain of tissue-type plasminogen activator by plasminogen activator inhibitor-1 coincides with the formation of stable serpin-proteinase complexes.

    Science.gov (United States)

    Perron, Michel J; Blouse, Grant E; Shore, Joseph D

    2003-11-28

    Plasminogen activator inhibitor-1 (PAI-1) is a typical member of the serpin family that kinetically traps its target proteinase as a covalent complex by distortion of the proteinase domain. Incorporation of the fluorescently silent 4-fluorotryptophan analog into PAI-1 permitted us to observe changes in the intrinsic tryptophan fluorescence of two-chain tissue-type plasminogen activator (tPA) and the proteinase domain of tPA during the inhibition reaction. We demonstrated three distinct conformational changes of the proteinase that occur during complex formation and distortion. A conformational change occurred during the initial formation of the non-covalent Michaelis complex followed by a large conformational change associated with the distortion of the proteinase catalytic domain that occurs concurrently with the formation of stable proteinase-inhibitor complexes. Following distortion, a very slow structural change occurs that may be involved in the stabilization or regulation of the trapped complex. Furthermore, by comparing the inhibition rates of two-chain tPA and the proteinase domain of tPA by PAI-1, we demonstrate that the accessory domains of tPA play a prominent role in the initial formation of the non-covalent Michaelis complex.

  14. Serpin alpha 1proteinase inhibitor probed by intrinsic tryptophan fluorescence spectroscopy.

    Science.gov (United States)

    Koloczek, H.; Banbula, A.; Salvesen, G. S.; Potempa, J.

    1996-01-01

    Various conformational forms of the archetypal serpin human alpha 1proteinase inhibitor (alpha 1PI), including ordered polymers, active and inactive monomers, and heterogeneous aggregates, have been produced by refolding from mild denaturing conditions. These forms presumably originate by different folding pathways during renaturation, under the influence of the A and C sheets of the molecule. Because alpha 1PI contains only two Trp residues, at positions 194 and 238, it is amenable to fluorescence quenching resolved spectra and red-edge excitation measurements of the Trp environment. Thus, it is possible to define the conformation of the various forms based on the observed fluorescent properties of each of the Trp residues measured under a range of conditions. We show that denaturation in GuHCl, or thermal denaturation in Tris, followed by renaturation, leads to the formation of polymers that contain solvent-exposed Trp 238, which we interpret as ordered head-to-tail polymers (A-sheet polymers). However, thermal denaturation in citrate leads to shorter polymers where some of the Trp 238 residues are not solvent accessible, which we interpret as polymers capped by head-to-head interactions via the C sheet. The latter treatment also generates monomers thought to represent a latent form, but in which the environment of Trp 238 is occluded by ionized groups. These data indicate that the folding pathway of alpha 1PI, and presumably other serpins, is sensitive to solvent composition that affects the affinity of the reactive site loop for the A sheet or the C sheet. PMID:8931141

  15. The M358R variant of α(1)-proteinase inhibitor inhibits coagulation factor VIIa.

    Science.gov (United States)

    Sheffield, William P; Bhakta, Varsha

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg-Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg-Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10(2) M(-1)sec(-1). We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin.

  16. Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family.

    Directory of Open Access Journals (Sweden)

    Xiu-Qing Li

    Full Text Available Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C, and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution.

  17. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice.

    Science.gov (United States)

    Quilis, Jordi; López-García, Belén; Meynard, Donaldo; Guiderdoni, Emmanuel; San Segundo, Blanca

    2014-04-01

    Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants.

  18. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti.

    Science.gov (United States)

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues

    2015-05-01

    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects

  19. The squash aspartic proteinase inhibitor SQAPI is widely present in the cucurbitales, comprises a small multigene family, and is a member of the phytocystatin family.

    Science.gov (United States)

    Christeller, John T; Farley, Peter C; Marshall, Richelle K; Anandan, Ananda; Wright, Michele M; Newcomb, Richard D; Laing, William A

    2006-12-01

    The squash (Cucurbita maxima) phloem exudate-expressed aspartic proteinase inhibitor (SQAPI) is a novel aspartic acid proteinase inhibitor, constituting a fifth family of aspartic proteinase inhibitors. However, a comparison of the SQAPI sequence to the phytocystatin (a cysteine proteinase inhibitor) family sequences showed approximately 30% identity. Modeling SQAPI onto the structure of oryzacystatin gave an excellent fit; regions identified as proteinase binding loops in cystatin coincided with regions of SQAPI identified as hypervariable, and tryptophan fluorescence changes were also consistent with a cystatin structure. We show that SQAPI exists as a small gene family. Characterization of mRNA and clone walking of genomic DNA (gDNA) produced 10 different but highly homologous SQAPI genes from Cucurbita maxima and the small family size was confirmed by Southern blotting, where evidence for at least five loci was obtained. Using primers designed from squash sequences, PCR of gDNA showed the presence of SQAPI genes in other members of the Cucurbitaceae and in representative members of Coriariaceae, Corynocarpaceae, and Begoniaceae. Thus, at least four of seven families of the order Cucurbitales possess member species with SQAPI genes, covering approximately 99% of the species in this order. A phylogenetic analysis of these Cucurbitales SQAPI genes indicated not only that SQAPI was present in the Cucurbitales ancestor but also that gene duplication has occurred during evolution of the order. Phytocystatins are widespread throughout the plant kingdom, suggesting that SQAPI has evolved recently from a phytocystatin ancestor. This appears to be the first instance of a cystatin being recruited as a proteinase inhibitor of another proteinase family.

  20. A Novel Trypsin Inhibitor-Like Cysteine-Rich Peptide from the Frog Lepidobatrachus laevis Containing Proteinase-Inhibiting Activity.

    Science.gov (United States)

    Wang, Yu-Wei; Tan, Ji-Min; Du, Can-Wei; Luan, Ning; Yan, Xiu-Wen; Lai, Ren; Lu, Qiu-Min

    2015-08-01

    Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.

  1. Expression of the maize proteinase inhibitor (mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases.

    Science.gov (United States)

    Vila, Laura; Quilis, Jordi; Meynard, Donaldo; Breitler, Jean Christophe; Marfà, Victoria; Murillo, Isabel; Vassal, Jean Michel; Messeguer, Joaquima; Guiderdoni, Emmanuel; San Segundo, Blanca

    2005-03-01

    The maize proteinase inhibitor (mpi) gene was introduced into two elite japonica rice varieties. Both constitutive expression of the mpi gene driven by the maize ubiquitin 1 promoter and wound-inducible expression of the mpi gene driven by its own promoter resulted in the accumulation of MPI protein in the transgenic plants. No effect on plant phenotype was observed in mpi-expressing lines. The stability of transgene expression through successive generations of mpi rice lines (up to the T(4) generation) and the production of functional MPI protein were confirmed. Expression of the mpi gene in rice enhanced resistance to the striped stem borer (Chilo suppressalis), one of the most important pests of rice. In addition, transgenic mpi plants were evaluated in terms of their effects on the growth of C. suppressalis larvae and the insect digestive proteolytic system. An important dose-dependent reduction of larval weight of C. suppressalis larvae fed on mpi rice, compared with larvae fed on untransformed rice plants, was observed. Analysis of the digestive proteolytic activity from the gut of C. suppressalis demonstrated that larvae adapted to mpi transgene expression by increasing the complement of digestive proteolytic activity: the serine and cysteine endoproteinases as well as the exopeptidases leucine aminopeptidase and carboxypeptidases A and B. However, the induction of such proteolytic activity did not prevent the deleterious effects of MPI on larval growth. The introduction of the mpi gene into rice plants can thus be considered as a promising strategy to protect rice plants against striped stem borer.

  2. Ixodes scapularis tick serine proteinase inhibitor (serpin gene family; annotation and transcriptional analysis

    Directory of Open Access Journals (Sweden)

    Chalaire Katelyn C

    2009-05-01

    Full Text Available Abstract Background Serine proteinase inhibitors (Serpins are a large superfamily of structurally related, but functionally diverse proteins that control essential proteolytic pathways in most branches of life. Given their importance in the biology of many organisms, the concept that ticks might utilize serpins to evade host defenses and immunizing against or disrupting their functions as targets for tick control is an appealing option. Results A sequence homology search strategy has allowed us to identify at least 45 tick serpin genes in the Ixodes scapularis genome that are structurally segregated into 32 intronless and 13 intron-containing genes. Nine of the intron-containing serpins occur in a cluster of 11 genes that span 170 kb of DNA sequence. Based on consensus amino acid residues in the reactive center loop (RCL and signal peptide scanning, 93% are putatively inhibitory while 82% are putatively extracellular. Among the 11 different amino acid residues that are predicted at the P1 sites, 16 sequences possess basic amino acid (R/K residues. Temporal and spatial expression analyses revealed that 40 of the 45 serpins are differentially expressed in salivary glands (SG and/or midguts (MG of unfed and partially fed ticks. Ten of the 38 serpin genes were expressed from six to 24 hrs of feeding while six and fives genes each are predominantly or exclusively expressed in either MG and SG respectively. Conclusion Given the diversity among tick species, sizes of tick serpin families are likely to be variable. However this study provides insight on the potential sizes of serpin protein families in ticks. Ticks must overcome inflammation, complement activation and blood coagulation to complete feeding. Since these pathways are regulated by serpins that have basic residues at their P1 sites, we speculate that I. scapularis may utilize some of the serpins reported in this study to manipulate host defense. We have discussed our data in the context of

  3. Enzyme specificity of proteinase inhibitor region in amyloid precursor protein of Alzheimer's disease: different properties compared with protease nexin I.

    Science.gov (United States)

    Kitaguchi, N; Takahashi, Y; Oishi, K; Shiojiri, S; Tokushima, Y; Utsunomiya, T; Ito, H

    1990-03-29

    Senile plaques, often surrounded by abnormally grown neurites, are characteristic of Alzheimer's diseased brain. The core of the plaque is mainly composed of amyloid beta protein (beta-AP), two of whose three precursors (APP) have serine proteinase inhibitor regions (APPI). APPI derivatives containing 60, 72 or 88 amino-acid fragments (APPI-60, APPI-72 and APPI-88, respectively) of the longest APP were produced in COS-1 cell culture medium, with the APPI cDNA ligated to the signal sequence of tissue plasminogen activator. The secreted APPIs were purified by sequential acetone precipitation followed by affinity chromatography using immobilized trypsin. These three APPIs and O-glycosylation-site-mutated APPI showed similar inhibitory activity against trypsin, chymotrypsin and plasmin. The purified APPI-72 was found to inhibit trypsin (Ki = 1.1 x 10(-10) M) and chymotrypsin (Ki = 5.8 x 10(-9) M) most strongly, and to inhibit leukocyte elastase (Ki = 7.9 x 10(-7) M) and several blood coagulation proteinases (Ki = 0.46-12 x 10(-7) M), but not urokinase or thrombin. The observed inhibition pattern was quite different from that of protease nexin I, one of serine proteinase inhibitors possessing neurite outgrowth activity. This suggests that the physiological roles of APPI are different from those of protease nexin I, and that APPI could not cause aberrant growth of neurite into the plaque. The presence of APPI having strong inhibitory activity in the brain might lead to the formation of amyloid deposits by preventing complete degradation of APPs.

  4. In vivo and in vitro effect of Acacia nilotica seed proteinase inhibitors on Helicoverpa armigera (Hübner) larvae

    Indian Academy of Sciences (India)

    S Ramesh Babu; B Subrahmanyam; Srinivasan; I M Santha

    2012-06-01

    Acacia nilotica proteinase inhibitor (AnPI) was isolated by ammonium sulphate precipitation followed by chromatography on DEAE-Sephadex A-25 and resulted in a purification of 10.68-fold with a 19.5% yield. Electrophoretic analysis of purified AnPI protein resolved into a single band with molecular weight of approximately 18.6+1.00 kDa. AnPI had high stability at different pH values (2.0 to 10.0) except at pH 5.0 and are thermolabile beyond 80°C for 10 min. AnPI exhibited effective against total proteolytic activity and trypsin-like activity, but did not show any inhibitory effect on chymotrypsin activity of midgut of Helicoverpa armigera. The inhibition kinetics studies against H. armigera gut trypsin are of non-competitive type. AnPI had low affinity for H. armigera gut trypsin when compared to SBTI. The partially purified and purified PI proteins-incorporated test diets showed significant reduction in mean larval and pupal weight of H. armigera. The results provide important clues in designing strategies by using the proteinase inhibitors (PIs) from the A. nilotica that can be expressed in genetically engineered plants to confer resistance to H. armigera.

  5. Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus).

    Science.gov (United States)

    Sun, Le-Chang; Zhou, Li-Gen; Du, Cui-Hong; Cai, Qiu-Feng; Hara, Kenji; Su, Wen-Jin; Cao, Min-Jie

    2009-06-24

    Glucose-6-phosphate isomerase (GPI) was purified to homogeneity from the skeletal muscle of crucian carp ( Carassius auratus ) by ammonium sulfate fractionation, column chromatographies of Q-Sepharose, SP-Sepharose, and Superdex 200 with a yield of 8.0%, and purification folds of 468. The molecular mass of GPI was 120 kDa as estimated by gel filtration, while on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two subunits (55 and 65 kDa) were identified, suggesting that it is a heterodimer. Interestingly, GPI revealed specific inhibitory activity toward a myofibril-bound serine proteinase (MBSP) from crucian carp, while no inhibitory activity was identified toward other serine proteinases, such as white croaker MBSP and crucian carp trypsin. Kinetic analysis showed that GPI is a competitive inhibitor toward MBSP, and the K(i) was 0.32 microM. Our present results indicated that the multifunctional protein GPI is an endogenous inhibitor to MBSP and may play a significant role in the regulation of muscular protein metabolism in vivo.

  6. A four-domain Kunitz-type proteinase inhibitor from Solen grandis is implicated in immune response.

    Science.gov (United States)

    Wei, Xiumei; Yang, Jialong; Yang, Jianmin; Liu, Xiangquan; Liu, Meijun; Yang, Dinglong; Xu, Jie; Hu, Xiaoke

    2012-12-01

    Serine proteinase inhibitor (SPI) serves as a negative regulator in immune signal pathway by restraining the activities of serine proteinase (SP) and plays an essential role in the innate immunity. In the present study, a Kunitz-type SPI was identified from the mollusk razor clam Solen grandis (designated as SgKunitz). The full-length cDNA of SgKunitz was of 1284 bp, containing an open reading frame (ORF) of 768 bp. The ORF encoded four Kunitz domains, and their amino acids were well conserved when compared with those in other Kunitz-type SPIs, especially the six cysteines involved in forming of three disulfide bridges in each domain. In addition, the tertiary structure of all the four domains adopted a typical model of Kunitz-type SPI family, indicating SgKunitz was a new member of Kunitz-type SPI superfamily. The mRNA transcripts of SgKunitz were detected in all tested tissues of razor clam, including muscle, mantle, gonad, gill, hepatopancreas and hemocytes, and with the highest expression level in gill. When the razor clams were stimulated by LPS, PGN or β-1, 3-glucan, the expression level of SgKunitz mRNA in hemocytes was significantly up-regulated (P inhibitor of SP involving in the immune response of S. grandis, and provided helpful evidences to understand the regulation mechanism of immune signal pathway in mollusk.

  7. A five-domain Kazal-type serine proteinase inhibitor from black tiger shrimp Penaeus monodon and its inhibitory activities.

    Science.gov (United States)

    Somprasong, Nawarat; Rimphanitchayakit, Vichien; Tassanakajon, Anchalee

    2006-01-01

    A novel five-domain Kazal-type serine proteinase inhibitor, SPIPm2, identified from the hemocyte cDNA library of black tiger shrimp Penaeus monodon was successfully expressed in the Escherichia coli expression system. The expressed recombinant SPIPm2 (rSPIPm2) as inclusion bodies was solubilized with a sodium carbonate buffer, pH10, and purified by gel filtration chromatography. The molecular mass of rSPIPm2 was determined using MALDI-TOF mass spectrometry to be 29.065 kDa. The inhibitory activities of rSPIPm2 were tested against trypsin, alpha-chymotrypsin, subtilisin and elastase. The inhibitor exhibited potent inhibitory activities against subtilisin and elastase, weak inhibitory activity against trypsin, and did not inhibit chymotrypsin. Tight-binding inhibition assay suggested that the molar ratios of SPIPm2 to subtilisin and elastase were 1:2 and 1:1, respectively. The inhibition against subtilisin and elastase was a competitive type with inhibition constants (Ki) of 0.52 and 3.27 nM, respectively. The inhibitory activity of SPIPm2 against subtilisin implies that, in shrimp, it may function as a defense component against proteinases from pathogenic bacteria but the elastase inhibitory function is not known.

  8. Crystal quality and inhibitor binding by aspartic proteinases; preparation of high quality crystals of mouse renin

    Science.gov (United States)

    Badasso, M.; Sibanda, B. L.; Cooper, J. B.; Dealwis, C. G.; Wood, S. P.

    1992-08-01

    Renin from mouse submandibular glands has been highly purified and co-crystallized with a synthetic nonapeptide fragment of rat angiotensionogen in which the scissile Leu-Leu bond has been modified as a hydroxyethylene mimic of the transition state. The strong diffraction from these crystals compared to the native form is discussed in relation to the behaviour of other members of the aspartic proteinase family in crystallisation.

  9. Purification and characterization of a Bowman-Birk proteinase inhibitor from the seeds of black gram (Vigna mungo).

    Science.gov (United States)

    Prasad, E R; Dutta-Gupta, A; Padmasree, K

    2010-03-01

    A proteinase inhibitor (BgPI) was purified from black gram, Vigna mungo (cv. TAU-1) seeds by using ammonium sulfate fractionation, followed by ion-exchange, affinity and gel-filtration chromatography. BgPI showed a single band in SDS-PAGE under non-reducing condition with an apparent molecular mass of approximately 8kDa correlating to the peak 8041.5Da in matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrum. BgPI existed in different isoinhibitor forms with pI values ranging from 4.3 to 6.0. The internal sequence "SIPPQCHCADIR" of a peak 1453.7 m/z, obtained from MALDI-TOF-TOF showed 100% similarity with Bowman-Birk inhibitor (BBI) family. BgPI exhibited non-competitive-type inhibitory activity against both bovine pancreatic trypsin (K(i) of 309.8nM) and chymotrypsin (K(i) of 10.7muM), however, with a molar ratio of 1:2 with trypsin. BgPI was stable up to a temperature of 80 degrees C and active over a wide pH range between 2 and 12. The temperature-induced conformational changes in secondary structure are reversed when BgPI was cooled from 90 to 25 degrees C. Further, upon reduction with dithiothreitol, BgPI lost both its inhibitory activity as well as secondary structural conformation. Lysine residue(s) present in the reactive site of BgPI play an important role in inhibiting the bovine trypsin activity. The present study provides detailed biochemical characteristic features of a BBI type serine proteinase inhibitor isolated from V. mungo.

  10. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers?

    Science.gov (United States)

    Sugawara, Hiroaki; Shibuya, Kenichi; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Senescence of carnation petals is accompanied by autocatalytic ethylene production and wilting of the petals; the former is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes and the latter is related to the expression of a cysteine proteinase (CPase) gene. CPase is probably responsible for the degradation of proteins, leading to the decomposition of cell components and resultant cell death during the senescence of petals. The carnation plant also has a gene for the CPase inhibitor (DC-CPIn) that is expressed abundantly in petals at the full opening stage of flowers. In the present study, DC-CPIn cDNA was cloned and expressed in E. coli. The recombinant DC-CPIn protein completely inhibited the activities of a proteinase (CPase) extracted from carnation petals and papain. Northern blot analysis showed that the mRNA for CPase (DC-CP1) accumulated in large amounts, whereas that for DC-CPIn disappeared, corresponding to the onset of petal wilting in flowers undergoing natural senescence and exogenous ethylene-induced senescence. Based on these findings, a role of DC-CPIn in the regulation of petal wilting is suggested; DC-CPIn acts as a suppressor of petal wilting, which probably functions to fine-tune petal wilting in contrast to coarse tuning, the up-regulation of CPase activity by gene expression.

  11. Expression of alpha 1-proteinase inhibitor in Escherichia coli: effects of single amino acid substitutions in the active site loop on aggregate formation

    NARCIS (Netherlands)

    Schulze, A.J.; Degryse, E.; Speck, D.; Huber, R.; Bischoff, Rainer

    1994-01-01

    Overproduction of eukaryotic proteins in microorganisms often leads to the formation of insoluble protein aggregates which accumulate as intracellular inclusion bodies. alpha 1-Proteinase inhibitor (alpha 1-PI) when produced as a cytoplasmic protein in Escherichia coli (E. coli) forms inclusion bodi

  12. A selective reversible azapeptide inhibitor of human neutrophil proteinase 3 derived from a high affinity FRET substrate.

    Science.gov (United States)

    Epinette, Christophe; Croix, Cécile; Jaquillard, Lucie; Marchand-Adam, Sylvain; Kellenberger, Christine; Lalmanach, Gilles; Cadene, Martine; Viaud-Massuard, Marie-Claude; Gauthier, Francis; Korkmaz, Brice

    2012-03-15

    The biological functions of human neutrophil proteinase 3 (PR3) remain unclear because of its close structural resemblance to neutrophil elastase and its apparent functional redundancy with the latter. Thus, all natural inhibitors of PR3 preferentially target neutrophil elastase. We have designed a selective PR3 inhibitor based on the sequence of one of its specific, sensitive FRET substrates. This azapeptide, azapro-3, inhibits free PR3 in solution, PR3 bound to neutrophil membranes, and the PR3 found in crude lung secretions from patients with chronic inflammatory pulmonary diseases. But it does not inhibit significantly neutrophil elastase or cathepsin G. Unlike most of azapeptides, this inhibitor does not form a stable acyl-enzyme complex; it is a reversible competitive inhibitor with a K(i) comparable to the K(m) of the parent substrate. Low concentrations (60 μM) of azapro-3 totally inhibited the PR3 secreted by triggered human neutrophils (200,000 cells/100 μL) and the PR3 in neutrophil homogenates and in lung secretions of patients with lung inflammation for hours. Azapro-3 also resisted proteolysis by all proteases contained in these samples for at least 2h.

  13. Domain 2 of a Kazal serine proteinase inhibitor SPIPm2 from Penaeus monodon possesses antiviral activity against WSSV.

    Science.gov (United States)

    Visetnan, Suwattana; Donpudsa, Suchao; Supungul, Premruethai; Tassanakajon, Anchalee; Rimphanitchayakit, Vichien

    2014-12-01

    A 5-domain Kazal type serine proteinase inhibitor SPIPm2 from Penaeus monodon is involved in innate immune defense against white spot syndrome virus (WSSV). To test which domains were involved, the 5 domains of SPIPm2 were over-expressed and tested against WSSV infection. By using hemocyte primary cell culture treated with each recombinant SPIPm2 domain along with WSSV, the expression of WSSV early genes ie1, WSV477 and late gene VP28 were substantially reduced as compared to other domains when the recombinant domain 2, rSPIPm2D2, was used. Injecting the WSSV along with rSPIPm2D2 but not with other domains caused delay in mortality rate of the infected shrimp. The results indicate that the SPIPm2D2 possesses strong antiviral activity and, hence, contributes predominantly to the antiviral activity of SPIPm2.

  14. Matrix metalloproteinases-2, -9 and tissue inhibitor of metallo-proteinase-1 in lung cancer invasion and metastasis

    Institute of Scientific and Technical Information of China (English)

    MING Shu-hong; SUN Tie-ying; XIAO Wei; XU Xiao-mao

    2005-01-01

    @@ Lung cancer is a major cause of death from malignant disease due to its high incidence, malignant behavior and lack of major advancements in treatment strategies. The ability to invade tissues and establish colonies at remote sites is a defining characteristic of malignant neoplasms. Matrix metalloproteinases (MMPs) are zinc proteinases that degrade compounds of extracellular matrix (ECM). These enzymes have been implicated in tumour invasion and metastasis through degrading many extracellular matrix proteins especially MMP-2 and MMP-9, which are regarded as markers of tumour invasion and metastasis.1 The purpose of this study is to examine the role of MMP-9, MMP-2, tissue inhibitor of metalloproteinase-1 (TIMP-1) and MMP-9/TIMP-1 in tumour invasion and metastasis as well as the relationships between the mRNA expression of MMP-9 in white blood cells and MMP-9 levels in the plasma.

  15. Arabidopsis cysteine proteinase inhibitor AtCYSb interacts with a Ca(2+)-dependent nuclease, AtCaN2.

    Science.gov (United States)

    Guo, Kunyuan; Bu, Yuanyuan; Takano, Tetsuo; Liu, Shenkui; Zhang, Xinxin

    2013-11-01

    Plant cysteine proteinase inhibitors (cystatins) play important roles in plant defense mechanisms. Some proteins that interact with cystatins may defend against abiotic stresses. Here, we showed that AtCaN2, a Ca(2+)-dependent nuclease in Arabidopsis, is transcribed in senescent leaves and stems and interacts with an Arabidopsis cystatin (AtCYSb) in a yeast two-hybrid screen. The interaction between AtCYSb and AtCaN2 was confirmed by in vitro pull-down assay and bimolecular fluorescence complementation. Agarose gel electrophoresis showed that the nuclease activity of AtCaN2 against λDNA was inhibited by AtCYSb, which suggests that AtCYSb regulates nucleic acid degradation in cells.

  16. Basis for the Specificity and Activation of the Serpin Protein Z-dependent Proteinase Inhibitor (ZPI) as an Inhibitor of Membrane-associated Factor Xa

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Dementiev, Alexey; Olson, Steven T.; Gettins, Peter G.W. (UIC)

    2012-12-13

    The serpin ZPI is a protein Z (PZ)-dependent specific inhibitor of membrane-associated factor Xa (fXa) despite having an unfavorable P1 Tyr. PZ accelerates the inhibition reaction {approx}2000-fold in the presence of phospholipid and Ca{sup 2+}. To elucidate the role of PZ, we determined the x-ray structure of Gla-domainless PZ (PZ{sub {Delta}GD}) complexed with protein Z-dependent proteinase inhibitor (ZPI). The PZ pseudocatalytic domain bound ZPI at a novel site through ionic and polar interactions. Mutation of four ZPI contact residues eliminated PZ binding and membrane-dependent PZ acceleration of fXa inhibition. Modeling of the ternary Michaelis complex implicated ZPI residues Glu-313 and Glu-383 in fXa binding. Mutagenesis established that only Glu-313 is important, contributing {approx}5-10-fold to rate acceleration of fXa and fXIa inhibition. Limited conformational change in ZPI resulted from PZ binding, which contributed only {approx}2-fold to rate enhancement. Instead, template bridging from membrane association, together with previously demonstrated interaction of the fXa and ZPI Gla domains, resulted in an additional {approx}1000-fold rate enhancement. To understand why ZPI has P1 tyrosine, we examined a P1 Arg variant. This reacted at a diffusion-limited rate with fXa, even without PZ, and predominantly as substrate, reflecting both rapid acylation and deacylation. P1 tyrosine thus ensures that reaction with fXa or most other arginine-specific proteinases is insignificant unless PZ binds and localizes ZPI and fXa on the membrane, where the combined effects of Gla-Gla interaction, template bridging, and interaction of fXa with Glu-313 overcome the unfavorability of P1 Tyr and ensure a high rate of reaction as an inhibitor.

  17. Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches

    Science.gov (United States)

    Katritch, Vsevolod; Byrd, Chelsea M.; Tseitin, Vladimir; Dai, Dongcheng; Raush, Eugene; Totrov, Maxim; Abagyan, Ruben; Jordan, Robert; Hruby, Dennis E.

    2007-10-01

    Essential for viral replication and highly conserved among poxviridae, the vaccinia virus I7L ubiquitin-like proteinase (ULP) is an attractive target for development of smallpox antiviral drugs. At the same time, the I7L proteinase exemplifies several interesting challenges from the rational drug design perspective. In the absence of a published I7L X-ray structure, we have built a detailed 3D model of the I7L ligand binding site (S2-S2' pocket) based on exceptionally high structural conservation of this site in proteases of the ULP family. The accuracy and limitations of this model were assessed through comparative analysis of available X-ray structures of ULPs, as well as energy based conformational modeling. The 3D model of the I7L ligand binding site was used to perform covalent docking and VLS of a comprehensive library of about 230,000 available ketone and aldehyde compounds. Out of 456 predicted ligands, 97 inhibitors of I7L proteinase activity were confirmed in biochemical assays (˜20% overall hit rate). These experimental results both validate our I7L ligand binding model and provide initial leads for rational optimization of poxvirus I7L proteinase inhibitors. Thus, fragments predicted to bind in the prime portion of the active site can be combined with fragments on non-prime side to yield compounds with improved activity and specificity.

  18. The role of secretory leukocyte proteinase inhibitor and elafin (elastase-specific inhibitor/skin-derived antileukoprotease as alarm antiproteinases in inflammatory lung disease

    Directory of Open Access Journals (Sweden)

    Sallenave Jean-Michel

    2000-08-01

    Full Text Available Abstract Secretory leukocyte proteinase inhibitor and elafin are two low-molecular-mass elastase inhibitors that are mainly synthesized locally at mucosal sites. It is thought that their physicochemical properties allow them to efficiently inhibit target enzymes, such as neutrophil elastase, released into the interstitium. Historically, in the lung, these inhibitors were first purified from secretions of patients with chronic obstructive pulmonary disease and cystic fibrosis. This suggested that they might be important in controlling excessive neutrophil elastase release in these pathologies. They are upregulated by 'alarm signals' such as bacterial lipopolysaccharides, and cytokines such as interleukin-1 and tumor necrosis factor and have been shown to be active against Gram-positive and Gram-negative bacteria, so that they have joined the growing list of antimicrobial 'defensin-like' peptides produced by the lung. Their site of synthesis and presumed functions make them very attractive candidates as potential therapeutic agents under conditions in which the excessive release of elastase by neutrophils might be detrimental. Because of its natural tropism for the lung, the use of adenovirus-mediated gene transfer is extremely promising in such applications.

  19. Novel alleles among soybean Bowman-Birk proteinase inhibitor gene families

    Institute of Scientific and Technical Information of China (English)

    WANG YuePing; CHEN XiongTing; QIU LiJuan

    2008-01-01

    Trypsin inhibitors have been found in various animals, plants and microorganisms. There were two types of trypsin inhibitors in soybean including Bowman-Birk protease inhibitors (BBI) and Kunitz in-hibitors (KTI). The different BBI genes from wild soybean (G.soja) and cultivated soybean (G max) formed a multigene family. We constructed a cDNA library of cultivar 'SuiNong 14' seed at the R7 growth stage using the SMART Kit. Seventeen contigs or singletons were highly homologous to soy-bean protease inhibitors. Contigs of 5, 35, 8 and 9 were highly homologous to BBI family members BBI-A1, BBI-A2, BBI-C and BBI-D, respectively. Sequence analyses showed there were novel allelic varia-tions among the 4 BBI members in SuiNong 14. Based on the comparison of soybean seed cDNA li-braries from different developmental stages, it was apparent that the expression of trypsin inhibitors increased during seed development in soybean. Phylogenetic analysis of BBI gene sequences among dicotyledonous and monocotyledonous plants demonstrated that these genes shared a common pro-genitor.

  20. Novel alleles among soybean Bowman-Birk proteinase inhibitor gene families

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Trypsin inhibitors have been found in various animals, plants and microorganisms.There were two types of trypsin inhibitors in soybean including Bowman-Birk protease inhibitors(BBI) and Kunitz in-hibitors(KTI).The different BBI genes from wild soybean(G.soja) and cultivated soybean(G.max) formed a multigene family.We constructed a cDNA library of cultivar ’SuiNong 14’ seed at the R7 growth stage using the SMART Kit.Seventeen contigs or singletons were highly homologous to soy-bean protease inhibitors.Contigs of 5, 35, 8 and 9 were highly homologous to BBI family members BBI-A1, BBI-A2, BBI-C and BBI-D, respectively.Sequence analyses showed there were novel allelic varia-tions among the 4 BBI members in SuiNong 14.Based on the comparison of soybean seed cDNA li-braries from different developmental stages, it was apparent that the expression of trypsin inhibitors increased during seed development in soybean.Phylogenetic analysis of BBI gene sequences among dicotyledonous and monocotyledonous plants demonstrated that these genes shared a common pro-genitor.

  1. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice.

    Science.gov (United States)

    Martins-Olivera, Bruno Tadeu; Almeida-Reis, Rafael; Theodoro-Júnior, Osmar Aparecido; Oliva, Leandro Vilela; Neto Dos Santos Nunes, Natalia; Olivo, Clarice Rosa; Vilela de Brito, Marlon; Prado, Carla Máximo; Leick, Edna Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Righetti, Renato Fraga; Tibério, Iolanda de Fátima Lopes Calvo

    2016-01-01

    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment.

  2. Cysteine proteinase inhibitor Act d 4 is a functional allergen contributing to the clinical symptoms of kiwifruit allergy.

    Science.gov (United States)

    Popovic, Milica M; Milovanovic, Mina; Burazer, Lidija; Vuckovic, Olga; Hoffmann-Sommergruber, Karin; Knulst, Andre C; Lindner, Buko; Petersen, Arnd; Jankov, Ratko; Gavrovic-Jankulovic, Marija

    2010-03-01

    Kiwifruit has become a frequent cause of fruit allergy in the recent years. The molecular basis of type I hypersensitivity to kiwifruit is attributed to 11 IUIS allergens, with Act d 1, Act d 2 and Act d 5 characterized in extenso. Evaluation of the allergenic properties of Act d 4, a cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa) was performed in this study. Identity of the purified glycoprotein was determined by Edman degradation and by mass fingerprint whereby more than 90% of the primary structure of the mature kiwifruit cystatin was confirmed. Using MALDI TOF analysis, molecular masses of 10902.5 and 11055.2 Da were detected for Act d 4, respectively. Positive skin prick reactivity with Act d 4 was induced in three kiwifruit allergic patients, as well as the upregulation of CD63 and CD203c molecules in the basophile activation assay. The IgE reactivity was detected in dot blot analysis while Western blot analysis was negative using sera from six kiwifruit patients, suggesting the presence of conformational IgE epitopes on the Act d 4 molecule. As activator of effector cells in type I hypersensitivity Act d 4 is a functional allergen contributing to the clinical symptoms of kiwifruit allergy.

  3. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI Attenuates Elastase-Induced Emphysema in Mice

    Directory of Open Access Journals (Sweden)

    Bruno Tadeu Martins-Olivera

    2016-01-01

    Full Text Available Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD. However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group or saline (SAL group and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups. At day 28, the following analyses were performed: (I lung mechanics, (II exhaled nitric oxide (ENO, (III bronchoalveolar lavage fluid (BALF, and (IV lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment.

  4. Expression, purification and characterization of recombinant human serine proteinase inhibitor Kazal-type 6 (SPINK6) in Pichia pastoris.

    Science.gov (United States)

    Lu, Hairong; Huang, Jinjiang; Li, Guodong; Ge, Kuikui; Wu, Hongyu; Huang, Qingshan

    2012-03-01

    Human serine proteinase inhibitor Kazal-type 6 (SPINK6) belongs to the medically important SPINK family. Malfunctions of SPINK members are linked to many diseases, including pancreatitis, skin barrier defects, and cancer. SPINK6 has been shown to selectively inhibit Kallikrein-related peptidases (KLKs) in human skin. As a SPINK protein, it contains a typical Kazal domain, which requires three intramolecular disulfide bonds for correct folding and activity. Preparation of functional protein is a prerequisite for studying this important human factor. Here, we report the successful generation of tagless SPINK6 using a yeast expression system. The recombinant protein was secreted and purified by cation exchange and size-exclusion chromatography. The protein identity was confirmed by MALDI-TOF MS and N-terminal sequencing. Pichia pastoris-derived recombinant human SPINK6 (rhSPINK6) showed higher inhibitory activity against Kallikrein-related peptidase 14 (KLK14) (K(i)=0.16 nM) than previously reported Escherichia coli-derived rhSPINK6 (K(i)=0.5 nM). This protein also exhibited moderate inhibition of bovine trypsin (K(i)=33 nM), while previous E. coli-derived rhSPINK6 did not. The results indicate that P. pastoris is a better system to generate active rhSPINK6, warranting further studies on this medically important SPINK family candidate.

  5. Leucaena leucocephala serine proteinase inhibitor: primary structure and action on blood coagulation, kinin release and rat paw edema.

    Science.gov (United States)

    Oliva, M L; Souza-Pinto, J C; Batista, I F; Araujo, M S; Silveira, V F; Auerswald, E A; Mentele, R; Eckerskorn, C; Sampaio, M U; Sampaio, C A

    2000-03-07

    A serine proteinase inhibitor isolated from Leucaena leucocephala seeds (LlTI) was purified to homogeneity by acetone fractionation, ion exchange chromatography, gel filtration and reverse phase chromatography (HPLC). SDS-PAGE indicated a protein with M(r) 20000 and two polypeptide chains (alpha-chain, M(r) 15000, and beta-chain, M(r) 5000), the sequence being determined by automatic Edman degradation and by mass spectroscopy. LlTI is a 174 amino acid residue protein which shows high homology to plant Kunitz inhibitors, especially those double chain proteins purified from the Mimosoideae subfamily. LlTI inhibits plasmin (K(i) 3.2 x 10(-10) M), human plasma kallikrein (K(i) 6.3 x 10(-9) M), trypsin (K(i) 2.5 x 10(-8) M) and chymotrypsin (K(i) 1.4 x 10(-8) M). Factor XIIa activity is inhibited but K(i) was not determined, and factor Xa, tissue kallikrein and thrombin are not inhibited by LlTI. The action of LlTI on enzymes that participate in the blood clotting extrinsic pathway is confirmed by the prolongation of activated partial thromboplastin time, used as clotting time assay. The inhibition of the fibrinolytic activity of plasmin was confirmed on the hydrolysis of fibrin plates. LlTI inhibits kinin release from high molecular weight kininogen by human plasma kallikrein in vitro and, administered intravenously, causes a decrease in paw edema induced by carrageenin or heat in male Wistar rats. In addition, lower concentrations of bradykinin were found in limb perfusion fluids of LlTI-treated rats.

  6. Alpha-1 proteinase inhibitor M358R reduces thrombin generation when displayed on the surface of cells expressing tissue factor.

    Science.gov (United States)

    Gierczak, Richard F; Pepler, Laura; Bhagirath, Vinai; Liaw, Patricia C; Sheffield, William P

    2014-11-01

    The M358R variant of alpha-1-proteinase inhibitor (API) is a potent soluble inhibitor of thrombin. Previously we engineered AR-API M358R, a membrane-bound form of this protein and showed that it inhibited exogenous thrombin when expressed on transfected cells lacking tissue factor (TF). To determine the suitability of AR-API M358R for gene transfer to vascular cells to limit thrombogenicity, we tested the ability of AR-API M358R to inhibit endogenous thrombin generated in plasma via co-expression co-expressing it on the surface of cells expressing TF. Transfected AR-API M358R formed inhibitory complexes with thrombin following exposure of recalcified, defibrinated plasma to TF on T24/83 cells, but discontinuously monitored thrombin generation was unaffected. Similarly, AR-API M358R expression did not reduce continuously monitored thrombin generation by T24/83 cell suspensions exposed to recalcified normal plasma in a Thrombogram-Thrombinoscope-type thrombin generation assay (TGA); in contrast, 1 μM hirudin variant 3 or soluble API M358R abolished thrombin generation. Gene transfer of TF to HEK 293 conferred the ability to support TF-dependent thrombin generation on HEK 293 cells. Co-transfection of HEK 293 cells with a 9:1 excess of DNA encoding AR-API M358R to that encoding TF reduced peak thrombin generation approximately 3-fold compared to controls. These in vitro results suggest that surface display of API M358R inhibits thrombin generation when the tethered serpin is expressed in excess of TF, and suggest its potential to limit thrombosis in appropriate vascular beds in animal models.

  7. Expression screening of bacterial libraries of recombinant alpha-1 proteinase inhibitor variants for candidates with thrombin inhibitory capacity.

    Science.gov (United States)

    Bhakta, Varsha; Gierczak, Richard F; Sheffield, William P

    2013-12-01

    Exhaustive mutagenesis studies of the reactive centre loop (RCL), a key structural component of proteins belonging to the serpin superfamily of protease inhibitors, are complicated by the size of the RCL, serpin conformational complexity, and, for most serpins, the lack of a serpin-dependent phenotype of expressing cells. Here, we describe a thrombin capture assay that distinguished thrombin-inhibitory recombinant human alpha-1 proteinase inhibitor (API M358R) from non-inhibitory API variants in Escherichia coli lysates prepared from either single clones or pools. Binding of API proteins in the lysates to thrombin immobilized on microtiter plate wells was quantified via colour generated by a peroxidase-coupled anti-API antibody. Bacterial expression plasmids encoding inhibitory API M358R were mixed 1:99 with plasmids encoding non-inhibitory API T345R/M358R and the resulting library screened in pools of 10. All above-background signals arising from pools or subsequently re-probed single clones were linked to the presence of plasmids encoding API M358R. Screening of a portion of another expression library encoding hypervariable API with all possibilities at codons 352-358 also yielded only novel, thrombin-inhibitory variants. Probing a smaller library expressing all possible codons at Ala347 yielded the wild type, 6 different functional variants, one partially active variant, and two variants with no thrombin-inhibitory activity. API antigen levels varied considerably less among Ala347 variants than activity levels, and comparison of rate constants of inhibition of purified API variants to their corresponding thrombin capture assay lysate values was used to establish the sensitivity and specificity of the assay. The results indicate that the approach is sufficiently robust to correctly identify functional versus non-functional candidates in API expression libraries, and could be of value in systematically probing structure/function relationships not only in the API

  8. A three-domain Kazal-type serine proteinase inhibitor exhibiting domain inhibitory and bacteriostatic activities from freshwater crayfish Procambarus clarkii.

    Science.gov (United States)

    Li, Xin-Cang; Wang, Xian-Wei; Wang, Zong-Heng; Zhao, Xiao-Fan; Wang, Jin-Xing

    2009-12-01

    In crustaceans, Kazal-type serine proteinase inhibitors in hemolymph are believed to function as regulators of the host-defense reactions or inhibitors against proteinases from microorganisms. In this study, we report a Kazal-type serine proteinase inhibitor, named hcPcSPI1, from freshwater crayfish (Procambarus clarkii). We found that hcPcSPI1 is composed of a putative signal peptide, an RGD motif, and three tandem Kazal-type domains with the domain P1 residues L, L and E, respectively. Mainly, hcPcSPI1 was detected in hemocytes as well as in the heart, gills, and intestine at both the mRNA and protein levels. Quantitative real-time PCR analysis showed that hcPcSPI1 in hemocytes was upregulated by the stimulation of Esherichia coli (8099) or became decreased after a white spot syndrome virus (WSSV) challenge. In addition, hcPcSPI1 and its three independent domains were overexpressed and purified to explore their potential functions. All four proteins inhibited subtilisin A and proteinase K, but not alpha-chymotypsin or trypsin. Recombinant hcPcSPI1 could firmly attach to Gram-negative bacteria E. coli and Klebsiella pneumoniae; Gram-positive bacteria Bacillus subtilis, Bacillus thuringiensis and Staphylococcus aureus; fungi Candida albicans and Saccharomyce cerevisiae, and only domain 1 was responsible for the binding to E. coli and S. aureus. In addition, recombinant hcPcSPI1 was also found to possess bacteriostatic activity against the B. subtilis and B. thuringiensis. Domains 2 and 3 contributed mainly to these bacteriostatic activities. All results suggested that hcPcSPI1 might play important roles in the innate immunity of crayfish.

  9. Interaction between Kazal serine proteinase inhibitor SPIPm2 and viral protein WSV477 reduces the replication of white spot syndrome virus.

    Science.gov (United States)

    Ponprateep, Sirikwan; Phiwsaiya, Kornsunee; Tassanakajon, Anchalee; Rimphanitchayakit, Vichien

    2013-09-01

    White spot syndrome (WSS) is a viral disease caused by white spot syndrome virus (WSSV) which leads to severe mortality in cultured penaeid shrimp. In response to WSSV infection in Penaeus monodon, a Kazal serine proteinase inhibitor SPIPm2, normally stored in the granules of granular and semi-granular hemocytes is up-regulated and found to deter the viral replication. By using yeast two-hybrid screening, we have identified a viral target protein, namely WSV477. Instead of being a proteinase, the WSV477 was reported to be a Cys2/Cys2-type zinc finger regulatory protein having ATP/GTP-binding activity. In vitro pull down assay confirmed the protein-protein interaction between rSPIPm2 and rWSV477. Confocal laser scanning microscopy demonstrated that the SPIPm2 and WSV477 were co-localized in the cytoplasm of shrimp hemocytes. Using RNA interference, the silencing of WSV477 resulted in down-regulated of viral late gene VP28, the same result obtained with SPIPm2. In this instance, the SPIPm2 does not function as proteinase inhibitor but inhibit the regulatory function of WSV477.

  10. Occurrence of Two Distinct Types of Tissue Inhibitors of Metallo-proteinases-2 in Fugu rubripes

    Institute of Scientific and Technical Information of China (English)

    Yoshihiro Yokoyama; Hiroshi Tsukamoto; Tohru Suzuki; Shohshi Mizuta; Reiji Yoshinaka

    2005-01-01

    In this study, genes of two distinct tissue inhibitors of metalloproteinases-2 (TIMP-2) from Japanese puffer fish Fugu rubripes, Fugu TIMP-2a and TIMP-2b, were cloned. The open reading frames of Fugu TIMP-2a and TIMP-2b cDNAs are composed of 660 and 657 nucleotides and 220 and 219 amino acids, respectively. Both Fugu TIMP-2s contain 12 cysteine residues, whichmight form six disulfide bonds as in other animals TIMP-2s. Reverse-transcribed polymerase chain reaction analysis showed the mRNAs of Fugu TIMP-2a and TIMP-2b to be expressed in some tissues examined with different expression patterns. These findings suggest that the two distinct Fugu TIMP-2s might perform different functions in Fugu tissues.

  11. The response to epidermal growth factor of human maxillary tumor cells in terms of tumor growth, invasion and expression of proteinase inhibitors.

    Science.gov (United States)

    Mizoguchi, H; Komiyama, S; Matsui, K; Hamanaka, R; Ono, M; Kiue, A; Kobayashi, M; Shimizu, N; Welgus, H G; Kuwano, M

    1991-11-11

    Three cancer cell lines, IMC-2, IMC-3 and IMC-4, were established from a single tumor of a patient with maxillary cancer. We examined responses to epidermal growth factor (EGF) of these 3 cell lines with regard to cell growth and tumor invasion. The growth rate of IMC-2 in nude mice was markedly faster than that of the IMC-3 and IMC-4 cell lines. Assay for invasion through fibrin gels showed significantly enhanced invasive capacity of IMC-2 cells in response to EGF, but no change for IMC-3 and IMC-4 cells. We examined response to EGF of IMC-2 cells with regard to expression of a growth-related oncogene (c-fos), proteinases and their inhibitors. Expression of c-fos was transiently increased in IMC-2 cells at rates comparable to those seen in the 2 other lines in the presence of EGF. There was no apparent effect of EGF on the expression of urokinase-type plasminogen activator and 72-kDa type-IV collagenase in IMC-2 cells. In contrast, EGF specifically enhanced the expression of plasminogen activator inhibitor-I (PAI-I) and tissue inhibitor of metalloproteinases-I (TIMP-I) in IMC-2 cells. Our data suggest that proteinase inhibitors or other related factors may play an important role in tumor growth and invasion in response to EGF.

  12. A unique downstream estrogen responsive unit mediates estrogen induction of proteinase inhibitor-9, a cellular inhibitor of IL-1beta- converting enzyme (caspase 1).

    Science.gov (United States)

    Krieg, S A; Krieg, A J; Shapiro, D J

    2001-11-01

    Recently, proteinase inhibitor 9 (PI-9) was identified as the first endogenous inhibitor of caspase 1 (IL-1beta-converting enzyme). The regulation of PI-9 expression, therefore, has great importance in the control of inflammatory processes. We reported that PI-9 mRNA and protein are rapidly and directly induced by estrogen in human liver cells. Using transient transfections to assay PI-9 promoter truncations and mutations, we demonstrate that this strong estrogen induction is mediated by a unique downstream estrogen responsive unit (ERU) approximately 200 nucleotides downstream of the transcription start site. Using primers flanking the ERU in chromatin immunoprecipitation assays, we demonstrate estrogen-dependent binding of ER to the cellular PI-9 promoter. The ERU consists of an imperfect estrogen response element (ERE) palindrome immediately adjacent to a direct repeat containing two consensus ERE half-sites separated by 13 nucleotides (DR13). In transient transfections, all four of the ERE half-sites in the imperfect ERE and in the DR13 were important for estrogen inducibility. Transfected chicken ovalbumin upstream transcription factor I and II down-regulated estrogen-mediated expression from the ERU. EMSAs using purified recombinant human ERalpha demonstrate high-affinity binding of two ER complexes to the ERU. Further EMSAs showed that one ER dimer binds to an isolated DR13, supporting the view that one ER dimer binds to the imperfect ERE and one ER dimer binds to DR13. Deoxyribonuclease I footprinting showed that purified ER protected all four of the half-sites in the ERU. Our finding that a direct repeat can function with an imperfect ERE palindrome to confer estrogen inducibility on a native gene extends the repertoire of DNA sequences able to function as EREs.

  13. Identification of proteinaceous inhibitors of a cysteine proteinase (an Arg-specific gingipain) from Porphyromonas gingivalis in rice grain, using targeted-proteomics approaches.

    Science.gov (United States)

    Taiyoji, Mayumi; Shitomi, Yasuyuki; Taniguchi, Masayuki; Saitoh, Eiichi; Ohtsubo, Sadami

    2009-11-01

    Porphyromonas gingivalis is known to be a major etiologic agent in the onset and progression of chronic periodontitis. Among various virulence factors that this bacterium produces, Arg- and Lys-specific cysteine proteinases (gingipains) are believed to be major determinants of the pathogenicity of P. gingivalis. Here, we report on our finding that there are inhibitors of these cysteine proteinases in a rice protein fraction. Comprehensive affinity chromatography and MS analyses resulted in the identification of 17 Arg-gingipain (Rgp)-interacting proteins in the rice endosperm. Of these, four proteins (i.e., a 26 kDa globulin, a plant lipid transfer/trypsin-alpha amylase inhibitor, the RA17 seed allergen, and an alpha amylase/trypsin inhibitor) were estimated to account for 90% of the Rgp inhibitory activity in the rice protein fraction, using a two-dimensional gel system of double-layer reverse zymography. In addition, a synthetic peptide derived from an Rgp-interacting protein, cyanate hydratase, could inhibit the growth of P. gingivalis and showed inhibitory activity against both the Arg- and Lys-gingipains. These results suggest that these rice proteins may be useful as nutraceutical ingredients for the prevention and management of periodontal diseases.

  14. Cytotoxic Compounds from Zanthoxylum Americanum

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Four pyranocoumarins: dipetaline, alloxanthoxyletin, xanthoxyletin, and xanthyletin, and two lignans: sesamin and asarinin were isolated from the northern prickly ash, Zanthoxylum americanum. To varying degrees, all six compounds inhibited the incorporation of tritiated thymidine into human leukemia (HL-60) cells and the inhibitory effect was dependent on the structures of the isolated compounds.

  15. Negative Effects of a Nonhost Proteinase Inhibitor of ~19.8 kDa from Madhuca indica Seeds on Developmental Physiology of Helicoverpa armigera (Hübner

    Directory of Open Access Journals (Sweden)

    Farrukh Jamal

    2014-01-01

    Full Text Available An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at concentration of 5 µg/mL with an IC50 of 1.75 µg/mL against trypsin like midgut proteinases. The enzyme kinetic studies demonstrated that MiTI is a competitive inhibitor with a Ki value of 4.1×10−10 M for Helicoverpa trypsin like midgut proteinases. In vivo experiments with different concentrations of MiTI in artificial diet (0.5, 1.0, and 1.5% w/w showed an effective downfall in the larval body weight and an increase in larval mortality. The concentration of MiTI in the artificial diet to cause 50% mortality (LD50 of larvae was 1.5% w/w and that to cause reduction in mass of larvae by 50% (ED50 was 1.0% w/w. Nutritional indices observations suggest the toxic and adverse effects of MiTI on the growth and development of H. armigera larvae. The results suggest a strong bioinsecticidal potential of affinity purified MiTI which can be exploited in insect pest management of crop plants.

  16. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L.(Fabaceae active against Gut Proteases of Lepidopteran pest Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Marri Swathi

    2016-09-01

    Full Text Available AbstractProteinase inhibitors (PIs are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63 were purified from mature dry seeds of C. platycarpus (ICPW-63 and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI activity than trypsin inhibitor (TI activity. Analysis of CpPI 63 using two-dimensional (2-D electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6-58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs. The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6 of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs as well as miraculin-like proteins (MLPs. Further, modification of lysine residue(s lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus.

  17. Perspectives of digestive pest control with proteinase inhibitors that mainly affect the trypsin-like activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    M.E. Pereira

    2005-11-01

    Full Text Available The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.

  18. Evaluation of in vitro and in vivo effects of semipurified proteinase inhibitors from Theobroma seeds on midgut protease activity of Lepidopteran pest insects.

    Science.gov (United States)

    Paulillo, Luis Cesar Maffei Sartini; Sebbenn, Alexandre Magno; de Carvalho Derbyshire, Maria Tereza Vitral; Góes-Neto, Aristóteles; de Paula Brotto, Marco Aurélio; Figueira, Antonio

    2012-09-01

    We have characterized in vitro and in vivo effects of trypsin inhibitors from Theobroma seeds on the activity of trypsin- and chymotrypsin-like proteins from Lepidopteran pest insects. The action of semipurified trypsin inhibitors from Theobroma was evaluated by the inhibition of bovine trypsin and chymotrypsin activities determined by the hydrolysis of N-Benzoyl-DL-Arginine-p-Nitroanilide (BAPA) and N-Succinyl-Ala-Ala-Pho-Phe p-Nitroanilide (S-(Ala)2ProPhe-pNA). Proteinase inhibitor activities from Theobroma cacao and T. obovatum seeds were the most effective in inhibiting trypsin-like proteins, whereas those from T. obovatum and T. sylvestre were the most efficient against chymotrypsin-like proteins. All larvae midgut extracts showed trypsin-like proteolytic activities, and the putative trypsin inhibitors from Theobroma seeds significantly inhibited purified bovine trypsin. With respect to the influence of Theobroma trypsin inhibitors on intact insects, the inclusion of T. cacao extracts in artificial diets of velvet bean caterpillars (Anticarsia gemmatalis) and sugarcane borer (Diatraea saccharalis) produced a significant increase in the percentage of adult deformation, which is directly related to both the survival rate of the insects and oviposition.

  19. Specificity of binding of the low density lipoprotein receptor-related protein to different conformational states of the clade E serpins plasminogen activator inhibitor-1 and proteinase nexin-1.

    Science.gov (United States)

    Jensen, Jan K; Dolmer, Klavs; Gettins, Peter G W

    2009-07-03

    The low density lipoprotein receptor-related protein (LRP) is the principal clearance receptor for serpins and serpin-proteinase complexes. The ligand binding regions of LRP consist of clusters of cysteine-rich approximately 40-residue complement-like repeats (CR), with cluster II being the principal ligand-binding region. To better understand the specificity of binding at different sites within the cluster and the ability of LRP to discriminate in vivo between uncomplexed and proteinase-complexed serpins, we have systematically examined the affinities of plasminogen activator inhibitor-1 (PAI-1) and proteinase nexin-1 (PN-1) in their native, cleaved, and proteinase-complexed states to (CR)(2) and (CR)(3) fragments of LRP cluster II. A consistent blue shift of the CR domain tryptophan fluorescence suggested a common mode of serpin binding, involving lysines on the serpin engaging the acidic region around the calcium binding site of the CR domain. High affinity binding of non-proteinase-complexed PAI-1 and PN-1 occurred to all fragments containing three CR domains (3-59 nm) and most that contain only two CR domains, although binding energies to different (CR)(3) fragments differed by up to 18% for PAI-1 and 9% for PN-1. No detectable difference in affinity was seen between native and cleaved serpin. However, the presence of proteinase in complex with the serpin enhanced affinity modestly and presumably nonspecifically. This may be sufficient to give preferential binding of such complexes in vivo at the relevant physiological concentrations.

  20. 丝氨酸蛋白酶抑制剂PI-9的研究进展%The present understanding of serine proteinase inhibitor-9

    Institute of Scientific and Technical Information of China (English)

    雷晓晔; 周业江

    2010-01-01

    丝氨酸蛋白酶抑制剂-9(serine proteinase inhibitor9,PI-9)是丝氨酸蛋白酶抑制剂的重要成员,也是目前发现的颗粒蛋白酶B(granzyme B,GrB)唯一的内源性丝氨酸蛋白酶抑制剂.近年研究发现,PI-9能抑制GrB所致的靶细胞DNA断裂而阻断其诱导的细胞凋亡.在生理状况下,PI-9能阻止细胞毒淋巴细胞之间的相互攻击,维持机体免疫豁免部位的功能.近年研究发现PI-9还涉及-多种病理过程,诸如调节炎性介质反应,移植免疫应答及介导肿瘤免疫耐受等多种功能.%Serine proteinase inhibitor9(P1-9),a charac-teristic member of serpins,has been identified as the only inhibitor of granzyme B(GrB).Accumulated evidence suggested that PI-9 inhibits GrB-induced apoptosis by blocking DNA fragmentation of target cell.Physiologically,PI-9 could protect cytotoxic lymphocytes from committing autolysis or fratricide,and play an important role in facilitating immunologic tolerance of immune-privileged sites.In addition,evidences in recent years suggest that PI-9 Was also involved in vailous pathologic processes,such as inflammation,trans plantation and immune tolerance of tumor.

  1. Molecular characterization, expression and function analysis of a five-domain Kazal-type serine proteinase inhibitor from pearl oyster Pinctada fucata.

    Science.gov (United States)

    Zhang, Dianchang; Ma, Jianjun; Jiang, Shigui

    2014-03-01

    Serine proteinase inhibitors represent an expanding superfamily of endogenous inhibitors that are regulate proteolytic events and involved in a variety of physiological and immunological processes. A five-domain Kazal-type serine proteinase inhibitor (poKSPI) was identified and characterized from pearl oyster Pinctada fucata based on expressed sequence tag (EST) analysis. The full-length cDNA was 737 bp with an open reading frame (ORF) 660 bp encoding a 219 amino acid protein a theoretical molecular weight (Mw) of 23.3 kDa and an isoelectric point (pI) of 8.40. A putative signal peptide of 19 amino acid residues and five tandem Kazal domains were identified. Four of the Kazal domains had the highly conserved motif sequences with six cysteine residues responsible for the formation of disulfide bridges. The deduced amino acid sequence of the poKSPI shared high homology with KSPIs from Hirudo medicinalis. The poKSPI mRNA could be detected in all examined tissues, the expression level of the poKSPI mRNA was the highest in mantle and gonad, while the lowest in haemocyte and intestine. After LPS challenge, the expression level of the poKSPI mRNA in digestive gland was significantly up-regulated at 4 h post-challenge and reached the peak at 12 h post-challenge, which was 4.23-fold higher than control group; the expression level of the poKSPI mRNA in gill was also significantly up-regulated at 8 and 12 h post-challenge, which were 4.48 and 2.26-fold higher than control group. After Vibrio alginolyticus challenge, the expression levels of the poKSPI mRNA in digestive gland were significantly up-regulated at 8, 12, 48 and 72 h post-challenge, which were 1.70, 1.79, 3.89 and 5.69-fold higher than control group, respectively; the expression level of the poKSPI mRNA in gill was significantly up-regulated at 24 h post-challenge, which was 5.30-fold higher than control group. The recombinant poKSPI protein could inhibit chymotrypsin and trypsin activities in dose

  2. Dual high-resolution inhibition profiling and HPLC-HRMS-SPE-NMR analysis for identification of α-glucosidase and radical scavenging inhibitors in Solanum americanum Mill

    DEFF Research Database (Denmark)

    Silva, Eder Lana e; Almeida-Lafetá, Rita C.; Borges, Ricardo Moreira

    2017-01-01

    Solanum americanum is one of the most prominent species used to treat type 2 diabetes in Guatemala. In our ongoing efforts to find antidiabetic and antioxidative compounds from natural sources, an ethyl acetate extract of this medicinal herb was investigated using dual high-resolution α-glucosida...

  3. Cysteine proteinases and cystatins

    Directory of Open Access Journals (Sweden)

    Adeliana S. Oliveira

    2003-01-01

    Full Text Available This review describeds the definition, localization, functions and examples of cysteine proteinases and their protein inhibitors in vertebrate, non-vertebrate animals and plants. These inhibitors are related with defense mechanisms of plant against pests. It also describes the factors involved in the specific cysteine proteinase-cystatin interaction and high degree of affinity and large specificity in this interaction which are not only represented by the compatibility between amino acid residues of the active site involved in catalysis, but also of all amino acid residues that participante in the enzyme-inhibitor interaction.Nesta revisão foram descritas definições, localizações, funções e exemplos de proteinases cisteínicas e suas proteinas inibidoras em animais vertebrados e invertebrados e plantas. Tratamos principalmente com aqueles inibidores que são relatados com o mecanismo de defesa da planta contra pestes. Em adição, comentamos sobre recentes trabalhos que contribuíram para uma melhor compreenção dos fatores envolvidos na interação específica proteinase cisteínica-cistatina. Por outro lado, chamamos atenção para o alto grau de afinidade e grande especificidade na interação que não são apenas representadas pela compatibilidade entre os residuos de aminoácidos do sítio ativo envolvidos na catalise, mas também de todos os resíduos de aminoácidos que participam da interação enzima-inibidor.

  4. The Kinetic Characteristics of Proteinase A Inhibitor GLPAI%蛋白酶A抑制剂GLPAI动力学性质的研究

    Institute of Scientific and Technical Information of China (English)

    李屹松; 田亚平

    2005-01-01

    对一种从灵芝发酵液中提取得到的蛋白酶A抑制剂GLPAI(Ganoderma Lucidum pro-teinase A inhibitor)的动力学性质进行了研究,分别以胃蛋白酶、胰蛋白酶和蛋白酶A为底物考察了GLPAI的动力学性质,实验结果:GLPAI对上述3种蛋白酶的抑制类型均属于混合型抑制模式,对胃蛋白酶的Ki=4.64(μmol/L);对胰蛋白酶的Ki=33.5(μmo1/L);对蛋白酶A的Ki=2.7(μmol/L).

  5. NaStEP: a proteinase inhibitor essential to self-incompatibility and a positive regulator of HT-B stability in Nicotiana alata pollen tubes.

    Science.gov (United States)

    Jiménez-Durán, Karina; McClure, Bruce; García-Campusano, Florencia; Rodríguez-Sotres, Rogelio; Cisneros, Jesús; Busot, Grethel; Cruz-García, Felipe

    2013-01-01

    In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown.

  6. Cloning of a Potato Proteinase Inhibitor Gene PINII-2x from Diploid Potato (Solanum phurejia L.) and Transgenic Investigation of Its Potential to Confer Insect Resistance in Rice

    Institute of Scientific and Technical Information of China (English)

    Qing-Yun Bu; Liang Wu; Shi-Hu Yang; Jian-Min Wan

    2006-01-01

    Both cDNA and a genomic DNA fragment encoding a new potato proteinase inhibitor Ⅱ were isolated from a diploid potato IVP101 (Solanum phurejia L.) and named PINⅡ-2x. Nucleotide sequencing confirmed that the DNA fragment of PINⅡ-2xwas 580 bp, including a 115-bp intron and two exons. The deduced PINⅡ-2x protein contained an intact signal peptide and two active sites. The PINⅡ-2x gene and its deduced PINⅡ-2x protein had 88% and 93% homology with another tetraploid potato proteinase inhibitor Ⅱ, respectively. Northern blotting analysis indicated that the mRNA of PINⅡ-2x gene was wound induced in potato leaves. Binary vector pNAR301 and pNAR302 were constructed for rice transformation, in which the PINⅡ-2x cDNA was driven,respectively, by rice actin I promoter (Actl) and maize ubiquitin promoter (Ubil). Via an Agrobacteriummediated method, these two constructs were transferred into japonica rice cv. Xiushui 63. PCR and Southern blotting analysis for transgenic rice revealed the integration of the PINⅡ-2x gene. Northern blotting analysis also confirmed transcripts of the PINⅡ-2x gene in transgenic rice plants. Insect bioassays using stripe stem borer (Chilo suppressalis Walker) demonstrated that the average weight and body length of larvae in transgenic plants were only nearly 50% and 61% of those of larvae in control plants, respectively.These results indicate that the PINⅡ-2x gene should be an effective insect-resistance gene and could be valuable for application in crop breeding for insect resistance.

  7. Using a Caesalpinia echinata Lam. protease inhibitor as a tool for studying the roles of neutrophil elastase, cathepsin G and proteinase 3 in pulmonary edema.

    Science.gov (United States)

    Cruz-Silva, Ilana; Neuhof, Christiane; Gozzo, Andrezza Justino; Nunes, Viviane Abreu; Hirata, Izaura Yoshico; Sampaio, Misako Uemura; Figueiredo-Ribeiro, Rita de Cássia; Neuhof, Heinz; Araújo, Mariana da Silva

    2013-12-01

    Acute lung injury (ALI) is characterized by neutrophil infiltration and the release of proteases, mainly elastase (NE), cathepsin G (Cat G) and proteinase 3 (PR3), which can be controlled by specific endogenous inhibitors. However, inhibitors of these proteases have been isolated from different sources, including plants. For this study, CeEI, or Caesalpinia echinata elastase inhibitor, was purified from C. echinata (Brazil-wood) seeds after acetone fractionation, followed by ion exchange and reversed phase chromatographic steps. Characterization with SDS-PAGE, stability assays, amino acid sequencing and alignment with other protein sequences confirmed that CeEI is a member of the soybean Kunitz trypsin inhibitor family. Like other members of this family, CeEI is a 20 kDa monomeric protein; it is stable within a large pH and temperature range, with four cysteine residues forming two disulfide bridges, conserved amino acid residues and leucine-isoleucine residues in the reactive site. CeEI was able to inhibit NE and Cat G at a nanomolar range (with K(i)s of 1.9 and 3.6 nM, respectively) and inhibited PR3 within a micromolar range (K(i) 3.7 μM), leading to hydrolysis of specific synthetic substrates. In a lung edema model, CeEI reduced the lung weight and pulmonary artery pressure until 180 min after the injection of zymosan-activated polymorphonuclear neutrophils. In experiments performed in the presence of a Cat G and PR3, but not an NE inhibitor, lung edema was reduced only until 150 min and pulmonary artery pressure was similar to that of the control. These results confirm that NE action is crucial to edema establishment and progression. Additionally, CeEI appears to be a useful tool for studying the physiology of pulmonary edema and provides a template for molecular engineering and drug design for ALI therapy.

  8. 无核荔枝半胱氨酸蛋白酶抑制剂基因克隆及序列分析%Cloning and Sequence Analysis of a Cysteine Proteinase Inhibitor Gene of Seedless Litchi

    Institute of Scientific and Technical Information of China (English)

    刘兴地; 刘娜; 李明芳; 郑学勤

    2012-01-01

    [ Objective] This study aimed to clone the cysteine proteinase inhibitor gene of seedless litchi and analyze the sequence. [ Method] According to the EST sequence of cysteine proteinase inhibitor in constructed SSH subtractive library of seedless litchi abortion, nucleotide sequence of the cysteine proteinase inhibitor gene was obtained by using RACE technology and analyzed by using bioinformatics software. [ Result] A cysteine protease inhibitor gene was obtained with the sequence of 635 bp containing a 321 bp open reading frame. It was predicted that the encoded protein contained 106 amino acids with conserved domain of cysteine proteinase inhibitor and had relatively high homology with the cysteine proteinase inhibitor gene of several species. [ Conclusion] This study had laid the foundation for further exploring the physiological functions of this cysteine proteinase inhibitor gene in plants.%[目的]对无核荔枝的半胱氨酸蛋白酶抑制剂基因进行克隆,并对其序列下进行分析.[方法]根据构建的无核荔枝胚败育SSH消减文库的半胱氨酸蛋白酶抑制剂EST序列,通过RACE技术获得半胱氨酸蛋白酶抑制基因的核苷酸序列并应用生物信息学软件进行分析.[结果]获得一个635 bp的半胱氨酸蛋白酶抑制基因序列,预测该序列含有321 bp的开放阅读框,推导其编码的蛋白质含106个氨基酸,具有半胱氨酸蛋白酶抑制剂保守区,与多个物种的半胱氨酸蛋白酶抑制剂基因具有较高的同源性.[结论]为进一步研究半胱氨酸蛋白酶抑制剂在植物中的生理功能奠定了基础.

  9. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro.

    Science.gov (United States)

    Chen, Lili; Gui, Chunshan; Luo, Xiaomin; Yang, Qingang; Günther, Stephan; Scandella, Elke; Drosten, Christian; Bai, Donglu; He, Xichang; Ludewig, Burkhard; Chen, Jing; Luo, Haibin; Yang, Yiming; Yang, Yifu; Zou, Jianping; Thiel, Volker; Chen, Kaixian; Shen, Jianhua; Shen, Xu; Jiang, Hualiang

    2005-06-01

    The 3C-like proteinase (3CLpro) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is one of the most promising targets for anti-SARS-CoV drugs due to its crucial role in the viral life cycle. In this study, a database containing structural information of more than 8,000 existing drugs was virtually screened by a docking approach to identify potential binding molecules of SARS-CoV 3CLpro. As a target for screening, both a homology model and the crystallographic structure of the binding pocket of the enzyme were used. Cinanserin (SQ 10,643), a well-characterized serotonin antagonist that has undergone preliminary clinical testing in humans in the 1960s, showed a high score in the screening and was chosen for further experimental evaluation. Binding of both cinanserin and its hydrochloride to bacterially expressed 3CLpro of SARS-CoV and the related human coronavirus 229E (HCoV-229E) was demonstrated by surface plasmon resonance technology. The catalytic activity of both enzymes was inhibited with 50% inhibitory concentration (IC50) values of 5 microM, as tested with a fluorogenic substrate. The antiviral activity of cinanserin was further evaluated in tissue culture assays, namely, a replicon system based on HCoV-229E and quantitative test assays with infectious SARS-CoV and HCoV-229E. All assays revealed a strong inhibition of coronavirus replication at nontoxic drug concentrations. The level of virus RNA and infectious particles was reduced by up to 4 log units, with IC50 values ranging from 19 to 34 microM. These findings demonstrate that the old drug cinanserin is an inhibitor of SARS-CoV replication, acting most likely via inhibition of the 3CL proteinase.

  10. Biochemical, immunological and kinetic characterization and partial sequence analysis of a thiol proteinase inhibitor from Bubalus bubalis kidney: An attempt targeting kidney disorders.

    Science.gov (United States)

    Shamsi, Anas; Ahmed, Azaj; Bano, Bilqees

    2017-01-01

    In the present study a thiol proteinase inhibitor was isolated from buffalo kidney making use of ammonium sulphate precipitation and gel filtration chromatography on Sephacryl S-100HR column. Purified inhibitor is homogeneous as it displayed a single band in gel electrophoresis both under reducing and non-reducing environment and is of 65KDa as revealed by gel filtration and SDS PAGE. Kinetic studies revealed the presence of reversible accompanied with competitive mode of inhibition; showing maximum efficacy against papain (Ki=2.90×10(-4)). It was maximally active at pH 8.0 and was stable for a period of 30, 60 and 90 days at 37, 4 and -20°C respectively. Immunological studies confirmed its purity of epitopes as a single precipitin line is obtained in immunodiffusion. N-terminal analysis revealed that it shared a good homology with mouse kidney cystatin as well as with Human Cys C and Cys E thereby advocating its use as a model for various human oriented studies which targets how the kidney cystatin level varies in accordance with various drugs that are currently being used as a target for variety of diseases.

  11. A Kazal-type serine proteinase inhibitor from chicken liver (clTI-1): purification, primary structure, and inhibitory properties.

    Science.gov (United States)

    Kubiak, Agnieszka; Jakimowicz, Piotr; Polanowski, Antoni

    2009-08-01

    Low-molecular-mass trypsin inhibitor (clTI-1; chicken liver Trypsin Inhibitor-1) was purified from chicken liver by extraction with perchloric acid, ammonium sulfate precipitation, a combination of ethanol-acetone fractionation followed by gel filtration, ion-exchange chromatography and RP-HPLC on a C18 column. The inhibitor occurs in two isoforms with molecular masses of 5938.56 and 6026.29 Da (determined by MALDI TOFF mass spectrometry). The complete amino acid sequences of both isoforms were determined (UniProtKB/Swiss-Prot P85000; ISK1L_CHICK). The inhibitor shows a high homology to Kazal-type family inhibitors, especially to trypsin/acrosin inhibitors and pancreatic secretory trypsin inhibitors. clTI-1 inhibits both bovine and porcine trypsin (K(a)=1.1 x 10(9) M(-1) and 2.5 x 10(9) M(-1), respectively). Significant differences were shown in the inhibition of the anionic and cationic forms of chicken trypsin (K(a)=4.5 x 10(8) M(-1) and 1.2 x 10(10) M(-1)). Weak interaction with human plasmin (K(a)=1.2 x 10(7) M(-1)) was also revealed.

  12. DNA structures decorated with cathepsin G/secretory leukocyte proteinase inhibitor stimulate IFNI production by plasmacytoid dendritic cells

    DEFF Research Database (Denmark)

    Skrzeczynska-Moncznik, Joanna; Wlodarczyk, Agnieszka; Banas, Magdalena;

    2013-01-01

    psoriasis. Here, we demonstrate that IFNI production in pDCs is stimulated by DNA structures containing the neutrophil serine protease cathepsin G (CatG) and the secretory leukocyte protease inhibitor (SLPI), which is a controlling inhibitor of serine proteases. We also demonstrate the presence...... of neutrophil-derived DNA structures containing CatG and SLPI in lesional skin samples from psoriasis patients. These findings suggest a previously unappreciated role for CatG in psoriasis by linking CatG and its inhibitor SLPI to the IFNI-dependent regulation of immune responses by pDCs in psoriatic skin....

  13. Triangular gold nanoparticles conjugated with peptide ligands: a new class of inhibitor for Candida albicans secreted aspartyl proteinase.

    Science.gov (United States)

    Jebali, Ali; Hajjar, Farzaneh Haji Esmaeil; Hekmatimoghaddam, Seyedhossein; Kazemi, Bahram; De La Fuente, Jesus M; Rashidi, Mohsen

    2014-08-15

    The aim of this study was to find the peptide ligands to inhibit Candida albicans secreted aspartyl proteinase 2 (Sap2). First, a ligand library, containing 300 different peptides, was constructed, and their interaction with Sap2 was separately calculated by molecular dynamic software. Second, 10 peptide ligands with the lowest intermolecular energy were selected. Then, triangular gold nanoparticles were synthesized, and separately conjugated with the peptide ligands. After synthesis, antifungal property and Sap inactivation of conjugated triangular gold nanoparticles, peptide ligands, and naked triangular gold nanoparticle were separately assessed, against thirty clinical isolates of C. albicans. In this study, we measured the uptake of conjugated and naked nanoparticles by atomic adsorption spectroscopy. This study showed that naked triangular gold nanoparticle and all conjugated triangular gold nanoparticles had high antifungal activity, but no peptide ligands had such activity. Of 300 peptide ligands, the peptide containing N-Cys-Lys-Lys-Arg-Met-Met-Lys-Ser-Met-Cys-C and its conjugate had the highest capability to inhibit Sap. Moreover, the uptake assay demonstrated that triangular gold nanoparticles conjugated with the peptide ligand had the highest uptake.

  14. Elastase, α1-proteinase inhibitor, and interleukin-8 in children and young adults with end-stage kidney disease undergoing continuous ambulatory peritoneal dialysis.

    Science.gov (United States)

    Polańska, Bożena; Augustyniak, Daria; Makulska, Irena; Niemczuk, Maria; Jankowski, Adam; Zwolińska, Danuta

    2014-06-01

    Peritoneal dialysis is one of the main modality of treatment in end-stage kidney diseases (ESKD) in children. In our previous work in chronic kidney disease patients, in pre-dialyzed period and on hemodialysis, the neutrophils were highly activated. The aim of this study was to assess an inflammatory condition and neutrophil activation in ESKD patients undergoing continuous ambulatory peritoneal dialysis (CAPD). Thirteen CAPD patients without infection, both sexes, aged 2.5-24 years, and group of healthy subjects (C) were studied. For comparative purposes the conservatively treated (CT) group of ESKD patients was included. Neutrophil elastase in complex with α1-proteinase inhibitor (NE-α1PI; ELISA), α1-proteinase inhibitor (α1PI; radial immunodiffusion) and interleukin-8 (IL-8; ELISA) were measured in the blood samples from CAPD, CT, and C group and in the peritoneal dialysate fluid (PDF) samples of patients on CAPD. A significantly increased plasma NE-α1PI levels (median 176.5 μg/L, range 85.2-373.2 μg/L; p < 0.00005), serum IL-8 (median 18.6 pg/mL, range 15.73-35.28 pg/mL; p < 0.05), and slightly decreased serum α1PI (median 1,540 mg/L, range 1,270-1,955; p ≤ 0.05) compared to the control groups were found. There were no significant differences of analyzed parameters between CAPD and CT patients. The concentration ratio of NE-α1PI, α1PI and IL-8 in blood/PDF was 29.97, 8.24, and 4.48, respectively. There were significantly positive correlations between serum and PDF concentration of α1PI and IL-8 (r = 0.613, p < 0.05; r = 0.59; p < 0.005, respectively). The results of our study demonstrate that neutrophils are highly activated in non-infected CAPD patients. The pivotal marker of this activation is NE-α1PI. It may contribute to chronic inflammation and tissues injury.

  15. Matrix metalloproteinase-2 and tissue inhibitor of metallo-proteinase-2 in colorectal carcinoma invasion and metastasis

    OpenAIRE

    Li, Bing-hui; zhao,Peng; Liu, Shi-Zheng; Yu, Yue-Ming; Han, Mei; Wen, Jin-kun

    2005-01-01

    AIM: To explore the relationship between matrix metallopr-oteinase-2 (MMP-2) and tissue inhibitor of metallopr-oteinase-2 (TIMP-2) in the development of colorectal carcinoma and to provide a valuable marker for clinical diagnosis.

  16. Measurement of homonuclear three-bond J(HNH{alpha}) coupling constants in unlabeled peptides complexed with labeled proteins: Application to a decapeptide inhibitor bound to the proteinase domain of the NS3 protein of hepatitis C virus (HCV)

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Daniel O.; Barbato, Gaetano; Koch, Uwe; Ingallinella, Paolo; Bianchi, Elisabetta; Sambucini, Sonia; Neddermann, Petra; De Francesco, Raffaele; Pessi, Antonello; Bazzo, Renzo

    2001-05-15

    A new isotope-filtered experiment has been designed to measure homonuclear three-bond J(H{sup N}H{sup {alpha}}) coupling constants of unlabeled peptides complexed with labeled proteins. The new experiment is based on the 3D HNHA pulse scheme, and belongs to the 'quantitative J-correlation' type. It has been applied to a decapeptide inhibitor bound to the proteinase domain of the NS3 protein of human hepatitis C virus (HCV)

  17. Inhibitory effects of a Kunitz-type inhibitor from Pithecellobium dumosum (Benth) seeds against insect-pests' digestive proteinases.

    Science.gov (United States)

    Rufino, Fabiola P S; Pedroso, Vanessa M A; Araujo, Jonalson N; França, Anderson F J; Rabêlo, Luciana M A; Migliolo, Ludovico; Kiyota, Sumika; Santos, Elizeu A; Franco, Octavio L; Oliveira, Adeliana S

    2013-02-01

    Pithecellobium dumosum is a tree belonging to the Mimosoideae subfamily that presents various previously characterized Kunitz-type inhibitors. The present study provides a novel Kunitz-trypsin inhibitor isoform purified from P. dumosum seeds. Purification procedure was performed by TCA precipitation followed by a trypsin-Sepharose chromatography and a further reversed-phase HPLC. Purified inhibitor (PdKI-4) showed enhanced inhibitory activity against bovine trypsin and chymotrypsin. Furthermore, PdKI-4 showed remarkable inhibitory activity against serine proteases from the coleopterans Callosobruchus maculatus and Zabrotes subfasciatus, and the lepidopterans Alabama argillacea and Telchin licus. However, PdKI-4 was unable to inhibit porcine pancreatic elastase, pineapple bromelain and Carica papaya papain. SDS-PAGE showed that PdKI-4 consisted of a single polypeptide chain with molecular mass of 21 kDa. Kinetic studies demonstrated that PdKI-4 is probably a competitive inhibitor with a Ki value of 5.7 × 10(-10) M for bovine trypsin. PdKI-4 also showed higher stability over a wide range of temperature (37-100 °C) and pH (2-12). N-termini sequence was obtained by Edman degradation showing higher identity with other Mimosoideae subfamily Kunitz-type inhibitor members. In summary, data here reported indicate the biotechnological potential of PdKI-4 for development of products against insect-pests.

  18. Potential Use of Proteinase Inhibitors, Avidin, and Other Bio-reagents for Synergizing Bt Performance and Delaying Resistance Development to Bt

    Science.gov (United States)

    After being ingested by target insects, the insecticidal proteins from Bacillus thuringiensis (Bt) need to go through a proteolytic process by insect midgut proteinases to become activated. At the same time, Bt can be hydrolyzed and degraded by midgut proteinases to become non-toxic to target insect...

  19. Effect of quercetin on expression of matrix metallo-proteinases and tissue inhibitor of matalloproteinase-1 in cultured rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    康鲁平; 齐荔红; 张俊平; 周斌

    2003-01-01

    Objective: To study the effects of quercetin (QU) on matrix metallo-proteinases (MMPs), the tissue inhibitor of matalloproteinase-1 (TIMP-1), procollagen I and 2 proteoglycans (decorin and biglycan) mRNA expression in cultured rat hepatic stellate cell line HSC-T6 cells.Methods: Cells were treated with different concentrations of QU (12.5, 25, 50 μmol/L) or drug solvent (0.1 % Me2SO) for 24 h.mRNA expression was determined by reverse transcription polymerase chain reaction (RT-PCR).Results: QU (12.5 - 50 μmol/L) enhanced collagenase (rat MMP-13) and membrane type1-MMP (MMP-14) mRNA expression, decreased procollagen I mRNA expression in a concentration-dependent manner, but did not affect gelatinase-A (MMP-2), TIMP-1, decorin and biglycan expression.Conclusion: QU may decrease matrix deposition and increase matrix degradation, which might be beneficial to liver fibrosis.

  20. Entamoeba histolytica: correlation of assessment methods to measure erythrocyte digestion, and effect of cysteine proteinases inhibitors in HM-1:IMSS and HK-9:NIH strains.

    Science.gov (United States)

    Mora-Galindo, Juan; Anaya-Velázquez, Fernando; Ramírez-Romo, Susana; González-Robles, Arturo

    2004-01-01

    Entamoeba histolytica trophozoites are able to degrade human erythrocytes; the loss of erythrocyte cellular matrix and degradation of plasma membrane were observed, along with the decrease in the average size of digestive vacuoles. Ninety-six percent of hemoglobin ingested was hydrolyzed by trophozoites within 3h, as evidenced by electrophoresis. Accordingly, X-ray spectroscopy revealed the presence of iron inside vacuoles after erythrophagocytosis, the concentration of which decreased to control levels in a similar period. Quantification of erythrocyte digestion at the early and late periods was determined by a spectrophotometric procedure, with t(1/2)=1.67 h and 35-min for HM-1:IMSS and HK-9:NIH trophozoites, respectively. In the latter, activity was due to the combined action of intracellular enzymatic activity and exocytosis. E-64c and leupeptin totally inhibited erythrocyte digestion within a 3-h period, thereafter hydrolysis took place at lower rate. Our results suggest that erythrocyte digestion in E. histolytica proceeds in different ways in these two amebic strains, and can be blocked by proteinase inhibitors.

  1. Trichocystatin-2 (TC-2): an endogenous inhibitor of cysteine proteinases in Trichomonas vaginalis is associated with TvCP39.

    Science.gov (United States)

    Puente-Rivera, Jonathan; Ramón-Luing, Lucero de los Ángeles; Figueroa-Angulo, Elisa Elvira; Ortega-López, Jaime; Arroyo, Rossana

    2014-09-01

    The causal agent of trichomoniasis is a parasitic protist, Trichomonas vaginalis, which is rich in proteolytic activity, primarily carried out by cysteine proteases (CPs). Some CPs are known virulence factors. T. vaginalis also possesses three genes encoding endogenous cystatin-like CP inhibitors. The aim of this study was to identify and characterize one of these CP inhibitors. Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), a cystatin-like peptidase inhibitor dubbed Trichocystatin-2 (TC-2) was identified in the T. vaginalis active degradome in association with TvCP39, a 39kDa CP involved in cytotoxicity. To characterize the TC-2 inhibitor, we cloned and expressed the tvicp-2 gene, purified the recombinant protein (TC-2r), and produced a specific polyclonal antibody (α-TC-2r). This antibody recognized a 10kDa protein band by western blotting. An indirect immunofluorescence assay (IFA) and cell fractionation assays using the α-TC-2r antibody showed that TC-2 was localized in the cytoplasm and lysosomes and that it colocalized with TvCP39. TC-2r showed inhibitory activity against papain, cathepsin-L, and TvCP39 in trichomonad extracts and live parasites but not legumain-like CPs. Live trichomonads treated with TC-2r showed reduced trichomonal cytotoxicity to HeLa cell monolayers in a TC-2r-concentration-dependent manner. In this study, we identified and characterized an endogenous cystatin-like inhibitor in T. vaginalis, TC-2, which is associated with TvCP39 and appears to regulate the cellular damage caused by T. vaginalis.

  2. The recombinant prepro region of TvCP4 is an inhibitor of cathepsin L-like cysteine proteinases of Trichomonas vaginalis that inhibits trichomonal haemolysis.

    Science.gov (United States)

    Cárdenas-Guerra, Rosa Elena; Ortega-López, Jaime; Flores-Pucheta, Claudia Ivonne; Benítez-Cardoza, Claudia Guadalupe; Arroyo, Rossana

    2015-02-01

    Trichomonas vaginalis expresses multiple proteinases, mainly of the cysteine type (CPs). A cathepsin L-like 34kDa CP, designated TvCP4, is synthesized as a 305-amino-acid precursor protein. TvCP4 contains the prepro fragment and the catalytic triad that is typical of the papain-like CP family of clan CA. The aim of this work was to determine the function of the recombinant TvCP4 prepro region (ppTvCP4r) as a specific inhibitor of CPs. We cloned, expressed, and purified the recombinant TvCP4 prepro region. The conformation of the purified and refolded ppTvCP4r polypeptide was verified by circular dichroism spectroscopy and fluorescence emission spectra. The inhibitory effect of ppTvCP4r was tested on protease-resistant extracts from T. vaginalis using fluorogenic substrates for cathepsin L and legumain CPs. In 1-D zymograms, the inhibitory effect of ppTvCP4r on trichomonad CP proteolytic activity was observed in the ∼97, 65, 39, and 30 kDa regions. By using 2-D zymograms and mass spectrometry, several of the CPs inhibited by ppTvCP4r were identified. A clear reduction in the proteolytic activity of several cathepsin L-like protein spots (TvCP2, TvCP4, TvCP4-like, and TvCP39) was observed compared with the control zymogram. Moreover, pretreatment of live parasites with ppTvCP4r inhibited trichomonal haemolysis in a concentration dependent manner. These results confirm that the recombinant ppTvCP4 is a specific inhibitor of the proteolytic activity of cathepsin L-like T. vaginalis CPs that is useful for inhibiting virulence properties depending on clan CA papain-like CPs.

  3. Comparison of mammalian and bacterial expression library screening to detect recombinant alpha-1 proteinase inhibitor variants with enhanced thrombin inhibitory capacity.

    Science.gov (United States)

    Gierczak, Richard F; Bhakta, Varsha; Xie, Michael; Sheffield, William P

    2015-08-20

    Serpins are a widely distributed family of serine proteases. A key determinant of their specificity is the reactive centre loop (RCL), a surface motif of ∼20 amino acids in length. Expression libraries of variant serpins could be rapidly probed with proteases to develop novel inhibitors if optimal systems were available. The serpin variant alpha-1 proteinase inhibitor M358R (API M358R) inhibits the coagulation protease thrombin, but at sub-maximal rates compared to other serpins. Here we compared two approaches to isolate functional API variants from serpin expression libraries, using the same small library of API randomized at residue 358 (M358X): flow cytometry of transfected HEK 293 cells expressing membrane-displayed API; and a thrombin capture assay (TCA) performed on pools of bacterial lysates expressing soluble API. No enrichment for specific P1 residues was observed when the RCL codons of the 1% of sorted transfected 293 cells with the highest fluorescent thrombin-binding signals were subcloned and sequenced. In contrast, screening of 16 pools of bacterial API-expressing transformants led to the facile identification of API M358R and M358K as functional variants. Kinetic characterization showed that API M358R inhibited thrombin 17-fold more rapidly than API M358K. Reducing the incubation time with immobilized thrombin improved the sensitivity of TCA to detect supra-active API M358R variants and was used to screen a hypervariable library of API variants expressing 16 different amino acids at residues 352-357. The most active variant isolated, with TLSATP substituted for FLEAI, inhibited thrombin 2.9-fold more rapidly than API M358R. Our results indicate that flow cytometric approaches used in protein engineering of antibodies are not appropriate for serpins, and highlight the utility of the optimized TCA for serpin protein engineering.

  4. A Kazal-type serine proteinase inhibitor from Cyclina sinensis is involved in immune response and signal pathway initiation.

    Science.gov (United States)

    Ren, Yipeng; Zhang, Hao; Pan, Baoping; Yan, Chuncai

    2015-11-01

    Serine protease inhibitors (SPIs) are an important group of protease inhibitors involved in a variety of biological processes. In the present study, a Kazal-type serine protease inhibitor homolog gene (designated as CsKPI) was identified from a Cyclina sinensis cDNA library. The open reading frame consists of 456 bp and encodes a protein of 151 amino acid residues with a theoretical molecular mass of 16.85 kDa and an isoelectric point of 5.74. Furthermore, using quantitative real-time PCR, we focused on the expression patterns of CsKPI found in tissues and on the stimulation of this gene's expression by bacteria. The results show that a higher-level mRNA expression of CsKPI was detected in hemocytes (P < 0.05) and was significantly upregulated at 3 h (P < 0.01) upon receiving bacterial challenges with Vibrio anguillarum. In addition, after the CsKPI gene was silenced by RNA interference, the expression of the CsTLR2 and CsMyD88 genes was extremely significantly decreased (P < 0.01) in C. sinensis. Finally, the recombinant CsKPI (rCsKPI) protein was purified and shown to exhibit less inhibitory activity than C-lyz against V. anguillarum in vitro. Hence, we propose that CsKPI plays an important role in the innate immunity and mediates TLR2 and MyD88-dependent pathway initiation in C. sinensis.

  5. 丝氨酸蛋白酶抑制剂B9与相关免疫细胞%Serine proteinase inhibitor B9 and related immune cells

    Institute of Scientific and Technical Information of China (English)

    邓常文; 张星星; 白冲

    2015-01-01

    Serine proteinase inhibitor B9 (Serpin B9),one member of the protease inhibitor superfamily including human serine proteinase inhibitor 9 (PI-9) and rat serine proteinase inhibitor homologous protein SPI-6,is an endogenous protease inhibitor mainly against GrB.Serpin B9 regulate apoptosis,immune reaction,DNA vaccines' abilities in T lymphocytes,dendritic cells,natural killer cells,neutrophils,mesenchymal stem cells and tumor cells.Study on the function of Serpin B9 could not only facilitate further exploration of the mechanism of immune related diseases,but also provide new theoretical basis for the treatment of tumor and the clinical applicution of stem cells.%丝氨酸蛋白酶抑制剂B9(Serpin B9)是蛋白酶抑制剂超家族成员,包括人丝氨酸蛋白酶抑制剂(PI-9)及鼠丝氨酸蛋白酶抑制剂同源蛋白(SPI-6),是主要针对颗粒蛋白酶B(GrB)的内源性蛋白酶抑制剂.Serpin B9的调节在T淋巴细胞、树突状细胞、自然杀伤细胞、中性粒细胞、间充质干细胞、肿瘤细胞有抑制凋亡、维持细胞平衡、调节免疫反应、增强DNA疫苗能力等功能.研究Serpin B9的作用机理,将有利于相关免疫疾病发生机制的探索,并为临床干细胞治疗、抗肿瘤治疗等提供新的理论依据.

  6. Morphological Variation among 23 Xiphinema americanum Populations.

    Science.gov (United States)

    Cho, M R; Robbins, R T

    1991-01-01

    Morphometrics of 23 United States populations of Xiphinema americanum sensu lato, sharing the characteristics of an offset lip region and conoid tail, were examined and analyzed statistically by canonical discriminant analysis (CDA). Specimens were collected from Arkansas, Georgia, Tennessee, Mississippi, Florida, Oklahoma, California, and North Dakota. Eleven measurements and body ratios obtained from female specimens were used in the analysis. Xiphinema americanum, X. bricolensis, X. californicum, X. citricolum, X, intermedium, X. tarjanense, and X. thornei, and one undescribed species were identified among the 23 populations. Three groups -- X. americanum-group, X. californicum-group, and X. intermedium-group (X. intermedium and X. tarjanense) -- were formed and four populations belonging to four different species were separated consistently from these groups in CDA scatterplots of the 23 populations. Composition of the groups was somewhat related to the geographical origins of the populations in the groups. A population from California had morphometrics intermediate between X. americanum and X. californicum. Separation between the X. americanum-group and X. californicum-group in the CDA scatterplots was not as distinct as that between them and the X. intermedium-group or between any of the three groups and the four single outlying populations.

  7. Effect of adding Matrix Metallo proteinase inhibitors on the degree of conversion of monomers to polymer an experimental bonding agent

    Directory of Open Access Journals (Sweden)

    Ghavam M.

    2009-11-01

    Full Text Available "nBackground and Aim: In spite of the achievements in the field of dental adhesives, we are facing challenges with dentine bonding resistance, strength and stability. According to recent studies the role of MMP inhibitors in association with bonding,s persistence and leakage reduction and restoration,s persistence is important. The aim of this study was to investigate the effect of doxycycline as a MMP inhibitor on the degree of conversion (DC of an experimental dental adhesive. "nMaterials and Methods: In this experimental study, a new dental adhesive blend was prepared by mixing doxycycline monohydrate (in concentrations of 0.0, 0.25, 0.5, and 1 wt.% with monomers. The monomers were composed of 12% Bis-GMA and 10% TMPTMA, 28% HEMA, and 50% Ethanol by weight for all groups. Comphorquinone and amines were chosen as photo initiator system. Degree of conversion of all adhesives was measured using FTIR spectroscopy. The results were analyzed using one-way ANOVA and Tukey post hoc tests. "nResults: The results showed that addition of 0.25, 0.5, and 1 weight percent doxycycline did not significantly reduce the DC of the adhesives compared to 0.0% control group (p>0.05%. "nConclusion: According to the results of this study, adding doxycycline to the adhesives did not adversely affect the DC.

  8. Manduca sexta hemolymph proteinase 21 activates prophenoloxidase-activating proteinase 3 in an insect innate immune response proteinase cascade.

    Science.gov (United States)

    Gorman, Maureen J; Wang, Yang; Jiang, Haobo; Kanost, Michael R

    2007-04-20

    Melanization, an insect immune response, requires a set of hemolymph proteins including pathogen recognition proteins that initiate the response, a cascade of mostly unknown serine proteinases, and phenoloxidase. Until now, only initial and final proteinases in the pathways have been conclusively identified. Four such proteinases have been purified from the larval hemolymph of Manduca sexta: hemolymph proteinase 14 (HP14), which autoactivates in the presence of microbial surface components, and three prophenoloxidase-activating proteinases (PAP1-3). In this study, we have used two complementary approaches to identify a serine proteinase that activates proPAP3. Partial purification from hemolymph of an activator of proPAP3 resulted in an active fraction with two abundant polypeptides of approximately 32 and approximately 37 kDa. Labeling of these polypeptides with a serine proteinase inhibitor, diisopropyl fluorophosphate, indicated that they were active serine proteinases. N-terminal sequencing revealed that both were cleaved forms of the previously identified hemolymph serine proteinase, HP21. Surprisingly, cleavage of proHP21 had occurred not at the predicted activation site but more N-terminal to it. In vitro reactions carried out with purified HP14 (which activates proHP21), proHP21, proPAP3, and site-directed mutant forms of the latter two proteinases confirmed that HP21 activates proPAP3 by limited proteolysis. Like the HP21 products purified from hemolymph, HP21 that was activated by HP14 in the in vitro reactions was not cleaved at its predicted activation site.

  9. Knock-down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover (Trifolium repens) reveals a redundancy and diversity of gene function.

    Science.gov (United States)

    Islam, Afsana; Leung, Susanna; Burgess, Elisabeth P J; Laing, William A; Richardson, Kim A; Hofmann, Rainer W; Dijkwel, Paul P; McManus, Michael T

    2015-12-01

    The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis.

  10. A recombinant plasmid of composite cysteine proteinase inhibitor/glyceraldehyde-3-phosphate dehydrogenase gene of periodic Brugia malayi functions on DNA immunity in the host

    Directory of Open Access Journals (Sweden)

    Z Fang

    2016-01-01

    Full Text Available Objectives: Both cysteine proteinase inhibitors (CPIs and glyceraldehyde-3-phosphate dehydrogenase (GAPDH play important roles in the pathogenesis of parasites and their relationship with the hosts. We constructed a new eukaryotic recombinant expression plasmid pcDNA3.1(+-BmCPI/BmGAPDH of periodic Brugia malayi for investigation of the DNA vaccine-elicited immune responses. Materials and Methods: We cloned a gene encoding the CPIs and GAPDH from periodic B. malayi into vector pcDNA3.1. The composited plasmid or the control was injected into the tibialis anterior muscle of the hind leg in BALB/c mice, respectively. The target genes were detected by reverse transcription-polymerase chain reaction in muscle tissues. The stimulation index (SI of T-lymphocyte proliferation and the levels of interferon-gamma (INF-g and interleukin-4 ( IL-4 in serum were detected by thiazolyl blue tetrazolium blue and enzyme-linked immunosorbent assays. Results: The pcDNA3.1(+-BmCPI/BmGAPDH was amplified from muscle tissues of the mice after immunisation. The SI of the immunised group was significantly higher than that of the two control groups (P < 0.05. The levels of INF-g and IL-4 of pcDNA3.1(+-BmCPI/BmGAPDH group were both higher than those of the two control groups (P < 0.05. The level of INF-g of pcDNA3.1(+-BmCPI/BmGAPDH group was significantly higher than that of pcDNA3.1(+-BmCPI/CpG group (P < 0.05. Conclusions: We conclude that the recombinant plasmid pcDNA3.1(+-BmCPI/BmGAPDH could elicit specific humoural and cellular immune responses in mice.

  11. Serum and fecal canine α1-proteinase inhibitor concentrations reflect the severity of intestinal crypt abscesses and/or lacteal dilation in dogs.

    Science.gov (United States)

    Heilmann, Romy M; Parnell, Nolie K; Grützner, Niels; Mansell, Joanne; Berghoff, Nora; Schellenberg, Stefan; Reusch, Claudia E; Suchodolski, Jan S; Steiner, Jörg M

    2016-01-01

    Gastrointestinal (GI) protein loss, due to lymphangiectasia or chronic inflammation, can be challenging to diagnose. This study evaluated the diagnostic accuracy of serum and fecal canine α1-proteinase inhibitor (cα1PI) concentrations to detect crypt abscesses and/or lacteal dilation in dogs. Serum and fecal cα1PI concentrations were measured in 120 dogs undergoing GI tissue biopsies, and were compared between dogs with and without crypt abscesses/lacteal dilation. Sensitivity and specificity were calculated for dichotomous outcomes. Serial serum cα1PI concentrations were also evaluated in 12 healthy corticosteroid-treated dogs. Serum cα1PI and albumin concentrations were significantly lower in dogs with crypt abscesses and/or lacteal dilation than in those without (both P <0.001), and more severe lesions were associated with lower serum cα1PI concentrations, higher 3 days-mean fecal cα1PI concentrations, and lower serum/fecal cα1PI ratios. Serum and fecal cα1PI, and their ratios, distinguished dogs with moderate or severe GI crypt abscesses/lacteal dilation from dogs with only mild or none such lesions with moderate sensitivity (56-92%) and specificity (67-81%). Serum cα1PI concentrations increased during corticosteroid administration. We conclude that serum and fecal α1PI concentrations reflect the severity of intestinal crypt abscesses/lacteal dilation in dogs. Due to its specificity for the GI tract, measurement of fecal cα1PI appears to be superior to serum cα1PI for diagnosing GI protein loss in dogs. In addition, the serum/fecal cα1PI ratio has an improved accuracy in hypoalbuminemic dogs, but serum cα1PI concentrations should be carefully interpreted in corticosteroid-treated dogs.

  12. The remarkable efficiency of a Pin-II proteinase inhibitor sans two conserved disulfide bonds is due to enhanced flexibility and hydrogen bond density in the reactive site loop.

    Science.gov (United States)

    Joshi, Rakesh S; Mishra, Manasi; Tamhane, Vaijayanti A; Ghosh, Anirban; Sonavane, Uddhavesh; Suresh, C G; Joshi, Rajendra; Gupta, Vidya S; Giri, Ashok P

    2014-01-01

    Capsicum annuum (L.) expresses diverse potato type II family proteinase inhibitors comprising of inhibitory repeat domain (IRD) as basic functional unit. Most IRDs contain eight conserved cysteines forming four disulfide bonds, which are indispensible for their stability and activity. We investigated the functional significance of evolutionary variations in IRDs and their role in mediating interaction between the inhibitor and cognate proteinase. Among the 18 IRDs encoded by C. annuum, IRD-7, -9, and -12 were selected for further characterization on the basis of variation in their reactive site loop, number of conserved cysteine residues, and higher theoretical ΔGbind for interaction with Helicoverpa armigera trypsin. Moreover, inhibition kinetics showed that IRD-9, despite loss of some of the disulfide bonds, was a more potent proteinase inhibitor among the three selected IRDs. Molecular dynamic simulations revealed that serine residues in the place of cysteines at seventh and eighth positions of IRD-9 resulted in an increase in the density of intramolecular hydrogen bonds and reactive site loop flexibility. Results of the serine residues chemical modification also supported this observation and provided a possible explanation for the remarkable inhibitory potential of IRD-9. Furthermore, this natural variant among IRDs showed special attributes like stability to proteolysis and synergistic inhibitory effect on other IRDs. It is likely that IRDs have coevolved selective specialization of their structure and function as a response towards specific insect proteases they encountered. Understanding the molecular mechanism of pest protease-plant proteinaceous inhibitor interaction will help in developing effective pest control strategies. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:39.

  13. Expression and regulation of metalloproteinases-2, -9 and tissue inhibitors of metallo- proteinases in rat corpus luteum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The expression and regulation of metalloproteinases-2, -9 (MMP-2, -9) and their tissue inhibitors TIMP-1, -2, -3 mRNA were studied in this experiment. In the PMSG- hCG primed pseudopregnant rat, MMP-2, -9 mRNA levels were the highest at Day 1, decreased from Day 4, and reached the minimal level at Day 8, then increased at Day 14; no significant changes were observed in TIMP-2 mRNA expression from Day 1 to Day 14; TIMP-3 mRNA expression was the lowest at Day 1, increased from Day 4, reached the maximal level at Day 8, and persisted to Day 14. TNF-αcould significantly increase the expression of MMP-2, -9 and TIMP-1 mRNA in the in vitro perfused pseudopregnant CL, and decrease the expression of TIMP-3 mRNA, but had no effect on TIMP-2 mRNA expression. The results indicate that MMP-2, -9 and TIMP-1, -2, -3 might be involved in the regulation of CL function and maintenance of CL structure via their coordinated gene expression. TNF-α could inhibit luteal regression via increasing MMP-2, -9 and TIMP-1 mRNA in the in vitro perfused pseudopregnant ovary.

  14. Alpha-1 proteinase inhibitors for the treatment of alpha-1 antitrypsin deficiency: safety, tolerability, and patient outcomes

    Directory of Open Access Journals (Sweden)

    Chotirmall SH

    2015-01-01

    Full Text Available Sanjay H Chotirmall,1 Mazen Al-Alawi,2 Thomas McEnery,2 Noel G McElvaney2 1Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; 2Department of Respiratory Medicine, Beaumont Hospital, Dublin, Republic of Ireland Abstract: Alpha-1 antitrypsin (AAT deficiency remains an underrecognized genetic disease with predominantly pulmonary and hepatic manifestations. AAT is derived primarily from hepatocytes; however, macrophages and neutrophils are secondary sources. As the natural physiological inhibitor of several proteases, most importantly neutrophil elastase (NE, it plays a key role in maintaining pulmonary protease–antiprotease balance. In deficient states, unrestrained NE activity promotes damage to the lung matrix, causing structural defects and impairing host defenses. The commonest form of AAT deficiency results in a mutated Z AAT that is abnormally folded, polymerized, and aggregated in the liver. Consequently, systemic levels are lower, resulting in diminished pulmonary concentrations. Hepatic disease occurs due to liver aggregation of the protein, while lung destruction ensues from unopposed protease-mediated damage. In this review, we will discuss AAT deficiency, its clinical manifestations, and augmentation therapy. We will address the safety and tolerability profiles of AAT replacement in the context of patient outcomes and cost-effectiveness and outline future directions for work in this field. Keywords: alpha-1, augmentation, deficiency, replacement, emphysema

  15. Phage display of the serpin alpha-1 proteinase inhibitor randomized at consecutive residues in the reactive centre loop and biopanned with or without thrombin.

    Directory of Open Access Journals (Sweden)

    Benjamin M Scott

    Full Text Available In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1 yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3 was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1 as a serpin amenable to phage display and suggest the utility of this approach for the selection

  16. Expression of gelatinases and tissue inhibitors of metallo- proteinases in the rhesus monkey (Macaca mulatta) corpus luteum

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are believed to play important roles in the formation and regression of corpus luteum (CL). This study is to investigate the expression of gelatinases (MMP-2, -9) and TIMPs in the rhesus monkey CL in both early and late luteal phases and during the early stages of pregnancy. Ovaries were collected from regularly cycling rhesus monkey at D5 and D15 following ovulation and at D12, D18 and D26 of pregnancy. In situ hybridization revealed that in the CL MMP-2 mRNA was expressed during both formation and regression, while MMP-9 mRNA was mainly localized in the late luteal phase. Reduction of MMP-2, -9 transcripts in the CL was observed during pregnancy. MMP-2 mRNA in the CL reduced to an undetectable level at D26 of pregnancy. TIMP-1 mRNA was highly expressed in the CL in both early and late luteal phases and persisted throughout the early stages of pregnancy. Strong signal for TIMP-2 mRNA was also detected in both luteal phases, and the level of TIMP-2 mRNA gradually increased with the progresses of pregnancy. No TIMP-3 mRNA was detected in the macaque CL in this study. In conclusion, these results suggest that MMP-2, -9 and TIMP-1, -2 may have functional roles in rhesus monkey CL. Coordinated expression of MMP-2, -9 and TIMP-2 may play a role in the maintaining of luteal function during early pregnancy. The unchanged expression pattern of TIMP-1 indicates that it may have other functions in the primate CL than inhibition of MMPs.

  17. Prospeção de inibidores de serinoproteinases em folhas de leguminosas arbóreas da floresta Amazônica Prospecting serine proteinase inhibitors in leaves from leguminous trees of the Amazon forest

    Directory of Open Access Journals (Sweden)

    Larissa Ramos Chevreuil

    2011-03-01

    Full Text Available Os inibidores de proteinases são proteínas extensivamente investigadas nos tecidos de estocagem, mas pouco prospectadas em outros tecidos vegetais. O objetivo deste estudo foi detectar a presença de inibidores de serinoproteinases em extratos foliares de quinze espécies de leguminosas arbóreas da Amazônia. As espécies estudadas foram: Caesalpinia echinata, C. ferrea, Cedrelinga cateniformis, Copaifera multijuga, Dinizia excelsa, Enterolobium contortisiliquum, E. maximum, E. schomburgkii, Leucaena leucocephala, Ormosia paraensis, Parkia multijuga, P. pendula, P. platycephala, Swartzia corrugata e S. polyphylla. Folhas foram coletadas, secas a 30ºC durante 48 h, trituradas e submetidas à extração com NaCl (0,15 M, 10% p/v resultando no extrato total. Ensaios foram executados para determinar a concentração de proteínas e detectar a atividade inibitória contra a tripsina e quimotripsina bovina. Os teores de proteínas bruta e solúvel nos extratos foliares variaram de 7,9 a 31,2% e 1,3 a 14,8%, respectivamente. A atividade inibitória sobre a tripsina e quimotripsina foi observada em todos os extratos foliares. Contudo, nos extratos de E. maximum, L. leucocephala, P. pendula, S. corrugata e S. polyphylla a inibição foi maior sobre a tripsina, enquanto o extrato de P. multijuga foi mais efetivo contra a quimotripsina. Nós concluímos que nos extratos foliares de leguminosas arbóreas têm inibidores de serinoproteinases e exibem potencial aplicações biotecnológicas.The proteinase inhibitors are proteins extensively investigated in tissue storage, but few prospected in other plant tissues. The aim of this study was to detect the presence of serine proteinase inhibitors in leaf extracts from fifteen species of leguminous trees of the Amazon forest. The species studied were Caesalpinia echinata, C. ferrea, Cedrelinga cateniformis, Copaifera multijuga, Dinizia excelsa, Enterolobium contortisiliquum, E. maximum, E. schomburgkii

  18. The reaction of serpins with proteinases involves important enthalpy changes.

    Science.gov (United States)

    Boudier, C; Bieth, J G

    2001-08-21

    When active serpins are proteolytically inactivated in a substrate-like reaction, they undergo an important structural transition with a resultant increase in their conformational stability. We have used microcalorimetry to show that this conformational alteration is accompanied by an important enthalpy change. For instance, the cleavage of alpha(1)-proteinase inhibitor by Pseudomonas aeruginosa elastase, Staphylococcus aureus V8 proteinase, or papain and that of antithrombin by leukocyte elastase are characterized by large enthalpy changes (DeltaH = -53 to -63 kcal mol(-1)). The former reaction also has a large and negative heat capacity (DeltaC(p)() = -566 cal K(-1) mol(-1)). In contrast, serpins release significantly less heat when they act as proteinase inhibitors. For example, the inhibition of pancreatic elastase, leukocyte elastase, and pancreatic chymotrypsin by alpha(1)-proteinase inhibitor and that of pancreatic trypsin and coagulation factor Xa by antithrombin are accompanied by a DeltaH of -20 to -31 kcal mol(-1). We observe no heat release upon proteolytic cleavage of inactive serpins or following inhibition of serine proteinases by canonical inhibitors or upon acylation of chymotrypsin by N-trans-cinnamoylimidazole. We suggest that part of the large enthalpy change that occurs during the structural transition of serpins is used to stabilize the proteinase in its inactive state.

  19. Comparison of differentially expressed genes in the salivary glands of male ticks, Amblyomma americanum and Dermacentor andersoni.

    Science.gov (United States)

    Bior, Abdelaziz D; Essenberg, Richard C; Sauer, John R

    2002-06-01

    Genes expressed differentially in the salivary glands of unfed and fed male ticks, Amblyomma americanum (L.), were identified, cloned and sequenced, and some were compared with those expressed in the salivary glands of Dermacentor andersoni. Total protein and RNA increased sixfold in the salivary glands of fed male A. americanum, while in fed male D. andersoni salivary glands, RNA increased approximately 3.5 times. Feeding D. andersoni in the presence of females increased total RNA by 25% over those fed in the absence of females. Complementary DNAs were synthesized from RNA obtained from unfed and fed ticks and amplified using RNA arbitrarily primed polymerase chain reaction (RAP-PCR) with three different primers in separate reactions. Differential display showed clear banding differences between the fed and the unfed ticks in A. americanum and D. andersoni. Sixty-one cDNA fragments that appeared to be from differentially expressed genes in A. americanum were isolated, cloned and sequenced. Hybridization reactions with labeled cDNA probes confirmed the differential expression of many of the genes in unfed and fed ticks' salivary glands; however, many of the bands contained more than one fragment and some of the fragments isolated from apparently differential bands were not specific. Sequences for 28 of the cDNA fragments (150-600 nucleotides in length) demonstrated similarity to genes in the databases, but nine of these were similar to sequences of unknown function. Some of the gene fragments identified may be important to tick feeding or tick salivary gland physiology, including a histamine-binding protein, an organic ion transporter, an apoptosis inhibitor, a cathepsin-B-like cysteine protease, proteins involved in gene regulation and several proteins involved in protein synthesis. Cross-hybridization of identified cDNAs from A. americanum with cDNA probes synthesized from D. andersoni total RNA did not show significant similarity between the two species.

  20. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.

    Science.gov (United States)

    Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming

    2014-05-01

    It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.

  1. 丝氨酸蛋白酶抑制剂9与支气管哮喘相关免疫细胞%Serine proteinase inhibitor 9 and bronchial asthma related immune cells

    Institute of Scientific and Technical Information of China (English)

    邓常文; 张星星; 屈玉兰; 白冲

    2015-01-01

    丝氨酸蛋白酶抑制剂9(serine proteinase inhibitor 9,PI-9)是一种主要针对颗粒蛋白酶B的内源性蛋白酶抑制剂.研究发现,PI-9对支气管哮喘相关免疫细胞有调节细胞凋亡、改变细胞功能等作用.研究PI-9的作用机制将有利于支气管哮喘发病机制的探索,并为临床治疗提供新的理论依据.%PI-9 is an endogenous protease inhibitor of GrB.When interacting with bronchial asthma related immune cells,PI-9 plays an important role in regulating cell apoptosis and function.Studying the mechanism of PI-9 is not only beneficial for the exploration of bronchial asthma nosogenesis,but also provide theoretical base for novel clinical therapy.

  2. Transmission of Nepoviruses by Xiphinema americanum-group Nematodes.

    Science.gov (United States)

    Brown, D J; Halbrendt, J M; Robbins, R T; Vrain, T C

    1993-09-01

    The transmission of North American nepoviruses by putative species belonging to the Xiphinema americanum-group is reviewed. Xiphinema americanum sensu stricto, X. californicum, and X. rivesi each transmit cherry rasp leaf (CRLV), tobacco ringspot (TobRSV), and tomato ringspot nepovirus (TomRSV), and X. bricolensis is a vector of TomRSV. The apparent lack of specificity in the transmission of North American nepoviruses by X. americanum-group species markedly contrasts with the specific associations between European nepoviruses and their vector nematode species. Two complementary projects are described examining the taxonomic identity of putative species in the X. americanum-group, their morphological and genetic relationships, their ontogeny, and their ability to transmit viruses.

  3. The mitochondrial genome of the lone star tick (Amblyomma americanum).

    Science.gov (United States)

    Williams-Newkirk, Amanda J; Burroughs, Mark; Changayil, Shankar S; Dasch, Gregory A

    2015-09-01

    Amblyomma americanum is an abundant tick in the southeastern, midwestern, and northeastern United States. It is a vector of multiple diseases, but limited genomic resources are available for it. We sequenced the complete mitochondrial genome of a single female A. americanum collected in Georgia using the Illumina platform. The consensus sequence was 14,709 bp long, and the mean coverage across the assembly was >12,000×. All expected tick genomic features were present, including two "Tick-Box" motifs, and in the expected order for the Metastriata. Heteroplasmy rates were low compared to the most closely related tick for which data are available, Amblyomma cajennense. The phylogeny derived from the concatenated protein coding and rRNA genes from the 33 available tick mitochondrial genomes was consistent with those previously proposed for the Acari. This is the first complete mitochondrial sequence for A. americanum, which provides a useful reference for future studies of A. americanum population genetics and tick phylogeny.

  4. Silencing Brassinosteroid Receptor BRI1 Impairs Herbivory-elicited Accumulation of Jasmonic Acid-isoleucine and Diterpene Glycosides, but not Jasmonic Acid and Trypsin Proteinase Inhibitors in Nicotiana attenuata

    Institute of Scientific and Technical Information of China (English)

    Da-Hai Yang; lan T.Baldwin; Jianqiang Wu

    2013-01-01

    The brassinosteroid (BR) receptor,BR insensitive 1 (BRI1),plays a critical role in plant development,but whether BRI1-mediated BR signaling is involved in plant defense responses to herbivores was largely unknown.Here,we examined the function of BRI1 in the resistance of Nicotiana attenuata (Solanaceae) to its specialist insect herbivore Manduca sexta.Jasmonic acid (JA) and JA-isoleucine conjugate (JA-Ile) are important hormones that mediate resistance to herbivores and we found that after wounding or simulated herbivory NaBRI1 had little effect on JA levels,but was important for the induction of JA-Ile.Further experiments revealed that decreased JAR (the enzyme for JA-Ile production) activity and availability of lie in NaBRI1-silenced plants were likely responsible for the low JA-Ile levels.Consistently,M.sexta larvae gained more weight on NaBRI1-silenced plants than on the control plants.Quantification of insect feeding-induced secondary metabolites revealed that silencing NaBRI1 resulted in decreased levels of carbon-rich defensive secondary metabolites (hydroxygeranyllinalool diterpene glycosides,chlorogenic acid,and rutin),but had little effect on the nitrogen-rich ones (nicotine and trypsin proteinase inhibitors).Thus,NaBRI1-mediated BR signaling is likely involved in plant defense responses to M.sexta,including maintaining JA-Ile levels and the accumulation of several carbon-rich defensive secondary metabolites.

  5. 杜梨CPI基因的克隆、序列分析及表达%Cloning, sequencing and expression of a cysteine proteinase inhibitor gene (PbCPI) from Pyrus betulaefolia Bunge

    Institute of Scientific and Technical Information of China (English)

    李慧; 丛郁; 常有宏; 蔺经; 盛宝龙

    2011-01-01

    植物半胱氨酸蛋白酶抑制剂(Cysteine proteinase inhibitor,CPI)在植物的抗逆基因工程中发挥着越来越重要的作用,分离和克隆植物CPI基因进而研究该基因的功能是植物抗逆基因工程研究的热点.为从分子水平上揭示CPI基因在杜梨防御机制中所起的作用,利用RACE和PCR方法,从杜梨种子中克隆CPI基因的cDNA和DNA序列,并采用跨内含子表达引物进行半定量RT-PCR来分析该基因在不同胁迫条件下的表达情况.结果表明:PbCPI基因cDNA长度为987 bp,开放阅读框包含738个核苷酸,编码1个由信号肽(26个氨基酸)和成熟肽(219个氨基酸)组成的多肽.该多肽预测的等电点为6.68,估计的相对分子质量为27 190.其对应基因组DNA序列由3个外显子(1 ~302 bp,401 ~772 bp,1615~1 897 bp)和2个内含子(303~400 bp,773~1 614 bp)组成.通过PSORT进行亚细胞定位分析发现PbCPI蛋白位于内质网上.PbCPI基因编码的多肽具有植物CPI产生抑制活性所必需的一级结构:2个甘氨酸残基( Gly46-Gly47)、假定的反应域QXVXG(Q90 -V91 -V92 -A93 -G94)和A/PW基序(p120-w121);并包含植物CPI家族高度保守的特征序列模式LARFAVQEHN、QVVAG和YQAKVWVKPW.进化树分析表明PbCP1和蔷薇科植物CPI蛋白位于分子进化树的同一发育分支上,并且与苹果MdCPI(AAO19652)蛋白具有较高的一致性(95.92%).杜梨叶片中PbCPI为诱导型表达,高温(30℃)、低温(4℃)、NaCl、机械损伤、MeJA或ABA处理4h后其表达量明显上调,即其对温度胁迫、盐碱、机械损伤和外源激素处理均存在转录响应,这表明该基因参与了杜梨对生物或非生物胁迫的防御机制.%Plant cysteine proteinase inhibitor (CPI) has played more and more important roles in the fields of plant genetic engineering for resistance to adverse environments. It is one of the hot issues to isolate and validate CPI gene functions in the stress-tolerance gene engineering at present

  6. High-Resolution structure of the stable plasminogen activator inhibitor type-1 variant 14-1B in its proteinase-cleaved form: A new tool for detailed interaction studies and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J.; Gettins, P. (UIC)

    2008-10-22

    Wild-type plasminogen activator inhibitor type-1 (PAI-1) rapidly converts to the inactive latent state under conditions of physiological pH and temperature. For in vivo studies of active PAI-1 in cell culture and in vivo model systems, the 14-1B PAI-1 mutant (N150H-K154T-Q319L-M354I), with its stabilized active conformation, has thus become the PAI-1 of choice. As a consequence of the increased stability, the only two forms likely to be encountered are the active or the cleaved form, the latter either free or complexed with target proteinase. We hereby report the first structure of the stable 14-1B PAI-1 variant in its reactive center cleaved form, to a resolution of 2.0 {angstrom}. The >99% complete structure represents the highest resolved structure of free cleaved PAI-1. This high-resolution structure should be of great use for drug target development and for modeling protein-protein interactions such as those of PAI-1 with vitronectin.

  7. cDNA cloning of glucose-6-phosphate isomerase from crucian carp (Carassius carassius) and expression of the active region as myofibril-bound serine proteinase inhibitor in Escherichia coli.

    Science.gov (United States)

    Han, Long; Cao, Min-Jie; Shi, Chao-lan; Wei, Xiao-Nan; Li, Huan; Du, Cui-Hong

    2014-02-01

    Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) can act as a myofibril-bound serine proteinase (MBSP) inhibitor (MBSPI) in fish. In order to better understand the biological information of the GPI and its functional domain for inhibiting MBSP, the cDNA of GPI was cloned from crucian carp (Carassius carassius) with RT-PCR, nested-PCR and 3'-RACE. The result of sequencing showed that the GPI cDNA had an open reading frame of 1662bp encoding 553 amino acid residues. After constructing and comparing the three-dimensional structures of GPI and MBSP, the middle fragment of crucian carp GPI (GPI-M) was predicted as a functional domain for inhibiting MBSP. Then the crucian carp GPI-M gene was cloned and expressed in Escherichia coli. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant GPI-M (rGPI-M) with molecular mass of approximately 21kDa in the form of inclusion bodies. The rGPI-M was obtained at an electrophoresis level purity of approximately 95% after denaturation and dialysis renaturation.

  8. Preliminary neutron and ultrahigh-resolution X-ray diffraction studies of the aspartic proteinase endothiapepsin cocrystallized with a gem-diol inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Han-Fang [Spallation Neutron Source, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Erskine, Peter [Laboratory for Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Department of Medicine (Hampstead Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); Langan, Paul [Bioscience Division, Mailstop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Chemistry, University of Toledo, Toledo, OH 53606 (United States); Cooper, Jon [Laboratory for Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Department of Medicine (Hampstead Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); Coates, Leighton, E-mail: coatesl@sns.gov [Spallation Neutron Source, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Department of Chemistry, University of Toledo, Toledo, OH 53606 (United States)

    2007-12-01

    Three data sets have been collected on endothiapepsin complexed with the gem-diol inhibitor PD-135,040: a high-resolution synchrotron X-ray data set, a room-temperature X-ray data set and a neutron diffraction data set. Until recently, it has been impossible to grow large protein crystals of endothiapepsin with any gem-diol inhibitor that are suitable for neutron diffraction. Endothiapepsin has been cocrystallized with the gem-diol inhibitor PD-135,040 in a low solvent-content (39%) unit cell, which is unprecedented for this enzyme–inhibitor complex and enables ultrahigh-resolution (1.0 Å) X-ray diffraction data to be collected. This atomic resolution X-ray data set will be used to deduce the protonation states of the catalytic aspartate residues. A room-temperature neutron data set has also been collected for joint refinement with a room-temperature X-ray data set in order to locate the H/D atoms at the active site.

  9. AFLP markers support separation of Solanum nodiflorum from Solanum americanum sensu stricto (Solanaceae)

    NARCIS (Netherlands)

    Manoko, M.L.K.; Berg, R.G. van den; Feron, R.M.C.; Weerden, G.M. van der; Mariani, C.

    2007-01-01

    This study was aimed at examining the relationships between the African material of Solanum americanum (also designated as S. nodiflorum), accessions of this taxon from other geographical areas, and American S. americanum using AFLP markers. 96 individuals representing 39 accessions of S. americanum

  10. AFLP markers support separation of Solanum nodiflorum from Solanum americanum sensu strictio (Solanaceae)

    NARCIS (Netherlands)

    Manoko, M.L.K.; Berg, van den R.G.; Feron, R.M.C.; Weerden, van der G.M.; Mariani, C.

    2007-01-01

    This study was aimed at examining the relationships between the African material of Solanum americanum (also designated as S. nodiflorum), accessions of this taxon from other geographical areas, and American S. americanum using AFLP markers. 96 individuals representing 39 accessions of S. americanum

  11. Controlled intracellular proteolysis during postpartal involution of the uterus: characterization and regulation of an alkaline proteinase.

    Science.gov (United States)

    Roth, M; Hoechst, M; Afting, E G

    1981-01-01

    The postpartal involution of the uterus is predominantly due to cellular hypotrophy. This implies an intracellular proteolytic system which must be carefully controlled pre and post partum. We have characterized and partially purified a proteinase with an alkaline pH-optimum of activity and a proteinase inhibitor protein which inhibits this proteinase very strongly. The alkaline proteinase copurifies with the actomyosin complex of the uterine myometrium and degrades the actomyosin complex with a concomitant loss of its myosin-ATPase activity. The alkaline proteinase is a very labile enzyme, markedly sensitive to SH-group modifying agents and has very high molecular weight at the present state of purification. This proteolytic enzyme could specifically be separated from the main components of the actomyosin complex by extraction with low ionic strength phosphate buffers. The proteinase inhibitor protein may control the activity of this alkaline proteinase during pregnancy and involution. The inhibitor protein raises 15-fold during pregnancy, possibly blocks important steps of intracellular proteolysis and permits organ growth. The dramatic fall of the inhibitor protein activity after parturition, which precedes the loss of weight, could release the proteolytic system, including the alkaline proteinase, and permits controlled intracellular degradation.

  12. Interactions outside the proteinase-binding loop contribute significantly to the inhibition of activated coagulation factor XII by its canonical inhibitor from corn.

    Science.gov (United States)

    Korneeva, Vera A; Trubetskov, Mikhail M; Korshunova, Alena V; Lushchekina, Sofya V; Kolyadko, Vladimir N; Sergienko, Olga V; Lunin, Vladimir G; Panteleev, Mikhail A; Ataullakhanov, Fazoil I

    2014-05-16

    Activated factor XII (FXIIa) is selectively inhibited by corn Hageman factor inhibitor (CHFI) among other plasma proteases. CHFI is considered a canonical serine protease inhibitor that interacts with FXIIa through its protease-binding loop. Here we examined whether the protease-binding loop alone is sufficient for the selective inhibition of serine proteases or whether other regions of a canonical inhibitor are involved. Six CHFI mutants lacking different N- and C-terminal portions were generated. CHFI-234, which lacks the first and fifth disulfide bonds and 11 and 19 amino acid residues at the N and C termini, respectively, exhibited no significant changes in FXIIa inhibition (Ki = 3.2 ± 0.4 nm). CHFI-123, which lacks 34 amino acid residues at the C terminus and the fourth and fifth disulfide bridges, inhibited FXIIa with a Ki of 116 ± 16 nm. To exclude interactions outside the FXIIa active site, a synthetic cyclic peptide was tested. The peptide contained residues 20-45 (Protein Data Bank code 1BEA), and a C29D substitution was included to avoid unwanted disulfide bond formation between unpaired cysteines. Surprisingly, the isolated protease-binding loop failed to inhibit FXIIa but retained partial inhibition of trypsin (Ki = 11.7 ± 1.2 μm) and activated factor XI (Ki = 94 ± 11 μm). Full-length CHFI inhibited trypsin with a Ki of 1.3 ± 0.2 nm and activated factor XI with a Ki of 5.4 ± 0.2 μm. Our results suggest that the protease-binding loop is not sufficient for the interaction between FXIIa and CHFI; other regions of the inhibitor also contribute to specific inhibition.

  13. Amblyomma americanum: a potential vector of human ehrlichiosis.

    Science.gov (United States)

    Anderson, B E; Sims, K G; Olson, J G; Childs, J E; Piesman, J F; Happ, C M; Maupin, G O; Johnson, B J

    1993-08-01

    Polymerase chain reaction primers specific for Ehrlichia chaffeensis were used to amplify DNA from extracts of pooled ticks. Amplification was performed on extracts from 140 pools (1,579 total ticks) consisting of three tick genera collected from five states. The characteristic 389-basepair product was observed after amplification of extracts from seven different pools of adult Amblyomma americanum (117 pools, 1,462 ticks), but not from pools of nymphs. No specific product was observed after amplification of 20 pools (105 ticks) of Dermacentor variabilis and three pools of Ixodes scapularis (12 ticks). Ehrlichia chaffeensis was present in A. americanum at a minimum frequency of > or = 0.48%, suggesting that A. americanum may be a vector of human ehrlichiosis.

  14. Proteinases of the cornea and preocular tear film.

    Science.gov (United States)

    Ollivier, F J; Gilger, B C; Barrie, K P; Kallberg, M E; Plummer, C E; O'Reilly, S; Gelatt, K N; Brooks, D E

    2007-01-01

    Maintenance and repair of corneal stromal extracellular matrix (ECM) requires a tightly coordinated balance of ECM synthesis, degradation and remodeling in which proteolytic enzymes (proteinases) perform important functions. There are natural proteinase inhibitors present in preocular tear film (PTF) and cornea simultaneously with proteinases that prevent excessive degradation of normal healthy tissue. Disorders occur when there is an imbalance between proteinases and proteinase inhibitors in favor of the proteinases, causing pathologic degradation of stromal collagen and proteoglycans in the cornea. Two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, are of major importance in terms of remodeling and degradation of the corneal stromal collagen. Immunohistochemical studies have shown different origins of MMP-2 and -9. MMP-2 is synthesized by corneal keratocytes and performs a surveillance function in the normal cornea, becoming locally activated to degrade collagen molecules that occasionally become damaged. Alternatively, MMP-9 may be produced by epithelial cells and polymorphonuclear neutrophils following corneal wounding. Because the cornea is in close contact with the preocular tear film (PTF), proteinases have been evaluated in the PTF. In damaged corneas, total proteolytic activity in the tear fluid was found to be significantly increased compared to normal eyes and contralateral eyes. Studies analyzing the proteolytic activity in serial PTF samples during corneal healing led to the following conclusions: ulcerative keratitis in animals is associated with initially high levels of tear film proteolytic activity, which decrease as ulcers heal; proteinase levels in melting ulcers remain elevated leading to rapid progression of the ulcers. The success of medical and surgical treatment of the corneal ulcers is reflected by the proteolytic activity in tears. In animals, successful treatment leads to a rapid reduction in tear film proteolytic activity that

  15. Localization and possible role of membrane type metallo-proteinase and tissue inhibitors of metalloproteinase-1 in early stages of placentation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Human placental tissues from the first and second trimesters of gestation have been investigated using riboprobe in situ hybridisation of mRNA sequences coding for membrane type metalloproteinase (MT-1-MMP) and tissue inhibitors of metalloproteinase-1 (TIMP-1). Results show that (i) both mRNAs express at a relatively high level in the chorion laeve trophoblast cells and the adjacent decidual cells of fetal membrane; (ii) the most abundant expression of the two mRNAs was found in the extravillous trophoblast between Rohrs and Nitabuch striae of basal plate, trophoblast shell and gland cells of the decidua; (iii) isolated or small groups of cytotrophoblast cells in the chorionic villi and in the cells lining arterioles in decidua and stem villi also expressed both MT-1-MMP and TIMP-1 at defferent extents. The data suggest that the coordinated expression of the MT-MMP and its inhibitor TIMP in defferent cells of the placental tissue may play an essential role in trophoblast invasion and angiogenesis related to placentation in the first two trimesters of gestation. They may also have an ability to effect separation of fetal from material tissue at a favorable junctional site during parturition.

  16. Multigene family for Bowman-Birk type proteinase inhibitors of wild soja and soybean: the presence of two BBI-A genes and pseudogenes.

    Science.gov (United States)

    Deshimaru, Masanobu; Yoshimi, Shingo; Shioi, Seijiro; Terada, Shigeyuki

    2004-06-01

    Genes for Bowman-Birk type protease inhibitors (BBIs) of wild soja (Glycine soja) and soybean (Glycine max) comprise a multigene family. The organization of the genes for wild soja BBIs (wBBIs) was elucidated by an analysis of their cDNAs and the corresponding genomic sequences, and compared with the counterparts in the soybean. The cDNAs encoding three types of wild soja BBIs (wBBI-A, -C, and -D) were cloned. Two subtypes of cDNAs for wBBI-A, designated wBBI-A1 and -A2, were further identified. Similar subtypes (sBBI-A1 and -A2) were also found in the soybean genome. cDNA sequences for wBBIs were highly homologous to those for the respective soybean homologs. Phylogenetic analysis of these cDNAs demonstrated the evolutional proximity between these two leguminae strains.

  17. Molecular characteristics and expression analysis of Kazal-type serines proteinase inhibitor (KSPI) gene from Hyriopsis cumingii%三角帆蚌 KSPI cDNA 的分子特征及表达分析

    Institute of Scientific and Technical Information of China (English)

    徐龙威; 王芹; 汪桂玲; 李家乐

    2016-01-01

    Kazal-type serines proteinase inhibitor ( KSPI) is very important in the immune reaction of biological body , but the study of KSPI in Hyriopsis cumingii has been rarely reported .In this study , the full length of cDNA sequence of Kazal-type serines proteinase inhibitor(KSPI) gene (accession number:KT901291) of H.cumingii was cloned.It was 1029 bp in length, containing 5′and 3′-UTRs parts of 61 bp and 206 bp, and an ORF of 762 bp encoding 253 amino acids, and the molecular weight was 27397.5 u.The amino acid sequence contains five Kazal domain structures , and the result of homology analysis showed that it has a few of similarity with other species, suggesting that this gene belongs to the typical KSPI gene.Real-time quantitative PCR showed that KSPI gene expressed in a wide range of tissues including the adductor , foot, liver, blood, mantle, gill and gonad, and the highest expression was in mantle , on the contrary, the lowest in liver.After being infected with Aeromonas hydrophila, the expression of KSPI gene had significant increas-ing in 7 tissues compared with the control group .The results suggested that KSPI gene is very important in the immune reaction of Hyri-opsis cumingii.%Kazal型丝氨酸蛋白酶抑制因子( KSPI)在生物体的免疫应答过程中发挥着重要作用,但在三角帆蚌中尚未进行其相关研究与报道,为研究KSPI对三角帆蚌免疫过程的影响,采用RACE法克隆了三角帆蚌KSPI cDNA全序列(登录号:KT901291),获得了1029 bp的全长,其中包含5′、3′端非翻译区分别为61 bp、206 bp,开放阅读框762 bp,共编码氨基酸253个,分子质量为27397.5u,氨基酸序列包含5个Kazal结构域,与一些已知物种的KSPI编码的氨基酸序列进行同源性分析后发现,与各种物种间具有相似的结构域,属于典型的KSPI。实时荧光定量PCR分析结果表明KSPI在外套膜、血液、肝、腮、闭壳肌、性腺、斧足7个组织中均

  18. Plasma levels of alpha1-antichymotrypsin and secretory leukocyte proteinase inhibitor in healthy and chronic obstructive pulmonary disease (COPD subjects with and without severe α1-antitrypsin deficiency

    Directory of Open Access Journals (Sweden)

    Sveger Tomas

    2007-01-01

    Full Text Available Abstract Background Individuals with severe Z α1-antitrypsin (AAT deficiency have a considerably increased risk of developing chronic obstructive lung disease (COPD. It has been hypothesized that compensatory increases in levels of other protease inhibitors mitigate the effects of this AAT deficiency. We analysed plasma levels of AAT, α1-antichymotrypsin (ACT and secretory leukocyte protease inhibitor (SLPI in healthy (asymptomatic and COPD subjects with and without AAT deficiency. Methods Studied groups included: 71 asymptomatic AAT-deficient subjects (ZZ, n = 48 and SZ, n = 23, age 31 ± 0.5 identified during Swedish neonatal screening for AAT deficiency between 1972 and 1974; age-matched controls (MM, n = 57, age 30.7 ± 0.6; older asymptomatic ZZ (n = 10; healthy MM (n = 20, age 53 ± 9.6; and COPD patients (ZZ, n = 10, age 47.4 ± 11 and MM, n = 10, age 59.4 ± 6.7. Plasma levels of SLPI, AAT and ACT were analysed using ELISA and immunoelectrophoresis. Results No significant difference was found in plasma ACT and SLPI levels between the healthy MM and the ZZ or SZ subjects in the studied groups. Independent of the genetic variant, subjects with COPD (n = 19 had elevated plasma levels of SLPI and ACT relative to controls (n = 153 (49.5 ± 7.2 vs 40.7 ± 9.1 ng/ml, p Conclusion Our findings show that plasma levels of ACT and SLPI are not elevated in subjects with genetic AAT deficiency compared MM controls and do not appear to compensate for the deficiency of plasma AAT.

  19. Safety and pharmacokinetics of 120 mg/kg versus 60 mg/kg weekly intravenous infusions of alpha-1 proteinase inhibitor in alpha-1 antitrypsin deficiency: a multicenter, randomized, double-blind, crossover study (SPARK).

    Science.gov (United States)

    Campos, Michael A; Kueppers, Friedrich; Stocks, James M; Strange, Charlie; Chen, Junliang; Griffin, Rhonda; Wang-Smith, Laurene; Brantly, Mark L

    2013-12-01

    Augmentation therapy with the approved dose of 60 mg/kg weekly intravenous (IV) alpha-1 proteinase inhibitor (alpha1-PI), achieves a trough serum level of 11 μM in individuals with alpha-1 antitrypsin deficiency (AATD), yet this is still below the level observed in healthy individuals. This study assessed the safety and pharmacokinetic profile of weekly infusions of a 120 mg/kg dose of alpha1-PI in 30 adults with AATD. Subjects with symptomatic, genetically determined (genotypes PI*ZZ, PI*Z(null), PI*(null)(null) or PI*(Z)Mmalton) AATD were randomly assigned to weekly infusions of 60 or 120 mg/kg alpha1-PI (Prolastin-C®) for 8 weeks before crossing over to the alternate dose for 8 weeks. Adverse events (AEs) (including exacerbations), vital signs, pulmonary function tests, and laboratory assessments were recorded. Pharmacokinetic measurements included AUC0-7days, Cmax, trough, tmax, and t1/2, based on serum alpha1-PI concentrations. In total for both treatments, 112 AEs were reported, with exacerbation of COPD being the most frequent, consistent with the subjects' diagnoses. Mean steady-state serum alpha1-PI concentrations following 120 mg/kg weekly IV alpha1-PI were higher than with the 60 mg/kg dose and mean trough concentrations were 27.7 versus 17.3 μM, respectively. Dose proportionality was demonstrated for AUC0-7days and Cmax, with low inter-subject variability. The 120 mg/kg alpha1-PI weekly dose was considered to be safe and well tolerated, and provided more favorable physiologic alpha1-PI serum levels than the currently recommended 60 mg/kg dose. The effect of this dosing regimen on slowing and/or preventing emphysema progression in subjects with AATD warrants further investigation.

  20. Cysteine peptidases and their inhibitors in breast and genital cancer.

    Directory of Open Access Journals (Sweden)

    Magdalena Milan

    2010-11-01

    Full Text Available Cysteine proteinases and their inhibitors probably play the main role in carcinogenesis and metastasis. The metastasis process need external proteolytic activities that pass several barriers which are membranous structures of the connective tissue which includes, the basement membrane of blood vessels. Activities of the proteinases are regulated by endogenous inhibitors and activators. The imbalance between cysteine proteinases and cystatins seems to be associated with an increase in metastatic potential in some tumors. It has also been reported that proteinase inhibitors, specific antibodies for these enzymes and inhibition of the urokinase receptor may prevent cancer cell invasion. Some proteinase inhibitor could serve as agents for cancer treatment.

  1. Vector Capability of Xiphinema americanum sensu lato in California.

    Science.gov (United States)

    Griesbach, J A; Maggenti, A R

    1989-10-01

    Seven field populations of Xiphinema americanum sensu lato from California's major agronomic areas were tested for their ability to transmit two nepoviruses, including the prune brownline, peach yellow bud, and grapevine yellow vein strains of tomato ringspot virus and the bud blight strain of tobacco ringspot virus. Two field populations transmitted all isolates, one population transmitted all tomato ringspot virus isolates but failed to transmit bud blight strain of tobacco ringspot virus, and the remaining four populations failed to transmit any virus. Only one population, which transmitted all isolates, bad been associated with field spread of a nepovirus. As two California populations of Xiphinema americanum sensu lato were shown to have the ability to vector two different nepoviruses, a nematode taxonomy based on a parsimony of virus-vector relationship is not practical for these populations. Because two California populations of X. americanum were able to vector tobacco ringspot virus, commonly vectored by X. americanum in the eastern United States, these western populations cannot be differentiated from eastern populations by vector capability tests using tobacco ringspot virus.

  2. Molecular characterization of two kazal-type serine proteinase inhibitor genes in the surf clam Mesodesma donacium exposed to Vibrio anguillarum.

    Science.gov (United States)

    Maldonado-Aguayo, Waleska; Núñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2013-06-01

    This study reports two kazal-type serine protease inhibitors (KPI) identified in a cDNA library from the surf clam Mesodesma donacium, and characterized through Rapid Amplification of cDNA Ends (RACE). The KPIs, denoted as MdSPI-1 and MdSPI-2, presented full sequences of 1139 bp and 781 bp respectively. MdSPI-1 had a 5'untranslated region (UTR) of 175 bp, a 3'UTR of 283 bp and an open reading frame (ORF) of 681 pb that encodes for 227 amino acids. MdSPI-2 showed a 5'UTR of 70 bp, a 3'UTR of 279 bp and an ORF of 432 bp that encodes for 144 amino acids. Both sequences presented two kazal-type tandem domains. Phylogenetic analysis of MdSPI-1 and MdSPI-2 shows a main clade composed by other bivalve species and closely related crustaceans. Real time PCR analysis showed that MdSPI-1 is mainly up-regulated in mantle, foot, gills and muscle tissues, while MdSPI-2 is expressed principally in foot tissue. Moreover, to evaluate the immune response of MdSPI-1 and MdSPI-2, infections with Vibrio anguillarum were performed. Herein, MdSPI-1 and MdSPI-2 transcription expression were significantly up-regulated at 2 and 8 h post-challenge. Our results suggest that MdSPI-1 and MdSPI-2 are important humoral factors of innate immunity in M. donacium.

  3. Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase.

    Science.gov (United States)

    Panchenko, M V; Stetler-Stevenson, W G; Trubetskoy, O V; Gacheru, S N; Kagan, H M

    1996-03-22

    Lysyl oxidase is secreted from fibrogenic cells as a 50-kDa proenzyme that is proteolytically processed to the mature enzyme in the extracellular space. To characterize the secreted proteinase activity, a truncated, recombinant form of lysyl oxidase was prepared as a proteinase substrate containing the sequence of the propeptide cleavage region. The processing proteinase activity secreted by cultured fibrogenic cells resists inhibitors of serine or aspartyl proteinases as well as tissue inhibitor of matrix metalloproteinases-2 (MMP-2) but is completely inhibited by metal ion chelators. Known metalloproteinases were tested for their activity toward this substrate. Carboxyl-terminal procollagen proteinase (C-proteinase), MMP-2, and conditioned fibrogenic cell culture medium cleave the lysyl oxidase substrate to the size of the mature enzyme. The NH2-terminal sequence generated by arterial smooth muscle conditioned medium and the C-proteinase but not by MMP-2, i.e. Asp-Asp-Pro-Tyr, was identical to that previously identified in mature lysyl oxidase isolated from connective tissue. The C-proteinase activity against the model substrate was inhibited by a synthetic oligopeptide mimic of the cleavage sequence (Ac-Met-Val-Gly-Asp-Asp-Pro-Tyr-Asn-amide), whereas this peptide also inhibited the generation of lysyl oxidase activity in the medium of fetal rat lung fibroblasts in culture. In toto, these results identify a secreted metalloproteinase activity participating in the activation of prolysyl oxidase, identify inhibitors of the processing activity, and implicate procollagen C-proteinase in this role.

  4. Safety and tolerability of an intravenously administered alpha1-proteinase inhibitor at an increased infusion rate: a novel, randomized, placebo-masked, infusion rate-controlled, crossover study in healthy adults

    Directory of Open Access Journals (Sweden)

    Ngo LY

    2014-06-01

    Full Text Available Leock Y Ngo,1 Adam Haeberle,1 Jacqueline Dyck-Jones,1 David Gelmont,1 Leman Yel11Baxter Healthcare Corporation, Westlake Village, CA, USAPurpose: Alpha1-proteinase inhibitor (A1PI is indicated for chronic augmentation therapy in adults with emphysema due to congenital deficiency of A1PI. An intravenous infusion rate of 0.04 mL/kg/minute is currently recommended for the A1PI product, Glassia®. This randomized, placebo-masked, rate-controlled, crossover study was designed to evaluate the safety and tolerability of A1PI administration at an increased infusion rate.Patients and methods: A total of 30 healthy male and female subjects aged 19–61 years were enrolled. Each subject received simultaneous intravenous infusions of A1PI (Glassia® and placebo (human albumin 2.5% administered through a single infusion site on two separate treatment periods. Subjects were randomized in a 1:1 ratio to receive either test treatment (A1PI 0.2 mL/kg/minute + placebo 0.04 mL/kg/minute, or reference treatment (A1PI 0.04 mL/kg/minute + placebo 0.2 mL/kg/minute on Day 1. On Day 15, subjects received the other treatment regimen in a crossover sequence.Results: A total of 36 adverse events (AEs, regardless of causality, were reported; all were non-serious and of mild intensity, with headaches and dizziness occurring most frequently (12 [33.3%] and three [8.3%] of 36 AEs, respectively. Only seven AEs in six subjects were assessed as related to study treatment: with two AEs reported in two subjects treated with the 0.2 mL/kg/minute rate compared with five AEs in four subjects treated with the 0.04 mL/kg/minute rate.Conclusions: This study demonstrated the safety and tolerability of an A1PI product at an increased infusion rate (0.2 mL/kg/minute resulting in a shorter infusion duration in healthy subjects.Keywords: A1PI, Glassia, administration rate, Alpha-1 antitrypsin, ATT

  5. THE INTACT AND CLEAVED HUMAN ANTITHROMBIN-III COMPLEX AS A MODEL FOR SERPIN-PROTEINASE INTERACTIONS

    NARCIS (Netherlands)

    SCHREUDER, HA; DEBOER, B; DIJKEMA, R; MULDERS, J; THEUNISSEN, HJM; GROOTENHUIS, PDJ; HOL, WGJ

    1994-01-01

    Antithrombin is a member of the serine proteinase inhibitor (serpin) family which contain a flexible reactive site loop that interacts with, and is cleaved by the target proteinase. In cleaved and latent serpins, the reactive site loop is inserted into a large central beta-sheet in the same molecule

  6. Distribution of Xiphinema americanum and Related Species in North America.

    Science.gov (United States)

    Robbins, R T

    1993-09-01

    All species of the Xiphinema americanum-group and their synonyms are listed. The North American species reported are listed by state or province. Among these species, X. rivesi has the most widely reported distribution. Six species (X. diffusum, X. floridae, X. laevistriatum, X. luci, X. shell, and X. tarjanense) have been reported from only Florida. The reports of X. pachtaicum, X. sheri, and X. luci did not include morphometrics and need to be confirmed; X. brevicolle from California was identified before Lamberti and Bleve-Zacheo described 15 new species in 1979 and similarly needs to be confirmed. Because of the proliferation of species in this group, reports of X. americanum (sensu stricto) before 1979 are questionable. Extraction techniques for longidorids are discussed.

  7. Serological Strains of Tobacco Ringspot Virus Transmitted by Xiphinema americanum.

    Science.gov (United States)

    Rush, M C

    1970-07-01

    Five serological strains of tobacco ringspot virus isolated from naturally infected tobacco in North Carolina, and a strain isolated from watermelon in the Rio Grande Valley of Texas were transmitted from cucumber to cucumber by mass-screened and handpicked Xiphinerna americanum from North Carolina. The Eucharis mottle strain from Peru was not transmitted, indicating that a specific strain-vector relationship may exist between the geographically isolated strains from North and South America.

  8. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  9. Xiphinema americanum as Affected by Soil Organic Matter and Porosity.

    Science.gov (United States)

    Ponchillia, P E

    1972-07-01

    The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.

  10. Disease agents in Amblyomma americanum from northeastern Georgia.

    Science.gov (United States)

    Varela, A S; Moore, V A; Little, S E

    2004-07-01

    Amblyomma americanum (lone star tick) is known or suspected to vector several organisms that are implicated as human pathogens, including Ehrlichia chaffeensis, E. ewingii, and Borrelia lonestari. These three agents have also been detected in white-tailed deer (Odocoileus virginianus). Because northeastern Georgia has a high abundance of both lone star ticks and white-tailed deer, and one of these organisms, E. chaffeensis, is already known to be endemic in the area, we assayed individual adult A. americanum, collected during the spring of 2001, 2002, and 2003, for these three organisms. A total of 400 ticks were dissected and tissues assayed by polymerase chain reaction (PCR) using Ehrlichia species-specific and Borrelia genus-wide primers. Of ticks tested, 2.0% (8/398) had evidence of E. chaffeensis, 4.8% (19/398) had evidence of E. ewingii, and 1.0% (4/398) had evidence of B. lonestari. Borrelia sp. spirochetes were also visualized by an indirect fluorescent antibody test, using an anti-flagellin monoclonal antibody (H9724), in a total of 10.7% (32/300) of ticks tested in 2003. These results reconfirm the presence of E. chaffeensis and establish evidence of E. ewingii and B. lonestari in questing adult A. americanum ticks from northeastern Georgia. Detection of at least two of the three organisms in ticks collected each year suggests that people in northeastern Georgia are at risk of infection with these organisms.

  11. Ribosomal and Mitochondrial DNA Analyses of Xiphinema americanum-Group Populations.

    Science.gov (United States)

    Lazarova, Stela S; Malloch, Gaynor; Oliveira, Claudio M G; Hübschen, Judith; Neilson, Roy

    2006-12-01

    The 18S ribosomal DNA (rDNA) and cytochrome oxidase I region of mitochondrial DNA (mtDNA) were sequenced for 24 Xiphinema americanum-group populations sourced from a number of geographically disparate locations. Sequences were subjected to phylogenetic analysis and compared. 18S rDNA strongly suggested that only X. pachtaicum, X. simile (two populations) and a X. americanum s.l. population from Portugal were different from the other 20 populations studied, whereas mtDNA indicated some heterogeneity between populations. Phylogenetically, based on mtDNA, an apparent dichotomy existed amongst X. americanum-group populations from North America and those from Asia, South America and Oceania. Analyses of 18S rDNA and mtDNA sequences underpin the classical taxonomic issues of the X. americanum-group and cast doubt on the degree of speciation within the X. americanum-group.

  12. Activation of proteinase 3 contributes to Non-alcoholic Fatty Liver Disease (NAFLD) and insulin resistance.

    Science.gov (United States)

    Toonen, Erik J M; Mirea, Andreea-Manuela; Tack, Cees J; Stienstra, Rinke; Ballak, Dov B; van Diepen, Janna A; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H; Pham, Christine T N; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo A B

    2016-05-24

    Activation of inflammatory pathways is known to accompany development of obesity-induced non-alcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive pro-inflammatory mediators IL-1β and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In the present study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human alpha-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3 deficient mice showed strongly reduced levels of lipids in the liver after fed a high fat diet. Moreover, these mice were resistant to high fat diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1(-/-) mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with alpha-1 antitrypsin during the last 10 days of a 16 week high fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential.

  13. [Involvement of proteinases produced by both neurons and microglia in neuronal lesion and death pathways].

    Science.gov (United States)

    Nakanishi, H; Yamamoto, K

    1998-08-01

    Much attention has been paid to proteinases derived from not only neurons but also microglia in relation to neuronal death. There is accumulating evidence that intra- and extracellular proteinases in these cells are part of the basic machinery of neuronal death pathways. Some members of the ced-3/interleukin-1 beta converting enzyme (ICE) (caspase) family of cysteine proteinases have been thought to play a major role in apoptosis of not only non-neuronal cells but also neurons. Calpain has also been demonstrated to be a mediator of the neurodegenerative response. Recent studies have shown that excitotoxic and ischemic neuronal injury could be attenuated by inhibitors of caspases and calpain. Several recent studies have suggested the involvement of endosomal/lysosomal proteinases, including cathepsins B, D and E, in neuronal death induced by excitotoxins and ischemia. Furthermore, it has been reported that the extracellular tissue-type plasminogen activator/plasmin proteolytic cascade is involved in excitotoxic injury of the hippocampal neurons. In addition to such neuronal proteinases, microglial proteinases are believed to be important for the modification of neuronal functions positively or negatively. Cathepsins E and S derived from microglia have been suggested to contribute to neuronal survival through degradation and removal of beta-amyloid, damaged neurons and cellular debris. On the other hand, 6-hydroxydopamine-induced microglial cell death was inhibited by inhibitors of aspartic proteinases and caspases, suggesting the involvement of cathepsins E and D and caspases in microglial cell death. Therefore, identification of which proteinases play a causative role in neuronal death execution and clarification of the regulators and substrates for such proteinases is very important for understanding the molecular basis of the neuronal death pathways and to develop novel neuroprotective agents.

  14. Trypanosoma cruzi: insights into naphthoquinone effects on growth and proteinase activity.

    Science.gov (United States)

    Bourguignon, Saulo C; Cavalcanti, Danielle F B; de Souza, Alessandra M T; Castro, Helena C; Rodrigues, Carlos R; Albuquerque, Magaly G; Santos, Dilvani O; da Silva, Gabriel Gomes; da Silva, Fernando C; Ferreira, Vitor F; de Pinho, Rosa T; Alves, Carlos R

    2011-01-01

    In this study we compared the effects of naphthoquinones (α-lapachone, β-lapachone, nor-β-lapachone and Epoxy-α-lap) on growth of Trypanosoma cruzi epimastigotes forms, and on viability of VERO cells. In addition we also experimentally analyzed the most active compounds inhibitory profile against T. cruzi serine- and cysteine-proteinases activity and theoretically evaluated them against cruzain, the major T. cruzi cysteine proteinase by using a molecular docking approach. Our results confirmed β-lapachone and Epoxy-α-lap with a high trypanocidal activity in contrast to α-lapachone and nor-β-lapachone whereas Epoxy-α-lap presented the safest toxicity profile against VERO cells. Interestingly the evaluation of the active compounds effects against T. cruzi cysteine- and serine-proteinases activities revealed different targets for these molecules. β-Lapachone is able to inhibit the cysteine-proteinase activity of T. cruzi proteic whole extract and of cruzain, similar to E-64, a classical cysteine-proteinase inhibitor. Differently, Epoxy-α-lap inhibited the T. cruzi serine-proteinase activity, similar to PMSF, a classical serine-proteinase inhibitor. In agreement to these biological profiles in the enzymatic assays, our theoretical analysis showed that E-64 and β-lapachone interact with the cruzain specific S2 pocket and active site whereas Epoxy-α-lap showed no important interactions. Overall, our results infer that β-lapachone and Epoxy-α-lap compounds may inhibit T. cruzi epimastigotes growth by affecting T. cruzi different proteinases. Thus the present data shows the potential of these compounds as prototype of protease inhibitors on drug design studies for developing new antichagasic compounds.

  15. Purification and characterization of major extracellular proteinases from Trichophyton rubrum.

    Science.gov (United States)

    Asahi, M; Lindquist, R; Fukuyama, K; Apodaca, G; Epstein, W L; McKerrow, J H

    1985-11-15

    Two extracellular proteinases that probably play a central role in the metabolism and pathogenesis of the most common dermatophyte of man, Trichophyton rubrum, were purified to homogeneity. Size-exclusion chromatography and Chromatofocusing were used to purify the major proteinases 42-fold from crude fungal culture filtrate. The major enzyme has pI 7.8 and subunit Mr 44 000, but forms a dimer of Mr approx. 90 000 in the absence of reducing agents. A second enzyme with pI 6.5 and subunit Mr 36 000, was also purified. It is very similar in substrate specificity to the major enzyme but has lower specific activity, and may be an autoproteolysis product. The major proteinase has pH optimum 8, a Ca2+-dependence maximum of 1 mM, and was inhibited by serine-proteinase inhibitors, especially tetrapeptidyl chloromethane derivatives with hydrophobic residues at the P-1 site. Kinetic studies also showed that tetrapeptides containing aromatic or hydrophobic residues at P-1 were the best substrates. A kcat./Km of 27 000 M-1 X S-1 was calculated for the peptide 3-carboxypropionyl-Ala-Ala-Pro-Phe-p-nitroanilide. The enzyme has significant activity against keratin, elastin and denatured type I collagen (Azocoll).

  16. Specificity of proteinase K at P2 to P3' sub-sites and its comparison to other serine proteases.

    Science.gov (United States)

    Qasim, Mohammad A

    2014-01-01

    Specificity of the commercially important serine protease, proteinase K, has been investigated by measuring free energies of association of proteinase K with turkey ovomucoid third domain inhibitor variants at contact positions P2, P1, P1', P2', and P3'. Correlations of these values were run with similar values that have been obtained for six other serine proteases. Among the six proteases, subtilisin Carlsberg shows a near perfect correlation (Pearson Product correlation coefficient = 0.93 to 0.99) with proteinase K at all of these positions. Proteinase K has only 35% sequence identity with subtilisin Carlsberg, yet, the two enzymes are nearly identical in their specificity at P2 to P3' positions. With other serine proteases such as bovine chymotrypsin, human leukocyte elastase, porcine pancreatic elastase, Streptomyces griseus protease A and B, proteinase K showed relatively poor or no correlation.

  17. Estimativa da área foliar de plantas daninhas: Solanum americanum Mill Leaf area determination of weeds: Solanum americanum Mill

    Directory of Open Access Journals (Sweden)

    Gustavo R. Tofoli

    1998-12-01

    Full Text Available A maria pretinha (Solanum americanum Mill é uma planta daninha infestante de diversas culturas e além da competição pode causar outros problemas. Nos estudos envolvendo a biologia e o controle de plantas daninhas, a área foliar é uma das mais importantes características a serem avaliadas, mas tem sido pouco estudada porque sua determinação exige equipamentos sofisticados ou utiliza técnicas destrutivas. Visando obter equações que permitissem a estimativa da área foliar desta planta daninha utilizando características lineares do limbo foliar, facilmente mensuráveis em plantas no campo, foram estudadas correlações entre a área foliar real e as seguintes características das folhas: comprimento ao longo da nervura principal (C, largura máxima do limbo (L e o produto (C x L. Para tanto, foram mensuradas 200 folhas coletadas de plantas sujeitas às mais diversas condições ecológicas em que a espécie sobrevive, considerando-se todas as folhas das plantas desde que não apresentassem deformações oriundas de fatores, tais como, pragas, moléstias e granizo. Todas as equações, lineares simples, geométricas e exponenciais, permitiram boa estimativa da área foliar (Af da maria pretinha. Do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto (C x L, a qual apresentou o menor QM Resíduo. Assim, a estimativa da área foliar de S. americanum pode ser efetuada pela equação AF = 0,5632 x (C x L, com coeficiente de determinação (R2 de valor igual a 0,9516.Solanum americanum is a very aggressive weed that, besides competition, can cause many other problems. Despite being one of the most important parameters to be analyzed, only few studies have been carried out concerning the leaf area mainly because its determination demands sophisticated equipment or destructive techniques. Aiming to develop equations that allow to estimate the leaf area of this weed using linear measure of the leaf

  18. Redescription of Xiphinema americanum Cobb, 1913 with Comments on Its Morphometric Variations.

    Science.gov (United States)

    Lamberti, F; Golden, A M

    1984-04-01

    Xiphinema americanum is redescribed and illustrated from material collected from Arlington Cemetery, near Cobb's type locality (Falls Church, Virginia), Morphometric data showing variations within this species are given for three additional populations.

  19. Increase in net activity of serine proteinases but not gelatinases after local endotoxin exposure in the peripheral airways of healthy subjects.

    Directory of Open Access Journals (Sweden)

    Margaretha E Smith

    Full Text Available We tested the hypothesis that activation of the innate immune response induces an imbalance in the proteolytic homeostasis in the peripheral airways of healthy subjects, towards excess serine or gelatinase proteinase activity. During bronchoscopy, 18 healthy human subjects underwent intra-bronchial exposure to endotoxin and contra-lateral exposure to vehicle. Bronchoalveolar lavage (BAL samples were harvested 24 or 48 hours (h later. We quantified archetype proteinases, anti-proteinases, inflammatory BAL cells, and, importantly, total plus net proteinase activities using functional substrate assays. As expected, endotoxin exposure increased the concentrations of polymorphonuclear leukocytes (PMN's and macrophages, of proteinases and the anti-proteinases tissue inhibitor of metalloproteinase-1, α-1-antitrypsin and, to a lesser extent, secretory leukoproteinase inhibitor, at both time points. Notably, at these time points, endotoxin exposure substantially increased the quantitative NE/SLPI ratio and the net serine proteinase activity corresponding to neutrophil elastase (NE. Endotoxin exposure also increased the total gelatinase activity corresponding to matrix metalloproteinase (MMP-9; an activity dominating over that of MMP-2. However, endotoxin exposure had no impact on net gelatinolytic activity at 24 or 48 h after exposure. Thus, local activation of the innate immune response induces an imbalance towards increased net serine proteinase activity in the proteolytic homeostasis of the peripheral airways in healthy subjects. Hypothetically, this serine proteinase activity can contribute to tissue remodelling and hypersecretion via NE from PMN's, if it is triggered repeatedly, as might be the case in chronic inflammatory airway disorders.

  20. Discovery of filarial nematode DNA in Amblyomma americanum in Northern Virginia

    OpenAIRE

    Henning, Tyler C.; Orr, John M.; Smith, Joshua D.; Arias, Jorge R.; Rasgon, Jason L.; Norris, Douglas E.

    2015-01-01

    Ticks collected in 2011 were screened for the presence of filarial nematode genetic material, and positive samples were sequenced for analysis. Monanema-like filarial nematode DNA was recently discovered in Amblyomma americanum in northern Virginia, marking the first time genetic material from this parasite has been discovered in ticks in the state. Phylogenetic analysis revealed that this material was directly related to a previously discovered filarial nematode in A. americanum populations ...

  1. Seasonal Population Fluctuation of Xiphinema americanum and X. rivesi in New York and Pennsylvania Orchards.

    Science.gov (United States)

    Jaffee, B A; Harrison, M B; Shaffer, R L; Strang, M B

    1987-07-01

    The population fluctuation and composition of Xiphinema americanum (sensu stricto) and X. rivesi were studied in a New York apple orchard (only X. americanum present), a Pennsylvania apple orchard (both X. americanum and X. rivesi present), and a Pennsylvania peach orchard (X. americanum, X. rivesi, and X. californicum present). Few clear trends in population fluctuation or composition were observed. The adult female was the predominant stage in most sample periods, and the reproductive period was limited to late spring and early summer. Only a few of the females at any sample period were gravid. All stages were present throughout the year, and all stages overwintered. Eggs in soil were not monitored. In the Pennsylvania apple orchard, X. americanum and X. rivesi were easily separated by morphological characteristics; however, the two species did not display differences in population structure or composition. The predominance of adults, the relatively low reproductive rates, and the association of these species with stable habitats suggest that the life strategies of X. americanum and X. rivesi are K-selected as opposed to r-selected.

  2. Evidence of Borrelia lonestari DNA in Amblyomma americanum (Acari: Ixodidae) removed from humans.

    Science.gov (United States)

    Stromdahl, Ellen Y; Williamson, Phillip C; Kollars, Thomas M; Evans, Sandra R; Barry, Ryan K; Vince, Mary A; Dobbs, Nicole A

    2003-12-01

    We used a nested PCR with Borrelia flagellin gene (flaB) primers and DNA sequencing to determine if Borrelia lonestari was present in Amblyomma americanum ticks removed from military personnel and sent to the Tick-Borne Disease Laboratory of the U.S. Army Center for Health Promotion and Preventive Medicine. In our preliminary investigation, we detected Borrelia sequences in 19 of 510 A. americanum adults and nymphs from Ft. A. P. Hill, Va. During the 2001 tick season, the flaB primers were used to test all A. americanum samples as they were received, and 29 of 2,358 A. americanum samples tested individually or in small pools were positive. PCRs with 2,146 A. americanum samples in 2002 yielded 26 more Borrelia-positive samples. The positive ticks in 2001 and 2002 were from Arkansas, Delaware, Kansas, Kentucky, Maryland, New Jersey, North Carolina, Tennessee, and Virginia. The last positive sample of the 2001 season was a pool of larvae. To further investigate larval infection, we collected and tested questing A. americanum larvae from Aberdeen Proving Ground, Md.; 4 of 33 pools (40 larvae per pool) were positive. Infection of unfed larvae provides evidence of the maintenance of B. lonestari by means of transovarial transmission. Sequence analysis revealed that the amplicons were identical to sequences of the B. lonestari flaB gene in GenBank. Despite the low prevalence of infection, the risk of B. lonestari transmission may be magnified because A. americanum is often abundant and aggressive, and many tick bite victims receive multiple bites.

  3. The cysteine proteinases of the pineapple plant.

    Science.gov (United States)

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-03-15

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct.

  4. Proteinase activity regulation by glycosaminoglycans

    Directory of Open Access Journals (Sweden)

    Tersariol I.L.S.

    2002-01-01

    Full Text Available There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.

  5. Soil Property Influences on Xiphinema americanum Populations as Related to Maturity of Loess-Derived Soils.

    Science.gov (United States)

    Schmitt, D P

    1973-10-01

    Field populations of Xiphinerna americanum around roots of Syringa vulgaris 'President Lincoln' were larger in Marshall silty clay loam, a medially developed loess soil, than in Monona silt loam, a minimally developed loess soil. Most X. amerieanum occurred in the top 15 cm of soil, with few below 30 cm. Maximum numbers occurred in August of both years in the Marshall soil, and in August 1969 and June 1970 in the Monona soil. Population fluctuations during the growing season were coincident with changes in soil moisture content. Although the population fluctuation pattern was the same at each depth tested, the adult-to-juvenile ratio increased in one soil while it decreased in the other. Numbers of X. americanum decreased as root weights decreased within a soil profile, but they were not correlated with root weights over all soils and depths. More X. americanum were recovered from the Marshall than from the Monona soil, but fibrous root weights were greater in the Monona soil. Survival of X. americanum in soil columns in growth chamber experiments was better in the Marshall than in the Monona soil. Movement and survival were different in identically textured Monona A and B horizon soils. Factors related to the ion exchange sites may affect X. americanum.

  6. Using mitogenomic and nuclear ribosomal sequence data to investigate the phylogeny of the Xiphinema americanum species complex

    Science.gov (United States)

    Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum is controversial, with the number of putative species being the subject of debate. Ac...

  7. Multiple pathways for vacuolar sorting of yeast proteinase A

    DEFF Research Database (Denmark)

    Westphal, V; Marcusson, E G; Winther, Jakob R.;

    1996-01-01

    ) overproduction of Vps10p suppressed the missorting phenotype associated with overproduction of proteinase A, 2) overproduction of proteinase A induced missorting of carboxypeptidase Y, 3) vacuolar sorting of proteinase A in a deltavps10 strain was readily saturated by modest overproduction of proteinase A, and 4...

  8. Effect of deer exclusion by fencing on abundance of Amblyomma americanum (Acari: Ixodidae) on Fire Island, New York, USA.

    Science.gov (United States)

    Ginsberg, Howard S; Butler, Mari; Zhioua, Elyes

    2002-12-01

    The effects of deer exclusion on northern populations of lone star ticks, Amblyomma americanum, were tested at the Lighthouse Tract, Fire Island, NY, USA, where densities of this species have increased recently. Game fencing was erected to exclude deer from two sites of roughly one ha each, and populations of nymphal and adult A. americanum within were compared with those at control sites outside the exclosures. Percent control of nymphs within vs. outside the exclosures averaged 48.4% in the four years post-treatment, compared to pretreatment values. Percent control varied markedly in different years, suggesting that factors in addition to deer densities had strong effects on population densities of A. americanum. Exclosures of this size did not control adult A. americanum. Effects of deer exclusion in this recently expanded northern population of A. americanum were similar to those that have been reported for southern populations of this species.

  9. Morphological Comparisons Between Xiphinema rivesi Daimasso and X. americanum Cobb Populations from the Eastern United States.

    Science.gov (United States)

    Wojtowlcz, M R; Golden, A M; Forer, L B; Stouffer, R F

    1982-10-01

    Though in the past Xiphinema americanum has been the most commonly reported dagger nematode in the eastern United States, our studies revealed the presence in Pennsvlvania of a previously unrecognized and unreported species related to X. americanum, Morphometric data and photomicrographs establish the identity of this form as X. rivesi and show expected variations in populations of this species from various locations. Similar data and illustrations are given for X. americanum populations from Pennsylvania and other areas, showing variations and relationships. Xiphinema rivesi is widely distributed in the fruit producing area of south-central Pennsylvania and is also reported herein from raspberry in Vermont and apple in Maryland and New York. This species is frequently found in fruit growing areas of Pennsylvania associated with tomato ringspot virus-induced diseases and is also found associated with corn, bluegrass sod, and alfalfa.

  10. Solanum americanum: reservoir for Potato virus Y and Cucumber mosaic virus in sweet pepper crops

    Directory of Open Access Journals (Sweden)

    Monika Fecury Moura

    2014-03-01

    Full Text Available Weeds can act as important reservoirs for viruses. Solanum americanum (Black nightshade is a common weed in Brazil and samples showing mosaic were collected from sweet pepper crops to verify the presence of viruses. One sample showed mixed infection between Cucumber mosaic virus (CMV and Potato virus Y (PVY and one sample showed simple infection by PVY. Both virus species were transmitted by plant extract and caused mosaic in tomato (Solanum lycopersicum cv. Santa Clara, sweet pepper (Capsicum annuum cv. Magda, Nicotiana benthamiana and N. tabaccum TNN, and local lesions on Chenopodium quinoa, C. murale and C. amaranticolor. The coat protein sequences for CMV and PVY found in S. americanum are phylogenetically more related to isolates from tomato. We conclude that S. americanum can act as a reservoir for different viruses during and between sweet pepper crop seasons.

  11. Determination of trans-resveratrol in Solanum americanum Mill. by HPLC.

    Science.gov (United States)

    Vagula, Julianna Matias; Bertozzi, Janksyn; Castro, Juliana Cristina; Oliveira, Claudio Celestino de; Clemente, Edmar; Santos Júnior, Oscar de Oliveira; Visentainer, Jesuí Vergilio

    2016-10-01

    Solanum americanum Mill. is a plant that belongs to the Solanaceae family, its respective ripe fruit is dark purple. Ripe S. americanum Mill. fruits were submitted to physicochemical characterisation, and their trans-resveratrol contents were quantified by high-performance liquid chromatography. Such determination was executed with fruits at different stages of ripeness and freeze-stored fruits as well. In natura ripe fruit pulp and peel presented average trans-resveratrol amounts of 1.07 and 0.7960 μg per gram of sample, respectively. These amounts are significantly higher when compared to freeze-stored fruit (0.1353 μg of trans-resveratrol per gram of sample) and to other berries. All ripe fruits showed significant amounts of total anthocyanins and total antioxidants. Thus, for the first time, trans-resveratrol has been identified and quantified in S. americanum Mill. fruit samples.

  12. Molecular and enzymatic properties of a cathepsin L-like proteinase with distinct substrate specificity from northern shrimp (Pandalus borealis).

    Science.gov (United States)

    Aoki, H; Ahsan, M N; Watabe, S

    2004-01-01

    We purified a cathepsin L-like proteinase to homogeneity from the hepatopancreas of northern shrimp Pandalus borealis by several chromatographic procedures. The purified proteinase showed the highest specificity for leucine residue at P2, a specificity pattern similar to cathepsins S and K whereas proline and arginine residues were not suitable as P2 substrates. However, unlike these proteinases, it accepted valine almost equally to the phenylalanine residue at P2. The shrimp cathepsin was strongly inhibited by E-64, leupeptin and antipain, while benzyloxycarbonyl-Phe-Tyr(t-Bu)-CHN2, a specific inhibitor of cathepsin L, remained largely ineffective. Next, we determined the primary structure of the shrimp enzyme by molecular cloning and investigated the residues constituting the S2 subsite, which is possibly involved in its unusual substrate specificity. The deduced amino acid sequence of the shrimp proteinase shared the highest identity of 65% with a cathepsin L-like proteinase from lobster, but its identity to the well-characterized mammalian cathepsins S, L, and K fell within narrower ranges of 52-55%. However, the shrimp proteinase differed from these cathepsins in some key residues including, for example, the unique occurrence of cysteine and glutamine residues at the structurally important S2 subsite. Interestingly, transcripts of this proteinase were exclusively detected in the shrimp gut coinciding with its broad pH activity and stability profiles, which is also unusual as a cysteine proteinase. These results suggest that the shrimp enzyme is homologous to mammalian cathepsins S, L, and K, but is distinct from each of these proteinases in both enzymatic and structural properties.

  13. Taraxalisin -- a serine proteinase from dandelion Taraxacum officinale Webb s.l.

    Science.gov (United States)

    Rudenskaya, G N; Bogacheva, A M; Preusser, A; Kuznetsova, A V; Dunaevsky YaE; Golovkin, B N; Stepanov, V M

    1998-10-23

    Latex of dandelion roots contains a serine proteinase that hydrolyzes a chromogenic peptide substrate Glp-Ala-Ala-Leu-pNA optimally at pH 8.0. Maximal activity of the proteinase in the roots is attained in April, at the beginning of plant development after the winter period. The protease was isolated by ammonium sulfate precipitation of the root extract followed by affinity chromatography on a Sepharose-Ala-Ala-Leu-mrp and gel filtration on Superose 6R performed in FPLC regime. Pure serine proteinase named taraxalisin was inactivated by specific inhibitors of serine proteinases, diisopropylfluorophosphate (DFP) and phenylmethylsulfonylfluoride (PMSF). Its molecular mass is 67 kDa and pI 4.5. pH stability range is 6-9 in the presence of 2 mM Ca2+, temperature optimum is at 40 degrees C; Km=0.37+/-0.06 mM. The substrate specificity of taraxalisin towards synthetic peptides and insulin B-chain is comparable with that of two other subtilisin-like serine proteinases, cucumisin and macluralisin. The taraxalisin N-terminal sequence traced for 15 residues revealed 40% coinciding residues when aligned with that of subtilisin Carlsberg.

  14. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  15. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin.

    Science.gov (United States)

    Oppert, B; Kramer, K J; Johnson, D; Upton, S J; Mcgaughey, W H

    1996-06-01

    The ability of proteinases in gut extracts of the Indianmeal moth, Plodia interpunctella, to hydrolyze Bacillus thuringiensis (Bt) protoxin, casein, and rho-nitroanilide substrates was investigated. A polyclonal antiserum to protoxin CryIA(c) was used in Western blots to demonstrate slower protoxin processing by gut enzymes from Bt subspecies entomocidus-resistant larvae than enzymes from susceptible or kurstaki-resistant strains. Enzymes from all three strains hydrolyzed N-alpha-benzoyl-L-arginine rho-nitroanilide, N-succinyl-ala-ala-pro-phenylalanine rho-nitroanilide, and N-succinyl-ala-ala-pro-leucine rho-nitroanilide. Zymograms and activity blots were used to estimate the apparent molecular masses, number of enzymes, and relative activities in each strain. Several serine proteinase inhibitors reduced gut enzyme activities, with two soybean trypsin inhibitors, two potato inhibitors, and chymostatin the most effective in preventing protoxin hydrolysis.

  16. Effect of Three Plant Species on Population Densities of Xiphinema americanum and X. rivesi.

    Science.gov (United States)

    Georgi, L L

    1988-07-01

    A taxonomic revision of the Xiphinema americanum species complex has necessitated a reexamination of the host range of species in the complex before recommendations can be made with confidence on the likelihood that specific crops will be damaged. Toward this end, populations of X. americanum and X. rivesi collected from apple orchards in eastern and western New York state were evaluated after 3 months in pots planted with cucumber, apple, or dandelion seedlings. Eastern and western New York populations of both nematode species declined on cucumber but increased to similar final densities on apple and dandelion.

  17. Diversity of Xiphinema americanum-group Species and Hierarchical Cluster Analysis of Morphometrics.

    Science.gov (United States)

    Lamberti, F; Ciancio, A

    1993-09-01

    Of the 39 species composing the Xiphinema americanum group, 14 were described originally from North America and two others have been reported from this region. Many species are very similar morphologically and can be distinguished only by a difficult comparison of various combinations of some morphometric characters. Study of morphometrics of 49 populations, including the type populations of the 39 species attributed to this group, by principal component analysis and hierarchical cluster analysis placed the populations into five subgroups, proposed here as the X. brevicolle subgroup (seven species), the X. americanum subgroup (17 species), the X. taylori subgroup (two species), the X. pachtaicum subgroup (eight species), and the X. lambertii subgroup (five species).

  18. Restriction Fragment Length Polymorphism Separates Species of the Xiphinema americanum Group.

    Science.gov (United States)

    Vrain, T C

    1993-09-01

    The Xiphinema americanum group of species is responsible for vectoring several important virus diseases to perennial crops. Variability of transmission of viruses by different species, and difficulties in separating species by morphometric measurements alone, make it essential to reassess the taxonomic position of several species in the group. The measurement of DNA sequence variability is a sensitive assay that can re-evaluate the separation of species and populations from each other. This study describes how an RFLP approach, in which the restriction sites in transcribed spacers of ribosomal repeats were detected, confirmed the separation of 16 populations of these species into X. americanum, X. rivesi, X. pacificum, and X. bricolensis.

  19. Discovery of filarial nematode DNA in Amblyomma americanum in Northern Virginia.

    Science.gov (United States)

    Henning, Tyler C; Orr, John M; Smith, Joshua D; Arias, Jorge R; Rasgon, Jason L; Norris, Douglas E

    2016-03-01

    Ticks collected in 2011 were screened for the presence of filarial nematode genetic material, and positive samples were sequenced for analysis. Monanema-like filarial nematode DNA was recently discovered in Amblyomma americanum in northern Virginia, marking the first time genetic material from this parasite has been discovered in ticks in the state. Phylogenetic analysis revealed that this material was directly related to a previously discovered filarial nematode in A. americanum populations in Maryland as well as recently identified parasites in Ixodes scapularis from southern Connecticut. Further study is warranted to visually confirm the presence of these nematodes, characterize their distribution, and determine if these ticks are intermediate hosts.

  20. Parasitism of Xiphinema rivesi and X. americanum by Zoosporic Fungi.

    Science.gov (United States)

    Jafee, B A

    1986-01-01

    Living Xiphinema americanum (Xa) and X. rivesi (Xr) extracted from soil samples and stored for 1-5 days at 4 or 20 C contained aseptate fungal hyphae. The fungi directly penetrated the nematode's cuticle from spores encysted near the head. Penetration through the stoma, vulva, or anus was rare. Catenaria anguillulae (Cat), Lagenidium caudatura (Lag), Aphanomyces sp. (Aph), and Leptolegnia sp. (Lep) were isolated into pure culture from infected nematodes. The pathogenicity of these zoosporic fungi was determined by incubating mixed freshly extracted Xa and Xr in 2% soil extract (pH = 6.7, conductivity = 48 mumhos, 20 +/- 2 C) containing zoospores obtained from single-spore isolates. After 4 days, Cat, Lag, Aph, and Lep had infected 78, 18, 13, and 22%, respectively, of the nematodes. Both Xa and Xr were infected by every fungus; however, the relative susceptibility of Xa and Xr to these fungi was not determined. All noninoculated control nematodes remained uninfected and alive. In a second experiment, parasitism of Xa and Xr by Aph and Lep was increased when nematodes were incubated in 2% soil extract for 4 days before exposure to zoospores. In a third experiment, parasitism of Xa and Xr by Cat was greater in diluted saturation soil extract (conductivity = 100-400 mumhos) than in undiluted saturation extract (conductivity = 780 mumhos). Cat produced small zoospores (4-mum-d), bulbous infection hyphae, and assimilative hyphae of varying diameters in nematodes, whereas Lag, Aph, and Lep produced large zoospores (8-mum-d) and tubular, uniform infection and assimilative hyphae in nematodes.

  1. The Overmyer mastodon (Mammut americanum) from Fulton County, Indiana

    Science.gov (United States)

    Woodman, N.; Branstrator, J.W.

    2008-01-01

    In June 1978 the partial skeleton of an American mastodon, Mammut americanum, was salvaged from a drainage ditch in Fulton County, north-central Indiana. The remains were recovered mostly from ca. 170-260 cm below the current land surface in marl overlain by peat and peaty marl. The stratigraphy of the site indicates that the remains were deposited in a small, open-water pond that subsequently filled. The skeleton, which is 41-48% complete, is that of a mature female, ca. 30-34 y old at death based on dental eruption and wear. Postcranial bone measurements indicate that this individual was relatively large for a female. Radiocarbon dating of wood from under the pelvis of the mastodon provided a maximum date of 12,575 ? 260 14C y BP [15,550-13,850 cal y BP] for the animal, which is up to 2575 14C y before the species is believed to have become extinct. Pollen samples from the site corroborate the interpretation that the regional climate was cooler and more humid than at present and supported a mixed spruce-deciduous parkland assemblage. The relatively small size of the molars of this and other mastodons from Indiana supports the hypothesis that late-glacial mastodons - just prior to their extinction - were smaller in size relative to earlier, full-glacial conspecifics. The relationship between molar size and body size is not clear, however, and there may be geographical factors as well as a temporal influence to size variation in these animals.

  2. A triticale water-deficit-inducible phytocystatin inhibits endogenous cysteine proteinases in vitro.

    Science.gov (United States)

    Chojnacka, Magdalena; Szewińska, Joanna; Mielecki, Marcin; Nykiel, Małgorzata; Imai, Ryozo; Bielawski, Wiesław; Orzechowski, Sławomir

    2015-02-01

    Water-deficit is accompanied by an increase in proteolysis. Phytocystatins are plant inhibitors of cysteine proteinases that belong to the papain and legumain family. A cDNA encoding the protein inhibitor TrcC-8 was identified in the vegetative organs of triticale. In response to water-deficit, increases in the mRNA levels of TrcC-8 were observed in leaf and root tissues. Immunoblot analysis indicated that accumulation of the TrcC-8 protein occurred after 72h of water-deficit in the seedlings. Using recombinant protein, inhibitory activity of TrcC-8 against cysteine proteases from triticale and wheat tissues was analyzed. Under water-deficit conditions, there are increases in cysteine proteinase activities in both plant tissues. The cysteine proteinase activities were inhibited by addition of the recombinant TrcC-8 protein. These results suggest a potential role for the triticale phytocystatin in modulating cysteine proteinase activities during water-deficit conditions.

  3. Inhibitory effects of human alpha 2-macroglobulin on Trypanosoma cruzi epimastigote proteinases.

    Science.gov (United States)

    Ramos, A; Remedi, M S; Sánchez, C; Bonacci, G; Vides, M A; Chiabrando, G

    1997-12-01

    The inactivation of Trypanosoma cruzi proteinases by human alpha 2-macroglobulin (alpha 2-M), a major plasma proteinase inhibitor was studied. Evidences regarding the interaction between alpha 2-M and proteolytic enzymes contained in crude cell-free extracts of T. cruzi were derived from electrophoretic and enzymatic assays. The former showed conformational and structural changes occurring in alpha 2-M, as judged by the appearance of transformed 'fast' form on native PAGE; generation of bands of approximately 90 kDa on reduced SDS-PAGE and formation of covalent complexes enzyme-inhibitor on SDS-PAGE. On the other hand, the total proteolytic activity on azocasein dropped significantly in the presence of alpha 2-M, although partial activity was still maintained. The proteinases detected as a double band of 44 and 53 kDa on gelatin SDS-PAGE were also inhibited by alpha 2-M. Results suggest that the study of specific interactions between alpha 2-M and T. cruzi-proteinases, probably with cruzipain, could be biologically important in the fate of T. cruzi-infection and Chagas' disease.

  4. Rickettsia parkeri Transmission to Amblyomma americanum by Cofeeding with Amblyomma maculatum (Acari: Ixodidae) and Potential for Spillover.

    Science.gov (United States)

    Wright, Chelsea L; Sonenshine, Daniel E; Gaff, Holly D; Hynes, Wayne L

    2015-09-01

    Amblyomma americanum (L.) is a human-biting ixodid tick distributed throughout much of the southeastern United States. Rickettsia parkeri is a member of the spotted fever group rickettsiae and causes a febrile illness in humans commonly referred to as "Tidewater spotted fever" or "R. parkeri rickettsiosis." Although the Gulf Coast tick, Amblyomma maculatum Koch, is the primary vector of R. parkeri, a small proportion of A. americanum have also been shown to harbor R. parkeri. The purpose of this investigation was to determine whether R. parkeri is spilling over into A. americanum in eastern Virginia and also to determine through laboratory experiments, whether A. americanum can acquire R. parkeri by cofeeding alongside infected ticks. Of 317 wild-caught, flat adult A. americanum tested from 29 counties and independent cities in coastal Virginia, a single female A. americanum was positive for R. parkeri, suggesting that R. parkeri is spilling over into this species, but at very low rates (Rickettsia amblyommii, however, were less likely to acquire R. parkeri, suggesting that infection with R. amblyommii may prevent R. parkeri from establishing infection in A. americanum.

  5. Crystal structure of the Bowman-Birk Inhibitor from Vigna unguiculata seeds in complex with beta-trypsin at 1.55 A resolution and its structural properties in association with proteinases.

    Science.gov (United States)

    Barbosa, João Alexandre R G; Silva, Luciano P; Teles, Rozeni C L; Esteves, Gisele F; Azevedo, Ricardo B; Ventura, Manuel M; de Freitas, Sonia M

    2007-03-01

    The structure of the Bowman-Birk inhibitor from Vigna unguiculata seeds (BTCI) in complex with beta-trypsin was solved and refined at 1.55 A to a crystallographic R(factor) of 0.154 and R(free) of 0.169, and represents the highest resolution for a Bowman-Birk inhibitor structure to date. The BTCI-trypsin interface is stabilized by hydrophobic contacts and hydrogen bonds, involving two waters and a polyethylene glycol molecule. The conformational rigidity of the reactive loop is characteristic of the specificity against trypsin, while hydrophobicity and conformational mobility of the antichymotryptic subdomain confer the self-association tendency, indicated by atomic force microscopy, of BTCI in complex and free form. When BTCI is in binary complexes, no significant differences in inhibition constants for producing a ternary complex with trypsin and chymotrypsin were detected. These results indicate that binary complexes present no conformational change in their reactive site for both enzymes confirming that these sites are structurally independent. The free chymotrypsin observed in the atomic force microscopy assays, when the ternary complex is obtained from BTCI-trypsin binary complex and chymotrypsin, could be related more to the self-association tendency between chymotrypsin molecules and the flexibility of the reactive site for this enzyme than to binding-related conformational changes.

  6. Epidemiology of Xiphinema americanum and Tomato ringspot virus on Red Raspberry, Rubus idaeus.

    Science.gov (United States)

    The population dynamics and the ability of Xiphinema americanum to transmit Tomato ringspot virus (ToRSV) are poorly understood in the raspberry pathosystem. Soil samples were collected monthly from 1999 through 2002 in a ToRSV infected 'Willamette' red raspberry field in Clark County, WA, USA. Pop...

  7. An acarologic survey and Amblyomma americanum distribution map with implications for tularemia risk in Missouri

    Science.gov (United States)

    Brown, H.E.; Yates, K.F.; Dietrich, G.; MacMillan, K.; Graham, C.B.; Reese, S.M.; Helterbrand, Wm. S.; Nicholson, W.L.; Blount, K.; Mead, P.S.; Patrick, S.L.; Eisen, R.J.

    2011-01-01

    In the United States, tickborne diseases occur focally. Missouri represents a major focus of several tickborne diseases that includes spotted fever rickettsiosis, tularemia, and ehrlichiosis. Our study sought to determine the potential risk of human exposure to human-biting vector ticks in this area. We collected ticks in 79 sites in southern Missouri during June 7-10, 2009, which yielded 1,047 adult and 3,585 nymphal Amblyomma americanum, 5 adult Amblyomma maculatum, 19 adult Dermacentor variabilis, and 5 nymphal Ixodes brunneus. Logistic regression analysis showed that areas posing an elevated risk of exposure to A. americanum nymphs or adults were more likely to be classified as forested than grassland, and the probability of being classified as elevated risk increased with increasing relative humidity during the month of June (30-year average). Overall accuracy of each of the two models was greater than 70% and showed that 20% and 30% of the state were classified as elevated risk for human exposure to nymphs and adults, respectively. We also found a significant positive association between heightened acarologic risk and counties reporting tularemia cases. Our study provides an updated distribution map for A. americanum in Missouri and suggests a wide-spread risk of human exposure to A. americanum and their associated pathogens in this region. Copyright ?? 2011 by The American Society of Tropical Medicine and Hygiene.

  8. Neuronal projections from the Haller's organ and palp sensilla to the synganglion of Amblyomma americanum

    Science.gov (United States)

    The present study was conducted to elucidate the neuronal pathways between peripheral olfactory and taste sensilla and the synganglion in an Ixodidae tick species. The tarsus of the front legs (olfactory nerves) and the fourth palpal segment (gustatory nerves) of unfed Amblyomma americanum males and...

  9. Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidade) nymphs.

    Science.gov (United States)

    Schulze, T L; Jordan, R A; Hung, R W; Taylor, R C; Markowski, D; Chomsky, M S

    2001-03-01

    A single barrier application of granular deltamethrin to the woodland edges of a forested residential community in late spring significantly reduced the abundance of Ixodes scapularis Say nymphs. The application also suppressed the population of Amblyomma americanum (L.) nymphs, which recently became established in the study area. The efficacy of deltamethrin is compared with other commonly used acaricides.

  10. Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1992-01-01

    The Saccharomyces cerevisiae PEP4 gene encodes proteinase A, an aspartyl protease. pep4 mutants are defective in the activation of many vacuolar hydrolases, including proteinase B. We have expressed a pep4 mutation which directs the accumulation of pro-proteinase A with a defective active site. C...... of the mutant zymogen, owing to a strong, proteinase-B-dependent, phenotypic lag. In a proteinase-B-negative strain, processing of pro-proteinase A led to an active form of a higher molecular mass than the normal mature form....

  11. 血清视黄醇结合蛋白与半胱氨酸蛋白酶抑制剂C对肾脏疾病的诊断价值%Diagnosis value of serum retinal-binding protein and cysteine proteinase inhibitor C in renal diseases

    Institute of Scientific and Technical Information of China (English)

    陈晓婷; 张炳峰; 金菲

    2014-01-01

    Objective:To evaluate the value of serum retinal-binding protein(RBP) and cysteine proteinase inhibitor C(Cys C) in the diagnosis of renal diseases.Methods:A total of 165 patients with renal disease (patient group) and 177 healthy subjects (control group) were enrolled in the study.Serum RBP,Cys C,creatinine(Cr) and urine Cr were assayed and compared; creatinine clearance rate(Ccr)of the two groups were calculated and compared.Correlation between serum RBP with Cys C,creatinine (Cr) and Ccr were analyzed.ROC curve for the diagnosis of renal disease were drawn and the area under ROC curve was calculated.Results:Compared with the control group,the serum levels of RBP,Cys C and Cr in patient group were higher,but Ccr was lower; Serum levels of RBP in patient group was positively correlated to Cr,while Cys C levels negatively correlated to Ccr (r =0.726,0.705,-0.803,both P <0.01).The area under the ROC curve of RBP,Cys C and Cr were 0.856,0.917 and 0.810,respectively; the diagnosis sensitivity were 81.2%,91.5% and 63.3% ; and the diagnosis specificity were 73.2%,78.2% and 95.2%.Conclusion:The value of serum levels of RBP in the diagnosis of renal disease was lower than that of Cys C.%目的:探讨血清视黄醇结合蛋白(retinal-binding protein,RBP)与半胱氨酸蛋白酶抑制剂C(cysteine proteinase inhibitor C,Cys C)在肾脏疾病中的诊断价值.方法:选取165例肾脏疾病患者和177例健康对照者,分别检测并比较两者血清中RBP,Cys C,血肌酐和尿肌酐水平以及肌酐清除率(creatinine clearance rate,Ccr);对血清中RBP的含量与Cys C、肌酐、Ccr等指标的含量作相关性分析;作RBP、Cys C与肌酐对肾脏疾病诊断的ROC曲线,计算ROC曲线下面积.结果:与健康对照组相比,患者组血清RBP、Cys C和肌酐水平显著增高,而Ccr水平明显降低(P均<0.000 1);患者组血清中RBP与Cys C、肌酐呈明显正相关,与Ccr呈明显负相关(r分别为0.726,0.705,-0.803,P均<0.01).RBP

  12. 乳腺丝氨酸蛋白酶抑制剂在口腔鳞状细胞癌亚细胞中的表达及意义%Mammary serine proteinase inhibitor subcellular expression in oral squamous cell carcinoma and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    罗军; 舒海荣; 应于康; 吴伟力; 季彤; 钟来平

    2011-01-01

    目的 检测乳腺丝氨酸蛋白酶抑制剂(mammary serine proteinase inhibitor,Maspin)在口腔鳞状细胞癌亚细胞中的表达,观察其与口腔鳞状细胞癌患者临床病理特征之间的关系,以期为临床提供参考.方法 应用免疫组织化学方法对45例口腔鳞状细胞癌的癌组织标本行Maspin蛋白含量的半定量测定,统计其亚细胞定位表达,并与各临床病理指标进行统计学分析.结果 Maspin蛋白在口腔鳞状细胞癌胞核中表达的强阳性率为24%(11/45),弱阳性率为11%(5/45),阴性率为64%(29/45),细胞核表达与肿瘤大小(P=0.019)、淋巴结转移(P=0.011)及术后转移(P=0.017)呈负相关,与患者术后的生存时间呈正相关(P=0.030);Maspin蛋白在口腔鳞状细胞癌胞质中表达的强阳性率为31%(14/45),弱阳性率为31%(14/45),阴性率为38%(17/45),细胞质表达与淋巴结转移(P=0.038)、术后转移(P=0.004)呈负相关,与患者术后的生存时间呈正相关(P=0.014).结论 Maspin蛋白在口腔鳞状细胞癌胞核或胞质中的表达对判断预后可能具有重要价值.%Objective To investigate the subcellular expression of mammary serine proteinase inhibitor(Maspin) in oral squamous cell carcinoma and its relationship to the clinicopathological features.Methods The Maspin protein subcellular expression was detected in 45 patients with oral squamous cell carcinoma by immunohistochemical staining.The relationship between the Maspin protein subcellular expression and the clinicopathological parameters was analyzed.Results The negative rate of nuclear maspin expression was 64%(29/45),and the weakly positive rate was 11%(5/45),and the strong positive rate was 24%(11/45).Nuclear maspin expression was negatively correlated with T stage(P=0.019),lymph node metastasis(P=0.038) and postoperative metastasis(P=0.004),but positively correlated with the patients′ survival rate (P=0.014).The negative rate of cytoplasmatic maspin expression was 38%(17/45),and the

  13. 肺间质纤维化大鼠肺组织基质金属蛋白酶及其组织抑制因子含量变化%Changes of lung tissue matrix metallo proteinase and its tissue inhibitor in pulmonary fibrosis rats

    Institute of Scientific and Technical Information of China (English)

    黄日红; 吴泰华; 张中和

    2001-01-01

    观察肺纤维化形成过程中基质金属蛋白酶(Matrix Metallo proteinas 简称MMPs)及其组织抑制因子(Tissue inhibitors of Metallo proteinases 简称TIMPs)含量的变化,探讨其在肺纤维化发病中的作用.将W istar大鼠60只,随机均分为对照组及模型组,气管内注入博莱霉素A5 5mg/kg,制备肺间质纤维化动物模型,观察注药后1、3、7、14及28d肺脏病理变化,利用酶谱法及免疫印记法分析肺组织MMP-2、MMP-9,TIMP-1的含量变化.结果显示各模型组pro-MMP-2、MMP -2、TIMP-1蛋白含量均较对照组增加,尤其7、14及28d组MMP-2较前明显增多.而MMP- 9变化不很明显.提示在肺纤维化形成过程中, pro-MMP-2、MMP-2 及TIMP-1都有所增高,MMP/TIMP比例失衡是最终导致肺间质纤维化形成的重要因素.

  14. Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence.

    Science.gov (United States)

    Jones, M L; Larsen, P B; Woodson, W R

    1995-06-01

    The senescence of carnation (Dianthus caryophyllus L.) flower petals is regulated by the phytohormone ethylene and is associated with considerable catabolic activity including the loss of protein. In this paper we present the molecular cloning of a cysteine proteinase and show that its expression is regulated by ethylene and associated with petal senescence. A 1600 bp cDNA was amplified by polymerase chain reaction using a 5'-specific primer and 3'-nonspecific primer designed to amplify a 1-aminocyclopropane-1-carboxylate synthase cDNA from reverse-transcribed stylar RNA. The nucleotide sequence of the cloned product (pDCCP1) was found to share significant homology to several cysteine proteinases rather than ACC synthase. A single open reading frame of 428 amino acids was shown to share significant homology with other plant cysteine proteinases including greater than 70% identity with a cysteine proteinase from Arabidopsis thaliana. Amino acids in the active site of cysteine proteinases were conserved in the pDCCP1 peptide. RNA gel blot analysis revealed that the expression of pDCCP1 increased substantially with the onset of ethylene production and senescence of petals. Increased pDCCP1 expression was also associated with ethylene production in other senescing floral organs including ovaries and styles. The pDCCP1 transcript accumulated in petals treated with exogenous ethylene within 3 h and treatment of flowers with 2,5-norbornadiene, an inhibitor of ethylene action, prevented the increase in pDCCP1 expression in petals. The temporal and spatial patterns of pDCCP1 expression suggests a role for cysteine proteinase in the loss of protein during floral senescence.

  15. Recombinant expression and bioactivity assay of Kazal-type serine proteinase inhibitor(Fc-Kazal) from Fenneropenaeus chinensis%中国明对虾Kazal型丝氨酸蛋白酶抑制剂基因(Fc-Kazal)的重组表达及活性分析

    Institute of Scientific and Technical Information of China (English)

    黄明; 刘逸尘; 张亦陈; 孙妍; 孙金生

    2011-01-01

    Kazal型丝氨酸蛋白酶抑制剂可以通过精确调控丝氨酸蛋白酶的活力,在生物体的防御应答等众多生物过程中发挥重要作用.以前期克隆的中国明对虾Kaza1型丝氨酸蛋白酶抑制剂基因(Fc-Kazal,GenBank注册号为DQ318856)为基础,对其功能结构域进行序列比对和进化分析;组织表达分析结果表明,该基因在血细胞、鳃和淋巴器官等组织中高水平表达,而在眼柄、神经和肌肉中无表达;利用原核表达系统对该基因成熟肽区域成功进行了重组表达,纯化后的目的蛋白最终得率为0.4 g/L培养液;活性分析结果显示,复性后的rFc-Kazal对鳗弧菌、金黄色葡萄球菌、杀鲑气单胞菌、苏云金芽孢杆菌有明显的抑菌作用.%Chinese shrimp (Fenneropenaeus chinensis) is one of the most important aquaculture animals in China. The studies on the innate immune responses of shrimp, especially on immune defense against the main crustacean pathogens, will provide more knowledge of shrimp immunity to prevent infectious diseases. Arthropod innate defence responses[e. G. Prophenoloxidase(proPO) activation and Toll pathway initiation] and many other biological processes are mediated by serine proteinase( SP) cascades. If the activity of SPs is out of control, it will be fatal to organisms. Serine protease inhibitors ( SPI) play a critical role in precise regulation of SP activity, and also directly participate in the selection and digestion of pathogen. One of the well known SPI is the Kazal-type SPI which are usually multi-domain proteins containing more than one Kazal domain. Each domain contains 50-60 amino acids with six cysteine residues forming a 1 -5,2 -4, 3-6 disulphide bridges resulting in a characteristic three-dimensional structure. The inhibitory specificity of a Kazal domain varies with a different reactive PI amino acid, which is the second amino acid after the second Cys. However,the knowledge about the Kazal-type SPI in

  16. Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases

    NARCIS (Netherlands)

    Gruden, K.; Kuipers, A.G.J.; Guncar, G.; Slapar, N.; Strukelj, B.; Jongsma, M.A.

    2004-01-01

    Potato synthesises high levels of proteinase inhibitors in response to insect attack. This can adversely affect protein digestion in the insects, leading to reduced growth, delayed development and lowered fecundity. Colorado potato beetle overcomes this defence mechanism by changing the composition

  17. Purification and some physico-chemical and enzymic properties of a calcium ion-activated neutral proteinase from rabbit skeletal muscle

    Science.gov (United States)

    Azanza, Jean-Louis; Raymond, Jacques; Robin, Jean-Michel; Cottin, Patrick; Ducastaing, André

    1979-01-01

    Ca2+-activated neutral proteinase was purified from rabbit skeletal muscle by a method involving DEAE-Sephacel chromatography, affinity chromatography on organomercurial–Sepharose and gel filtration on Sephacryl S-200 and Sephadex G-150. The SDS (sodium dodecyl sulphate)/polyacrylamide-gel-electrophoresis data show that the purified enzyme contains only one polypeptide chain of mol.wt. 73000. The purification procedure used allowed us to eliminate a contaminant containing two components of mol.wt. about 30000 each. Whole casein or α1-casein were hydrolysed with a maximum rate at 30°C, pH7.5, and with 5mm-CaCl2, but myofibrils were found to be a very susceptible substrate for this proteinase. This activity is associated with the destruction of the Z-discs, which is caused by the solubilization of the Z-line proteins. The activity of the proteinase in vitro is not limited to the removal of Z-line. SDS/polyacrylamide-gel electrophoresis on larger plates showed the ability of the proteinase to degrade myofibrils more extensively than previously supposed. This proteolysis resulted in the production of a 30000-dalton component as well as in various other higher- and lower-molecular-weight peptide fragments. Troponin T, troponin I, α-tropomyosin, some high-molecular-weight proteins (M protein, heavy chain of myosin) and three unidentified proteins are degraded. Thus the number of proteinase-sensitive regions in the myofibrils is greater than as previously reported by Dayton, Goll, Zeece, Robson & Reville [(1976) Biochemistry 15, 2150–2158]. The Ca2+-activated neutral proteinase is not a chymotrypsin- or trypsin-like enzyme, but it reacted with all the classic thiol-proteinase inhibitors for cathepsin B, papain, bromelain and ficin. Thus the proteinase was proved to have an essential thiol group. Antipain and leupeptin are also inhibitors of the Ca2+-activated neutral proteinase. ImagesFig. 1.Fig. 2.Fig. 3. PMID:534501

  18. Evaluation of DEET and eight essential oils for repellency against nymphs of the lone star tick, Amblyomma americanum (Acari: Ixodidae)

    Science.gov (United States)

    Eight commercially available essential oils (oregano, clove, thyme, vetiver, sandalwood, cinnamon, cedarwood, and peppermint) were evaluated for repellency against host-seeking nymphs of the lone star tick, Amblyomma americanum. Concentration- repellency response was established using the vertical ...

  19. Proteinase K improves quantitative acylation studies.

    Science.gov (United States)

    Fränzel, Benjamin; Fischer, Frank; Steegborn, Clemens; Wolters, Dirk Andreas

    2015-01-01

    Acetylation is a common PTM of proteins but is still challenging to analyze. Only few acetylome studies have been performed to tackle this issue. Yet, the detection of acetylated proteins in complex cell lysates remains to be improved. Here, we present a proteomic approach with proteinase K as a suitable protease to identify acetylated peptides quantitatively. We first optimized the digestion conditions using an artificial system of purified bovine histones to find the optimal protease. Subsequently, the capability of proteinase K was demonstrated in complex HEK293 cell lysates. Finally, SILAC in combination with MudPIT was used to show that quantification with proteinase K is possible. In this study, we identified a sheer number of 557 unique acetylated peptides originating from 633 acetylation sites.

  20. Amblyomma americanum as a Bridging Vector for Human Infection with Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Rinosh J Mani

    Full Text Available The γ-proteobacterium Francisella tularensis causes seasonal tick-transmitted tularemia outbreaks in natural rabbit hosts and incidental infections in humans in the south-central United States. Although Dermacentor variabilis is considered a primary vector for F. tularensis, Amblyomma americanum is the most abundant tick species in this endemic region. A systematic study of F. tularensis colonization of A. americanum was undertaken to better understand its potential to serve as an overwintering reservoir for F. tularensis and as a bridging vector for human infections. Colony-reared A. americanum were artificially fed F. tularensis subspecies holarctica strain LVS via glass capillaries and colonization levels determined. Capillary-fed larva and nymph were initially infected with 10(4 CFU/tick which declined prior to molting for both stages, but rebounded post-molting in nymphs and persisted in 53% at 10(3 to 10(8 CFU/nymph at 168 days post-capillary feeding (longest sampling time in the study. In contrast, only 18% of adults molted from colonized nymphs maintained LVS colonization at 10(1 to 10(5 CFU/adult at 168 days post-capillary feeding (longest sampling time. For adults, LVS initially colonized the gut and disseminated to salivary glands by 24 h and had an ID50 of <5CFU in mice. Francisella tularensis infected the ovaries of gravid females, but transmission to eggs was infrequent and transovarial transmission to hatched larvae was not observed. The prolonged persistence of F. tularensis in A. americanum nymphs supports A. americanum as an overwintering reservoir for F. tularensis from which seasonal epizootics may originate; however, although the rapid dissemination of F. tularensis from gut to salivary glands in adults A. americanum is compatible with intermittent feeding adult males acting as bridging vectors for incidental F. tularensis infections of humans, acquisition of F. tularensis by adults may be unlikely based on adult feeding

  1. Xiphinema americanum Cobb, 1913 (Dorylaimida: Longidoridae: espécie-praga quarentenária para o Brasil Xiphinema americanum Cobb, 1913 (Dorylaimida: Longidoridae: quarantine pest for Brazil

    Directory of Open Access Journals (Sweden)

    Giovani Greigh de Brito

    2005-02-01

    Full Text Available Diversos aspectos referentes à espécie-praga quarentenária Xiphinema americanum, incluindo características taxonômicas, distribuição geográfica, plantas hospedeiras, aspectos bioecológicos, potencial de transmissão de viroses e medidas de controle, entre outros, foram abordados nesta revisão. A dificuldade encontrada pelos especialistas na correta identificação deste nematóide quarentenário muitas vezes determina que X. americanum seja confundido com outras espécies pertencentes ao mesmo gênero. Esta praga, além de utilizar como hospedeiras várias espécies de plantas e encontrar-se estabelecida em diversas regiões do globo terrestre, constitui-se em um agente transmissor de viroses, dentre as quais algumas são também consideradas quarentenárias para vários países, incluindo o Brasil. Considerando a sua ampla distribuição geográfica somada ao seu alto potencial de transmissão de viroses, o conhecimento dos aspectos abordados nesta revisão pode auxiliar na redução do risco de introdução deste nematóide quarentenário á áreas indenes no Brasil.Different aspects concerning the quarantine pest X. americanum, including taxonomic characteristics, world distribution, host plants, viruses transmission potential, control methods and others, were reviewed. The difficulty in correctly identifying this nematode usually results in its misleading into another species belonging to the same genus. Considering that this pest has almost a worldwide distribution and that it is a virus’s vector, knowledge about it is important to avoid its introduction in new areas, like Brazil.

  2. Detection of two Bartonella tamiae-like sequences in Amblyomma americanum (Acari: Ixodidae) using 16S-23S intergenic spacer region-specific primers.

    Science.gov (United States)

    Billeter, Sarah A; Miller, Melissa K; Breitschwerdt, Edward B; Levy, Michael G

    2008-01-01

    Four hundred and sixty-six questing Amblyomma americanum (L.) (Acari: Ixodidae) from Carolina County, VA, and 98 questing A. americanum from Chatham County, NC, were screened by polymerase chain reaction (PCR) for the Bartonella 16S-23S intergenic spacer region. Two amplicons, approximately 270-280 bp, were detected in two ticks from Virginia. Based upon PCR and sequencing, an adult male and adult female tick harbored DNA sequences closely related to Bartonella tamiae (DQ395180). Bartonella DNA was not detected in A. americanum from North Carolina. Potential transmission of Bartonella spp. by A. americanum should be the focus of future experimental studies.

  3. Aspects of Biology and Development of Xiphinema americanum and Related Species.

    Science.gov (United States)

    Halbrendt, J M; Brown, D J

    1993-09-01

    Identification of Xiphinema americanum-group nematodes is based on relatively subtle morphological and morphometric differences, many of which overlap. The significance and importance of these separations cannot be assessed without a basic understanding of the biological differences between species. Currently, information is accumulating on Xiphinema biology, development, and genetics that will help to confirm or refute the current systematics of species in this group. Recently, it was demonstrated that Xiphinema species pass through either three or four juvenile stages before becoming adults. This new and fundamental information divides the genus and the X. americanum group into subgroups based on their developmental evolution and provides new insight into the taxonomy and systematic positions of the species.

  4. Morphometric Evidence for Three Juvenile Stages in Some Species of Xiphinema americanum sensu lato.

    Science.gov (United States)

    Halbrendt, J M; Brown, D J

    1992-06-01

    One to two hundred nematodes from each of seven Xiphinema americanum-group populations were measured to determine the range of stylet and body lengths for juveniles and adults. First-stage juveniles were identified by the position of the replacement odontostyle (i.e., the tip of the replacement odontostyle overlapped the base of the odontophore). Nematodes were identified as second stage if the functional odontostyle was the same length as the replacement odontostyle of the first stage. Subsequent stages were similarly identified by establishing the range of corresponding replacement and functional odontostyle lengths. In all populations examined, this procedure created natural divisions that clearly grouped nematodes by stylet and body length. Presumably these groups identified all juvenile and adult stages. Populations of X. americanum, X. rivesi, and X. californicum from the United States had three juvenile stages, but a population of X. pachtaicum from Bulgaria had four juvenile stages.

  5. Detection of Borrelia lonestari in Amblyomma americanum (Acari: Ixodidae) from Tennessee.

    Science.gov (United States)

    Stegall-Faulk, T; Clark, D C; Wright, S M

    2003-01-01

    Genetic sequences characteristic of Borrelia lonestari (Barbour et al. 1996) were detected in two pools of adult Amblyomma americanum (L.) from Tennessee, corresponding to an estimated minimum field infection rate of 8.4 infected ticks/1000 adults. DNA amplification was conducted using primers derived from the B. lonestari flagellin gene that would also amplify Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner). Species-specific, internal probes were then used to differentiate between genetic sequences of the spirochetes. Subsequent nucleotide sequencing confirmed the presence of B. lonestari in A. americanum; B. burgdorferi was not detected. This represents the first report of B. lonestari from Tennessee, and suggests that Lyme-like illness may occur in Tennessee.

  6. IN VITRO CHARACTERIZATION OF NATURAL MUCOADHESIVE AGENT ISOLATED FROM OCIMUM AMERICANUM SEED

    Directory of Open Access Journals (Sweden)

    Avinash B. Gangurde et al

    2012-09-01

    Full Text Available Aim of present investigation was to isolate natural mucoadhesive agent from Ocimum americanum seeds and characterize through in vitro mucoadhesion methods, FTIR and DSC studies. Mucoadhesion force of isolated natural mucoadhesive agents and synthetic polymer Carbopol 934P was determined using in vitro mucoadhesion methods viz. Wihelmy’s method, falling sphere method and modified physical balance method. The research study reveals that the natural mucoadhesive agent isolated from Ocimum americanum seed was shown promising mucoadhesion strength. The formation of hydrogen bond by natural mucoadhesive agent with mucosa was confirmed by FTIR spectra showing carboxyl and hydroxyl groups. Natural mucoadhesive agent may be useful to formulate mucoadhesive drug delivery systems as it bears excellent mucoadhesion property and advantageous over synthetic polymers for less toxicity, biocompatibility, biodegradability and cost.

  7. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    DEFF Research Database (Denmark)

    Semenova, Tatyana; Hughes, David Peter; Boomsma, Jacobus Jan;

    2011-01-01

    hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results: We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing...... eight genera. We mapped these activity profiles on an independently obtained molecular phylogeny of the symbionts and show that total proteinase activity in lower attine symbionts peaks at ca. pH 6. The higher attine symbionts that have no known free-living relatives had much higher proteinase...... activities than the lower attine symbionts. Their total in vitro proteinase activity peaked at pH values around 5, which is close to the pH that the ants maintain in their fungus gardens, suggesting that the pH optimum of fungal proteinases may have changed after the irreversible domestication...

  8. Characterization of the Bacterial Communities of Life Stages of Free Living Lone Star Ticks (Amblyomma americanum)

    OpenAIRE

    Amanda Jo Williams-Newkirk; Rowe, Lori A.; Mixson-Hayden, Tonya R.; Dasch, Gregory A.

    2014-01-01

    The lone star tick (Amblyomma americanum) is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ...

  9. Geographic distribution and genetic diversity of the Ehrlichia sp. from Panola Mountain in Amblyomma americanum

    OpenAIRE

    Williamson Phillip C; Garrison Laurel E; Yabsley Michael J; Mixson Tonya R; Stromdahl Ellen Y; Loftis Amanda D; Fitak Robert R; Fuerst Paul A; Kelly Daryl J; Blount Keith W

    2008-01-01

    Abstract Background A novel Ehrlichia, closely related to Ehrlichia ruminantium, was recently discovered from Panola Mountain State Park, GA, USA. We conducted a study to determine if this agent was recently introduced into the United States. Methods We developed a sensitive PCR assay based on the conserved gltA (citrate synthase) gene and tested DNA samples extracted from 1964 field-collected and 1835 human-biting Amblyomma americanum from 23 eastern states of the USA. Results The novel agen...

  10. Investigation of Serine-Proteinase-Catalyzed Peptide Splicing in Analogues of Sunflower Trypsin Inhibitor 1 (SFTI-1).

    Science.gov (United States)

    Karna, Natalia; Łęgowska, Anna; Malicki, Stanisław; Dębowski, Dawid; Golik, Przemysław; Gitlin, Agata; Grudnik, Przemysław; Wladyka, Benedykt; Brzozowski, Krzysztof; Dubin, Grzegorz; Rolka, Krzysztof

    2015-09-21

    Serine-proteinase-catalyzed peptide splicing was demonstrated in analogues of the trypsin inhibitor SFTI-1: both single peptides and two-peptide chains (C- and N-terminal peptide chains linked by a disulfide bridge). In the second series, peptide splicing with catalytic amount of proteinase was observed only when formation of acyl-enzyme intermediate was preceded by hydrolysis of the substrate Lys-Ser peptide bond. Here we demonstrate that with an equimolar amount of the proteinase, splicing occurs in all the two-peptide-chain analogues. This conclusion was supported by high resolution crystal structures of selected analogues in complex with trypsin. We showed that the process followed a direct transpeptidation mechanism. Thus, the acyl-enzyme intermediate was formed and was immediately used for a new peptide bond formation; products associated with the hydrolysis of the acyl-enzyme were not observed. The peptide splicing was sequence- not structure-specific.

  11. Purification and Characterization of Two High-Molecular-Weight Cystine Proteinase Inhibitors (CPIs) from Silver Carp Eggs%鲢鱼卵中两种高分子半胱氨酸蛋白酶抑制因子的纯化与鉴定

    Institute of Scientific and Technical Information of China (English)

    李树红; 蒋然然; 杨娟; 刘玲; 钟海霞; 陈志光; 李美良; 李冉

    2015-01-01

    以鲢鱼卵为材料,通过匀浆、酸处理和超滤制备半胱氨酸蛋白酶抑制因子(cystine proteinase inhibitors,CPIs)粗提液,进而经Sephacryl S-100分子筛层析、Blue Sepharose 6 Fast Flow染料亲和层析、SP-Sepharose Fast Flow阳离子交换层析、ConA Sepharose 4B亲和层析,获得两种纯化的高分子CPIs,即ConA不吸附部分a-1和吸附部分的糖蛋白a-2.二者分别被纯化了102.62倍和274.28倍,酶活回收率分别为2.02%和1.42%.通过TSK G2000 SWXL凝胶过滤高效液相色谱结合十二烷基硫酸钠-聚丙烯酰胺凝胶电泳及其反相酶谱法分析,表明a-2及再次经高效液相色谱法回收的a-1在电泳图上均呈单一带,a-2为单一峰,且a-1的分子质量为139 ku,a-2的分子质量为92 ku.二者均能抑制半胱氨酸蛋白酶(木瓜蛋白酶和鲢鱼组织蛋白酶L)但不抑制丝氨酸蛋白酶(胰蛋白酶和胰凝乳蛋白酶).根据a-1和a-2的分子质量及抑制活性特征和糖蛋白特性,推测二者可能为鲢鱼卵Kininogens的不同形式.

  12. Proteinases in Naegleria Fowleri (strain NF3), a pathogenic amoeba: a preliminary study.

    Science.gov (United States)

    Mat Amin, Nakisah

    2004-12-01

    Naegleria fowleri is a free-living amoeba, known as a causative agent for a fatal disease of the central nervous system (CNS) in man such as Primary amoebic meningoencephalitis (PAM). Factors contributing to its pathogenicity and its distribution in the environment have been investigated by previous researchers. In case of its pathogenicity, several enzymes such as phospolipase A and sphingomyelinase, have been proposed to probably act as aggressors in promoting PAM but no study so far have been conducted to investigate the presence of proteinase enzyme in this amoeba although a 56kDa cystein proteinase enzyme has been identified in Entamoeba histolytica as an important contributing factor in the amoeba's virulence. In this preliminary study, a pathogenic amoeba, Naegleria fowleri (strain NF3) was examined for the presence of proteinases. Samples of enzymes in this amoeba were analysed by electrophoresis using SDS-PAGE-gelatin gels. The results showed that this amoeba possesses at least two high molecular weight proteinases on gelatin gels; their apparent molecular weights are approximately 128 kDa and approximately 170 kDa. Band of approximately 128 kDa enzyme is membrane-associated and its activity is higher at alkaline pH compared with lower pH; at lower pH, its activity is greatly stimulated by DTT. The approximately 170 kDa band enzyme appears to be inactivated at pH 8.0, at lower ph its activity is higher and DTT-dependance. The activity of this enzyme is partially inhibited by inhibitor E-64 but markedly inhibited to antipain suggesting it belongs to the cysteine proteinase group.

  13. A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests.

    Science.gov (United States)

    Pernas, M; Sánchez-Monge, R; Gómez, L; Salcedo, G

    1998-12-01

    Cystatin CsC, a cysteine proteinase inhibitor from chestnut (Castanea sativa) seeds, has been purified and characterized. Its full-length cDNA clone was isolated from an immature chestnut cotyledon library. The inhibitor was expressed in Escherichia coli and purified from bacterial extracts. Identity of both seed and recombinant cystatin was confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis, two-dimensional electrophoresis and N-terminal sequencing. CsC has a molecular mass of 11,275 Da and pI of 6.9. Its amino acid sequence includes all three motifs that are thought to be essential for inhibitory activity, and shows significant identity to other phytocystatins, especially that of cowpea (70%). Recombinant CsC inhibited papain (Ki 29 nM), ficin (Ki 65 nM), chymopapain (Ki 366 nM), and cathepsin B (Ki 473 nM). By contrast with most cystatins, it was also effective towards trypsin (Ki 3489 nM). CsC is active against digestive proteinases from the insect Tribolium castaneum and the mite Dermatophagoides farinae, two important agricultural pests. Its effects on the cysteine proteinase activity of two closely related mite species revealed the high specificity of the chestnut cystatin.

  14. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells.

    Science.gov (United States)

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu

    2016-03-17

    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3C(pro)s) of picornaviruses share similar spatial structures and it is becoming apparent that 3C(pro) plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3C(pro) are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3C(pro) can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3C(pro) and these essential factors, 3C(pro) is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3C(pro) are ongoing and a better understanding of the roles played by 3C(pro) may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3C(pro) is summarized.

  15. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  16. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus.

    Science.gov (United States)

    Bressollier, P; Letourneau, F; Urdaci, M; Verneuil, B

    1999-06-01

    Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.

  17. Purification and characterization of an elastinolytic proteinase secreted by cercariae of Schistosoma mansoni.

    Science.gov (United States)

    McKerrow, J H; Pino-Heiss, S; Lindquist, R; Werb, Z

    1985-03-25

    An elastinolytic proteinase secreted by tissue-invasive larvae of Schistosoma mansoni has been purified to homogeneity. Size-exclusion chromatography and chromatofocusing were used to purify the enzyme 18-fold from crude larval secretions. The native enzyme has a molecular weight of 30,000, a pI of 8, a pH optimum of 9, and a calcium dependence of 2 mM. A second Mr 17,000 form of the enzyme was present in crude secretions and appears to be an autoproteolysis product. The enzyme is a serine proteinase that preferentially binds tetrapeptide inhibitors or substrates with an aromatic or hydrophobic residue at the P-1 site. In addition to being active against elastin, the enzyme degrades Azocoll, gelatin, laminin, fibronectin, keratin, and type IV collagen.

  18. Characterization of Xiphinema americanum group species (Nematoda: Dorylaimida) and co-evolution of bacteria from the genus ‘Candidatus Xiphinematobacter’ with these nematodes

    Science.gov (United States)

    The Xiphinema americanum group contains over two-dozen different species of nematode. They are economically important because they vector nepoviruses, which cause damage to several crops. Taxonomic differentiation among species of the X. americanum complex is problematic because many of the species ...

  19. Multiple proteinases from two Microsporum species.

    Science.gov (United States)

    Simpanya, M F; Baxter, M

    1996-01-01

    Enzyme expression of 67 isolates of two Microsporum species, M. canis and M. cookei, were compared in both shake and stationary cultures using substrate copolymerized SDS-PAGE. Most M. canis isolates expressed more proteolytic bands in shake culture, while M. cookei isolates expressed more in stationary culture. M. canis isolates expressed up to six proteinases of different relative mobilities (122, 64, 62, 45, 31 and 25 kDa). M. cookei expressed up to seven proteinases in stationary culture (67, 66, 64, 62, 45, 42 and 39 kDa). Those of 67 and 66 kDa were not expressed in shake culture. The proteinases expressed by M. cookei were similar to those expressed by M. canis except for 122 and 25 kDa. With the exception of isolates from non-infected cats, 25 kDa was also commonly expressed by isolates from infected hosts in the shake culture treatment. The differences in enzyme expression obtained may reflect differences in the contrasting ecological roles of the two species.

  20. Inter- and Intraspecific Variation in Wild-type and Single Female-derived Populations of Xiphinema americanum-group Nematodes.

    Science.gov (United States)

    Halbrendt, J M; Brown, D J

    1994-06-01

    Ten populations of Xiphinema americanum-group nematodes were reared from individual females to evaluate inter- and intraspecific variation under identical host and environmental conditions. Data indicated that morphometric variability of X. americanum was the result of genetic variation rather than phenotypic plasticity and that genetic heterogeneity was greater than previously thought. Morphometrics of single female derived (SFD) populations identified different genotypes present in the field populations. Stylet length was the least variable morphometric character of SFD populations, but collectively stylet measurements of all individuals formed an uninterrupted continuum ranging from 107-148 mum. Range and frequency of stylet measurements of field populations could be accounted for by the relative proportion of different genotypes in the population. Nine SFD populations were identified as X. americanum sensu stricto, and one SFD population was similar to X. californicum.

  1. Maximum Entropy-Based Ecological Niche Model and Bio-Climatic Determinants of Lone Star Tick (Amblyomma americanum) Niche.

    Science.gov (United States)

    Raghavan, Ram K; Goodin, Douglas G; Hanzlicek, Gregg A; Zolnerowich, Gregory; Dryden, Michael W; Anderson, Gary A; Ganta, Roman R

    2016-03-01

    The potential distribution of Amblyomma americanum ticks in Kansas was modeled using maximum entropy (MaxEnt) approaches based on museum and field-collected species occurrence data. Various bioclimatic variables were used in the model as potentially influential factors affecting the A. americanum niche. Following reduction of dimensionality among predictor variables using principal components analysis, which revealed that the first two principal axes explain over 87% of the variance, the model indicated that suitable conditions for this medically important tick species cover a larger area in Kansas than currently believed. Soil moisture, temperature, and precipitation were highly correlated with the first two principal components and were influential factors in the A. americanum ecological niche. Assuming that the niche estimated in this study covers the occupied distribution, which needs to be further confirmed by systematic surveys, human exposure to this known disease vector may be considerably under-appreciated in the state.

  2. Kinetics of the inhibition of neutrophil proteinases by recombinant elafin and pre-elafin (trappin-2) expressed in Pichia pastoris.

    Science.gov (United States)

    Zani, Marie-Louise; Nobar, Shila M; Lacour, Sandrine A; Lemoine, Soazig; Boudier, Christian; Bieth, Joseph G; Moreau, Thierry

    2004-06-01

    Elafin and its precursor, trappin-2 or pre-elafin, are specific endogenous inhibitors of human neutrophil elastase and proteinase 3 but not of cathepsin G. Both inhibitors belong, together with secretory leukocyte protease inhibitor, to the chelonianin family of canonical protease inhibitors of serine proteases. A cDNA coding either elafin or its precursor, trappin-2, was fused in frame with yeast alpha-factor cDNA and expressed in the Pichia pastoris yeast expression system. Full-length elafin or full-length trappin-2 were secreted into the culture medium with high yield, indicating correct processing of the fusion proteins by the yeast KEX2 signal peptidase. Both recombinant inhibitors were purified to homogeneity from concentrated culture medium by one-step cationic exchange chromatography and characterized by N-terminal amino acid sequencing, Western blot and kinetic studies. Both recombinant elafin and trappin-2 were found to be fast-acting inhibitors of pancreatic elastase, neutrophil elastase and proteinase 3 with k(ass) values of 2-4 x 10(6) m(-1).s(-1), while dissociation rate constants k(diss) were found to be in the 10(-4) s(-1) range, indicating low reversibility of the complexes. The equilibrium dissociation constant K(i) for the interaction of both recombinant inhibitors with their target enzymes was either directly measured for pancreatic elastase or calculated from k(ass) and k(diss) values for neutrophil elastase and proteinase 3. K(i) values were found to be in the 10(-10) molar range and virtually identical for both inhibitors. Based on the kinetic parameters determined here, it may be concluded that both recombinant elafin and trappin-2 may act as potent anti-inflammatory molecules and may be of therapeutic potential in the treatment of various inflammatory lung diseases.

  3. Cloning and tissue expression of cysteine proteinase inhibitor (CPI) gene family inNicotiana tabacum L%烟草半胱氨酸蛋白酶抑制剂(CPI)基因家族的克隆及组织表达谱分析

    Institute of Scientific and Technical Information of China (English)

    林世锋; 元野; 任学良; 邹颉; 黎瑞源; 郭玉双; 赵杰宏; 王仁刚

    2014-01-01

    运用生物信息学方法,结合RT-PCR和SMART RACE技术从烟草(Nicotiana tabacum)中克隆了4个CPI基因的全长cDNA序列,分别命名为NtCPI1、NtCPI2、NtCPI3和NtCPI4, GenBank登陆号分别为KF057988、KF057989、KF057990和KF057991。基因序列分析表明4个基因分别编码98、98、120和123个氨基酸残基的蛋白质,都具有CPI反应位点的保守基序GG、QXVXQ和A/PW,同时具有植物CPI所特有的LARFAV基序,其中NtCPI3和NtCPI4的N端还包含一段27个氨基酸残基组成的信号肽。实时荧光定量PCR试验表明,4个基因的组织表达谱很广,在根、茎、叶和芽组织中都有表达。研究结果为进一步研究半胱氨酸蛋白酶抑制剂在植物中的生理功能奠定了基础。%Full-length cDNAs of fourCPI genes includingNtCPI1、NtCPI2、NtCPI3andNtCPI4were cloned fromNicotiana tabacum L. cv. K326 using RT-PCR and SMART RACE technique. Their sequences were deposited in GenBank with accession number KF057988, KF057989, KF057990 and KF057991. Sequence analysis showed that these four genes were predicted products of 98, 98, 120 and 123 amino acid residues, respectively. In addition to the typical inhibitory motifs, i.e. central signature motif QXVXG, a GG doublet in terminal region, and A/PW residues in C-terminal part. These deduced amino acid sequences contained PhyCys-specific LARFAV-like motif in the N-terminal region, of which a N-terminal signal peptide of 27 residues was found in both NtCPI3 and NtCPI4. Meanwhile, transcripts of these four genes were found in roots, stems, leaves and buds by real-time quantitative PCR, which indicated that they were broadly expressed in tobacco. This study laid foundation for further exploring physiological functions of these cysteine proteinase inhibitor genes in plants.

  4. Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia.

    Science.gov (United States)

    Heise, Stephanie R; Elshahed, M S; Little, S E

    2010-03-01

    The lone star tick, Amblyomma americanum (Acari: Ixodidae), is commonly reported from people and animals throughout the eastern U.S. and is associated with transmission of a number of emerging diseases. To better define the microbial communities within lone star ticks, 16S rRNA gene based analysis using bacteria-wide primers, followed by sequencing of individual clones (n = 449) was used to identify the most common bacterial operational taxonomic units (OTUs) present within colony-reared and wild A. americanum. The colony-reared ticks contained primarily sequence affiliated with members of the genus Coxiella (89%; 81/91), common endosymbionts of ticks, and Brevibacterium (11%; 10/91). Similarly, analysis of clones from unfed wild lone star ticks revealed that 96.7% (89/92) of all the OTUs identified were affiliated with Coxiella-like endosymbionts, as compared with only 5.1-11.7% (5/98-9/77) of those identified from wild lone star ticks after feeding. In contrast, the proportion of OTUs identified as Rickettsia sp. in wild-caught ticks increased from 2.2% (2/92) before feeding to as high as 46.8% (36/77) after feeding, and all Rickettsia spp. sequences recovered were most similar to those described from the spotted fever group Rickettsia, specifically R. amblyommii and R. massiliae. Additional characterization of the Rickettsiales tick community by polymerase chain reaction, cloning, and sequencing of 17 kDa and gltA genes confirmed these initial findings and suggested that novel Rickettsia spp. are likely present in these ticks. These data provide insight into the overall, as well as the rickettsial community of wild lone star ticks and may ultimately aid in identification of novel pathogens transmitted by A. americanum.

  5. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness.

    Directory of Open Access Journals (Sweden)

    Jianmin Zhong

    Full Text Available BACKGROUND: The lone star tick Amblyomma americanum is a common pest and vector of infectious diseases for humans and other mammals in the southern and eastern United States. A Coxiella sp. bacterial endosymbiont was highly prevalent in both laboratory-reared and field-collected A. americanum. The Coxiella sp. was demonstrated in all stages of tick and in greatest densities in nymphs and adult females, while a Rickettsia sp. was less prevalent and in lower densities when present. METHODOLOGY/PRINCIPAL FINDINGS: We manipulated the numbers of both bacterial species in laboratory-reared A. americanum by injecting engorged nymphs or engorged, mated females with single doses of an antibiotic (rifampin or tetracycline or buffer alone. Burdens of the bacteria after molting or after oviposition were estimated by quantitative polymerase chain reaction with primers and probes specific for each bacterial species or, as an internal standard, the host tick. Post-molt adult ticks that had been treated with rifampin or tetracycline had lower numbers of the Coxiella sp. and Rickettsia sp. and generally weighed less than ticks that received buffer alone. Similarly, after oviposition, females treated previously with either antibiotic had lower burdens of both bacterial species in comparison to controls. Treatment of engorged females with either antibiotic was associated with prolonged time to oviposition, lower proportions of ticks that hatched, lower proportions of viable larvae among total larvae, and lower numbers of viable larvae per tick. These fitness estimators were associated with reduced numbers of the Coxiella sp. but not the Rickettsia sp. CONCLUSION/SIGNIFICANCE: The findings indicate that the Coxiella sp. is a primary endosymbiont, perhaps provisioning the obligately hematophagous parasites with essential nutrients. The results also suggest that antibiotics could be incorporated into an integrated pest management plan for control of these and other

  6. Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species comparison with proteinase K and aqualysin I.

    Science.gov (United States)

    Kristjánsson, M M; Magnússon, O T; Gudmundsson, H M; Alfredsson, G A; Matsuzawa, H

    1999-03-01

    An extracellular serine proteinase purified from cultures of a psychrotrophic Vibrio species (strain PA-44) belongs to the proteinase K family of the superfamily of subtilisin-like proteinases. The enzyme is secreted as a 47-kDa protein, but under mild heat treatment (30 min at 40 degrees C) undergoes autoproteolytic cleavage on the carboxyl-side of the molecule to give a proteinase with a molecular mass of about 36 kDa that apparently shares most of the enzymatic characteristics and the stability of the 47-kDa protein. In this study, selected enzymatic properties of the Vibrio proteinase were compared with those of the related proteinases, proteinase K and aqualysin I, as representative mesophilic and thermophilic enzymes, respectively. The catalytic efficiency (kcat/Km) for the amidase activity of the cold-adapted enzyme against succinyl-AAPF-p-nitroanilide was significantly higher than that of its mesophilic and thermophilic counterparts, especially when compared with aqualysin I. The stability of the Vibrio proteinase, both towards heat and denaturants, was found to be significantly lower than of either proteinase K or aqualysin I. One or more disulfide bonds in the psychrotrophic proteinase are important for the integrity of the active enzyme structure, as disulfide cleavage, either by reduction with dithiothreitol or by sulfitolysis, led to a loss in its activity. Under the same conditions, aqualysin I was also partially inactivated by dithiothreitol, but the activity of proteinase K was unaffected. The disulfides of either proteinase K or aqualysin I were not reactive towards sulfitolysis, except under denaturing conditions, while all disulfides of the Vibrio proteinase reacted in absence of a denaturant. The reactivity of the disulfides of the proteins as a function of denaturant concentration followed the order: Vibrio proteinase > proteinase K > aqualysin I. The same order of reactivity was also observed for the inactivation of the enzymes by H2O2

  7. Transmission of Tomato Ringspot Virus by Xiphinema americanum and X. rivesi from New York Apple Orchards.

    Science.gov (United States)

    Georgi, L L

    1988-04-01

    Populations of Xiphinema americanum and X. rivesi were collected from apple orchards in eastern and western New York and tested in the laboratory for ability to transmit tomato ringspot virus (TmRSV) to cucumber and dandelion. Populations varied in the frequency with which they transmitted TmRSV, but this variation did not correspond to variation in disease prevalence in the orchard. The lower prevalence of TmRSV-incited disease in apple trees in western New York cannot be attributed to inability of the local Xiphinema spp. to transmit TmRSV.

  8. The Microbiome of Ehrlichia-Infected and Uninfected Lone Star Ticks (Amblyomma americanum)

    Science.gov (United States)

    Trout Fryxell, R. T.; DeBruyn, J. M.

    2016-01-01

    The Lone Star tick, Amblyomma americanum, transmits several bacterial pathogens including species of Anaplasma and Ehrlichia. Amblyomma americanum also hosts a number of non-pathogenic bacterial endosymbionts. Recent studies of other arthropod and insect vectors have documented that commensal microflora can influence transmission of vector-borne pathogens; however, little is known about tick microbiomes and their possible influence on tick-borne diseases. Our objective was to compare bacterial communities associated with A. americanum, comparing Anaplasma/Ehrlichia -infected and uninfected ticks. Field-collected questing specimens (n = 50) were used in the analyses, of which 17 were identified as Anaplasma/Ehrlichia infected based on PCR amplification and sequencing of groEL genes. Bacterial communities from each specimen were characterized using Illumina sequencing of 16S rRNA gene amplicon libraries. There was a broad range in diversity between samples, with inverse Simpson’s Diversity indices ranging from 1.28–89.5. There were no statistical differences in the overall microbial community structure between PCR diagnosed Anaplasma/Ehrlichia-positive and negative ticks, but there were differences based on collection method (P < 0.05), collection site (P < 0.05), and sex (P < 0.1) suggesting that environmental factors may structure A. americanum microbiomes. Interestingly, there was not always agreement between Illumina sequencing and PCR diagnostics: Ehrlichia was identified in 16S rRNA gene libraries from three PCR-negative specimens; conversely, Ehrlichia was not found in libraries of six PCR-positive ticks. Illumina sequencing also helped identify co-infections, for example, one specimen had both Ehrlichia and Anaplasma. Other taxa of interest in these specimens included Coxiella, Borrelia, and Rickettsia. Identification of bacterial community differences between specimens of a single tick species from a single geographical site indicates that intra

  9. The Microbiome of Ehrlichia-Infected and Uninfected Lone Star Ticks (Amblyomma americanum.

    Directory of Open Access Journals (Sweden)

    R T Trout Fryxell

    Full Text Available The Lone Star tick, Amblyomma americanum, transmits several bacterial pathogens including species of Anaplasma and Ehrlichia. Amblyomma americanum also hosts a number of non-pathogenic bacterial endosymbionts. Recent studies of other arthropod and insect vectors have documented that commensal microflora can influence transmission of vector-borne pathogens; however, little is known about tick microbiomes and their possible influence on tick-borne diseases. Our objective was to compare bacterial communities associated with A. americanum, comparing Anaplasma/Ehrlichia -infected and uninfected ticks. Field-collected questing specimens (n = 50 were used in the analyses, of which 17 were identified as Anaplasma/Ehrlichia infected based on PCR amplification and sequencing of groEL genes. Bacterial communities from each specimen were characterized using Illumina sequencing of 16S rRNA gene amplicon libraries. There was a broad range in diversity between samples, with inverse Simpson's Diversity indices ranging from 1.28-89.5. There were no statistical differences in the overall microbial community structure between PCR diagnosed Anaplasma/Ehrlichia-positive and negative ticks, but there were differences based on collection method (P < 0.05, collection site (P < 0.05, and sex (P < 0.1 suggesting that environmental factors may structure A. americanum microbiomes. Interestingly, there was not always agreement between Illumina sequencing and PCR diagnostics: Ehrlichia was identified in 16S rRNA gene libraries from three PCR-negative specimens; conversely, Ehrlichia was not found in libraries of six PCR-positive ticks. Illumina sequencing also helped identify co-infections, for example, one specimen had both Ehrlichia and Anaplasma. Other taxa of interest in these specimens included Coxiella, Borrelia, and Rickettsia. Identification of bacterial community differences between specimens of a single tick species from a single geographical site indicates that

  10. Implantation Serine Proteinases heterodimerize and are critical in hatching and implantation

    Directory of Open Access Journals (Sweden)

    Meng Guoliang

    2006-12-01

    Full Text Available Abstract Background We have recently reported the expression of murine Implantation Serine Proteinase genes in pre-implantation embryos (ISP1 and uterus (ISP1 and ISP2. These proteinases belong to the S1 proteinase family and are similar to mast cell tryptases, which function as multimers. Results Here, we report the purification and initial characterization of ISP1 and 2 with respect to their physico-chemical properties and physiological function. In addition to being co-expressed in uterus, we show that ISP1 and ISP2 are also co-expressed in the pre-implantation embryo. Together, they form a heterodimer with an approximate molecular weight of 63 kD. This complex is the active form of the enzyme, which we have further characterized as being trypsin-like, based on substrate and inhibitor specificities. In addition to having a role in embryo hatching and outgrowth, we demonstrate that ISP enzyme is localized to the site of embryo invasion during implantation and that its activity is important for successful implantation in vivo. Conclusion On the basis of similarities in structural, chemical, and functional properties, we suggest that this ISP enzyme complex represents the classical hatching enzyme, strypsin. Our results demonstrate a critical role for ISP in embryo hatching and implantation.

  11. RELEVANCE OF CLASSIC ANTINEUTROPHIL CYTOPLASMIC AUTOANTIBODY (C-ANCA)-MEDIATED INHIBITION OF PROTEINASE 3-ALPHA-1-ANTITRYPSIN COMPLEXATION TO DISEASE-ACTIVITY IN WEGENER-GRANULOMATOSIS

    NARCIS (Netherlands)

    DOLMAN, KM; STEGEMAN, CA; VANDEWIEL, BA; HACK, CE; BORNE, AEGKV; KALLENBERG, CGM; GOLDSCHMEDING, R

    1993-01-01

    In the sera of patients with Wegener's granulomatosis (WG), C-ANCA can be detected that are directed against proteinase 3 (PR3). We have previously observed that C-ANCA interfere with PR3 proteolytic activity and with complexation of PR3 with its major physiologic inhibitor, alpha1-antitrypsin (alph

  12. Picornaviral 3C cysteine proteinases have a fold similar to the chymotrypsin-like serine proteinases

    Energy Technology Data Exchange (ETDEWEB)

    Allaire,M.; Chernaia, M.; Malcolm, B.; James, M.

    1994-01-01

    The picornavirus family includes several pathogens such as poliovirus, rhinovirus (the major cause of the common cold), hepatitis A virus and the foot-and-mouth disease virus. Picornaviral proteins are expressed by direct translation of the genomic RNA into a single, large polyprotein precursor. Proteolysis of the viral polyprotein into the mature proteins is assured by the viral 3C enzymes, which are cysteine proteinases. Here we report the X-ray crystal structure at 2.3 {angstrom} resolution of the 3C proteinase from hepatitis A virus (HAV-3C). The overall architecture of HAV-3C reveals a fold resembling that of the chymotrypsin family of serine proteinases, which is consistent with earlier predictions. Catalytic residues include Cys 172 as nucleophile and His 44 as general base. The 3C cleavage specificity for glutamine residues is defined primarily by His 191. The overall structure suggests that an inter-molecular (trans) cleavage releases 3C and that there is an active proteinase in the polyprotein.

  13. The embryo's cystatin C and F expression functions as a protective mechanism against the maternal proteinase cathepsin S in mice.

    Science.gov (United States)

    Baston-Buest, D M; Schanz, A; Buest, S; Fischer, J C; Kruessel, J S; Hess, A P

    2010-04-01

    A successful implantation of a mammalian embryo into the maternal endometrium depends on a highly synchronized fetal-maternal dialogue involving chemokines, growth factors, and matrix-modifying enzymes. A growing body of evidence suggests an important role for proteinases playing a role in matrix degeneration and enhancing the embryo's invasive capacity and influencing the mother's immunological status in favor of the conceptus. This study focused on the expression of cathepsin S (CTSS) and its inhibitors in the murine fetal-maternal interface as well as the detection of the cellular sources of either proteinase and inhibitors. Nested RT-PCR for detection of embryonic mRNAs, immunohistochemistry of maternal and fetal tissues in B6C3F1 mice, and FACS analysis for determination of immunocompetent cell population were applied. This study shows that the cysteine proteinase CTSS is upregulated in the stroma of the implantation site, and that pregnancy induces an influx of CTSS-positive uterine natural killer cells. Compared to maternal tissues, the CTSS inhibitors cystatin F and C, but not the proteinase itself, are expressed in blastocysts. In conclusion, CTSS underlies a hormonal regulation in the maternal tissue and therewith most likely supports the embryonic implantation. The invading embryo regulates the depth of its own invasion through the expression of the cathepsin inhibitors and furthermore, interleukin-6 to activate CTSS in maternal tissues. Additionally, the observed decrease in CD3(+) cells leads to the hypothesis that cells of the cytotoxic T-cell group are down-regulated in the decidua to support the implantation and ensure the survival of the embryo.

  14. Crystal structure of 2A proteinase from hand, foot and mouth disease virus.

    Science.gov (United States)

    Mu, Zhixia; Wang, Bei; Zhang, Xiaoyu; Gao, Xiaopan; Qin, Bo; Zhao, Zhendong; Cui, Sheng

    2013-11-15

    EV71 is responsible for several epidemics worldwide; however, the effective antiviral drug is unavailable to date. The 2A proteinase (2A(pro)) of EV71 presents a promising drug target due to its multiple roles in virus replication, inhibition of host protein synthesis and evasion of innate immunity. We determined the crystal structure of EV71 2A(pro) at 1.85Å resolution, revealing that the proteinase maintains a chymotrypsin-like fold. The active site is composed of the catalytic triads C110A, H21 and D39 with the geometry similar to that in other picornaviral 2A(pro), 3C(pro) and serine proteinases. The cI-to-eI2 loop at the N-terminal domain of EV71 2A(pro) adopts a highly stable conformation and contributes to the hydrophilic surface property, which are strikingly different in HRV2 2A(pro) but are similar in CVB4 2A(pro). We identified a hydrophobic motif "LLWL" followed by an acidic motif "DEE" at the C-terminus of EV71 2A(pro). The "LLWL" motif is folded into the β-turn structure that is essential for the positioning of the acidic motif. Our structural and mutagenesis study demonstrated that both the negative charging and the correct positioning of the C-terminus are essential for EV71 replication. Deletion of the "LLWL" motif abrogated the proteolytic activity, indicating that the motif is critical for maintaining the active proteinase conformation. Our findings provide the structural and functional insights into EV71 2A(pro) and establish a framework for structure-based inhibitor design.

  15. Proteinase 3 carries small unusual carbohydrates and associates with αlpha-defensins

    DEFF Research Database (Denmark)

    Zoega, Morten; Ravnsborg, Tina; Højrup, Peter;

    2012-01-01

    The neutrophil granulocyte is an important first line of defense against intruding pathogens and it contains a range of granules armed with antibacterial peptides and proteins. Proteinase 3 (PR3) is one among several serine proteases of the azurophilic granules in neutrophil granulocytes. Here, we...... characterize the glycosylation of PR3 and its association with antimicrobial human neutrophil peptides (HNPs, α-defensins) and the effect of these on the mechanism of inhibition of the major plasma inhibitor of PR3, α1-antitrypsin. The glycosylation of purified, mature PR3 showed some heterogeneity...

  16. Design, synthesis and inhibitory effect of pentapeptidyl chloromethyl ketones on proteinase K.

    Science.gov (United States)

    Kore, Anilkumar R; Shanmugasundaram, Muthian

    2010-12-01

    The synthesis and proteolytic inhibitor function of new modified pentapeptide MeOSuc-AAAPF-CH(2)Cl 6 is described. The efficacy of 6 in inhibiting the proteolytic activity of proteinase K at a concentration of 0.10 mM allows a signal to be obtained for an exogenous target ('Xeno RNA') at 29 PCR cycles (i.e., Ct=29), whereas the control MeOSuc-AAAPV-CH₂Cl 1 requires a 7.5-fold higher concentration (0.75 mM) to produce the same Ct.

  17. LACTOCOCCAL PROTEINASE MATURATION PROTEIN PRTM IS A LIPOPROTEIN

    NARCIS (Netherlands)

    Haandrikman, Alfred J.; Kok, Jan; Venema, Gerard

    1991-01-01

    The production of enzymatically active proteinase by lactococci requires the joint presence of a proteinase gene, prtP, and a gene encoding a maturation protein, prtM. A 32-kDa protein produced by Escherichia coli upon expression of the prtM gene under the direction of the T7 RNA polymerase promoter

  18. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    DEFF Research Database (Denmark)

    Semenova, Tatyana; Hughes, David Peter; Boomsma, Jacobus Jan;

    2011-01-01

    hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results: We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing...... activities than the lower attine symbionts. Their total in vitro proteinase activity peaked at pH values around 5, which is close to the pH that the ants maintain in their fungus gardens, suggesting that the pH optimum of fungal proteinases may have changed after the irreversible domestication...... of evolutionary more derived fungal symbionts. This notion is also supported by buffering capacities of fungus gardens at pH 5.2 being remarkably high, and suggests that the fungal symbiont actively helps to maintain garden acidity at this specific level. Metalloproteinases dominated the activity profiles...

  19. Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) infection in Amblyomma americanum (Acari: Ixodidae) at Aberdeen Proving Ground, Maryland.

    Science.gov (United States)

    Stromdahl, E Y; Randolph, M P; O'Brien, J J; Gutierrez, A G

    2000-05-01

    Human monocytic ehrlichiosis (HME) is a sometimes fatal, emerging tick-borne disease caused by the bacterium Ehrlichia chaffeensis. It is frequently misdiagnosed because its symptoms mimic those of the flu. Current evidence indicates that Amblyomma americanum (L.), the lone star tick, is the major vector of HME. To determine if E. chaffeensis is present in ticks at Aberdeen Proving Ground, MD, questing A. americanum ticks were collected from 33 sites. Nucleic acid was extracted from 34 adult and 81 nymphal pools. Sequences diagnostic for E. chaffeensis from three different loci (16S rRNA, 120-kDa protein, and a variable-length polymerase chain reaction [PCR] target, or VLPT) were targeted for amplification by the PCR. Fifty-two percent of the collection sites yielded pools infected with E. chaffeensis, confirming the presence and widespread distribution of E. chaffeensis at Aberdeen Proving Ground. Analysis with the both the 120-kDa protein primers and the VLPT primers showed that genetic variance exists. A novel combination of variance for the two loci was detected in two tick pools. The pathogenic implications of genetic variation in E. chaffeensis are as yet unknown.

  20. Inferring the population structure and demographic history of the tick, Amblyomma americanum Linnaeus.

    Science.gov (United States)

    Mixson, Tonya R; Lydy, Shari L; Dasch, Gregory A; Real, Leslie A

    2006-06-01

    A hierarchial population genetic study was conducted on 703 individual Amblyomma americanum from nine populations in Georgia, U.S.A. Populations were sampled from the Coastal Plain, midland Piedmont region, and the upper Piedmont region. Twenty-nine distinct haplotypes were found. A minimum spanning tree was constructed that indicated these haplotypes comprised two lineages, the root of which was distinctly star-like. The majority of the variation found was among ticks within each population, indicating high amounts of gene flow and little genetic differentiation between the three regions. An overall F(ST) value of 0.006 supported the lack of genetic structuring between collection sites in Georgia. Mantel regression analysis revealed no isolation by distance. Signatures of population expansion were detected in the shapes of the mismatch distribution and tests of neutrality. The absence of genetic differentiation combined with the rejection of the null model of isolation by distance may indicate recent range expansion in Georgia or insufficient time to reach an equilibrium where genetic drift may have affected allele frequencies. Alternatively, the high degree of panmixia found within A. americanum in Georgia may be due to bird-mediated dispersal of ticks increasing the genetic similarity between geographically separated populations.

  1. In vitro membrane feeding of the lone star tick (Amblyomma americanum) and its use in evaluation of acaricidal compounds

    Science.gov (United States)

    The lone star tick, Amblyomma americanum, is one of important Ixodid tick species that are known ectoparasites and disease vectors affecting animal and human health in the United States. New pesticides or repellents with novel mode of action would help control resistant ticks and protect humans from...

  2. The chemosensory appendage proteome of Amblyomma americanum (Acari: Ixodidae) reveals putative odorant-binding and other chemoreception-related proteins

    Science.gov (United States)

    Proteomic analyses were done on 2 chemosensory appendages of the lone star tick, Amblyomma americanum. Proteins in the fore tarsi, which contain the olfactory Haller's organ, and in the palps, that include gustatory sensilla, were compared with proteins in the third tarsi. Also, male and female tick...

  3. Protein C Inhibitor-A Novel Antimicrobial Agent

    NARCIS (Netherlands)

    Malmström, E.; Mörgelin, M.; Malmsten, M.; Johansson, L.; Norrby-Teglund, A.; Shannon, O.; Schmidtchen, A.; Meijers, J.C.M.; Herwald, H.

    2009-01-01

    Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which subsequentl

  4. Using mitogenomic and nuclear ribosomal sequence data to investigate the phylogeny of the Xiphinema americanum species complex.

    Directory of Open Access Journals (Sweden)

    Inga A Zasada

    Full Text Available Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum species complex is controversial, with the number of putative species being the subject of debate. Accurate phylogenetic knowledge of this group is highly desirable as it may ultimately reveal genetic differences between species. For this study, nematodes belonging to the X. americanum species complex, including potentially mixed species populations, were collected from 12 geographically disparate locations across the U.S. from different crops and in varying association with nepoviruses. At least four individuals from each population were analyzed. A portion of the 18S nuclear ribosomal DNA (rDNA gene was sequenced for all individuals while the internal transcribed spacer region 1 (ITS1 of rDNA was cloned and 2 to 6 clones per individual were sequenced. Mitochondrial genomes for numerous individuals were sequenced in parallel using high-throughput DNA sequencing (HTS technology. Phylogenetic analysis of the 18S rDNA revealed virtually identical sequences across all populations. Analysis of ITS1 rDNA sequences revealed several well-supported clades, with some degree of congruence with geographic location and viral transmission, but also numerous presumably paralogous sequences that failed to form clades with other sequences from the same population. Analysis of mitochondrial DNA (mtDNA indicated the presence of three distinct monophyletic clades of X. americanum species complex nematodes. Two clades contained nematodes found in association with nepovirus and the third contained divergent mtDNA sequences from three nematode populations from the western U.S. where nepovirus was absent. The inherent heterogeneity in ITS1 rDNA sequence data and lack of informative sites in 18S rDNA analysis suggests that mtDNA may be more useful in sorting

  5. Using mitogenomic and nuclear ribosomal sequence data to investigate the phylogeny of the Xiphinema americanum species complex.

    Science.gov (United States)

    Zasada, Inga A; Peetz, Amy; Howe, Dana K; Wilhelm, Larry J; Cheam, Daravuth; Denver, Dee R; Smythe, Ashleigh B

    2014-01-01

    Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum species complex is controversial, with the number of putative species being the subject of debate. Accurate phylogenetic knowledge of this group is highly desirable as it may ultimately reveal genetic differences between species. For this study, nematodes belonging to the X. americanum species complex, including potentially mixed species populations, were collected from 12 geographically disparate locations across the U.S. from different crops and in varying association with nepoviruses. At least four individuals from each population were analyzed. A portion of the 18S nuclear ribosomal DNA (rDNA) gene was sequenced for all individuals while the internal transcribed spacer region 1 (ITS1) of rDNA was cloned and 2 to 6 clones per individual were sequenced. Mitochondrial genomes for numerous individuals were sequenced in parallel using high-throughput DNA sequencing (HTS) technology. Phylogenetic analysis of the 18S rDNA revealed virtually identical sequences across all populations. Analysis of ITS1 rDNA sequences revealed several well-supported clades, with some degree of congruence with geographic location and viral transmission, but also numerous presumably paralogous sequences that failed to form clades with other sequences from the same population. Analysis of mitochondrial DNA (mtDNA) indicated the presence of three distinct monophyletic clades of X. americanum species complex nematodes. Two clades contained nematodes found in association with nepovirus and the third contained divergent mtDNA sequences from three nematode populations from the western U.S. where nepovirus was absent. The inherent heterogeneity in ITS1 rDNA sequence data and lack of informative sites in 18S rDNA analysis suggests that mtDNA may be more useful in sorting out the

  6. [Characterization of thermal denaturation process of proteinase K by spectrometry].

    Science.gov (United States)

    Zhang, Qi-Bing; Na, Xin-Zhu; Yin, Zong-Ning

    2013-07-01

    The effect of different temperatures on the activity and conformational changes of proteinase K was studied. Methods Proteinase K was treated with different temperatures, then denatured natural substrate casein was used to assay enzyme activity, steady-state and time-resolved fluorescence spectroscopy was used to study tertiary structure, and circular dichroism was used to study secondary structure. Results show with the temperature rising from 25 to 65 degrees C, the enzyme activity and half-life of proteinase K dropped, maximum emission wavelength red shifted from 335 to 354 nm with fluorescence intensity decreasing. Synchronous fluorescence intensity of tryptophan residues decreased and that of tyrosine residues increased. Fluorescence lifetime of tryptophan residues reduced from 4. 427 1 to 4. 032 4 ns and the fraction of alpha-helix dropped. It was concluded that it is simple and accurate to use steady-state/time-resolved fluorescence spectroscopy and circular dichroism to investigate thermal stability of proteinase K. Thermal denaturation of proteinase K followed a three-state process. Fluorescence intensity of proteinase K was affected by fluorescence resonance energy transfer from tyrosine to tryptophan residues. The alpha-helix was the main structure to maintain conformational stability of enzyme active site of proteinase K.

  7. Proteinases as virulence factors in Leishmania spp. infection in mammals

    Directory of Open Access Journals (Sweden)

    Silva-Almeida Mariana

    2012-08-01

    Full Text Available Abstract Leishmania parasites cause human tegumentary and visceral infections that are commonly referred to as leishmaniasis. Despite the high incidence and prevalence of cases, leishmaniasis has been a neglected disease because it mainly affects developing countries. The data obtained from the analysis of patients’ biological samples and from assays with animal models confirm the involvement of an array of the parasite’s components in its survival inside the mammalian host. These components are classified as virulence factors. In this review, we focus on studies that have explored the role of proteinases as virulence factors that promote parasite survival and immune modulation in the mammalian host. Additionally, the direct involvement of proteinases from the host in lesion evolution is analyzed. The gathered data shows that both parasite and host proteinases are involved in the clinical manifestation of leishmaniasis. It is interesting to note that although the majority of the classes of proteinases are present in Leishmania spp., only cysteine-proteinases, metalloproteinases and, to a lesser scale, serine-proteinases have been adequately studied. Members from these classes have been implicated in tissue invasion, survival in macrophages and immune modulation by parasites. This review reinforces the importance of the parasite proteinases, which are interesting candidates for new chemo or immunotherapies, in the clinical manifestations of leishmaniasis.

  8. Localization of Transmissible and Nontransmissible Viruses in the Vector Nematode Xiphinema americanum.

    Science.gov (United States)

    Wang, Shouhua; Gergerich, Rose C; Wickizer, Sandra L; Kim, Kyung S

    2002-06-01

    ABSTRACT The inner lining of the food canal of nematodes that transmit plantinfecting viruses is regarded as the retention region of viruses. To characterize the location of transmissible and nontransmissible viruses in the vector nematode Xiphinema americanum, three nepoviruses, Tobacco ringspot virus (TRSV), Tomato ringspot virus(TomRSV), and Cherry leaf roll virus(CLRV), and one non-nematode-transmissible virus, Squash mosaic virus (SqMV), were evaluated for transmission efficiency and localization sites in the nematode. Transmission trials showed highest transmission efficiency for TomRSV (38% with 1 and 100% with 10 nematodes, respectively), intermediate efficiency for TRSV (27% with 1 and 65% with 10 nematodes, respectively), and no transmission for CLRV and SqMV. Electron microscopy and immunofluorescent labeling revealed that TRSV was primarily localized to the lining of the lumen of the stylet extension and the anterior esophagus, but only rarely in the triradiate lumen. Within a nematode population, particles of TRSV were no longer observed in these three regions 10 weeks after acquisition, and it is assumed that there was gradual and random loss of the virus from these areas. The percentage of nematodes that were labeled by virus-specific immunofluorescent labeling in a population of viruliferous nematodes decreased gradually after TRSV acquisition when the nematodes were placed on a nonhost of the virus, and the loss of immunofluorescent labeling paralleled the decrease in the ability of the nematode population to transmit the virus. TomRSV was localized only in the triradiate lumen based on thin-section electron microscopy. No virus-like particles were observed in any part of the food canal of nematodes that had fed on CLRV-infected plants. Virus-like particles that appeared to be partially degraded were observed only in the triradiate lumen of nematodes that had fed on SqMV-infected plants. These results clarified the status of localization of two

  9. A new approach to identify species in Xiphinema americanum sensu lato.

    Science.gov (United States)

    Prior, T; Hockland, S; Decraemer, W

    2010-01-01

    Four putative species belonging to the X. americanum group are known to transmit American nepoviruses and these nematodes and viruses are listed in European quarantine legislation. Identification of species in this group is therefore of particular importance for phytosanitary purposes, but is problematic because of the similar morphology of the putative species. As part of the Synthesys project BE-TAF 1769, eight collaborative institutions contributed material to Fera for study. Video technology allowed the best records of type material and in conjunction with photographic images created a 'virtual' collection of images that relies less on the deteriorating quality of museum specimens. Revised definitions of lip region and tail shape are considered to be the most stable characters for differentiation. Position of the amphidial aperture, development of the odontostyle collar and some established morphometric characters are considered of limited use although they retain value for latter stages of identification.

  10. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum).

    Science.gov (United States)

    Williams-Newkirk, Amanda Jo; Rowe, Lori A; Mixson-Hayden, Tonya R; Dasch, Gregory A

    2014-01-01

    The lone star tick (Amblyomma americanum) is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ticks and to design effective public health and veterinary interventions. We performed a metagenomic survey of the bacterial communities of questing A. americanum and tested 131 individuals (66 nymphs, 24 males, and 41 females) from five sites in three states. Pyrosequencing was performed with barcoded eubacterial primers targeting variable 16S rRNA gene regions 5-3. The bacterial communities were dominated by Rickettsia (likely R. amblyommii) and an obligate Coxiella symbiont, together accounting for 6.7-100% of sequences per tick. DNAs from Midichloria, Borrelia, Wolbachia, Ehrlichia, Pseudomonas, or unidentified Bacillales, Enterobacteriaceae, or Rhizobiales groups were also detected frequently. Wolbachia and Midichloria significantly co-occurred in Georgia (p<0.00001), but not in other states. The significance of the Midichloria-Wolbachia co-occurrence is unknown. Among ticks collected in Georgia, nymphs differed from adults in both the composition (p = 0.002) and structure (p = 0.002) of their bacterial communities. Adults differed only in their community structure (p = 0.002) with males containing more Rickettsia and females containing more Coxiella. Comparisons among adult ticks collected in New York and North Carolina supported the findings from the Georgia collection despite differences in geography, collection date, and sample handling, implying that the differences detected are consistent attributes. The data also suggest that some members of the

  11. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum.

    Directory of Open Access Journals (Sweden)

    Amanda Jo Williams-Newkirk

    Full Text Available The lone star tick (Amblyomma americanum is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ticks and to design effective public health and veterinary interventions. We performed a metagenomic survey of the bacterial communities of questing A. americanum and tested 131 individuals (66 nymphs, 24 males, and 41 females from five sites in three states. Pyrosequencing was performed with barcoded eubacterial primers targeting variable 16S rRNA gene regions 5-3. The bacterial communities were dominated by Rickettsia (likely R. amblyommii and an obligate Coxiella symbiont, together accounting for 6.7-100% of sequences per tick. DNAs from Midichloria, Borrelia, Wolbachia, Ehrlichia, Pseudomonas, or unidentified Bacillales, Enterobacteriaceae, or Rhizobiales groups were also detected frequently. Wolbachia and Midichloria significantly co-occurred in Georgia (p<0.00001, but not in other states. The significance of the Midichloria-Wolbachia co-occurrence is unknown. Among ticks collected in Georgia, nymphs differed from adults in both the composition (p = 0.002 and structure (p = 0.002 of their bacterial communities. Adults differed only in their community structure (p = 0.002 with males containing more Rickettsia and females containing more Coxiella. Comparisons among adult ticks collected in New York and North Carolina supported the findings from the Georgia collection despite differences in geography, collection date, and sample handling, implying that the differences detected are consistent attributes. The data also suggest that some members of

  12. Population and Evolutionary Genomics of Amblyomma americanum, an Expanding Arthropod Disease Vector.

    Science.gov (United States)

    Monzón, Javier D; Atkinson, Elizabeth G; Henn, Brenna M; Benach, Jorge L

    2016-05-12

    The lone star tick, Amblyomma americanum, is an important disease vector and the most frequent tick found attached to humans in the eastern United States. The lone star tick has recently experienced a rapid range expansion into the Northeast and Midwest, but despite this emerging infectious threat to wildlife, livestock, and human health, little is known about the genetic causes and consequences of the geographic expansion. In the first population genomic analysis of any tick species, we characterize the genetic diversity and population structure of A. americanum across its current geographic range, which has recently expanded. Using a high-throughput genotyping-by-sequencing approach, we discovered more than 8,000 single nucleotide polymorphisms in 90 ticks from five locations. Surprisingly, newly established populations in New York (NY) and Oklahoma (OK) are as diverse as historic range populations in North and South Carolina. However, substantial population structure occurs among regions, such that new populations in NY and OK are genetically distinct from historic range populations and from one another. Ticks from a laboratory colony are genetically distinct from wild populations, underscoring the need to account for natural variation when conducting transmission or immunological studies, many of which utilize laboratory-reared ticks. An FST-outlier analysis comparing a recently established population to a long-standing population detected numerous outlier sites, compatible with positive and balancing selection, highlighting the potential for adaptation during the range expansion. This study provides a framework for applying high-throughput DNA sequencing technologies for future investigations of ticks, which are common vectors of diseases.

  13. [Inactivation of T4 phage in water environment using proteinase].

    Science.gov (United States)

    Lü, Wen-zhou; Yang, Qing-xiang; Zhang, Yu; Yang, Min; Zhu, Chun-fang

    2004-09-01

    The inactivation effectiveness of proteinase to viruses was investigated by using T4 phage as a model virus. The results showed that the inactivation effectiveness of proteinase to T4 phage was obvious. In the optimum conditions and 67.5 u/mL concentration, the inactivation rate of proteinase K to T4 phage in sterilized water and in sewage achieved 99.4% and 49.4% respectively in an hour, and achieved >99.9% and 81.1% in three hours. The inactivation rate of the industrial proteinase 1398 to T4 phage in sterilized water achieved 74.4% in an hour. The effects of pH and temperature on the inactivation effectiveness was not evident.

  14. Production of a heterologous proteinase A by Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, K; Tidemand, L D; Winther, Jakob R.;

    2001-01-01

    In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter. As a refer......In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter......, compared to a yield of 0.40 g/g in S. cerevisiae. Overexpression of PEP4 led to the secretion of active proteinase A in both S. kluyveri and S. cerevisiae. The yield of active proteinase A during growth on glucose was found to be 3.6-fold higher in S. kluyveri than in the S. cerevisiae reference strain....

  15. Purification of human leucocyte DNA: proteinase K is not necessary.

    Science.gov (United States)

    Douglas, A M; Georgalis, A M; Benton, L R; Canavan, K L; Atchison, B A

    1992-03-01

    A rapid nontoxic method for the purification of DNA from human leucocytes is described. Preliminary experiments which tested different methods of DNA purification indicated that digestion of proteins with proteinase K was unnecessary. This led to the development of a simple procedure involving lysis of the cells in SDS followed by extraction with 6 M NaCl. The method described overcomes the requirement for lengthy incubations in the presence of expensive proteinase K and subsequent extraction with toxic chemicals.

  16. The effect of calciums on molecular motions of proteinase K.

    Science.gov (United States)

    Liu, Shu-Qun; Tao, Yan; Meng, Zhao-Hui; Fu, Yun-Xin; Zhang, Ke-Qin

    2011-02-01

    The native serine protease proteinase K binds two calcium cations. It has been reported that Ca(2+) removal decreased the enzyme's thermal stability and to some extent the substrate affinity, but has discrepant effects on catalytic activity of the enzyme. Molecular dynamics simulations were performed on the Ca(2+)-bound and Ca(2+)-free proteases to investigate the mechanism by which the calciums affect the structural stability, molecular motions, and catalytic activity of proteinase K. Very similar structural properties were observed between these two forms of proteinase K during simulations; and several long-lived hydrogen bonds and salt bridges common to both forms of proteinase K were found to be crucial in maintaining the local conformations around these two Ca(2+) sites. Although Ca(2+) removal enhanced the overall flexibility of proteinase K, the flexibility in a limited number of segments surrounding the substrate-binding pockets decreased. The largest differences in the equilibrium structures of the two simulations indicate that, upon the removal of Ca(2+), the large concerted motion originating from the Ca1 site can transmit to the substrate-binding regions but not to the catalytic triad residues. In conjunction with the large overlap of the essential subspaces between the two simulations, these results not only provide insight into the dynamics of the underlying molecular mechanism responsible for the unchanged enzymatic activity as well as the decreased thermal stability and substrate affinity of proteinase K upon Ca(2+) removal, but also complement the experimentally determined structural and biochemical data.

  17. The possible involvement of D-amino acids or their metabolites in Arabidopsis cysteine proteinase/cystatin N-dependent proteolytic pathway.

    Science.gov (United States)

    Gholizadeh, A

    2015-01-01

    Cysteine proteinases and their inhibitors 'cystatins' play essential roles in plant growth and development. They are involved in various signaling pathways and in the response to wide ranges of biotic and abiotic environmental stresses. To investigate their possible influence from D-amino acids or their metabolism in vivo, Arabidopsis seedlings were allowed to grow under four physicochemically different D-amino acids including D-aspartate, D-serine, D-alanine and D-phenylalanine containing media. The reverse transcription polymerase chain reaction (R T-PCR) analysis of cysteine proteinase and cystatin gene expressions showed that the addition of D-amino acid to the plant growth media considerably induce the expression of proteinase transcript while decrease the expression level of inhibitor gene in the leaf and root tissues of the test plant in overall. Based on the obtained results the potential impact of D-amino acids or their metabolism on the activity of cysteine proteinase/cystatin-dependent proteolytic apparatus as well as their possible cooperation were predicted and discussed in the plant system.

  18. Atividade potencialmente alelopática do óleo essencial de Ocimum americanum Potentially allelophatic activity of the essential oil of Ocimum americanum

    Directory of Open Access Journals (Sweden)

    A.P.S. Souza Filho

    2009-01-01

    Full Text Available Os óleos essenciais são reconhecidos pelas suas diversificadas ações biológicas. A biodiversidade amazônica é rica em espécies de plantas produtoras de óleos essenciais. Neste trabalho, objetivou-se caracterizar a atividade potencialmente alelopática do óleo essencial de Ocimum americanum (estoraque e determinar seus efeitos sobre a germinação de sementes e o desenvolvimento de duas espécies de plantas daninhas. O óleo essencial foi testado em concentrações variando de 100 a 2.000 mg L-1, considerando seus efeitos sobre a germinação de sementes (25 ºC de temperatura constante e fotoperíodo de 12 horas e o desenvolvimento da radícula e do hipocótilo (25 ºC de temperatura constante e fotoperíodo de 24 horas das plantas daninhas malícia (Mimosa pudica e mata-pasto (Senna obtusifolia. Fatores relacionados a concentração, especificidade das plantas receptoras e parâmetros analisados foram decisivos para os efeitos obtidos. A tendência geral foi de relação positiva entre concentração e efeito inibitório. Malícia foi mais sensível aos efeitos do que mata-pasto. Comparativamente, a germinação, seguida do desenvolvimento da radícula, foi afetada pelo óleo essencial em maior magnitude, ficando o desenvolvimento do hipocótilo como o de menor sensibilidade. Os efeitos observados podem ser atribuídos à presença, no óleo essencial, de monoterpenos, monoterpenos oxigenados, sesquiterpenos, alifáticos e fenilpropanoides, com destaque para os constituintes com atividade alelopática já comprovada, como o limoneno, a cânfora e o linalol.Essential oils are known for their several biological activities. The biodiversity of the Amazon region is rich in essential-oil producing plants.The aim of this work was to study the potentially allelopathic activity of the essential oil of Ocimum americanum and to determine its effects on seed germination and growth of two weed species. Solutions of the essential oil were tested

  19. Intracellular Localization and Trafficking of Serine Proteinase AhSub and Cysteine Proteinase AhCP of Acanthamoeba healyi

    OpenAIRE

    Moon, E.-K.; Lee, S.-T.; Chung, D.-I.; Kong, H.-H.

    2006-01-01

    Proteinases have been proposed to play important roles in pathogenesis and various biologic actions in Acanthamoeba. Although genetic characteristics of several proteases of Acanthamoeba have been reported, the intracellular localization and trafficking of these enzymes has yet to be studied. In the present study, we analyzed the intracellular localization and trafficking of two proteinases, AhSub and AhCP, of Acanthamoeba healyi by transient transfection. Full-length AhSub-enhanced green flu...

  20. Activity of Hydroxamic Acids from Secale cereale Against the Plant-Parasitic Nematodes Meloidogyne incognita and Xiphinema americanum.

    Science.gov (United States)

    Zasada, I A; Meyer, S L F; Halbrendt, J M; Rice, C

    2005-10-01

    ABSTRACT Cyclic hydroxamic acids are secondary metabolites found in the family Poaceae and have been implicated in the allelopathy of rye (Secale cereale). The toxicity of these compounds against plant-parasitic nematodes is unknown. DIBOA (2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one), DIMBOA (2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one), and their degradation products BOA (benzoxazolin-2(3H)-one) and MBOA (6-methoxy-benzoxazolin-2(3H)-one) were screened in vitro against Meloidogyne incognita second-stage juveniles (J2) and eggs and mixed-stages of Xiphinema americanum. Xiphinema americanum was more sensitive to DIBOA and DIMBOA than M. incognita J2, with a maximum apparent mortality of 96 and 92% compared to 73 and 72% at 90 mug/ml. Eggs of M. incognita were less sensitive to the hydroxamic acids than J2; only DIBOA resulted in a 50% reduction in egg hatch, with a lethal concentration (LC(50)) of 74 mug/ml compared to 21 mug/ml for J2. When M. incognita J2 were exposed to DIBOA for 48 h and the compound was removed and replaced with water, the LC(50) value increased from 21.0 to 40.7 mug/ml. MBOA was not toxic to X. americanum or M. incognita eggs, but was toxic to M. incognita J2, with LC(50) values of 44 and 20 mug/ml before and after the compound was removed and replaced with water. BOA was the least toxic hydroxamic acid tested; it did not reduce M. incognita egg hatch after 1 week of exposure or increase X. americanum mortality after 24 h of exposure. While in vitro studies provide a valuable starting point in determining the toxicity of the chemical component of rye, the relevance of the data to soil remains to be determined.

  1. Suppression of Amblyomma americanum (Ixodida: Ixodidae) for Short-Term Field Operations Utilizing Cypermethrin and Lambda-Cyhalothrin

    Science.gov (United States)

    2014-05-01

    two grids (42 by 42 m) were established that contained a mix of open grasses and dense brush . Each grid was evenly divided into 49 plots,witheachplot...the label rate of one tablet in 1.9 liters of water, delivering 15 mg a.i./m2. Hand pump compression sprayers were used to apply the acaricides...developments in invertebrate repellents. ACS Symposium Series, American Chemical Society, Wash - ington, DC. Table 1. Host-seeking A. americanum abundance

  2. Acquisition and expression of resistance by Bos indicus and Bos indicus X Bos taurus calves to Amblyomma americanum infestation.

    Science.gov (United States)

    George, J E; Osburn, R L; Wikel, S K

    1985-04-01

    Purebred and crossbred Bos indicus calves were infested 1, 2, or 3 times with 10 female and 5 male Amblyomma americanum. Resistance was acquired by both the purebred and the crossbred calves after 1 infestation and resulted in statistically significant decreases in the percentages of females that engorged, the mean weights of engorged females, and the mean weights of egg masses. Comparisons between breeds of the percent of female ticks that engorged during the first and second infestations indicate that purebred B. indicus expressed a stronger acquired resistance to A. americanum more readily than did crossbred animals. However, calves of both genetic compositions displayed similar levels of resistance during a third exposure. All tick-exposed and control animals were skin tested with salivary gland extracts of A. americanum, A. cajennense and Dermacentor andersoni. Control, uninfested calves, did not display significant cutaneous reactivity to these extracts. All calves that had been infested had immediate, 30-min, 5-hr and delayed, 24-hr, skin reactions to Amblyomma species antigens. Reactions to D. andersoni salivary antigens in tests of both purebred and crossbred calves with acquired resistance to A. americanum suggest that Amblyomma species salivary gland antigens might have cross reactive moieties with a salivary extract prepared from D. andersoni. Peripheral blood lymphocyte in vitro responsiveness to Amblyomma species antigens was detected in purebred calves after a first, second, and third infestation, indicating the presence of cells of the immune system capable of recognizing and undergoing blast transformation in response to tick salivary components.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Presence, genetic variability, and potential significance of "Candidatus Midichloria mitochondrii" in the lone star tick Amblyomma americanum.

    Science.gov (United States)

    Williams-Newkirk, Amanda Jo; Rowe, Lori A; Mixson-Hayden, Tonya R; Dasch, Gregory A

    2012-11-01

    We used next generation sequencing to detect the bacterium "Candidatus Midichloria mitochondrii" for the first time in lone star ticks (Amblyomma americanum) from the eastern United States. 177 individuals and 11 tick pools from seven sites in four states were tested by pyrosequencing with barcoded 16S rRNA gene eubacterial primers targeting variable regions 5-3. Average infection prevalence was 0.15 across all surveyed populations (range 0-0.29) and only the site with the smallest sample size (n = 5) was negative. Three genotypes differing by 2.6-4.1 % in a 271 bp region of 16S rRNA gene were identified. Two variants co-occurred in sites in North Carolina and New York, but were not observed in the same tick at those sites. The third genotype was found only in Georgia. Phylogenetic analysis of this fragment indicated that the three variants are more closely related to "Candidatus Midichloria mitochondrii" genotypes from other tick species than to each other. This variation suggests that multiple independent introductions occurred in A. americanum which may provide insight into bacterial spread within its ecosystem and parasitism on this tick. Whether the presence of this bacterium affects acquisition or maintenance of other pathogens and symbionts in A. americanum or the survival, biology and evolution of the tick itself is unknown.

  4. Acúmulo de massa seca e de macronutrientes por plantas de Glycine max e Solanum americanum Accumulation of dry mass and macronutrients by Glycine max and Solanum americanum plants

    Directory of Open Access Journals (Sweden)

    S. Bianco

    2012-03-01

    Full Text Available A soja é uma das principais culturas agrícolas do Brasil, sendo a sua produtividade muito influenciada pela competição exercida pelas plantas daninhas. Foram realizados dois experimentos em casa de vegetação, em Jaboticabal, SP, objetivando determinar o acúmulo de massa seca, assim como a distribuição e o acúmulo de macronutrientes em plantas de soja, no período de outubro de 2000 a fevereiro de 2001, e de Solanum americanum, no período de janeiro a maio de 1995. As plantas cresceram em vasos com capacidade de 7 litros, preenchidos com areia de rio lavada e peneirada; elas foram irrigadas diariamente com solução nutritiva. Os tratamentos foram representados pelas épocas de amostragem, realizada a intervalos de 14 dias, iniciando-se 21 dias após a emergência (DAE, até 161 DAE para S. americanum e 119 DAE para soja cv. BR-16 (precoce. O ponto de máximo acúmulo teórico de massa seca deu-se aos 104 DAE para a soja (35,0 g por planta e 143 DAE para S. americanum (179,62 g por planta. Da emergência até 49 e 63 DAE, as folhas apresentaram maior participação no acúmulo de massa seca para soja e S. americanum, respectivamente. Após esses períodos, verificou-se, em ambas as espécies, inversão na representatividade das folhas por caules para a espécie daninha e por caules e, posteriormente, por estruturas reprodutivas, para a cultura. A taxa de absorção diária dos macronutrientes atingiu maiores valores entre 69 e 87 DAE para a soja e entre 105 e 119 DAE para a planta daninha. Considerando a média dos valores de pontos de inflexão observados para a cultura da soja, tem-se que aos 75 DAE uma planta de soja acumula teoricamente 23,9 g de massa seca, 564,4 mg de N, 7,1 mg de P, 490,8 mg de K, 487,0 mg de Ca, 156,6 mg de Mg e 36,0 mg de S. Para o mesmo período, uma planta de S. americanum acumula teoricamente 33,75 g de massa seca, 875,96 mg de N, 88,46 mg de P, 983,54 mg de K, 647,60 mg de Ca, 100,93 mg de Mg e 42,15 mg de

  5. [Purification and properties of serine proteinases from European catfish Silurus glanis L. pancreas].

    Science.gov (United States)

    Ulitina, N N; Khabliuk, V V; Proskuriakov, M T

    2005-01-01

    Three trypsin isoforms (designated as T1, T2, and T3), three chymotrypsin isoforms (Kh1, Kh2, and Kh3), and two elastase isoforms (E1 and E2) were isolated from the pancreas of European catfish Silurus glanis L. by salting out with (NH4)2SO4, gel chromatography on Sephadex G-75, and ion exchange chromatography on DEAE cellulose. Isoelectric points of the enzymes, determined by isoelectric focusing, amounted to 4.42 for T1, 5.64 for T2, 6.90 for T3, 4.93 for Khl, 5.23 for Kh2, 6.18 for Kh3, 6.17 for E1, and 8.48 for E2. Molecular weights of proteinases within each group were close and amounted to 30100 Da for trypsins, 39800 Da for chymotrypsins, and 24000 Da for elastases. The enzymes isolated displayed maximal activities at alkaline pH values. Inhibitor analysis demonstrated that all the proteinases isolated from European catfish pancreas belonged to the serine type.

  6. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Leif R; Romer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J; Dano, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when {beta}-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when {beta}-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1{beta} converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin

  7. Developing a rapid throughput screen for detection of nematicidal activity of plant cysteine proteinases: the role of Caenorhabditis elegans cystatins.

    Science.gov (United States)

    Phiri, A M; De Pomerai, D; Buttle, D J; Behnke, J M B

    2014-02-01

    Plant cysteine proteinases (CPs) from papaya (Carica papaya) are capable of killing parasitic nematode worms in vitro and have been shown to possess anthelmintic effects in vivo. The acute damage reported in gastrointestinal parasites has not been found in free-living nematodes such as Caenorhabditis elegans nor among the free-living stages of parasitic nematodes. This apparent difference in susceptibility might be the result of active production of cysteine proteinase inhibitors (such as cystatins) by the free-living stages or species. To test this possibility, a supernatant extract of refined papaya latex (PLS) with known active enzyme content was used. The effect on wild-type (Bristol N2) and cystatin null mutant (cpi-1(-/-) and cpi-2(-/-)) C. elegans was concentration-, temperature- and time-dependent. Cysteine proteinases digested the worm cuticle leading to release of internal structures and consequent death. Both cystatin null mutant strains were highly susceptible to PLS attack irrespective of the temperature and concentration of exposure, whereas wild-type N2 worms were generally resistant but far more susceptible to attack at low temperatures. PLS was able to induce elevated cpi-1 and cpi-2 cystatin expression. We conclude that wild-type C. elegans deploy cystatins CPI-1 and CPI-2 to resist CP attack. The results suggest that the cpi-1 or cpi-2 null mutants (or a double mutant combination of the two) could provide a cheap and effective rapid throughput C. elegans-based assay for screening plant CP extracts for anthelmintic activity.

  8. In vitro digestibility of globulins from sapucaia (Lecythis pisonis Camb. nuts by mammalian digestive proteinases Digestibilidade in vitro de globulinas das amêndoas de sapucaia (Lecythis pisonis Camb. por proteinases digestivas de mamíferos

    Directory of Open Access Journals (Sweden)

    Sandra Maria Silveira Denadai

    2007-09-01

    Full Text Available Sapucaia (Lecythis pisonis Camb. raw nuts collected from Brazil were analyzed to determine the proximate composition, amino acid profile of protein fractions, in vitro protein digestibility and antinutritional factors in order to evaluate their potential as a protein alimentary complement. The nuts contained adequate amounts of essential amino acids, fatty acids and minerals. In the present study, no hemagglutinating or inhibitory activities were observed in any of the samples investigated, indicating low or non-detectable levels of proteinase inhibitors or lectins in the samples. In vitro digestibility of in natura and heated nut globulins by mammalian digestive proteinases was carried out using trypsin + chymotrypsin + peptidase, with resulting mean values of approximately 70.30 and 71.35%, respectively. Taken together, the results suggest that sapucaia nuts may provide a new source of protein to use as a potential nutritional agent.Amêndoas cruas de Sapucaia (Lecythis pisonis Camb. colhidas no Brasil foram analisadas para se determinar a composição centesimal, o perfil de aminoácidos de suas proteínas, a digestibilidade protéica in vitro e a presença de fatores antinutricionais, para avaliar o seu potencial como complemento alimentar protéico. As amêndoas apresentaram quantidades adequadas de aminoácidos essenciais, ácidos graxos e minerais; no entanto, baixo teor de fibra foi observado. No presente estudo, a presença de lectinas ou inibidores de proteinases, quando detectada, apresentou baixos níveis. A digestibilidade in vitro de globulinas, in natura ou aquecidas, por proteinases digestivas de mamíferos foi realizada utilizando-se tripsina + quimotripsina + peptidase, obtendo-se valores aproximados de 71,5 e 73,5%, respectivamente. Estes resultados sugerem que as amêndoas de sapucaia podem ser utilizadas como complemento alimentar de proteínas, sendo um potencial agente nutricional.

  9. Silencing of cystatin M in metastatic oral cancer cell line MDA-686Ln by siRNA increases cysteine proteinases and legumain activities, cell proliferation and in vitro invasion.

    NARCIS (Netherlands)

    Vigneswaran, N.; Wu, J.; Nagaraj, N.; James, R.; Zeeuwen, P.L.J.M.; Zacharias, W.

    2006-01-01

    Cystatins are inhibitors of lysosomal cysteine proteinases. Cystatin M demonstrates more diverse tissue distribution, target specificity and biological function than other cystatins from the same family. We utilized small interference RNAs (siRNA) to silence cystatin M gene expression in a metastati

  10. Molecular and morphological characterisation of Xiphinema americanum group species (Nematoda:Dorylaimida)from California and other regions and co-evolution of bacteria from the genus Candidata Xiphinemobacter with nematodes.

    Science.gov (United States)

    The Xiphinema americanum group is a large species complex containing more than two dozen nematode species. They are economically important because they are vectors of nepoviruses. The species differentiation of X. americanum group is problematic because the species share similar morphological charac...

  11. Localization and accessibility of antigenic sites of the extracellular serine proteinase of Lactococcus lactis

    NARCIS (Netherlands)

    Laan, Harm; Kok, Jan; Haandrikman, Alfred J.; Venema, Gerhardus; Konings, Wilhelmus

    1992-01-01

    Lactococcus lactis strains produce an extracellular subtilisin-related serine proteinase in which immunologically different components can be distinguished. Monoclonal antibodies specific for the different proteinase components have been raised and their epitopes were identified. By Western-blot ana

  12. Characterization of Peptides from Capsicum annuum Hybrid Seeds with Inhibitory Activity Against α-Amylase, Serine Proteinases and Fungi.

    Science.gov (United States)

    Vieira Bard, Gabriela C; Nascimento, Viviane V; Ribeiro, Suzanna F F; Rodrigues, Rosana; Perales, Jonas; Teixeira-Ferreira, André; Carvalho, André O; Fernandes, Katia Valevski S; Gomes, Valdirene M

    2015-04-01

    Over the last several years, the activity of antimicrobial peptides (AMPs), isolated from plant species, against different microorganisms has been demonstrated. More recently, some of these AMPs have been described as potent inhibitors of α-amylases and serine proteinases from insects and mammals. The aim of this work was to obtain AMPs from protein extracts of a hybrid Capsicum (Ikeda × UENF 1381) seeds and to evaluate their microbial and enzyme inhibitory activities. Initially, proteins were extracted from the Capsicum hybrid seeds in buffer (sodium phosphate pH 5.4,) and precipitated with ammonium sulfate (90% saturated). Extract of hybrid seeds was subjected to size exclusion chromatography, and three fractions were obtained: S1, S2 and S3. The amino acid sequence, obtained by mass spectrometry, of the 6 kDa peptide from the S3 fraction, named HyPep, showed 100% identity with PSI-1.2, a serine protease inhibitor isolated from C. annuum seeds, however the bifunctionality of this inhibitor against two enzymes is being shown for the first time in this work. The S3 fraction showed the highest antifungal activity, inhibiting all the yeast strains tested, and it also exhibited inhibitory activity against human salivary and Callosobruchus maculatus α-amylases as well as serine proteinases.

  13. Involvement of gibberellins in expression of a cysteine proteinase (SH-EP) in cotyledons of Vigna mungo seedlings.

    Science.gov (United States)

    Taneyama, M; Okamoto, T; Yamane, H; Minamikawa, T

    2001-11-01

    The expression of a papain-type proteinase, designated SH-EP, in cotyledons of Vigna mungo seedlings has been shown to require some factors in the embryonic axes. Gibberellin A1 (GA(1)) and GA(20) were identified by GC-MS in embryonic axes of V. mungo seedlings. The level of accumulation of SH-EP in cotyledons of V. mungo seedlings was greatly reduced by treatment of the seeds with uniconazole-P, an inhibitor for GA biosynthesis. The reduced level of accumulation of SH-EP in cotyledons by uniconazole-P was recovered by exogenous application of GA(1) and GA(20) to the seedlings.

  14. Immunofluorescent Localization of Tobacco Ringspot Nepovirus in the Vector Nematode Xiphinema americanum.

    Science.gov (United States)

    Wang, S; Gererich, R C

    1998-09-01

    ABSTRACT An indirect immunofluorescent technique was developed to localize tobacco ringspot nepovirus (TRSV) in the vector nematode Xiphinema americanum sensu stricto. A population of this nematode that efficiently transmitted TRSV was given an acquisition access period of 10 days on TRSV-infected cucumber. Treatment of fragments of viruliferous nematodes with a polyclonal antiserum against TRSV followed by fluorescein isothiocyanate-conjugated goat anti-rabbit immunoglobulin G resulted in virus-specific bright fluorescence only in the lumen of the stylet extension and esophagus. Virus-specific fluorescent signals were observed in the virus-retention region of 44% of the nematode fragments examined. The percentage of nematodes labeled with virus-specific fluorescence increased as the acquisition access period increased from 0 to 22 days; the increase paralleled the increase in the transmission efficiency of the nematode population. Visualization of the entire virus-retention region of individual nematodes within a population of vector or nonvector nematodes provides a rapid and simple means of monitoring specific attachment of plant viruses.

  15. Electrophoretically detectable protein variation in natural populations of the lone star tick, Amblyomma americanum (Acari: Ixodidae).

    Science.gov (United States)

    Hilburn, L R; Sattler, P W

    1986-08-01

    Nine populations of Amblyomma americanum (L.) were examined electrophoretically for variation of 21 enzymes. Only three enzymes were not polymorphic and the average heterozygosity per individual (h) for the species was 0.085 with a range of 0.077 to 0.110, comparing well with values in other arthropods. The average Nei identity value for pairwise comparisons among the nine populations was high, 0.994 +/- 0.004 (I +/- SD). These high identity values and the absence of geographic structuring of the protein variation suggest that this species is genetically homogeneous. Normal levels of genic variability within and a lack of divergence between populations were not predicted by models developed to describe these genetic characteristics on the basis of the heterogeneities encountered by parasites in their environment. An analysis of data from several different species of ticks suggests host mobility and abundance, as well as tick abundance and selectivity in choosing a host, are important parameters in determining genetic variation in these ectoparasites.

  16. Geographic distribution and genetic diversity of the Ehrlichia sp. from Panola Mountain in Amblyomma americanum

    Directory of Open Access Journals (Sweden)

    Williamson Phillip C

    2008-04-01

    Full Text Available Abstract Background A novel Ehrlichia, closely related to Ehrlichia ruminantium, was recently discovered from Panola Mountain State Park, GA, USA. We conducted a study to determine if this agent was recently introduced into the United States. Methods We developed a sensitive PCR assay based on the conserved gltA (citrate synthase gene and tested DNA samples extracted from 1964 field-collected and 1835 human-biting Amblyomma americanum from 23 eastern states of the USA. Results The novel agent was detected in 36 ticks collected from 10 states between 1998 and 2006. Infected ticks were collected both from vegetation (n = 14, 0.7% and from humans (n = 22, 1.2%. Fragments of the conserved gltA gene and the variable map1 gene were sequenced from positive samples. Two distinct clades, with 10.5% nucleic acid divergence over the 730 bp map1 sequence, were identified. Conclusion These data suggest that the Panola Mountain Ehrlichia was not recently introduced to the United States; this agent has an extensive distribution throughout the range of its tick vector, has been present in some locations for several years, and displays genetic variability. Furthermore, people in several states were exposed to this agent through the bite of infected ticks, underscoring the potential public health risk of this emerging ehrlichiosis.

  17. Structural characterization of tick cement cones collected from in vivo and artificial membrane blood-fed Lone Star ticks (Amblyomma americanum).

    Science.gov (United States)

    Bullard, Rebekah; Allen, Paige; Chao, Chien-Chung; Douglas, Jessica; Das, Pradipta; Morgan, Sarah E; Ching, Wei-Mei; Karim, Shahid

    2016-07-01

    The Lone Star tick, Amblyomma americanum, is endemic to the southeastern United States and capable of transmitting pathogenic diseases and causing non-pathogenic conditions. To remain firmly attached to the host, the tick secretes a proteinaceous matrix termed the cement cone which hardens around the tick's mouthparts to assist in the attachment of the tick as well as to protect the mouthparts from the host immune system. Cement cones collected from ticks on a host are commonly contaminated with host skin and hair making analysis of the cone difficult. To reduce the contamination found in the cement cone, we have adapted an artificial membrane feeding system used to feed long mouthpart ticks. Cones collected from in vivo and membrane fed ticks are analyzed to determine changes in the cone morphology. Comparisons of the cement cones using light microscopy shows similar structures and color however using scanning electron microscopy the cones have drastically different structures. The in vivo cones contain fibrils, sheets, and are heavily textured whereas cones from membrane fed ticks are remarkably smooth with no distinct structures. Analysis of the secondary protein structures using FTIR-ATR show both in vivo and membrane fed cement cones contain β sheets but only in vivo cement cones contain helical protein structures. Additionally, proteomic analysis using LC-MS/MS identifies many proteins including glycine rich proteins, metalloproteases, and protease inhibitors. Proteomic analysis of the cones identified both secreted and non-secreted tick proteins. Artificial membrane feeding is a suitable model for increased collection of cement cones for proteomic analysis however, structurally there are significant differences.

  18. Conservation and aquaculture of native freshwater prawns: the case of the cauque river prawn Macrobrachium americanum (Bate, 1868

    Directory of Open Access Journals (Sweden)

    Marcelo García-Guerrero

    2015-11-01

    Full Text Available Latin America has a high diversity of Macrobrachium prawns, some of them with commercial interest. Among them, the cauque river prawn Macrobrachium americanum is a large prawn of the western coast with commercial value due to its size and taste, but it has been extensively subjected to fishery exploitation, leading to population decline. Cultivation is an option for commercial production and conservation. Some research focused on domestication has been performed. Here, we revise the status of that research and discuss possibilities for sustainable freshwater prawn aquaculture in Mexico and elsewhere in Latin America.

  19. The aspartic proteinase family of three Phytophthora species

    NARCIS (Netherlands)

    Kay, J.; Meijer, H.J.G.; Have, ten A.; Kan, van J.A.L.

    2011-01-01

    Background - Phytophthora species are oomycete plant pathogens with such major social and economic impact that genome sequences have been determined for Phytophthora infestans, P. sojae and P. ramorum. Pepsin-like aspartic proteinases (APs) are produced in a wide variety of species (from bacteria to

  20. Isolation of Tacaribe virus, a Caribbean arenavirus, from host-seeking Amblyomma americanum ticks in Florida.

    Directory of Open Access Journals (Sweden)

    Katherine A Sayler

    Full Text Available Arenaviridae are a family of single stranded RNA viruses of mammals and boid snakes. Twenty-nine distinct mammalian arenaviruses have been identified, many of which cause severe hemorrhagic disease in humans, particularly in parts of sub-Saharan Africa, and in Central and South America. Humans typically become infected with an arenavirus through contact with excreta from infected rodents. Tacaribe virus (TCRV is an arenavirus that was first isolated from bats and mosquitoes during a rabies surveillance survey conducted in Trinidad from 1956 to 1958. Tacaribe virus is unusual because it has never been associated with a rodent host and since that one time isolation, the virus has not been isolated from any vertebrate or invertebrate hosts. We report the re-isolation of the virus from a pool of 100 host-seeking Amblyomma americanum (lone star ticks collected in a Florida state park in 2012. TCRV was isolated in two cell lines and its complete genome was sequenced. The tick-derived isolate is nearly identical to the only remaining isolate from Trinidad (TRVL-11573, with 99.6% nucleotide identity across the genome. A quantitative RT-PCR assay was developed to test for viral RNA in host-seeking ticks collected from 3 Florida state parks. Virus RNA was detected in 56/500 (11.2% of surveyed ticks. As this virus was isolated from ticks that parasitize humans, the ability of the tick to transmit the virus to people should be evaluated. Furthermore, reservoir hosts for the virus need to be identified in order to develop risk assessment models of human infection.

  1. Isolation of Tacaribe virus, a Caribbean arenavirus, from host-seeking Amblyomma americanum ticks in Florida.

    Science.gov (United States)

    Sayler, Katherine A; Barbet, Anthony F; Chamberlain, Casey; Clapp, William L; Alleman, Rick; Loeb, Julia C; Lednicky, John A

    2014-01-01

    Arenaviridae are a family of single stranded RNA viruses of mammals and boid snakes. Twenty-nine distinct mammalian arenaviruses have been identified, many of which cause severe hemorrhagic disease in humans, particularly in parts of sub-Saharan Africa, and in Central and South America. Humans typically become infected with an arenavirus through contact with excreta from infected rodents. Tacaribe virus (TCRV) is an arenavirus that was first isolated from bats and mosquitoes during a rabies surveillance survey conducted in Trinidad from 1956 to 1958. Tacaribe virus is unusual because it has never been associated with a rodent host and since that one time isolation, the virus has not been isolated from any vertebrate or invertebrate hosts. We report the re-isolation of the virus from a pool of 100 host-seeking Amblyomma americanum (lone star ticks) collected in a Florida state park in 2012. TCRV was isolated in two cell lines and its complete genome was sequenced. The tick-derived isolate is nearly identical to the only remaining isolate from Trinidad (TRVL-11573), with 99.6% nucleotide identity across the genome. A quantitative RT-PCR assay was developed to test for viral RNA in host-seeking ticks collected from 3 Florida state parks. Virus RNA was detected in 56/500 (11.2%) of surveyed ticks. As this virus was isolated from ticks that parasitize humans, the ability of the tick to transmit the virus to people should be evaluated. Furthermore, reservoir hosts for the virus need to be identified in order to develop risk assessment models of human infection.

  2. A serpin-induced extensive proteolytic susceptibility of urokinase-type plasminogen activator implicates distortion of the proteinase substrate-binding pocket and oxyanion hole in the serpin inhibitory mechanism.

    Science.gov (United States)

    Egelund, R; Petersen, T E; Andreasen, P A

    2001-02-01

    The formation of stable complexes between serpins and their target serine proteinases indicates formation of an ester bond between the proteinase active-site serine and the serpin P1 residue [Egelund, R., Rodenburg, K.W., Andreasen, P.A., Rasmussen, M.S., Guldberg, R.E. & Petersen, T.E. (1998) Biochemistry 37, 6375-6379]. An important question concerning serpin inhibition is the contrast between the stability of the ester bond in the complex and the rapid hydrolysis of the acyl-enzyme intermediate in general serine proteinase-catalysed peptide bond hydrolysis. To answer this question, we used limited proteolysis to detect conformational differences between free urokinase-type plasminogen activator (uPA) and uPA in complex with plasminogen activator inhibitor-1 (PAI-1). Whereas the catalytic domain of free uPA, pro-uPA, uPA in complex with non-serpin inhibitors and anhydro-uPA in a non-covalent complex with PAI-1 was resistant to proteolysis, the catalytic domain of PAI-1-complexed uPA was susceptible to proteolysis. The cleavage sites for four different proteinases were localized in specific areas of the C-terminal beta-barrel of the catalytic domain of uPA, providing evidence that the serpin inhibitory mechanism involves a serpin-induced massive rearrangement of the proteinase active site, including the specificity pocket, the oxyanion hole, and main-chain binding area, rendering the proteinase unable to complete the normal hydrolysis of the acyl-enzyme intermediate. The distorted region includes the so-called activation domain, also known to change conformation on zymogen activation.

  3. Trypanosoma cruzi: cruzipain and membrane-bound cysteine proteinase isoform(s) interacts with human alpha(2)-macroglobulin and pregnancy zone protein.

    Science.gov (United States)

    Ramos, Adrián M; Duschak, Vilma G; Gerez de Burgos, Nelia M; Barboza, Mariana; Remedi, María S; Vides, Miguel A; Chiabrando, Gustavo A

    2002-02-01

    Plasmatic levels of pregnancy zone protein (PZP) increase in children with acute Chagas disease. PZP, as well as alpha2-macroglobulin (alpha2-M), are able to interact with Trypanosoma cruzi proteinases. The interaction of alpha2-M and PZP with cruzipain, the major cysteine proteinase of T. cruzi, was investigated. Several molecular changes on both alpha-M inhibitors under reaction with cruzipain were found. PAGE analysis showed: (i) formation of complexes of intermediate mobility and tetramerization of native alpha2-M and PZP, respectively; (ii) limited proteolysis of bait region in alpha2-M and PZP, and (iii) covalent binding of cruzipain to PZP and alpha2-M. Conformational and structural changes experimented by alpha-Ms correlate with modifications of the enzyme electrophoretic mobility and activity. Cruzipain-alpha-M complexes were also detected by gelatin SDS-PAGE and immunoblotting using polyclonal anti-cruzipain antibodies. Concomitantly, alpha2-M and PZP impaired the activity of cruzipain towards Bz-Pro-Phe-Arg-pNA substrate. In addition, alpha-Ms were able to form covalent complexes with membrane isoforms of cysteine proteinases cross-reacting with cruzipain. The present study suggests that both human alpha-macroglobulin inhibitors could prevent or minimize harmful action of cruzipain on host's molecules and hypothetically regulate parasite functions controlled by cruzipain.

  4. Identification, classification and expression pattern analysis of sugarcane cysteine proteinases

    Directory of Open Access Journals (Sweden)

    Gustavo Coelho Correa

    2001-12-01

    Full Text Available Cysteine proteases are peptidyl hydrolyses dependent on a cysteine residue at the active center. The physical and chemical properties of cysteine proteases have been extensively characterized, but their precise biological functions have not yet been completely understood, although it is known that they are involved in a number of events such as protein turnover, cancer, germination, programmed cell death and senescence. Protein sequences from different cysteine proteinases, classified as members of the E.C.3.4.22 sub-sub-class, were used to perform a T-BLAST-n search on the Brazilian Sugarcane Expressed Sequence Tags project (SUCEST data bank. Sequence homology was found with 76 cluster sequences that corresponded to possible cysteine proteinases. The alignments of these SUCEST clusters with the sequence of cysteine proteinases of known origins provided important information about the classification and possible function of these sugarcane enzymes. Inferences about the expression pattern of each gene were made by direct correlation with the SUCEST cDNA libraries from which each cluster was derived. Since no previous reports of sugarcane cysteine proteinases genes exists, this study represents a first step in the study of new biochemical, physiological and biotechnological aspects of sugarcane cysteine proteases.Proteinases cisteínicas são peptidil-hidrolases dependentes de um resíduo de cisteína em seu sítio ativo. As propriedades físico-químicas destas proteinases têm sido amplamente caracterizadas, entretanto suas funções biológicas ainda não foram completamente elucidadas. Elas estão envolvidas em um grande número de eventos, tais como: processamento e degradação protéica, câncer, germinação, morte celular programada e processos de senescência. Diferentes proteinases cisteínicas, classificadas pelo Comitê de Nomenclatura da União Internacional de Bioquímica e Biologia Molecular (IUBMB como pertencentes à sub

  5. Purification and partial characterisation of a cathepsin L-like proteinase from sea cucumber (Stichopus japonicus) and its tissue distribution in body wall.

    Science.gov (United States)

    Zhou, Da-Yong; Chang, Xian-Na; Bao, Sha-Sha; Song, Liang; Zhu, Bei-Wei; Dong, Xiu-Ping; Zong, Yuan; Li, Dong-Mei; Zhang, Mao-Mao; Liu, Yu-Xin; Murata, Yoshiyuki

    2014-09-01

    A cathepsin L-like proteinase (CLP) with molecular weight of 30.9 kDa from the gut of sea cucumber (Stichopus japonicas, S. japonicus) was isolated and purified to homogeneity by several chromatographic procedures. The enzyme exhibited optimum activity at pH 5.0-5.5 and 50 °C, and showed thermostability up to 40 °C. The enzyme activity was completely inhibited by Zn(2+), strongly inhibited by Fe(2+) and Cu(2+), drastically reduced by cysteine proteinase inhibitors, but slightly enhanced by thiol-activating agents. The enzyme efficiently hydrolysed the specific substrate of cathepsin L, but hardly hydrolysed the specific substrates for cathepsin B, cathepsin H and cathepsin K. Immunohistochemical studies indicated that the CLP was more abundant in the epidermis rather than in the dermis of S. japonicus body wall. The distribution of CLP showed positive correlation with autolysis rate. Therefore, the relationship between CLP and autolysis deserved further study.

  6. Characterization of a cloned subtilisin-like serine proteinase from a psychrotrophic Vibrio species.

    Science.gov (United States)

    Arnórsdottir, Jóhanna; Smáradóttir, Rúna B; Magnússon, Olafur Th; Thorbjarnardóttir, Sigrídur H; Eggertsson, Gudmundur; Kristjánsson, Magnús M

    2002-11-01

    The gene encoding a subtilisin-like serine proteinase in the psychrotrophic Vibrio sp. PA44 has been successfully cloned, sequenced and expressed in Escherichia coli. The gene is 1593 basepairs and encodes a precursor protein of 530 amino acid residues with a calculated molecular mass of 55.7 kDa. The enzyme is isolated, however, as an active 40.6-kDa proteinase, without a 139 amino acid residue N-terminal prosequence. Under mild conditions the enzyme undergoes a further autocatalytic cleavage to give a 29.7-kDa proteinase that retains full enzymatic activity. The deduced amino acid sequence of the enzyme has high homology to proteinases of the proteinase K family of subtilisin-like proteinases. With respect to the enzyme characteristics compared in this study the properties of the wild-type and recombinant proteinases are the same. Sequence analysis revealed that especially with respect to the thermophilic homologues, aqualysin I from Thermus aquaticus and a proteinase from Thermus strain Rt41A, the cold-adapted Vibrio-proteinase has a higher content of polar/uncharged amino acids, as well as aspartate residues. The thermophilic enzymes had a higher content of arginines, and relatively higher number of hydrophobic amino acids and a higher aliphatic index. These factors may contribute to the adaptation of these proteinases to different temperature conditions.

  7. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  8. Activation of human tonsil and skin mast cells by agonists of proteinase activated receptor-2

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Hua XIE; Yi-ling FU

    2005-01-01

    Aim: To investigate the effects of the agonists of proteinase activated receptor (PAR)-2,and histamine on degranulation of human mast cells. Methods: Human mast cells were enzymatically dispersed from tonsil and skin tissues. The dis persed cells were then cultured with various stimuli, and tryptase and histamine levels in cell supernatants collected from challenge tubes were measured. Results:PAR-2 agonist peptide SLIGKV provoked a dose-dependent release of histamine from skin mast cells. It also induced tryptase release from tonsil mast cells, tcLIGRLO appeared less potent than SLIGKV in induction of release of histamine and tryptase. Trypsin was able to induce a "bell" shape increase in tryptase release from tonsil mast cells. It was also able to induce a dose-dependent release of histamine from both tonsil and skin mast cells. The actions of trypsin on mast cells were inhibited by soy bean trypsin inhibitor (SBTI) or α1-antitrypsin (α1-AT).Time course study revealed that both stimulated tryptase or histamine release initiated within 10 s and reached their peak release between 4 and 6 min. Pretreatment of cells with metabolic inhibitors or pertussis toxin reduced the ability of mast cells to release tryptase or histamine. Conclusion: It was demonstrated that the in vitro tryptase release properties of human tonsil and skin mast cells suggested a novel type of mast cell heterogeneity. The activation of mast cells by PAR-2 agonists indicated a self-amplification mechanism of mast cell degranulation.

  9. The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevsky, Andrey [Los Alamos National Laboratory (LANL); Erskine, Peter T. [University of Southampton, England; Cooper, Jon [University of Southampton, England

    2008-01-01

    Hydrogen atoms play key roles in enzyme mechanism, but as this study shows, even high-quality X-ray data to a resolution of 1 {angstrom} cannot directly visualize them. Neutron diffraction, however, can locate deuterium atoms even at resolutions around 2 {angstrom}. Both neutron and X-ray diffraction data have been used to investigate the transition state of the aspartic proteinase endothiapepsin. The different techniques reveal a different part of the story, revealing the clearest picture yet of the catalytic mechanism by which the enzyme operates. Room temperature neutron and X-ray diffraction data were used in a newly developed joint refinement software package to visualize deuterium atoms within the active site of the enzyme when a gem-diol transition state analogue inhibitor is bound at the active site. These data were also used to estimate their individual occupancy, while analysis of the differences between the bond lengths of the catalytic aspartates was performed using atomic resolution X-ray data. The two methods are in agreement on the protonation state of the active site with a transition state analogue inhibitor bound confirming the catalytic mechanism at which the enzyme operates.

  10. Cystatin F regulates proteinase activity in IL-2-activated natural killer cells.

    Science.gov (United States)

    Maher, Katarina; Konjar, Spela; Watts, Colin; Turk, Boris; Kopitar-Jerala, Natasa

    2014-01-01

    Cystatin F is a unique member of the cystatin family of cysteine protease inhibitors, which is synthesized as an inactive dimer and it is activated by N-terminal cleavage in the endolysosomes. It is expressed in the cells of the immune system: myeloid cells and the cells involved in target cell killing: natural killer (NK) cells and cytotoxic T cells (CTLs). Upon activation of the NK cells with interleukin 2 (IL-2), cystatin F was found upregulated and co-localized in cytotoxic granules with cathepsin C (CatC) and CatV. However, cystatin F inhibits the CatC in cells only when its N-terminal part is processed. Although cystatin F could inhibit both CatV and CatC, the IL-2 stimulation of the YT cells resulted in an increased CatV activity, while the CatC activity was unchanged. The incubation of IL-2 activated NK cells with a cysteine proteinase inhibitor E-64d increased the cystatin F dimer formation. Our results suggest that cystatin F not only inhibits CatV, but it is processed by the CatV in order to inhibit the CatC activity in cytotoxic granules. The regulation of the CatC activity in the cytotoxic granules of the NK cells by the cystatin F could be important for the processing and activation of granule-associated serine proteases - granzymes.

  11. Proteinases of Streptomyces fradiae. I. Preliminary characterization and purification.

    Science.gov (United States)

    Galas, E; Kaluzewska, T

    1989-01-01

    A keratinolytic strain of S. fradiae has been shown to synthesize a complex of extracellular proteinases degrading native keratin proteins, elastin and collagen as well as some globular proteins. These enzymes are characterized by basic optimal pH and are inactivated by pheynlmethylsulfonyl fluoride (PMSF). Using preparative polyacrylamide gel electrophoresis, ion-exchange chromatography and affinity chromatography, 6 fractions of active protein of diversified proteolytic activity have been distinguished in the preparation studied.

  12. Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K.

    Science.gov (United States)

    Kumar Shukla, Sudhir; Rao, Toleti Subba

    2013-02-01

    The dominant role of biofilm-associated protein (Bap) in Staphylococcus aureus biofilm development prompted us to investigate Bap as a potential target for proteinase-mediated biofilm dispersion. Biofilm assay in microtitre plates showed that proteinase K hampered the early adhesion of cells as well as biofilm development. Proteinase K treatment of 24- and 48-h-old biofilms showed enhanced dispersion of bap-positive S. aureus biofilm; however, proteinase K did not affect the bap-negative S. aureus biofilm. When antibiotics were used in combination with proteinase K, significant enhancement in antibiotic action was noticed against bap-positive S. aureus biofilm. This study establishes that antibiotics in combination with proteinase K can be used for controlling S. aureus biofilms in whose development Bap surface protein has a major role. We propose that Bap protein could be a potential target for therapeutic control of S. aureus infections (for example, bovine mastitis).

  13. VaSP1, catalytically active serine proteinase from Vipera ammodytes ammodytes venom with unconventional active site triad.

    Science.gov (United States)

    Kurtović, Tihana; Brgles, Marija; Leonardi, Adrijana; Lang Balija, Maja; Sajevic, Tamara; Križaj, Igor; Allmaier, Günter; Marchetti-Deschmann, Martina; Halassy, Beata

    2014-01-01

    VaSP1, a serine proteinase from Vipera ammodytes ammodytes venom, is a glycosylated monomer of 31.5 kDa, as determined by MALDI mass spectrometry, showing multiple isoelectric points between pH 6.5 and pH 8.5. Partial amino acid sequencing of VaSP1 by Edman degradation and MS/MS analysis identified sequences which allowed its classification among the so-called snake venom serine proteinase homologues, members of the peptidase S1 family, however being devoid of the canonical catalytic triad. Only few representatives of this group have been identified so far with just two of them characterised in detail at the protein level. Despite substitution of His57 with Arg, VaSP1 possesses proteolytic activity which can be inhibited by Pefabloc, benzamidine, Zn²⁺ ions, DTT and trypsin inhibitor II, a Kunitz/BPTI group member. It hydrolyses N(α)-benzoyl-Phe-Val-Arg-p-NA, exhibiting Michaelis-Menten behaviour with K(m) = 48.2 μM and V(m) = 0.019 nM s⁻¹. The pH for optimal activity on tested substrate is around 9.0. VaSP1 also cleaves insulin B-chain, digesting it at positions His¹⁰-Leu¹¹, Ala¹⁴-Leu¹⁵ and Tyr¹⁶-Leu¹⁷. Furthermore, the novel serine proteinase is active towards wide array of proteins involved in haemostasis where its degradation of fibrinogen, fibrin, prothrombin, factor X and plasminogen in vivo probably results in depletion of coagulation factors in blood circulation. The possibility that VaSP1 possesses anticoagulant properties has been further indicated by its ability to prolong prothrombin time and activated partial thromboplastin time.

  14. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions

    Directory of Open Access Journals (Sweden)

    Goldman Maria Helena S.

    1998-01-01

    Full Text Available The mycoparasite Trichoderma harzianum produces an alkaline proteinase that may be specifically involved in mycoparasitism. We have constructed transformant strains of this fungus that overexpress this alkaline proteinase. Some of the transformants were assessed for alkaline proteinase activity, and those with higher activity than the wild type were selected for further studies. One of these transformant strains produced an elevated and constitutive pbr1 mRNA level during mycoparasitic interactions with Rhizoctonia solani.

  15. The role of proteinase enzymes in the process of conversion of muscle to meat

    Directory of Open Access Journals (Sweden)

    Dümen Emek

    2006-01-01

    Full Text Available Post mortem meat tenderization is a complex mechanism and unfortunately it has not been fully identified scientifically. It is known that endogenous proteinases have an important role in this mechanism. Detailed studies are being performed about the destructive effects of lysosomal proteinases and calcium dependent proteinases on the myofibrils and these are most common topics that are being investigated about meat tenderization processes by the scientists. The aim of this paper is to review the role of proteinase enzymes in the process of conversion of muscle to meat. .

  16. Mechanism of Excretion of a Bacterial Proteinase: Factors Controlling Accumulation of the Extracellular Proteinase of a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    BISSELL, MINA J.; TOSI, ROBERTO; GORINI, LUIGI

    1970-06-29

    It has been known that the extracellular proteinase of Coccus P is found only in cultures grown in the presence of Ca{sup 2+}. It is now shown that this cation is required neither for synthesis, excretion, or activation of a zymogen nor as a prosthetic factor necessary for enzymatic activity. The only function of Ca{sup 2+} is to stabilize the active structure of the enzyme molecule, presumably by substituting for absence of S-S bridges. In the absence of Ca{sup 2+} , the excreted proteinase undergoes rapid autodigestion and, instead of the active protein, its hydrolytic products are accumulated in the culture fluid. In minimal medium and under conditions of enzyme stability [presence of Ca{sup 2+} and Ficoll (Pharmacia)], Coccus P accumulates the proteinase at a gradually reduced speed although the rate of cultural growth remains constant. It is shown that this decline in rate of accumulation is caused by the excreted proteinase itself, possibly acting on its own precursor emerging from the cell in a form susceptible to proteolytic attack and not amenable to Ca{sup 2+} protection. A proteinase precursor is actually demonstrable in a calciumless culture at the onset of the enzyme accumulation which follows Ca{sup 2+} addition. It is suggested that excreted proteins require an unfolded (or incompletely folded) structure to cross the cell envelope. The proteinase excreted by a Sarcina strain (Coccus P) is found only in cultures containing Ca{sup 2+} ions (1), a feature common to proteinases of other bacteria (4, 12, 18) and to other excreted enzymes (14). Among the nontoxic divalent cations, Ca{sup 2+} is rather specific in this effect. Other ions such as Mn{sup 2+} or Mg{sup 2+}, the latter being present in all media as an indispensible growth factor, are ineffective. Addition of Ca{sup 2+} to the proteolytically inactive supernatant fluid of a calcium- free culture does not result in the appearance of the missing enzyme activity. The early assumption that Ca{sup 2

  17. A new crystal form of proteinase A, a non-pepsin-type acid proteinase from Aspergillus niger var. macrosporus.

    Science.gov (United States)

    Tanokura, M; Sasaki, H; Muramatsu, T; Iwata, S; Hamaya, T; Takizawa, T; Takahashi, K

    1993-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase, whose catalytic residues and mechanism remain to be elucidated. A new form of proteinase A crystals more suitable for crystallography than that obtained previously was prepared from an ammonium sulfate solution at pH 3.5 by the hanging-drop vapor diffusion method. The space group of the crystals was P2(1)2(1)2(1), with unit cell dimensions of a = 69.75 +/- 0.06 A, b = 87.55 +/- 0.05 A, and c = 60.83 +/- 0.04 A. On the assumption of two enzyme molecules per asymmetric unit, the calculated volume to unit protein mass ratio (Vm) was 2.08 A3/Da. By assuming the specific volume to be 0.74 cm3/g, the solvent content (Vso1) was estimated to be 41%, i.e., much larger than that of the crystal form obtained previously at pH 2.0 (Vso1 = 26%). Diffraction data were collected up to a resolution higher than 1.6 A, using the Weissenberg camera for macromolecular crystallography with synchrotron radiation.

  18. Lead residues in eastern tent caterpillars (Malacosoma americanum) and their host plant (Prunus serotina) close to a major highway

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W.N.; Moore, J.

    1980-02-01

    Eastern tent caterpillars, Malacosoma americanum (F.) (Lepidoptera: Lasiocampidae), and leaves of their host plant, black cherry, Prunus serotina Ehrh., were collected in May, 1978, at various distances from the Baltimore-Washington Parkway, Prince George's Co., MD, and were analyzed for lead by atomic absorption spectrophotometry. Caterpillars collected within 10 m of the parkway contained 7.1 to 7.4 ppM lead (dry weight). Caterpillars collected at greater distances from the parkway and from a control area had lead concentrations ca. half as high (2.6 to 5.3 ppM). Lead concentrations in caterpillars averaged 76% as high as those in leaves and were much lower than concentrations that have been reported in some roadside soil and litter invertebrates.

  19. Lead residues in eastern tent caterpillars (Malacosoma americanum) and their host plant (Prunus serotina) close to a major highway

    Science.gov (United States)

    Beyer, W.N.; Moore, J.

    1980-01-01

    Eastern tent caterpillars, Malacosoma americanum (F.) (Lepidoptera: Lasiocampidae and leaves of their host plant, black cherry, Prunus serotina Ehrh., were collected in May, 1978, at various distances from the Baltimore-Washington Parkway, Prince George's Co., MD, and were analyzed for lead by atomic absorption spectrophotometry. Caterpillars collected within 10 m of the parkway contained 7.1-7.4 ppm lead (dry weight). Caterpillars collected at greater distances from the parkway and from a control area had lead concentrations ca. half as high (2.6-5.3 ppm). Lead concentrations in caterpillars averaged 76% as high as those in leaves and were much lower than concentrations that have been reported in some roadside soil and litter invertebrates

  20. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae).

    Science.gov (United States)

    Vandekerckhove, T T; Willems, A; Gillis, M; Coomans, A

    2000-11-01

    Numerous micro-organisms have been described as cytoplasmic symbionts of eukaryotes. Many so-called obligate endosymbionts rely exclusively on maternal (vertical or transovarial) transmission to maintain themselves, rendering them dependent on the host sex ratio, which they would tend to manipulate to their own advantage. The latter phenomenon is often associated with the presence of Wolbachia pipientis (alpha-Proteobacteria) in arthropods and nematodes. A potentially similar situation was discovered involving members of a new clade of Verrucomicrobia, another main line of descent in the Bacteria. Nematode species of the Xiphinema americanum group (Nematoda, Longidoridae), viz. Xiphinema americanum, Xiphinema rivesi and Xiphinema brevicollum, each harbour their own specific verrucomicrobial endosymbionts. They are exclusively maternally inherited and their hosts reproduce by thelytokous (mother-to-daughter) parthenogenesis, males being extremely rare. A new genus, 'Candidatus Xiphinematobacter' gen. nov., along with three new candidate verrucomicrobial species, 'Candidatus Xiphinematobacter americani' sp. nov., 'Candidatus Xiphinematobacter rivesi' sp. nov. and 'Candidatus Xiphinematobacter brevicolli' sp. nov., are described on the basis of transmission electron microscopy, scanning electron microscopy, DAPI (4',6-diamidino-2-phenylindole) epifluorescence microscopy and 16S rDNA sequence analysis. These are the first endosymbiotic species described among the Verrucomicrobia. They share a mean 16S rDNA similarity of about 93%, whereas similarity to their closest relative, clone WCHD3-88, is less than 87%. Thus, the endosymbionts form a homogeneous clade for which the new candidate genus 'Candidatus Xiphinematobacter' gen. nov. is proposed. The type species is 'Candidatus Xiphinematobacter brevicolli' sp. nov.

  1. Efeito de doses de adubo 4-14-8 na competição entre tomateiro e Solanum americanum em convivência intra e interespecífica Effect of fertilizer 4-14-8 doses on competition between tomato and Solanum americanum under intra- and inter-specific coexistence

    Directory of Open Access Journals (Sweden)

    B.P. Silva

    2010-01-01

    Full Text Available O tomateiro (Lycopersicum esculentum é uma das mais importantes hortaliças produzidas no mundo, porém sua produtividade pode ser reduzida em função da convivência com Solanum americanum (maria-pretinha. O objetivo desta pesquisa foi avaliar o efeito da adubação na relação de interferência intra e interespecífica entre plantas de tomateiro e S. americanum. Duas plantas em condições de convivência intra e interespecífica, por espécie, foram plantadas em vasos e adubadas com 13, 18 e 24 g de 4-14-8 por vaso, sendo avaliadas características de crescimento de ambas as espécies aos 90 dias após o transplante das plantas. A adubação com 4-14-8 estimulou o desenvolvimento da área foliar e da massa seca de caules, folhas e frutos de S. americanum, além da área foliar e da massa seca de folhas e frutos do tomateiro. A convivência interespecífica proporcionou maior altura de plantas de S. americanum, bem como menor altura e massa seca de folhas e frutos do tomateiro. Houve interação dos fatores adubação e convivência somente para o tomateiro, sendo a altura e a massa seca de folhas da cultura influenciadas negativamente quando submetidas às maiores doses de adubo e à competição com S. americanum.Tomato (Lycopersicum esculentum is one of the leading vegetable crops grown worldwide, but its productivity may be reduced due to coexistence with Solanum americanum (black nightshade. This work aimed to evaluate the effect of fertilization on intra- and inter-specific interference between tomato and S. americanum plants. Two plants in intra- and inter-specific coexistence conditions of both species were planted in pots and fertilized with 13, 18 and 24 g of 4-14-8 per pot to evaluate the growth characteristics of both species at 90 days after transplanting. The 4-14-8 fertilization stimulated the development of the leaf area and dry mass of stems, leaves and fruit of S. americanum, consequently and equally influencing the leaf

  2. Purification and Characterization of an Extracellular Proteinase from Brevibacterium-Linens ATCC-9174

    DEFF Research Database (Denmark)

    Rattray, F P; Bockelmann, W; Fox, P F

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8,5 and 50 degrees C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and...

  3. Comparative speed of kill of sarolaner (Simparica™) and afoxolaner (NexGard®) against induced infestations of Amblyomma americanum on dogs

    OpenAIRE

    Six, Robert H.; Everett, William R.; Chapin, Sara; Mahabir, Sean P.

    2016-01-01

    Background The lone star tick, Amblyomma americanum, infests dogs and cats in North America and is the vector of the pathogens that cause monocytic and granulocytic ehrlichiosis in dogs and humans. A parasiticide’s speed of kill is important to minimize the direct and deleterious effects of tick infestation and especially to reduce the risk of transmission of tick-borne pathogens. In this study, speed of kill of a novel orally administered isoxazoline parasiticide, sarolaner (Simparica™ chewa...

  4. Use of a cysteine proteinase from Carica candamarcensis as a protective agent during DNA extraction

    Directory of Open Access Journals (Sweden)

    M.S. Genelhu

    1998-09-01

    Full Text Available We describe the use of a plant cysteine proteinase isolated from latex of Carica candamarcensis as a protective agent during isolation of bacterial DNA following growth in culture of these cells. Between 100 to 720 units of proteinase (1 µg = 6 units afforded good DNA protection when incubated with various kinds of microorganisms. Agarose gel electrophoresis showed that the resulting DNA was similar in size to DNA preparations obtained by treatment with proteinase K. The viability of the resulting material was checked by PCR amplification using species-specific primers. After standing at room temperature (25oC for 35 days, the enzyme lost 10% of its initial activity. The enzyme stability and good yield of DNA suggest the use of this proteinase as an alternative to proteinase K.

  5. Use of a cysteine proteinase from Carica candamarcensis as a protective agent during DNA extraction.

    Science.gov (United States)

    Genelhu, M S; Zanini, M S; Veloso, I F; Carneiro, A M; Lopes, M T; Salas, C E

    1998-09-01

    We describe the use of a plant cysteine proteinase isolated from latex of Carica candamarcensis as a protective agent during isolation of bacterial DNA following growth in culture of these cells. Between 100 to 720 units of proteinase (1 microgram = 6 units) afforded good DNA protection when incubated with various kinds of microorganisms. Agarose gel electrophoresis showed that the resulting DNA was similar in size to DNA preparations obtained by treatment with proteinase K. The viability of the resulting material was checked by PCR amplification using species-specific primers. After standing at room temperature (25 degrees C) for 35 days, the enzyme lost 10% of its initial activity. The enzyme stability and good yield of DNA suggest the use of this proteinase as an alternative to proteinase K.

  6. Peptidoglycan inducible expression of a serine proteinase homologue from kuruma shrimp (Marsupenaeus japonicus).

    Science.gov (United States)

    Rattanachai, Achara; Hirono, Ikuo; Ohira, Tsuyoshi; Takahashi, Yukinori; Aoki, Takashi

    2005-01-01

    A cDNA encoding a serine proteinase homologue of kuruma shrimp (Marsupenaeus japonicus) was cloned. The 1257 bp cDNA encodes a 339 amino acid putative peptide, with a signal sequence of 16 amino acid residues. The deduced amino acid sequence is 42-67% similar to the immune-related serine proteinases and serine proteinase homologues of arthropods. It contains catalytic triad residues in the putative catalytic domain except for one substitution of Ser by a Gly residue. The six cysteine residues that form three disulphide bridges in most serine proteinases were conserved. The M. japonicus serine proteinase homologue was mainly expressed in haemocytes, in which expression dramatically increased after 3 days feeding with peptidoglycan at 0.2 mg kg(-1) shrimp body weight per day.

  7. The mitochondrial genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): considerable economization in the length and structural features of encoded genes.

    Science.gov (United States)

    He, Y; Jones, J; Armstrong, M; Lamberti, F; Moens, M

    2005-12-01

    The complete sequence of the mitochondrial genome of the plant parasitic nematode Xiphinema americanum sensu stricto has been determined. At 12626bp it is the smallest metazoan mitochondrial genome reported to date. Genes are transcribed from both strands. Genes coding for 12 proteins, 2 rRNAs and 17 putative tRNAs (with the tRNA-C, I, N, S1, S2 missing) are predicted from the sequence. The arrangement of genes within the X. americanum mitochondrial genome is unique and includes gene overlaps. Comparisons with the mtDNA of other nematodes show that the small size of the X. americanum mtDNA is due to a combination of factors. The two mitochondrial rRNA genes are considerably smaller than those of other nematodes, with most of the protein encoding and tRNA genes also slightly smaller. In addition, five tRNAs genes are absent, lengthy noncoding regions are not present in the mtDNA, and several gene overlaps are present.

  8. Purification of a cysteine protease inhibitor from larval hemolymph of the Tobacco Hornworm (Manduca sexta) and functional expression of the recombinant protein.

    Science.gov (United States)

    A cysteine protease inhibitor (CPI) with an apparent molecular mass of 11.5 kDa was purified from larval hemolymph of the tobacco hornworm (Manduca sexta) by gel filtration of Sephadex G-50 followed by hydrophobic and ion-exchange column chromatographies. The purified cysteine proteinase inhibitor, ...

  9. Circulating ADAM17 Level Reflects Disease Activity in Proteinase-3 ANCA-Associated Vasculitis

    Science.gov (United States)

    Bertram, Anna; Lovric, Svjetlana; Engel, Alissa; Beese, Michaela; Wyss, Kristin; Hertel, Barbara; Park, Joon-Keun; Becker, Jan U.; Kegel, Johanna; Haller, Hermann; Haubitz, Marion

    2015-01-01

    ANCA-associated vasculitides are characterized by inflammatory destruction of small vessels accompanied by enhanced cleavage of membrane-bound proteins. One of the main proteases responsible for ectodomain shedding is disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). Given its potential role in aggravating vascular dysfunction, we examined the role of ADAM17 in active proteinase-3 (PR3)-positive ANCA-associated vasculitis (AAV). ADAM17 concentration was significantly increased in plasma samples from patients with active PR3-AAV compared with samples from patients in remission or from other controls with renal nonvascular diseases. Comparably, plasma levels of the ADAM17 substrate syndecan-1 were significantly enhanced in active AAV. We also observed that plasma-derived ADAM17 retained its specific proteolytic activity and was partly located on extracellular microparticles. Transcript levels of ADAM17 were increased in blood samples of patients with active AAV, but those of ADAM10 or tissue inhibitor of metalloproteinases 3, which inhibits ADAMs, were not. We also performed a microRNA (miR) screen and identified miR-634 as significantly upregulated in blood samples from patients with active AAV. In vitro, miR-634 mimics induced a proinflammatory phenotype in monocyte-derived macrophages, with enhanced expression and release of ADAM17 and IL-6. These data suggest that ADAM17 has a prominent role in AAV and might account for the vascular complications associated with this disease. PMID:25788529

  10. Foot-and-mouth disease virus leader proteinase: structural insights into the mechanism of intermolecular cleavage.

    Science.gov (United States)

    Steinberger, Jutta; Grishkovskaya, Irina; Cencic, Regina; Juliano, Luiz; Juliano, Maria A; Skern, Tim

    2014-11-01

    Translation of foot-and-mouth disease virus RNA initiates at one of two start codons leading to the synthesis of two forms of leader proteinase L(pro) (Lab(pro) and Lb(pro)). These forms free themselves from the viral polyprotein by intra- and intermolecular self-processing and subsequently cleave the cellular eukaryotic initiation factor (eIF) 4 G. During infection, Lb(pro) removes six residues from its own C-terminus, generating sLb(pro). We present the structure of sLb(pro) bound to the inhibitor E64-R-P-NH2, illustrating how sLb(pro) can cleave between Lys/Gly and Gly/Arg pairs. In intermolecular cleavage on polyprotein substrates, Lb(pro) was unaffected by P1 or P1' substitutions and processed a substrate containing nine eIF4GI cleavage site residues whereas sLb(pro) failed to cleave the eIF4GI containing substrate and cleaved appreciably more slowly on mutated substrates. Introduction of 70 eIF4GI residues bearing the Lb(pro) binding site restored cleavage. These data imply that Lb(pro) and sLb(pro) may have different functions in infected cells.

  11. Tissue inhibitor of metalloproteinase 1 (TIMP-1) as a biomarker in gastric cancer

    DEFF Research Database (Denmark)

    Grunnet, Mie; Mau-Sørensen, Morten; Brünner, Nils

    2013-01-01

    The value of Tissue Inhibitor of MetalloProteinase-1 (TIMP-1) as a biomarker in patients with gastric cancer (GC) is widely debated. The aim of this review is to evaluate available literature describing the association between levels of TIMP-1 in tumor tissue and/or blood and the prognosis...

  12. Discovery of Peptide-based Inhibitors against Dendrotoxin B from Black Mamba through Phage Display Screening

    DEFF Research Database (Denmark)

    O. Cob, Saioa; Munk, Andreas; Laustsen, Andreas Hougaard

    The black mamba (Dendroaspis polylepis) is Africa’s most feared snake due to its potent, rapidacting venom and its speed of attack. The most abundant toxins in D. polylepis venom are the Kunitz-type proteinase inhibitors, dendrotoxins, which are unique for mamba. Dendrotoxinsare poorly neutralized...

  13. Understanding enzymic binding affinity : thermodynamics of binding of benzamidinium chloride inhibitors to trypsin

    NARCIS (Netherlands)

    Talhout, Reinskje

    2003-01-01

    Understanding enzymic binding affinity is of fundamental scientific importance as well as a prerequisite for structure-based drug design. In this study, the interactions of the serine proteinase trypsin with several artificial, benzamidinium-based inhibitors have been studied in aqueous solutions. I

  14. Structures of Enterovirus 71 3C proteinase (strain E2004104-TW-CDC) and its complex with rupintrivir.

    Science.gov (United States)

    Wu, Caiming; Cai, Qixu; Chen, Chen; Li, Ning; Peng, Xuanjia; Cai, Yaxian; Yin, Ke; Chen, Xinsheng; Wang, Xiaolong; Zhang, Rongfu; Liu, Lijie; Chen, Shuhui; Li, Jian; Lin, Tianwei

    2013-05-01

    The crystal structure of 3C proteinase (3C(pro)) from Enterovirus 71 (EV71) was determined in space group C2221 to 2.2 Å resolution. The fold was similar to that of 3C(pro) from other picornaviruses, but the difference in the β-ribbon reported in a previous structure was not observed. This β-ribbon was folded over the substrate-binding cleft and constituted part of the essential binding sites for interaction with the substrate. The structure of its complex with rupintrivir (AG7088), a peptidomimetic inhibitor, was also characterized in space group P212121 to 1.96 Å resolution. The inhibitor was accommodated without any spatial hindrance despite the more constricted binding site; this was confirmed by functional assays, in which the inhibitor showed comparable potency towards EV71 3C(pro) and human rhinovirus 3C(pro), which is the target that rupintrivir was designed against.

  15. Proteinase activities in total extracts and in medium conditioned by Acanthamoeba polyphaga trophozoites.

    Science.gov (United States)

    Alfieri, S C; Correia, C E; Motegi, S A; Pral, E M

    2000-04-01

    Acanthamoeba species can cause granulomatous encephalitis and keratitis in man. The mechanisms that underlie tissue damage and invasion by the amoebae are poorly understood, but involvement of as yet uncharacterized proteinases has been suggested. Here, we employed gelatin-containing gels and azocasein assays to examine proteinase activities in cell lysates and in medium conditioned by Acanthamoeba polyphaga trophozoites. Azocasein hydrolysis by cell lysates was optimally detected at pH 4.0-5.0 and was predominantly associated with the activity of cysteine proteinases. Compatible with enzyme activation during secretion, culture supernatants additionally contained a prominent azocasein hydrolyzing activity attributable to serine proteinases; these enzymes were better detected at pH 6.0 and above, and resolved at 47, 60, 75, 100, and >110 kDa in overlay gelatin gels. Although a similar banding profile was observed in gels of trophozoite lysates, intracellular serine proteinases were shown to be activated during electrophoresis and to split the substrate during migration in sodium dodecyl sulfate gels. Blockage of serine proteinases with phenylmethylsulfonylfluoride prior to electrophoresis permitted the detection of 43-, 59-, 70-, and 100-130-kDa acidic cysteine proteinases in cell lysates, and of 3 (43, 70, and 130 kDa) apparently equivalent enzymes in culture supernatants. Under the conditions employed, no band associated with a metalloproteinase activity could be depicted in substrate gels, although the discrete inhibition of supernatants' azocaseinolytic activity by 1,10-phenanthroline suggested secretion of some metalloproteinase.

  16. Are Proteinase 3 and Cathepsin C Enzymes Related to Pathogenesis of Periodontitis?

    Directory of Open Access Journals (Sweden)

    Oya Türkoğlu

    2014-01-01

    Full Text Available Aim. Cathepsin C is the activator of the polymorphonuclear leukocyte-derived proteinase 3, which contributes to inflammatory processes. The aim of the present study was to investigate gingival crevicular fluid (GCF proteinase 3 and cathepsin C levels in periodontal diseases. Design. Eighteen patients with chronic periodontitis (CP, 20 patients with generalized aggressive periodontitis (G-AgP, 20 patients with gingivitis, and 18 healthy subjects were included in the study. Periodontal parameters including probing depth, clinical attachment level, papilla bleeding index, and plaque index were assessed in all study subjects. GCF proteinase 3 and cathepsin C levels were analyzed by ELISA. Results. GCF proteinase 3 total amount was significantly higher in diseased groups compared to control group, after adjusting age P0.05. Periodontal parameters of sampling sites were positively correlated with GCF proteinase 3 total amounts P0.05. Conclusions. Elevated levels of GCF proteinase 3 in CP, G-AgP, and gingivitis might suggest that proteinase 3 plays a role during inflammatory periodontal events in host response. However, cathepsin C in GCF does not seem to have an effect on the pathogenesis of periodontal diseases.

  17. An efficient protocol for isolation of inhibitor-free nucleic acids even from recalcitrant plants

    OpenAIRE

    2016-01-01

    For fast and easy isolation of inhibitor-free genomic DNA even from the toughest plant leaf samples, including those high in polyphenols and polysaccharides, a protocol has been developed. To prevent the solubility of polysaccharides in the DNA extract, high salt concentration (1.4 M) was used in the extraction buffer. Polyvinylpyrrolidone (PVP) was used for the removal of polyphenols as polymerase chain reaction (PCR) inhibitors. Proteins like various enzymes were degraded by proteinase K an...

  18. Aplicação de modelos múltiplos na determinação de níveis de prejuízo para a interação Solanum americanum e tomate de indústria Evaluation of economic levels for the Solanum americanum x tomato crop interaction using multiple models

    Directory of Open Access Journals (Sweden)

    J.M Portugal

    2011-12-01

    Full Text Available Este estudo apresenta um conceito unificador, que conjuga as teorias de densidade crítica e período crítico. Hipotetiza-se que não existe um valor fixo para a densidade crítica e para o período crítico, mas que os seus valores são interdependentes. A demonstração dessa hipótese é fundamentada em estudos de interferência entre Solanum americanum e o tomateiro. Aos resultados da produção de cinco ensaios, aplicaram-se modelos múltiplos de regressão, tendo como variáveis independentes a densidade e o número de dias de convivência entre a infestante e a cultura. A aplicação do Nível de Tolerância (NT à representação gráfica num plano das equações estimadas a partir de modelos múltiplos permite responder à questão: Quanto tempo pode permanecer uma determinada infestação de Solanum americanum sem causar prejuízo na cultura do tomateiro? É ainda possível verificar que a variação dos custos do controle e dos preços da cultura faz variar o NT e, concomitantemente, o tempo admissível, sem causar prejuízo, do Solanum americanum na cultura do tomateiro.This study introduces a unifying concept combining the theory of critical density and critical period of weed infestation. It is hypothesized that these two periods are interdependent, rather than fixed values. The hypothesis is based on studies of interference between Solanum americanum and the tomato crop. Multiple regression models were applied to the results of five field trials. The independent variables were density and number of days of weed and culture cohabitation. Applying the Tolerance Level (TL to the graphic representation (2D of the equations estimated from multiple non-linear models allowed answering the following question: how long does a particular infestation of Solanum americanum remain without causing injury to the tomato crop? It was also possible to conclude that the variation of control costs and crop prices changes the TL values, concomitantly

  19. [Phospholipase, proteinase and hemolytic activities of Candida albicans isolates obtained from clinical specimens].

    Science.gov (United States)

    Yenişehirli, Gülgün; Bulut, Yunus; Tunçoglu, Ebru

    2010-01-01

    This study was aimed to determine the phospholipase, proteinase and hemolytic activities of Candida albicans strains isolated from clinical specimens. A total of 147 C. albicans strains isolated from blood (n = 29), respiratory specimens (n = 44), urine (n = 52), pus (n = 17) and stool (n = 5) were included in the study. Proteinase and phospholipase activities were determined in 81% and 76% of C. albicans isolates, respectively. All C. albicans isolates revealed beta-hemolytic activity on Sabouraud dextrose agar supplemented with 7% fresh sheep blood and 3% glucose. Phospholipase and proteinase positivity were highest among the respiratory isolates. Proteinase activity of respiratory (93%) and blood (83%) isolates were statistically significantly higher than that of urine (77%; p = 0.032), pus (65%; p = 0.007) and stool isolates (60%; p = 0.026). While phospholipase activity showed statistically significant difference between respiratory (84%) and pus (53%) isolates (p = 0.014), no statistically significant difference was determined for blood (79%), urine (75%) and stool (80%) isolates (p > 0.05). Two blood isolates with 4+ proteinase activity and 3 urine isolates with 3+ proteinase activity were phospholipase negative. One urine isolate with 4+ phospholipase activity and 4 with 3+ phospholipase activity were proteinase negative. Phospholipase and proteinase negative 1 isolate from stool and 1 isolate from pus were found to have 4+ hemolytic activity. In conclusion, besides proteinase and phospholipase enzyme activities, hemolytic activity may play an important role for the C.albicans infections. The pathogenetic role of these virulence factors should be evaluated by further clinical studies.

  20. Neuronal projections from the Haller's organ and palp sensilla to the synganglion of Amblyomma americanum§.

    Science.gov (United States)

    Borges, Lígia Miranda Ferreira; Li, Andrew Yongsheng; Olafson, Pia Untalan; Renthal, Robert; Bauchan, Gary Roy; Lohmeyer, Kimberly Hutchison; León, Adalberto Angel Pérez de

    2016-06-14

    The present study was conducted to elucidate the neuronal pathways between peripheral olfactory and taste sensilla and the synganglion in an Ixodidae tick species. The tarsus of the front legs (olfactory nerves) and the fourth palpal segment (gustatory nerves) of unfed Amblyomma americanum males and females were excised. A neuronal tracer, dextran tetramethylrhodamine, was used for filling of the sensory neurons. The synganglion preparations were examined using a confocal microscope. Neuronal arborizations from the Haller's organ were confined to the olfactory lobes and the first pedal ganglion. The estimated number of olfactory glomeruli ranged from 16 to 22 per olfactory lobe in the females. The number of glomeruli was not counted in males because they were densely packed. Sensory neurons associated with sensilla at the distal end of the palpal organ projected into the palpal ganglion in the synganglion through the palpal nerve. Gustatory sensory neurons associated with palpal sensilla projected into a commissure with several bulges, which are confined in the palpal ganglion. The findings of distinct projection patterns of sensory neurons associated with the Haller's organ and palpal organ in the lone star tick from this study advanced our knowledge on mechanisms of sensory information processing in ticks.

  1. Isolation and characterization of an ovoinhibitor, a multidomain Kazal-like inhibitor from Turkey (Meleagris gallopavo) seminal plasma.

    Science.gov (United States)

    Słowińska, Mariola; Liszewska, Ewa; Nynca, Joanna; Bukowska, Joanna; Hejmej, Anna; Bilińska, Barbara; Szubstarski, Jarosław; Kozłowski, Krzysztof; Jankowski, Jan; Ciereszko, Andrzej

    2014-11-01

    Turkey seminal plasma contains three serine proteinase inhibitors. Two of them, with low molecular masses (6 kDa), were identified as single-domain Kazal-type inhibitors responsible for regulating acrosin activity. Our experimental objective was to isolate and characterize the inhibitor with the high molecular weight from turkey seminal plasma. The inhibitor was purified using hydrophobic interaction and affinity chromatography. Pure preparations of the inhibitor were used for identification by mass spectrometry, for determination of physicochemical properties (molecular weight, pI, and content and composition of the carbohydrate component), for kinetic studies, and for antibacterial tests. Gene expression and immunohistochemical detection of the inhibitor were analyzed in the testis, epididymis, and ductus deferens. The inhibitor with a high molecular weight from turkey seminal plasma was identified as an ovoinhibitor, which was found in avian semen for the first time. The turkey seminal plasma ovoinhibitor was a six-tandem homologous Kazal-type domain serine proteinase inhibitor that targeted multiple proteases, including subtilisin, trypsin, and elastase, but not acrosin. Our results suggested that hepatocyte growth factor activator was a potential target proteinase for the ovoinhibitor in turkey seminal plasma. The presence of the ovoinhibitor within the turkey reproductive tract suggested that its role was to maintain a microenvironment for sperm in the epididymis and ductus deferens. The turkey seminal plasma ovoinhibitor appeared to play a significant role in an antibacterial semen defense against Bacillus subtilis and Staphylococcus aureus.

  2. Crystallization and preliminary X-ray investigation of proteinase A, a non-pepsin-type acid proteinase from Aspergillus niger var. macrosporus.

    Science.gov (United States)

    Tanokura, M; Matsuzaki, H; Iwata, S; Nakagawa, A; Hamaya, T; Takizawa, T; Takahashi, K

    1992-01-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase distinctly different in various properties from the family of pepsin-type aspartic proteinases, and so far it remains unknown which residues participate in the catalysis of the enzyme and how the mechanism operates. The acid proteinase A was crystallized from an ammonium sulfate solution by the hanging-drop vapor diffusion method. The space group of the crystals was P2(1)2(1)2(1) with unit cell dimensions of a = 54.7 A, b = 70.4 A and c = 38.0 A. On the assumption that there is one enzyme molecule in the asymmetric unit, the calculated ratio of volume to unit protein mass (Vm) was 1.64 A3 per dalton. Diffraction data were collected up to a resolution higher than 1.5 A, using the Weissenberg camera for macromolecular crystallography with synchrotron radiation. The crystal of proteinase A is, therefore, suitable for the structural analysis with a high resolution.

  3. Implantation serine proteinase 2 is a monomeric enzyme with mixed serine proteolytic activity and can silence signalling via proteinase activated receptors.

    Science.gov (United States)

    Sharma, Navneet; Fahr, Jochen; Renaux, Bernard; Saifeddine, Mahmoud; Kumar, Rajeev; Nishikawa, Sandra; Mihara, Koichiro; Ramachandran, Rithwik; Hollenberg, Morley D; Rancourt, Derrick E

    2013-12-01

    Implantation serine proteinase 2 (ISP2), a S1 family serine proteinase, is known for its role in the critical processes of embryo hatching and implantation in the mouse uterus. Native implantation serine proteinases (ISPs) are co-expressed and co-exist as heterodimers in uterine and blastocyst tissues. The ISP1-ISP2 enzyme complex shows trypsin-like substrate specificity. In contrast, we found that ISP2, isolated as a 34 kDa monomer from a Pichia pastoris expression system, exhibited a mixed serine proteolytic substrate specificity, as determined by a phage display peptide cleavage approach and verified by the in vitro cleavage of synthetic peptides. Based upon the peptide sequence substrate selectivity, a database search identified many potential ISP2 targets of physiological relevance, including the proteinase activated receptor 2 (PAR2). The in vitro cleavage studies with PAR2-derived peptides confirmed the mixed substrate specificity of ISP2. Treatment of cell lines expressing proteinase-activated receptors (PARs) 1, 2, and 4 with ISP2 prevented receptor activation by either thrombin (PARs 1 and 4) or trypsin (PAR2). The disarming and silencing of PARs by ISP2 may play a role in successful embryo implantation.

  4. Inheritance and Expression of Potato Proteinase Inhibitor Gene Ⅱ (pinⅡ) in Transgenic Rice

    Institute of Scientific and Technical Information of China (English)

    CHENG Zhong-yi; XUE Qing-zhong

    2003-01-01

    The inheritance and expression of bar gene and pinⅡ gene were studied in three transgenic ricelines and their F2 hybrid populations, which were created through hybridization with a PGMS line, ZAU11S.By Basta painting, PCR analysis and determining of the inhibitory trypsin activity, the results show that bargene and pinⅡ gene in rice F2 population fit the simple Mendel's low of inheritance and close linkage, but afew plants in F2 have not sufficiently expressed. The wound inducible pin Ⅱ gene has an expression regulatedspatially and temporally, and the signal transduction pathway is not only upward, but also downward. The in-ducible expression of pinⅡ in different rice transgenic lines is not completely coincident.

  5. Low efficiency processing of an insecticidal Nicotiana proteinase inhibitor precursor in Beta vulgaris hairy roots

    Science.gov (United States)

    Assimilation of dietary proteins is critical to insect survival; therefore, inhibition of digestive proteolytic enzymes presents itself as an effective strategy for control of insect pests. To specifically target proteases of several insect pests of sugar beet, Beta vulgaris, we used PCR and gene s...

  6. Beta vulgaris L. serine proteinase inhibitor gene expression correlates to insect pest resistance in sugar beet

    Science.gov (United States)

    Analyzing genes that can be used for improving sugar beet resistance to the sugar beet root maggot (SBRM, Tetanops myopaeformis Roder), one of the most destructive insect pests of sugar beet in North America, was a major goal in our investigation. We report on the expression patterns of a sugar beet...

  7. Subcellular Expression of Mammary Serine Proteinase Inhibitor (MASPIN in Locally Advance Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Samina Zaheer

    2014-08-01

    Conclusions: MASPIN expression was observed in the majority of OSCC. However, it was localized to the cytoplasm of tumor cells in all cases. Loss of MASPIN expression was observed more frequently in poorly differentiated cancers. [J Interdiscipl Histopathol 2014; 2(4.000: 213-216

  8. Hypersensitivity Vasculitis with Leukocytoclastic Vasculitis Associated with Alpha-1-Proteinase Inhibitor

    Directory of Open Access Journals (Sweden)

    Nicola W. Mwirigi

    2009-01-01

    Full Text Available Prolastin is a commercially available form of alpha-1-antitrypsin (AAT that is derived from pooled human plasma and used for treatment of severe alpha-1-antitrypsin deficiency (AATD. We describe a patient with AATD who developed presumed hypersensitivity vasculitis (HV following a Prolastin infusion. Hypersensitivity vasculitis (HV, or cutaneous vasculitis, is characterized by inflammation of the small vessels of the skin with resultant ischemia to the distally supplied areas. To our knowledge, this is the first reported case of presumed hypersensitivity vasculitis following Prolastin infusion.

  9. [Bifunctional inhibitor of alpha-amylase/trypsin from wheat grain].

    Science.gov (United States)

    Islamov, R A; Furusov, O V

    2007-01-01

    A trypsin inhibitor, isolated from whole-wheat grain (Triticum aestivum L.) by the method of bio-specific chromatography on trypsin-Sepharose, was potent in inhibiting human salivary alpha-amylase. The bi-functional alpha-amylase/trypsin inhibitor was characterized by a narrow specificity for other alpha-amylases and proteinases. The high thermostability of the inhibitor was lost in the presence of SH group-reducing agents. The inhibitor-trypsin complex retained its activity against alpha-amylase. The inhibitor-alpha-amylase complex was active against trypsin. Studies of the enzyme kinetics demonstrated that the inhibition of alpha-amylase and trypsin was noncompetitive. Our results suggest the existence of two independent active sites responsible for the interaction with the enzymes.

  10. Studies on prekallikrein of bovine plasma. II. Activation of prekallikrein with proteinases and properties of kallikrein activated by bovine Hageman factor.

    Science.gov (United States)

    Takahashi, H; Nagasawa, S; Suzuki, T

    1980-01-01

    Activation of bovine plasma prekallikrein was investigated with several proteinases. Highly purified bovine plasma prekallikrein was rapidly activated to kallikrein [EC 3.4.21.8] by bovine activated Hageman factor, trypsin [EC 3.4.21.4] and Pronase P (proteinases from Streptomyces griseus) and more gradually by papain [EC 3.4.22.2] and ficin [EC 3.4.22.3]. Activation of prekallikrein was also observed with bovine plasmin [EC 3.4.21.7], but not with bovine clotting factors Xa (Stuart factor) [EC 3.4.21.6] and IXa (Christmas factor) or thrombin [EC 3.4.21.5]. Urokinase [EC 3.4.99.26], Reptilase, collagenase [EC 3.4.24.3], elastase [EC 3.4.21.11], alpha-chymotrypsin [EC 3.4.21.1], Nagarse [EC 3.4.21.14], and stem bromelain [EC 3.4.22 4] did not convert prekallikrein to kallikrein. Plasma kallikrein activated to Hageman factor released kinin rapidly from bovine high molecular weight (HMW) kininogen. However, from bovine low molecular weight (LMW) kininogen, liberation of kinin was extremely slow. The kallikrein activity was inhibited by soybean trypsin inhibitor (SBTI), Trasylol, diisopropylfluorophosphate (DFP), and N-alpha-tosyl-L-lysine chloromethylketone (TLCK), but not by egg-white trypsin inhibitor (EWTI), lima bean trypsin inhibitor (LBTI), heparin or hexadimethrine bromide (Polybrene). The kallikrein formed an enzyme-inhibitor complex with SBTI and Trasylol, but not with LBTI. Prekallikrein did not react with SBTI. Prekallikrein consists of a single polypeptide chain of molecular weight about 90,000, as estimated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Activation of prekallikrein by Hageman factor was found to involve cleavage of the single peptide bond on the disulfide-bridged polypeptide chain, and no change of molecular weight was observed during the activation. The peptide bond cleaved in prekallikrein by the activation was an Arg-X peptide bond on a disulfide-bridged polypeptide chain.

  11. [Proteinases for the gastric mucosa of the European sheatfish, Silurus glanis L].

    Science.gov (United States)

    Ulitina, N N; Proskuriakov, M T

    2004-01-01

    Three proteinases named as P1, P2 and P3, were isolated from European sheatfish (Silurus glanis L.) gastric mucosa by salting-out of (NH4)2SO4, gel-chromatography on Sephadex G-75 and ion-exchange chromatography on DEAE-cellulose. Isoelectric points of isolated proteinases were determined by isoelectric focusing and were equal to 1.9, 3.2 and 4.75 respectively for P1, P2 and P3. The molecular weight of P1 was 39,800 Da and proteinases P2 and P3 had a molecular weight of 30,200 Da. The optimum pH for three peptidases isolated from sheatfish gastric mucosa and maximum stability of these enzymes were found at acidic pH. It allowed identifying these proteinases as pepsin-type enzymes of fish.

  12. A novel Entamoeba histolytica cysteine proteinase, EhCP4, is key for invasive amebiasis and a therapeutic target.

    Science.gov (United States)

    He, Chen; Nora, George P; Schneider, Eric L; Kerr, Iain D; Hansell, Elizabeth; Hirata, Ken; Gonzalez, David; Sajid, Mohammed; Boyd, Sarah E; Hruz, Petr; Cobo, Eduardo R; Le, Christine; Liu, Wei-Ting; Eckmann, Lars; Dorrestein, Pieter C; Houpt, Eric R; Brinen, Linda S; Craik, Charles S; Roush, William R; McKerrow, James; Reed, Sharon L

    2010-06-11

    Entamoeba histolytica cysteine proteinases (EhCPs) play a key role in disrupting the colonic epithelial barrier and the innate host immune response during invasion of E. histolytica, the protozoan cause of human amebiasis. EhCPs are encoded by 50 genes, of which ehcp4 (ehcp-a4) is the most up-regulated during invasion and colonization in a mouse cecal model of amebiasis. Up-regulation of ehcp4 in vivo correlated with our finding that co-culture of E. histolytica trophozoites with mucin-producing T84 cells increased ehcp4 expression up to 6-fold. We have expressed recombinant EhCP4, which was autocatalytically activated at acidic pH but had highest proteolytic activity at neutral pH. In contrast to the other amebic cysteine proteinases characterized so far, which have a preference for arginine in the P2 position, EhCP4 displayed a unique preference for valine and isoleucine at P2. This preference was confirmed by homology modeling, which revealed a shallow, hydrophobic S2 pocket. Endogenous EhCP4 localized to cytoplasmic vesicles, the nuclear region, and perinuclear endoplasmic reticulum (ER). Following co-culture with colonic cells, EhCP4 appeared in acidic vesicles and was released extracellularly. A specific vinyl sulfone inhibitor, WRR605, synthesized based on the substrate specificity of EhCP4, inhibited the recombinant enzyme in vitro and significantly reduced parasite burden and inflammation in the mouse cecal model. The unique expression pattern, localization, and biochemical properties of EhCP4 could be exploited as a potential target for drug design.

  13. Enhanced Response of a Proteinase K-Based Conductometric Biosensor Using Nanoparticles

    OpenAIRE

    2014-01-01

    Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic). The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE). The biosensor was characterized with bovine serum albumin (BSA) as a standard protein. Higher sensiti...

  14. Equistatin, a protease inhibitor from the sea anemone Actinia equina, is composed of three structural and functional domains

    NARCIS (Netherlands)

    Strukelj, B.; Lenarcic, B.; Gruden, K.; Pungercar, J.; Rogelj, B.; Turk, V.; Bosch, D.; Jongsma, M.A.

    2000-01-01

    A cDNA encoding a precursor of equistatin, a potent cysteine and aspartic proteinase inhibitor, was isolated from the sea anemone Actinia equina. The deduced amino acid sequence of a 199-amino-acid residue mature protein with 20 cysteine residues, forming three structurally similar thyroglobulin typ

  15. A dynamic population model to investigate effects of climate and climate-independent factors on the lifecycle of the tick Amblyomma americanum (Acari: Ixodidae)

    Science.gov (United States)

    Ludwig, Antoinette; Ginsberg, Howard; Hickling, Graham J.; Ogden, Nicholas H.

    2016-01-01

    The lone star tick, Amblyomma americanum, is a disease vector of significance for human and animal health throughout much of the eastern United States. To model the potential effects of climate change on this tick, a better understanding is needed of the relative roles of temperature-dependent and temperature-independent (day-length-dependent behavioral or morphogenetic diapause) processes acting on the tick lifecycle. In this study, we explored the roles of these processes by simulating seasonal activity patterns using models with site-specific temperature and day-length-dependent processes. We first modeled the transitions from engorged larvae to feeding nymphs, engorged nymphs to feeding adults, and engorged adult females to feeding larvae. The simulated seasonal patterns were compared against field observations at three locations in United States. Simulations suggested that 1) during the larva-to-nymph transition, some larvae undergo no diapause while others undergo morphogenetic diapause of engorged larvae; 2) molted adults undergo behavioral diapause during the transition from nymph-to-adult; and 3) there is no diapause during the adult-to-larva transition. A model constructed to simulate the full lifecycle of A. americanum successfully predicted observed tick activity at the three U.S. study locations. Some differences between observed and simulated seasonality patterns were observed, however, identifying the need for research to refine some model parameters. In simulations run using temperature data for Montreal, deterministic die-out of A. americanum populations did not occur, suggesting the possibility that current climate in parts of southern Canada is suitable for survival and reproduction of this tick.

  16. A Dynamic Population Model to Investigate Effects of Climate and Climate-Independent Factors on the Lifecycle of Amblyomma americanum (Acari: Ixodidae).

    Science.gov (United States)

    Ludwig, Antoinette; Ginsberg, Howard S; Hickling, Graham J; Ogden, Nicholas H

    2016-01-01

    The lone star tick, Amblyomma americanum, is a disease vector of significance for human and animal health throughout much of the eastern United States. To model the potential effects of climate change on this tick, a better understanding is needed of the relative roles of temperature-dependent and temperature-independent (day-length-dependent behavioral or morphogenetic diapause) processes acting on the tick lifecycle. In this study, we explored the roles of these processes by simulating seasonal activity patterns using models with site-specific temperature and day-length-dependent processes. We first modeled the transitions from engorged larvae to feeding nymphs, engorged nymphs to feeding adults, and engorged adult females to feeding larvae. The simulated seasonal patterns were compared against field observations at three locations in United States. Simulations suggested that 1) during the larva-to-nymph transition, some larvae undergo no diapause while others undergo morphogenetic diapause of engorged larvae; 2) molted adults undergo behavioral diapause during the transition from nymph-to-adult; and 3) there is no diapause during the adult-to-larva transition. A model constructed to simulate the full lifecycle of A. americanum successfully predicted observed tick activity at the three U.S. study locations. Some differences between observed and simulated seasonality patterns were observed, however, identifying the need for research to refine some model parameters. In simulations run using temperature data for Montreal, deterministic die-out of A. americanum populations did not occur, suggesting the possibility that current climate in parts of southern Canada is suitable for survival and reproduction of this tick.

  17. Activity of the plant-based repellent, TT-4302 against the ticks Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis and Rhipicephalus sanguineus (Acari: Ixodidae).

    Science.gov (United States)

    Bissinger, B W; Schmidt, J P; Owens, J J; Mitchell, S M; Kennedy, M K

    2014-01-01

    The plant-based repellent TT-4302 (5 % geraniol) was compared to deet (15 %) in laboratory two-choice bioassays against the ticks Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Rhipicephalus sanguineus. At 2.5 and 3.5 h after treatment of filter paper with TT-4302, 100 % repellency was observed for all species at both time points with the exception of I. scapularis at the 3.5 h evaluation where repellency was 95.8 %. Deet was 100 % repellent at both time points for D. variabilis and R. sanguineus and was 100 % repellent at the 2.5 h evaluation for I. scapularis. Repellency of deet to A. americanum was 88.9 and 95.8 % at 2.5 and 3.5 h, respectively which was not significantly different than that of TT-4302. No significant difference against I. scapularis was observed between TT-4302 and deet at 3.5 h after treatment where deet was 87.5 % repellent. A variant of TT-4302, TT-4228 was tested in the laboratory against A. americanum and was compared to deet (15 %) in field trials against wild populations of ticks in North Carolina, USA. In the laboratory, TT-4228 was 94.4 and 87.5 % repellent at 2.5 and 3.5 h after treatment, respectively. In the field where the predominant tick species was A. americanum, significantly fewer ticks were collected from socks worn by human volunteers that were treated with TT-4228 compared to those treated with deet 2.5 or 3.5 h after treatment. Significantly fewer ticks were recovered from socks treated with TT-4228 than their paired untreated controls 2.5 or 3.5 h after treatment and repellencies were 90 and 70 %, respectively. Fewer ticks were collected from deet-treated compared to their paired untreated socks 2.5 h after application; however, no significant difference was found in the number of ticks collected from deet-and untreated socks 3.5 h after treatment.

  18. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    Directory of Open Access Journals (Sweden)

    Michal Potempa

    2009-02-01

    Full Text Available Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  19. Biochemical, immunological and kinetic characterisation of thiol protease inhibitor (cystatin) from liver.

    Science.gov (United States)

    Shah, Aaliya; Priyadarshini, Medha; Khan, Mohd Shahnawaz; Aatif, Mohammad; Amin, Fakhra; Bano, Bilqees

    2013-10-01

    Regulation of the cysteine protease activity is imperative for proper functioning of the various organ systems. Elevated activities of cysteine proteinases due to impaired regulation by the endogenous cysteine proteinase inhibitors (cystatins) have been linked to liver malignancies. To gain an insight into these regulatory processes, it is essential to purify and characterise the inhibitors, cystatins. Present study was undertaken to purify the inhibitor from the liver. The purification was accomplished in four steps: alkaline treatment, ammonium sulphate fractionation, acetone precipitation and gel filtration column (Sephacryl S-100 HR). The eluted protein exhibited inhibitory activity towards papain, and its purity was further reaffirmed using western blotting and immunodiffusion. The purified inhibitor (liver cystatin (LC)) was stable in the pH range of 6-8 and temperature up to 45 °C. In view of the significance of kinetics parameters for drug delivery, the kinetic parameters of liver cystatin were also determined. LC showed the greatest affinity for papain followed by ficin and bromelain. UV and fluorescence spectroscopy results showed that binding of LC with thiol proteases induced changes in the environment of aromatic residues. Recent advances in the field of proteinase inhibitors have drawn attention to the possible use of this collected knowledge to control pathologies.

  20. "Purification and evaluation of somatic, excretory-secretory and Cysteine proteinase antigens of Fasciola Hepatica using IgG-ELISA in diagnosing Fascioliasis "

    Directory of Open Access Journals (Sweden)

    "Rokni MB

    2001-08-01

    Full Text Available Fasciolosis, or liver fluke disease, caused by parasites of the genus Fasciola is emerging as an important disease in man and animals, in the world and Iran, particularly in nortern parts. The economical losses in domestic animals are considerable. In the recent decade there were two major outbreaks of human fasciolosis in the Caspian region, northern part of Iran with 7000-10000 infected cases. Sicne it is impossible to diagnose fasciolosis in acute phase using coprological methods and even in chronic phases its sensitivity is low, evaluating and establishing a reliable and cost-effetive test is indispensable and notewortly.In the present survey, we produced and examined the sensitivity and specificity of liver fluke homogenate (LFH , excretory-secetory (ES and cysteine proteinase (CP antigens of F. hepatica using IgG-ELISA test. A 25-27 kilo Dalton coomassie blue-stained band was observed and using of specific inhibitors indicated that this antigen belongs to the class of cysteine proteinase. The sensitivity of LFH, ES and CP antigen in IgG-ELISa was 100% for each, while their specificity was 97.8%, 98.8% and 98.8% respectively. There was a significant difference in mean OD values between cases of proven fasciolosis and other true negative cases, including healthy control individuals and patients with other parasitic diseases.This present report is the first to demonstrate the purification and evaluation of F. hepatica cysteine proteinase antigen by IgG-ELISA test for the diagnosis of fasciolosis in Iran. In conclusion, the IgG-ELISa using ES and CP show high sensitivity and specificity and would be a valuable tool to diagnose human fasciolosis in Iran, particularly in endemic areas.

  1. Role of saliva proteinase 3 in dental caries

    Science.gov (United States)

    Yang, Teng-Yu; Zhou, Wen-Jie; Du, Yue; Wu, Song-Tao; Yuan, Wen-Wen; Yu, Yu; Su, Lin; Luo, Yang; Zhang, Jie-Hua; Lu, Wan-Lu; Wang, Xiao-Qian; Chen, Jiao; Feng, Yun; Zhou, Xue-Dong; Zhang, Ping

    2015-01-01

    Salivary analysis can be used to assess the severity of caries. Of the known salivary proteins, a paucity of information exists concerning the role of proteinase 3 (PR3), a serine protease of the chymotrypsin family, in dental caries. Whole, unstimulated saliva was collected from children with varying degrees of active caries and tested using a Human Protease Array Kit and an enzyme-linked immunosorbent assay. A significantly decreased concentration of salivary PR3 was noted with increasing severity of dental caries (P<0.01); a positive correlation (r=0.87; P<0.01; Pearson's correlation analysis) was also observed between salivary pH and PR3 concentration. In an antibacterial test, a PR3 concentration of 250 ng·mL−1 or higher significantly inhibited Streptococcus mutans UA159 growth after 12 h of incubation (P<0.05). These studies indicate that PR3 is a salivary factor associated with the severity of dental caries, as suggested by the negative relationship between salivary PR3 concentration and the severity of caries as well as the susceptibility of S. mutans to PR3. PMID:26756046

  2. The kinetics of proteinase K digestion of linear prion polymers.

    Science.gov (United States)

    Masel, J; Jansen, V A

    1999-09-22

    Transmissible spongiform encephalopathies such as scrapie are caused by a protein-only infectious agent, known as a prion. It is not clear how a protein can be capable of replicating itself, and the mechanism remains controversial. One influential model hypothesizes that prions are nucleated, macroscopically linear polymers. We investigated the theoretical kinetics of this model and derived predictions which could be used to test the model. In the model, the polymerization and depolymerization rates are independent polymer size. This leads to an exponential size distribution at equilibrium. In agreement with a prediction stemming from this size distribution, the average size of PrP-res polymers was proportional to the square root of the concentration of PrP-res in a published study of in vitro conversion. Prion digestion by proteinase K (PK) is predicted to be biphasic. The second phase of digestion should be virtually independent of the PK concentration and should depend on the initial size distribution of prion polymers. For initially equilibrated polymers with an exponential size distribution, phase two digestion is exponential at a predicted rate. This rate varies in a defined way with the concentration used for equilibration and with other parameters which affect the average polymer size.

  3. Role of saliva proteinase 3 in dental caries

    Institute of Scientific and Technical Information of China (English)

    Teng-Yu Yang; Wan-Lu Lu; Xiao-Qian Wang; Jiao Chen; Yun Feng; Xue-Dong Zhou; Ping Zhang; Wen-Jie Zhou; Yue Du; Song-Tao Wu; Wen-Wen Yuan; Yu Yu; Lin Su; Yang Luo; Jie-Hua Zhang

    2015-01-01

    Salivary analysis can be used to assess the severity of caries. Of the known salivary proteins, a paucity of information exists concerning the role of proteinase 3 (PR3), a serine protease of the chymotrypsin family, in dental caries.Whole, unstimulated saliva was collected from children with varying degrees of active caries and tested using a Human Protease Array Kit and an enzyme-linked immunosorbent assay. Asignificantly decreased concentration of salivaryPR3was notedwith increasing severity of dental caries (P,0.01); a positive correlation (r50.87; P,0.01; Pearson’s correlation analysis) was also observed between salivary pHand PR3 concentration. In an antibacterial test, a PR3 concentration of 250 ng?mL21 or higher significantly inhibited Streptococcus mutans UA159 growth after 12 h of incubation (P,0.05). These studies indicate that PR3 is a salivary factor associated with the severity of dental caries, as suggested by the negative relationship between salivary PR3 concentration and the severity of caries as well as the susceptibility of S. mutans to PR3.

  4. Screening and purification of a novel trypsin inhibitor from Prosopis juliflora seeds with activity toward pest digestive enzymes.

    Science.gov (United States)

    Sivakumar, S; Franco, O L; Tagliari, P D; Bloch, C; Mohan, M; Thayumanavan, B

    2005-08-01

    Several pests are capable of decreasing crop production causing severe economical and social losses. Aiming to find novel molecules that could impede the digestion process of different pests, a screening of alpha-amylase and trypsin-like proteinase inhibitors was carried out in Prosopis juliflora, showing the presence of both in dry seeds. Furthermore, a novel trypsin inhibitor, with molecular mass of 13,292 Da, was purified showing remarkable in vitro activity against T. castaneum and C. maculatus.

  5. Momordica charantia trypsin inhibitor Ⅱ inhibits growth and development of Helicoverpa armigera

    Institute of Scientific and Technical Information of China (English)

    Manasi Alok Telang; Prashant Pyati; Mohini Sainani; Vidya Shrikant Gupta; Ashok Prabhakar Giri

    2009-01-01

    Bitter gourd (Momordica charantia L.) seeds contain several squash-type serine proteinase inhibitors (PIs),which inhibit the digestive proteinases of the polyphagous insect pest Helicoverpa armigera.In the present work isolation of a DNA sequence encoding the mature peptide of a trypsin inhibitor McTI-Ⅱ,its cloning and expression as a recombinant protein using Pichia pastoris have been reported.Recombinant McTI-Ⅱinhibited bovine trypsin at 1:1 molar ratio,as expected,but did not inhibit chymotrypsin or elastase.McTI-Ⅱalso strongly inhibited trypsin-like proteinases (81% inhibition) as well as the total proteolytic activity of digestive proteinases (70% inhibition) from the midgut of H.armigera larvae.The insect larvae fed with McTI-Ⅱ-incorporated artificial diet suffered over 70% reduction in the average larval weight after 12 days of feeding.Moreover,ingestion of McTI-Ⅱresulted in 23% mortality in the larval population.The strong antimetabolic activity of McTI-Ⅱtoward H.armigera indicates its probable use in developing insect tolerance in susceptible plants.

  6. Rapid detection methods and prevalence estimation for Borrelia lonestari glpQ in Amblyomma americanum (Acari: Ixodidae) pools of unequal size.

    Science.gov (United States)

    Bacon, Rendi Murphree; Pilgard, Mark A; Johnson, Barbara J B; Piesman, Joseph; Biggerstaff, Brad J; Quintana, Miguel

    2005-01-01

    DNA was extracted from pools of Amblyomma americanum ticks collected from vegetation at two sites in Fort Leonard Wood, Missouri and tested for the presence of Borrelia spp. Two new methods were developed to detect Borrelia lonestari DNA by targeting the glycerophosphodiester phosphodiesterase (glpQ) gene. The first method detected B. lonestari DNA using a SYBR green I melting curve analysis of the PCR product obtained with glpQ gene primers. The second method, a glpQ TaqMan assay, detected and confirmed the presence of B. lonestari glpQ-specific sequences. Twenty-two of 95 tick pools collected at site A148 contained B. lonestari DNA. None of 19 pools from site A241 contained B. lonestari DNA. No B. burgdorferi sensu lato DNA was detected using a SYBR green I melting curve analysis of the PCR product obtained with outer surface protein A (ospA) primers. The overall B. lonestari infection prevalence (with 95% confidence interval) at site A148 was estimated using two algorithms: minimum infection rate 4.14% (2.45, 5.84) and maximum likelihood with correction 4.82% (3.11, 7.16). The merits of each are discussed. Sequencing of the entire B. lonestari glpQ and partial 16S rRNA genes revealed two genetic variants circulating in this population of A. americanum from Missouri.

  7. Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Ramachandran, Rithwik; Mihara, Koichiro; Mathur, Maneesh; Rochdi, Moulay Driss; Bouvier, Michel; Defea, Kathryn; Hollenberg, Morley D

    2009-10-01

    We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR(2)) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR(2) and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR(2)-Leu(37)Ser(38), rPAR(2)-Ala(37-38), and rPAR(2)-Ala(39-42) were compared with the trypsin-revealed wild-type rPAR(2) TL sequence, S(37)LIGRL(42)-. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR(2) and rPAR(2)-Ala(39-42) triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR(2)-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR(2)-Ala(37-38) nor rPAR(2)-Leu(37)Ser(38) constructs recruited beta-arrestins-1 or -2 in response to trypsin stimulation, whereas both beta-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered beta-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Galpha(i) (pertussis toxin), Galpha(q) [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the

  8. Protease Inhibitors from Plants with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Yoonkyung Park

    2009-06-01

    Full Text Available Antimicrobial proteins (peptides are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides. Plants produce a variety of proteins (peptides that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins. Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents.

  9. Neutrophil elastase and proteinase 3 trafficking routes in myelomonocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaellquist, Linda; Rosen, Hanna [Department of Hematology, BMC C14, Lund University, SE-221 84 Lund (Sweden); Nordenfelt, Pontus [Section for Clinical and Experimental Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund (Sweden); Calafat, Jero; Janssen, Hans [Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 1211066, Amsterdam (Netherlands); Persson, Ann-Maj [Department of Hematology, BMC C14, Lund University, SE-221 84 Lund (Sweden); Hansson, Markus, E-mail: Markus.Hansson@med.lu.se [Department of Hematology, BMC C14, Lund University, SE-221 84 Lund (Sweden); Olsson, Inge [Department of Hematology, BMC C14, Lund University, SE-221 84 Lund (Sweden)

    2010-11-15

    Neutrophil elastase (NE) and proteinase 3 (PR3) differ in intracellular localization, which may reflect different trafficking mechanisms of the precursor forms when synthesized at immature stages of neutrophils. To shed further light on these mechanisms, we compared the trafficking of precursor NE (proNE) and precursor PR3 (proPR3). Like proNE [1], proPR3 interacted with CD63 upon heterologous co-expression in COS cells but endogenous interaction was not detected although cell surface proNE/proPR3/CD63 were co-endocytosed in myelomonocytic cells. Cell surface proNE/proPR3 turned over more rapidly than cell surface CD63 consistent with processing/degradation of the pro-proteases but recycling of CD63. Colocalization of proNE/proPR3/CD63 with clathrin and Rab 7 suggested trafficking through coated vesicles and late endosomes. Partial caveolar trafficking of proNE/CD63 but not proPR3 was suggested by colocalization with caveolin-1. Blocking the C-terminus of proNE/proPR3 by creating a fusion with FK506 binding protein inhibited endosomal re-uptake of proNE but not proPR3 indicating 'pro{sub C}'-peptide-dependent structural/conformational requirements for proNE but not for proPR3 endocytosis. The NE aminoacid residue Y199 of a proposed NE sorting motif that interacts with AP-3 [2] was not required for proNE processing, sorting or endocytosis in rat basophilic leukemia (RBL) cells expressing heterologous Y199-deleted proNE; this suggests operation of another AP-3-link for proNE targeting. Our results show intracellular multi-step trafficking to be different between proNE and proPR3 consistent with their differential subcellular NE/PR3 localization in neutrophils.

  10. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis.

    Science.gov (United States)

    Hernández, Hilda M; Marcet, Ricardo; Sarracent, Jorge

    2014-01-01

    Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis.

  11. Production and partial characterization of extracellular proteinases from Streptomyces malaysiensis, isolated from a Brazilian cerrado soil.

    Science.gov (United States)

    Nascimento, Rodrigo P; d'Avila-Levy, Claudia M; Souza, Rodrigo F; Branquinha, Marta H; Bon, Elba P S; Pereira-Jr, Nei; Coelho, Rosalie R R

    2005-11-01

    Streptomyces malaysiensis AMT-3, isolated from a Brazilian cerrado soil, showed proteolytic activities detected by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum proteinase production was obtained when using 2.5% wheat bran and 0.1% yeast extract in the culture medium, after 5 days incubation at 30 degrees C. The enzymatic complex degraded gelatin optimally at pH 7.0, and under these conditions eight proteolytic bands (four serine-proteinases and four metaloproteinases), ranging from 20 to 212 kDa, were detected on the culture supernatant filtrates. In addition, a 35-kDa proteinase was thermostable at 60 degrees C for 120 min. These results point out to the applicability of gelatin zymograms in the characterization of crude enzymatic complexes. According to our results, this enzymatic complex could be used for biotechnological applications.

  12. Modification of standard proteinase K/phenol method for extraction of DNA from small tumour biopsies.

    Science.gov (United States)

    Pitera, R; Pitera, J E; Mufti, G J; Salisbury, J R

    1993-09-01

    The standard proteinase K/phenol DNA isolation method was found to produce unsatisfactory yields of DNA from small tissue biopsies (less than 50 mg). The influences of the volume of cell lysis buffer and the amount of proteinase K on the final DNA yield and quality were studied, and an improved method was devised and compared with both the standard procedure and a phenol-free protocol. The optimal volume of cell lysis buffer was found to be 200 microliters per mg of tissue while the optimal amount of proteinase K was 60 micrograms per mg of tissue. A mean yield of 12 mu/mg tissue of pure, high molecular weight DNA was achieved from 50 frozen samples prepared by crushing. Yields from 20 microns thick cryostat sections reached 30 micrograms/mg.

  13. Toll-like receptors recognize distinct proteinase-resistant glycoconjugates in Campylobacter jejuni and Escherichia coli.

    Science.gov (United States)

    Phongsisay, Vongsavanh; Hara, Hiromitsu; Fujimoto, Shuji

    2015-03-01

    Campylobacter jejuni causes gastroenteritis and autoimmune neuropathy Guillain-Barré syndrome. The mechanism by which C. jejuni infection results in such the hyperimmunity is not completely understood. Host immunity plays an important role in the disease pathogenesis; however, little is known how immune system recognizes this human pathogen. In this study, we report that Toll-like receptors recognize distinct proteinase K-resistant glycoconjugates in C. jejuni and Escherichia coli. Lipopolysaccharide is solely proteinase-resistant glycoconjugate in E. coli. In contrast, C. jejuni possesses at least five different components that are resistant to proteinase digestion and are capable of inducing NF-κB activation through TLR2 and TLR4. Possession of multiple activators of Toll-like receptors may be the unique strategy of C. jejuni to trigger hyperimmunity.

  14. Human placental extract mediated inhibition of proteinase K: implications of heparin and glycoproteins in wound physiology.

    Science.gov (United States)

    Sharma, Kanika; Mukherjee, Chaitali; Roy, Siddhartha; De, Debashree; Bhattacharyya, Debasish

    2014-09-01

    Efficient debridement of the wound bed following the removal of microbial load prevents its progression into a chronic wound. Bacterial infection and excessive proteolysis characterize impaired healing and therefore, their inhibition might restore the disturbed equilibrium in the healing process. Human placental extract exhibits reversible, non-competitive inhibition towards Proteinase K, a microbial protease, by stabilizing it against auto-digestion. Scattering and fluorescence studies followed by biochemical analysis indicated the involvement of a glycan moiety. Surface plasmon resonance demonstrated specific interaction of heparin with Proteinase K having Kd in μM range. Further, Proteinase K contains sequence motifs similar to other heparin-binding proteins. Molecular docking revealed presence of clefts suitable for binding of heparin-derived oligosaccharides. Comprehensive analysis of this inhibitory property of placental extract partly explains its efficacy in curing wounds with common bacterial infections.

  15. A new method of research on molecular evolution of pro-teinase superfamily

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The molecular evolutionary tree, also known as a phylogenetic tree, of the serine proteinase superfamily was constructed by means of structural alignment. Three-dimensional structures of proteins were aligned by the SSAP program of Orengo and Taylor to obtain evolutionary dis-tances. The resulting evolutionary tree provides a topology graph that can reflect the evolution of structure and function of homology proteinase. Moreover, study on evolution of the serine proteinase superfamily can lead to better under-standing of the relationship and evolutionary difference among proteins of the superfamily, and is of significance to protein engineering, molecular design and protein structure prediction. Structure alignment is one of the useful methods of research on molecular evolution of protein.

  16. The Enteric Nervous System in Inflammation and Pain: The Role of Proteinase-Activated Receptors

    Directory of Open Access Journals (Sweden)

    Nathalie Vergnolle

    2003-01-01

    Full Text Available The enteric nervous system (ENS plays a pivotal role in inflammatory and nociceptive processes. Drugs that interact with the ENS have recently raised considerable interest because of their capacity to regulate numerous aspects of the gut physiology and pathophysiology. The present article summarizes recent research on proteinases and proteinase-activated receptors (PARs as signalling molecules in the ENS. In particular, experiments in animal models suggest that PAR2 is important to neurogenic inflammation in the intestine. Moreover, PAR2 agonists seem to induce intestinal hypersensitivity and hyperalgesic states, suggesting a role for this receptor in visceral pain perception. Thus, PARs, together with the proteinases that activate them, represent exciting new targets for therapeutic intervention on the ENS.

  17. Classification of microbial α-amylases for food manufacturing using proteinase digestion.

    Science.gov (United States)

    Akiyama, Takumi; Yamazaki, Takeshi; Tada, Atsuko; Ito, Yusai; Otsuki, Noriko; Akiyama, Hiroshi

    2014-09-01

    Enzymes produced by microorganisms and plants are used as food additives to aid the processing of foods. Identification of the origin of these enzyme products is important for their proper use. Proteinase digestion of α-amylase products, followed by high performance liquid chromatography (HPLC) analysis, was applied to α-amylase from the mold Aspergillus species, the bacteria Bacillus species, and the actinomycetes Saccharomonospora species. Eighteen commercial products of α-amylase were digested with trypsin and endoproteinase Lys-C and HPLC analyzed. For some proteinase/sample combinations, the area of the intact α-amylase peak decreased and new peaks were detected after digestion. The presence and retention times of the novel peaks were used to group the products. The results from this method, called the proteinase digestion-HPLC method, allowed the classification of the α-amylase products into 10 groups, whereas the results from sodium dodecyl sulfate polyacrylamide gel electrophoresis allowed their classification into seven groups.

  18. Understanding and targeting a novel plant viral proteinase/substrate interaction. Final report, July 1, 1989--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, W.

    1995-10-01

    The past 3 years of funding have focused our efforts on trying to understand the molecular basis of a unique substrate interaction displayed by a viral proteinase. We have made good progress and during this funding period we have made four contributions to the scientific literature and have developed the application of the proteinase in the expression and purification of recombinant fusion proteins. A comprehensive review of virus-encoded proteinases, written during the funding period, emphazing the tremendous similarity of viral proteinases with their cellular counterparts and at the same time detail the unique characteristics which permit them to function in a cellular environment. The focus of the research effort was the tobacco etch virus (TEV) 27kDa NIa proteinase.

  19. Putrescine-dependent re-localization of TvCP39, a cysteine proteinase involved in Trichomonas vaginalis cytotoxicity.

    Science.gov (United States)

    Carvajal-Gamez, Bertha Isabel; Quintas-Granados, Laura Itzel; Arroyo, Rossana; Vázquez-Carrillo, Laura Isabel; Ramón-Luing, Lucero De los Angeles; Carrillo-Tapia, Eduardo; Alvarez-Sánchez, María Elizbeth

    2014-01-01

    Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP) involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB) (an inhibitor of putrescine biosynthesis), diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼ 80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization.

  20. Putrescine-dependent re-localization of TvCP39, a cysteine proteinase involved in Trichomonas vaginalis cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Bertha Isabel Carvajal-Gamez

    Full Text Available Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB (an inhibitor of putrescine biosynthesis, diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼ 80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization.

  1. RBI, a one-domain alpha-amylase/trypsin inhibitor with completely independent binding sites.

    Science.gov (United States)

    Maskos, K; Huber-Wunderlich, M; Glockshuber, R

    1996-11-11

    The bifunctional inhibitor from Ragi (Eleusine coracana Gaertneri) (RBI) is the only member of the alpha-amylase/trypsin inhibitor family that inhibits both trypsin and alpha-amylase. Here, we show that both enzymes simultaneously and independently bind to RBI. The recently solved three-dimensional NMR structure of RBI has revealed that the inhibitor possesses a hitherto unknown fold for serine proteinase and alpha-amylase inhibitors. Despite its different fold, RBI obeys the standard mechanism observed for most protein inhibitors of serine proteinases and is a strong, competitive inhibitor of bovine trypsin (Ki = 1.2 +/- 0.2 nM). RBI is also a competitive inhibitor of porcine alpha-amylase (Ki = 11 +/- 2 nM) when a disaccharide is used as a substrate of alpha-amylase. However, the inhibition mode becomes complex when larger (> or = 7 saccharide units) alpha-amylase substrates are used. A second saccharide binding site on porcine alpha-amylase may enable larger oligosaccharides to displace RBI from its binding site in an intramolecular reaction.

  2. Purification and partial characterization of a protein proteinanse inhibitor isolated from eggplant exocarp.

    Science.gov (United States)

    Kanamori, M; Ibuki, F; Tashiro, M; Yamada, M; Miyoshi, M

    1976-08-09

    A protein proteinase inhibitor was isolated and purified from eggplant exocarp by heat treatment, ammomium sulfate fractionation, column chromatography on DEAE-cellulose, and gel filtration on Sephadex G-25 and G-50. The final purified preparation of the inhibitor was found homogeneous by electrophoretic analysis. The inhibitor showed strong and stoichiometric inhibition on trypsin whereas it showed weak inhibition on alpha-chymotrypsin. It displayed no inhibiting characteristics on pepsin. The molecular weight of the inhibitor was estimated to be approximately 6000. This finding, with the trypsin inhibition data, suggested that the inhibitor combined trypsin in the molar ratio of 1:1. The amino acid analysis indicated that the inhibitor is rich in half-cystine, glycine and aspartic acid, and contains no tryptophan, histidine, methionine or valine.

  3. Interaction of Bothrops jararaca venom metalloproteinases with protein inhibitors.

    Science.gov (United States)

    Asega, Amanda F; Oliveira, Ana K; Menezes, Milene C; Neves-Ferreira, Ana Gisele C; Serrano, Solange M T

    2014-03-01

    Snake venom metalloproteinases (SVMPs) play important roles in the local and systemic hemorrhage observed upon envenomation. In a previous study on the structural elements important for the activities of HF3 (highly hemorrhagic, P-III-SVMP), bothropasin (hemorrhagic, P-III-SVMP) and BJ-PI (non-hemorrhagic, P-I-SVMP), from Bothrops jararaca, it was demonstrated that they differ in their proteolysis profile of plasma and extracellular matrix proteins. In this study, we evaluated the ability of proteins DM43 and α2-macroglobulin to interfere with the proteolytic activity of these SVMPs on fibrinogen and collagen VI and with their ability to induce hemorrhage. DM43 inhibited the proteolytic activity of bothropasin and BJ-PI but not that of HF3, and was not cleaved the three proteinases. On the other hand, α2-macroglobulin did not inhibit any of the proteinases and was rather cleaved by them. In agreement with these findings, binding analysis showed interaction of bothropasin and BJ-PI but not HF3 to DM43 while none of the proteinases bound to α2-macroglobulin. Moreover, DM43 promoted partial inhibition of the hemorrhagic activity of bothropasin but not that of HF3. Our results demonstrate that metalloproteinases of B. jararaca venom showing different domain composition, glycosylation level and hemorrhagic potency show variable susceptibilities to protein inhibitors.

  4. Cloning of Mouse Enamel Matrix Serine Proteinase Encoding Mature Protein

    Institute of Scientific and Technical Information of China (English)

    MU Ya-bing; SUN Hong-chen; ZHANG Ze-bing; OUYANG Jie

    2003-01-01

    Objective: To clone cDNA of enamel matrix serine proteinase (EMSP1) encoding mature protein from mouse dental germs. Methods: Total RNA was isolated from developing incisors and molars of 7 days mouse pups and reverse-transcribed into cDNA. Two pairs of specific primers was designed to obtain the desired gene by Touchdown PCR and Nested PCR. The segment was inserted into Vector pMD-18T, and recombined vectors was transformed into E.coli JM109.The positive clone was chose and analysed by restriction endonuclease mapping and DNA sequencing. Results:700 bp of cDNA of mouse EMSP1 was sueccessfully cloned from mouse tooth germs tissue. The sequence was consistent with that displayed in PubMed. Conclusion:The mouse EMSP1 cDNA encoding mature protein is obtained for further study.%目的:克隆小鼠牙胚组织中釉基质丝氨酸蛋白酶(EMSP1)成熟肽编码区基因.方法:提取出生后7 d昆明种小白鼠切牙、磨牙牙胚总RNA,逆转录为cDNA,设计两对特异性引物,采用Touchdown PCR 和嵌套PCR方法,扩增出小鼠EMSP1起始密码子至终止密码子基因片段.将目的基因连入载体pMD-18T,转化入大肠杆菌JM109,通过蓝白筛选,挑选阳性克隆培养扩增,纯化重组质粒进行限制性酶切和核苷酸序列分析鉴定.结果:限制性酶切图谱和核苷酸序列分析均表明所克隆cDNA为小鼠700 bp的EMSP1成熟肽基因编码.结论:成功地克隆了小鼠编码EMSP1成熟肽基因片段.

  5. Effects of inorganic nitrogen form on growth, morphology, N uptake, and nutrient allocation in hybrid Napier grass (Pennisetum purpureum × Pennisetum americanum cv. Pakchong1)

    DEFF Research Database (Denmark)

    Jampeetong, Arunothai; Brix, Hans; Kantawanichkul, Suwasa

    2014-01-01

    allocation and tissue nutrient and mineral composition of the plants. The hybrid Napier grass grew better on NH4 + compared to NO3 -, and the plants supplied with NH4 + contained three times more chlorophylls than plants supplied with NO3 - alone or NO3 - combined with NH4 +. The morphology of the plants was......Plant cultivars with high biomass production may have a high potential for being used in integrated water treatment and plant production system. The highly productive hybrid Napier grass cultivar, Pennisetum purpureum × Pennisetum americanum cv. Pakchong1, may be a candidate species for being used...... of K had negative effects on the water use efficiency of the plants.The study suggests that this hybrid Napier grass cultivar may be a new candidate species for use in integrated water treatment and plant production systems....

  6. Anesthetic activity of the essential oil of Ocimum americanum in Rhamdia quelen (Quoy & Gaimard, 1824 and its effects on stress parameters

    Directory of Open Access Journals (Sweden)

    Lenise de Lima Silva

    Full Text Available ABSTRACT The aim of this study was to evaluate the anesthetic activity of the essential oil (EO of Ocimum americanum L. in silver catfish (Rhamdia quelen . In the first experiment, the depressor effects and chemical composition of the leaf EO (LEO and inflorescence EO (IEO were compared. Juveniles (n = 10 were placed in aquaria containing different concentrations of EO (25 - 500 mg L-1 to determine the point at which anesthesia was induced and the length of the recovery period. In the following experiment, the effects of 300 and 500 mg L-1 LEO exposure on stress parameters (plasma cortisol, glucose and sodium levels after air exposure for 1 min were assayed. Fish (n = 10 per sampling time were sampled immediately or transferred to anesthetic-free aquaria until sampling (15, 30, 60 or 240 min. LEO was composed mainly of β-linalool and 1,8-cineole in similar proportions, whereas IEO showed β-linalool as major compound. Anesthesia was obtained in silver catfish with 200-500 mg L-1 between 4-8 min for LEO and 6-16 min for IEO. Lower EO concentrations did not reach anesthetic stage up to 30 min. LEO used as anesthetic prevented the cortisol increase and sodium loss induced by aerial exposure. Glucose levels were raised in catfish exposed to LEO compared to basal group (not air exposed in almost all observation times. EO of O. americanum obtained from leaves was considered suitable to anesthetic procedures due to its fast induction and handling-induced stress prevention.

  7. Efficacy of an imidacloprid 10 % / flumethrin 4.5 % collar (Seresto®, Bayer) for preventing the transmission of Cytauxzoon felis to domestic cats by Amblyomma americanum.

    Science.gov (United States)

    Reichard, Mason V; Thomas, Jennifer E; Arther, Robert G; Hostetler, Joseph A; Raetzel, Kara L; Meinkoth, James H; Little, Susan E

    2013-08-01

    Infection of Cytauxzoon felis in domestic cats produces a severe disease characterised by fever, lethargy, inappetence, anorexia, depression, dehydration, icterus and often death. Transmission of C. felis to cats is dependent on being fed upon by infected Amblyomma americanum (lone star ticks). The purpose of the present study was to determine if application of a 10 % imidacloprid/4.5 % flumethrin collar (Seresto®, Bayer) on cats prevents transmission of C. felis by repelling ticks. Twenty cats were randomised to either a treated (n = 10) or non-treated control group (n = 10) based on their susceptibility to ticks. Cats of high, medium and low tick susceptibility were represented in both groups. Treated cats were fitted with 10 % imidacloprid/4.5 % flumethrin collars on study day 0 and both groups were then infested with C. felis-infected A. americanum on study day 30. Tick thumb counts were performed at 24 and 48 hours post infestation. Transmission of C. felis was determined by examining blood of cats by DNA extraction followed by PCR amplification with piroplasm-specific primers. Ticks did not attach to any of the 10 % imidacloprid/4.5 % flumethrin- treated cats. However, ticks attached and fed on all the non-treated control cats. The geometric mean number of ticks attached to the non-treated control cats at 24 and 48 hours was 15.3 and 14.2, respectively. Cytauxzoon felis was transmitted to 9 of 10 (90 %) non-treated control cats; C. felis was not transmitted to any of the treated cats. Transmission of C. felis to the non-treated cats was first detected between 8 and 16 days post infestation. Our results indicate that application of the 10 % imidacloprid/4.5 % flumethrin collar to cats prevented ticks from attaching, feeding and transmitting C. felis.

  8. Oligomerization states of Bowman-Birk inhibitor by atomic force microscopy and computational approaches.

    Science.gov (United States)

    Silva, Luciano P; Azevedo, Ricardo B; Morais, Paulo C; Ventura, Manuel M; Freitas, Sonia M

    2005-11-15

    Several methods have been applied to study protein-protein interaction from structural and thermodynamic point of view. The present study reveals that atomic force microscopy (AFM), molecular modeling, and docking approaches represent alternative methods offering new strategy to investigate structural aspects in oligomerization process of proteinase inhibitors. The topography of the black-eyed pea trypsin/chymotrypsin inhibitor (BTCI) was recorded by AFM and compared with computational rigid-bodies docking approaches. Multimeric states of BTCI identified from AFM analysis showed globular-ellipsoidal shapes. Monomers, dimers, trimers, and hexamers were the most prominent molecular arrays observed in AFM images as evaluated by molecular volume calculations and corroborated by in silico docking and theoretical approaches. We therefore propose that BTCI adopts stable and well-packed self-assembled states in monomer-dimer-trimer-hexamer equilibrium. Although there are no correlation between specificity and packing efficiency among proteinases and proteinase inhibitors, the AFM and docked BTCI analyses suggest that these assemblies may exist in situ to play their potential function in oligomerization process.

  9. Monomeric 55-kDa guanidinobenzoatase switches to a serine proteinase activity upon tetramerization. Tetrameric proteinase SP 220 K appears as the native form.

    Science.gov (United States)

    Poustis-Delpont, C; Thaon, S; Auberger, P; Gerardi-Laffin, C; Sudaka, P; Rossi, B

    1994-05-20

    Guanidinobenzoatases are cell surface enzymes present in cells capable of migration or remodeling. The guanidinobenzoatase purified to homogeneity from human renal carcinoma did not display gelatinase activity under the 55-kDa form (Poustis-Delpont, C., Descomps, R., Auberger, P., Delque-Bayer, P., Sudaka, P., and Rossi, B. (1992) Cancer Res. 52, 3622-3628). We bring new insights into the structure-activity relationships of this enzyme using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]diisopropyl fluorophosphate labeling, gelatin zymography, and immunodetection using a polyclonal antibody raised against the 55-kDa entity. Upon aggregation into a 220-kDa form, the enzyme exhibited [3H]diisopropyl fluorophosphate labeling and diisopropyl fluorophosphate-inhibitable gelatinase activity whereas its capability to cleave p-nitrophenyl p'-guanidinobenzoate as a substrate was abolished. Thus, the guanidinobenzoatase property appears as a feature of a 55-kDa inactive form of a serine proteinase subunit. After boiling in the presence of sodium dodecyl sulfate (3% w/v), the 220-kDa entity subjected to SDS-polyacrylamide gel electrophoresis could be dissociated into a 55-kDa protein as shown by silver staining. The resulting 55-kDa band remained [3H]diisopropyl fluorophosphate-labeled and reacted with anti-55-kDa guanidinobenzoatase antibodies, strongly suggesting that the 220-kDa proteinase was a noncovalently associated tetramer. Interestingly, Triton X-100 extracts of renal carcinoma plasma membranes exhibited a 220-kDa serine proteinase activity, as expressed in gelatin zymography, which was barely detectable in the non-tumoral counterpart. It is noteworthy that an anti-55-kDa guanidinobenzoatase reactive 220-kDa species was also observed in renal carcinoma plasma membranes extracts as assessed by Western blot, whereas it was hardly visible in the non-tumoral counterpart. No signal was immunodetected at M(r) 55,000 in renal carcinoma and kidney cortex

  10. A new subtilisin-like proteinase from roots of the dandelion Taraxacum officinale Webb S. L.

    Science.gov (United States)

    Bogacheva, A M; Rudenskaya, G N; Preusser, A; Tchikileva, I O; Dunaevsky, Y E; Golovkin, B N; Stepanov, V M

    1999-09-01

    A serine proteinase from roots of Taraxacum officinale Webb S. L. was isolated by affinity chromatography and gel-filtration on Superose 6R using FPLC. The enzyme is a 67-kD glycoprotein containing 54% carbohydrate which we have named taraxalisin. The substrate specificity of taraxalisin toward synthetic peptides and oxidized insulin B-chain is comparable with that of cucumisin from Cucumis melo and the subtilisin-like serine proteinase macluralisin from Maclura pomifera. The proteinase is inactivated by DFP and PMSF. Taraxalisin exhibits maximal activity at pH 8.0. The pH range for stability of the enzyme is narrow--6.0-9.0. The temperature optimum for the subtilisin-like activity is 40 degrees C. The N-terminal sequence of taraxalisin has 40% of its residues identical to those of subtilisin Carlsberg. Thus, the serine proteinase from dandelion roots is a member of the subtilisin family, which is evidently widespread in the plant kingdom.

  11. Fluorometric determination of acid proteinase activity in Candida albicans strains from diabetic patients with vulvovaginal candidiasis.

    Science.gov (United States)

    Yildirim, Zuhal; Kilic, Nedret; Kalkanci, Ayse

    2011-09-01

    Vulvovaginal candidiasis is one of the most frequent disorders in obstetrics and gynaecology. Approximately three-quarters of all adult women experience at least one episode of vulvovaginal candidiasis during their life span. Diabetes mellitus (DM) increases the rate of vaginal colonisation and infection with Candida species. The secreted acid proteinase might be especially relevant in the pathogenesis of vulvovaginal candidiasis. The aim of this study was to determine the acid proteinase activity in the samples of Candida albicans from diabetic patients with vulvovaginal candidiasis by a fluorometric method. Vaginal swabs were taken from 33 women (aged between 22 and 57 years) having symptoms of vaginitis. Patients were divided into three groups: control group, controlled diabetic group and uncontrolled diabetic group. The proteinase activity in the culture supernatants was determined by a modified fluorometric method. Acid proteinase activities were significantly increased in the uncontrolled diabetic group in comparison with both the control group and the controlled diabetic group (P albicans pathogenesis in diabetic patients. Improving glucose control may reduce the risk of Candida colonisation and potentially symptomatic infection, among women with diabetes and hence may be useful even for weaker enzyme activity measurements.

  12. Subunit structure of karatasin, the proteinase isolated from Bromelia plumieri (karatas).

    Science.gov (United States)

    Montes, C; Amador, M; Cuevas, D; Cordoba, F

    1990-01-01

    Close to 15% of the karatasin proteinase activity in the fruit juice of Bromelia plumieri (karatas) is present outside dialysis Visking tubing in 7 days in 0.2 M acetate buffer (pH) 3.5 or 6.5) containing phenyl mercuric acetate. The small proteinase(s), distinct from the 85% activity in juice due to nondialysable karatasin with a reported Mr of 24,868, separates across Spectrapore (13 kDa) membranes but not across Spectrapore with 3.5 kDa average pore diameter. The dialyzed proteinase is named karatasin-D (K-D). Purified non-Dialysable karatasin can be dissociated to what seems to be K-D by incubation in a buffer solution, containing SDS and 2-mercaptoethanol with phenyl mercuric acetate, in dialysis experiments for 8 days at room temperature using Spectrapore 13 kDa tubing. Thus, native karatasin in B. plumieri fruit juice seem to be the result of association of 2 small molecular mass K-D subunits, linked together by disulfide bonds and electrostatic forces, in equilibrium with small amounts of free K-D molecules. The amino acid composition and partial sequence of karatasin up to the 14th position from the amino terminus have discrete analogies with papain and with stem bromelain.

  13. The helper component-proteinase of cowpea aphid-borne mosaic virus

    NARCIS (Netherlands)

    Mlotshwa, S.

    2000-01-01

    Cowpea aphid-borne mosaic potyvirus causes severe yield losses in cowpea, an important legume crop in semi-arid regions of Africa. We have elucidated the genomic sequence of the virus and subsequently focused our attention on the so-called helper component-proteinase (HC-Pro), a virus-encoded multif

  14. Activation of proteinase 3 contributes to nonalcoholic fatty liver disease and insulin resistance

    NARCIS (Netherlands)

    Toonen, Erik J.M.; Mirea, Andreea Manuela; Tack, Cees J.; Stienstra, Rinke; Ballak, Dov B.; Diepen, van Janna A.; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H.; Pham, Christine Tn; Netea, Mihai G.; Dinarello, Charles A.; Joosten, Leo A.B.

    2016-01-01

    Activation of inflammatory pathways is known to accompany development of obesity-induced nonalcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to proces

  15. Prevalence, susceptibility profile and proteinase production of yeasts causing vulvovaginitis in Turkish women.

    Science.gov (United States)

    Ozcan, Sema Keceli; Budak, Fatma; Yucesoy, Gulseren; Susever, Serdar; Willke, Ayse

    2006-02-01

    In this study the prevalence of vulvovaginal candidiasis (VVC), antifungal susceptibility and proteinase production of isolated Candida species were investigated. Vaginal swabs were collected from symptomatic women with vulvovaginitis attending the Obstetrics and Gynecology Clinic of Kocaeli University, Turkey. The relation between risk factors, such as pregnancy, diabetes mellitus, antibiotic and corticosteroid use, history of sexually transmitted diseases and contraceptive methods, was recorded. Candida spp. were identified by conventional methods, then evaluated for proteinase secretion in a medium containing casein. Antifungal susceptibility was determined according to the NCCLS microdilution method. The prevalence of women with vulvovaginitis was 35.7% (170/6080) and 16% (28/170) of them were diagnosed as VVC. Candida albicans was the dominant species: 21 (75%), followed by 4 C. glabrata (14%), 2 C. tropicalis (7%), and one C. krusei (3.5%). All isolates were susceptible to fluconazole, itraconazole and amphotericin B, except one C. krusei, one C. glabrata and one C. albicans that were resistant to fluconazole. Proteinase production was determined in 19 (90.5%) C. albicans and in all C. tropicalis isolates. Proteinase activity was not associated with antifungal resistance. No association was found between risk factors and VVC.

  16. Random substitution of large parts of the propeptide of yeast proteinase A

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1995-01-01

    The yeast aspartic protease, proteinase A, has a 54 amino-acid propeptide, which is removed during activation of the zymogen in the vacuole. Apart from being involved inhibition/activation, the propeptide has been shown to be essential for formation of a stable active enzyme (van den Hazel, H. B...

  17. Detergents modify proteinase K resistance of PrP Sc in different transmissible spongiform encephalopathies (TSEs).

    Science.gov (United States)

    Breyer, Johanna; Wemheuer, Wiebke M; Wrede, Arne; Graham, Catherine; Benestad, Sylvie L; Brenig, Bertram; Richt, Jürgen A; Schulz-Schaeffer, Walter J

    2012-05-25

    Prion diseases are diagnosed by the detection of their proteinase K-resistant prion protein fragment (PrP(Sc)). Various biochemical protocols use different detergents for the tissue preparation. We found that the resistance of PrP(Sc) against proteinase K may vary strongly with the detergent used. In our study, we investigated the influence of the most commonly used detergents on eight different TSE agents derived from different species and distinct prion disease forms. For a high throughput we used a membrane adsorption assay to detect small amounts of prion aggregates, as well as Western blotting. Tissue lysates were prepared using DOC, SLS, SDS or Triton X-100 in different concentrations and these were digested with various amounts of proteinase K. Detergents are able to enhance or diminish the detectability of PrP(Sc) after proteinase K digestion. Depending on the kind of detergent, its concentration - but also on the host species that developed the TSE and the disease form or prion type - the detectability of PrP(Sc) can be very different. The results obtained here may be helpful during the development or improvement of a PrP(Sc) detection method and they point towards a detergent effect that can be additionally used for decontamination purposes. A plausible explanation for the detergent effects described in this article could be an interaction with the lipids associated with PrP(Sc) that may stabilize the aggregates.

  18. Subcellular location of the helper component-proteinase of Cowpea Aphid-Borne Mosaic Virus

    NARCIS (Netherlands)

    Mlotshwa, S.; Verver, J.; Sithole-Niang, I.; Gopinath, K.; Carette, J.; Kammen, van A.; Wellink, J.

    2002-01-01

    The helper component-proteinase (HC-Pro) of Cowpea aphid-borne mosaic virus (CABMV) was expressed in Escherichia coli and used to obtain HC-Pro antiserum that was used as an analytical tool for HC-Pro studies. The antiserum was used in immunofluorescence assays to study the subcellular location of H

  19. Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis

    NARCIS (Netherlands)

    F. Noorbakhsh (Farshid); K. Tsutsui (Kazuyoshi); N. Vergnolle (Nathalie); L.A. Boven (Leonie); S.F. Shariat (Shahrokh); M. Vodjgani (Mohammed); K.G. Warren (Kenneth); P. Andrade-Gordon (Patricia); N.K. Hollenberg (Norman); C. Power (Christopher)

    2006-01-01

    textabstractThe proteinase-activated receptors (PARs) are widely recognized for their modulatory properties of inflammation and neurodegeneration. We investigated the role of PAR2 in the pathogenesis of multiple sclerosis (MS) in humans and experimental autoimmune encephalomyelitis (EAE) in mice. PA

  20. Isolation and characterization of a proteinase K sensitive PrPSc fraction

    Science.gov (United States)

    Recent studies have shown that a sizeable fraction of PrPSc present in prion-infected tissues is,contrary to previous conceptions, sensitive to digestion by proteinase K (PK). This finding has important implications in the context of diagnosis of prion disease, as PK has been extensively used in att...

  1. Proteinase K and the structure of PrPse: the good, the bad, and the ugly

    Science.gov (United States)

    Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrPSc) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunod...

  2. Nuclear magnetic resonance studies on the pKa values and interaction of ionizable groups in bromelain inhibitor VI from pineapple stem.

    Science.gov (United States)

    Hatano, Ken-ichi; Kojima, Masaki; Tanokura, Masaru; Takahashi, Kenji

    2003-01-01

    Bromelain inhibitor VI (BI-VI), a cysteine proteinase inhibitor from pineapple stem, is a unique double-chain molecule composed of two distinct domains A and B. In order to clarify the molecular mechanism of the proteinase-inhibitor interaction, we investigated the electrostatic properties of this inhibitor. The inhibitory activity toward bromelain was revealed to be maximal at pH 3-4 and the gross conformation to be stable over a wide range of pH. Based on these results, pH titration experiments were performed on the proton resonances of BI-VI in the pH range of 1.5-9.9, and pKa values (pKexp) were determined for all carboxyl groups and alpha-amino groups. The pKexp were also compared with theoretical values calculated from the NMR-derived structures of BI-VI. The electrostatic surface potential map constructed using the pKexp values revealed that BI-VI possesses continuous negatively charged and scattered positively charged regions on the molecular surface and both regions appear to serve for docking properly with a basic target enzyme. Furthermore, it was suggested that the ionic interaction of the inhibitor with the target enzyme is primarily important for the inhibition, which seems to involve some carboxyl groups in the inhibitor and a thiol group in the proteinase.

  3. TISSUE INHIBITOR OF METALLOPROTEINASE 1, MATRIX METALLOPROTEINASE 9, ALPHA-1 ANTITRYPSIN, METALLOTHIONEIN AND UROKINASE TYPE PLASMINOGEN ACTIVATOR RECEPTOR IN SKIN BIOPSIES FROM PATIENTS AFFECTED BY AUTOIMMUNE BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-07-01

    Full Text Available Introduction: Proteinases and proteinase inhibitors have been described to play a role in autoimmune skin blistering diseases. We studied skin lesional biopsies from patients affected by several autoimmune skin blistering diseases for proteinases and proteinase inhibitors. Methods: We utilized immunohistochemistry to evaluate biopsies for alpha-1-antitrypsin, human matrix metalloproteinase 9 (MMP9, human tissue inhibitor of metalloproteinases 1 (TIMP-1, metallothionein and urokinase type plasminogen activator receptor (uPAR. We tested 30 patients affected by endemic pemphigus, 30 controls from the endemic area, and 15 normal controls. We also tested 30 biopsies from patients with bullous pemphigoid (BP, 20 with pemphigus vulgaris (PV, 8 with pemphigus foliaceus, and 14 with dermatitis herpetiformis (DH. Results: Contrary to findings in the current literature, most autoimmune skin blistering disease biopsies were negative for uPAR and MMP9. Only some chronic patients with El Bagre-EPF were positive to MMP9 in the dermis, in proximity to telocytes. TIMP-1 and metallothionein were positive in half of the biopsies from BP patients at the basement membrane of the skin, within several skin appendices, in areas of dermal blood vessel inflammation and within dermal mesenchymal-epithelial cell junctions.

  4. Study on purification and characterization of a serine proteinase from the skeletal muscle of blue scad(Decapterus maruadsi)%蓝圆鲹肌肉中丝氨酸蛋白酶的分离纯化及性质研究

    Institute of Scientific and Technical Information of China (English)

    王梦想; 钟婵; 蔡秋凤; 刘光明; 苏文金; 曹敏杰

    2012-01-01

    鱼类死后肌肉容易发生软化现象。研究表明,这与肌肉中的丝氨酸蛋白酶有着密切的关系。本研究通过硫酸铵盐析、DEAE-Sephacel、Q-Sepharose及Capto Q等柱层析相结合的方法,从蓝圆鲹肌肉中纯化得到一种具有分解明胶能力的丝氨酸蛋白酶,SDS-PAGE结果显示其分子量约为60ku,该酶最适温度及最适pH分别为40℃和9.0。丝氨酸蛋白酶抑制剂Pefabloc SC、Benzamidine、MBTI、PMSF和LBTI均能明显的抑制该酶的活性,而其他蛋白酶抑制剂对其活性没有明显的影响。底物特异性表明其能有效的降解丝氨酸蛋白酶荧光底物Boc-Leu-Lys-Arg-MCA,但进一步研究发现,该酶对I型胶原蛋白及明胶有明显的分解能力,同时对肌球蛋白重链也有一定的分解作用,说明该酶可能参与鱼肉保鲜中肌肉软化的过程。%Some researches revealed that the tenderization of fish muscle during postmortem was caused by the endogenous proteinase especially serine proteinase.A collagenolytic serine proteinase was purified from blue scad skeletal muscle to homogeneity by ammonium sulfate fractionation and chromatographies including DEAE-Sephacel,Q-Sepharose and Capto Q.The molecular weight of the enzyme was 60ku as detected by SDS-PAGE.The optimal pH and temperature of the purified enzyme were 9.0 and 40℃,respectively.The enzyme activity was inhibited by serine proteinase inhibitors such as Pefabloc SC,Benzamidine,MBTI,PMSF and LBTI.However,other proteinase inhibitors had no effect on serine proteinase.Substrate specificity experiment demonstrated that the enzyme showed high specificity towards Boc-Leu-Lys-Arg-MCA.Furthermore,the enzyme effectively hydrolyzed gelatin,native type-I collagen and myofibrillar proteins such as myosin heavy chain(MHC),these datum suggested that this enzyme might play an important role during postmortem tenderization of fish muscle.

  5. [Effect of Azospirillum lectins on the Activity of Proteolytic Enzymes and Their Inhibitors in Wheat Seedling Roots].

    Science.gov (United States)

    Alen'kina, S A; Nikitina, V E

    2015-01-01

    The lectins of associative nitrogen-fixing strains Azospirillum brasilense Sp7 and Sp245 were shown to exerte a multidirectional effect on the activity of acidic (pH 3.5), neutral (6.8), and alkaline (pH 7.8) proteinases. The lectin of the epiphytic A. brasilense Sp7 decreased proteolytic activity at all pH values, whereas the lectin of the endophytic A. brasilense Sp245 activated neutral and alkaline proteinases, while not affecting the alkaline ones. Experiments with protease inhibitors made it possible to conclude that the lectins of the studied A. brasilense strains alter the ratio between the activities of different protease types in germinating seeds. The activity of trypsin inhibitors in wheat seedling roots was found to increase in the presence of the lectins. Our results indicate a broader spectrum of effects of azospirilla lectins on the host plant organism.

  6. Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative.

    Science.gov (United States)

    Bijina, B; Chellappan, Sreeja; Krishna, Jissa G; Basheer, Soorej M; Elyas, K K; Bahkali, Ali H; Chandrasekaran, M

    2011-07-01

    Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine proteases cathepsin B and papain which have more importance in pharmaceutical industry. The protease inhibitor also showed complete inhibition of activities of the commercially available proteases of Bacillus licheniformis and Aspergillus oryzae. However, inhibitory activities toward subtilisin, esperase, pronase E and proteinase K were negligible. Further, it was found that the protease inhibitor could prevent proteolysis in a commercially valuable shrimp Penaeus monodon during storage indicating the scope for its application as a seafood preservative. This is the first report on isolation of a protease inhibitor from M. oleifera.

  7. Toxicity to cotton boll weevil Anthonomus grandis of a trypsin inhibitor from chickpea seeds.

    Science.gov (United States)

    de P G Gomes, Angélica; Dias, Simoni C; Bloch, Carlos; Melo, Francislete R; Furtado, José R; Monnerat, Rose G; Grossi-de-Sá, Maria F; Franco, Octávio L

    2005-02-01

    Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.

  8. Human seminal proteinase and prostate-specific antigen are the same protein

    Indian Academy of Sciences (India)

    Abdul Waheed; Md Imtaiyaz Hassan; Robert L Van Etten; Faizan Ahmad

    2008-06-01

    Human seminal proteinase and prostate-specific antigen (PSA) were each isolated from human seminal fluid and compared. Both are glycoproteins of 32–34 kDa with protease activities. Based on some physicochemical, enzymatic and immunological properties, it is concluded that these proteins are in fact identical. The protein exhibits properties similar to kallikrein-like serine protease, trypsin, chymotrypsin and thiol acid protease. Tests of the activity of the enzyme against some potential natural and synthetic substrates showed that bovine serum albumin was more readily hydrolysed than casein. The results of this study should be useful in purifying and assaying this protein. Based on published studies and the present results, the broad proteolytic specificity of human seminal proteinase suggests a role for this protein in several physiological functions.

  9. Modified TB rapid test by proteinase K for rapid diagnosis of pleural tuberculosis.

    Science.gov (United States)

    Yari, Shamsi; Hadizadeh Tasbiti, Alireza; Ghanei, Mostafa; Shokrgozar, Mohammad Ali; Fateh, Abolfazl; Yari, Fatemeh; Bahrmand, Ahmadreza

    2016-03-01

    The diagnosis of pleural tuberculosis continues to be a challenge due to the low sensitivity of traditional diagnostic methods. Better and more rapid tests are needed for diagnosis of pleural TB. In this study, pleural fluids were tested with rapid test to determine Mycobacterium tuberculosis (MTB antigen). Affinity chromatography was used to purify specific polyclonal antibodies against MTB antigen. Pleural samples after decontamination were treated with proteinase K. Rapid test for pleural fluids was prepared by specific antibody. Rapid test was performed on 85 pleural fluid patients. The patients had a mean age of 46.55 ± 15.96 years and 38 were men. The performance of rapid test, using proteinase K, was found to be the most impressive: sensitivity 93%, specificity 94%, PPV 90%, and NPV 96% compared with adenosine deaminase test (ADA), PCR, smear, and culture. The present study did demonstrate that modified TB rapid test can substantially improve the diagnosis of extrapulmonary TB.

  10. Enhanced Response of a Proteinase K-Based Conductometric Biosensor Using Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wided Nouira

    2014-07-01

    Full Text Available Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic. The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE. The biosensor was characterized with bovine serum albumin (BSA as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 µs. These results are greater than that found without any nanoparticles (maximum response of 10 µs. The limit of detection (LOD was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained.

  11. Enhanced response of a proteinase K-based conductometric biosensor using nanoparticles.

    Science.gov (United States)

    Nouira, Wided; Maaref, Abderrazak; Elaissari, Hamid; Vocanson, Francis; Siadat, Maryam; Jaffrezic-Renault, Nicole

    2014-07-23

    Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic). The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE). The biosensor was characterized with bovine serum albumin (BSA) as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 µs. These results are greater than that found without any nanoparticles (maximum response of 10 µs). The limit of detection (LOD) was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained.

  12. Seed-specific aspartic proteinase FeAP12 from buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Timotijević Gordana S.

    2010-01-01

    Full Text Available Aspartic proteinase gene (FeAP12 has been isolated from the cDNA library of developing buckwheat seeds. Analysis of its deduced amino acid sequence showed that it resembled the structure and shared high homology with typical plant aspartic proteinases (AP characterized by the presence of a plant-specific insert (PSI, unique among APs. It was shown that FeAP12 mRNA was not present in the leaves, roots, steam and flowers, but was seed-specifically expressed. Moreover, the highest levels of FeAP12 expression were observed in the early stages of seed development, therefore suggesting its potential role in nucellar degradation.

  13. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis.

    Science.gov (United States)

    Kumar, Rohitashw; Saraswat, Darpan; Tati, Swetha; Edgerton, Mira

    2015-07-01

    Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually with C. albicans cells overexpressing Sap6 (SAP6 OE and a Δsap8 strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6 strain was attenuated. These hypervirulent strains had highly aggregative colony structure in vitro and higher secreted proteinase activity; however, the levels of proteinase activity of C. albicans Saps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6 OE and Δsap8 cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increased C. albicans adhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.

  14. In vitro differential activity of phospholipases and acid proteinases of clinical isolates of Candida

    Directory of Open Access Journals (Sweden)

    Aurean D'Eça Júnior

    2011-06-01

    Full Text Available INTRODUCTION: Candida yeasts are commensals; however, if the balance of normal flora is disrupted or the immune defenses are compromised, Candida species can cause disease manifestations. Several attributes contribute to the virulence and pathogenicity of Candida, including the production of extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate the in vitro activity of phospholipases and acid proteinases in clinical isolates of Candida spp. METHODS: Eighty-two isolates from hospitalized patients collected from various sites of origin were analyzed. Phospholipase production was performed in egg yolk medium and the production of proteinase was verified in a medium containing bovine serum albumin. The study was performed in triplicate. RESULTS: Fifty-six (68.3% of isolates tested were phospholipase positive and 16 (44.4% were positive for proteinase activity. C. tropicalis was the species with the highest number of positive isolates for phospholipase (91.7%. Statistically significant differences were observed in relation to production of phospholipases among species (p<0,0001 and among the strains from different sites of origin (p=0.014. Regarding the production of acid protease, the isolates of C. parapsilosis tested presented a larger number of producers (69.2%. Among the species analyzed, the percentage of protease producing isolates did not differ statistically (χ2=1.9 p=0.5901 (χ2=1.9 p=0.5901. CONCLUSIONS: The majority of C. non-albicans and all C. albicans isolates were great producers of hydrolytic enzymes and, consequently, might be able to cause infection under favorable conditions.

  15. Acanthamoeba polyphaga mimivirus prevents amoebal encystment-mediating serine proteinase expression and circumvents cell encystment.

    Science.gov (United States)

    Boratto, Paulo; Albarnaz, Jonas Dutra; Almeida, Gabriel Magno de Freitas; Botelho, Lucas; Fontes, Alide Caroline Lima; Costa, Adriana Oliveira; Santos, Daniel de Assis; Bonjardim, Cláudio Antônio; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2015-03-01

    Acanthamoeba is a genus of free-living amoebas distributed worldwide. Few studies have explored the interactions between these protozoa and their infecting giant virus, Acanthamoeba polyphaga mimivirus (APMV). Here we show that, once the amoebal encystment is triggered, trophozoites become significantly resistant to APMV. Otherwise, upon infection, APMV is able to interfere with the expression of a serine proteinase related to amoebal encystment and the encystment can no longer be triggered.

  16. Isolation and characterization of two forms of an acidic bromelain stem proteinase.

    Science.gov (United States)

    Harrach, T; Eckert, K; Maurer, H R; Machleidt, I; Machleidt, W; Nuck, R

    1998-05-01

    Two forms of an acidic bromelain proteinase isolated from crude bromelain, an extract from pineapple stem, were found by a two-step FPLC purification procedure. The basic main components were removed by cation exchange chromatography and the breakthrough fraction was further resolved by anion exchange chromatography into 15 protein fractions, only two of which, called SBA/a and SBA/b, were proteolytically active. These components were characterized by electrospray mass spectroscopy (ESMS), isoelectric focusing, N-terminal amino acid sequence analysis, monosaccharide analysis, and enzymatic parameters. The molecular masses of SBA/a and SBA/b were determined by ESMS to be 23,550 and 23,560, respectively. The isoelectric points (pI) of the two bands of SBA/a were 4.8 and 4.9; SBA/b focused as a single band at pI = 4.8. Partial N-terminal amino acid sequences (11 residues) were identical to SBA/a and SBA/b and identical with those of stem bromelain, the basic main proteinase of the pineapple stem, and fruit bromelain, the acidic main proteinase of the pineapple fruit. Both components are highly glycosylated; hydrolysis of SBA/a yielded about twofold more monosaccharide per protein than SBA/b. The comparison of the catalytic properties of SBA/a with those of SBA/b revealed no relevant differences in the hydrolysis of three peptidyl-NH-Mec substrates and in the inhibition profiles using chicken cystatin and E-64, indicating that these components can be considered as two forms of a single enzyme. Both forms are scarcely inhibited by chicken cystatin and slowly inactivated by E-64, hence are nontypical cysteine proteinases of the papain superfamily.

  17. Classification of microbial α-amylases for food manufacturing using proteinase digestion

    OpenAIRE

    2014-01-01

    Enzymes produced by microorganisms and plants are used as food additives to aid the processing of foods. Identification of the origin of these enzyme products is important for their proper use. Proteinase digestion of α-amylase products, followed by high performance liquid chromatography (HPLC) analysis, was applied to α-amylase from the mold Aspergillus species, the bacteria Bacillus species, and the actinomycetes Saccharomonospora species. Eighteen commercial products of α-amylase were dige...

  18. Synthetic peptides and fluorogenic substrates related to the reactive site sequence of Kunitz-type inhibitors isolated from Bauhinia: interaction with human plasma kallikrein.

    Science.gov (United States)

    Oliva, M L; Santomauro-Vaz, E M; Andrade, S A; Juliano, M A; Pott, V J; Sampaio, M U; Sampaio, C A

    2001-01-01

    We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.

  19. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α.

    Science.gov (United States)

    Steinberger, Jutta; Kontaxis, Georg; Rancan, Chiara; Skern, Tim

    2013-09-01

    The foot-and-mouth disease virus leader proteinase (Lb(pro)) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb(pro) L200F provide structural evidence for intramolecular self-processing. (15)N-HSQC measurements of Lb(pro) L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb(pro), lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb(pro), stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb(pro) and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb(pro).

  20. Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases.

    Science.gov (United States)

    Franco, Octávio L; Rigden, Daniel J; Melo, Francislete R; Grossi-De-Sá, Maria F

    2002-01-01

    Insect pests and pathogens (fungi, bacteria and viruses) are responsible for severe crop losses. Insects feed directly on the plant tissues, while the pathogens lead to damage or death of the plant. Plants have evolved a certain degree of resistance through the production of defence compounds, which may be aproteic, e.g. antibiotics, alkaloids, terpenes, cyanogenic glucosides or proteic, e.g. chitinases, beta-1,3-glucanases, lectins, arcelins, vicilins, systemins and enzyme inhibitors. The enzyme inhibitors impede digestion through their action on insect gut digestive alpha-amylases and proteinases, which play a key role in the digestion of plant starch and proteins. The natural defences of crop plants may be improved through the use of transgenic technology. Current research in the area focuses particularly on weevils as these are highly dependent on starch for their energy supply. Six different alpha-amylase inhibitor classes, lectin-like, knottin-like, cereal-type, Kunitz-like, gamma-purothionin-like and thaumatin-like could be used in pest control. These classes of inhibitors show remarkable structural variety leading to different modes of inhibition and different specificity profiles against diverse alpha-amylases. Specificity of inhibition is an important issue as the introduced inhibitor must not adversely affect the plant's own alpha-amylases, nor the nutritional value of the crop. Of particular interest are some bifunctional inhibitors with additional favourable properties, such as proteinase inhibitory activity or chitinase activity. The area has benefited from the recent determination of many structures of alpha-amylases, inhibitors and complexes. These structures highlight the remarkable variety in structural modes of alpha-amylase inhibition. The continuing discovery of new classes of alpha-amylase inhibitor ensures that exciting discoveries remain to be made. In this review, we summarize existing knowledge of insect alpha-amylases, plant alpha

  1. Cloning and characterization of an Eimeria acervulina sporozoite gene homologous to aspartyl proteinases.

    Science.gov (United States)

    Laurent, F; Bourdieu, C; Kaga, M; Chilmonczyk, S; Zgrzebski, G; Yvoré, P; Péry, P

    1993-12-01

    A lambda ZapII cDNA library was constructed using mRNA from Eimeria acervulina sporulated oocysts and screened with monoclonal antibodies raised against Eimeria tenella sporulated oocytes. Monoclonal antibody N3C8B12 identified a clone (6S2) potentially encoding an aspartyl proteinase since significant homology with cathepsin D, pepsin and renin proteinases was revealed by sequence comparisons. The 1500-bp cDNA fragment containing the coccidial gene was subcloned into pGEX-FA expression vector, leading to the production of an 80-kDa fusion protein (FA6S2) which was used to immunize rabbits. The anti-FA6S2 rabbit sera revealed a single 43-kDa protein present in Eimeria acervulina, Eimeria tenella, Eimeria maxima and Eimeria falciformis sporulated oocyst antigens. Indirect immunofluorescence and electron microscopy with mAb N3C8B12 localized the putative aspartyl proteinase in the refractile bodies of Eimeria tenella sporozoites.

  2. Characterization of certain proteinase isoenzymes produced by benign and virulent strains of Bacteroides nodosus.

    Science.gov (United States)

    Green, R S

    1985-11-01

    Three proteinase isoenzymes from one benign strain of Bacteroides nodosus and five proteinase isoenzymes from each of two virulent strains of B. nodosus were purified by horizontal slab polyacrylamide gel electrophoresis. The purified isoenzymes hydrolysed casein, collagen I, collagen III, elastin, alpha-elastin, fibrinogen, gelatin, haemoglobin and alpha-keratin. The pH optima of all the isoenzymes lay between 7.25 and 9.5, the range of 8.75-9.25 being common to all. The isoenzymes were inhibited by phenylmethylsulphonyl fluoride, diphenylcarbamyl chloride, L-(1-tosylamide-2-phenyl)ethyl chloromethyl ketone, EGTA and EDTA, indicating that they were chymotrypsin-like serine proteinases that require a metal ion for stability or activity. EDTA inhibition was not reversed by addition of Ca2+ or Mg2+. Some isoenzymes were activated by Mg2+, Ca2+, Cr3+ and Se4+ and all were inhibited by Fe2+, Co2+, Cu2+, Zn2+, Cd2+ and Hg2+. Isoenzymes from benign strains had a lower temperature stability, losing all activity at 55 degrees C, whereas those from virulent strains lost all activity at 60 degrees C.

  3. Rearch progress in the proteinase K%蛋白酶K的研究进展

    Institute of Scientific and Technical Information of China (English)

    吴彤; 王瑞明; 黄磊; 徐志南

    2013-01-01

    蛋白酶K是一种在生物科学研究和生物加工过程中具有多种应用的重要丝氨酸蛋白酶,并且在食品和饲料工业中有潜在的重要应用.本文对蛋白酶K的分子结构、催化特性、定向进化、重组表达和应用研究的最新进展进行了研究总结,并对蛋白酶K在未来的研究方向进行了展望.%Proteinase K is a kind of important serine protease which has a variety of application in biological science research and biological processing process and has an important potential application in the food and feed industry.In this paper,the molecular structure,catalytic properties of proteinase K,directed evolution,and the latest progress in the study of recombinant expression and application were summarized and the research direction of proteinase K in the future was prospected.

  4. Molecular cloning and characterization of cystatin, a cysteine protease inhibitor, from bufo melanostictus.

    Science.gov (United States)

    Liu, Wa; Ji, Senlin; Zhang, A-Mei; Han, Qinqin; Feng, Yue; Song, Yuzhu

    2013-01-01

    Cystatins are efficient inhibitors of papain-like cysteine proteinases, and they serve various important physiological functions. In this study, a novel cystatin, Cystatin-X, was cloned from a cDNA library of the skin of Bufo melanostictus. The single nonglycosylated polypeptide chain of Cystatin-X consisted of 102 amino acid residues, including seven cysteines. Evolutionary analysis indicated that Cystatin-X can be grouped with family 1 cystatins. It contains cystatin-conserved motifs known to interact with the active site of cysteine proteinases. Recombinant Cystatin-X expressed and purified from Escherichia coli exhibited obvious inhibitory activity against cathepsin B. rCystatin-X at a concentration of 8 µM inhibited nearly 80% of cathepsin B activity within 15 s, and about 90% of cathepsin B activity within 15 min. The Cystatin-X identified in this study can play an important role in host immunity and in the medical effect of B. melanostictus.

  5. Elevated aspartic proteinase secretion and experimental pathogenicity of Candida albicans isolates from oral cavities of subjects infected with human immunodeficiency virus.

    OpenAIRE

    De Bernardis, F; Chiani, P; Ciccozzi, M; Pellegrini, G; Ceddia, T; D'Offizzi, G; Quinti, I; Sullivan, P A; Cassone, A

    1996-01-01

    Isolates of Candida albicans from the oral cavities of subjects at different stages of human immunodeficiency virus (HIV) infection or uninfected controls were examined for (i) production of aspartic proteinase(s), a putative virulence-associated factor(s); (ii) the presence in the fungal genome of two major genes (SAP1 and SAP2) of the aspartic proteinase family; and (iii) experimental pathogenicity in a murine model of systemic infection. It was found that the fungal isolates from symptomat...

  6. Morphological and molecular characterisation, and phylogenetic position of X. browni sp. n., X. penevi sp. n. and two known species of Xiphinema americanum-group (Nematoda, Longidoridae).

    Science.gov (United States)

    Lazarova, Stela; Peneva, Vlada; Kumari, Shesh

    2016-01-01

    Using ribosomal (18S, ITS1, ITS2, D2-D3 expansion segments of 28S rDNA) and mitochondrial (partial cox1 and nad4) DNA markers in a study of several populations of Xiphinema americanum-group from Europe and Morocco, two cryptic species Xiphinema browni sp. n. (formerly reported as Xiphinema pachtaicum) and Xiphinema penevi sp. n. were revealed. The species are described, illustrated and their phylogenetic relationships discussed. The first species is most similar to Xiphinema parasimile and is a member of Xiphinema simile species complex. The phylogenetic reconstructions inferred from three molecular markers (18S, D2-D3 28S rDNA and cox1) showed that Xiphinema penevi sp. n. is part of Xiphinema pachtaicum-subgroup and is closely related to Xiphinema incertum, Xiphinema pachtaicum, Xiphinema parapachydermum, Xiphinema plesiopachtaicum, Xiphinema astaregiense and Xiphinema pachydermum. Also, a separate "Xiphinema simile-subgroup", outside the Xiphinema pachtaicum-subgroup and so far consisting only of the parthenogenetic species Xiphinema simile, Xiphinema parasimile, Xiphinema browni sp. n. and probably Xiphinema vallense was formed. New primers for amplification and sequencing of part of the nad4 mitochondrial gene were designed and used.

  7. Characterization of biomass production, cytology and phenotypes of plants regenerated from embryogenic callus cultures of Pennisetum americanum x P. purpureum (hybrid triploid napiergrass).

    Science.gov (United States)

    Rajasekaran, K; Schank, S C; Vasil, I K

    1986-11-01

    Five hundred and twenty-four plants of a triploid, sexually sterile hybrid napiergrass (Pennisetum americanum x P. purpureum; 3x=21) were regenerated from embryogenic callus cultures obtained from segments of young inflorescences. Replicated field trials were conducted for two consecutive years to compare the biomass yield, phenotype and cytology of tissue culture regenerants (TC) and vegetatively propagated (V) plants. In the first year total biomass yield of TC plants was significantly greater than V plants but there was no significant difference in the second year. TC plants had more tillers compared to V plants. V plants did not show any morphological variability. The TC population also exhibited a high degree of phenotypic stability (96%). There were 23 phenotypic variants in the TC population of 524, most of them being more dwarf and late-flowering. Detailed morphological analysis of the TC-variant plants suggests that they very likely arose from only a few variant cell lines. Cytological analysis indicated stability of the triploid status in randomly selected regenerants. Two of the morphological variants were hexaploids (6x=42). It is concluded that embryogenic callus cultures can provide useful alternative for the rapid propagation of hybrid napier-grass which is commonly propagated by cuttings.

  8. Organic amendments impact the availability of heavy metal(loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor.

    Science.gov (United States)

    Nawab, Javed; Khan, Sardar; Aamir, Muhammad; Shamshad, Isha; Qamar, Zahir; Din, Islamud; Huang, Qing

    2016-02-01

    The amendment of contaminated soil with organic materials is considered to be an environmentally friendly technique to immobilize heavy metal(loid)s and minimize their subsequent bioaccumulation in plants. This study focuses on the effects of different amendment techniques, such as the use of activated carbons (granulated or powder) and farmyard manure at various application rates (2 and 5 %). These techniques were applied on heavy metal(loid)s such as Ni, Cr, Cd, Pb, Mn, Cu, Zn, Fe, Co, and Al that were present in mine-impacted soil and caused bioaccumulation in cultivated plants. The results showed that, compared with the control, almost all the techniques significantly (P ≤ 0.01) reduced the bioavailability of heavy metal(loid)s in the amended soil. The bioaccumulation of heavy metal(loid)s in Penisitum americanum and Sorghum bicolor was significantly (P ≤ 0.01) reduced with all techniques, while Zn and Cd concentrations increased with the use of farmyard manure. Also compared with the control, plant growth was significantly decreased with the use of activated carbons, particularly with powder activated carbons, while farmyard manure (at 5 %) significantly (P ≤ 0.01) increased plant growth. Among the amendment techniques, powdered activated carbons (at 5 %) were best at reducing the bioavailability of heavy metal(loid)s in soil and plant accumulation. However, it negatively affected the growth of selected plant species.

  9. Phospholipase and Aspartyl Proteinase Activities of Candida Species Causing Vulvovaginal Candidiasis in Patients with Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Bassyouni, Rasha H; Wegdan, Ahmed Ashraf; Abdelmoneim, Abdelsamie; Said, Wessam; AboElnaga, Fatma

    2015-10-01

    Few research had investigated the secretion of phospholipase and aspartyl proteinase from Candida spp. causing infection in females with type 2 diabetes mellitus. This research aimed to investigate the prevalence of vulvovaginal candidiasis (VVC) in diabetic versus non-diabetic women and compare the ability of identified Candida isolates to secrete phospholipases and aspartyl proteinases with characterization of their genetic profile. The study included 80 females with type 2 diabetes mellitus and 100 non-diabetic females within the child-bearing period. Candida strains were isolated and identified by conventional microbiological methods and by API Candida. The isolates were screened for their extracellular phospholipase and proteinase activities by culturing them on egg yolk and bovine serum albumin media, respectively. Detection of aspartyl proteinase genes (SAP1 to SAP8) and phospholipase genes (PLB1, PLB2) were performed by multiplex polymerase chain reaction. Our results indicated that vaginal candidiasis was significantly higher among the diabetic group versus nondiabetic group (50% versus 20%, respectively) (p = 0.004). C. albicans was the most prevalent species followed by C. glabrata in both groups. No significant association between diabetes mellitus and phospholipase activities was detected (p = 0.262), whereas high significant proteinase activities exhibited by Candida isolated from diabetic females were found (82.5%) (p = 0.000). Non-significant associations between any of the tested proteinase or phospholipase genes and diabetes mellitus were detected (p > 0.05). In conclusion, it is noticed that the incidence of C. glabrata causing VVC is increased. The higher prevalence of vaginal candidiasis among diabetics could be related to the increased aspartyl proteinase production in this group of patients.

  10. Characterization of the acidic and basic limbs of a bell-shaped pH profile in the inhibitory activity of bromelain inhibitor VI.

    Science.gov (United States)

    Hatano, Ken-ichi; Sawano, Yoriko; Miyakawa, Takuya; Tanokura, Masaru

    2006-03-01

    Bromelain inhibitor VI (BI-VI) is a cysteine proteinase inhibitor from pineapple stem and a unique two-chain inhibitor composed of two distinct domains. BI-VI's inhibitory activity toward the target enzyme bromelain is maximal at pH 4 and shows a bell-shaped pH profile with pKa values of about 2.5 and 5.3. This pH profile is quite different from that of bromelain, which is optimally active around pH 7. In the present article, to characterize the acidic limb, we first expressed the recombinant inhibitors designed to lose two putative hydrogen bonds of Ser7(NH)-Asp28(beta-CO2H) and Lys38(NH)-Asp51(beta-CO2H) and confirmed the existence of the hydrogen bonds by two-dimensional nuclear magnetic resonance (NMR). Moreover, it was revealed that these hydrogen bonds are not the essential electrostatic factor and some ionizable groups would be responsible for the acidic limb in the pH-inhibition profile. On the other hand, to characterize the basic limb, we examined the pH-dependent inhibition using the cysteine proteinase papain, some of whose properties differ from those of bromelain, and compared the data with the corresponding data for bromelain. The result suggests that the basic limb would be affected by some electrostatic factors, probably some carboxyl groups in the target proteinase.

  11. A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: Activation of proteinase-activated receptor 1 and epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lin; Chao, Lee [Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-2211 (United States); Chao, Julie, E-mail: chaoj@musc.edu [Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-2211 (United States)

    2010-02-01

    Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR{sub 1}), and by PAR{sub 1} inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR{sub 1}-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.

  12. Purification, characterization, primary structure, crystallization and preliminary crystallographic study of a serine proteinase from Streptomyces fradiae ATCC 14544.

    Science.gov (United States)

    Kitadokoro, K; Tsuzuki, H; Nakamura, E; Sato, T; Teraoka, H

    1994-02-15

    A proteinase having wide substrate specificity was isolated from Streptomyces fradiae ATCC 14544. This proteinase, which we propose to call SFase-2, was purified from the culture filtrate by S-Sepharose chromatography. The purified enzyme showed an apparent molecular mass of 19 kDa on SDS/PAGE. When synthetic peptides were used as substrates, SFase-2 showed broad substrate specificity. It also hydrolyzed keratin, elastin and collagen as proteinaceous substrates. It was completely inhibited by diisopropylfluorophosphate and chymostatin, but not by tosylphenylalaninechloromethane, tosyllysinechloromethane or EDTA, indicating that it can be classified as a serine proteinase. The matured protein sequence of SFase-2 was determined by a combination of amino acid sequencing and the DNA sequencing of the gene. SFase-2, consisting of 191 amino acids, is a novel proteinase. It showed 76% similarity in the amino acid sequence with Streptomyces griseus proteinase A [Johnson P. and Smillie L. B. (1974) FEBS Lett. 47, 1-6]. For insight into the three-dimensional structure o