WorldWideScience

Sample records for ameliorating oxidative damage

  1. Curcumin ameliorates gastrointestinal dysfunction and oxidative damage in diabetic rats

    Directory of Open Access Journals (Sweden)

    Nitin Indarchandji Kochar

    2014-05-01

    Full Text Available Diabetes is known to be associated with gastrointestinal complications characterized by nausea, vomiting, early satiety, bloating, and abdominal discomfort or pain commonly occurring in the advanced stages of the disease. Curcumin is the lipid-soluble antioxidant obtained from the rhizomes of Curcuma longa Linn, also known as turmeric. Curcumin targets multiple chemotherapeutic and oxidative stress pathways and has demonstrated safety and tolerability in humans, supporting its potential as a therapeutic agent; however, literature lacks conclusive evidence supporting its use as a therapeutic agent for the treatment of diabetes induced gastrointestinal complications. Hence, Curcumin was given in different doses to SD rats after 4 weeks of diabetic GI complication induction. At the end of 4 weeks, significant GI dysfunction characterized by weight loss, delayed gastric emptying and intestinal transit associated with reduction in antioxidant enzyme levels and increased lipid peroxidation was observed.  Upon treatment with Curcumin for further 4 weeks, reversal of GI dysfunction evidenced by restoration of body weight, GI emptying, intestinal transit, and restoration of antioxidant enzyme level and lipid peroxidation proves the beneficial role of Curcumin in diabetes induced GI complications due to its antioxidant potential.     

  2. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.

    Science.gov (United States)

    Cui, Qunli; Li, Xin; Zhu, Hongcan

    2016-02-01

    Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.

  3. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  4. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats.

    Science.gov (United States)

    Benzer, Fulya; Kandemir, Fatih Mehmet; Ozkaraca, Mustafa; Kucukler, Sefa; Caglayan, Cuneyt

    2018-02-01

    Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR-induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR-induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK-MB, LDH, and cTn-I). Curcumin also attenuated activities of Caspase-3, cyclooxygenase-2, inducible nitric oxide synthase, and levels of nuclear factor kappa-B, tumor necrosis factor-α, and interleukin-1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8-OHdG and 3,3'-dityrosine. This study demonstrated that curcumin has a multi-cardioprotective effect due to its antioxidant, anti-inflammatory, and antiapoptotic properties. © 2018 Wiley Periodicals, Inc.

  5. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride.

    Science.gov (United States)

    Adedara, Isaac A; Ojuade, Temini Jesu D; Olabiyi, Bolanle F; Idris, Umar F; Onibiyo, Esther M; Ajeigbe, Olufunke F; Farombi, Ebenezer O

    2017-02-01

    Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.

  6. Kombucha Tea Ameliorates Trichloroethylene Induced Hepatic Damages in Rats via Inhibition of Oxidative Stress and Free Radicals Induction

    International Nuclear Information System (INIS)

    Gharib, O.A.; Gharib, M.A.

    2008-01-01

    Kombucha Tea (KT) is reported to exhibit a wide variety of biological effects, including antioxidant. Evidence shows the important role of oxidative stress in the hepatic damage. The aim of this study is to investigate the possible protective effects of oral administration of KT in rats with trichloroethylene (TCE)-induced damage for ten consecutive days. Hepatic damage was evaluated by measuring total free radicals levels, biochemical and histological examinations. Serum gamma glutamyl transferase (GGT) activity (the hepatic damage marker), total protein, albumin and globulin as well as malonaldehyde (MDA), glutathione (GSH) content, nitric oxide (NO) concentration were evaluated in liver tissue homogenates. Total free radicals concentration in blood was examined by electron spin resonance (ESR). Total protein, DNA concentration, cell number and cell size in liver tissues were also examined. The rats orally administrated with TCE for ten days indicates hepatic damage changes, an increase in blood total free radicals concentration was observed, serum GGT activity, liver MDA, NO levels, total protein and decreased GSH content, DNA concentration and cell number. This accompanied with an increase in cell size of liver tissues, whereas KT reversed these effects. Furthermore, KT inhibits the concentration of total free radicals in blood and decreasing the increment of MDA and NO concentration. Histological studies reveal partial healing in those rats treated by KT after oral administration with TCE. The present results suggest that KT ameliorates TCE induced hepatic damage in rats probably due to its content of glucuronic, acetic acid and B vitamins via inhibition of oxidative stress and total free radicals

  7. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    Science.gov (United States)

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  8. Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: Mechanistic and therapeutic strategies.

    Science.gov (United States)

    Alam, Md Maroof; Iqbal, Sarah; Naseem, Imrana

    2015-10-15

    Increasing evidence in both experimental and clinical studies suggests that oxidative stress play a major role in the pathogenesis of type-2 diabetes mellitus (T2DM). Abnormally high levels of free radicals and the simultaneous decline of antioxidant defence mechanisms can lead to damage of cellular organelles and enzymes. Riboflavin constitutes an essential nutrient for humans and is also an important food additive for animals. It is a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) which serves as a coenzyme for several enzymes. The aim of this study was to observe the effects of illuminated and non-illuminated riboflavin in a diabetic mice model. The protocol included treatment of diabetic mice with illuminated RF and a control set without light. To our surprise, group receiving RF without light gave better results in a dose dependent manner. Significant amelioration of oxidative stress was observed with an increased glucose uptake in skeletal muscles and white adipose tissue. Histological studies showed recovery in the liver and kidney tissue injury. Cellular DNA damage was also recovered. Therefore, it is suggested that supplementation with dietary riboflavin might help in the reduction of diabetic complications. A possible mechanism of action is also proposed. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Pradeepkiran Jangampalli Adi

    Full Text Available This study was aimed to examine the protective effects of supplementation with calcium + zinc (Ca + Zn or vitamin E (Vit-E on Cd-induced renal oxidative damage. Young albino Wistar rats (180 ± 10 g (n = 6 control rats, Cd, Cd + Ca + Zn, and Cd + Vit-E experimental groups and the experimental period was 30 days. Rats were exposed to Cd (20 mg/kg body weight alone treated as Cd treated group and the absence or presence of Ca + Zn (2 mg/kg each or Vit-E (20 mg/kg body weight supplementation treated as two separate groups. The activities of the stress marker enzymes superoxide dismutase (SOD, catalase (CAT, glutathione reductase (GR, glutathione peroxidase (GPx, glutathione-S-transferase (GST and lipid peroxidase (LPx were determined in renal mitochondrial fractions of experimental rats. We observed quantitative changes in SOD isoenzymatic patterns by non-denaturing PAGE analysis, and quantified band densities. These results showed that Cd exposure leads to decreases in SOD, CAT, GR, and GPx activities and a concomitant increase in LPx and GST activities. Ca + Zn and Vit-E administration with Cd significantly reversed Cd-induced perturbations in oxidative stress marker enzymes. However, Vit-E showed more inhibitory activity against Cd than did Ca + Zn, and it protected against Cd-induced nephrotoxicity. Keywords: Cadmium (Cd, Oxidative stress, Lipid peroxidation, Nephrotoxicity, PAGE analysis

  10. Andrographis paniculata ameliorates carbon tetrachloride (CCl(4))-dependent hepatic damage and toxicity: diminution of oxidative stress.

    Science.gov (United States)

    Koh, Pei Hoon; Mokhtar, Ruzaidi Azli Mohd; Iqbal, Mohammad

    2011-01-01

    Andrographis paniculata (hempedu bumi) is a plant that possesses many medicinal values in treating several diseases and for health care maintenance. However, its hepatoprotective activity and mechanism of action have not been fully investigated. Therefore, this study aimed to evaluate the hepatoprotective effects of A. paniculata and its mechanism of action in rats. Carbon tetrachloride (CCl(4)) challenge of rats at a dose of 1.2 ml/kg body weight-induced oxidative stress in the liver. This was evidenced by augmentation in lipid peroxidation, which was accompanied by a decrease in the activities of antioxidant enzymes and depletion in the level of reduced glutathione (P paniculata (P paniculata to scavenge the 2,2-Diphenyl-2-picrylhydrazyl radical was determined through its EC(50) value. The EC(50) value of A. paniculata was 583.60 ± 4.25 µg/ml. In addition, A. paniculata was found to contain 65.37 ± 1.20 mg/g total phenolics expressed as gallic acid equivalent. From these studies, it is concluded that A. paniculata could be used as a hepatoprotective agent and possesses the potential to treat or prevent degenerative diseases where oxidative stress is implicated.

  11. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation.

    Science.gov (United States)

    Gadelha, Cibelle Gomes; Miranda, Rafael de Souza; Alencar, Nara Lídia M; Costa, José Hélio; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2017-05-01

    Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na + and Cl - than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H 2 O 2 ) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats.

    Science.gov (United States)

    Karimi-Khouzani, Omid; Heidarian, Esfandiar; Amini, Sayed Asadollah

    2017-08-01

    Fluoxetine-induced liver damage is a cause of chronic liver disease. In the present study the hepatoprotective effects of gallic acid against fluoxetine-induced liver damage were examined. Forty-eight male rats were divided into six groups as follow: group 1, the control group; group 2, rats receiving fluoxetine (24mg/kg bw daily, po) without treatment; group 3, rats receiving 24mg/kg bw fluoxetine, treated with 50mg/kg bw silymarin and groups 4, 5, and 6 in which gallic acid (50, 100, and 200mg/kg bw, po, respectively) was prescribed after the consumption of fluoxetine. The histopathological changes of hepatic tissues were checked out. Fluoxetine caused a significant increase in the levels of serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), lipid profiles, urea, fasting blood sugar (FBS), creatinine (Cr), protein carbonyl (PC) content, malondialdehyde (MDA), and liver TNF-α as an inflammatory element. Also, the obtained results of group 2 revealed a significant decline in ferric reducing ability of plasma (FRAP), liver catalase (CAT), superoxide dismutase (SOD), and vitamin C levels. The treatment with gallic acid showed significant ameliorations in abnormalities of fluoxetine-induced liver injury as represented by the improvement of hepatic CAT, SOD activities, vitamin C levels, serum biochemical parameters, and histopathological changes, in addition to the recovery of antioxidant defense system status. Gallic acid has inhibitory effects on fluoxetine-induced liver damage. The effect of gallic acid is derived from free radical scavenging properties and the anti-inflammatory effect related to TNF-α. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  13. Coagulin-L ameliorates TLR4 induced oxidative damage and immune response by regulating mitochondria and NOX-derived ROS

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Sukka Santosh [Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Chauhan, Parul [Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Maurya, Preeti [Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India); Saini, Deepika [Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Yadav, Prem Prakash, E-mail: pp_yadav@cdri.res.in [Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India); Barthwal, Manoj Kumar, E-mail: manojbarthwal@cdri.res.in [Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India)

    2016-10-15

    Withanolides possess diverse biological and pharmacological activity but their immunomodulatory function is less realized. Hence, coagulin-L, a withanolide isolated from Withania coagulans Dunal has been studied for such an effect in human and murine cells, and mice model. Coagulin-L (1, 3, 10 μM) exhibited immunomodulatory effect by suppressing TLR4 induced immune mediators such as cytokines (GMCSF, IFNα, IFNγ, IL-1α, IL-1Rα, IL-1β, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12 (p40/p70), IL-13, IL-15, IL-17), chemokines (IL-8/CXCL8, MIG/CXCL9, IP-10/CXCL10, KC, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5, eotaxin/CCL11), growth factors (FGF-basic, VEGF), nitric oxide and intracellular superoxide. Mechanistically, coagulin-L abrogated LPS induced total and mitochondrial ROS generation, NOX2, NOX4 mRNA expression, IRAK and MAPK (p38, JNK, ERK) activation. Coagulin-L also attenuated IκBα degradation, which prevented NFκB downstream iNOS expression and pro-inflammatory cytokine release. Furthermore, coagulin-L (10, 25, 50 mg/kg, p.o.), undermined the LPS (10 mg/kg, i.p.) induced endotoxemia response in mice as evinced from diminished cytokine release, nitric oxide, aortic p38 MAPK activation and endothelial tissue impairment besides suppressing NOX2 and NOX4 expression in liver and aorta. Moreover, coagulin-L also alleviated the ROS mediated oxidative damage which was assessed through protein carbonyl, lipid hydroperoxide, 8-isoprostane and 8-hydroxy-2-deoxyguanosine quantification. To extend, coagulin-L also suppressed carrageenan-induced paw edema and thioglycollate-induced peritonitis in mice. Therefore, coagulin-L can be of therapeutic importance in pathological conditions induced by oxidative damage. - Highlights: • Coagulin-L demonstrates immunomodulatory effects in vivo and in vitro by modulating ROS. • Coagulin-L modulates TH1/TH2/TH17 immunokines. • Coagulin-L exerts immunomodulatory effect by regulating TLR4-IRAK- ROS

  14. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver

    Directory of Open Access Journals (Sweden)

    Zeba Farooqui

    Full Text Available Cisplatin (CP is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p. respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism. Keywords: Cisplatin, Nigella sativa oil, Carbohydrate metabolism, Antioxidant

  15. Possible Ameliorative Effect of Chicory Extract (Cichorium Intybus) on Radiation-Induced Oxidative Damage in Rats Heart

    International Nuclear Information System (INIS)

    Osman, N. N; Farag, M. F. S.; Darwish, M. M

    2011-01-01

    The radioprotective effect of aqueous leaf extract of Chicorium intybus (Chicory) against radiation induced-oxidative stress and changes in the levels of 150-180 g were divided into four groups. Group 1: control animals, group 2: animals orally administrated with chicory extract at a daily dose of 250 mg/kg b.wt/day for four weeks, group 3: animals exposed to whole body gamma irradiation (6.5 Gy), group 4: animals orally administrated with chicory extract two weeks before and two weeks after irradiation. Serum level of creatinine phosphokinase (CPK), lactate dehydrogenase (LDH), serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lipid profile was measured.also concentration of superoxide dismutase (SOD), glutathione (GSH), Catalase (CAT) and TBARS level was estimated in the cardiac tissue. The results showed decreased body weight and heart weight in irradiated animals. Compared to the control normal rats, irradiated rats had higher total cholesterol, triglycerides, low-density lipoprotein-cholesterol (LDL-C), serum creatinine phosphokinase(CPK), lactate dehydrogenase (LDH), serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lower high-density lipoprotein-cholesterol (HDL-C) levels. Moreover, cardiac tissue TBARS was markedly increased while SOD, GSH and CAT were significantly decreased. Oral and heart weights, serum cardiac enzymes and lipid profile. Cardiac GSH, SOD and CAT were significantly increased while TBARS was markedly reduced, membrane bound enzymes in rats' heart was investigated. Rats weighing about administration of chicory extract at doses of 250 mg/kg b.wt. improved the body compared to irradiated rats. These results may suggest a strong antioxidant effect of chicory, which was effective in mitigating adverse effect of γ irradiation on animals

  16. Lycopene ameliorates atrazine-induced oxidative damage in adrenal cortex of male rats by activation of the Nrf2/HO-1 pathway.

    Science.gov (United States)

    Abass, Marwa Ahmed; Elkhateeb, Shereen Ahmed; Abd El-Baset, Samia Adel; Kattaia, Asmaa Alhosiny; Mohamed, Eman Mosallam; Atteia, Hebatallah Husseini

    2016-08-01

    Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.

  17. Submaximal exercise training, more than dietary selenium supplementation, improves antioxidant status and ameliorates exercise-induced oxidative damage to skeletal muscle in young equine athletes.

    Science.gov (United States)

    White, S H; Warren, L K

    2017-02-01

    Exercise is associated with increased production of reactive oxygen species (ROS) as metabolism is upregulated to fuel muscle activity. If antioxidant systems become overwhelmed, ROS can negatively affect health and performance. Adaptation to exercise through regular training has been shown to improve defense against oxidative insult. Given selenium's role as an antioxidant, we hypothesized that increased Se intake would further enhance skeletal muscle adaptations to training. Quarter Horse yearlings (18 ± 0.2 mo; 402 ± 10 kg) were randomly assigned to receive either 0.1 or 0.3 mg Se/kg DM and placed in either an untrained or a trained (30 min walk-trot-canter, 4 d/wk) group for 14 wk. Phase 1 (wk 1 to 8) consisted of 4 treatments: trained and fed 0.1 mg Se/kg DM through wk 14 (CON-TR; n = 10), trained and fed 0.3 mg Se/kg DM through wk 14 (HIGH-TR; n = 10), untrained and fed 0.1 mg Se/kg DM through wk 14 (CON-UN; n = 5), or untrained and fed 0.3 mg Se/kg DM through wk 14 (HIGH-UN; n = 5). During Phase 2 (wk 9 to 14), dietary Se level in half of the trained horses was reversed, resulting in 6 treatments: CON-TR (n = 5), trained and fed 0.1 mg/kg Se in Phase 1 and then switched to 0.3 mg/kg Se for Phase 2 (ADD-TR; n = 5), trained and fed 0.3 mg/kg Se in Phase 1 and then switched to 0.1 mg/kg Se for Phase 2 (DROP-TR; n = 5), HIGH-TR (n = 5), CON-UN (n = 5), or HIGH-UN (n = 5). All horses underwent a 120-min submaximal exercise test (SET) at the end of Phase 1 (SET 1) and 2 (SET 2). Blood samples and biopsies from the middle gluteal muscle were collected before and after each phase of the study and in response to each SET and analyzed for markers of oxidative damage and antioxidant enzyme activity. In both phases, serum Se was higher (P creatine kinase (CK) activity was lower in trained horses than in untrained horses (P < 0.0001), indicating less muscle damage, but plasma lipid hydroperoxides (LPO) and muscle GPx and SOD activities were unaffected by training or Se

  18. Betacyanins from Portulaca oleracea L. ameliorate cognition deficits and attenuate oxidative damage induced by D-galactose in the brains of senescent mice.

    Science.gov (United States)

    Wang, Chang-Quan; Yang, Gui-Qin

    2010-06-01

    This experiment was designed to assess the protective effect of betacyanins from Portulaca oleracea L. against the D-galactose (D-gal)-induced neurotoxicity in mice. Betacyanins from Portulaca oleracea markedly reversed the D-gal-induced learning and memory impairments, as measured by behavioral tests. The activities of superoxide dismutases (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in D-gal-treated mice were enhanced, while the content of the lipid peroxidation product malondialdehyde (MDA) was decreased by betacyanin administration. Furthermore, significant negative correlations were found between mouse latency in finding the platform and the activities of SOD, CAT GR and GPx in the mouse brain, but the level of MDA correlated positively with the latency. These results suggest that the neuroprotective effect of betacyanins against D-gal-induced neurotoxicity might be caused, at least in part, by an increase in the activities of antioxidant enzymes with a reduction in lipid peroxidation. In comparison with vitamin C (VC), the betacyanins had a more pronounced effect on ameliorating cognition deficits in mice.

  19. Purple Sweet Potato Color Ameliorates Cognition Deficits and Attenuates Oxidative Damage and Inflammation in Aging Mouse Brain Induced by D-Galactose

    Directory of Open Access Journals (Sweden)

    Qun Shan

    2009-01-01

    Full Text Available Purple sweet potato color (PSPC, a naturally occurring anthocyanin, has a powerful antioxidant activity in vitro and in vivo. This study explores whether PSPC has the neuroprotective effect on the aging mouse brain induced by D-galactose (D-gal. The mice administrated with PSPC (100 mg/kg.day, 4 weeks, from 9th week via oral gavage showed significantly improved behavior performance in the open field and passive avoidance test compared with D-gal-treated mice (500 mg/kg.day, 8 weeks. We further investigate the mechanism involved in neuroprotective effects of PSPC on mouse brain. Interestingly, we found, PSPC decreased the expression level of glial fibrillary acidic protein (GFAP, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2, inhibited nuclear translocation of nuclear factor-kappaB (NF-κB, increased the activity of copper/zinc superoxide dismutase (Cu/Zn-SOD and catalase (CAT, and reduced the content of malondialdehyde (MDA, respectively. Our data suggested that PSPC attenuated D-gal-induced cognitive impairment partly via enhancing the antioxidant and anti-inflammatory capacity.

  20. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature

    Directory of Open Access Journals (Sweden)

    Abbaszadeh A.

    2017-06-01

    Full Text Available Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/ biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses

  1. Lactobacillus plantarum MYS6 Ameliorates Fumonisin B1-Induced Hepatorenal Damage in Broilers

    Directory of Open Access Journals (Sweden)

    B. V. Deepthi

    2017-11-01

    Full Text Available Fumonisin B1 (FB1, a mycotoxin produced by Fusarium species is a predominant Group 2B carcinogen occurring in maize and maize-based poultry feeds. It is shown to be nephrotoxic, hepatotoxic, neurotoxic, and immunosuppressing in animals. In this study, we report the ameliorating effects of a probiotic strain, Lactobacillus plantarum MYS6 on FB1-induced toxicity and oxidative damage in broilers. A 6-week dietary experiment consisting of 48 broilers was performed in six treatment groups. Probiotic treatment (109 cells/mL involved pre-colonization of broilers with L. plantarum MYS6 while co-administration treatment involved supplementation of probiotic and FB1-contaminated diet (200 mg/Kg feed simultaneously. At the end of the treatment period, growth performance, hematology, serum biochemistry, and markers of oxidative stress in serum and tissue homogenates were evaluated in all the broilers. The histopathological changes in hepatic and renal tissues were further studied. The results demonstrated that administration of L. plantarum MYS6 efficiently improved the feed intake, body weight and feed conversion ratio in broilers. It mitigated the altered levels of hematological indices such as complete blood count, hemoglobin, and hematocrit. Serum parameters such as serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, creatinine, cholesterol, triglycerides, and albumin were significantly restored after administering the probiotic in FB1-intoxicated broilers. Additionally, L. plantarum MYS6 alleviated the levels of oxidative stress markers in serum and tissue homogenate of liver. The histopathological data of liver and kidney further substantiated the overall protection offered by L. plantarum MYS6 against FB1-induced cellular toxicity and organ damage in broilers. Our results indicated that co-administration of probiotic along with the toxin had better effect in detoxification compared to its pre-colonization in broilers

  2. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1

    Directory of Open Access Journals (Sweden)

    Yinliang Zhang

    2017-01-01

    . Conclusions: Celastrol ameliorates NAFLD by decreasing lipid synthesis and improving the anti-oxidative and anti-inflammatory status. And Sirt1 has an important role in Celastrol-ameliorating liver metabolic damage caused by HFD. Keywords: Nonalcoholic fatty liver disease, Celastrol, Sirt1, Lipid metabolism, Chronic inflammation, Oxidative stress

  3. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis.

    Science.gov (United States)

    Zhai, Mengen; Li, Buying; Duan, Weixun; Jing, Lin; Zhang, Bin; Zhang, Meng; Yu, Liming; Liu, Zhenhua; Yu, Bo; Ren, Kai; Gao, Erhe; Yang, Yang; Liang, Hongliang; Jin, Zhenxiao; Yu, Shiqiang

    2017-09-01

    Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide-dependent histone deacetylases. Sirtuin-3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress-related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl-2 expression and decreased Bax, Caspase-3, and cleaved Caspase-3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3-targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons

  4. Resveratrol Ameliorates Tau Hyperphosphorylation at Ser396 Site and Oxidative Damage in Rat Hippocampal Slices Exposed to Vanadate: Implication of ERK1/2 and GSK-3β Signaling Cascades.

    Science.gov (United States)

    Jhang, Kyoung A; Park, Jin-Sun; Kim, Hee-Sun; Chong, Young Hae

    2017-11-08

    The objective of this study was to investigate the effect of resveratrol (a natural polyphenolic phytostilbene) on tau hyperphosphorylation and oxidative damage induced by sodium orthovanadate (Na 3 VO 4 ), the prevalent species of vanadium (vanadate), in rat hippocampal slices. Our results showed that resveratrol significantly inhibited Na 3 VO 4 -induced hyperphosphorylation of tau at the Ser396 (p-S396-tau) site, which is upregulated in the hippocampus of Alzheimer's disease (AD) brains and principally linked to AD-associated cognitive dysfunction. Subsequent mechanistic studies revealed that reduction of ERK1/2 activation was involved in the inhibitory effect of resveratrol by inhibiting the ERK1/2 pathway with SL327 mimicking the aforementioned effect of resveratrol. Moreover, resveratrol potently induced GSK-3β Ser9 phosphorylation and reduced Na 3 VO 4 -induced p-S396-tau levels, which were markedly replicated by pharmacologic inhibition of GSK-3β with LiCl. These results indicate that resveratrol could suppress Na 3 VO 4 -induced p-S396-tau levels via downregulating ERK1/2 and GSK-3β signaling cascades in rat hippocampal slices. In addition, resveratrol diminished the increased extracellular reactive oxygen species generation and hippocampal toxicity upon long-term exposure to Na 3 VO 4 or FeCl 2 . Our findings strongly support the notion that resveratrol may serve as a potential nutraceutical agent for AD.

  5. Role of hydrotherapy in the amelioration of oxidant-antioxidant status in rheumatoid arthritis patients.

    Science.gov (United States)

    Mateen, Somaiya; Moin, Shagufta; Khan, Abdul Q; Zafar, Atif; Fatima, Naureen; Shahzad, Sumayya

    2017-06-14

    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease. Reactive oxygen species (ROS) are involved in the pathophysiology of RA. Moderate intensity exercises have been reported to have anti-oxidant and anti-inflammatory effects. The aim of this study was to evaluate the effect of hydrotherapy on oxidant-antioxidant status in RA patients. Forty RA patients and 30 age- and sex-matched healthy controls were included in this study. RA patients were subdivided into two groups: the first group (n = 20) received treatment with conventional RA drugs, while the second group (n = 20) received hydrotherapy along with the conventional drugs for a period of 12 weeks. Disease Activity Score of 28 joints (DAS-28), ROS level, protein oxidation, lipid peroxidation, DNA damage and the activities of antioxidant enzymes were evaluated before and after 12 weeks of treatment. RA patients showed a significant change in the oxidative stress biomarkers (ROS, P hydrotherapy has decreased protein, lipid and DNA oxidation by increasing the activities of antioxidant enzymes (SOD and GPx). Our results indicate that hydrotherapy along with drugs has reduced the severity of disease (DAS-28) by ameliorating the oxidant-antioxidant status in RA patients. Thus, in addition to conventional drugs, RA patients should be advised to have hydrotherapy (moderate intensity exercise) in their treatment regimen. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  6. Role of phenolics from Spondias pinnata bark in amelioration of iron overload induced hepatic damage in Swiss albino mice.

    Science.gov (United States)

    Chaudhuri, Dipankar; Ghate, Nikhil Baban; Panja, Sourav; Mandal, Nripendranath

    2016-07-26

    Crude Spondias pinnata bark extract was previously assessed for its antioxidant, anticancer and iron chelating potentials. The isolated compounds gallic acid (GA) and methyl gallate (MG) were evaluated for their curative potential against iron overload-induced liver fibrosis and hepatocellular damage. In vitro iron chelation property and in vivo ameliorating potential from iron overload induced liver toxicity of GA and MG was assessed by different biochemical assays and histopathological studies. MG and GA demonstrated excellent reducing power activities but iron chelation potential of MG is better than GA. Oral MG treatment in mice displayed excellent efficacy (better than GA) to significantly restore the levels of liver antioxidants, serum markers and cellular reactive oxygen species in a dose-dependent fashion. Apart from these, MG exceptionally prevented lipid peroxidation and protein oxidation whereas GA demonstrated better activity to reduce collagen content, thereby strengthening its position as an efficient drug against hepatic damage/fibrosis, which was further supported by histopathological studies. Alongside, MG efficiently eliminated the cause of liver damage, i.e., excess iron, by chelating free iron and reducing the ferritin-bound iron. The present study confirmed the curative effect of GA and MG against iron overload hepatic damage via their potent antioxidant and iron-chelating potential.

  7. Ameliorative Effect of Gallic Acid on Cyclophosphamide-Induced Oxidative Injury and Hepatic Dysfunction in Rats

    Science.gov (United States)

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Ola, Olaniyi Solomon; Adeyemo, Oluwatobi Adewumi

    2015-01-01

    Cyclophosphamide (CP), a bifunctional alkylating agent used in chemotherapy has been reported to induce organ toxicity mediated by generation of reactive oxygen species and oxidative stress. Gallic acid (GA), a phenolic substance, is a natural antioxidant with proven free radical scavenging activity and offers protection against oxidative damage. This research study was designed to investigate the ameliorative effect of GA against CP-induced toxicity in rats. Twenty-five male Wistar rats (180–200 g) were randomized into five treatment groups: (A) control, (B) CP, 2 mg/kg body weight (b.w.), (C) pre-treatment with GA (20 mg/kg b.w.) for seven days followed by CP (2 mg/kg b.w.) for seven days, (D) co-treatment with GA (20 mg/kg b.w) and CP (2 mg/kg b.w.) for seven days, and (E) GA (20 mg/kg b.w.) for seven days. CP induced marked renal and hepatic damages as plasma levels of urea, creatinine, bilirubin and activities of AST, ALT, ALP and GGT were significantly elevated (p acid. PMID:29083393

  8. Oxidative DNA damage & repair: An introduction.

    Science.gov (United States)

    Cadet, Jean; Davies, Kelvin J A

    2017-06-01

    This introductory article should be viewed as a prologue to the Free Radical Biology & Medicine Special Issue devoted to the important topic of Oxidatively Damaged DNA and its Repair. This special issue is dedicated to Professor Tomas Lindahl, co-winner of the 2015 Nobel Prize in Chemistry for his seminal discoveries in the area repair of oxidatively damaged DNA. In the past several years it has become abundantly clear that DNA oxidation is a major consequence of life in an oxygen-rich environment. Concomitantly, survival in the presence of oxygen, with the constant threat of deleterious DNA mutations and deletions, has largely been made possible through the evolution of a vast array of DNA repair enzymes. The articles in this Oxidatively Damaged DNA & Repair special issue detail the reactions by which intracellular DNA is oxidatively damaged, and the enzymatic reactions and pathways by which living organisms survive such assaults by repair processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle

    Science.gov (United States)

    Tripathi, Durgesh K.; Mishra, Rohit K.; Singh, Swati; Singh, Samiksha; Vishwakarma, Kanchan; Sharma, Shivesh; Singh, Vijay P.; Singh, Prashant K.; Prasad, Sheo M.; Dubey, Nawal K.; Pandey, Avinash C.; Sahi, Shivendra; Chauhan, Devendra K.

    2017-01-01

    The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (Fv/Fm and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate–glutatione cycle (AsA–GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA–GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA–GSH cycle. PMID:28220127

  10. Using of Coffee and Cardamom Mixture to Ameliorate Oxidative Stress Induced in irradiated Rats

    International Nuclear Information System (INIS)

    Hamza, R.G.; Osman, N.N.

    2013-01-01

    Human exposure to ionizing radiation induced overproduction of free radicals leading to oxidative stress. This study aimed to evaluate the possibility of using of coffee and cardamom mixture; as natural antioxidant compounds ; to ameliorate oxidative stress in rats induced by exposure to ionizing radiation. Phenolic contents in coffee and essential oils in cardamom were identified by using HPLC chromatography and GC/MS analysis. Four groups of adult male rats were used; the control group (A), the second group (B) received orally the mixture extract of coffee and cardamom (60 mg/100g body weight) for 8 weeks, the third group (C) irradiated (6 Gy) and the fourth group (D) received orally the mixture extract for 8 weeks and exposed to radiation at the 4th week. The results revealed that the administration of mixture extract of coffee and cardamom to rats significantly reduced the damage effect induced by irradiation via the adjustment of the antioxidant status, decreasing of malondialdehyde content and the subsequent amending of different biochemical parameters as well as some hormones. Accordingly, it is possible to indicate that coffee-cardamom reduced the radiation exposure induced oxidative stress.

  11. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  12. Curcumin Attenuates Methotrexate-Induced Hepatic Oxidative Damage in Rats

    International Nuclear Information System (INIS)

    HEMEIDA, R.A.M.; MOHAFEZ, O.M.

    2008-01-01

    In the present study, we have addressed the ability of curcumin to suppress MTX-induced liver damage. Hepatotoxicity was induced by injection of a single dose of MTX (20 mg/kg I.P.). MTX challenge induced liver damage that was well characterized histopathologically and biochemically. MTX increased relative liver/body weight ratio. Histologically, MTX produced fatty changes in hepatocytes and sinusoidal lining cells, mild necrosis and inflammation. Biochemically, the test battery entailed elevated activities of serum ALT and AST. Liver activities of superoxide dismutase (SOD), catalase (CAT) and level of reduced glutathione (GSH), were notably reduced, while lipid peroxidation, expressed as malondialdhyde (MDA) level was significantly increased. Administration of curcumin (100mg/kg, I.P.) once daily for 5 consecutive days after MTX challenge mitigated the injurious effects of MTX and ameliorated all the altered biochemical parameters. These results showed that administration of curcumin decreases MTX-induced liver damage probably via regulation of oxidant/anti-oxidant balance. In conclusion, the present study indicates that curcumin may be of therapeutic benefit against MTX-cytotoxicity.

  13. Experimental study of oxidative DNA damage

    DEFF Research Database (Denmark)

    Loft, Steffen; Deng, Xin-Sheng; Tuo, Jingsheng

    1998-01-01

    Animal experiments allow the study of oxidative DNA damage in target organs and the elucidation of dose-response relationships of carcinogenic and other harmful chemicals and conditions as well as the study of interactions of several factors. So far the effects of more than 50 different chemical ...

  14. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    Directory of Open Access Journals (Sweden)

    Zacharias E. Suntres

    2011-01-01

    Full Text Available Reactive oxygen species (ROS, including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.

  15. Inflammation, oxidative DNA damage, and carcinogenesis

    International Nuclear Information System (INIS)

    Lewis, J.G.; Adams, D.O.

    1987-01-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is though that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. The authors and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H 2 O 2 and oxidized lipid products. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin that C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H 2 O 2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice. These data support the hypothesis that inflammation and the release of genotoxic oxidants may be one mechanism whereby initiated cells receive further genetic insults. They also further complicate risk assessment by suggesting that some environmental agents may work indirectly by subverting host systems to induce damage rather than maintaining homeostasis

  16. Edaravone ameliorates compression-induced damage in rat nucleus pulposus cells.

    Science.gov (United States)

    Lin, Hui; Ma, Xuan; Wang, Bai-Chuan; Zhao, Lei; Liu, Jian-Xiang; Pu, Fei-Fei; Hu, Yi-Qiang; Hu, Hong-Zhi; Shao, Zeng-Wu

    2017-11-15

    Edaravone is a strong free radical scavenger most used for treating acute ischemic stroke. In this study we investigated the protective effects and underlying mechanisms of edaravone on compression-induced damage in rat nucleus pulposus (NP) cells. Cell viability was determined using MTT assay methods. NP cell apoptosis was measured by Hoechst 33,258 staining and Annexin V/PI double staining. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and intracellular calcium ([Ca 2+ ] i ) were determined by fluorescent probes DCFH-DA, JC-1 and Fluo-3/AM, respectively. Apoptosis-related proteins (cleaved caspase-3, cytosolic cytochrome c, Bax and Bcl-2) and extracellular matrix proteins (aggrecan and collagen II) were analyzed by western blot. Edaravone attenuated the compression-induced decrease in viability of NP cells in a dose-dependent manner. 33,258 and Annexin V/PI double staining showed that edaravone protected NP cells from compression-induced apoptosis. Further studies confirmed that edaravone protected NP cells against compression-induced mitochondrial pathway of apoptosis by inhibiting overproduction of ROS, collapse of MMP and overload of [Ca 2+ ] i . In addition, edaravone promoted the expression of aggrecan and collagen II in compression-treated NP cells. These results strongly indicate that edaravone ameliorates compression-induced damage in rat nucleus pulposus cells. Edaravone could be a potential new drug for treatment of IDD. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. ( Artemisia absinthium ) Extract On Oxidative Stress In Ameliorating ...

    African Journals Online (AJOL)

    exposure related disease. The aim of the study was to investigate the effect of aqueous extract of wormwood (Artemisia absinthium) on oxidative stress in rats protractedly exposed to lead. Aqueous extract of wormwood plant was administered ...

  18. Lipoic acid in combination with a chelator ameliorates lead-induced peroxidative damages in rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sivaprasad, R.; Nagaraj, M.; Varalakshmi, P. [Department of Medical Biochemistry, University of Madras (Taramani), Chennai 600 113 (India)

    2002-08-01

    The deleterious effect of lead has been attributed to lead-induced oxidative stress with the consequence of lipid peroxidation. The present study was designed to investigate the combined effect of DL-{alpha}-lipoic acid (LA) and meso-2,3-dimercaptosuccinic acid (DMSA) on lead-induced peroxidative damages in rat kidney. The increase in peroxidated lipids in lead-poisoned rats was accompanied by alterations in antioxidant defence systems. Lead acetate (Pb, 0.2%) was administered in drinking water for 5 weeks to induce lead toxicity. LA (25 mg/kg body weight per day i.p) and DMSA (20 mg/kg body weight per day i.p) were administered individually and also in combination during the sixth week. Nephrotoxic damage was evident from decreases in the activities of {gamma}-glutamyl transferase and N-acetyl {beta}-D-glucosaminidase, which were reversed upon combined treatment with LA and DMSA. Rats subjected to lead intoxication showed a decline in the thiol capacity of the cell, accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione metabolizing enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione-S-transferase). Supplementation with LA as a sole agent showed considerable changes over oxidative stress parameters. The study has highlighted the combined effect of both drugs as being more effective in reversing oxidative damage by bringing about an improvement in the reductive status of the cell. (orig.)

  19. Immunochemical detection of oxidatively damaged DNA

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Šrám, Radim

    2012-01-01

    Roč. 46, č. 4 (2012), s. 492-522 ISSN 1071-5762 R&D Projects: GA MŽP(CZ) SP/1B3/50/07; GA MŠk 2B08005; GA ČR GAP503/11/0084 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : oxidative DNA damage * ELISA * immunohistochemistry Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.279, year: 2012

  20. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress

    Directory of Open Access Journals (Sweden)

    He Peiyuan

    2017-01-01

    Full Text Available The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD. Alcohol was administered to healthy female rats starting from 6% (v/v and gradually increased to 20% (v/v by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT] were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity. Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.

  1. Moringa oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice.

    Science.gov (United States)

    Tang, Yujiao; Choi, Eun-Ju; Han, Weon Cheol; Oh, Mirae; Kim, Jin; Hwang, Ji-Young; Park, Pyo-Jam; Moon, Sang-Ho; Kim, Yon-Suk; Kim, Eun-Kyung

    2017-05-01

    Recent reports have shown the antidiabetic effect of Moringa oleifera from various parts of the world. However, M. oleifera from Cambodia has never determined. Therefore, the aim of this study was to assess the antidiabetic effect of M. oleifera extract from Cambodia. The leaf ethanolic extract contained flavonoids (31.90 mg/mL), polyphenols (53.03 mg/mL), lycopene (0.042 mg/mL), and ß-carotene (0.170 mg/mL), and possessed 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxide, and hydroxyl radical scavenging activities of 92.40, 99.25, and 83.57 TE/μM at 1 mg/mL, respectively. Db/db mice were orally administered the leaf extract (150 mg/kg/day) for 5 weeks. M. oleifera treatment significantly ameliorated the altered fasting plasma glucose (from 483 to 312 mg/dL), triglyceride (from 42.12 to 23.00 mg/dL), and low-density lipoprotein cholesterol (from 107.21 to 64.25 mg/dL) compared to control group, and increased the insulin levels from 946 ± 92 to 1678 ± 268 pg/mL. The histopathological damage and expression levels of tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, cyclooxygenase-2, and inducible nitric oxide synthase in renal tissue decreased. These results indicate the potential antidiabetic benefits of M. oleifera ethanolic leaf extract.

  2. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young [Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwon, Kang-Beom [Department of Oriental Medical Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwak, Tae Hwan [PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon 305-500 (Korea, Republic of); Choe, Seong-Kyu; Park, Raekil [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine after cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.

  4. Internalization of Staphylococcus aureus in Lymphocytes Induces Oxidative Stress and DNA Fragmentation: Possible Ameliorative Role of Nanoconjugated Vancomycin

    Directory of Open Access Journals (Sweden)

    Subhankari Prasad Chakraborty

    2011-01-01

    Full Text Available Staphylococcus aureus is the most frequently isolated pathogen causing bloodstream infections, skin and soft tissue infections and pneumonia. Lymphocyte is an important immune cell. The aim of the present paper was to test the ameliorative role of nanoconjugated vancomycin against Vancomycin-sensitive Staphylococcus aureus (VSSA and vancomycin-resistant Staphylococcus aureus (VRSA infection-induced oxidative stress in lymphocytes. VSSA and VRSA infections were developed in Swiss mice by intraperitoneal injection of 5×106 CFU/mL bacterial solutions. Nanoconjugated vancomycin was adminstrated to VSSA- and VRSA-infected mice at its effective dose for 10 days. Vancomycin was adminstrated to VSSA- and VRSA-infected mice at a similar dose, respectively, for 10 days. Vancomycin and nanoconjugated vancomycin were adminstrated to normal mice at their effective doses for 10 days. The result of this study reveals that in vivo VSSA and VRSA infection significantly increases the level of lipid peroxidation, protein oxidation, oxidized glutathione level, nitrite generation, nitrite release, and DNA damage and decreases the level of reduced glutathione, antioxidant enzyme status, and glutathione-dependent enzymes as compared to control group, which were increased or decreased significantly near to normal in nanoconjugated vancomycin-treated group. These findings suggest the potential use and beneficial role of nanoconjugated vancomycin against VSSA and VRSA infection-induced oxidative stress in lymphocytes.

  5. Plumbagin, a vitamin K3 analogue ameliorate malaria pathogenesis by inhibiting oxidative stress and inflammation.

    Science.gov (United States)

    Gupta, Amit Chand; Mohanty, Shilpa; Saxena, Archana; Maurya, Anil Kumar; Bawankule, Dnyaneshwar U

    2018-03-22

    Plumbagin, a vitamin K3 analogue is the major active constituent in several plants including root of Plumbago indica Linn. This compound has been shown to exhibit a wide spectrum of pharmacological activities. The present investigation was to evaluate the ameliorative effects of plumbagin (PL) against severe malaria pathogenesis due to involvement of oxidative stress and inflammatory response in Plasmodium berghei infected malaria in mice. Malaria pathogenesis was induced by intra-peritoneal injection of P. berghei infected red blood cells into the Swiss albino mice. PL was administered orally at doses of 3, 10 and 30 mg/kg/day following Peter's 4 day suppression test. Oral administration of PL showed significant reduction of parasitaemia and increase in mean survival time. PL treatment is also attributed to significant increase in the blood glucose and haemoglobin level when compared with vehicle-treated infected mice. Significant inhibition in level of oxidative stress and pro-inflammation related markers were observed in PL treated group. The trend of inhibition in oxidative stress markers level after oral treatment of PL was MPO > LPO > ROS in organ injury in P. berghei infected mice. This study showed that plumbagin is able to ameliorate malaria pathogenesis by augmenting anti-oxidative and anti-inflammatory mechanism apart from its effect on reducing parasitaemia and increasing mean survival time of malaria-induced mice.

  6. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    Science.gov (United States)

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Ameliorative Effects of Hydroalcoholic Extract of Lavandula officinalis L. on Methotrexate-Induced Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    Mojtaba Kalantar, Saeed Shirali, Amin Hasanvand , Masoud Valizadeh , Ramin Tavakoli , Marzieh Asadi , Mehdi Goudarzi

    2017-03-01

    Full Text Available Background: Methotrexate as a chemotherapy drug can causes chronic liver damage and oxidative stress. The aim of this study was to evaluate the protective effect of hydroalcoholic extract of Lavandula officinalis on methotrexate-induced oxidative stress in rats. Methods: In this experimental study, thirty five Wistar male rats weighting 200-250 g were randomly divided into 5 groups (n = 7 in each group. Negative control group (normal saline 5ml/kg; positive control group received normal salin orally for 10 days, and a single dose of methotrexate (MTX, 20mg/kg, i.p. was administrated on the 9th day. Groups 3-5 received respectively 100, 200 and 400 mg/kg of Lavandula officinalis extract (LOE orally for 10 days, and a single dose of MTX was injected on the 9th day. 24 h after the last injection, animals were sacrificed. Blood samples were collected to determine serum AST, ALT and ALP levels. Malondialdehyde (MDA, glutathione (GSH levels and catalase (CAT, superoxide dismutase (SOD and glutathione peroxidase (GPx activity were assayed in liver tissue. A portion of liver was maintained in 10% formalin for Hematoxylin and Eosin (H&E staining and histological examination. Results: The result obtained from current study was showed a significant increase in the levels of AST, ALT, ALP, MDA and decrease of GSH, CAT and SOD by MTX administration. Pre-treatment with LOE showed reduction in the levels of AST, ALT, ALP, MDA and increase of GSH, CAT and SOD in all doses but the most significant alteration was observed in doses of 200 and 400 mg/kg (P<0.05. Histological results showed that methotrexate could lead to liver damage. Also the hepatoprotective effect of the LOE was confirmed by the histological examination of the liver. Conclusion: Our results indicate that hydroalcoholic extract of Lavandula officinalis have produced amelioration in biochemical and oxidative stress parameters against MTX -induced oxidative stress.

  8. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  9. Honey Supplementation in Spontaneously Hypertensive Rats Elicits Antihypertensive Effect via Amelioration of Renal Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Omotayo O. Erejuwa

    2012-01-01

    Full Text Available Oxidative stress is implicated in the pathogenesis and/or maintenance of elevated blood pressure in hypertension. This study investigated the effect of honey on elevated systolic blood pressure (SBP in spontaneously hypertensive rats (SHR. It also evaluated the effect of honey on the amelioration of oxidative stress in the kidney of SHR as a possible mechanism of its antihypertensive effect. SHR and Wistar Kyoto (WKY rats were randomly divided into 2 groups and administered distilled water or honey by oral gavage once daily for 12 weeks. The control SHR had significantly higher SBP and renal malondialdehyde (MDA levels than did control WKY. The mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2 and glutathione S-transferase (GST were significantly downregulated while total antioxidant status (TAS and activities of GST and catalase (CAT were higher in the kidney of control SHR. Honey supplementation significantly reduced SBP and MDA levels in SHR. Honey significantly reduced the activities of GST and CAT while it moderately but insignificantly upregulated the Nrf2 mRNA expression level in the kidney of SHR. These results indicate that Nrf2 expression is impaired in the kidney of SHR. Honey supplementation considerably reduces elevated SBP via amelioration of oxidative stress in the kidney of SHR.

  10. Aging and oxidatively damaged nuclear DNA in animal organs

    DEFF Research Database (Denmark)

    Møller, Peter; Løhr, Mille; Folkmann, Janne K

    2010-01-01

    Oxidative stress is considered to contribute to aging and is associated with the generation of oxidatively damaged DNA, including 8-oxo-7,8-dihydroguanine. We have identified 69 studies that have measured the level of oxidatively damaged DNA in organs of animals at various ages. In general, organs...... with limited cell proliferation, i.e., liver, kidney, brain, heart, pancreas, and muscle, tended to show accumulation of DNA damage with age, whereas organs with highly proliferating cells, such as intestine, spleen, and testis, showed more equivocal or no effect of age. A restricted analysis of studies...... evidence for aging-associated accumulation of oxidatively damaged DNA in organs with limited cell proliferation....

  11. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  12. Melatonin and vitamin C exacerbate Cannabis sativa-induced testicular damage when administered separately but ameliorate it when combined in rats.

    Science.gov (United States)

    Alagbonsi, Isiaka A; Olayaki, Luqman A; Salman, Toyin M

    2016-05-01

    The mechanisms involved in the spermatotoxic effect of Cannabis sativa are inconclusive. The involvement of oxidative stress in male factor infertility has been well documented, and the antioxidative potential of melatonin and vitamin C in many oxidative stress conditions has been well reported. This study sought to investigate whether melatonin and vitamin C will ameliorate C. sativa-induced spermatotoxicity or not. Fifty-five (55) male albino rats (250-300 g) were randomly divided in a blinded fashion into five oral treatment groups as follows: group I (control, n=5) received 1 mL/kg of 10% ethanol for 30 days; groups IIa, IIb, and IIc (n=5 each) received 2 mg/kg C. sativa for 20, 30, and 40 days, respectively; groups IIIa, IIIb, and IIIc (n=5 each) received a combination of 2 mg/kg C. sativa and 4 mg/kg melatonin for 20, 30, and 40 days, respectively; groups IVa, IVb, and IVc (n=5 each) received a combination of 2 mg/kg C. sativa and 1.25 g/kg vitamin C for 20, 30, and 40 days, respectively; group V (n=5) received a combination of 2 mg/kg C. sativa, 4 mg/kg melatonin, and 1.25 g/kg vitamin C for 30 days. Cannabis treatments reduced the Johnsen score, sperm count, motility, morphology, paired testicular/body weight ratio, and total antioxidant capacity, but increased lactate dehydrogenase activity. In addition, supplementation of cannabis-treated rats with either melatonin or vitamin C exacerbates the effect of cannabis on those parameters, whereas combination of melatonin and vitamin C reversed the trend to the level comparable to control. This study further showed the gonadotoxic effect of C. sativa, which could be mediated by oxidative stress. It also showed that melatonin and vitamin C exacerbate C. sativa-induced testicular damage when administered separately but ameliorate it when combined in rats.

  13. Zataria multiflora ameliorates testicular and spermatological damages induced by cisplatin in mice model

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: Cisplatin (CP, a highly effective antineoplastic drug, causes testicular damage. Zataria multiflora Boiss. (ZM, a medicinal plant, has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effects of ZM against cisplatin-induced testicular toxicity. Methods: Thirty-two adult male mice were randomly divided into four groups. The control group received normal saline with oral gavage during 7 days; ZM group received ZM (200 mg/kg during 7 days by gavage; CP group received CP (10 mg/kg i.p. in 5th day of study; ZM + CP group received ZM during 7 days and CP was injected in 5th day. Sperm parameters (including motility, sperm count, sperm viability rate and morphological sperm abnormalities, biochemical (malondialdehyde (MDA, glutathione (GSH and protein carbonyl (PC levels, serum testosterone levels, histological and immunochemistry assays of testis were examined one day after the last receipt of the drug. Results: CP treatment caused significant damage via changed of sperm parameters, increased oxidative stress (increased MDA, PC levels and decreased GSH level, histological changes (degeneration, necrosis, arrest of spermatogenesis, congestion and decrease in thickness of the germinal epithelium, diameter of seminiferous tubules and Johnsen’s Score, decreased serum testosterone level and increased caspase-3 immunoreactivity. ZM preserved spermatogenesis and mitigated the toxic effects of CP on the testis tissue. In addition, pretreatment with ZM significantly reduced caspase-3 immunoreactivity. Conclusion: The findings of this study suggested ZM as a potential antioxidant compound which showed protective effect against cisplatin-induced testicular toxicity.

  14. Sildenafil Attenuates Inflammation and Oxidative Stress in Pelvic Ganglia Neurons after Bilateral Cavernosal Nerve Damage

    Directory of Open Access Journals (Sweden)

    Leah A. Garcia

    2014-09-01

    Full Text Available Erectile dysfunction is a common complication for patients undergoing surgeries for prostate, bladder, and colorectal cancers, due to damage of the nerves associated with the major pelvic ganglia (MPG. Functional re-innervation of target organs depends on the capacity of the neurons to survive and switch towards a regenerative phenotype. PDE5 inhibitors (PDE5i have been successfully used in promoting the recovery of erectile function after cavernosal nerve damage (BCNR by up-regulating the expression of neurotrophic factors in MPG. However, little is known about the effects of PDE5i on markers of neuronal damage and oxidative stress after BCNR. This study aimed to investigate the changes in gene and protein expression profiles of inflammatory, anti-inflammatory cytokines and oxidative stress related-pathways in MPG neurons after BCNR and subsequent treatment with sildenafil. Our results showed that BCNR in Fisher-344 rats promoted up-regulation of cytokines (interleukin- 1 (IL-1 β, IL-6, IL-10, transforming growth factor β 1 (TGFβ1, and oxidative stress factors (Nicotinamide adenine dinucleotide phosphate (NADPH oxidase, Myeloperoxidase (MPO, inducible nitric oxide synthase (iNOS, TNF receptor superfamily member 5 (CD40 that were normalized by sildenafil treatment given in the drinking water. In summary, PDE5i can attenuate the production of damaging factors and can up-regulate the expression of beneficial factors in the MPG that may ameliorate neuropathic pain, promote neuroprotection, and favor nerve regeneration.

  15. Azithromycin and erythromycin ameliorate the extent of colonic damage induced by acetic acid in rats

    International Nuclear Information System (INIS)

    Mahgoub, Afaf; El-Medany, Azza; Mustafa, Ali; Arafah, Maha; Moursi, Mahmoud

    2005-01-01

    Ulcerative colitis is a common inflammatory bowel disease (IBD) of unknown etiology. Recent studies have revealed the role of some microorganisms in the initiation and perpetuation of IBD. The role of antibiotics in the possible modulation of colon inflammation is still uncertain. In this study, we evaluated the effects of two macrolides, namely azithromycin and erythromycin, at different doses on the extent and severity of ulcerative colitis caused by intracolonic administration of 3% acetic acid in rats. The lesions and the inflammatory response were assessed by histology and measurement of myeloperoxidase (MPO) activity, nitric oxide synthetase (NOS) and tumor necrosis factor alpha (TNFα) in colonic tissues. Inflammation following acetic acid instillation was characterized by oedema, diffuse inflammatory cell infiltration and necrosis. Increase in MPO, NOS and TNFα was detected in the colonic tissues. Administration of either azithromycin or erythromycin at different dosage (10, 20 and 40 mg/kg orally, daily for 5 consecutive days) significantly (P < 0.05) reduced the colonic damage, MPO and NOS activities as well as TNFα level. This reduction was highly significant with azithromycin when given at a dose of 40 mg/kg. It is concluded that azithromycin and erythromycin may have a beneficial therapeutic role in ulcerative colitis

  16. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan

    2015-03-13

    Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yeh, Y.C. [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Wang, L.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Ting, C.T.; Lee, W.L. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Lee, H.W. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, K.Y. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan (China); Wu, A. [College of Biological Science, University of California, Davis (United States); Su, C.S. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Liu, T.J., E-mail: trliu@vghtc.gov.tw [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2011-12-15

    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  18. Oxidative Damage and Its Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    2016-06-01

    Full Text Available Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNAdamage, then to investigate the possible mechanism.Methods: The protective effect was evaluated based on the content of malondialdehyde(MDA. The possible mechanism was analyzed using various antioxidant methods in vitro,including •OH scavenging (deoxyribose degradation, •O2- scavenging (pyrogallolautoxidation, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays.Results: Fisetin increased dose-dependently its protective percentages against •OH-inducedDNA damage (IC50 value =1535.00±29.60 μM. It also increased its radical-scavengingpercentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in•OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 μM, 34.05±0.87 μM, 9.69±0.53 μM, 2.43±0.14μM, and 1.49±0.16 μM, respectively.Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damagepossibly via reactive oxygen species (ROS scavenging approach, which is assumed to behydrogen atom (H• and/or single electron (e donation (HAT/SET pathways. In the HATpathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an importantrole, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  19. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress.

    Science.gov (United States)

    Dehdashtian, Ehsan; Mehrzadi, Saeed; Yousefi, Bahman; Hosseinzadeh, Azam; Reiter, Russel J; Safa, Majid; Ghaznavi, Habib; Naseripour, Masood

    2018-01-15

    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. Copyright © 2017. Published by Elsevier Inc.

  20. Silymarin and Nigella sativa extract ameliorate paracetamol induced oxidative stress and renal dysfunction in male mice

    Directory of Open Access Journals (Sweden)

    Reham Zakaria Hamza

    2015-06-01

    Full Text Available Objective: To evaluate the ameliorative role of silymarin or/and Nigella sativa (N. sativa water extract against N-acetyl-p-aminophenol (APAP-induced renal function deterioration in male mice at the biochemical levels. Methods: The mice were divided into seven groups (10/group. The first group was served as control. The second group was treated with dose of APAP. The third and fourth groups were treated with silymarin alone and N. sativa water extract alone, respectively. The fifth and sixth groups were treated with combination of APAP with silymarin and APAP with N. sativa water extract, respectively. The seventh group was treated with a combination of both ameliorative compounds (silymarin and N. sativa water extract with APAP and all animals were treated for a period of 30 days. Results: Exposure to APAP at the treated dose for mice led to an alteration of kidney function parameters, increase in the level of serum urea and creatinine. Also, paracetamol administration induced oxidative stress in kidney homogenates by increasing malondialdhyde level and decreasing superoxide dismutase and catalase activities and this stress was ameliorated by administration of either silymarin or N. sativa water extract. Conclusions: Administration of silymarin or/and N. sativa water extract to APAP-treated mice alleviate the toxicity of APAP, and this appeared clearly by biochemical improvement of kidney function parameters and antioxidant parameters. But, the alleviation is more pronounced with the both antioxidants. Thus, the pronounce effect of silymarin and N. sativa water extract is most effective in reducing the toxicity induced by APAP and improving the kidney function parameters and antioxidant status of kidney of male mice.

  1. Amelioration of streptozotocin‑induced pancreatic β cell damage by morin: Involvement of the AMPK‑FOXO3‑catalase signaling pathway.

    Science.gov (United States)

    Wang, Ning; Zhang, Jiahui; Qin, Mengting; Yi, Wenjing; Yu, Shuang; Chen, Yi; Guan, Jing; Zhang, Rui

    2018-03-01

    Pancreatic β cells are sensitive to oxidative stress, which is one of the predominant causes of cell damage and the emergence of diabetes. The identification of effective therapeutic strategies to protect pancreatic cells from oxidative stress has increased interest in the screening of antioxidants from natural products. The present study aimed to investigate the protective effects of morin against streptozotocin (STZ)‑induced cell damage in a rat insulinoma cell line (RINm5F pancreatic β cells) and to identify the underlying mechanisms. The results indicated that morin inhibited the increase in intracellular reactive oxygen species, attenuated the activity of poly (ADP‑ribose) polymerase, restored intracellular nicotinamide adenine dinucleotide levels and reduced the apoptotic cell death of STZ‑treated pancreatic β cells. Treatment with morin significantly upregulated catalase in pancreatic β cells, and ameliorated the STZ‑induced loss of catalase at the genetic, protein and enzymatic level. In further experiments, morin induced the phosphorylation of 5' adenosine monophosphate‑activated protein kinase (AMPK), which subsequently promoted the translocation of forkhead box O3 (FOXO3) to the nucleus. Specific small interfering RNAs (siRNAs) against AMPK and FOXO3 suppressed morin‑induced catalase expression. Furthermore, catalase‑specific siRNA abolished the protective effects of morin against STZ‑stimulated cell death. Taken together, these results indicated that morin protected RINm5F cells from STZ‑induced cell damage by triggering the phosphorylation of AMPK, thus resulting in subsequent activation of FOXO3 and induction of catalase.

  2. Oxidative DNA damage during night shift work.

    Science.gov (United States)

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2017-09-01

    We previously reported that compared with night sleep, day sleep among shift workers was associated with reduced urinary excretion of 8-hydroxydeoxyguanosine (8-OH-dG), potentially reflecting a reduced ability to repair 8-OH-dG lesions in DNA. We identified the absence of melatonin during day sleep as the likely causative factor. We now investigate whether night work is also associated with reduced urinary excretion of 8-OH-dG. For this cross-sectional study, 50 shift workers with the largest negative differences in night work versus night sleep circulating melatonin levels (measured as 6-sulfatoxymelatonin in urine) were selected from among the 223 shift workers included in our previous study. 8-OH-dG concentrations were measured in stored urine samples using high performance liquid chromatography with electrochemical detection. Mixed effects models were used to compare night work versus night sleep 8-OH-dG levels. Circulating melatonin levels during night work (mean=17.1 ng/mg creatinine/mg creatinine) were much lower than during night sleep (mean=51.7 ng/mg creatinine). In adjusted analyses, average urinary 8-OH-dG levels during the night work period were only 20% of those observed during the night sleep period (95% CI 10% to 30%; psleep, is associated with reduced repair of 8-OH-dG lesions in DNA and that the effect is likely driven by melatonin suppression occurring during night work relative to night sleep. If confirmed, future studies should evaluate melatonin supplementation as a means to restore oxidative DNA damage repair capacity among shift workers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Protection of naturally occurring antioxidants against oxidative damages to protein

    International Nuclear Information System (INIS)

    Zhu Hongping; Zhang Zhaoxia; Hao Shumei; Wang Wenfeng; Yao Side

    2006-01-01

    One of the most compelling theories explaining age-related deterioration is the free radical theory of aging. It has been shown that reactive oxygen species are involved in oxidative damages to biomolecules and this is related to a number of diseases. Proteins, the second most abundant components of cells (next to water by weight), are now increasingly recognized as major biological targets of oxidative damages. Convincing evidences have indicated that damages to protein have been implicated in Alzheimer's disease, Parkinson's disease, cancer, and aging. Antioxidant has been the subject of great attention because they are known to lower the risk of cardiovascular and other diseases. Hydroxycinnamic acid derivatives (HCAs) are antioxidants abundant in tea, red wine, fruits, beverages and various medicinal plants. Results showed that they exhibit remarkable activity for scavenging oxidizing radicals and triplet states. The protective effects of four kinds of HCAs on oxidative damages to lysozyme were investigated in our lab. Protein damages induced by two different paradigms: riboflavin-sensitized photooxidation and hydroxyl ( . OH)-mediated oxidation, were investigated using polyacrylamide gel electrophoresis. HCAs were found to inhibit the cross-linking of protein induced by riboflavin-mediated photooxidation. HCAs also exhibited protection effect on lysozyme damage induced by γ-ray irradiation. The rate constants for quenching triplet state of riboflavin by lysozyme and HCAs were obtained using laser flash photolysis. The protective mechanism was proposed based on the dynamic study. HCAs were found to protect protein against oxidation by scavenging oxidizing species and repairing the damaged protein. (authors)

  4. Oxidative damage and aging: spotlight on mitochondria.

    Science.gov (United States)

    Linford, Nancy J; Schriner, Samuel E; Rabinovitch, Peter S

    2006-03-01

    Whereas free radical damage has been proposed as a key component in the tissue degeneration associated with aging, there has been little evidence that free radical damage limits life span in mammals. The current research shows that overexpression of the antioxidant enzyme catalase in mitochondria can extend mouse life span. These results highlight the importance of mitochondrial damage in aging and suggest that when targeted appropriately, boosting antioxidant defenses can increase mammalian life span.

  5. Ameliorative Effects of Acacia Honey against Sodium Arsenite-Induced Oxidative Stress in Some Viscera of Male Wistar Albino Rats

    OpenAIRE

    Muhammad Aliyu; Sani Ibrahim; Hajiya M. Inuwa; Abdullahi B. Sallau; Olagunju Abbas; Idowu A. Aimola; Nathan Habila; Ndidi S. Uche

    2013-01-01

    Cancer is a leading cause of death worldwide and its development is frequently associated with oxidative stress-induced by carcinogens such as arsenicals. Most foods are basically health-promoting or disease-preventing and a typical example of such type is honey. This study was undertaken to investigate the ameliorative effects of Acacia honey on sodium arsenite-induced oxidative stress in the heart, lung and kidney tissues of male Wistar rats. Male Wistar albino rats divided into four groups...

  6. Zinc Supplementation against Eimeria acervulina-Induced Oxidative Damage in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Nedyalka V. Georgieva

    2011-01-01

    Full Text Available This study was undertaken to determine the dietary supplements of Zn containing diet on the antioxidant status in chickens experimentally infected with Eimeria acervulina. The antioxidant status was monitored via determination of MDA concentrations and erythrocyte SOD and CAT activities, as well as vitamin E, vitamin C, Cu, and Zn in liver, muscle, and serum. The results showed increased MDA (<.05, CAT (<.001, and decreased SOD (<.001 in the infected birds. Significant changes in Cu and Zn concentrations and dramatically reduction of vitamin C and E concentrations in the infected chickens were found. The observed deviations in the studied enzymes and nonenzymatic parameters evidence the occurrence of oxidative stress following the infection and impaired antioxidant status of chickens, infected with Eimeria acervulina. Our results proved the ameliorating role of CuZn(OH3Cl (0.170 g per kg food against Eimeria acervulina-induced oxidative damage in infected chickens.

  7. Natural plant polyphenols for alleviating oxidative damage in man ...

    African Journals Online (AJOL)

    prevent the body from oxidative damage over human life span. This review .... Antioxidant supplementation/treatment has been adopted for .... deacetylase family regulates gene silencing and .... Drug News Perspect 2007; 20: 579-. 585. 12.

  8. Single Molecule Scanning of DNA Radiation Oxidative Damage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  9. Hawkmoths use nectar sugar to reduce oxidative damage from flight.

    Science.gov (United States)

    Levin, E; Lopez-Martinez, G; Fane, B; Davidowitz, G

    2017-02-17

    Nectar-feeding animals have among the highest recorded metabolic rates. High aerobic performance is linked to oxidative damage in muscles. Antioxidants in nectar are scarce to nonexistent. We propose that nectarivores use nectar sugar to mitigate the oxidative damage caused by the muscular demands of flight. We found that sugar-fed moths had lower oxidative damage to their flight muscle membranes than unfed moths. Using respirometry coupled with δ 13 C analyses, we showed that moths generate antioxidant potential by shunting nectar glucose to the pentose phosphate pathway (PPP), resulting in a reduction in oxidative damage to the flight muscles. We suggest that nectar feeding, the use of PPP, and intense exercise are causally linked and have allowed the evolution of powerful fliers that feed on nectar. Copyright © 2017, American Association for the Advancement of Science.

  10. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  11. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Nagib, Marwa M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Tadros, Mariane G., E-mail: mirogeogo@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); ELSayed, Moushira I. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Khalifa, Amani E. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5 days. OLM-M (1, 3 and 10 mg/kg) was administered orally during 21 days prior to the induction of colitis, and for 5 days after. Sulfasalazine (500 mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. - Highlights: • Olmesartan medoximil reduced dextran sodium sulphate- induced colitis. • Mechanism involved anti-inflammatory and antioxidant effects dose- dependently. • It suppressed malondialdehyde and restored reduced glutathione levels. • It reduced inflammatory markers levels and histological changes.

  12. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  13. Quercitrin protects skin from UVB-induced oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yuanqin [Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Yao, Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J. [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky, 800 Rose Street, Lexington, KY (United States); Gao, Ning [Department of Pharmacognos, College of Pharmacy, 3rd Military Medical University, Chongqing (China); Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States)

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  14. Quercitrin protects skin from UVB-induced oxidative damage

    International Nuclear Information System (INIS)

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries

  15. Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress.

    Science.gov (United States)

    Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad

    2011-10-31

    Due to anti-diabetic and antioxidant activity of green tea epigallocatechin gallate (EGCG) and the existence of evidence for its beneficial effect on cognition and memory, this research study was conducted to evaluate, for the first time, the efficacy of chronic EGCG on alleviation of learning and memory deficits in streptozotocin (STZ)-diabetic rats. Male Wistar rats were divided into control, diabetic, EGCG-treated-control and -diabetic groups. EGCG was administered at a dose of 20 and 40 mg/kg/day for 7 weeks. Learning and memory was evaluated using Y maze, passive avoidance, and radial 8-arm maze (RAM) tests. Oxidative stress markers and involvement of nitric oxide system were also evaluated. Alternation score of the diabetic rats in Y maze was lower than that of control and a significant impairment was observed in retention and recall in passive avoidance test (pRAM task and EGCG (40 mg/kg) significantly ameliorated these changes (pmemory respectively. Meanwhile, increased levels of malondialdehyde (MDA) and nitrite in diabetic rats significantly reduced due to EGCG treatment (pmemory deficits in STZ-diabetic rats through attenuation of oxidative stress and modulation of NO. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Amelioration of azoxymethane induced-carcinogenesis by reducing oxidative stress in rat colon by natural extracts.

    Science.gov (United States)

    Waly, Mostafa I; Al-Rawahi, Amani S; Al Riyami, Marwa; Al-Kindi, Mohamed A; Al-Issaei, Halima K; Farooq, Sardar A; Al-Alawi, Ahmed; Rahman, Mohammad S

    2014-02-18

    Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats; the cytotoxicity of AOM is considered to mediate oxidative stress. This study investigated the chemopreventive effect of three natural extracts [pomegranate peel extract (PomPE), papaya peel extract (PapPE) and seaweed extract (SE)] against AOM-induced oxidative stress and carcinogenesis in rat colon. Eighty Sprague-Dawley rats (aged 4 weeks) were randomly divided into 8 groups (10 rats/group). Control group was fed a basal diet; AOM-treated group was fed a basal diet and received AOM intraperitonial injections for two weeks at a dose of 15 mg/kg bodyweight, whereas the other six groups were received oral supplementation of PomPE, PapPE or SE, in the presence or absence of AOM injection. All animals were continuously fed ad-libitum until aged 16 weeks, then all rats were sacrificed and the colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, genotoxicity (induced micronuclei (MN) cells enumeration), and glutathione and lipid peroxidation. Our results showed that AOM-induced ACF development and pathological changes in the colonic mucosal tissues, increased bone marrow MN cells and oxidative stress (glutathione depletion, lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with PomPE, PapPE or SE significantly ameliorated the cytotoxic effects of AOM. The results of this study provide in-vivo evidence that PomPE, PapPE and SE reduced the AOM-induced colon cancer in rats, through their potent anti-oxidant activities.

  17. Allantoin ameliorates chemically-induced pancreatic β-cell damage through activation of the imidazoline I3 receptors

    Directory of Open Access Journals (Sweden)

    Marie Amitani

    2015-08-01

    Full Text Available Objective. Allantoin is the primary active compound in yams (Dioscorea spp.. Recently, allantoin has been demonstrated to activate imidazoline 3 (I3 receptors located in pancreatic tissues. Thus, the present study aimed to investigate the role of allantoin in the effect to improve damage induced in pancreatic β-cells by streptozotocin (STZ via the I3 receptors.Research Design and Methods. The effect of allantoin on STZ-induced apoptosis in pancreatic β-cells was examined using the ApoTox-Glo triplex assay, live/dead cell double staining assay, flow cytometric analysis, and Western blottings. The potential mechanism was investigated using KU14R: an I3 receptor antagonist, and U73122: a phospholipase C (PLC inhibitor. The effects of allantoin on serum glucose and insulin secretion were measured in STZ-treated rats.Results. Allantoin attenuated apoptosis and cytotoxicity and increased the viability of STZ-induced β-cells in a dose-dependent manner; this effect was suppressed by KU14R and U73112. Allantoin decreased the level of caspase-3 and increased the level of phosphorylated B-cell lymphoma 2 (Bcl-2 expression detected by Western blotting. The improvement in β-cells viability was confirmed using flow cytometry analysis. Daily injection of allantoin for 8 days in STZ-treated rats significantly lowered plasma glucose and increased plasma insulin levels. This action was inhibited by treatment with KU14R.Conclusion. Allantoin ameliorates the damage of β-cells induced by STZ. The blockade by pharmacological inhibitors indicated that allantoin can activate the I3 receptors through a PLC-related pathway to decrease this damage. Therefore, allantoin and related analogs may be effective in the therapy for β-cell damage.

  18. Lycium chinense leaves extract ameliorates diabetic nephropathy by suppressing hyperglycemia mediated renal oxidative stress and inflammation.

    Science.gov (United States)

    Olatunji, Opeyemi Joshua; Chen, Hongxia; Zhou, Yifeng

    2018-06-01

    Diabetic nephropathy is one of the most serious and most frequently encountered diabetic complication, accounting for the highest cause of end-stage renal disease. This present study was aimed at exploring the protective/attenuative effect of Lycium chinense leaf extract (MELC) on streptozotocin induced diabetic nephropathy in experimental Sprague Dawley rats. The oral administration of diabetic rats with MELC markedly ameliorated renal dysfunction as observed in the significant reduction in the serum levels of creatinine, blood urea nitrogen (BUN), albumin and TGF-β1 as compared to the untreated diabetic control rats. In addition, the elevated levels of renal oxidative stress markers and pro-inflammatory parameters (GSH, SOD, CAT, MDA, TNF-α, IL-6 and IL-1β) were significantly reduced in MELC treated diabetic rats. The results obtained in this study suggests that L. chinense leaf might have the potential as possible pharmacological agent against diabetic nephropathy by suppressing renal oxidative stress and inflammation. Copyright © 2018. Published by Elsevier Masson SAS.

  19. Natural plant polyphenols for alleviating oxidative damage in man ...

    African Journals Online (AJOL)

    cumulative effects of oxidative damage over human life span. Current research reveals ... aging, cardiovascular and neurodegenerative diseases [3,4]. .... natural antioxidants and mortality from age- .... health and longevity in normal cells by calorie restriction [63]. ..... H(2)O(2)-induced oxidative stress and senescence via.

  20. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    Science.gov (United States)

    Rationale: Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  1. Ramadan fasting ameliorates arterial pulse pressure and lipid profile, and alleviates oxidative stress in hypertensive patients.

    Science.gov (United States)

    Al-Shafei, Ahmad I M

    2014-06-01

    Effects of Ramadan fasting on health are important. Its effects on arterial pulse pressure (PP), lipid profile and oxidative stress were characterized in hypertensives. PP, indices of lipid profile and oxidative stress were measured pre-, during and post-fasting in equal (40 each), sex- and age-matched groups (age 55 ± 5 years) of hypertensives (HT) and controls (C). Fasting reduced PP significantly by 17.2% and insignificantly by 9.3% in the HT and C groups, respectively. Total cholesterol (TC) was lowered insignificantly by 11.7% and 4.7% in the HT and C patients, respectively. Triglycerides (TG) and malondialdehyde (MDA) were significantly lowered by: TG: 24.5% and 22.8%; MDA: 45.6% and 54.3%; while glutathione (GSH) elevated by 56.8% and 52.6% in the HT and C groups, respectively. High-density lipoproteins (HDL) were raised significantly by 33.3% and insignificantly by 6.7%, whereas low-density lipoproteins (LDL) decreased significantly by 17.7% and insignificantly by 4.0% in the HT and C groups, respectively. At 6 weeks post-fasting, MDA remained significantly lower than the pre-fasting level by 24.3% and 25.7%, and GSH higher by 30.2% and 26.3% in the HT and C groups, respectively, while PP and TC returned to pre-fasting values in both groups. The post-fasting, HDL was significantly higher by 20.3% and LDL lower by 12.0% than the fasting levels in the HT patients. Fasting improves PP and lipids profile and ameliorates oxidative stress in hypertensives.

  2. Photoexcited riboflavin induces oxidative damage to human serum albumin

    Science.gov (United States)

    Hirakawa, Kazutaka; Yoshioka, Takuto

    2015-08-01

    Photoexcited riboflavin induced damage of human serum albumin (HSA), a water soluble protein, resulting in the diminishment of fluorescence from the tryptophan residue. Because riboflavin hardly photosensitized singlet oxygen generation and sodium azide, a singlet oxygen quencher, did not inhibit protein damage, electron transfer-mediated oxidation of HSA was speculated. Fluorescence lifetime of riboflavin was not affected by HSA, suggesting that the excited triplet state of riboflavin is responsible for protein damage through electron transfer. In addition, the preventive effect of xanthone derivatives, triplet quenchers, on photosensitized protein damage could be evaluated using this photosensitized reaction system of riboflavin and HSA.

  3. The Role of Calcium in Ameliorating the Oxidative Stress of Fluoride in Rats.

    Science.gov (United States)

    Mohamed, N E

    2016-03-01

    The present study was carried out to investigate the effects of fluoride toxicity on some biochemical, hormonal, and histological parameters of female rats and the protective role of calcium against such effects. Adult female albino rats were divided into five groups; control group received distilled water for 60 days, calcium group received calcium carbonate with dose of 50 mg/kg three times per week for 60 days, fluoride group received sodium fluoride with dose of 20 mg/kg three times per week for 60 days, calcium + fluoride group received calcium carbonate (50 mg/kg) then after 2 h received sodium fluoride (20 mg/kg) three times per week for 60 days, and fluoride + calcium group received sodium fluoride (20 mg/kg) three times per week for 30 days then received calcium carbonate (50 mg/kg) three times per week for another 30 days. The results showed that the levels of thiobarbituric acid reactive substances, urea, creatinine, alkaline phosphatase, triiodothyronine, thyroxine, parathormone, phosphorous, magnesium, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and gamma glutamyl transferase were significantly increased in rats treated with fluoride while serum estradiol, calcium, and organ glutathione were significantly decreased. The histological examination of the femur bone revealed that fluoride treatment induced thinning of bone trabeculae with wilding of marrow space, demineralization, and loss of trabeculae interconnections. Also, the histological examination of hepatic and renal tissues of fluoride-treated rats showed some damages in these tissues while administration of calcium carbonate for 30 or 60 days during fluoride treatment minimized such damages. It could be concluded that administration of calcium to female rats can ameliorate the hazardous effects of fluoride observed in the biochemical, hormonal, and histological parameters.

  4. Possible role of licorice roots (glycyrrhiza glabra) as a natural radioprotector against oxidative damage in rats

    International Nuclear Information System (INIS)

    Darwish, M. M.; Hussien, E. M.; Haggag, A. M.

    2007-01-01

    This study was conducted to investigate the possible role of Licorice against damages induced by gamma rays. Adult female albino rats (130-140 g) were divided into four groups. Group 1: control animals, group 2: rats whole body exposed to gamma radiations (6.5 Gy), group 3: animals received Licorice in drinking water for four weeks (100 mg/ kg body wt/ day), and group 4: received Licorice two weeks before and two weeks after irradiation. Blood and liver samples were obtained two weeks post-irradiation. Total cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C), glucose, sodium (Na + ) and potassium (K + ) levels were determined in serum. Per oxidative hepatic damage was studied by assessing; thiobarbituric acid reactive substances (TBARs) and reduced glutathione (GSH) contents, as well as, superoxide dismutase (SOD) and catalase (CAT) activities in liver tissue. The data obtained revealed a significant increase in serum glucose, K + , TC, TG and LDL-C and liver TABRs. While, significant decreases were recorded for serum Na + and HDL-C levels, liver GSH content, SOD and CAT activities. On the other hand, Licorice treated irradiation rats showed a significant amelioration in the changes produced by gamma radiation with variable degree. Thus, it could be concluded that Licorice might provide protection against radiation-induced disturbances in metabolic activities and oxidative damage in liver tissues

  5. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  6. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisag@pharm.unifi.it; Bellandi, Serena [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Pitozzi, Vanessa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Fabbri, Paolo [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Dolara, Piero [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)

    2004-11-22

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo.

  7. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    International Nuclear Information System (INIS)

    Giovannelli, Lisa; Bellandi, Serena; Pitozzi, Vanessa; Fabbri, Paolo; Dolara, Piero; Moretti, Silvia

    2004-01-01

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo

  8. Chrysin Administration Protects against Oxidative Damage in Varicocele-Induced Adult Rats

    Directory of Open Access Journals (Sweden)

    Gabriela Missassi

    2017-01-01

    Full Text Available Oxidative stress is known as the leading factor responsible for varicocele-related infertility and for that reason, many antioxidant therapies have been proposed. Considering that, we evaluated the reproductive outcomes and fertility of varicocelized rats and the impact of chrysin within these parameters. The animals were allocated into three groups: sham (control, varicocele treated via gavage with 50 mg/kg/day of chrysin (V1, or vehicle (V2 for 56 days. Chrysin treatment prevented oxidative damage resulting from varicocele by decreasing testicular concentrations of malondialdehyde and sperm DNA fragmentation. It also improved histological aspect of the testis and maintained morphometric parameters similar to the sham group. Furthermore, there were no differences in body and reproductive organ weights, histopathological analysis of epididymis, sperm counts and morphology, testosterone levels, sexual behavior, and fertility parameters among experimental groups. Our results reinforce the idea that injuries provoked by experimental varicocele are related, at least in part, to oxidative stress. Moreover, varicocele showed bilateral deleterious effects without interfering with fertility. Chrysin administration significantly ameliorated sperm parameters, protecting the reproductive system against varicocele damages. For that reason, chrysin might be an alternative adjuvant therapy to improve sperm quality in men presenting this condition.

  9. Polysaccharides from Cordyceps sinensis mycelium ameliorate exhaustive swimming exercise-induced oxidative stress.

    Science.gov (United States)

    Yan, Feng; Wang, Beibei; Zhang, Yan

    2014-02-01

    Cordyceps sinensis (Berk.) Sacc. (Clavicipitaceae) is a famous medicinal fungus (mushroom) in Chinese herbal medicine. Polysaccharides from Cordyceps sinensis (CSP) have been identified as active ingredients responsible for its biological activities. Although many pharmacological actions of CSP have received a great deal of attention, research in this area continues. The current study was designed to investigate the effects of CSP on exhaustive exercise-induced oxidative stress. The mice were divided into four groups: control (C), low-dose CSP treated (LC), intermediate-dose CSP treated (IC) and high-dose CSP treated (HC). The treated groups received CSP (100, 200 and 400 mg/kg, ig), while the control group received drinking water for 28 days, followed by being forced to undergo exhaustive swimming exercise, and some biochemical parameters including superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured using detection kits according to the manufacturers' instructions. Compared with the C group, exhaustive swimming time was significantly prolonged in the LC, IC and HC groups (p activities in serum, liver and muscle were significantly higher in the IC and HC groups (p activities in serum, liver and muscle were significantly higher in the LC, IC and HC groups (p activities in serum, liver and muscle were significantly higher in the HC groups (p < 0.05); MDA and 8-OHdG levels in serum, liver and muscle were significantly lower in the LC, IC and HC groups (p < 0.05). The results obtained herein indicate that CSP could ameliorate exhaustive exercise-induced oxidative stress.

  10. Amelioration of the cyclophosphamide induced genotoxic damage in mice by the ethanolic extract of Equisetum arvense.

    Science.gov (United States)

    Kour, Jasbir; Ali, Md Niamat; Ganaie, Hilal Ahmad; Tabassum, Nahida

    2017-01-01

    In the present study, we evaluated the potential of the plant E. arvense against the cytotoxic and mutagenic effects induced by cyclophosphamide (chemotherapeutic agent) in the bone marrow cells of mice using the Chromosome assay (CA) and Mitotic index (MI) in vivo as the biomarkers. The study was performed following 3 protocols: pre-treatment, simultaneous treatment and post-treatment with the ethanolic extract of the plant. The results demonstrated that the plant extract was not cytotoxic and mutagenic and has a protective effect against the mutagenicity induced by cyclophosphamide in pre, simultaneous and post treatments and against its cytotoxicity as well. Because of its ability to prevent chromosomal damage , E. arvense is likely to open an interesting field concerning its possible use in clinical applications, most importantly in cancer as a chemopreventive agent or even as a coadjuvant to chemotherapy to reduce the side effects associated with it.

  11. Renal-protective and ameliorating impacts of omega-3 fatty acids against aspartame damaged MDCK cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Veerappan, Muthuviveganandavel; Mistry, Bhupendra; Patel, Rahul; Moon, So Hyun; Nagajyothi, Patnamsetty Chidanandha; Kim, Doo Hwan

    2017-11-01

    Aspartame is widely used artificial sweeteners as food additives. Several researchers have pointed that the controversial report on the use of aspartame over more than decades. Omega-3 fatty acids are essential and unsaturated fatty acids, and it plays a remarkable role in vision, intelligence, neural development, and metabolism of neurotransmitters. Therefore, the present study was aimed to investigate the effect of omega-3 fatty acids on aspartame treated renal cells. Experimental groups were divided into three such as sham control, aspartame treated, and aspartame with omega-3 fatty acids. Cell viability was determined by sulforhodamine-b assay and flow cytometric analysis. The experimental results showed that the aspartame induced altered cell viability were reduced following treatment of aspartame with omega-3 fatty acids. Altered cell morphology was recovered by omega-3 fatty acids. DNA damage appeared in the highest concentration of aspartame used in this study. DNA damage characteristics such as comet tail and tiny head sections did not appear in the omega-3 fatty acids treated cells. Several microvilli and vesicular structures were found in aspartame treated cells. Altered morphology such as rounding, microvilli, and formation of dome-like structures did not appear in the omega-3 fatty acids with aspartame treated cells. Caspase-3 mRNA and protein expression were increased in aspartame treated cells, and these levels were reduced following omega-3 fatty acids treatment. Taking all these data together, it is suggested that the omega-3 fatty acids may be a therapeutic agent to reduce the aspartame induced biochemical and morphological alterations in normal renal cells. © 2017 BioFactors, 43(6):847-857, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  12. Characterization of oxidative guanine damage and repair in mammalian telomeres.

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2010-05-01

    Full Text Available 8-oxo-7,8-dihydroguanine (8-oxoG and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1-initiated DNA base excision repair (BER. Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH, by chromosome orientation-FISH (CO-FISH, and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/- mouse tissues and primary embryonic fibroblasts (MEFs cultivated in hypoxia condition (3% oxygen, whereas telomere shortening was detected in Ogg1(-/- mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/- mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/- mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/- MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity

  13. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia.

    Science.gov (United States)

    Park, Ji H; Long, Aaron; Owens, Katrina; Kristian, Tibor

    2016-11-01

    Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor for multiple cellular metabolic reactions and has a central role in energy production. Brain ischemia depletes NAD(+) pools leading to bioenergetics failure and cell death. Nicotinamide mononucleotide (NMN) is utilized by the NAD(+) salvage pathway enzyme, nicotinamide adenylyltransferase (Nmnat) to generate NAD(+). Therefore, we examined whether NMN could protect against ischemic brain damage. Mice were subjected to transient forebrain ischemia and treated with NMN or vehicle at the start of reperfusion or 30min after the ischemic insult. At 2, 4, and 24h of recovery, the proteins poly-ADP-ribosylation (PAR), hippocampal NAD(+) levels, and expression levels of NAD(+) salvage pathway enzymes were determined. Furthermore, animal's neurologic outcome and hippocampal CA1 neuronal death was assessed after six days of reperfusion. NMN (62.5mg/kg) dramatically ameliorated the hippocampal CA1 injury and significantly improved the neurological outcome. Additionally, the post-ischemic NMN treatment prevented the increase in PAR formation and NAD(+) catabolism. Since the NMN administration did not affect animal's temperature, blood gases or regional cerebral blood flow during recovery, the protective effect was not a result of altered reperfusion conditions. These data suggest that administration of NMN at a proper dosage has a strong protective effect against ischemic brain injury. Published by Elsevier Inc.

  14. Role of Cardamom (Elettaria cardamomum) in Ameliorating Radiation Induced Oxidative Stress In Rats

    International Nuclear Information System (INIS)

    Darwish, M.M.; Abd El Azime, A. Sh.

    2013-01-01

    Radiation is one of the most widespread sources of environmental stress in living environment which cause oxidative stress and metabolic changes. The present study aims to evaluate the antioxidant effect of Cardamom (Elettaria cardamomum) on gamma radiation-induced oxidative damage in liver and heart tis sues. The study was conducted on forty (40) rats which were classified into four equal groups. Group1: Control group, Group. 2: rats given cardamom in basal diet.Group3: Irradiated rats, rats were subjected to whole body gamma irradiation at 6 Gy delivere d as single exposure dose. Group 4: irradiated +cardamom: rats receiving cardamom for 4 weeks and irradiated. The animals were scarified 24h after irradiation. Irradiated animals had significant increase in oxidative stress markers in liver and heart tissues expressed by significant increase of malondialdehyde (MDA) content associated to significant depletion of superoxide dismutase (SOD) , catalase (CAT) activities, and reduced glutathione (GSH) content . Hepatic and cardiac changes included significant increases of serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) , total cholesterol(TC), triacylglycerol(TAG), low-density lipoprotein cholesterol(LDL-C), and iron concentration. While, a significant decre ase in high-density lipoprotein-cholesterol (HDL-C), manganese and copper were observed. Addition of cardamom to the basal diet prior to gamma radiation, improved the tested parameters . So it is a therapeutic alternative for oxidative stress, hyperlipidaemia and trace elements changes. . The data obtained in this study suggest that cardamom may prevent liver and heart from radiation-induced damage.

  15. Amelioration of the cyclophosphamide induced genotoxic damage in mice by the ethanolic extract of Equisetum arvense

    Directory of Open Access Journals (Sweden)

    Jasbir Kour

    Full Text Available In the present study, we evaluated the potential of the plant E. arvense against the cytotoxic and mutagenic effects induced by cyclophosphamide (chemotherapeutic agent in the bone marrow cells of mice using the Chromosome assay (CA and Mitotic index (MI in vivo as the biomarkers. The study was performed following 3 protocols: pre-treatment, simultaneous treatment and post-treatment with the ethanolic extract of the plant. The results demonstrated that the plant extract was not cytotoxic and mutagenic and has a protective effect against the mutagenicity induced by cyclophosphamide in pre, simultaneous and post treatments and against its cytotoxicity as well. Because of its ability to prevent chromosomal damage, E. arvense is likely to open an interesting field concerning its possible use in clinical applications, most importantly in cancer as a chemopreventive agent or even as a coadjuvant to chemotherapy to reduce the side effects associated with it. Keywords: Equisetum arvense, Antimutagenicity, Chromosomal aberration assay, Mitotic index, GC–MS analysis

  16. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    Science.gov (United States)

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Oxidative Stress in The Hippocampus During Experimental Seizures Can Be Ameliorated With The Antioxidant Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Ítala Mônica Sales Santos

    2009-01-01

    Full Text Available Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group, ascorbic acid (500 mg/kg, i.p., AA group, pilocarpine (400 mg/kg, i.p., pilocarpine group, and the association of ascorbic acid (500 mg/kg, i.p. plus pilocarpine (400 mg/kg, i.p., 30 min before of administration of ascorbic acid (AA plus pilocarpine group. After the treatments all groups were observed for 6 h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a

  18. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats.

    Science.gov (United States)

    Nasri, Rim; Abdelhedi, Ola; Jemil, Ines; Daoued, Ines; Hamden, Khaled; Kallel, Choumous; Elfeki, Abdelfattah; Lamri-Senhadji, Myriem; Boualga, Ahmed; Nasri, Moncef; Karra-Châabouni, Maha

    2015-12-05

    This study investigated the therapeutic potential of undigested goby fish (Zosterisessor ophiocephalus) muscle proteins (UGP) and their hydrolysates on high-fat-high-fructose diet (HFFD)-fed rats. HFFD induced hyperglycemia, manifested by a significant increase in the levels of glucose and glycogen as well as α-amylase activity when compared to normal rats. The administration of GPHs to HFFD-fed rats significantly decreased α-amylase activity and the contents of blood glucose and hepatic glycogen. By contrast, the UGP increased the glucose metabolic disorders in HFFD-fed rats. Furthermore, HFFD-fed rats showed oxidative stress, as evidenced by decreased antioxidant enzyme activities and glutathione (GSH) levels and increased concentration of the lipid peroxidation product malondialdehyde in liver and kidney. Interestingly, the daily gavage of UGP and GPHs improved the redox status in liver and kidney of HFFD-rats by ameliorating or reversing the above-mentioned changes. Moreover, GPHs exhibited a renal protective role by reversing the HFFD-induced decease of uric acid and increase of creatinine levels in serum and preventing some HFFD-induced changes in kidney architecture. The results demonstrate that GPHs contain bioactive peptides that possess significant hypoglycemic and antioxidant properties, and ameliorate renal damage in rats fed hypercaloric diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Endogenous melatonin and oxidatively damaged guanine in DNA

    DEFF Research Database (Denmark)

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were...... attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. METHODS: Mother...

  20. Palmitoylethanolamide Ameliorates Hippocampal Damage and Behavioral Dysfunction After Perinatal Asphyxia in the Immature Rat Brain

    Directory of Open Access Journals (Sweden)

    María I. Herrera

    2018-03-01

    Full Text Available Perinatal asphyxia (PA is an obstetric complication associated with an impaired gas exchange. This health problem continues to be a determinant of neonatal mortality and neurodevelopmental disorders. Palmitoylethanolamide (PEA has exerted neuroprotection in several models of brain injury and neurodegeneration. We aimed at evaluating the potential neuroprotective role of PEA in an experimental model, which induces PA in the immature rat brain. PA was induced by placing Sprague Dawley newborn rats in a water bath at 37°C for 19 min. Once their physiological conditions improved, they were given to surrogate mothers that had delivered normally within the last 24 h. The control group was represented by non-fostered vaginally delivered pups, mimicking the clinical situation. Treatment with PEA (10 mg/kg was administered within the first hour of life. Modifications in the hippocampus were analyzed with conventional electron microscopy, immunohistochemistry (for NeuN, pNF-H/M, MAP-2, and GFAP and western blot (for pNF H/M, MAP-2, and GFAP. Behavior was also studied throughout Open Field (OF Test, Passive Avoidance (PA Task and Elevated Plus Maze (EPM Test. After 1 month of the PA insult, we observed neuronal nucleus degeneration in CA1 using electron microscopy. Immunohistochemistry revealed a significant increase in pNF-H/M and decrease in MAP-2 in CA1 reactive area. These changes were also observed when analyzing the level of expression of these markers by western blot. Vertical exploration impairments and anxiety-related behaviors were encountered in the OF and EPM tests. PEA treatment attenuated PA-induced hippocampal damage and its corresponding behavioral alterations. These results contribute to the elucidation of PEA neuroprotective role after PA and the future establishment of therapeutic strategies for the developing brain.

  1. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.

    Science.gov (United States)

    Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline

    2012-09-01

    Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.

  2. Beta-glucan ameliorates gamma-rays induced oxidative injury in male Swiss albino rats

    International Nuclear Information System (INIS)

    Salama, S.F.

    2011-01-01

    1,3-beta-D-Glucan is a natural polysaccharide derived from the cell walls of bakers yeast Saccharomyces cerevsiae with immunoenhancing and potent antioxidant effects. This study investigated the pathways through which beta-glucan gavage treatment (50mg/kg) exerts its effect on radiation-induced oxidative damage in male rats. Beta-glucan was given orally to male rats; 3 hours post gamma-irradiation at dose 5Gy, for 10 and 20 days post-irradiation level were assayed, being remarkable indicators in cell oxidative stress. Results pointed out that irradiation at 5Gy significantly depressed all blood parameters, such as erythrocytes count (RBCs), hemoglobin content (Hb), hematocrit value (Hct), total leucocytes count and absolute lymphocytes and neutrophils counts, blood glutathione (GSH) level and conversely elevated level of serum ascorbyl radical (AsR), product of lipid peroxidation (MDA melanodialdehyde), triglycerides and cholesterol. Total leucocytes count and absolute lymphocytes and neutrophils counts, RBCs, Hb, Hct, blood GSH and serum MDA of irradiated animals receiving beta-glucan administration were exhibited significant differences compared to the irradiated group. Marrow count and the percentage of viability and spleenocytes viability were also significantly decreased. Beta-glucan treatment accelerates recovery of cell damage induced by ionizing irradiation through its potential immune-enhancing activity and free radical scavenging ability that is partially mediated through stimulation of immunohaematological system thus could play a role in regulating irradiation complications

  3. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    Directory of Open Access Journals (Sweden)

    Ana Laura Nicoletti Carvalho

    2013-01-01

    Full Text Available Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP- induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF, and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs.

  4. Ameliorative Effect of Camel's Milk and Nigella Sativa Oil against Thioacetamide-induced Hepatorenal Damage in Rats.

    Science.gov (United States)

    Ahmad, Aftab; Al-Abbasi, Fahad A; Sadath, Saida; Ali, Soad Shaker; Abuzinadah, Mohammed F; Alhadrami, Hani A; Mohammad Alghamdi, Anwar Ali; Aseeri, Ali H; Khan, Shah Alam; Husain, Asif

    2018-01-01

    Camel milk (CM) and Nigella sativa (NS) have been traditionally claimed to cure wide range of diseases and used as medicine in different part of world, particularly in Saudi Arabia. Several research studies have been published that proved beneficial effects of CM and NS. This study was undertaken to investigate the antihepatotxic potential of CM and NS oil (NSO) against thioacetamide (TAA)-induced hepato and nephrotoxicity in rats. Thirty female Albino Wistar rats were randomly divided in to six groups having five rats in each group. A single subcutaneous injection of TAA (100 mg/kg b. w.) was administered to all the rats in Group-II to VI on 1 st day to induce hepatorenal damage. Group I served as a normal control while Group II served as toxic control for comparison purpose. Experimental animals in Group III, IV, and V were supplemented with fresh CM, (250 mL/24 h/cage), NSO (2 mL/kg/day p. o.), and NSO + fresh CM, respectively. Group VI was treated with a polyherbal hepatoprotective Unani medicine Jigreen (2 mL/kg/day p. o.) for 21 days. TAA-induced hepatorenal damage and protective effects of CM and NSO were assessed by analyzing liver and kidney function tests in the serum. Histopathology of liver and kidney tissues was also carried out to corroborate the findings of biochemical investigation. The results indicated that the TAA intoxicated rats showed significant increase in the alanine transaminase, aspartate transaminase, gamma-glutamyl transpeptidase, alkaline phosphatase, lipid profile, urea, creatinine, uric acid, sodium, and potassium levels in serum. Treatment of rats with CM, NSO, and CM plus NSO combination and Jigreen significantly reversed the damage and brought down the serum biochemical parameters and lipid profile toward the normal levels. The histopathological studies also support the hepato and nephroprotective effects of CM and NSO. This study demonstrated the ameliorative effects of CM, NSO, and CM plus NSO combination against TAA

  5. Oxidative DNA damage during sleep periods among nightshift workers.

    Science.gov (United States)

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2016-08-01

    Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Oxidative damage of DNA in subjects occupationally exposed to lead.

    Science.gov (United States)

    Pawlas, Natalia; Olewińska, Elżbieta; Markiewicz-Górka, Iwona; Kozłowska, Agnieszka; Januszewska, Lidia; Lundh, Thomas; Januszewska, Ewa; Pawlas, Krystyna

    2017-09-01

    Exposure to lead (Pb) in environmental and occupational settings continues to be a serious public health problem and may pose an elevated risk of genetic damage. The aim of this study was to assess the level of oxidative stress and DNA damage in subjects occupationally exposed to lead. We studied a population of 78 male workers exposed to lead in a lead and zinc smelter and battery recycling plant and 38 men from a control group. Blood lead levels were detected by graphite furnace atomic absorption spectrophotometry and plasma lead levels by inductively coupled plasma-mass spectrometry. The following assays were performed to assess the DNA damage and oxidative stress: comet assay, determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG), lipid peroxidation and total antioxidant status (TAS). The mean concentration of lead in the blood of the exposed group was 392 ± 103 μg/L and was significantly higher than in the control group (30.3 ± 29.4 μg/L, p lead exposure [lead in blood, lead in plasma, zinc protoporphyrin (ZPP)] and urine concentration of 8-OHdG. The level of oxidative damage of DNA was positively correlated with the level of lipid peroxidation (TBARS) and negatively with total anti-oxidative status (TAS). Our study suggests that occupational exposure causes an increase in oxidative damage to DNA, even in subjects with relatively short length of service (average length of about 10 years). 8-OHdG concentration in the urine proved to be a sensitive and non-invasive marker of lead induced genotoxic damage.

  7. Exercise Ameliorates Endocrine Pancreas Damage Induced by Chronic Cola Drinking in Rats.

    Directory of Open Access Journals (Sweden)

    Matilde Otero-Losada

    Full Text Available This study evaluates whether the daily practice of an exercise routine might protect from endocrine pancreas damage in cola drinking rats.Forty-eight Wistar rats were randomly assigned to 4 groups depending on a beverage consumption ad libitum, water (W or cola beverage (C, and b physical activity, sedentary (S or treadmill running (R. Accordingly, 4 groups were studied: WS (water sedentary, WR (water runner, CS (cola sedentary and CR (cola runner. Body weight, nutritional data, plasma levels of glucose, creatinine, total cholesterol and cholesterol fractions, and triglycerides (enzymocolorimetry, and systolic blood pressure (plethysmography were measured. After 6 months, euthanasia was performed (overdose sodium thiopental. Pancreatic tissue was immediately excised and conventionally processed for morphometrical and immunohistochemical determinations.The effects of running and chronic cola drinking on pancreas morphology showed interaction (p<0.001 rather than simple summation. Cola drinking (CS vs WS reduced median pancreatic islet area (-30%, 1.8 104 μm2 vs 2.58 104 μm2, p<0.0001 and median β-cell mass (-43%, 3.81 mg vs 6.73 mg, p<0.0001, and increased median α/β ratio (+49%, 0.64 vs 0.43, p< 0.001. In water drinking rats (WR vs WS, running reduced median α-cell mass (-48%, 1.48 mg vs 2.82 mg, p<0.001 and α/β ratio (-56%, 0.19 vs 0.43, p<0.0001. Differently, in cola drinking rats (CR vs CS, running partially restored median islet area (+15%, 2.06 104 μm2 vs 1.79 104 μm2, p<0.05, increased median β-cell mass (+47%, 5.59 mg vs 3.81 mg, p <0.0001 and reduced median α/β ratio (-6%, 0.60 vs 0.64, p<0.05.This study is likely the first reporting experimental evidence of the beneficial effect of exercise on pancreatic morphology in cola-drinking rats. Presently, the increase of nearly 50% in β cells mass by running in cola drinking rats is by far the most relevant finding. Moderate running, advisably indicated in cola consumers and

  8. Ameliorating potential of Equisetum arvense against the Cyclophosphamide induced genotoxic damage in mice

    Directory of Open Access Journals (Sweden)

    Jasbir Kour

    2017-10-01

    extracts on the cytotoxicity induced by CPA showed a significant improvement. The efficacy of present chemotherapeutics has been limited by its toxicity and for the cells developing resistance against the therapy. Because of its ability to prevent chromosomal damage, E. arvense is likely to open an interesting field concerning its possible use in clinical applications, most importantly in cancer as a chemopreventive agent or even as a coadjuvant to chemotherapy to reduce the side effects associated with it.

  9. Erythrocytes Membrane Alterations Reflecting Liver Damage in CCl₄-Induced Cirrhotic Rats: The Ameliorative Effect of Naltrexone

    Directory of Open Access Journals (Sweden)

    Fatemeh Sarhadi Kholari

    2016-11-01

    Full Text Available Cirrhosis is the consequence of chronic liver disease. Deleterious effects of oxidative stress on hepatocytes may be reflected in the erythrocyte membrane. Naltrexone (NTX has been shown to attenuate hepatocellular injury in fibrotic animal models. The aim of this study was to investigate the progressive effect of CCl4 on the liver and whether the improvement of liver cirrhosis can be monitored through alterations in the erythrocyte membrane. In this study, 84 male Wistar rats were divided into 4 groups and received reagents (i.p. as follows: 1- CCl₄, 2- NTX + CCl₄, 3- Mineral Oil (M, and 4- NTX + M. After 2, 6 and 8 weeks, the blood and liver tissue samples were collected. Plasma enzyme activities, the content of erythrocyte GSH and some membrane compositions, including protein carbonyl, protein sulfhydryl, and malondialdehyde were assessed. After 6 and 8 weeks, plasma enzyme activities and the content of protein carbonyl were higher in CCl4 group significantly, as compared to other groups (P<0.001. NTX significantly diminished protein carbonyl and plasma enzyme activities (P<0.001. GSH did not change until the 6th week. However, CCl4+NTX increased it significantly as compared to CCl₄ group (P<0.05. Protein sulfhydryl showed changes in NTX+CCl₄ group which indicated a significant increase in protein sulfhydryl content in a 6th week compared to CCl4 group (P<0.05. MDA did not show any significant alteration. CCl₄-induced cirrhosis is accompanied by increased content of oxidative stress markers, especially protein carbonyl of RBC membrane and plasma enzyme activities. This study shows that the progression of liver cirrhosis and the ameliorative effect of NTX can be followed through alterations of these markers.

  10. Nitric oxide synthase inhibition ameliorates nicotine-induced sperm function decline in male rats

    Directory of Open Access Journals (Sweden)

    Ibukun P. Oyeyipo

    2015-09-01

    Conclusion: Taken together, the present data indicate the abilities of l-NAME to ameliorate nicotine-induced spermatotoxic effects in male rats via a mechanism dependent on the circulating testosterone level.

  11. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat, E-mail: sarwat786@rediffmail.com

    2012-02-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  12. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    International Nuclear Information System (INIS)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat

    2012-01-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  13. Tribulus terrestris ameliorates metronidazole-induced spermatogenic inhibition and testicular oxidative stress in the laboratory mouse

    Science.gov (United States)

    Kumari, Mrinalini; Singh, Poonam

    2015-01-01

    Objective: The present study was undertaken to evaluate the protective effects of the fruit extract of Tribulus terrestris (TT) on the metronidazole (MTZ)-induced alterations in spermatogenesis, sperm count, testicular functions, and oxidative stress. Materials and Methods: Thirty adult Swiss strain mice were divided into six groups. Animals of Groups I and II served as untreated and vehicle-treated controls, while that of Groups III and IV were administered with MTZ (500 mg/kg BW/day) and TT (200 mg/kg BW/day) alone for 28 days, respectively. Low (100 mg/kg BW/day) and high (200 mg/kg BW/day) doses of TT along with MTZ (500 mg/kg BW/day) were administered for 28 days in the mice of Groups V and VI, respectively. Twenty four hours after the last treatment, all the animals were euthanized to study the histological changes in the testis and sperm count in the epididymis. Testicular functional markers, lipid peroxidation (LPO) and the activities of antioxidant enzymes, e.g., superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, were also assessed in the mice of all the groups. Results: Metronidazole caused marked alterations in the testicular weight, spermatogenesis, activities of antioxidant enzymes, lactate dehydrogenase, alkaline phosphatase, and the level of LPO. The epididymal sperm count also declined significantly in MTZ-treated group. These changes were partially restored following co-administration of 500 mg/kg BW/day of MTZ and 100 mg/kg BW/day of TT. However, in the mice co-administered with 500 mg/kg BW/day of MTZ and 200 mg/kg BW/day of TT, the changes reverted back completely, similar to that of the controls. Conclusion: The fruit extract of TT ameliorates the MTZ-induced alterations in the testis. PMID:26069369

  14. Tribulus terrestris ameliorates metronidazole-induced spermatogenic inhibition and testicular oxidative stress in the laboratory mouse.

    Science.gov (United States)

    Kumari, Mrinalini; Singh, Poonam

    2015-01-01

    The present study was undertaken to evaluate the protective effects of the fruit extract of Tribulus terrestris (TT) on the metronidazole (MTZ)-induced alterations in spermatogenesis, sperm count, testicular functions, and oxidative stress. Thirty adult Swiss strain mice were divided into six groups. Animals of Groups I and II served as untreated and vehicle-treated controls, while that of Groups III and IV were administered with MTZ (500 mg/kg BW/day) and TT (200 mg/kg BW/day) alone for 28 days, respectively. Low (100 mg/kg BW/day) and high (200 mg/kg BW/day) doses of TT along with MTZ (500 mg/kg BW/day) were administered for 28 days in the mice of Groups V and VI, respectively. Twenty four hours after the last treatment, all the animals were euthanized to study the histological changes in the testis and sperm count in the epididymis. Testicular functional markers, lipid peroxidation (LPO) and the activities of antioxidant enzymes, e.g., superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, were also assessed in the mice of all the groups. Metronidazole caused marked alterations in the testicular weight, spermatogenesis, activities of antioxidant enzymes, lactate dehydrogenase, alkaline phosphatase, and the level of LPO. The epididymal sperm count also declined significantly in MTZ-treated group. These changes were partially restored following co-administration of 500 mg/kg BW/day of MTZ and 100 mg/kg BW/day of TT. However, in the mice co-administered with 500 mg/kg BW/day of MTZ and 200 mg/kg BW/day of TT, the changes reverted back completely, similar to that of the controls. The fruit extract of TT ameliorates the MTZ-induced alterations in the testis.

  15. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats

    Directory of Open Access Journals (Sweden)

    Ramalingayya GV

    2017-03-01

    Full Text Available Grandhi Venkata Ramalingayya, Sri Pragnya Cheruku, Pawan G Nayak, Anoop Kishore, Rekha Shenoy, Chamallamudi Mallikarjuna Rao, Nandakumar Krishnadas Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India Abstract: Doxorubicin (DOX is the most widely used broad-spectrum anticancer agent, either alone or in combination, for most cancers including breast cancer. Long-term use of chemotherapeutic agents to treat breast cancer patients results in cognitive complications with a negative impact on survivors’ quality of life. The study objective was to evaluate rutin (RUT for its neuroprotective effect against DOX in human neuroblastoma (IMR32 cells in vitro and study its potential to ameliorate DOX-induced cognitive dysfunction in Wistar rats. Cell viability assay (3-[4,5 dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide, neurite growth assay, detection of apoptosis by (acridine orange/ethidium bromide staining, intracellular reactive oxygen species (ROS assay, and flowcytometric analysis were carried out to assess neuroprotective potential against DOX. An in vivo study was conducted for assessing protective effect of RUT against memory deficit associated with DOX-induced chemobrain using object recognition task (ORT. Locomotion was assessed using open field test. Serum biochemistry, acetylcholinesterase, oxidative stress markers in hippocampus, and frontal cortex were assessed. Histopathological analysis of major organ systems was also carried out. Prior exposure to RUT at 100 µM protected IMR32 cells from DOX (1 µM neurotoxicity. DOX exposure resulted in increased cellular death, apoptosis, and intracellular ROS generation with inhibition of neurite growth in differentiated IMR32 cells, which was significantly ameliorated by RUT. Cognitive dysfunction was induced in Wistar rats by administering ten cycles of DOX (2.5 mg/kg, intraperitoneal, once in 5 days, as we observed

  16. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    Science.gov (United States)

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  17. Biomarkers of oxidative damage to DNA and repair

    DEFF Research Database (Denmark)

    Loft, Steffen; Høgh Danielsen, Pernille; Mikkelsen, Lone

    2008-01-01

    environmental factors, including particulate air pollution, cause oxidative damage to DNA, whereas diets rich in fruit and vegetables or antioxidant supplements may reduce the levels and enhance repair. Urinary excretion of 8-oxodG, genotype and expression of OGG1 have been associated with risk of cancer...

  18. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, S; Poulsen, H E

    1996-01-01

    with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion...

  19. Ginger extract protects rat's kidneys against oxidative damage after chronic ethanol administration.

    Science.gov (United States)

    Shirpoor, Aireza; Rezaei, Farzaneh; Fard, Amin Abdollahzade; Afshari, Ali Taghizadeh; Gharalari, Farzaneh Hosseini; Rasmi, Yousef

    2016-12-01

    Chronic alcohol ingestion is associated with pronounced detrimental effects on the renal system. In the current study, the protective effect of ginger extract on ethanol-induced damage was evaluated through determining 8-OHdG, cystatin C, glomerular filtration rate, and pathological changes such as cell proliferation and fibrosis in rats' kidneys. Male wistar rats were randomly divided into three groups and were treated as follows: (1) control, (2) ethanol and (3) ginger extract treated ethanolic (GETE) groups. After a six weeks period of treatment, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant rise in the level of 8-OHdG, cystatin C, plasma urea and creatinine. Moreover, compared to the control group, the ethanol group showed a significant decrease in the urine creatinine and creatinine clearance. In addition, significant amelioration of changes in the structure of kidneys, along with restoration of the biochemical alterations were found in the ginger extract treated ethanolic group, compared to the ethanol group. These findings indicate that ethanol induces kidneys abnormality by oxidative DNA damage and oxidative stress, and that these effects can be alleviated using ginger as an antioxidant and anti-inflammatory agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  1. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    International Nuclear Information System (INIS)

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. (author)

  2. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice

    Science.gov (United States)

    Das, Jayanta Kumar; Sarkar, Sibani; Hossain, Sk Ugir; Chakraborty, Pramita; Das, Rajat Kumar; Bhattacharya, Sudin

    2013-01-01

    Background & objectives: Malachite green (MG), an environmentally hazardous material, is used as a non permitted food colouring agent, especially in India. Selenium (Se) is an essential nutritional trace element required for animals and humans to guard against oxidative stress induced by xenobiotic compounds of diverse nature. In the present study, the role of the selenium compound diphenylmethyl selenocyanate (DMSE) was assessed on the oxidative stress (OS) induced by a food colouring agent, malachite green (MG) in vivo in mice. Methods: Swiss albino mice (Mus musculus) were intraperitoneally injected with MG at a standardized dose of 100 μg/ mouse for 30 days. DMSE was given orally at an optimum dose of 3 mg/kg b.w. in pre (15 days) and concomitant treatment schedule throughout the experimental period. The parameters viz. ALT, AST, LPO, GSH, GST, SOD, CAT, GPx, TrxR, CA, MN, MI and DNA damage have been evaluated. Results: The DMSE showed its potential to protect against MG induced hepatotoxicity by controlling the serum alanine aminotransferase and aspartate amino transferase (ALT and AST) levels and also ameliorated oxidative stress by modulating hepatic lipid peroxidation and different detoxifying and antioxidative enzymes such as glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and also the selenoenzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) and reduced glutathione level which in turn reduced DNA damage. Interpretation & conclusions: The organo-selenium compound DMSE showed significant protection against MG induced heptotoxicity and DNA damage in murine model. Better protection was observed in pretreatment group than in the concomitant group. Further studies need to be done to understand the mechanism of action. PMID:23852297

  3. Lactobacillus plantarum (VR1 isolated from an Ayurvedic medicine (Kutajarista ameliorates in vitro cellular damage caused by Aeromonas veronii

    Directory of Open Access Journals (Sweden)

    Patole Milind S

    2011-06-01

    Full Text Available Abstract Background Lactobacillus plantarum is considered as a safe and effective probiotic microorganism. Among various sources of isolation, traditionally fermented foods are considered to be rich in Lactobacillus spp., which can be exploited for their probiotic attribute. Antibacterial property of L. plantarum has been demonstrated against various enteric pathogens in both in vitro and in vivo systems. This study was aimed at characterizing L. plantarum isolated from Kutajarista, an ayurvedic fermented biomedicine, and assessing its antagonistic property against a common enteropathogen Aeromonas veronii. Results We report the isolation of L. plantarum (VR1 from Kutajarista, and efficacy of its cell free supernatant (CFS in amelioration of cytotoxicity caused by Aeromonas veronii. On the part of probiotic attributes, VR1 was tolerant to pH 2, 0.3% bile salts and simulated gastric juice. Additionally, VR1 also exhibited adhesive property to human intestinal HT-29 cell line. Furthermore, CFS of VR1 was antibacterial to enteric pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Aeromonas veronii and clinical isolates of P. aeruginosa and E. coli. Detailed study regarding the effect of VR1 CFS on A. veronii cytotoxicity showed a significant decrease in vacuole formation and detrimental cellular changes in Vero cells. On the other hand, A. veronii CFS caused disruption of tight junction proteins ZO-1 and actin in MDCK cell line, which was prevented by pre-incubation with CFS of VR1. Conclusions This is the first study to report isolation of L. plantarum (VR1 from Kutajarista and characterisation for its probiotic attributes. Our study demonstrates the antagonistic property of VR1 to A. veronii and effect of VR1 CFS in reduction of cellular damage caused by A. veronii in both Vero and MDCK cell lines.

  4. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    Science.gov (United States)

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Maresin 1 Ameliorates Lung Ischemia/Reperfusion Injury by Suppressing Oxidative Stress via Activation of the Nrf-2-Mediated HO-1 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Quanchao Sun

    2017-01-01

    Full Text Available Lung ischemia/reperfusion (I/R injury occurs in various clinical conditions and heavily damaged lung function. Oxidative stress reaction and antioxidant enzymes play a pivotal role in the etiopathogenesis of lung I/R injury. In the current study, we investigated the impact of Maresin 1 on lung I/R injury and explored the possible mechanism involved in this process. MaR 1 ameliorated I/R-induced lung injury score, wet/dry weight ratio, myeloperoxidase, tumor necrosis factor, bronchoalveolar lavage fluid (BALF leukocyte count, BALF neutrophil ratio, and pulmonary permeability index levels in lung tissue. MaR 1 significantly reduced ROS, methane dicarboxylic aldehyde, and 15-F2t-isoprostane generation and restored antioxidative enzyme (superoxide dismutase, glutathione peroxidase, and catalase activities. Administration of MaR 1 improved the expression of nuclear Nrf-2 and cytosolic HO-1 in I/R-treated lung tissue. Furthermore, we also found that the protective effects of MaR 1 on lung tissue injury and oxidative stress were reversed by HO-1 activity inhibitor, Znpp-IX. Nrf-2 transcription factor inhibitor, brusatol, significantly decreased MaR 1-induced nuclear Nrf-2 and cytosolic HO-1 expression. In conclusion, these results indicate that MaR 1 protects against lung I/R injury through suppressing oxidative stress. The mechanism is partially explained by activation of the Nrf-2-mediated HO-1 signaling pathway.

  6. Amelioration of both early and late radiation-induced damage to pig skin by essential fatty acids

    International Nuclear Information System (INIS)

    Hopewell, J.W.; Van den Aardweg, G.J.M.J.; Morris, G.M.

    1994-01-01

    To evaluate the possible role of essential fatty acids, specifically gamma-linolenic and eicosapentaenoic acid, in the amelioration of early and late radiation damage to the skin. Skin sites on the flank of 22-25 kg female large white pigs were irradiated with either single or fractionated doses (20 F/28 days) of β-rays from 22.5 mm diameter 90 Sr/ 90 Y plaques at a dose rate of ∼3 Gy/min. Essential fatty acids were administered orally in the form of two open-quotes activeclose quotes oils, So-1100 and So-5407, which contained gamma-linolenic acid and a mixture of that oil with eicosapentaenoic acid, respectively. Oils (1.5-6.0 ml) were given daily for 4 weeks prior, both 4 weeks prior and 10-16 weeks after, or in the case of one single dose study, just for 10 weeks after irradiation. Control animals received a open-quotes placeboclose quotes oil, So-1129, containing no gamma linolenic acid or eicosapentaenoic acid over similar time scales before and after irradiation. Acute and late skin reactions were assessed visually and the dose-related incidence of a specific reaction used to compare the effects of different treatment schedules. A reduction in the severity of both the early and late radiation reactions in the skin was only observed when open-quotes activeclose quotes oils were given over the time course of the expression of radiation damage. Prior treatment with oils did not modify the radiation reaction. A 3.0 ml daily dose of either So-1100 or So-5407 given prior to, but also after irradiation with single and fractionated doses of β-rays produced the most significant modification to the radiation reactions, effects consistent with dose modification factors between 1.06-1.24 for the acute reactions of bright red erythema and/or moist desquamation, and of 1.14-1.35 for the late reactions of dusky/mauve erythema and dermal necrosis. 38 refs., 5 tabs

  7. Weight Loss and Melatonin Reduce Obesity-Induced Oxidative Damage in Rat Testis

    Directory of Open Access Journals (Sweden)

    Dogan Atilgan

    2013-01-01

    Full Text Available Aim. We aimed to evaluate the antioxidant effects of weight loss and melatonin on the obesity-induced oxidative damage in rat testes. Materials and Methods. 28 male Wistar albino rats were randomly divided into 4 groups, each consisting of 7 rats: control group (Group 1, obesity group (Group 2, obesity + MLT group (Group 3, and weight loss group (Group 4. Rats were weighed at the beginning and at the end of the study. Bilateral orchiectomy was performed and 5 cc blood samples were obtained from all of the rats. Superoxide dismutase (SOD, malondialdehyde (MDA, and protein carbonyl (PC levels were analysed in the testicular tissues and serum. Spermatogenesis was evaluated with the Johnsen scoring system. Results. The testicular tissue and serum levels of MDA, PC, and SOD activity were increased in the obesity group in comparison to the sham operated group (P<0.05. Weight loss and melatonin treatment ameliorated MDA, PC, and SOD levels in testicular tissue and serum significantly (P<0.05. There was no significant difference between groups in terms of mean Johnsen score (P=0.727. Conclusion. Experimentally created obesity caused oxidative stress and both melatonin and weight loss reduced oxidative stress parameters in rat testes.

  8. Bilirubin and its oxidation products damage brain white matter

    Science.gov (United States)

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  9. Bee products prevent agrichemical-induced oxidative damage in fish.

    Directory of Open Access Journals (Sweden)

    Daiane Ferreira

    Full Text Available In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™ and a group that was exposed to 0.88 mg L(-1 of TEB alone (corresponding to 16.6% of the 96-h LC50. We show that waterborne bee products, including royal jelly (RJ, honey (H, bee pollen (BP and propolis (P, reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD, catalase (CAT and glutathione-S-transferase (GST are increased.

  10. Bee products prevent agrichemical-induced oxidative damage in fish.

    Science.gov (United States)

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; da Rosa, João Gabriel Santos; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.

  11. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    Science.gov (United States)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  12. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nosratola D Vaziri

    Full Text Available Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control or high fermentable fiber (amylose maize resistant starch, HAM-RS2 for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  13. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: 2010lijianguo@sina.cn [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  14. Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes.

    Science.gov (United States)

    Alimi, Hichem; Hfaeidh, Najla; Bouoni, Zouhour; Sakly, Mohsen; Rhouma, Khémais Ben

    2013-05-01

    The aim of the present study was to investigate the efficacy of Opuntia ficus indica f. inermis fruit juice (OFIj) on reversing oxidative damages induced by chronic ethanol intake in rat erythrocytes. OFIj was firstly analyzed with HPLC for phenolic and flavonoids content. Secondly, 40 adult male Wistar rats were equally divided into five groups and treated for 90 days as follows: control (C), ethanol-only 3 g/kg body weight (b.w) (E), low dose of OFIj 2 ml/100 g b.w+ethanol (Ldj+E), high dose of OFIj 4 ml/100 g b.w+ethanol (Hdj+E), and only a high dose of OFIj 4 ml/100g b.w (Hdj). HPLC analysis indicated high concentrations of phenolic acids and flavonoids in OFIj. Ethanol treatment markedly decreased the activities of erythrocyte superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and the level of reduced glutathione (GSH). Changes in the erythrocyte's antioxidant ability were accompanied by enhanced oxidative modification of lipids (increase of malondialdeyde level) and proteins (increase in carbonyl groups). Interestingly, pre-administration of either 2 ml/100 g b.w or 4 ml/100 g b.w of OFIj to ethanol-intoxicated rats significantly reversed decreases in enzymatic as well as non enzymatic antioxidants parameters in erythrocytes. Also, the administration of OFIj significantly protected lipids and proteins against ethanol-induced oxidative modifications in rat erythrocytes. The beneficial effect of OFIj can result from the inhibition of ethanol-induced free radicals chain reactions in rat erythrocytes or from the enhancement of the endogenous antioxidants activities. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Viewing oxidative stress through the lens of oxidative signalling rather than damage.

    Science.gov (United States)

    Foyer, Christine H; Ruban, Alexander V; Noctor, Graham

    2017-03-07

    Concepts of the roles of reactive oxygen species (ROS) in plants and animals have shifted in recent years from focusing on oxidative damage effects to the current view of ROS as universal signalling metabolites. Rather than having two opposing activities, i.e. damage and signalling, the emerging concept is that all types of oxidative modification/damage are involved in signalling, not least in the induction of repair processes. Examining the multifaceted roles of ROS as crucial cellular signals, we highlight as an example the loss of photosystem II function called photoinhibition, where photoprotection has classically been conflated with oxidative damage. © 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY).

  16. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood.

    Directory of Open Access Journals (Sweden)

    Neha Qasim

    Full Text Available Creatine (Cr is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2'-azobis(2-amidinopropane dihydrochloride (AAPH and hydrogen peroxide (H2O2 in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their

  17. Role of oxidative damage in toxicity of particulates

    DEFF Research Database (Denmark)

    Møller, Peter; Jacobsen, Nicklas R; Folkmann, Janne K

    2010-01-01

    composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels......Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical...

  18. Bicarbonate modulates oxidative and functional damage in ischemia-reperfusion.

    Science.gov (United States)

    Queliconi, Bruno B; Marazzi, Thire B M; Vaz, Sandra M; Brookes, Paul S; Nehrke, Keith; Augusto, Ohara; Kowaltowski, Alicia J

    2013-02-01

    The carbon dioxide/bicarbonate (CO(2)/HCO(3)(-)) pair is the main biological pH buffer. However, its influence on biological processes, and in particular redox processes, is still poorly explored. Here we study the effect of CO(2)/HCO(3)(-) on ischemic injury in three distinct models (cardiac HL-1 cells, perfused rat heart, and Caenorhabditis elegans). We found that, although various concentrations of CO(2)/HCO(3)(-) do not affect function under basal conditions, ischemia-reperfusion or similar insults in the presence of higher CO(2)/HCO(3)(-) resulted in greater functional loss associated with higher oxidative damage in all models. Because the effect of CO(2)/HCO(3)(-) was observed in all models tested, we believe this buffer is an important determinant of oxidative damage after ischemia-reperfusion. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  20. Deformability of Erythrocytes and Oxidative Damage in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Mukerrem Betul Yerer

    2012-04-01

    Full Text Available Purpose: A lowered cerebral perfusion as a consequence of hemodynamic microcirculatory insufficiency is one of the factors underlying in Alzheimer's disease, which is a neurodegenerative disorder leading to progressive cognitive impairment. Erythrocyte deformability is one of the major factors affecting the microcirculatory hemodynamics which is closely related to the oxidative damage. The aim of this study is to investigate the relationship between the erythrocyte deformability, nitric oxide levels and oxidative stress in Alzheimer's disease. Methods: The blood samples of 30 elderly people in three groups consisting of healthy control and different severities of the disease (low and severe were used. Then the erythrocytes were isolated and the deformability of erythrocytes was determined by Rheodyne SSD evaluating the elongation indexes of the erythrocytes under different shear stress. The catalase, glutathione peroxidase and plasma nitric oxide levels were measured spectrophotometric ally. Results: The plasma nitric oxide levels, catalase activities were found significantly higher and glutathione peroxidase activity was significantly lower in severe Alzheimer's disease patients compared to the control group. However, the deformability of erythrocytes was not significantly affected from these alterations. Conclusion: the oxidant-antioxidant status is dramatically changed in Alzheimer's disease patients with the severity of the disease and similar alterations were seen in the nitric oxide levels without any significant change in erythrocyte deformability. [Cukurova Med J 2012; 37(2.000: 65-75

  1. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  2. Role of oxidative DNA damage in genome instability and cancer

    International Nuclear Information System (INIS)

    Bignami, M.; Kunkel, T.

    2009-01-01

    Inactivation of mismatch repair (MMR) is associated with a dramatic genomic instability that is observed experimentally as a mutator phenotype and micro satellite instability (MSI). It has been implicit that the massive genetic instability in MMR defective cells simply reflects the accumulation of spontaneous DNA polymerase errors during DNA replication. We recently identified oxidation damage, a common threat to DNA integrity to which purines are very susceptible, as an important cofactor in this genetic instability

  3. The Extract of D. dasycarpus Ameliorates Oxazolone-Induced Skin Damage in Mice by Anti-Inflammatory and Antioxidant Mechanisms

    Directory of Open Access Journals (Sweden)

    Tsong-Min Chang

    2018-06-01

    Full Text Available Dictamni dasycarpus is a type of Chinese medicine made from the root bark of D. dasycarpus. It has been reported to show a wide spectrum of biological and pharmacological effects, for example, it has been used widely for the treatment of rheumatism, nettle rash, itching, jaundice, chronic hepatitis and skin diseases. In the current study, D. dasycarpus extract was investigated for its antioxidant and anti-inflammatory effects, as well as its capability to alleviate oxazolone-induced skin damage in mice. The possible anti-inflammatory mechanism of D. dasycarpus extract against oxidative challenge was elucidated by measuring the levels of reactive oxygen species (ROS production, interleukin-6, Tumor necrosis factor-α, NLRP3 (NACHT, LRR and PYD domains-containing protein 3 (NALP3 inflammasome and interleukin-1β in HaCaT cells. D. dasycarpus extract did not affect cell viability in basal conditions. The extract significantly reduced oxazolone-induced epidermal swelling compared to untreated animal in the hairless albino mice (ICR mice model. At the molecular level, Western blot assays indicated that the D. dasycarpus extract attenuated oxazolone-induced activation of apoptosis-associated speck-like protein containing CARD (ASC, procaspase-1, NF-κB and mitogen-activated protein kinase (MAPKs such as c-Jun N-terminal protein kinase (JNK and p38. This study demonstrates that D. dasycarpus extract could protect skin cells against oxidative and inflammatory insult by modulating the intracellular levels of ROS, TNF-α, interleukin-1, interleukin-6, NLR family pyrin domain containing 3 (NLRP3 inflammasome generation, antioxidant enzyme activity and cell signaling pathways. D. dasycarpus extract also attenuated the expression of NF-κB in HaCaT keratinocytes and thereby effectively downregulated inflammatory responses in the skin. Furthermore, D. dasycarpus extract alleviated oxazolone-induced damage in mice. Our results suggest the potential application

  4. The Extract of D. dasycarpus Ameliorates Oxazolone-Induced Skin Damage in Mice by Anti-Inflammatory and Antioxidant Mechanisms.

    Science.gov (United States)

    Chang, Tsong-Min; Yang, Ting-Ya; Niu, Yu-Lin; Huang, Huey-Chun

    2018-06-15

    Dictamni dasycarpus is a type of Chinese medicine made from the root bark of D. dasycarpus . It has been reported to show a wide spectrum of biological and pharmacological effects, for example, it has been used widely for the treatment of rheumatism, nettle rash, itching, jaundice, chronic hepatitis and skin diseases. In the current study, D. dasycarpus extract was investigated for its antioxidant and anti-inflammatory effects, as well as its capability to alleviate oxazolone-induced skin damage in mice. The possible anti-inflammatory mechanism of D. dasycarpus extract against oxidative challenge was elucidated by measuring the levels of reactive oxygen species (ROS) production, interleukin-6, Tumor necrosis factor-α, NLRP3 (NACHT, LRR and PYD domains-containing protein 3 (NALP3)) inflammasome and interleukin-1β in HaCaT cells. D. dasycarpus extract did not affect cell viability in basal conditions. The extract significantly reduced oxazolone-induced epidermal swelling compared to untreated animal in the hairless albino mice (ICR mice) model. At the molecular level, Western blot assays indicated that the D. dasycarpus extract attenuated oxazolone-induced activation of apoptosis-associated speck-like protein containing CARD (ASC), procaspase-1, NF-κB and mitogen-activated protein kinase (MAPKs) such as c-Jun N-terminal protein kinase (JNK) and p38. This study demonstrates that D. dasycarpus extract could protect skin cells against oxidative and inflammatory insult by modulating the intracellular levels of ROS, TNF-α, interleukin-1, interleukin-6, NLR family pyrin domain containing 3 (NLRP3) inflammasome generation, antioxidant enzyme activity and cell signaling pathways. D. dasycarpus extract also attenuated the expression of NF-κB in HaCaT keratinocytes and thereby effectively downregulated inflammatory responses in the skin. Furthermore, D. dasycarpus extract alleviated oxazolone-induced damage in mice. Our results suggest the potential application of D

  5. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    International Nuclear Information System (INIS)

    Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Yu, Yingchun; Aschner, Michael

    2009-01-01

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F 2 -isoprostanes (F 2 -IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 μM Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E 2 (PGE 2 ). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F 2 -IsoPs and PGE 2 in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  6. Magnolia Extract (BL153 Ameliorates Kidney Damage in a High Fat Diet-Induced Obesity Mouse Model

    Directory of Open Access Journals (Sweden)

    Wenpeng Cui

    2013-01-01

    Full Text Available Accumulating evidence demonstrated that obesity is a risk factor for renal structural and functional changes, leading to the end-stage renal disease which imposes a heavy economic burden on the community. However, no effective therapeutic method for obesity-associated kidney disease is available. In the present study, we explored the therapeutic potential of a magnolia extract (BL153 for treating obesity-associated kidney damage in a high fat diet- (HFD- induced mouse model. The results showed that inflammation markers (tumor necrosis factor-α and plasminogen activator inhibitor-1 and oxidative stress markers (3-nitrotyrosine and 4-hydroxy-2-nonenal were all significantly increased in the kidney of HFD-fed mice compared to mice fed with a low fat diet (LFD. Additionally, proteinuria and renal structure changes in HFD-fed mice were much more severe than that in LFD-fed mice. However, all these alterations were attenuated by BL153 treatment, accompanied by upregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α and hexokinase II (HK II expression in the kidney. The present study indicates that BL153 administration may be a novel approach for renoprotection in obese individuals by antiinflammation and anti-oxidative stress most likely via upregulation of PGC-1α and HK II signal in the kidney.

  7. Elevated oxidative damage in kitchen workers in Chinese restaurants.

    Science.gov (United States)

    Wang, Jiajia; Luo, Xiaolin; Xu, Bin; Wei, Jun; Zhang, Zhenzhen; Zhu, Huilian

    2011-01-01

    To investigate associations between occupational exposure to cooking oil fumes (COFs) and potential oxidative and genotoxic effects in kitchen workers. Sixty-seven male kitchen workers and 43 male controls from Chinese restaurants in Guangzhou were recruited. For all the participants, the levels of 1-hydroxypyrene (1-OHP) and 8-hydroxy-2-deoxyguanosine (8-oxodG) in urine, binucleated micronucleus (BNMN) frequency, comet tail length and tail DNA% in peripheral blood lymphocytes (PBLs) and malondialdehyde (MDA) and superoxide dismutase (SOD) in serum were measured. The inhalable particulates (PM(10)) in their workplaces were also monitored. Our results showed that the exposed group had a significantly higher median level of urinary 1-OHP than that of the control group (pkitchen and cooking time per day. All these positive associations remained after adjusting for the four confounders in a subsequent multivariate linear regression analysis. Occupational exposure to COFs led to increased oxidative damage in Chinese kitchen workers. The health consequences of these oxidative changes need further investgation. Urinary 1-OHP and 8-oxodG are noninvasive and effective biomarkers for assessment of oxidative damage in restaurants workers.

  8. Ganoderma atrum polysaccharide ameliorates anoxia/reoxygenation-mediated oxidative stress and apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Zhang, Yan-Song; Li, Wen-Juan; Zhang, Xian-Yi; Yan, Yu-Xin; Nie, Shao-Ping; Gong, De-Ming; Tang, Xiao-Fang; He, Ming; Xie, Ming-Yong

    2017-05-01

    Ganoderma atrum polysaccharide (PSG-1), a main polysaccharide from Ganoderma atrum, possesses potent antioxidant capacity and cardiovascular benefits. The aim of this study was to investigate the role of PSG-1 in oxidative stress and apoptosis in human umbilical vein endothelial cells (HUVECs) under anoxia/reoxygenation (A/R) injury conditions. The results showed that exposure of HUVECs to A/R triggered cell death and apoptosis. Administration of PSG-1 significantly inhibited A/R-induced cell death and apoptosis in HUVECs. PSG-1-reduced A/R injury was mediated via mitochondrial apoptotic pathway, as evidenced by elevation of mitochondrial Bcl-2 protein and mitochondrial membrane potential, and attenuation of Bax translocation, cytochrome c release and caspases activation. Furthermore, PSG-1 enhanced the activities of superoxide dismutase, catalase and glutathione peroxidase and glutathione content, and concomitantly attenuated reactive oxygen species generation, lipid peroxidation and glutathione disulfide content. The antioxidant, N-acetyl-l-cysteine, significantly ameliorated all of these endothelial injuries caused by A/R, suggesting that antioxidant activities might play a key role in PSG-1-induced endothelial protection. Taken together, these findings suggested that PSG-1 could be as a promising adjuvant against endothelial dysfunction through ameliorating oxidative stress and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Endogenous melatonin and oxidatively damaged guanine in DNA

    Directory of Open Access Journals (Sweden)

    Poulsen Henrik E

    2009-10-01

    Full Text Available Abstract Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s families (n = 55 were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight. Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR was associated with significantly higher levels of 8-oxodG (p Conclusion Low levels of endogenous melatonin production among older individuals may lead to

  10. Oxidative DNA damage and oxidative stress in lead-exposed workers.

    Science.gov (United States)

    Dobrakowski, M; Pawlas, N; Kasperczyk, A; Kozłowska, A; Olewińska, E; Machoń-Grecka, A; Kasperczyk, S

    2017-07-01

    There are many discrepancies among the results of studies on the genotoxicity of lead. The aim of the study was to explore lead-induced DNA damage, including oxidative damage, in relation to oxidative stress intensity parameters and the antioxidant defense system in human leukocytes. The study population consisted of 100 male workers exposed to lead. According to the blood lead (PbB) levels, they were divided into the following three subgroups: a group with PbB of 20-35 μg/dL (low exposure to lead (LE) group), a group with a PbB of 35-50 µg/dL (medium exposure to lead (ME) group), and a group with a PbB of >50 μg/dL (high exposure to lead (HE) group). The control group consisted of 42 healthy males environmentally exposed to lead (PbB lead exposure induces DNA damage, including oxidative damage, in human leukocytes. The increase in DNA damage was accompanied by an elevated intensity of oxidative stress.

  11. Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson's disease.

    Science.gov (United States)

    Khurana, Navneet; Gajbhiye, Asmita

    2013-12-01

    Present study focused on the evaluation of aqueous extract of Sida cordifolia (AESC), and its different fractions; hexane (HFSC), chloroform (CFSC) and aqueous (AFSC), against rotenone induced biochemical, neurochemical, histopathological and behavioral alterations in a rat model of Parkinson's disease (PD). An estimation of the level of thiobarbituric acid reactive substances (TBARS), glutathione (GSH) and catalase (CAT) along with superoxide anion generation (SAG) in different brain regions (cortex, midbrain and cerebellum) was carried out to assess biochemical changes. Behavioral evaluation tests (catalepsy, rearing behavior and posture instability) and neurochemical estimations (norepinephrine, dopamine and serotonin level) along with histopathological evaluations of different brain regions were also performed. The varying doses (50, 100, 250mg/kg; p.o.) of different test treatments (AESC, HFSC, CFSC and AFSC) were co-administered along with rotenone (2mg/kg; s.c.), for a period of 35 days to rats of various groups and compared with rotenone per se (negative control) and l-deprenyl (positive control; 10mg/kg; p.o.) treated groups for the above mentioned parameters. The increase in catalepsy and posture instability along with decrease in rearing behavior observed due to rotenone treatment was significantly attenuated by co-treatment with varying doses of AESC and AFSC. Results of the histopathological studies of different brain regions of rats showed eosinophilic lesions in the mid brain region due to rotenone treatment. The eosinophilic lesions were significantly attenuated in co-treated groups of AESC-100mg/kg and AFSC-100mg/kg. Rotenone induced oxidative damage, revealed by increased level of TBARS, SAG and decreased level of GSH and CAT in mid brain region of rats, was attenuated by the co-treatment of AESC and AFSC. The rotenone induced decrease of dopamine level in the midbrain region of rats was also attenuated by co-treatment of AESC-100mg/kg and AFSC

  12. Metoprolol induces oxidative damage in common carp (Cyprinus carpio).

    Science.gov (United States)

    Martínez-Rodríguez, Héctor; Donkor, Kingsley; Brewer, Sharon; Galar-Martínez, Marcela; SanJuan-Reyes, Nely; Islas-Flores, Hariz; Sánchez-Aceves, Livier; Elizalde-Velázquez, Armando; Gómez-Oliván, Leobardo Manuel

    2018-04-01

    During the last decade, β-blockers such as metoprolol (MTP) have been frequently detected in surface water, aquatic systems and municipal water at concentrations of ng/L to μg/L. Only a small number of studies exist on the toxic effects induced by this group of pharmaceuticals on aquatic organisms. Therefore, the present study aimed to evaluate the oxidative damage induced by MTP in the common carp Cyprinus carpio, using oxidative stress biomarkers. To this end, indicators of cellular oxidation such as hydroperoxide content (HPC), lipid peroxidation (LPX) and protein carbonyl content (PCC) were determined, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Also, concentrations of MTP and its metabolite O-desmethyl metoprolol were determined in water as well as carp gill, liver, kidney, brain and blood, along with the partial uptake pattern of these compounds. Results show that carp takes up MTP and its metabolite in the different organs evaluated, particularly liver and gill. The oxidative stress biomarkers, HPC, LPX, and PCC, as well as SOD and CAT activity all increased significantly at most exposure times in all organs evaluated. Results indicate that MTP and its metabolite induce oxidative stress on the teleost C. carpio and that the presence of these compounds may constitute a risk in water bodies for aquatic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  14. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest

    2015-01-01

    -reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations...... of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2 , carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure...... and oxidatively damaged DNA measured by the comet assay. Cell culture studies show relatively high variation in the ability of ENMs to oxidatively damage DNA; hence, it is currently impossible to group ENMs according to their DNA damaging potential. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc....

  15. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haw-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Huang, Chin-Shiu [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Li, Chien-Chun [School of Nutrition, Chung Shan Medical University, Taichung, Taiwan (China); Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Ai-Hsuan; Huang, Yu-Ju [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Wang, Tsu-Shing [Department of Biomedical Science, Chung Shan Medical University, Taichung, Taiwan (China); Yao, Hsien-Tsung [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Lii, Chong-Kuei [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China)

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1 μM which peaked at 30 min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50 mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p < 0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl{sub 4}) at day 6. Andrographolide pretreatment suppressed CCl{sub 4}-induced plasma aminotransferase activity and hepatic lipid peroxidation (p < 0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. - Highlights: • The bioavailability of andrographolide is 1.19% in rats. • Plasma concentration reaches 1 μM after giving 50 mg/kg andrographolide. • Andrographolide up-regulates Nrf2-dependent antioxidant genes. • Andrographolide increases antioxidant defense

  16. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    International Nuclear Information System (INIS)

    Chen, Haw-Wen; Huang, Chin-Shiu; Li, Chien-Chun; Lin, Ai-Hsuan; Huang, Yu-Ju; Wang, Tsu-Shing; Yao, Hsien-Tsung; Lii, Chong-Kuei

    2014-01-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1 μM which peaked at 30 min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50 mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p < 0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl 4 ) at day 6. Andrographolide pretreatment suppressed CCl 4 -induced plasma aminotransferase activity and hepatic lipid peroxidation (p < 0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. - Highlights: • The bioavailability of andrographolide is 1.19% in rats. • Plasma concentration reaches 1 μM after giving 50 mg/kg andrographolide. • Andrographolide up-regulates Nrf2-dependent antioxidant genes. • Andrographolide increases antioxidant defense in

  17. The Inhibition Effect of Cell DNA Oxidative Damage and LDL Oxidation by Bovine Colostrums

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chen

    2016-10-01

    Full Text Available In the present study, we investigated the effect of bovine colostrums on inhibition of DNA oxidative damage and low density lipoprotein (LDL oxidation in vitro. Results showed that whey and skimmed milk exhibited not only higher inhibitory activities of oxidative damage of deoxyribose but also an inhibitory effect on the breakdown of supercoiled DNA into open circular DNA and linear DNA. The quantities of 8-OH-2′-dG formed under whey, caseins and skimmed milk treatment were 0.24, 0.24 and 1.24 μg/mL, respectively. The quantity of malondialdehyde formed through LDL oxidation induced by copprous ion was significantly decreased as colostrums protein solutions were added, in which whey and caseins led to a more significant decrease than skimmed milk. The formation of conjugated dienes could be inhibited by treatment with colostrums protein solutions. Whey exhibited the longest lag time of conjugated dienes formation among the colostrums proteins. The lag time of the whey was 2.33 times that of the control. From the results of foregoing, the bovine colostrums protein has potential value in the inhibition of DNA oxidation damage and LDL oxidation.

  18. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Directory of Open Access Journals (Sweden)

    Denis N Silachev

    Full Text Available BACKGROUND: Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. METHODOLOGY/PRINCIPAL FINDINGS: We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated

  19. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Science.gov (United States)

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  20. Proceedings of damage and oxidation protection in high temperature composites

    International Nuclear Information System (INIS)

    Haritos, G.K.; Ochoa, O.O.

    1991-01-01

    This book contains proceedings of Damage and Oxidation Protection in High Temperature Composites. Topics covered include: current issues in the development of new materials and structural concepts for the aerospace structures of the future; transportation vehicles of the future; materials and structural concepts; fundamental understanding and quantitative descriptions of the physical processes and mechanisms controlling the behavior of emerging materials and structures; and the critical need for advances in our understanding of how the interaction of service loads and environment influences the lifecycle of emerging structures and materials

  1. Systemic oxidatively generated DNA/RNA damage in clinical depression

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Krogh, Jesper; Miskowiak, Kamilla

    2013-01-01

    oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, were determined in healthy controls (N=28), moderately depressed, non-medicated patients (N=26) and severely depressed patients eligible for electroconvulsive therapy...... for trend=0.004). The 8-oxoGuo excretion was further increased after clinically effective ECT compared with pre-ECT values (P=0.006). There were no differences in 8-oxodG excretion between the groups or pre- vs. post-ECT. LIMITATIONS: Small sample size and the inclusion of both unipolar and bipolar patients...

  2. Oxidatively damaged DNA in animals exposed to particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Jantzen, Kim

    2013-01-01

    on optimal methods. The majority of studies have used single intracavitary administration or inhalation with dose rates exceeding the pulmonary overload threshold, resulting in cytotoxicity and inflammation. It is unclear whether this is relevant for the much lower human exposure levels. Still...... not be equivocally determined. Roles of cytotoxicity or inflammation for oxidatively induced DNA damage could not be documented or refuted. Studies on exposure to particles in the gastrointestinal tract showed consistently increased levels of 8-oxo-7,8-dihydroguanine in the liver. Collectively, there is evidence...

  3. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    10), nitrous oxide, nitrogen dioxide, carbon monoxide, and/or number concentration of UFPs at urban background or busy street monitoring stations was not a significant predictor of DNA damage, although personal UFP exposure was correlated with urban background concentrations of CO and NO2...... the morning after exposure measurement. Cumulated outdoor and cumulated indoor exposures to UFPs each were independent significant predictors of the level of purine oxidation in DNA but not of strand breaks. Ambient air concentrations of particulate matter with an aerodynamic diameter of ..., particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution....

  4. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet

    Energy Technology Data Exchange (ETDEWEB)

    Ferramola, Mariana L.; Pérez Díaz, Matías F.F. [Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-SL, CONICET, San Luis (Argentina); Honoré, Stella M.; Sánchez, Sara S. [Department of Development Biology, INSIBIO, National University of Tucumán, CONICET-UNT, Tucumán (Argentina); Antón, Rosa I. [Department of Chemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, INQUISAL, CONICET, San Luis (Argentina); Anzulovich, Ana C. [Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-SL, CONICET, San Luis (Argentina); Giménez, María S., E-mail: mgimenez@unsl.edu.ar [Department of Biochemistry and Biological Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-SL, CONICET, San Luis (Argentina)

    2012-12-15

    Cd exposure has been associated to an augmented risk for cardiovascular disease. We investigated the effects of 15 and 100 ppm of Cd on redox status as well as histological changes in the rat heart and the putative protective effect of a soy-based diet. Male Wistar rats were separated into 6 groups and treated during 60 days as follows: groups (1), (2) and (3) were fed a casein-based diet; groups (4), (5) and (6), a soy-based diet; (1) and (4) were given tap water; (2) and (5) tap water containing 15 ppm of Cd{sup 2+}; and (3) and (6) tap water containing 100 ppm of Cd{sup 2+}. Serum lipid peroxides increased and PON-1 activity decreased in group (3). Lipoperoxidation also increased in the heart of all intoxicated groups; however protein oxidation only augmented in (3) and reduced glutathione levels diminished in (2) and (3). Catalase activity increased in groups (3) and (6) while superoxide dismutase activity increased only in (6). Glutathione peroxidase activity decreased in groups (3) and (6). Nrf2 expression was higher in groups (3) and (6), and MTI expression augmented in (3). Histological examination of the heart tissue showed the development of hypertrophic and fusion of cardiomyocytes along with foci of myocardial fiber necrosis. The transmission electron microscopy analysis showed profound ultra-structural damages. No protection against tissue degeneration was observed in animals fed the soy-based diet. Our findings indicate that even though the intake of a soy-based diet is capable of ameliorating Cd induced oxidative stress, it failed in preventing cardiac damage. -- Highlights: ► Cd intoxication produces extracellular and ultrastructural damage in the myocardium. ► The intake of a soy-based diet ameliorated Cd-induced oxidative stress. ► Cd-induced myocardial damage wasn't prevented by the intake of a soy-based diet. ► Cd-induced myocardial degeneration may not be caused by oxidative stress generation. ► Histology evaluation is needed to

  5. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet

    International Nuclear Information System (INIS)

    Ferramola, Mariana L.; Pérez Díaz, Matías F.F.; Honoré, Stella M.; Sánchez, Sara S.; Antón, Rosa I.; Anzulovich, Ana C.; Giménez, María S.

    2012-01-01

    Cd exposure has been associated to an augmented risk for cardiovascular disease. We investigated the effects of 15 and 100 ppm of Cd on redox status as well as histological changes in the rat heart and the putative protective effect of a soy-based diet. Male Wistar rats were separated into 6 groups and treated during 60 days as follows: groups (1), (2) and (3) were fed a casein-based diet; groups (4), (5) and (6), a soy-based diet; (1) and (4) were given tap water; (2) and (5) tap water containing 15 ppm of Cd 2+ ; and (3) and (6) tap water containing 100 ppm of Cd 2+ . Serum lipid peroxides increased and PON-1 activity decreased in group (3). Lipoperoxidation also increased in the heart of all intoxicated groups; however protein oxidation only augmented in (3) and reduced glutathione levels diminished in (2) and (3). Catalase activity increased in groups (3) and (6) while superoxide dismutase activity increased only in (6). Glutathione peroxidase activity decreased in groups (3) and (6). Nrf2 expression was higher in groups (3) and (6), and MTI expression augmented in (3). Histological examination of the heart tissue showed the development of hypertrophic and fusion of cardiomyocytes along with foci of myocardial fiber necrosis. The transmission electron microscopy analysis showed profound ultra-structural damages. No protection against tissue degeneration was observed in animals fed the soy-based diet. Our findings indicate that even though the intake of a soy-based diet is capable of ameliorating Cd induced oxidative stress, it failed in preventing cardiac damage. -- Highlights: ► Cd intoxication produces extracellular and ultrastructural damage in the myocardium. ► The intake of a soy-based diet ameliorated Cd-induced oxidative stress. ► Cd-induced myocardial damage wasn't prevented by the intake of a soy-based diet. ► Cd-induced myocardial degeneration may not be caused by oxidative stress generation. ► Histology evaluation is needed to establish the

  6. Amelioration of radiation damage to haemopoiesis by Ivastimul, given after irradiation to mice protected by peroral cystamine

    International Nuclear Information System (INIS)

    Vacek, A.; Rotkovska, D.; Bartonickova, A.; Kautska, J.

    1992-01-01

    Combined radioprotection by preirradiation peroral cystamine and postirradiation Ivastimul administration was examined in sublethally and lethally whole-body gamma-irradiated mice. Enhancement of haemopoietic recovery and increased survival of irradiated mice was demonstrated for a single dose of Ivastimul administered after irradiation. The ameliorative influence of combined radioprotection may be explained by haemopoietic stem cell protection by cystamine and haemopoietic stimulation mediated by Ivastimul. (author) 2 tabs., 3 figs., 20 refs

  7. Small Molecule Inhibiting Nuclear Factor-kB Ameliorates Oxidative Stress and Suppresses Renal Inflammation in Early Stage of Alloxan-Induced Diabetic Nephropathy in Rat.

    Science.gov (United States)

    Borgohain, Manash P; Lahkar, Mangala; Ahmed, Sahabuddin; Chowdhury, Liakat; Kumar, Saurabh; Pant, Rajat; Choubey, Abhinav

    2017-05-01

    Diabetic nephropathy is one of the major microvascular complications of diabetes mellitus which ultimately gives rise to cardiovascular diseases. Prolonged hyperglycaemia and chronic renal inflammation are the two key players in the development and progression of diabetic nephropathy. Nuclear factor kB (NF-kB)-mediated inflammatory cascade is a strong contributor to the renovascular inflammation in diabetic nephropathy. Here, we studied the effects of piceatannol, a potent NF-kB inhibitor, on various oxidative stress markers and NF-kB dependent diabetic renoinflammatory cascades in rat induced by alloxan (ALX). Experimental diabetes was induced in male Wistar rats by a single intraperitoneal dose, 150 mg/kg body-weight (b.w.) of ALX. Diabetic rats were treated with Piceatannol (PCTNL) at a dose of 30 and 50 mg/kg b.w. After 14 days of oral treatment, PCTNL significantly restored blood sugar level, glomerular filtration rate, serum markers and plasma lipids. PCTNL administration also reversed the declined activity of cellular antioxidant machineries namely superoxide dismutase and glutathione and the elevated levels of malondialdehyde and nitric oxide. Moreover, piceatannol-treated groups showed marked inhibition of renal pro-inflammatory cytokines and NF-kB p65/p50 binding to DNA. Renal histopathological investigations also supported its ameliorative effects against diabetic kidney damage. Importantly, effects were more prominent at a dose of 50 mg/kg, and in terms of body-weight gain, PCTNL failed to effect significantly. However, overall findings clearly demonstrated that PCTNL provides remarkable renoprotection in diabetes by abrogating oxidative stress and NF-kB activation - and might be helpful in early stage of diabetic nephropathy. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  8. Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells ameliorate radiation induced liver damage in a rat model.

    Directory of Open Access Journals (Sweden)

    Jiamin Zhang

    Full Text Available Liver damage caused by radiotherapy is associated with a high mortality rate, but no established treatment exists. Adipose-derived mesenchymal stem cells (ADSCs are capable of migration to injured tissue sites, where they aid in the repair of the damage. Hepatocyte growth factor (HGF is critical for damage repair due to its anti-apoptotic, anti-fibrotic and cell regeneration-promoting effects. This study was performed to investigate the therapeutic effects of HGF-overexpressing ADSCs on radiation-induced liver damage (RILD. ADSCs were infected with a lentivirus encoding HGF and HGF-shRNA. Sprague-Dawley (SD rats received 60Gy of irradiation to induce liver injury and were immediately given either saline, ADSCs, ADSCs + HGF or ADSCs + shHGF. Two days after irradiation, a significant reduction in apoptosis was observed in the HGF-overexpressing ADSC group compared with the RILD group, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining. Scanning electron microscopy showed chromatin condensation after irradiation, which was ameliorated in the group that received ADSCs and was reversed in the group that received HGF-overexpressing ADSCs. HGF-overexpressing ADSCs ameliorated radiation- induced liver fibrosis through down regulation of α-SMA and fibronectin. Hepatocyte regeneration was significantly improved in rats treated with ADSCs compared with rats from the RILD group, as assessed by Ki-67 immunohistochemistry. Rats that received HGF-overexpressing ADSCs showed an even greater level of hepatocyte regeneration. HGF-overexpressing ADSCs completely blocked the radiation-induced increase in the enzymes ALT and AST. The effect of mitigating RILD was compromised in the ADSC + shHGF group compared with the ADSC group. Altogether, these results suggest that HGF-overexpressing ADSCs can significantly improve RILD in a rat model, which may serve as a valuable therapeutic alternative.

  9. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900 MHz radiofrequency fields

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yulong; Zong, Lin; Gao, Zhen [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Zhu, Shunxing [Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province (China); Tong, Jian [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Cao, Yi, E-mail: yicao@suda.edu.cn [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China)

    2017-03-15

    Highlights: • Increased reactive oxygen species. • Decreased mitochondrial transcription Factor A and polymerase gamma. • Decreased mitochondrial transcripts (ND1 and 16S) and mtDNA copy number. • Increased 8-hydroxy-2′deoxyguanosine. • Decreased adenosine triphosphate. - Abstract: HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm{sup 2} power intensity for 4 h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2′-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.

  10. Studies on Ameliorative Effects of Polyphenolic Extract from Paullinia pinnata L. (Sapindaceae on Carbon Tetrachloride - Induced Hepatotoxicity and Oxidative Stress: an in vivo Assessment

    Directory of Open Access Journals (Sweden)

    Mikhail O. NAFIU

    2018-03-01

    Full Text Available The current study investigates the effects of polyphenolic extract from the leaf of Paullinia pinnata against CCl4 – induced oxidative stress and liver damage in female albino rats. Thirty albino rats were randomly distributed into six groups (A-F. Rats in group A were given 1 ml normal saline orally to serve as control. The rats in groups B, C, D, E, and F were respectively induced intraperitoneally with single administration of 1 ml/kg body weight (b. wt CCl4 dissolved in liquid paraffin (1:1. Thirty minutes after induction, the rats in the respective groups were orally treated with normal saline, 50 mg/kg b. wt. Silymarin, 50, 100 and 200 mg/kg b. wt. polyphenolic extract from P. pinnata respectively, once daily for 7 days.  Levels of liver function indices and the activities of antioxidant enzymes were determined. Administration of polyphenolic extract from P. pinnata significantly (p < 0.05 ameliorated CCl4- induced hepatotoxicity with respect to liver function indices, antioxidant and lipid peroxidation parameters. The biochemical changes observed were also consistent with histopathological observations on the rat liver, as architectural degeneration and severe cellular necrosis were restored after the administration of polyphenolic extract from P. pinnata in the treated groups. The study suggests that polyphenolic extract from P. pinnata is a potential hepatoprotective agent against CCl4-mediated hepatic injury through fortification of antioxidant defense mechanisms.

  11. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  12. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism.

    Science.gov (United States)

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-06-01

    The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2 (-) scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays. Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2(-) scavenging, DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3',4'-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  13. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor

    Directory of Open Access Journals (Sweden)

    Kezhen Shen

    2017-01-01

    Full Text Available Experimental cholestatic liver fibrosis was performed by bile duct ligation (BDL in mice, and significant liver injury was observed in 15 days. Administration of baicalin in mice significantly ameliorates liver fibrosis. Experimental cholestatic liver fibrosis was associated with induced gene expression of fibrotic markers such as collagen I, fibronectin, alpha smooth muscle actin (SMA, and connective tissue growth factor (CTGF; increased inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2; increased oxidative stress and reactive oxygen species- (ROS- inducing enzymes (NOX2 and iNOS; dysfunctional mitochondrial electron chain complexes; and apoptotic/necrotic cell death markers (DNA fragmentation, caspase 3 activity, and PARP activity. Baicalin administration on alternate day reduced fibrosis along with profibrotic gene expression, proinflammatory cytokines, oxidative stress, and cell death whereas improving the function of mitochondrial electron transport chain. We observed baicalin enhanced NRF2 activation by nuclear translocation and induced its target genes HO-1 and GCLM, thus enhancing antioxidant defense. Interplay of oxidative stress/inflammation and NRF2 were key players for baicalin-mediated protection. Stellate cell activation is crucial for initiation of fibrosis. Baicalin alleviated stellate cell activation and modulated TIMP1, SMA, collagen 1, and fibronectin in vitro. This study indicates that baicalin might be beneficial for reducing inflammation and fibrosis in liver injury models.

  14. The possible influences of dietary oil supplementation in ameliorating metabolic disturbances and oxidative stress in Alloxan injected rats

    International Nuclear Information System (INIS)

    Farag, M.F.S.; Osman, N.N.; Darwish, M.M.

    2005-01-01

    Diabetes mellitus (DM) is a multifactor disease that is associated with a number of different metabolic abnormalities. Clinical research has confirmed the efficacy of several plant extracts in the modulation of oxidative stress associated with DM. The present work was conducted to examine the protective or treating effects of two different dietary oils rich in medium chain fatty acids (MCFA) as coconut oil (CO) or omega-3-polyunsaturated fatty acids (ω-3-PUFAs)as flaxseed oil (FO) on the severity of DM induced experimentally by alloxan injection. Wistar strain albino rats (17 Og) were fed commercial rat chow diet supplemented with either CO or FO for four weeks. A single dose of alloxan (150 mg/kg) resulted in hyperglycemia, decreases in serum insulin, thyroxine (T 4 ), and high density lipoprotein-cholesterol levels, elevated triglycerides, total cholesterol and low density lipoprotein-cholesterol concentrations. Concurrent with those changes, an increased liver malonaldehyde (MDA) level was observed. This oxidative stress was related to decreases in superoxide dismutase (SOD) activity and glutathione (GSH) content in the liver of alloxan diabetic rats. Oils supplementation after diabetes induction ameliorated hyperglycemia, increased insulin and thyroxine hormone levels, improved lipid profiles, blunted the increase in MDA, modulated the levels of hepatic SOD activity and GSH content of alloxan treated rats. It could be suggested that each of CO or FO could be used as antidiabetic complement in case of DM. This may be related to their anti oxidative properties

  15. Effects of GST Polymorphism on Ameliorative Effect of Curcumin and Carvacrol against DNA Damage Induced by Combined Treatment of Malathion and Parathion

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar

    2016-04-01

    Full Text Available Background: Organophosphorus pesticides has been widely used in agriculture fields to control various crop insects and their extensive use pose human life at threat because of their adverse effects on human health. In this study, we checked the effects of GST polymorphism on ameliorative effect of curcumin and carvacrol against DNA damages. Methods: Comet assay was used to assess the DNA damage and results were expressed as Tail moment. Heparinised fresh blood from healthy individuals was treated with combined concentration of malathion and parathion (i.e. 30 µg/ml of malathion and 2.5 µg/ml of parathion in presence of combination of curcumin and carvacrol (25 µg/ml curcumin + 2.5 µg/ml carvacrol and 50 µg/ml curcumin + 5.0 µg/ml carvacrol in order to observe the ameliorative role of curcumin and carvacrol. Multiplex PCR was performed for GSTM1 and GSTT1 genotyping. Results: Curcumin in combination with carvacrol (i.e. 25 µg/ml curcumin + 2.5 µg/ml carvacrol and 50 µg/ml curcumin + 5.0 µg/ml carvacrol significantly reduced the DNA damage caused by combined action of malathion and parathion which supports their antigenotoxic property. No significant relationship of GSTT1 and GSTM1 polymorphism with genotoxicity of both the pesticides and antigenotoxic potential of curcumin and carvacrol was observed. Conclusion: Malathion and parathion were genotoxic in human PBL. Curcumin and carvacrol had an antigenotoxic effect against the malathion and parathion while there was not any significant effect of GSTT1 and GSTM1 polymorphism on genotoxicity of these pesticides and antigenotoxicity of curcumin and carvacrol.

  16. Repair of oxidative DNA damage by amino acids.

    Science.gov (United States)

    Milligan, J R; Aguilera, J A; Ly, A; Tran, N Q; Hoang, O; Ward, J F

    2003-11-01

    Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2-, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of approximately 10(5), 10(5), 10(6) and 10(7) dm3 mol(-1) s(-1), respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.

  17. Imidacloprid enhances liver damage in Wistar rats: Biochemical, oxidative damage and histological assessment

    Directory of Open Access Journals (Sweden)

    Sana Chakroun

    2017-12-01

    Full Text Available Objective: To investigate the potential adverse effects of imidacloprid on biochemical parameters, oxidative stress and liver damage induced in the rat by oral sub-chronic imidaclopride exposure. Methods: Rats received three different doses of imidacloprid (1/45, 1/22 and 1/10 of LD50 given through gavage for 60 days. Two dozen of male Wistar rats were randomly divided into four experimental groups. Liver damage was determined by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase leakages. The prooxidant-antioxydant status in hepatic tissue homogenate was evaluated by measuring the degree of lipid peroxidation, the antioxidant enzymes activities such as catalase, superoxide dismutase and glutathione peroxidase (GPx. Results: The relative liver weight was significantly higher than that of control and other treated groups at the highest dose 1/10 of LD50 of imidacloprid. Additionally, treatment of rats with imidacloprid significantly increased liver lipid peroxidation (P ≤ 0.05 or 0.01 which went together with a significant decrease in the levels of superoxide dismutase and catalase activities. Parallel to these changes, imidacloprid treatment enhanced liver damage as evidence by sharp increase in the liver enzyme activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase. These results were also confirmed by histopathology. Conclusions: In light of the available data, it is our thought that after imidacloprid sub-chronic exposure, depletion of antioxidant enzymes is accompanied by induction of potential oxidative stress in the hepatic tissues that might affect the function of the liver which caused biochemical and histopathological alteration.

  18. Prophylactic effects of pomegranate (Punica granatum) juice on sodium fluoride induced oxidative damage in liver and erythrocytes of rats.

    Science.gov (United States)

    Bouasla, Asma; Bouasla, Ihcène; Boumendjel, Amel; Abdennour, Cherif; El Feki, Abdelfattah; Messarah, Mahfoud

    2016-07-01

    The objective of this study was to investigate the protective effects of pomegranate (Punica granatum) juice (PGJ) on oxidative damages in liver tissue and erythrocytes of rats intoxicated by sodium fluoride (NaF). Rats were randomly divided into two groups: group I received standard diet and group II received orally 1 mL of PGJ. After 5 weeks of pretreatment, each group was divided again into two subgroups and treated for another 3 weeks as follows: group I was subdivided into a control group and a group that was treated with 100 ppm of NaF (in drinking water); group II was subdivided into one group that was treated daily with both 100 ppm NaF and PGJ (1 mL orally) and one that received daily 1 mL of pomegranate juice. Exposure to NaF decreased hematological parameters, changed the total protein, albumin, bilirubin levels, and increased the activities of hepatic marker enzymes. We also noted an increase in lipid peroxidation contents, accompanied by a decrease of reduced glutathione levels. Antioxidant enzyme activities in both tissues were modified in the NaF group compared with the control group. However, the administration of PGJ juice caused an amelioration of the previous parameters. Our results indicated the potential effects of NaF to induce oxidative damage in tissues and the ability of PGJ to attenuate NaF-induced oxidative injury.

  19. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signalling and their interplay

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2015-06-01

    Full Text Available Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1 redox signalling and (2 macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH and hydrogen peroxide (H2O2 as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  20. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria.

    Science.gov (United States)

    Aitken, R John; De Iuliis, Geoffry N; Finnie, Jane M; Hedges, Andrew; McLachlan, Robert I

    2010-10-01

    DNA damage in human spermatozoa is known to be associated with a variety of adverse clinical outcomes affecting both reproductive efficiency and the health and wellbeing of the offspring. However, the origin of this damage, its biochemical nature and strategies for its amelioration, still await resolution. Using novel methods to simultaneously assess DNA fragmentation (modified TUNEL assay), DNA-base adduct formation (8-hydroxy-2'-deoxyguanosine [8OHdG]) and cell vitality, spermatozoa from a cohort of 50 assisted conception patients were examined and compared with a group of donors. Receiver operating characteristic (ROC) curve analysis was then used to examine the frequency distribution of the data and to determine optimized thresholds for identifying patients exhibiting abnormally high levels of DNA damage. 8OHdG formation and DNA fragmentation were highly correlated with each other and frequently associated with cell death. Percoll centrifugation improved sperm quality but, unexpectedly, increased 8OHdG formation in live cells, as did sperm fractionation using Puresperm gradients. ROC analysis indicated that the frequency distribution of 8OHdG and DNA fragmentation data were significantly different between patients and donors (P live cells. However, the development of novel methods and optimized thresholds for diagnosing oxidative DNA damage in human spermatozoa should assist in the clinical management of this pathology.

  1. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    Hong, Chang-Won; Lee, Joon-Ho; Kim, Suwan; Noh, Jae Myoung; Kim, Young-Mee; Pyo, Hongryull; Lee, Sunyoung

    2013-01-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N ω -nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N 6 -(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  2. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    Science.gov (United States)

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  3. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.R.; Harria, M.I.N.; Felix, J.M.; Hoffmann, M.E. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia

    1997-12-31

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu{sup 2+} strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu{sup 2+}. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH{sub 4}. The incubation of BSA with IP (50-500{mu}M), in the presence of 100{mu}M Cu{sup 2+} leaded to an increased and dose dependent {sup 3} H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu{sup 2+} was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400{mu}M IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100{mu}M Cu{sup 2+}. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  4. Pomegranate Alleviates Oxidative Damage and Neurotransmitter Alterations in Rats Brain Exposed to Aluminum Chloride and/or Gamma Radiation

    International Nuclear Information System (INIS)

    Said, U.Z.; EL-Tahawey, N.A.; Elassal, A.A.; Elsayed, E.M.; Shousha, W.Gh.

    2013-01-01

    Aluminum and gamma radiation, both are potent neurotoxins and have been implicated in many human neuro degenerative diseases. The present study was designed to investigate the role of pomegranate in alleviating oxidative damage and alteration of neurotransmitters in the brain of rats exposed to aluminum chloride (AlCl 3 ), and/or gamma radiation (IR). The results revealed that rats whole body exposed to γ- rays, (1 Gy/week up to 4 Gy), and/or administered aluminum chloride (35 mg/kg body weight), via gavages for 4 weeks, resulted in brain tissue damage, featuring by significant increase of the level of thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP), associated with significant decrease of superoxide dismutase (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content indicating occurrence of oxidative stress. A significant decrease of serotonin (5-HT) level associated with a significant increase of 5-hydroxyindole acetic acid (5-HIAA), in addition to a significant decrease in dopamine (DA), norepinephrine (NE) and epinephrine (EPI) contents recorded at the 1st, 7th and 14th day post-irradiation, indicating alterations in the metabolism of brain monoamines. On the other hand, the results exhibited that, supplementation of rats with pomegranate, via gavages, at a dose of 3 ml /kg body weight/ day, for 4 weeks along with AlCl 3 with or without radiation has significantly ameliorated the changes occurred in the mentioned parameters and the values returned close to the normal ones. It could be concluded that pomegranate, by its antioxidant constituents might antagonize brain oxidative damage and minimize the severity of aluminum (Al), and/or radiation-induced neurotransmitters disorders

  5. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    EL-Sonbaty, S.M.; Swailam, H.M.; Noaman, E.

    2012-01-01

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H 2 O 2 . Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  6. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable instr......, particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution.......Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable...... instruments in six 18-hr periods in 15 healthy nonsmoking subjects. Exposure contrasts of outdoor pollution were achieved by bicycling in traffic for 5 days and in the laboratory for 1 day. Oxidative DNA damage was assessed as strand breaks and oxidized purines in mononuclear cells isolated from venous blood...

  7. Resveratrol Protects the Brain of Obese Mice from Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Shraddha D. Rege

    2013-01-01

    Full Text Available Resveratrol (3,5,4′-trihydroxy-trans-stilbene is a polyphenolic phytoalexin that exerts cardioprotective, neuroprotective, and antioxidant effects. Recently it has been shown that obesity is associated with an increase in cerebral oxidative stress levels, which may enhance neurodegeneration. The present study evaluates the neuroprotective action of resveratrol in brain of obese (ob/ob mice. Resveratrol was administered orally at the dose of 25 mg kg−1 body weight daily for three weeks to lean and obese mice. Resveratrol had no effect on body weight or blood glucose levels in obese mice. Lipid peroxides were significantly increased in brain of obese mice. The enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and nonenzymatic antioxidants tocopherol, ascorbic acid, and glutathione were decreased in obese mice brain. Administration of resveratrol decreased lipid peroxide levels and upregulated the antioxidant activities in obese mice brain. Our findings indicate a neuroprotective effect of resveratrol by preventing oxidative damage in brain tissue of obese mice.

  8. Lactobacillus rhamnosus GR-1 Ameliorates Escherichia coli-Induced Inflammation and Cell Damage via Attenuation of ASC-Independent NLRP3 Inflammasome Activation.

    Science.gov (United States)

    Wu, Qiong; Liu, Ming-Chao; Yang, Jun; Wang, Jiu-Feng; Zhu, Yao-Hong

    2016-02-15

    Escherichia coli is a major environmental pathogen causing bovine mastitis, which leads to mammary tissue damage and cell death. We explored the effects of the probiotic Lactobacillus rhamnosus GR-1 on ameliorating E. coli-induced inflammation and cell damage in primary bovine mammary epithelial cells (BMECs). Increased Toll-like receptor 4 (TLR4), NOD1, and NOD2 mRNA expression was observed following E. coli challenge, but this increase was attenuated by L. rhamnosus GR-1 pretreatment. Immunofluorescence and Western blot analyses revealed that L. rhamnosus GR-1 pretreatment decreased the E. coli-induced increases in the expression of the NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) and the serine protease caspase 1. However, expression of the adaptor protein apoptosis-associated speck-like protein (ASC, encoded by the Pycard gene) was decreased during E. coli infection, even with L. rhamnosus GR-1 pretreatment. Pretreatment with L. rhamnosus GR-1 counteracted the E. coli-induced increases in interleukin-1β (IL-1β), -6, -8, and -18 and tumor necrosis factor alpha mRNA expression but upregulated IL-10 mRNA expression. Our data indicate that L. rhamnosus GR-1 reduces the adhesion of E. coli to BMECs, subsequently ameliorating E. coli-induced disruption of cellular morphology and ultrastructure and limiting detrimental inflammatory responses, partly via promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation. Although the residual pathogenic activity of L. rhamnosus, the dosage regimen, and the means of probiotic supplementation in cattle remain undefined, our data enhance our understanding of the mechanism of action of this candidate probiotic, allowing for development of specific probiotic-based therapies and strategies for preventing pathogenic infection of the bovine mammary gland. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Does Glucagon-like Peptide-1 Ameliorate Oxidative Stress in Diabetes?

    DEFF Research Database (Denmark)

    Petersen, Karen Ekkelund; Rakipovski, Günaj; Raun, Kirsten

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) has shown to influence the oxidative stress status in a number of in vitro, in vivo and clinical studies. Well-known effects of GLP-1 including better glycemic control, decreased food intake, increased insulin release and increased insulin sensitivity may indirectly...... a controversial topic but could hold a therapeutic potential against micro- and macrovascular diabetic complications. This review discusses the presently available knowledge from experimental and clinical studies on the effects of GLP-1 on oxidative stress in diabetes and diabetes-related complications....

  10. To Analyze the Amelioration of Phenobarbital Induced Oxidative Stress by Erucin, as Indicated by Biochemical and Histological Alterations.

    Science.gov (United States)

    Arora, Rohit; Bhushan, Sakshi; Kumar, Rakesh; Mannan, Rahul; Kaur, Pardeep; Singh, Bikram; Sharma, Ritika; Vig, Adarsh Pal; Singh, Balbir; Singh, Amrit Pal; Arora, Saroj

    2016-01-01

    Phenobarbital is a commonly employed antidepressant and anti-epileptic drug. The cancer promoting activity of this genotoxic xenobiotic is often ignored. It is responsible for oxidative stress leading to modulation in xenobiotic and antioxidative enzymes. Glucosinolates and more specifically their hydrolytic products are known for their antioxidative and anticancer activities. The present study involves the analysis of hepatoprotective effect of erucin (isolated from Eruca sativa (Mill.) Thell.) against phenobarbital mediated hepatic damage in male wistar rats. The liver homogenate was analyzed for oxidative stress (superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and lactate dehydrogenase), other oxidative parameters (thiobarbituric acid reactive species, conjugated dienes and lipid hydroperoxide), phase I enzymes (NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, cytochrome P420, cytochrome P450 and cytochrome b5), phase II enzymes (γ-glutamyl transpeptidase, DT-diaphorase and glutathione-S-transferase), serum parameters (alkaline phosphatase, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, direct bilirubin and total bilirubin) and certain histological parameters. Erucin accorded protection from phenobarbital induced hepatic damage by normalizing antioxidative enzymes, other oxidative parameters, phase I, II, and serum parameters. Erucin, an analogue of sulforaphane has the potential to act as an anticancer agent by regulating various biochemical parameters.

  11. Sweet potato Ipomoea Batatas Modulates Radiation-induced Oxidative damage in Liver and kidney of Male Albino Rats

    International Nuclear Information System (INIS)

    Darwish, M. M.; Farag, M. F. S.; Osman, N. N.

    2010-01-01

    Sweet potato Ipomoea Batatas, one of the major vegetable crops consumed worldwide, is rich in phytochemicals, which displayed antioxidant activities. This work aims at assessing the radio-protective properties of sweet potato tubers on liver and kidney tissues. Male albino rats were whole body exposed to 0.5 Gy day after day for a period of 20 days. Animal received orally prepared aqueous extract of sweet potato tubers (100 mg kg/body weight), one week before irradiation and during the period of radiation exposure. The results demonstrated that irradiation of rats induced a significant increase in lipid peroxides level measured as thiobarbituric acid reactive substances (TBARS) concomitant with a significant decrease in superoxide dismutase (SOD), and catalase (CAT) activity and glutathione (GSH) content in liver and kidney tissues. Administration of a freshly prepared aqueous extract of sweet potato tubers to rats, one week pre-irradiation and during the period of radiation exposure has significantly of ameliorated the oxidative stress in both tissues. The significant amelioration in oxidative stress was substantiated by improvement of liver and kidney enzymes Treatment of rats with sweet potato has significantly reduced the increase in serum alanine amino transferase (ALT), aspartate amino transferase (AST) and lactate dehydrogenase (LDH) activity, serum creatinine and urea levels. Furthermore, hyperglycemia and alteration in lipid profile manifested by a significant increase in triglycerides (TG), total cholesterol (TC), and low density lipoprotein cholesterol (LDL-C), and a significant decrease in high density lipoprotein cholesterol (HDL-C), were improved in sweet potato-treated irradiated rats compared to those only irradiated. According to the results obtained in the present study, it could be concluded that sweet potato through its antioxidant activities could protect cellular membrane from radiation induced oxidative damage in animals and preserve the

  12. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson's disease model.

    Science.gov (United States)

    Sharma, Shrestha; Narang, Jasjeet K; Ali, Javed; Baboota, Sanjula

    2016-09-16

    Oxidative stress is the leading cause in the pathogenesis of Parkinson's disease. Rutin is a naturally occurring strong antioxidant molecule with wide therapeutic applications. It suffers from the problem of low oral bioavailability which is due to its poor aqueous solubility. In order to increase the solubility self-nanoemulsifying drug delivery systems (SNEDDS) of rutin were prepared. The oil, surfactant and co-surfactant were selected based on solubility/miscibility studies. Optimization was done by a three-factor, four-level (34) Box-Behnken design. The independent factors were oil, surfactant and co-surfactant concentration and the dependent variables were globule size, self-emulsification time, % transmittance and cumulative percentage of drug release. The optimized SNEDDS formulation (RSE6) was evaluated for various release studies. Antioxidant activity was assessed by various in vitro tests such as 2,2-diphenyl-1-picrylhydrazyl and reducing power assay. Oxidative stress models which had Parkinson's-type symptoms were used to determine the antioxidant potential of rutin SNEDDS in vivo. Permeation was assessed through confocal laser scanning microscopy. An optimized SNEDDS formulation consisting of Sefsol + vitamin E-Solutol HS 15-Transcutol P at proportions of 25:35:17.5 (w/w) was prepared and characterized. The globule size and polydispersity index of the optimized formulation was found to be 16.08 ± 0.02 nm and 0.124 ± 0.01, respectively. A significant (p < 0.05) increase in the percentage of drug release was achieved in the case of the optimized formulation as compared to rutin suspension. Pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability. The optimized formulation had significant in vitro and in vivo antioxidant activity. Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing the oral bioavailability and efficacy of rutin, thus helping in ameliorating oxidative stress in

  13. Stable markers of oxidant damage to proteins and their application in the study of human disease

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Fu, S; Wang, H

    1999-01-01

    The mechanisms of formation and the nature of the altered amino acid side chains formed on proteins subjected to oxidant attack are reviewed. The use of stable products of protein side chain oxidation as potential markers for assessing oxidative damage in vivo in humans is discussed. The methods...... developed in the authors laboratories are outlined, and the advantages and disadvantages of these techniques compared with other methodologies for assessing oxidative damage to proteins and other macromolecules. Evidence is presented to show that protein oxidation products are sensitive markers of oxidative...... damage, that the pattern of products detected may yield information as to the nature of the original oxidative insult, and that the levels of oxidized side-chains can, in certain circumstances, be much higher than those of other markers of oxidation such as lipid hydroperoxides....

  14. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    Directory of Open Access Journals (Sweden)

    Yanyan Li

    2016-01-01

    Full Text Available Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD. As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories were cotreated by quercetin or deferoxamine (DFO for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.

  15. Green Tea Polyphenols Ameliorate the Early Renal Damage Induced by a High-Fat Diet via Ketogenesis/SIRT3 Pathway

    Directory of Open Access Journals (Sweden)

    Weijie Yi

    2017-01-01

    Full Text Available Scope. Several reports in the literature have suggested the renoprotective effects of ketone bodies and green tea polyphenols (GTPs. Our previous study found that GTP consumption could elevate the renal expression of the ketogenic rate-limiting enzyme, which was decreased by a high-fat diet (HFD in rats. Here, we investigated whether ketogenesis can mediate renoprotection by GTPs against an HFD. Methods and Results. Wistar rats were fed a standard or HFD with or without GTPs for 18 weeks. The renal oxidative stress level, kidney function, renal expression, and activity levels of mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA synthase 2 (HMGCS2 and sirtuin 3(SIRT3 were detected. The increased renal oxidative stress and the loss of renal function induced by the HFD were ameliorated by GTPs. Renal ketogenesis and SIRT3 expression and activity levels, which were reduced by the HFD, were restored by GTPs. In vitro, HEK293 cells were transfected with the eukaryotic expression plasmid pcDNA HMGCS2. GTP treatment could upregulate HMGCS2 and SIRT3 expression. Although SIRT3 expression was not affected by HMGCS2 transfection, the 4-hydroxy-2-nonenal (4-HNE level and the acetyl-MnSOD (K122/MnSOD ratio were reduced in HMGCS2-transfected cells in the context of H2O2. Conclusion. The ketogenesis/SIRT3 pathway mediates the renoprotection of GTPs against the oxidative stress induced by an HFD.

  16. Fasting ameliorates metabolism, immunity, and oxidative stress in carbon tetrachloride-intoxicated rats.

    Science.gov (United States)

    Sadek, Km; Saleh, Ea

    2014-12-01

    Fasting has been recently discovered to improve overall health, but its beneficial effects in the presence of hepatic insufficiency have not been proven. The influence of fasting on the metabolism, immunological aspects, and oxidative stress of 40 male carbon tetrachloride (CCl4)-intoxicated Wistar rats was investigated in the present study. The rats were divided into four groups, including a placebo group, CCl4-intoxicated rats, which were injected subcutaneously with 1.0 ml/kg of CCl4 solution, a fasting group, which was fasted 12 h/day for 30 days, and a fourth group, which was injected with CCl4 and fasted. The metabolism, immunity, and oxidative stress improved in CCl4-intoxicated rats fasted for 12 h/day for 30 days, as evidenced in significant increase (p fasting improved metabolism, immunity, and oxidative stress in CCl4-intoxicated rats. Thus, fasting during Ramadan is safe for patients with hepatic disorders, as the prophet Mohammed (S) said "Keep the fast, keep your health". © The Author(s) 2014.

  17. Salicylic Acid Ameliorates the Effects of Oxidative Stress Induced by Water Deficit in Hydroponic Culture of Nigella sativa

    Directory of Open Access Journals (Sweden)

    Rozita Kabiri

    2012-08-01

    Full Text Available Osmotic stress associated with drought, and salinity is a serious problem that inhibits the growth of plants, mainly due to disturbance of the balance between production of ROS and antioxidant defense and causing oxidative stress. The results obtained in the last few years strongly prove that salicylic acid could be a very promising and protective compound for the reduction of biotic and abiotic stresses in sensitive of crops, because under certain conditions, it has been found to mitigate the damaging effects of various stress factors in plants. In this research, salicylic acid was used in control, and drought stressed plants, and the role of this compound in reduction of oxidative damages in Nigella plant was investigated. Data presented in this study indicated that SA application through the root medium brought on the increased levels of drought tolerance in black cumin seedlings. Plants pre-treated with SA exhibited slight injury symptoms whereas those that were not pre-treated with SA had moderate damage and lost considerable portions of their foliage. SA very profoundly inducing the activity of CAT, APX and GPX in plants, which led to reduction in H2O2 content, lipid peroxidation (MDA and LOX activity so it seems that the application of SA greatly improves the dehydration tolerance through elevated activities of antioxidant systems or may be the expression of genes encoding some ROS-scavenging enzymes under drought stress, which would maintain the redox homeostasis and integrity of cellular components.

  18. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice.

    Science.gov (United States)

    Kv, Athira; Madhana, Rajaram Mohanrao; Js, Indu Chandran; Lahkar, Mangala; Sinha, Swapnil; Naidu, V G M

    2018-05-15

    Major depressive disorder (MDD) is a multifactorial neuropsychiatric disorder. Chronic administration of corticosterone (CORT) to rodents is used to mimic the stress associated dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, a well-established feature found in depressive patients. Recently, preclinical studies have demonstrated the antidepressant potential of histone deacetylase (HDAC) inhibitors. So, we examined the antidepressant potential of vorinostat (VOR), a HDAC inhibitor against CORT injections in male mice. VOR (25 mg/kg; intraperitoneal) and fluoxetine (FLX) (15 mg/kg; oral) treatments were provided to CORT administered mice. At the end of dosing schedule, neurobehavioral tests were conducted; followed by mechanistic evaluation through biochemical analysis, RTPCR and western blot in serum and hippocampus. Neurobehavioral tests revealed the development of anxiety/depressive-like behavior in CORT mice as compared to the vehicle control. Depressive-mice showed concomitant HPA axis dysregulation as observed from the significant increase in serum CORT and ACTH. Chronic CORT administration was found to significantly increase hippocampal malondialdehyde (MDA) and iNOS levels while lowering glutathione (GSH) content, as compared to vehicle control. VOR treatment, in a similar manner to the classical antidepressant FLX, significantly ameliorated anxiety/depressive-like behavior along with HPA axis alterations induced by CORT. The antidepressant-like ability of drug treatments against chronic CORT induced stress model, as revealed in our study, may be due to their potential to mitigate inflammatory damage and oxidative stress via modulation of hippocampal NF-κB p65, COX-2, HDAC2 and phosphorylated JNK levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice.

    Science.gov (United States)

    Su, Hong-Ming; Feng, Li-Na; Zheng, Xiao-Dong; Chen, Wei

    2016-06-01

    Myricetin is a naturally occurring antioxidant commonly found in various plants. However, little information is available with respect to its direct anti-obesity effects. This study was undertaken to investigate the effect of myricetin on high-fat diet (HFD)-induced obesity in C57BL/6 mice. Administration of myricetin dramatically reduced the body weight of diet-induced obese mice compared with solely HFD-induced mice. Several parameters related to obesity including serum glucose, triglyceride, and cholesterol were significantly decreased in myricetin-treated mice. Moreover, obesity-associated oxidative stress (glutathione peroxidase (GPX) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA)) and inflammation (tumor necrosis factor-α (TNF-α)) were ameliorated in myricetin-treated mice. Further investigation revealed that the protective effect of myricetin against HFD-induced obesity in mice appeared to be partially mediated through the down-regulation of mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c). Consumption of myricetin may help to prevent obesity and obesity-related metabolic complications.

  20. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage

    Science.gov (United States)

    Sun, Kai; Fan, Jingyu; Han, Jingyan

    2015-01-01

    Ischemic stroke and ischemia/reperfusion (I/R) injury induced by thrombolytic therapy are conditions with high mortality and serious long-term physical and cognitive disabilities. They have a major impact on global public health. These disorders are associated with multiple insults to the cerebral microcirculation, including reactive oxygen species (ROS) overproduction, leukocyte adhesion and infiltration, brain blood barrier (BBB) disruption, and capillary hypoperfusion, ultimately resulting in tissue edema, hemorrhage, brain injury and delayed neuron damage. Traditional Chinese medicine (TCM) has been used in China, Korea, Japan and other Asian countries for treatment of a wide range of diseases. In China, the usage of compound TCM preparation to treat cerebrovascular diseases dates back to the Han Dynasty. Even thousands of years earlier, the medical formulary recorded many classical prescriptions for treating cerebral I/R-related diseases. This review summarizes current information and underlying mechanisms regarding the ameliorating effects of compound TCM preparation, Chinese materia medica, and active components on I/R-induced cerebral microcirculatory disturbances, brain injury and neuron damage. PMID:26579420

  1. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    Science.gov (United States)

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase

    Directory of Open Access Journals (Sweden)

    Eric Aeby

    2016-12-01

    Full Text Available Oxidative damage of telomeres can promote cancer, cardiac failure, and muscular dystrophy. Specific mechanisms protecting telomeres from oxidative damage have not been described. We analyzed telomeric chromatin composition during the cell cycle and show that the antioxidant enzyme peroxiredoxin 1 (PRDX1 is enriched at telomeres during S phase. Deletion of the PRDX1 gene leads to damage of telomeric DNA upon oxidative stress, revealing a protective function of PRDX1 against oxidative damage at telomeres. We also show that the oxidized nucleotide 8-oxo-2′deoxyguanosine-5′-triphosphate (8oxodGTP causes premature chain termination when incorporated by telomerase and that some DNA substrates terminating in 8oxoG prevent extension by telomerase. Thus, PRDX1 safeguards telomeres from oxygen radicals to counteract telomere damage and preserve telomeric DNA for elongation by telomerase.

  3. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  4. UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense

    Science.gov (United States)

    Nechifor, Marina T.; Niculiţe, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea

    2012-01-01

    UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate. PMID:23222638

  5. Thalidomide ameliorates portal hypertension via nitric oxide synthase independent reduced systolic blood pressure.

    Science.gov (United States)

    Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J

    2015-04-14

    Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. Wild type, inducible nitric oxide synthase (iNOS)(-/-) and endothelial nitric oxide synthase (eNOS)(-/-) mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS(-/-) PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS(-/-) PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS(-/-) or iNOS(-/-) mice. Thalidomide acutely increased plasma NOx in wild type and eNOS(-/-) mice but not iNOS(-/-) mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, e

  6. Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats.

    Science.gov (United States)

    Aziza, Samy Ali Hussein; Azab, Mohammed El-Said; El-Shall, Soheir Kamal

    2014-08-01

    Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. Natural flavonoids, as rutin, are well-known antioxidants and could be efficient protective agents. Therefore, the present study was undertaken to evaluate the protective influence of rutin supplementation to improve rat antioxidant systems against IOL-induced hepatic oxidative stress. Sixty male albino rats were randomly divided to three equal groups. The first group, the control, the second group, iron overload group, the third group was used as iron overload+rutin group. Rats received six doses of ferric hydroxide polymaltose (100 mg kg(-1) b.wt.) as one dose every two days, by intraperitoneal injections (IP) and administrated rutin (50 mg kg(-1) b.wt.) as one daily oral dose until the sacrificed day. Blood samples for serum separation and liver tissue specimens were collected three times, after three, four and five weeks from the onset of the experiment. Serum iron profiles total iron, Total Iron Binding Capacity (TIBC), Unsaturated Iron Binding Capacity (UIBC), transferrin (Tf) and Transferrin Saturation% (TS%)}, ferritin, albumin, total Protein, total cholesterol, triacylglycerols levels and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were determined. Moreover, total iron in the liver, L-malondialdehyde (L-MDA), glutathione (GSH), Nitric Oxide (NO) and Total Nucleic Acid (TNA) levels and glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) activities were also determined. The obtained results revealed that, iron overload (IOL) resulted in significant increase in serum iron, TIBC, Tf, TS% and ferritin levels and AST and ALT activities and also increased liver iron, L-MDA and NO levels. Meanwhile, it decreased serum UIBC, total cholesterol, triacylglycerols, albumin, total protein and liver GSH, TNA levels and Gpx, CAT

  7. The Coadministration of Unoxidized and Oxidized Desi Ghee Ameliorates the Toxic Effects of Thermally Oxidized Ghee in Rabbits

    Directory of Open Access Journals (Sweden)

    Alam Zeb

    2017-01-01

    Full Text Available Desi Ghee was thermally oxidized at 160°C for 9 h and characterized for peroxide value (PV, free fatty acid (FFA, thiobarbituric acid reactive substances (TBARS, radical scavenging activity (RSA, and fatty acid and cholesterol composition using GC-MS. Oxidized (OG and normal ghee (NG were fed to rabbits in different doses. Blood was collected for hematology and biochemical analyses after 7 and 14 days. The oxidation of desi ghee increased the PV, FFA, and TBARS values and showed a decline in the RSA values. GC-MS revealed that desi ghee was rich in saturated fatty acids (55.9 g/100 g and significant amounts of oleic acid (26.2 g/100 g. The OG significantly decreased the body weight, which was normalized by the coadministration of NG. Serum lipid profile showed a dose dependent increase in total cholesterol, triglycerides, and low density lipoproteins (LDL and decrease in RBCs count, hematocrit, glucose, and hemoglobin concentration with OG feeding. These parameters were normalized by coadministration of NG. Liver histopathology of OG fed groups showed bile duct dilation and necrotic changes, while normal architecture showed in NG groups, compared to control. These results indicate that NG has no significant effect on rabbits comparing with OG and that it was beneficial when coadministered with oxidized ghee.

  8. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-01

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  9. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Zhou, Lili; Shu, Xugang [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Sun, Xiaohong [College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Mi, Shumei; Yang, Yuhui [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Yin, Yulong, E-mail: yinyulong@isa.ac.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China)

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  10. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.B.R. Colombo

    2015-01-01

    Full Text Available The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.

  11. Interactions between Biliverdin, Oxidative Damage, and Spleen Morphology after Simulated Aggressive Encounters in Veiled Chameleons.

    Directory of Open Access Journals (Sweden)

    Michael W Butler

    Full Text Available Stressors frequently increase oxidative damage--unless organisms simultaneously mount effective antioxidant responses. One putative mitigative mechanism is the use of biliverdin, an antioxidant produced in the spleen during erythrocyte degradation. We hypothesized that both wild and captive-bred male veiled chameleons (Chamaeleo calyptratus, which are highly aggressive to conspecifics, would respond to agonistic displays with increased levels of oxidative damage, but that increased levels of biliverdin would limit this increase. We found that even just visual exposure to a potential combatant resulted in decreased body mass during the subsequent 48-hour period, but that hematocrit, biliverdin concentration in the bile, relative spleen size, and oxidative damage in plasma, liver, and spleen were unaffected. Contrary to our predictions, we found that individuals with smaller spleens exhibited greater decreases in hematocrit and higher bile biliverdin concentrations, suggesting a revision to the idea of spleen-dependent erythrocyte processing. Interestingly, individuals with larger spleens had reduced oxidative damage in both the liver and spleen, demonstrating the spleen's importance in modulating oxidative damage. We also uncovered differences in spleen size and oxidative damage between wild and captive-bred chameleons, highlighting environmentally dependent differences in oxidative physiology. Lastly, we found no relationship between oxidative damage and biliverdin concentration, calling into question biliverdin's antioxidant role in this species.

  12. Naja naja atra venom ameliorates pulmonary fibrosis by inhibiting inflammatory response and oxidative stress.

    Science.gov (United States)

    Cui, Kui; Kou, Jian-Qun; Gu, Jin-Hua; Han, Rong; Wang, Guanghui; Zhen, Xuechu; Qin, Zheng-Hong

    2014-12-02

    Naja naja atra venom (NNAV) displays diverse pharmacological actions including analgesia, anti-inflammation and immune regulation.In this study, we investigated the effects of NNAV on pulmonary fibrosis and its mechanisms of action. To determine if Naja naja atra venom (NNAV) can produce beneficial effects on pulmonary fibrosis, two marine models of pulmonary fibrosis were produced with bleomycin (BLM) and lipopolysaccharide (LPS). NNAV (30, 90, 270 μg/kg) was orally administered once a day started five days before BLM and LPS until to the end of experiment. The effects of NNAV treatment on pulmonary injury were evaluated with arterial blood gas analysis, hydroxyproline (HYP) content assessment and HE/Masson staining. The effects of NNAV treatment on inflammatory related cytokines, fibrosis related TGF-β/Smad signaling pathway and oxidative stress were examined. The results showed that NNAV improved the lung gas-exchange function and attenuated the fibrotic lesions in lung. NNAV decreased IL-1β and TNF-α levels in serum in both pulmonary fibrosis models. NNAV inhibited the activation of NF-κB in LPS-induced and TGF-β/Smad pathway in BLM-induced pulmonary fibrosis. Additionally, NNAV also increased the levels of SOD and GSH and reduced the levels of MDA in BLM-induced pulmonary fibrosis model. The present study indicates that NNAV attenuates LPS- and BLM-induced lung fibrosis. Its mechanisms of action are associated with inhibiting inflammatory response and oxidative stress. The study suggests that NNAV might be a potential therapeutic drug for treatment of pulmonary fibrosis.

  13. Defatted Soy Flour Supplementation of Wheat Bread ameliorates Blood Chemistry and Oxidative Stress in Wistar rats.

    Science.gov (United States)

    Ebuehi, O A T; Okafor, H K

    2015-01-01

    Bread is a convenience food made from wheat flour, which is derived from wheat and whose technology of which dates back to the ancient Egyptians. It is therefore of economic advantage if wheat importation to Nigeria can be reduced by substitution with other suitable materials. This led to the whole idea of composite flour, which is a mixture of wheat with other materials to form suitable flour for baking'purposes. The study is to ascertain the effect of supplementation of bread with defatted soy flour on blood chemistry and oxidative stress in Wistar rats. Wheat flour mixed with high quality defatted Soy flour at several ratios: 90:10, 80:20, 70:30, and 60:40. The 90:10, 80:20, 70:30, and 60:40 flour mixtures were used to prepare 10%, 20%, 30%, and 40% Soya bread, respectively. The control bread (100%) was prepared with 100% wheat flour. Bread produced with these blends compared with regular 100% wheat bread and was tested for chemical and. organoleptic characteristics. Sixteen rats were randomly given codes and allocated to 2 different groups via tables with random numbers to feed on the 100% wheat blend and soy supplemented bread (90% wheat flour/10% soy flour) for 28 days. The weights and feedintake of the rats were computed on dailybasis. Blood was taken for biochemical assays and liver was used for antioxidant assay, that is activities of catalase, super oxider dismutase (SOD) and reduced glutathine level. The activities of serum SOD and catalase were significantly increase (pbread as compared to the control, (wheat bread) and a significant decrease (pbread as compared to the control. There was a significant decrease (pbread.

  14. Amelioration of radiation induced DNA damage and biochemical alterations by Punica Granatum (L) extracts and synthetic ellagic acid in Swiss albino mice

    International Nuclear Information System (INIS)

    Satheesh Kumar Bhandary, B.; Sharmila, K.P.; Suchetha Kumari, N.; Vadisha Bhat, S.; Sherly, Sharmila; Sanjeev, Ganesh

    2013-01-01

    Radiation therapy has been used in cancer treatment for many decades; Although effective in killing tumor cells, ROS produced in radiotherapy threaten the integrity and survival of surrounding normal cells. ROS are scavenged by radioprotectors before they can interact with biochemical molecules, thus reducing harmful effects of radiation. The pomegranate, Punica granatum L., an ancient, mystical, and highly distinctive fruit, is the predominant member of the Punicaceae family. It is used in several systems of medicine for a variety of ailments. The objective of the present study was to investigate the protective effects of ethanolic extracts of pomegranate whole fruit (EPWF) and seeds (EPS) and Synthetic Ellagic acid (EA) against Electron Beam Radiation (EBR) induced DNA damage and biochemical alterations in Swiss Albino mice. The extracts and synthetic compound were assessed for its radical scavenging property by DPPH radical scavenging and Ferric Reducing Antioxidant Power assays. The animals were treated with 200 mg/kg body wt. of pomegranate extracts and Ellagic acid for 15 days before exposure to 6 Gy of EBR. Radiation induced DNA damage was assessed by comet assay in the peripheral blood lymphocytes of mice. The biochemical estimations were carried out in the serum and RBC lysate of the animals. The plant extracts and synthetic compound exhibited good radical scavenging and reducing properties.The pretreated animals before irradiation caused a reduction in the comet length, olive tail moment, % DNA in tail when compared to irradiated group. The biochemical parameters such as lipid peroxidation was significantly depleted in the treated groups when compared to irradiated group followed by significant elevation in reduced glutathione. Our findings indicate the ameliorating effects of pomegranate extracts and synthetic ellagic acid on radiation induced DNA damage and biochemical changes in mice may be due to its free radical scavenging and increased antioxidant

  15. Chafuroside B, an Oolong tea polyphenol, ameliorates UVB-induced DNA damage and generation of photo-immunosuppression related mediators in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Tatsuya Hasegawa

    Full Text Available Chafuroside B was recently isolated as a new polyphenolic constituent of oolong tea leaves. However, the effects of chafuroside B on skin function have not been examined. In this study, we investigated the protective effects of chafuroside B against UVB-induced DNA damage, apoptosis and generation of photo-immunosuppression related mediators in cultured normal human epidermal keratinocytes (NHEK. Chafuroside B at 1 µM attenuated both UVB-induced apoptosis, evaluated in terms of caspase-3/7 activity, and UVB-induced DNA damage, evaluated in terms of formation of cyclobutane pyrimidine dimers (CPD, in NHEK exposed to UVB (20 mJ/cm2. In addition, chafuroside B at 0.3 or 1 µM suppressed the UVB-induced production of interleukin (IL-10, tumor necrosis factor (TNF-α, and prostaglandin E2 (PGE2, as determined by ELISA, and conversely enhanced IL-12 mRNA expression and production, as measured by RT-PCR and ELISA. Further, chafuroside B at 1 µM also suppressed UVB-induced expression of receptor activator of nuclear factor κB ligand (RANKL mRNA. These results indicate that chafuroside B promotes repair of UVB-induced DNA damage and ameliorates the generation of IL-10, TNF-α, PGE2, and RANKL, all of which are UVB-induced immunosuppression related mediators. These effects of chafuroside B may be mediated at least in part through induction of IL-12 synthesis in human keratinocytes. Because chafuroside B might have practical value as a photoprotective agent, a further study of the in vivo effects of chafuroside B seems warranted.

  16. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models

    Directory of Open Access Journals (Sweden)

    Dota A

    2013-01-01

    Full Text Available Atsuyoshi Dota, Yuko Takaoka-Shichijo, Masatsugu NakamuraOphthalmic Research and Development Center, Santen Pharmaceutical Co, Ltd, Ikoma-shi, Nara, JapanPurpose: The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models.Methods: Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model.Results: Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score.Conclusion: These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye.Keywords: gefarnate, fluorescein staining, rose bengal permeability, rabbit, cat, dry eye

  17. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João

    2016-03-01

    Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Glutathione S-transferase Mu 2-transduced mesenchymal stem cells ameliorated anti-glomerular basement membrane antibody-induced glomerulonephritis by inhibiting oxidation and inflammation.

    Science.gov (United States)

    Li, Yajuan; Yan, Mei; Yang, Jichen; Raman, Indu; Du, Yong; Min, Soyoun; Fang, Xiangdong; Mohan, Chandra; Li, Quan-Zhen

    2014-01-30

    Oxidative stress is implicated in tissue inflammation, and plays an important role in the pathogenesis of immune-mediated nephritis. Using the anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM-GN) mouse model, we found that increased expression of glutathione S-transferase Mu 2 (GSTM2) was related to reduced renal damage caused by anti-GBM antibodies. Furthermore, mesenchymal stem cell (MSC)-based therapy has shed light on the treatment of immune-mediated kidney diseases. The aim of this study was to investigate if MSCs could be utilized as vehicles to deliver the GSTM2 gene product into the kidney and to evaluate its potential therapeutic effect on anti-GBM-GN. The human GSTM2 gene (hGSTM2) was transduced into mouse bone marrow-derived MSCs via a lentivirus vector to create a stable cell line (hGSTM2-MSC). The cultured hGSTM2-MSCs were treated with 0.5 mM H2O2, and apoptotic cells were measured by terminal dUTP nick-end labeling (TUNEL) assay. The 129/svj mice, which were challenged with anti-GBM antibodies, were injected with 10⁶ hGSTM2-MSCs via the tail vein. Expression of hGSTM2 and inflammatory cytokines in the kidney was assayed by quantitative PCR and western blotting. Renal function of mice was evaluated by monitoring proteinuria and levels of blood urea nitrogen (BUN), and renal pathological changes were analyzed by histochemistry. Immunohistochemical analysis was performed to measure inflammatory cell infiltration and renal cell apoptosis. MSCs transduced with hGSTM2 exhibited similar growth and differentiation properties to MSCs. hGSTM2-MSCs persistently expressed hGSTM2 and resisted H2O2-induced apoptosis. Upon injection into 129/svj mice, hGSTM2-MSCs migrated to the kidney and expressed hGSTM2. The anti-GBM-GN mice treated with hGSTM2-MSCs exhibited reduced proteinuria and BUN (58% and 59% reduction, respectively) and ameliorated renal pathological damage, compared with control mice. Mice injected with hGSTM2-MSCs showed

  19. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage.

    Science.gov (United States)

    Venditti, P; Pamplona, R; Ayala, V; De Rosa, R; Caldarone, G; Di Meo, S

    2006-03-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T3)- or thyroxine (T4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T3 treatment could depend on differences in serum levels of T4.

  20. Protective property of mulberry digest against oxidative stress - A potential approach to ameliorate dietary acrylamide-induced cytotoxicity.

    Science.gov (United States)

    Zhang, Linxia; Xu, Yang; Li, Yuting; Bao, Tao; Gowd, Vemana; Chen, Wei

    2017-09-01

    The aim of this study was investigating the protective effect of mulberry digest (MBD) on acrylamide-induced oxidative stress. Composition analysis of MBD revealed that it contained six major phenolic compounds (quercetin-3-O-rutinoside, quercetin hexoside, quercetin rhamnosylhexoside hexoside, kaempferol rhamnosylhexoside, cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside). After in vitro digestion, the contents of two anthocyanins were both decreased significantly, while the contents of four flavonoid glycosides were all increased. In addition, MBD was found to successfully suppress acrylamide-induced ROS overproduction, restore the mitochondrial membrane potential, and inhibit the mitochondrial membrane lipid peroxidation and glutathione depletion. More interestingly, the protective effect of MBD against acrylamide-induced oxidative damage was enhanced compared with mulberry fruits without digestion (MBE). Further study revealed that MBD enhanced the cell resistance capacity to acrylamide-induced oxidative stress, rather than its direct reaction with acrylamide. Overall, our results indicate that MBD provides a potent protection against acrylamide-induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Einor, D., E-mail: daniel@einor.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Bonisoli-Alquati, A., E-mail: andreabonisoli@gmail.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803 (United States); Costantini, D., E-mail: davidcostantini@libero.it [Department of Biology, University of Antwerp, Wilrijk, B-2610, Antwerp (Belgium); Mousseau, T.A., E-mail: mousseau@sc.edu [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Faculty of Bioscience and Biotechnology, Chubu University, Kasugai (Japan); Møller, A.P., E-mail: anders.moller@u-psud.fr [Laboratoire d' Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, F-91405 Orsay Cedex (France)

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and − 0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. - Highlights: • There is interest in variation in metabolic effects of chronic low-dose ionizing radiation • A random effect meta-analysis of effect sizes of radioactive contamination was performed • We found significant effects of radiation on oxidative damage and antioxidant response • We found significant heterogeneity among

  2. Application of lipid peroxidation and protein oxidation biomarkers for oxidative damage in mammalian cells. A comparison with two fluorescent probes

    NARCIS (Netherlands)

    Orhan, H.; Gurer-Orhan, H.; Vriese, E.; Vermeulen, N.P.E.; Meerman, J.H.N.

    2006-01-01

    We recently developed two biomarker sets for oxidative damage: one for determination of lipid peroxidation (LPO) degradation products; acetaldehyde, propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal, malondialdehyde and acetone, by a gas chromatography-electron capture detection

  3. Polymorphic trial in oxidative damage of arsenic exposed Vietnamese

    International Nuclear Information System (INIS)

    Fujihara, Junko; Soejima, Mikiko; Yasuda, Toshihiro; Koda, Yoshiro; Kunito, Takashi; Iwata, Hisato; Tanabe, Shinsuke; Takeshita, Haruo

    2011-01-01

    Arsenic causes DNA damage and changes the cellular capacity for DNA repair. Genes in the base excision repair (BER) pathway influence the generation and repair of oxidative lesions. Single nucleotide polymorphisms (SNPs) in human 8-oxoguanine DNA glycosylase (hOGG1) Ser326Cys; apurinic/apyrimidinic endonuclease (APE1) Asp148Glu; X-ray and repair and cross-complementing group 1 (XRCC1) Arg280His and Arg399Gln in the BER genes were analyzed, and the relationship between these 4 SNPs and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations of 100 Vietnamese population exposed to arsenic was investigated. Individuals with hOGG1 326Cys/Cys showed significantly higher urinary 8-OHdG concentrations than did those with 326 Ser/Cys and Ser/Ser. As for APE1 Asp148Glu, heterozygous subjects showed significantly higher urinary 8-OHdG concentrations than did those homozygous for Asp/Asp. Moreover, global ethnic comparison of the allelic frequencies of the 4SNPs was performed in 10 population and previous reported data. The mutant allele frequencies of hOGG1 Ser326Cys in the Asian populations were higher than those in the African and Caucasian populations. As for APE1 Asp148Glu, Caucasians showed higher mutant frequencies than those shown by African and Asian populations. Among Asian populations, the Bangladeshi population showed relatively higher mutant allele frequencies of the APE1 Asp148Glu polymorphism. This study is the first to demonstrate the existence of genetic heterogeneity in a worldwide distribution of SNPs (hOGG1 Ser326Cys, APE1 Asp148Glu, XRCC1 Arg280His, and XRCC1 Arg399Gln) in the BER genes. - Highlights: → We showed that hOGG1 and APE1 are associated with urinary 8-OHdG concentrations. → We showed the existence of inter-ethnic differences in hOGG1 and APE1 polymorphism. → These polymorphisms is a genetic marker of susceptibility to oxidative stress.

  4. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Al-Numair, Khalid S; Chandramohan, Govindasamy; Veeramani, Chinnadurai; Alsaif, Mohammed A

    2015-09-01

    The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats. The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal. The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.

  5. Nuclear oxidative damage correlates with poor survival in colorectal cancer.

    LENUS (Irish Health Repository)

    Sheridan, J

    2012-02-01

    Oxidative DNA damage results from DNA adducts such as 8-oxo-7, 8 dihydro-2\\'-deoxyguanosine (8-oxo-dG), which is a pro-mutagenic lesion. No known association between 8-oxo-dG, disease progression and survival exists in colorectal cancer (CRC). We examined levels of 8-oxo-dG in sporadic CRC to determine its relationship with pathological stage and outcome. A total of 143 CRC patients and 105 non-cancer patients were studied. Nuclear and cytoplasmic 8-oxo-dG was assessed using immunohistochemistry. Double immunofluorescence using 8-oxo-dG and manganese superoxide dismutase (MnSOD) antibodies localised cytoplasmic 8-oxo-dG. Apoptosis was detected using TUNEL. Nuclear staining levels were similar in tumour tissue and matched normal mucosa in both epithelial (P=0.22) and stromal (P=0.85) cells. Epithelial cytoplasmic staining was greater in tumour tissue (P<0.001). Double immunofluorescence localised cytoplasmic 8-oxo-dG to mitochondria. Epithelial and stromal nuclear 8-oxo-dG decreased with local disease spread, but highest levels were found in distant disease (P<0.01). Survival was related to epithelial nuclear and stromal staining in normal mucosa (P<0.001) and tumour (P<0.01) but was unrelated to cytoplasmic staining. Normal control cells in tissue from cancer patients with high levels of 8-oxo-dG failed to undergo cell death. 8-oxo-dG may be an important biomarker of disease risk, progression and survival for CRC patients.

  6. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain.

    Science.gov (United States)

    Swathy, S S; Indira, M

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The optimal dose of Ksheerabala was found from a dose escalation study, wherein it was found that Ksheerabala showed maximum protection against quinolinic acid-induced neurotoxicity at a dose of 15 microL/100 g body weight/day, which was selected for further experiments. Four groups of female albino rats were maintained for 21 days as follows: 1. Control group, 2. Quinolinic acid (55 microg/100 g body weight), 3. Ksheerabala (15 microL/100 g body weight), 4. Ksheerabala (15 microL/100 g body weight) + Quinolinic acid (55 microg/100 g body weight). At the end of the experimental period, levels of lipid peroxidation products, protein carbonyls, and activities of scavenging enzymes were analyzed. The results revealed that quinolinic acid intake caused enhanced lipid and protein peroxidation as evidenced by increased levels of peroxidation products such as malondialdehyde, hydroperoxide, conjugated dienes, and protein carbonyls. On the other hand, the activities of scavenging enzymes such as catalase, superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase as well as the concentration of glutathione were reduced. On coadminstration of Ksheerabala along with quinolinic acid, the levels of all the biochemical parameters were restored to near-normal levels, indicating the protective effect of the drug. These results were reinforced by histopathological studies.

  7. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion.

    Science.gov (United States)

    Soluri-Martins, André; Moraes, Lillian; Santos, Raquel S; Santos, Cintia L; Huhle, Robert; Capelozzi, Vera L; Pelosi, Paolo; Silva, Pedro L; de Abreu, Marcelo Gama; Rocco, Patricia R M

    2017-01-01

    Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV ( n = 6/group) [tidal volume (V T ) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 2 cmH 2 O, fraction of inspired oxygen (FiO 2 ) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated V T values ( n = 1200; mean V T = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH 2 0/ml and 2.0 ± 0.8 cmH 2 0/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9-33.1] and VV 5.4% [3.1-8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and

  8. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Patricia R. M. Rocco

    2017-05-01

    Full Text Available Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1 ischemia-reperfusion (IR, in which the left pulmonary hilum was completely occluded and released after 30 min; and (2 Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured and right (contralateral lungs from 6 animals per group were removed, and served as non-ventilated group (NV for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV (n = 6/group [tidal volume (VT = 6 mL/kg, positive end-expiratory pressure (PEEP = 2 cmH2O, fraction of inspired oxygen (FiO2 = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated VT values (n = 1200; mean VT = 6 mL/kg, with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final, respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH20/ml and 2.0 ± 0.8 cmH20/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9–33.1] and VV 5.4% [3.1–8.8], p = 0.04, respectively. In left lungs of IR animals, VCV increased the expression of interleukin-6 and intercellular

  9. Kolaviron and vitamin E ameliorate hematotoxicity and oxidative stress in brains of prepubertal rats treated with an anticonvulsant phenytoin.

    Science.gov (United States)

    Owoeye, Olatunde; Adedara, Isaac A; Bakare, Oluwafemi S; Adeyemo, Oluwatobi A; Egun, Christa; Farombi, Ebenezer O

    2014-06-01

    Phenytoin (PHT), an anticonvulsant agent, widely used for the treatment of epilepsy has been reported to exhibit toxic side effects. The present study investigated the protective effects of kolaviron and vitamin E on hematotoxicity and neurotoxicity induced by phenytoin, in prepubertal male rats. The animals were treated with PHT (75 mg/kg) separately or in combination with either kolaviron (200 mg/kg) or vitamin E (500 mg/kg) for 14 days. Phenytoin treatment significantly decreased the hemoglobin, white blood cells, lymphocytes and mean corpuscular volume levels without affecting red blood cell, packed cell volume, neutrophils, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration when compared with the control rats. There was a significant increase in lipid peroxidation and hydrogen peroxide levels with marked depletion in antioxidant status in brains of PHT-treated rats when compared with the control. Although PHT treatment had no effect on the granular layer, widest diameter of Purkinje cells and Purkinje layer of the cerebellum, it significantly reduced its molecular layer and the density of Purkinje cell. Administration of PHT significantly reduced the densities of the granule cells of the dentate gyrus and the pyramidal neurons of the cornu ammonis of hippocampus proper. Co-treatment with kolaviron and vitamin E effectively reversed the PHT-mediated alterations in the hematology, brain antioxidant status and histomorphometry when compared to PHT only. Taken together, the present data indicate the abilities of kolaviron and vitamin E to ameliorate phenytoin-induced hematotoxicity and oxidative stress in brains of rats.

  10. Protective Effects of an Ancient Chinese Kidney-Tonifying Formula against H2O2-Induced Oxidative Damage to MES23.5 Cells.

    Science.gov (United States)

    Xu, Yihui; Lin, Wei; Ye, Shuifen; Wang, Huajin; Wang, Tingting; Su, Youyan; Wu, Liangning; Wang, Yuanwang; Xu, Qian; Xu, Chuanshan; Cai, Jing

    2017-01-01

    Oxidative damage plays a critical role in the etiology of neurodegenerative disorders including Parkinson's disease (PD). In our study, an ancient Chinese kidney-tonifying formula, which consists of Cistanche , Epimedii, and Polygonatum cirrhifolium , was investigated to protect MES23.5 dopaminergic neurons against hydrogen peroxide- (H 2 O 2 -) induced oxidative damage. The damage effects of H 2 O 2 on MES23.5 cells and the protective effects of KTF against oxidative stress were evaluated using MTT assay, transmission electron microscopy (TEM), immunocytochemistry (ICC), enzyme-linked immunosorbent assay (ELISA), and immunoblotting. The results showed that cell viability was dramatically decreased after a 12 h exposure to 150  μ M H 2 O 2 . TEM observation found that the H 2 O 2 -treated MES23.5 cells presented cellular organelle damage. However, when cells were incubated with KTF (3.125, 6.25, and 12.5  μ g/ml) for 24 h after H 2 O 2 exposure, a significant protective effect against H 2 O 2 -induced damage was observed in MES23.5 cells. Using ICC, we found that KTF inhibited the reduction of the tyrosine hydroxylase (TH) induced by H 2 O 2 , upregulated the mRNA and protein expression of HO-1, CAT, and GPx-1, and downregulated the expression of caspase 3. These results indicated that KTF may provide neuron protection against H 2 O 2 -induced cell damage through ameliorating oxidative stress, and our findings provide a new potential strategy for the prevention and treatment of Parkinson's disease.

  11. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Lathika, K.M. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, K.P. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: kpm@magnum.barc.ernet.in

    2006-03-15

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after {gamma}-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  12. P2X7 receptor activation ameliorates CA3 neuronal damage via a tumor necrosis factor-α-mediated pathway in the rat hippocampus following status epilepticus

    Directory of Open Access Journals (Sweden)

    Ryu Hea Jin

    2011-06-01

    Full Text Available Abstract Background The release of tumor necrosis factor-α (TNF-α appears depend on the P2X7 receptor, a purinergic receptor. In the present study, we addressed the question of whether P2X7 receptor-mediated TNF-α regulation is involved in pathogenesis and outcome of status epilepticus (SE. Methods SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline-, 2',3'-O-(4-benzoylbenzoyl-adenosine 5'-triphosphate (BzATP, adenosine 5'-triphosphate-2',3'-dialdehyde (OxATP, A-438079, or A-740003 prior to SE induction. Thereafter, we performed Fluoro-Jade B staining and immunohistochemical studies for TNF-α and NF-κB subunit phosphorylations. Results Following SE, P2X7 receptor agonist (BzATP infusion increased TNF-α immunoreactivity in dentate granule cells as compared with that in saline-infused animals. In addition, TNF-α immunoreactivity was readily apparent in the mossy fibers, while TNF-α immunoreactivity in CA1-3 pyramidal cells was unaltered. However, P2X7 receptor antagonist (OxATP-, A-438079, and A-740003 infusion reduced SE-induced TNF-α expression in dentate granule cells. In the CA3 region, BzATP infusion attenuated SE-induced neuronal damage, accompanied by enhancement of p65-Ser276 and p65-Ser311 NF-κB subunit phosphorylations. In contrast, OxATP-, A-438079, and A-740003 infusions increased SE-induced neuronal death. Soluble TNF p55 receptor (sTNFp55R, and cotreatment with BzATP and sTNFp55R infusion also increased SE-induced neuronal damage in CA3 region. However, OxATP-, sTNFp55R or BzATP+sTNFp55R infusions could not exacerbate SE-induced neuronal damages in the dentate gyrus and the CA1 region, as compared to BzATP infusion. Conclusions These findings suggest that TNF-α induction by P2X7 receptor activation may ameliorate SE-induced CA3 neuronal damage via enhancing NF-κB p65-Ser276 and p65-Ser311 phosphorylations.

  13. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage

    OpenAIRE

    Venditti, Paola; Pamplona Gras, Reinald; Ayala, Victoria; Rosa, R. de; Caldarone, G.; Di Meo, S.

    2006-01-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T-3)- or thyroxine (T-4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most ex...

  14. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (ptotal antioxidant capacity was significantly lower (ptotal antioxidant capacity and hemoglobin levels (r=0.706, ptotal antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  15. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    International Nuclear Information System (INIS)

    Muniz, Juan F.; McCauley, Linda; Scherer, J.; Lasarev, M.; Koshy, M.; Kow, Y.W.; Nazar-Stewart, Valle; Kisby, G.E.

    2008-01-01

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers and applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects

  16. Djulis (Chenopodium formosanum Koidz. Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models

    Directory of Open Access Journals (Sweden)

    Yong-Han Hong

    2016-01-01

    Full Text Available Dermal photoaging is a condition of skin suffering inappropriate ultraviolet (UV exposure and exerts inflammation, tissue alterations, redness, swelling, and uncomfortable feelings. Djulis (Chenopodium formosanum Koidz. is a cereal food and its antioxidant and pigment constituents may provide skin protection from photoaging, but it still lacks proved experiments. In this study, protective effects of djulis extract (CFE on UVB-irradiated skin were explored. The results showed that HaCaT cells with 150 μg/mL CFE treatment had higher survival and less production of interleukin- (IL- 6, matrix metalloprotease- (MMP- 1, and reactive oxygen species (ROS in UVB-irradiated conditions. Subsequently, in animal studies, mice supplemented with CFE (100 mg/kg BW were under UVB irradiation and had thinner epidermis and lower IL-6 levels in skin layer. These data demonstrate that bioactive compounds possessing the potency of antiphotoaging exist in CFE. Following that, we found rutin and chlorogenic acid (10–100 μM could significantly increase cell viability and decrease the production of IL-6 in UVB models. Additionally, djulis pigment-betanin has no effect of increasing cell viability in this study. Our findings suggest CFE can protect skin against UV-induced damage and this protection is mainly from contributions of rutin and chlorogenic acid.

  17. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    Science.gov (United States)

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    International Nuclear Information System (INIS)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-01-01

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ m ). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by OTA in

  19. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  20. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  1. Attenuating brain inflammation, ischemia, and oxidative damage by hyperbaric oxygen in diabetic rats after heat stroke

    Directory of Open Access Journals (Sweden)

    Kai-Li Lee

    2013-08-01

    Conclusion: Our results suggest that, in diabetic animals, HBO2 therapy may improve outcomes of HS in part by reducing heat-induced activated inflammation and ischemic and oxidative damage in the hypothalamus and other brain regions.

  2. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  3. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  4. Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis

    DEFF Research Database (Denmark)

    Broedbaek, Kasper; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    Oxidatively generated damage to nucleic acids is considered to play a significant role in carcinogenesis, and it has been shown that people with hereditary hemochromatosis are at increased risk of cancer. In this study we used a new refined liquid chromatography-tandem mass spectrometry method...... of the iron overload seen in this disease. By this mechanism cellular damage resulting in end organ damage, typically seen in the liver of such patients, may be mediated....

  5. Oxide growth and damage evolution in thermal barrier coatings

    NARCIS (Netherlands)

    Hille, T.S.; Turteltaub, S.R.; Suiker, A.S.J.

    2011-01-01

    Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the

  6. Psoralea corylifolia L. Seed Extract Ameliorates Streptozotocin-Induced Diabetes in Mice by Inhibition of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Eunhui Seo

    2014-01-01

    Full Text Available Pancreatic beta-cell death is known to be the cause of deficient insulin production in diabetes mellitus. Oxidative stress is one of the major causes of beta-cell death. In this study, we investigated the effects of Psoralea corylifolia L. seed (PCS extract on beta-cell death. Oral administration of PCS extract resulted in a significant improvement of hyperglycemia in streptozotocin-induced diabetic mice. PCS extract treatment improved glucose tolerance and increased serum insulin levels. To study the mechanisms involved, we investigated the effects of PCS extract on H2O2-induced apoptosis in INS-1 cells. Treatment with PCS extract inhibited cell death. PCS extract treatment decreased reactive oxygen species level and activated antioxidative enzymes. Among the major components of PCS extract, psoralen and isopsoralen (coumarins, but not bakuchiol, showed preventive effects against H2O2-induced beta-cell death. These findings indicate that PCS extract may be a potential pharmacological agent to protect against pancreatic beta-cell damage caused by oxidative stress associated with diabetes.

  7. The ameliorative effect of ascorbic acid on the oxidative status, live weight and recovery rate in road transport stressed goats in a hot humid tropical environment.

    Science.gov (United States)

    Nwunuji, Tanko Polycarp; Mayowa, Opeyemi Onilude; Yusoff, Sabri Mohd; Bejo, Siti-Khairani; Salisi, Shahrom; Mohd, Effendy Abd Wahid

    2014-05-01

    The ameliorative effect of ascorbic acid (AA) on live weight following transportation is vital in animal husbandry. This study investigated the influence of AA on live weight, rectal temperature (rt), and oxidative status of transport stressed goats in a hot humid tropical environment. Twenty-four goats were divided into four groups, A, B, C and D of six animals each. Group A were administered AA 100 mg/kg intramuscularly 30 min prior to 3.5 h transportation. Group B was administered AA following transportation. Group C were transported but not administered AA as positive controls while group D were not transported but were administered normal saline as negative controls. Live weight, rt and blood samples were collected before, immediately post-transport (pt), 24 h, 3 days, 7 days and 10 days pt. Plasma was used for malondialdehyde (MDA) analysis while hemolysates were used for superoxide dismutase (SOD) analysis. There was minimal live weight loss in group A compared to groups B and C. Group A recorded reduced MDA activities and increased SOD activities compared to groups B and C which recorded significantly high MDA activities. This study revealed that AA administration ameliorated the stress responses induced by transportation in animals in hot humid tropical environments. The administration of AA to goats prior to transportation could ameliorate stress and enhance productivity. © 2014 Japanese Society of Animal Science.

  8. Oxidative DNA damage in lung tissue from patients with COPD is clustered in functionally significant sequences

    Directory of Open Access Journals (Sweden)

    Viktor M Pastukh

    2011-03-01

    Full Text Available Viktor M Pastukh1, Li Zhang2, Mykhaylo V Ruchko1, Olena Gorodnya1, Gina C Bardwell1, Rubin M Tuder2, Mark N Gillespie11Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA; 2Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, Aurora, CO, USAAbstract: Lung tissue from COPD patients displays oxidative DNA damage. The present study determined whether oxidative DNA damage was randomly distributed or whether it was localized in specific sequences in either the nuclear or mitochondrial genomes. The DNA damage-specific histone, gamma-H2AX, was detected immunohistochemically in alveolar wall cells in lung tissue from COPD patients but not control subjects. A PCR-based method was used to search for oxidized purine base products in selected 200 bp sequences in promoters and coding regions of the VEGF, TGF-β1, HO-1, Egr1, and β-actin genes while quantitative Southern blot analysis was used to detect oxidative damage to the mitochondrial genome in lung tissue from control subjects and COPD patients. Among the nuclear genes examined, oxidative damage was detected in only 1 sequence in lung tissue from COPD patients: the hypoxic response element (HRE of the VEGF promoter. The content of VEGF mRNA also was reduced in COPD lung tissue. Mitochondrial DNA content was unaltered in COPD lung tissue, but there was a substantial increase in mitochondrial DNA strand breaks and/or abasic sites. These findings show that oxidative DNA damage in COPD lungs is prominent in the HRE of the VEGF promoter and in the mitochondrial genome and raise the intriguing possibility that genome and sequence-specific oxidative DNA damage could contribute to transcriptional dysregulation and cell fate decisions in COPD.Keywords: DNA damage, VEGF hypoxic response element, mtDNA, COPD

  9. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming...

  10. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Semantee [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Manna, Prasenjit [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India); Gachhui, Ratan [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India)

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative stress

  11. Protective Effect of Nicotine on Sepsis-Induced Oxidative Multiorgan Damage: Role of Neutrophils.

    Science.gov (United States)

    Özdemir-Kumral, Zarife N; Özbeyli, Dilek; Özdemir, Ahmet F; Karaaslan, Bugra M; Kaytaz, Kübra; Kara, Mustafa F; Tok, Olgu E; Ercan, Feriha; Yegen, Berrak Ç

    2017-07-01

    Despite its adverse health consequences, tobacco smoking is associated with lower incidence of several neurodegenerative and inflammatory diseases. The present study is aimed to show the effects of nicotine, major tobacco constituent, on five organs targeted by sepsis. Male Wistar albino rats received tap water with (5mg/kg) or without nicotine for 14 days. Under ketamine anesthesia, sepsis (n = 50) was induced by ligation and puncture of the cecum, while sham group (n = 8) had only laparotomy. In other rats, nicotine drink was withdrawn for 5 days before sepsis induction, while in acute nicotine group, rats were injected with nicotine (30mg/kg, i.p.) before sepsis, but had no oral intake. Rats were decapitated 24 hours after surgery to obtain lung, liver, ileum, heart, and kidney tissues to determine malondialdehyde (MDA) and glutathione (GSH) levels and myeloperoxidase (MPO) activities. Data were analyzed by one-way analysis of variance and Tukey multiple comparison tests or Student's t test. Chronic nicotine administration or its withdrawal reduced lipid peroxidation and MPO activity and prevented GSH depletion with some varying results in different target tissues. Nicotine injection prior to sepsis depressed MPO activity in all tissues and reduced MDA levels except for the lung, while GSH levels were elevated only in the hepatic and ileal tissues. Histologically observed injury was ameliorated by all nicotine treatments at varying degrees. The findings of the present study indicate that long-term nicotine administration reduces sepsis-induced oxidative damage in several tissues, which appears to involve inhibition of neutrophil activity in the inflamed tissues. Nicotine administration or its withdrawal reduced lipid peroxidation and neutrophil content and prevented GSH depletion with some varying results in different target tissues. A single injection prior to sepsis induction depressed MPO activity in all the tissues and reduced all tissue MDA levels except

  12. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Gary M. [Dermatology Research Laboratories, Division of Medicine, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital at the University of Sydney, Sydney, NSW (Australia)]. E-mail: garyh@med.usyd.edu.au

    2005-04-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.

  13. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    International Nuclear Information System (INIS)

    Halliday, Gary M.

    2005-01-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans

  14. Assays for urinary biomarkers of oxidatively damaged nucleic acids

    DEFF Research Database (Denmark)

    Weimann, Allan; Broedbaek, Kasper; Henriksen, Trine

    2012-01-01

    Abstract The analysis of oxidized nucleic acid metabolites can be performed by a variety of methodologies: liquid chromatography coupled with electrochemical or mass-spectrometry detection, gas chromatography coupled with mass spectrometry, capillary electrophoresis and ELISA (Enzyme-linked immun...

  15. Radiation damage of uranium-thorium oxide, irradiated in water

    International Nuclear Information System (INIS)

    Bloem, P.J.C.; Nagel, W.; Plas, T. van der; Kema, N.V.

    1977-01-01

    A suspension in water of spherical particles of UO 2 -ThO 2 with diameter 5μm has been considered as the working fluid in an aqueous, homogeneous, thermal nuclear reactor. Irradiation experiments have shown that these particles suffer a gradual breakdown when irradiated in water. This behaviour is markedly different from that shown on irradiation in absence of water. As damage was defined the amount of solid dissolved by an etching liquid. Electron microscopic pictures showed that at higher irradiation temperatures in water the actual damage was larger than the etching values indicated. (orig.) [de

  16. Therapeutic Hypothermia Reduces Oxidative Damage and Alters Antioxidant Defenses after Cardiac Arrest

    Science.gov (United States)

    Hackenhaar, Fernanda S.; Medeiros, Tássia M.; Heemann, Fernanda M.; Behling, Camile S.; Putti, Jordana S.; Mahl, Camila D.; Verona, Cleber; da Silva, Ana Carolina A.; Guerra, Maria C.; Gonçalves, Carlos A. S.; Oliveira, Vanessa M.; Riveiro, Diego F. M.; Vieira, Silvia R. R.

    2017-01-01

    After cardiac arrest, organ damage consequent to ischemia-reperfusion has been attributed to oxidative stress. Mild therapeutic hypothermia has been applied to reduce this damage, and it may reduce oxidative damage as well. This study aimed to compare oxidative damage and antioxidant defenses in patients treated with controlled normothermia versus mild therapeutic hypothermia during postcardiac arrest syndrome. The sample consisted of 31 patients under controlled normothermia (36°C) and 11 patients treated with 24 h mild therapeutic hypothermia (33°C), victims of in- or out-of-hospital cardiac arrest. Parameters were assessed at 6, 12, 36, and 72 h after cardiac arrest in the central venous blood samples. Hypothermic and normothermic patients had similar S100B levels, a biomarker of brain injury. Xanthine oxidase activity is similar between hypothermic and normothermic patients; however, it decreases posthypothermia treatment. Xanthine oxidase activity is positively correlated with lactate and S100B and inversely correlated with pH, calcium, and sodium levels. Hypothermia reduces malondialdehyde and protein carbonyl levels, markers of oxidative damage. Concomitantly, hypothermia increases the activity of erythrocyte antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione S-transferase while decreasing the activity of serum paraoxonase-1. These findings suggest that mild therapeutic hypothermia reduces oxidative damage and alters antioxidant defenses in postcardiac arrest patients. PMID:28553435

  17. An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay

    DEFF Research Database (Denmark)

    Johansson, Clara; Møller, Peter; Forchhammer, Lykke

    2010-01-01

    The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due...... to differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet...... assay end points to number of lesions/10(6) bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA...

  18. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders

    Directory of Open Access Journals (Sweden)

    Zhimin Chen

    2017-08-01

    Conclusions: Nrg4 exerts pleiotropic beneficial effects on energy balance and glucose and lipid metabolism to ameliorate obesity-associated metabolic disorders. Biologic therapeutics based on Nrg4 may improve both type 2 diabetes and non-alcoholic fatty liver disease (NAFLD in patients.

  19. Genetic and environmental influences on oxidative damage assessed in elderly Danish twins

    DEFF Research Database (Denmark)

    Broedbaek, Kasper; Ribel-Madsen, Rasmus; Henriksen, Trine

    2011-01-01

    Previous studies have shown an association between oxidative stress and various diseases in humans including cancer, cardiovascular disease, diabetes, and chronic respiratory disease. To what extents this damage is determined by genetic and environmental factors is unknown. In a classical twin...... of oxidative stress were closely correlated (r=0.60-0.84). In conclusion, we demonstrated in a large population of elderly Danish twins that "whole-body" oxidative damage to nucleic acids and lipids is predominantly determined by potentially modifiable nongenetic factors....

  20. Effects of a Brussels sprouts extract on oxidative DNA damage and metabolising enzymes in rat liver

    DEFF Research Database (Denmark)

    Sørensen, Mette; Jensen, B.R.; Poulsen, Henrik E.

    2001-01-01

    and catalase activity was also assessed in the kidneys. In order to examine a possible effect of the Brussels sprouts related to oxidative stress, we measured oxidative DNA damage in terms of 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) and lipid peroxidation in terms of malondialdehyde (MDA) formation...... on MDA levels were found. The present results support the data obtained in several studies that consumption of cruciferous vegetables is capable of inducing various phase II enzyme systems. However, the observed increase in oxidative DNA damage raises the question of whether greatly increased ingestion...

  1. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    Science.gov (United States)

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (Pofficinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  2. Fluorescence studies on radiation oxidative damage to membranes ...

    Indian Academy of Sciences (India)

    Unknown

    genesis including induction of cancer.4,5 The damaging events at the molecular ... old mice as described earlier.14 Thymocytes (1 × 107 cells/ml) were labelled with DCFH- .... toxicity (eds) M W Miller and A E Shamou (New York: Plenum) p.

  3. Oxidative damage and antioxidant defense in thymus of malnourished lactating rats.

    Science.gov (United States)

    Gavia-García, Graciela; González-Martínez, Haydeé; Miliar-García, Ángel; Bonilla-González, Edmundo; Rosas-Trejo, María de Los Ángeles; Königsberg, Mina; Nájera-Medina, Oralia; Luna-López, Armando; González-Torres, María Cristina

    2015-01-01

    Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    International Nuclear Information System (INIS)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A.

    2014-01-01

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting

  5. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  6. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential......Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems...... investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...

  7. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  8. Modulation of oxidative damage by nitroxide free radicals.

    Science.gov (United States)

    Dragutan, Ileana; Mehlhorn, Rolf J

    2007-03-01

    Piperidine nitroxides like 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) are persistent free radicals in non-acidic aqueous solutions and organic solvents that may have value as therapeutic agents in medicine. In biological environments, they undergo mostly reduction to stable hydroxylamines but can also undergo oxidation to reactive oxoammonium compounds. Reactions of the oxoammonium derivatives could have adverse consequences including chemical modification of vital macromolecules and deleterious effects on cell signaling. An examination of their reactivity in aqueous solution has shown that oxoammonium compounds can oxidize almost any organic as well as many inorganic molecules found in biological systems. Many of these reactions appear to be one-electron transfers that reduce the oxoammonium to the corresponding nitroxide species, in contrast to a prevalence of two-electron reductions of oxoammonium in organic solvents. Amino acids, alcohols, aldehydes, phospholipids, hydrogen peroxide, other nitroxides, hydroxylamines, phenols and certain transition metal ions and their complexes are among reductants of oxoammonium, causing conversion of this species to the paramagnetic nitroxide. On the other hand, thiols and oxoammonium yield products that cannot be detected by ESR even under conditions that would oxidize hydroxylamines to nitroxides. These products may include hindered secondary amines, sulfoxamides and sulfonamides. Thiol oxidation products other than disulfides cannot be restored to thiols by common enzymatic reduction pathways. Such products may also play a role in cell signaling events related to oxidative stress. Adverse consequences of the reactions of oxoammonium compounds may partially offset the putative beneficial effects of nitroxides in some therapeutic settings.

  9. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    International Nuclear Information System (INIS)

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-01-01

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain

  10. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    Energy Technology Data Exchange (ETDEWEB)

    Laha, Dipranjan; Pramanik, Arindam [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Laskar, Aparna [CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Jana, Madhurya [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India)

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  11. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Science.gov (United States)

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  12. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, T.P.; Loft, Steffen Huitfeldt; Nyyssonen, K.

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration...... with daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  13. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, Tomi-Pekka; Loft, Steffen; Nyyssönen, Kristiina

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  14. Edaravone attenuates lipopolysaccharide-induced acute respiratory distress syndrome associated early pulmonary fibrosis via amelioration of oxidative stress and transforming growth factor-β1/Smad3 signaling.

    Science.gov (United States)

    Wang, Xida; Lai, Rongde; Su, Xiangfen; Chen, Guibin; Liang, Zijing

    2018-01-01

    Pulmonary fibrosis is responsible for the both short-term and long-term outcomes in patients with acute respiratory distress syndrome (ARDS). There is still no effective cure to improve prognosis. The purpose of this study was to investigate whether edaravone, a free radical scavenger, have anti-fibrosis effects in the rat model of ARDS associated early pulmonary fibrosis by lipopolysaccharide (LPS) administration. Rats were subjected to intravenous injection of LPS, and edaravone was given intraperitoneally after LPS administration daily for 7 consecutive days. LPS treatment rapidly increased lung histopathology abnormalities, coefficient of lung, hydroxyproline and collagen I levels, stimulated myofibroblast differentiation and induced expression of TGF-β1 and activation of TGF-β1/Smad3 signaling as early as day 7 after LPS injection. Moreover, LPS intoxication significantly increased the contents of malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), whereas it dramatically decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities from day 1 after LPS treatment. On the contrary, edaravone treatment ameliorated LPS-induced myofibroblast differentiation and pulmonary fibrosis, simultaneously, and attenuated LPS-stimulated oxidative stress and activation of TGF-β1/Smad3 signaling. Collectively, edaravone may attenuate ARDS associated early pulmonary fibrosis through amelioration of oxidative stress and TGF-β1/Smad3 signaling pathway. Edaravone may be a promising drug candidate for the treatment of ARDS-related pulmonary fibrosis in early period. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Increased systemic oxidatively generated DNA and RNA damage in schizophrenia

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Brødbæk, Kasper; Fink-Jensen, Anders

    2013-01-01

    such as cardiovascular disease, type 2 diabetes and dementia. We determined the urinary excretion of markers of systemic Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine, respectively, in 40 schizophrenia patients and 40 age- and sex...

  16. Three model systems measure oxidation/nitration damage caused ...

    Indian Academy of Sciences (India)

    Unknown

    caused by peroxynitrite ... (OONO–) or its carbon dioxide derivatives cause oxidation/nitration and hence mutation to various body poly- mers e.g. .... The work described in this paper is quite brief due to ex- ... exact way to balance the dose of antioxidants in mixtures ... tralizing conditions the half-life of OONO– is less than.

  17. Moisture damage with magnesium oxide boards in Danish facade structures

    DEFF Research Database (Denmark)

    Rode, Carsten; Bunch-Nielsen, Tommy; Hansen, Kurt Kielsgaard

    2017-01-01

    Magnesium oxide boards have been widely used on facades in Denmark during 2010-2015. However, the magnesium salts absorb humidity from the ambient, and they begin to leak salty water, which is highly corrosive, and leads to moisture and mould problems in wooden members of the structures. Mg...

  18. Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes.

    Science.gov (United States)

    Park, Yong Seok; You, Seung Yeop; Cho, Sungrae; Jeon, Hyuk-Joon; Lee, Sukchan; Cho, Dong-Hyung; Kim, Jae-Sung; Oh, Jeong Su

    2016-09-01

    The maintenance of genomic integrity and stability is essential for the survival of every organism. Unfortunately, DNA is vulnerable to attack by a variety of damaging agents. Oxidative stress is a major cause of DNA damage because reactive oxygen species (ROS) are produced as by-products of normal cellular metabolism. Cells have developed eloquent antioxidant defense systems to protect themselves from oxidative damage along with aerobic metabolism. Here, we show that catalase (CAT) is present in mouse oocytes to protect the genome from oxidative damage during meiotic maturation. CAT was expressed in the nucleus to form unique vesicular structures. However, after nuclear envelope breakdown, CAT was redistributed in the cytoplasm with particular focus at the chromosomes. Inhibition of CAT activity increased endogenous ROS levels, but did not perturb meiotic maturation. In addition, CAT inhibition produced chromosomal defects, including chromosome misalignment and DNA damage. Therefore, our data suggest that CAT is required not only to scavenge ROS, but also to protect DNA from oxidative damage during meiotic maturation in mouse oocytes.

  19. Lycopene Protects the Diabetic Rat Kidney Against Oxidative Stress-mediated Oxidative Damage Induced by Furan

    Directory of Open Access Journals (Sweden)

    Dilek Pandir

    2016-01-01

    Full Text Available Furan is a food and environmental contaminant and a potent carcinogen in animals. Lycopene is one dietary carotenoid found in fruits such as tomato, watermelon and grapefruit. The present study was designed to explore the protective effect of lycopene against furan-induced oxidative damage in streptozotocin (STZ-induced diabetic rat kidney. At the end of the experimental period (28 days, we found that lycopene markedly decreased the malondialdehide (MDA levels in the kidney, urea, uric acid and creatinine levels in the serum of furan-treated rats. The increase of histopathology in the kidney of furan-treated rats were effectively suppressed by lycopene. Furthermore, lycopene markedly restored superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx and glutathione-S-transferase (GST activities in the kidney of furan-treated rats. In conclusion, these results suggested that lycopene could protect the rat kidney against furan-induced injury by improving renal function, attenuating histopathologic changes, reducing MDA production and renewing the activities of antioxidant enzymes.

  20. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage

    Directory of Open Access Journals (Sweden)

    Luna C

    2016-02-01

    Full Text Available Carlos Luna,1,* Matilde Alique,2,* Estefanía Navalmoral,2 Maria-Victoria Noci,3 Lourdes Bohorquez-Magro,2 Julia Carracedo,1 Rafael Ramírez2 1Nephrology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC, Reina Sofía University Hospital, Córdoba, Spain; 2Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain; 3Anesthesia Unit, Reina sofía University Hospital, Córdoba, Spain*These authors contributed equally to this work Abstract: Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects.Keywords: elderly, oxidative stress, microparticles, vascular damage

  1. Sulfotanshinone IIA Sodium Ameliorates Glucose Peritoneal Dialysis Solution-Induced Human Peritoneal Mesothelial Cell Injury via Suppression of ASK1-P38-mediated Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yao Zhou

    2018-05-01

    Full Text Available Background/Aims: Long-term use of high-glucose peritoneal dialysis solution (PDS induces peritoneal mesothelial cell (PMC injury, peritoneal dysfunction, and peritoneal dialysis (PD failure in patients with end-stage renal disease. How to preserve PMCs in PD is a major challenge for nephrologists worldwide. In this study, we aimed to elucidate the efficacy and mechanisms of sulfotanshinone IIA sodium (Tan IIa in ameliorating high-glucose PDS-induced human PMC injury. Methods: The human PMC line HMrSV5 was incubated with 4.25% PDS in vitro to mimic the high-glucose conditions in PD. Cellular viability was measured by Cell Counting Kit 8. Generation of superoxide and reactive oxygen species (ROS was assessed using a Total ROS/Superoxide Detection Kit. Oxidative modification of protein was evaluated by OxyBlot Protein Oxidation Detection Kit. TUNEL (dT-mediated dUTP nick end labeling assay and DAPI (4,6-diamidino-2-phenylindole staining were used to evaluate apoptosis. Western blot analysis was performed to evaluate the efficacy and mechanisms of Tan IIa. Results: Tan IIa protected PMCs against PDS-induced injury as evidenced by alleviating changes in morphology and loss of cell viability. Consistent with their antioxidant properties, N-acetyl-L-cysteine (NAC and Tan IIa suppressed superoxide and ROS production, protein oxidation, and apoptosis elicited by PDS. Apoptosis signal-regulating kinase 1 (ASK1-p38 signaling was activated by PDS. Both Tan IIa and NAC suppressed ASK1 and p38 phosphorylation elicited by PDS. Moreover, genetic downregulation of ASK1 ameliorated cell injury and inhibited the phosphorylation of p38 and activation of caspase 3. Conclusion: Tan IIa protects PMCs against PDS-induced oxidative injury through suppression of ASK1-p38 signaling.

  2. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids

    DEFF Research Database (Denmark)

    Cadet, Jean; Loft, Steffen; Olinski, Ryszard

    2012-01-01

    A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the ...

  3. Chemoprotective Effect of Taurine on Potassium Bromate-Induced DNA Damage, DNA-Protein Cross-Linking and Oxidative Stress in Rat Intestine

    Science.gov (United States)

    Ahmad, Mir Kaisar; Khan, Aijaz Ahmed; Ali, Shaikh Nisar; Mahmood, Riaz

    2015-01-01

    Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. It induces multiple organ toxicity in humans and experimental animals and is a probable human carcinogen. The present study reports the protective effect of dietary antioxidant taurine on KBrO3-induced damage to the rat intestine. Animals were randomly divided into four groups: control, KBrO3 alone, taurine alone and taurine+ KBrO3. Administration of KBrO3 alone led to decrease in the activities of intestinal brush border membrane enzymes while those of antioxidant defence and carbohydrate metabolism were also severely altered. There was increase in DNA damage and DNA-protein cross-linking. Treatment with taurine, prior to administration of KBrO3, resulted in significant attenuation in all these parameters but the administration of taurine alone had no effect. Histological studies supported these biochemical results showing extensive intestinal damage in KBrO3-treated animals and greatly reduced tissue injury in the taurine+ KBrO3 group. These results show that taurine ameliorates bromate induced tissue toxicity and oxidative damage by improving the antioxidant defence, tissue integrity and energy metabolism. Taurine can, therefore, be potentially used as a therapeutic/protective agent against toxicity of KBrO3 and related compounds. PMID:25748174

  4. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Eleutherio Elis CA

    2001-07-01

    Full Text Available Abstract Background Living cells constantly sense and adapt to redox shifts by the induction of genes whose products act to maintain the cellular redox environment. In the eukaryote Saccharomyces cerevisiae, while stationary cells possess a degree of constitutive resistance towards oxidants, treatment of exponential phase cultures with sub-lethal stresses can lead to the transient induction of protection against subsequent lethal oxidant conditions. The sensors of oxidative stress and the corresponding transcription factors that activate gene expression under these conditions have not yet been completely identified. Results We report the role of SOD1, SOD2 and TPS1 genes (which encode the cytoplasmic Cu/Zn-superoxide dismutase, the mitochondrial Mn-isoform and trehalose-6-phosphate synthase, respectively in the development of resistance to oxidative stress. In all experimental conditions, the cultures were divided into two parts, one was immediately submitted to severe stress (namely: exposure to H2O2, heat shock or ethanol stress while the other was initially adapted to 40°C for 60 min. The deficiency in trehalose synthesis did not impair the acquisition of tolerance to H2O2, but this disaccharide played an essential role in tolerance against heat and ethanol stresses. We also verified that the presence of only one Sodp isoform was sufficient to improve cellular resistance to 5 mM H2O2. On the other hand, while the lack of Sod2p caused high cell sensitivity to ethanol and heat shock, the absence of Sod1p seemed to be beneficial to the process of acquisition of tolerance to these adverse conditions. The increase in oxidation-dependent fluorescence of crude extracts of sod1 mutant cells upon incubation at 40°C was approximately 2-fold higher than in sod2 and control strain extracts. Furthermore, in Western blots, we observed that sod mutants showed a different pattern of Hsp104p and Hsp26p expression also different from that in their control

  5. Elevated levels of urinary markers of oxidatively generated DNA and RNA damage in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Poulsen, Henrik Enghusen; Kessing, Lars Vedel

    2015-01-01

    OBJECTIVES: The pathophysiological mechanisms underlying bipolar disorder and its multi-system nature are unclear. Oxidatively generated damage to nucleosides has been demonstrated in metabolic disorders; however, the extent to which this occurs in bipolar disorder in vivo is unknown. We...... investigated oxidatively generated damage to DNA and RNA in patients with bipolar disorder and its relationship with the affective phase compared with healthy control subjects. METHODS: Urinary excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), markers...... of oxidatively generated DNA and RNA damage, respectively, was measured in 37 rapid cycling patients with bipolar disorder and in 40 age- and gender-matched healthy control subjects. Employing a longitudinal design, repeated measurements of both markers were evaluated in various affective phases in patients...

  6. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution

    DEFF Research Database (Denmark)

    Møller, Peter; Loft, Steffen

    2010-01-01

    BACKGROUND: Air pollution is thought to exert health effects through oxidative stress, which causes damage to DNA and lipids. OBJECTIVE: We determined whether levels of oxidatively damaged DNA and lipid peroxidation products in cells or bodily fluids from humans are useful biomarkers...... of biologically effective dose in studies of the health effects of exposure to particulate matter (PM) from combustion processes. DATA SOURCES: We identified publications that reported estimated associations between environmental exposure to PM and oxidative damage to DNA and lipids in PubMed and EMBASE. We also...... identified publications from reference lists and articles cited in the Web of Science. DATA EXTRACTION: For each study, we obtained information on the estimated effect size to calculate the standardized mean difference (unitless) and determined the potential for errors in exposure assessment and analysis...

  7. Treatment with glial derived neurotropic factor (GDNF attenuates oxidative damages of spinal

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-05-01

    Full Text Available Spinal cord injury (SCI is a serious and debilitating issue being suffered by wide population worldwide. Extensive treatment approaches have been tested and being verified for their efficacy. Owing to the nature of central nervous system (CNS, the resident stem cells would be triggered in response to any sort of trauma with nerve factors as their communication signals. Apart from physical injuries, damages due to oxidative stress also need to be addressed while CNS repair mechanism takes place. This study looks at the potential of glial derived nerve factor (GDNF in addressing the SCI in regard to oxidative damages. A total of 60 Wistar rats were clustered into five groups and GDNF at various concentrations was tested in each group. Assessments in terms of oxidative stress parameters were noted and analyzed accordingly. It was noted that GDNF had reduced oxidative damages and increased the levels of anti-oxidants in dose-dependent manner (p < 0.05. Though treatment with 10 mg/mL and 20 mg/mL showed significant changes as compared to control group, these treatment modalities remained insignificant among each other. In conclusion, we demonstrated that GDNF exerted a neuro-protective effect on CNS by inducing anti-oxidants and reducing the levels of oxidative stress in SCI induced rat models.

  8. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    damage signalling in low- and high-grade human gliomas, and analyze the sources of such endogenous genotoxic stress. Based on analyses of human glioblastoma multiforme (GBM) cell lines, normal astrocytes and clinical specimens from grade II astrocytomas (n=41) and grade IV GBM (n=60), we conclude...... that the DDR machinery is constitutively activated in gliomas, as documented by phosphorylated histone H2AX (gammaH2AX), activation of the ATM-Chk2-p53 pathway, 53BP1 foci and other markers. Oxidative DNA damage (8-oxoguanine) was high in some GBM cell lines and many GBM tumors, while it was low in normal...... brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...

  9. Oxidative Damage in Erythrocytes During Cold Storage With Organ Preservation Solution

    OpenAIRE

    MEMMEDOĞLU, Akif B.

    1999-01-01

    It is known that erythrocyte aggregation in renal tissue during preserva-tion is cause of microcirculation defects in the reperfusion period. The aim of our study is to investigate oxidative damage in erythrocytes relative to the time of cold ischemia during organ preservation and relationship between lipid peroxidation and development of these damages. In experiments with a rabbit model, explanted kidneys were exposed to perfusion and 96 hours preservation with Euro-Collins (EC) in the 1...

  10. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Is reproduction costly? No increase of oxidative damage in breeding bank voles.

    Science.gov (United States)

    Ołdakowski, Łukasz; Piotrowska, Zaneta; Chrzaácik, Katarzyna M; Sadowska, Edyta T; Koteja, Paweł; Taylor, Jan R E

    2012-06-01

    According to life-history theory, investment in reproduction is associated with costs, which should appear as decreased survival to the next reproduction or lower future reproductive success. It has been suggested that oxidative stress may be the proximate mechanism of these trade-offs. Despite numerous studies of the defense against reactive oxygen species (ROS) during reproduction, very little is known about the damage caused by ROS to the tissues of wild breeding animals. We measured oxidative damage to lipids and proteins in breeding bank vole (Myodes glareolus) females after rearing one and two litters, and in non-breeding females. We used bank voles from lines selected for high maximum aerobic metabolic rates (which also had high resting metabolic rates and food intake) and non-selected control lines. The oxidative damage was determined in heart, kidneys and skeletal muscles by measuring the concentration of thiobarbituric acid-reactive substances, as markers of lipid peroxidation, and carbonyl groups in proteins, as markers of protein oxidation. Surprisingly, we found that the oxidative damage to lipids in kidneys and muscles was actually lower in breeding than in non-breeding voles, and it did not differ between animals from the selected and control lines. Thus, contrary to our predictions, females that bred suffered lower levels of oxidative stress than those that did not reproduce. Elevated production of antioxidant enzymes and the protective role of sex hormones may explain the results. The results of the present study do not support the hypothesis that oxidative damage to tissues is the proximate mechanism of reproduction costs.

  12. Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.

    Science.gov (United States)

    Fukushima, Arata; Kinugawa, Shintaro; Takada, Shingo; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Tsuda, Masaya; Yokota, Takashi; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-05-15

    Insulin resistance can occur as a consequence of heart failure (HF). Activation of the renin-angiotensin system (RAS) may play a crucial role in this phenomenon. We thus investigated the effect of a direct renin inhibitor, aliskiren, on insulin resistance in HF after myocardial infarction (MI). MI and sham operation were performed in male C57BL/6J mice. The mice were divided into 4 groups and treated with sham-operation (Sham, n=10), sham-operation and aliskiren (Sham+Aliskiren; 10mg/kg/day, n=10), MI (n=11), or MI and aliskiren (MI+Aliskiren, n=11). After 4 weeks, MI mice showed left ventricular dilation and dysfunction, which were not affected by aliskiren. The percent decrease of blood glucose after insulin load was significantly smaller in MI than in Sham (14±5% vs. 36±2%), and was ameliorated in MI+Aliskiren (34±5%) mice. Insulin-stimulated serine-phosphorylation of Akt and glucose transporter 4 translocation were decreased in the skeletal muscle of MI compared to Sham by 57% and 69%, and both changes were ameliorated in the MI+Aliskiren group (91% and 94%). Aliskiren administration in MI mice significantly inhibited plasma renin activity and angiotensin II (Ang II) levels. Moreover, (pro)renin receptor expression and local Ang II production were upregulated in skeletal muscle from MI and were attenuated in MI+Aliskiren mice, in tandem with a decrease in superoxide production and NAD(P)H oxidase activities. In conclusion, aliskiren ameliorated insulin resistance in HF by improving insulin signaling in the skeletal muscle, at least partly by inhibiting systemic and (pro)renin receptor-mediated local RAS activation, and subsequent NAD(P)H oxidase-induced oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Radio-oxidative membrane damage and its possible role as an indicator of radiation exposure

    International Nuclear Information System (INIS)

    Amit Kumar; Pandey, B.N.; Mishra, K.P.

    2004-01-01

    Cellular membranes have been recognized as a sensitive target in the mechanism of ionizing radiation-induced cell killing. In our laboratory, studies have been devoted to investigations on gamma radiation induced oxidative damage to model and cellular membrane damage by employing fluorescence and electron spin resonance (ESR) methods Considerable evidences has accumulated to suggest that radiation induced oxidative damage was related to apoptotic death of a variety of cells in culture. Radiation induced damage involving lipid peroxidation, altered bilayer fluidity, permeability changes and intracellular generated ROS have been evaluated by chemical and physical methods. Modification of damage by structural modulating agents such as cholesterol and antioxidants such as eugenol, ascorbic acid, ellagic acid, triphala have been extensively investigated. Generation of intracellular ROS in radiation stressed normal cell e.g. mouse thymocytes, tumor cells e.g. Ehrlich ascites cells and human cervical cell line were evaluated after exposure from low to moderate doses of α-radiation. Results suggest that modulation of intracellular ROS level may be an important approach to alter radio-cytotoxicity of cells. This presentation would describe results of our study together with an overview of free radical mediated oxidative damage to cellular membrane as an indicator of radiation exposure. (author)

  14. Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose

    Science.gov (United States)

    Zhu, Shu Yun; Dong, Ying; Tu, Jie; Zhou, Yue; Zhou, Xing Hua; Xu, Bin

    2014-01-01

    Background: Silybum marianum has been used as herbal medicine for the treatment of liver disease, liver cirrhosis, and to prevent liver cancer in Europe and Asia since ancient times. Silybum marianum oil (SMO), a by-product of silymarin production, is rich in essential fatty acids, phospholipids, sterols, and vitamin E. However, it has not been very good development and use. Objective: In the present study, we used olive oil as a control to investigate the antioxidant and anti-aging effect of SMO in D-galactose (D-gal)-induced aging mice. Materials and Methods: D-gal was injected intraperitoneally (500 mg/kg body weight daily) for 7 weeks while SMO was simultaneously administered orally. The triglycerides (TRIG) and cholesterol (CHOL) levels were estimated in the serum. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), monoamine oxidase (MAO), malondialdehyde (MDA), caspase-3, and Bcl-2 were determined in the liver and brain. The activities of Na+-K+-adenosine triphosphatase (ATPase), Ca2+-Mg2+-ATPase, membrane potential (ΔΨm), and membrane fluidity of the liver mitochondrial were estimated. Results: SMO decreased levels of TRIG and CHOL in aging mice. SMO administration elevated the activities of SOD, GSH-Px, and T-AOC, which are suppressed by aging. The levels of MAO and MDA in the liver and brain were reduced by SMO administration in aging mice. Enzyme linked immunosorbent assay showed that SMO significantly decreased the concentration of caspase-3 and improved the activity of Bcl-2 in the liver and brain of aging mice. Furthermore, SMO significantly attenuated the D-gal induced liver mitochondrial dysfunction by improving the activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, membrane potential (ΔΨm), and membrane fluidity. Conclusion: These results indicate that SMO effectively attenuated oxidative damage and improved apoptosis related factors as well as liver mitochondrial dysfunction in aging mice. PMID:24914315

  15. Urea-induced oxidative damage in Elodea densa leaves.

    Science.gov (United States)

    Maleva, Maria; Borisova, Galina; Chukina, Nadezda; Prasad, M N V

    2015-09-01

    Urea being a fertilizer is expected to be less toxic to plants. However, it was found that urea at 100 mg L(-1) caused the oxidative stress in Elodea leaves due to the formation of reactive oxygen species (ROS) and lipid peroxidation that are known to stimulate antioxidant pathway. Urea at a concentration of 500 and 1000 mg L(-1) decreased low-molecular-weight antioxidants. In this case, the antioxidant status of plants was supported by the activity of antioxidant enzymes such as superoxide dismutase and guaiacol peroxidase. A significant increase in the soluble proteins and -SH groups was observed with high concentrations of urea (30-60 % of control). Thus, the increased activity of antioxidant enzymes, low-molecular-weight antioxidants, and induced soluble protein thiols are implicated in plant resistance to oxidative stress imposed by urea. We found that guaiacol peroxidase plays an important role in the removal of the peroxide in Elodea leaves exposed to 1000 mg L(-1)of urea.

  16. Celiac Disease, Inflammation and Oxidative Damage: A Nutrigenetic Approach

    Directory of Open Access Journals (Sweden)

    Letizia Saturni

    2012-03-01

    Full Text Available Celiac disease (CD, a common heritable chronic inflammatory condition of the small intestine caused by permanent intolerance to gluten/gliadin (prolamin, is characterized by a complex interplay between genetic and environmental factors. Developments in proteomics have provided an important contribution to the understanding of the biochemical and immunological aspects of the disease and the mechanisms involved in toxicity of prolamins. It has been demonstrated that some gliadin peptides resistant to complete proteolytic digestion may directly affect intestinal cell structure and functions by modulating gene expression and oxidative stress. In recent years, the creation of the two research fields Nutrigenomics and Nutrigenetics, has enabled the elucidation of some interactions between diet, nutrients and genes. Various dietary components including long chain ω-3 fatty acids, plant flavonoids, and carotenoids have been demonstrated to modulate oxidative stress, gene expression and production of inflammatory mediators. Therefore their adoption could preserve intestinal barrier integrity, play a protective role against toxicity of gliadin peptides and have a role in nutritional therapy of celiac disease.

  17. Oxidative Damage to RPA Limits the Nucleotide Excision Repair Capacity of Human Cells.

    Science.gov (United States)

    Guven, Melisa; Brem, Reto; Macpherson, Peter; Peacock, Matthew; Karran, Peter

    2015-11-01

    Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.

  18. Epiphytes modulate Posidonia oceanica photosynthetic production, energetic balance, antioxidant mechanisms and oxidative damage

    Directory of Open Access Journals (Sweden)

    Monya Mendes Costa

    2015-12-01

    Full Text Available Epiphytes impose physical barriers to light penetration into seagrass leaves causing shading, which may decrease the production of oxygen reactive species (ROS, but also constitute a physical aggression that may trigger the production of ROS, leading to oxidative damage. Here we investigate the effects of epiphytes on Posidonia oceanica under both interactive perspectives, light attenuation and oxidative stress. Specifically the role of epiphytes in net photosynthesis, chlorophyll a and b, photoprotection (Violaxanthin+Anteraxanthin+Zeaxanthin cycle, soluble sugar and starch contents, enzymatic (ascorbate peroxidase (APX and dehydroascorbate reductase (DHAR and global (trolox equivalent antioxidant capacity (TEAC and oxygen radical antioxidant capacity (ORAC antioxidant responses, phenolics and oxidative damage (malondialdehyde are tested. Leaves with epiphytes showed higher chlorophyll b and lower content in VAZ cycle carotenoids. Epiphyte shading was the probable reason for the lower VAZ de-epoxidation-ratio of leaves with epiphytes. In spite of being shaded, leaves with epiphytes showed higher antioxidant levels, indicating that epiphytes trigger the production of ROS. Both ORAC and TEAC and also APX and DHAR activities were higher in leaves with epiphytes, indicating that this response was related with its presence. Malondialdehyde concentrations also suggest oxidative damage caused by epiphytes. We conclude that the epiphyte load causes oxidative stress in P. oceanica and the mechanisms to scavenge ROS were not completely effective to avoid cell damage.

  19. Seasonal variability of oxidative stress markers in city bus drivers. Part I. Oxidative damage to DNA.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2008-07-03

    We investigated the seasonal variability of 8-oxodeoxyguanosine (8-oxodG), a marker of oxidative damage to DNA, in urine of 50 bus drivers and 50 controls in Prague, Czech Republic, in three seasons with different levels of air pollution: winter 2005, summer 2006 and winter 2006. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter (PM), and volatile organic compounds (VOC)) was monitored by personal and/or stationary monitors. For the analysis of 8-oxodG levels, the ELISA technique was used. Bus drivers were exposed to significantly higher levels of c-PAHs in winter 2006, while in the other two seasons the exposure of controls was unexpectedly higher than that of bus drivers. We did not see any difference in VOC exposure between both groups in summer 2006 and in winter 2006; VOC were not monitored in winter 2005. 8-OxodG levels were higher in bus drivers than in controls in all seasons. The median levels of 8-oxodG (nmol/mmol creatinine) in bus drivers vs. controls were as follows: winter 2005: 7.79 vs. 6.12 (p=0.01); summer 2006: 6.91 vs. 5.11 (p<0.01); winter 2006: 5.73 vs. 3.94 (p<0.001). Multivariate logistic regression analysis identified PM2.5 and PM10 levels, measured by stationary monitors during a 3-day period before urine collection, as the only factors significantly affecting 8-oxodG levels, while the levels of c-PAHs had no significant influence.

  20. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Aparna Areti

    2014-01-01

    Full Text Available Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy.

  1. Zinc Ameliorate Oxidative Stress and Hormonal Disturbance Induced by Methomyl, Abamectin, and Their Mixture in Male Rats

    Directory of Open Access Journals (Sweden)

    Sameeh A. Mansour

    2017-12-01

    Full Text Available Exposure to mixtures of toxicants (e.g., pesticides is common in real life and a subject of current concern. The present investigation was undertaken to assess some toxicological effects in male rats following exposure to methomyl (MET, abamectin (ABM, and their combination (MET+ABM, and to evaluate the ameliorative effect of zinc co-administration. Three groups of rats were designated for MET, ABM, and the mixture treatments. Three other groups were designated for zinc in conjunction with the pesticides. Additionally, one group received water only (control, and the other represented a positive zinc treatment. The obtained results revealed that MET was acutely more toxic than ABM. The tested pesticides induced significant elevation in lipid peroxidation and catalase levels, while declined the levels of the other tested parameters e.g., Superoxide dismutase (SOD, Glutathione-S-transferase (GST, Glutathione peroxidase (GPx, Glutathione reductase (GR, Cytochrome P450 (CYP450, testosterone, and thyroxine. Biochemical alterations induced by the mixture were greater than those recorded for each of the individual insecticides. The joint action analysis, based on the obtained biochemical data, revealed the dominance of antagonistic action among MET and ABM. Zinc supplementation achieved noticeable ameliorative effects. It was concluded that zinc may act as a powerful antioxidant, especially in individuals who are occupationally exposed daily to low doses of such pesticides.

  2. Dietary supplementation with fruit polyphenolics ameliorates age-related deficits in behavior and neuronal markers of inflammation and oxidative stress.

    Science.gov (United States)

    Shukitt-Hale, Barbara; Galli, Rachel L; Meterko, Vanessa; Carey, Amanda; Bielinski, Donna F; McGhie, Tony; Joseph, James A

    2005-03-01

    Dietary supplementation with fruit or vegetable extracts can ameliorate age-related declines in measures of learning, memory, motor performance, and neuronal signal transduction in a rat model. To date, blueberries have proved most effective at improving measures of motor performance, spatial learning and memory, and neuronal functioning in old rats. In an effort to further characterize the bioactive properties of fruits rich in color and correspondingly high in anthocyanins and other polyphenolics, 19-month-old male Fischer rats were fed a well-balanced control diet, or the diet supplemented with 2% extract from either blueberry, cranberry, blackcurrant, or Boysenberry fruit for eight weeks before testing began. The blackcurrant and cranberry diets enhanced neuronal signal transduction as measured by striatal dopamine release, while the blueberry and cranberry diets were effective in ameliorating deficits in motor performance and hippocampal HSP70 neuroprotection; these changes in HSP70 were positively correlated with performance on the inclined screen. It appears that the polyphenols in blueberries and cranberries have the ability to improve muscle tone, strength and balance in aging rats, whereas polyphenols in blueberries, cranberries and blackcurrants have the ability to enhance neuronal functioning and restore the brain's ability to generate a neuroprotective response to stress.

  3. Prolonged fasting does not increase oxidative damage or inflammation in postweaned northern elephant seal pups.

    Science.gov (United States)

    Vázquez-Medina, José Pablo; Crocker, Daniel E; Forman, Henry Jay; Ortiz, Rudy M

    2010-07-15

    Elephant seals are naturally adapted to survive up to three months of absolute food and water deprivation (fasting). Prolonged food deprivation in terrestrial mammals increases reactive oxygen species (ROS) production, oxidative damage and inflammation that can be induced by an increase in the renin-angiotensin system (RAS). To test the hypothesis that prolonged fasting in elephant seals is not associated with increased oxidative stress or inflammation, blood samples and muscle biopsies were collected from early (2-3 weeks post-weaning) and late (7-8 weeks post-weaning) fasted seals. Plasma levels of oxidative damage, inflammatory markers and plasma renin activity (PRA), along with muscle levels of lipid and protein oxidation, were compared between early and late fasting periods. Protein expression of angiotensin receptor 1 (AT(1)), pro-oxidant (Nox4) and antioxidant enzymes (CuZn- and Mn-superoxide dismutases, glutathione peroxidase and catalase) was analyzed in muscle. Fasting induced a 2.5-fold increase in PRA, a 50% increase in AT(1), a twofold increase in Nox4 and a 70% increase in NADPH oxidase activity. By contrast, neither tissue nor systemic indices of oxidative damage or inflammation increased with fasting. Furthermore, muscle antioxidant enzymes increased 40-60% with fasting in parallel with an increase in muscle and red blood cell antioxidant enzyme activities. These data suggest that, despite the observed increases in RAS and Nox4, an increase in antioxidant enzymes appears to be sufficient to suppress systemic and tissue indices of oxidative damage and inflammation in seals that have fasted for a prolonged period. The present study highlights the importance of antioxidant capacity in mammals during chronic periods of stress to help avoid deleterious systemic consequences.

  4. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation.

    Science.gov (United States)

    Afrin, Rejina; Arumugam, Somasundaram; Rahman, Azizur; Wahed, Mir Imam Ibne; Karuppagounder, Vengadeshprabhu; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Suzuki, Kenji; Yoneyama, Hiroyuki; Ueno, Kazuyuki; Watanabe, Kenichi

    2017-03-01

    Curcumin, a phenolic compound, has a wide spectrum of therapeutic effects such as antitumor, anti-inflammatory, anti-cancer and so on. The study aimed to investigate the underlying mechanisms of curcumin to protect liver damage and progression of non-alcoholic steatohepatitis (NASH) in a novel NASH-hepatocellular carcinoma (HCC) mouse model. To induce this model neonatal C57BL/6J male mice were exposed to low-dose streptozotocin and were fed a high-fat diet (HFD) from the age of 4weeks to 14weeks. Curcumin was given at 100mg/kg dose daily by oral gavage started at the age of 10weeks and continued until 14weeks along with HFD feeding. We found that curcumin improved the histopathological changes of the NASH liver via reducing the level of steatosis, fibrosis associated with decreasing serum aminotransferases. In addition, curcumin treatment markedly reduced the hepatic protein expression of oxidative stress, pro-inflammatory cytokines, and chemokines including interferon (IFN) γ, interleukin-1β and IFNγ-inducible protein 10, in NASH mice. Furthermore, curcumin treatment significantly reduced the cytoplasmic translocation of high mobility group box 1 (HMGB1) and the protein expression of toll like receptor 4. Nuclear translocation of nuclear factor kappa B (NF-κB) was also dramatically attenuated by the curcumin in NASH liver. Curcumin treatment effectively reduced the progression of NASH to HCC by suppressing the protein expression of glypican-3, vascular endothelial growth factor, and prothrombin in the NASH liver. Our data suggest that curcumin reduces the progression of NASH and liver damage, which may act via inhibiting HMGB1-NF-κB translocation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Oxidative DNA damage in bone marrow cells of patients with low-risk myelodysplastic syndrome

    Czech Academy of Sciences Publication Activity Database

    Novotná, Božena; Bagryantseva, Yana; Šišková, M.; Neuwirtová, R.

    2009-01-01

    Roč. 33, č. 2 (2009), s. 340-343 ISSN 0145-2126 R&D Projects: GA MZd NR8265 Institutional research plan: CEZ:AV0Z50390512 Keywords : Myelodysplastic syndrome * Refractory anemia * Oxidative DNA damage Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.358, year: 2009

  6. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    Czech Academy of Sciences Publication Activity Database

    Gillard, N.; Goffinont, S.; Buré, C.; Davídková, Marie; Maurizot, J. C.; Cadene, M.; Spotheim-Maurizot, M.

    2007-01-01

    Roč. 403, part 3 (2007), s. 463-472 ISSN 0264-6021 R&D Projects: GA MŠk 1P05OC085 Institutional research plan: CEZ:AV0Z10480505 Keywords : ionizing radiation * oxidative damage * DNA binding domain * lac repressor Subject RIV: CE - Biochemistry Impact factor: 4.009, year: 2007

  7. Base excision repair of oxidative DNA damage and association with cancer and aging

    DEFF Research Database (Denmark)

    Maynard, Scott; Schurman, Shepherd H; Harboe, Charlotte

    2009-01-01

    Aging has been associated with damage accumulation in the genome and with increased cancer incidence. Reactive oxygen species (ROS) are produced from endogenous sources, most notably the oxidative metabolism in the mitochondria, and from exogenous sources, such as ionizing radiation. ROS attack DNA...

  8. [Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases].

    Science.gov (United States)

    Lucio, Lorena M C; Braz, Mariana G; do Nascimento Junior, Paulo; Braz, José Reinaldo C; Braz, Leandro G

    The waste anesthetic gases (WAGs) present in the ambient air of operating rooms (OR), are associated with various occupational hazards. This paper intends to discuss occupational exposure to WAGs and its impact on exposed professionals, with emphasis on genetic damage and oxidative stress. Despite the emergence of safer inhaled anesthetics, occupational exposure to WAGs remains a current concern. Factors related to anesthetic techniques and anesthesia workstations, in addition to the absence of a scavenging system in the OR, contribute to anesthetic pollution. In order to minimize the health risks of exposed professionals, several countries have recommended legislation with maximum exposure limits. However, developing countries still require measurement of WAGs and regulation for occupational exposure to WAGs. WAGs are capable of inducing damage to the genetic material, such as DNA damage assessed using the comet assay and increased frequency of micronucleus in professionals with long-term exposure. Oxidative stress is also associated with WAGs exposure, as it induces lipid peroxidation, oxidative damage in DNA, and impairment of the antioxidant defense system in exposed professionals. The occupational hazards related to WAGs including genotoxicity, mutagenicity and oxidative stress, stand as a public health issue and must be acknowledged by exposed personnel and responsible authorities, especially in developing countries. Thus, it is urgent to stablish maximum safe limits of concentration of WAGs in ORs and educational practices and protocols for exposed professionals. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Coordinating repair of oxidative DNA damage with transcription and replication

    International Nuclear Information System (INIS)

    Cooper, P.K.

    2003-01-01

    Transcription-coupled repair (TCR) preferentially removes DNA lesions from template strands of active genes. Defects in TCR, which acts both on lesions removed by nucleotide excision repair (NER) and on oxidative lesions removed by base excision repair (BER), underlie the fatal developmental disorder Cockayne syndrome. Although its detailed mechanism remains unknown, TCR involves recognition of a stalled RNA polymerase (RNAP), removal or remodeling of RNAP to allow access to the lesion, and recruitment of repair enzymes. At a minimum, these early steps require a non-enzymatic function of the multifunctional repair protein XPG, the CSB protein with ATP-dependent chromatin remodeling activity, and the TFIIH complex (including the XPB and XPD helicases) that is also required for basal transcription initiation and NER. XPG exists in the cell in a complex with TFIIH, and in vitro evidence has suggested that it interacts with CSB. To address the mechanism of TCR, we are characterizing protein-DNA and protein-protein interactions of XPG. We show that XPG preferentially binds to double-stranded DNA containing bubbles resembling in size the unpaired regions associated with transcription. Two distinct domains of XPG are required for the observed strong binding specificity and stability. XPG both interacts directly with CSB and synergistically binds with it to bubble DNA, and it strongly stimulates the bubble DNA-dependent ATPase activity of CSB. Significantly for TCR, XPG also interacts directly with RNAP II, binds both the protein and nucleic acid components (the R-loop) of a stalled RNA polymerase, and forms a ternary complex with CSB and the stalled RNAP. These results are consistent with the model that XPG and CSB jointly interact with the DNA/chromatin structure in the vicinity of the stalled transcriptional apparatus and with the transcriptional machinery itself to remodel the chromatin and either move or remodel the blocked RNA polymerase to expose the lesion

  10. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    Science.gov (United States)

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.

  11. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    Aging is associated with oxidative stress-generated damage to DNA and this could be related to metabolic disturbances. This study investigated the association between levels of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs) and metabolic risk factors in 1,019 subjects, aged...... 18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency......, cholesterol and glycosylated hemoglobin (HbA1c). In the group of men, there were significant positive associations between alcohol intake, HbA1c and FPG-sensitive sites in multivariate analysis. The levels of metabolic risk factors were positively associated with age, yet only few subjects fulfilled all...

  12. Structural influences on the laser damage resistance of optical oxide coatings for use at 1064 nm

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, E; Lauth, H; Meyer, J; Weissbrodt, P [Zeiss Jena GmbH, Jena (Germany, F.R.); Wolf, R; Zscherpe, G [Ingenieurhochschule Mittweida (Germany, F.R.); Heyer, H [Sektion Physik, Friedrich-Schiller-Univ. Jena (Germany, F.R.)

    1990-11-01

    Optical coatings of titania (TiO{sub 2}) and tantala (Ta{sub 2}O{sub 5}) prepared by reactive r.f. diode and d.c. plasmatron sputtering were investigated for the influence of structural properties on the 1064 nm laser damage resistance. Using various methods of characterizing the compositional, crystallographic, microstructural and optical properties, it was found that the damage thresholds are directly related to the content of oxygen in the films in excess of the stoichiometric values, whereas grain sizes and refractive indices show no systematic influences valid for both oxide materials. The highest oxygen-to-metal atomic ratios and thus the highest damage threshold were achieved by the use of r.f diode sputtering. X-ray photospectroscopy investigations of tantala coatings with different oxygen-to-tantalum atomic ratios up to 2.75 revealed for both constituents of the oxide only binding energies representative for tantalum pentoxide. (orig.).

  13. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    International Nuclear Information System (INIS)

    Lundby, Carsten; Pilegaard, Henriette; Hall, Gerrit van; Sander, Mikael; Calbet, Jose; Loft, Steffen; Moeller, Peter

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming tissue. Muscle biopsies from seven healthy humans were obtained at sea level and after 2 and 8 weeks of hypoxia at 4100 m.a.s.l. We found increased levels of strand breaks and endonuclease III-sensitive sites after 2 weeks of hypoxia, whereas oxidative DNA damage detected by formamidopyrimidine DNA glycosylase (FPG) protein was unaltered. The expression of 8-oxoguanine DNA glycosylase 1 (OGG1), determined by quantitative RT-PCR of mRNA levels did not significantly change during high-altitude hypoxia, although the data could not exclude a minor upregulation. The expression of heme oxygenase-1 (HO-1) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite increased generation of oxidative DNA damage

  14. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    Science.gov (United States)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  15. The effect of obstructive sleep apnea on DNA damage and oxidative stress.

    Science.gov (United States)

    Kang, Il Gyu; Jung, Joo Hyun; Kim, Seon Tae

    2013-06-01

    Obstructive sleep apnea syndrome (OSAS) is associated with repeated hypoxia and re-oxygenation. This characteristic of OSAS may cause oxidative stress and DNA damage. However, the link of OSAS with oxidative stress and DNA damage is still controversial. In the current study, we investigated whether OSAS causes DNA damage using alkaline single-cell gel electrophoresis (comet assay) and measuring oxidative stress by monitoring serum malondialdehyde (MDA) levels. From March 2009 to August 2010, 51 patients who underwent polysomnography (PSG) during the night were enrolled in this study. We obtained serum from the patients at 6 AM. DNA damage and oxidative stress were evaluated using a comet assay and measuring serum MDA, respectively. We divided the patients into two groups according to the existence of comets appearing in the comet assay. Group 1 included 44 patients with negative assay results and group 2 consisted of seven patients with positive comet assay findings. We compared the age, gender proportion, PSG data (respiratory disturbance index [RDI], lowest O2 saturation level, and arousal index [AI]), time of disease onset, smoking habits, and serum MDA levels between the two groups. The average age and gender proportion of the two groups were not statistically different (P>0.05). The average of RDI for group 1 was 30.4±18.4 and 8.0±7.7 (P0.05). No relationship between positive comet assay results and OSAS severity was identified. Results of the current study showed that OSAS was not associated with DNA damage as measured by comet assays or oxidative stress according to serum MDA levels.

  16. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts.

    Science.gov (United States)

    Xie, Xiaoxian; Wang, Liangliang; Zhao, Binggong; Chen, Yangyang; Li, Jiaqi

    2017-05-15

    Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Genetic damage caused by methyl-parathion in mouse spermatozoa is related to oxidative stress

    International Nuclear Information System (INIS)

    Pina-Guzman, B.; Solis-Heredia, M.J.; Rojas-Garcia, A.E.; Uriostegui-Acosta, M.; Quintanilla-Vega, B.

    2006-01-01

    Organophosphorous (OP) pesticides are considered genotoxic mainly to somatic cells, but results are not conclusive. Few studies have reported OP alterations on sperm chromatin and DNA, and oxidative stress has been related to their toxicity. Sperm cells are very sensitive to oxidative damage which has been associated with reproductive dysfunctions. We evaluated the effects of methyl-parathion (Me-Pa; a widely used OP) on sperm DNA, exploring the sensitive stage(s) of spermatogenesis and the relationship with oxidative stress. Male mice (10-12-weeks old) were administered Me-Pa (3-20 mg/kg bw/i.p.) and euthanized at 7- or 28-days post-treatment. Mature spermatozoa were obtained and evaluated for chromatin structure through SCSA (Sperm Chromatin Structure Assay; DNA Fragmentation Index parameters: Mean DFI and DFI%) and chromomycin-A 3 (CMA 3 )-staining, for DNA damage through in situ-nick translation (NT-positive) and for oxidative stress through lipid peroxidation (LPO; malondialdehyde production). At 7-days post-treatment (mature spermatozoa when Me-Pa exposure), dose-dependent alterations in chromatin structure (Mean DFI and CMA 3 -staining) were observed, as well as increased DNA damage, from 2-5-fold in DFI% and NT-positive cells. Chromatin alterations and DNA damage were also observed at 28-days post-treatment (cells at meiosis at the time of exposure); suggesting that the damage induced in spermatocytes was not repaired. Positive correlations were observed between LPO and sperm DNA-related parameters. These data suggest that oxidative stress is related to Me-Pa alterations on sperm DNA integrity and cells at meiosis (28-days post-treatment) and epididymal maturation (7-days post-treatment) are Me-Pa targets. These findings suggest a potential risk of Me-Pa to the offspring after transmission

  18. Assessing and ameliorating the influence of the electron beam on carbon nanotube oxidation in environmental transmission electron microscopy

    International Nuclear Information System (INIS)

    Koh, Ai Leen; Sinclair, Robert

    2017-01-01

    In this work, we examine how the imaging electron beam can induce damage in carbon nanotubes (CNTs) at varying oxygen gas pressures and electron dose rates using environmental transmission electron microscopy (ETEM). Our studies show that there is a threshold cumulative electron dose which brings about damage in CNTs in oxygen – through removal of their graphitic walls – which is dependent on O_2 pressure, with a 4–5 fold decrease in total electron dose per decade increase at a lower pressure range (10"−"6 to 10"−"5 mbar) and approximately 1.3 –fold decrease per decade increase at a higher pressure range (10"−"3 to 10"0 mbar). However, at a given pressure, damage in CNTs was found to occur even at the lowest dose rate utilized, suggesting the absence of a lower limit for the latter parameter. This study provides guidelines on the cumulative dose required to damage nanotubes in the 10"−"7 mbar to 10"0 mbar pressure regimes, and discusses the role of electron dose rate and total electron dose on beam-induced CNT degradation experiments. - Highlights: • The electron beam ionizes gas molecules in ETEM and affects experimental outcomes. • Beam-induced damage in CNTs occurs at varying O_2 pressures and electron dose rates. • There is a threshold cumulative dose to damage CNTs which depends on O_2 pressure. • At a given pressure, CNT damage occurs even at the electron dose rate utilized.

  19. Metabolic Imbalance Associated with Methylation Dysregulation and Oxidative Damage in Children with Autism

    Science.gov (United States)

    Melnyk, Stepan; Fuchs, George J.; Schulz, Eldon; Lopez, Maya; Kahler, Stephen G.; Fussell, Jill J.; Bellando, Jayne; Pavliv, Oleksandra; Rose, Shannon; Seidel, Lisa; Gaylor, David W.

    2012-01-01

    Oxidative stress and abnormal DNA methylation have been implicated in the pathophysiology of autism. We investigated the dynamics of an integrated metabolic pathway essential for cellular antioxidant and methylation capacity in 68 children with autism, 54 age-matched control children and 40 unaffected siblings. The metabolic profile of unaffected siblings differed significantly from case siblings but not from controls. Oxidative protein/DNA damage and DNA hypomethylation (epigenetic alteration) were found in autistic children but not paired siblings or controls. These data indicate that the deficit in antioxidant and methylation capacity is specific for autism and may promote cellular damage and altered epigenetic gene expression. Further, these results suggest a plausible mechanism by which pro-oxidant environmental stressors may modulate genetic predisposition to autism. PMID:21519954

  20. Association between Urinary Excretion of Cortisol and Markers of Oxidatively Damaged DNA and RNA in Humans

    DEFF Research Database (Denmark)

    Joergensen, Anders; Broedbaek, Kasper; Weimann, Allan

    2011-01-01

    Chronic psychological stress is associated with accelerated aging, but the underlying biological mechanisms are not known. Prolonged elevations of the stress hormone cortisol is suspected to play a critical role. Through its actions, cortisol may potentially induce oxidatively generated damage...... to cellular constituents such as DNA and RNA, a phenomenon which has been implicated in aging processes. We investigated the relationship between 24 h excretion of urinary cortisol and markers of oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine......, in a sample of 220 elderly men and women (age 65 - 83 years). We found a robust association between the excretion of cortisol and the oxidation markers (R(2)¿=¿0.15, P...

  1. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage

    Directory of Open Access Journals (Sweden)

    Jiaxiang Shao

    2016-03-01

    Full Text Available Abstract SIRT6 is a NAD+-dependent histone deacetylase and has been implicated in the regulation of genomic stability, DNA repair, metabolic homeostasis and several diseases. The effect of SIRT6 in cerebral ischemia and oxygen/glucose deprivation (OGD has been reported, however the role of SIRT6 in oxidative stress damage remains unclear. Here we used SH-SY5Y neuronal cells and found that overexpression of SIRT6 led to decreased cell viability and increased necrotic cell death and reactive oxygen species (ROS production under oxidative stress. Mechanistic study revealed that SIRT6 induced autophagy via attenuation of AKT signaling and treatment with autophagy inhibitor 3-MA or knockdown of autophagy-related protein Atg5 rescued H2O2-induced neuronal injury. Conversely, SIRT6 inhibition suppressed autophagy and reduced oxidative stress-induced neuronal damage. These results suggest that SIRT6 might be a potential therapeutic target for neuroprotection.

  2. Aqueous Extract from Hibiscus sabdariffa Linnaeus Ameliorate Diabetic Nephropathy via Regulating Oxidative Status and Akt/Bad/14-3-3γ in an Experimental Animal Model

    Directory of Open Access Journals (Sweden)

    Shou-Chieh Wang

    2011-01-01

    Full Text Available Several studies point out that oxidative stress maybe a major culprit in diabetic nephropathy. Aqueous extract of Hibiscus sabdariffa L. (HSE has been demonstrated as having beneficial effects on anti-oxidation and lipid-lowering in experimental studies. This study aimed at investigating the effects of Hibiscus sabdariffa L. on diabetic nephropathy in streptozotocin induced type 1 diabetic rats. Our results show that HSE is capable of reducing lipid peroxidation, increasing catalase and glutathione activities significantly in diabetic kidney, and decreasing the plasma levels of triglyceride, low-density lipoprotein (LDL and increasing high-density lipoprotein (HDL value. In histological examination, HSE improves hyperglycemia-caused osmotic diuresis in renal proximal convoluted tubules (defined as hydropic change in diabetic rats. The study also reveals that up-regulation of Akt/Bad/14-3-3γ and NF-κB-mediated transcription might be involved. In conclusion, our results show that HSE possesses the potential effects to ameliorate diabetic nephropathy via improving oxidative status and regulating Akt/Bad/14-3-3γ signaling.

  3. Quantification of in vivo oxidative damage in Caenorhabditis elegans during aging by endogenous F3-isoprostane measurement

    NARCIS (Netherlands)

    Labuschagne, C.F.; Stigter, E.C.; Hendriks, M.M.; Berger, R.; Rokach, J.; Korswagen, H.C.; Brenkman, A.B.

    2013-01-01

    Oxidative damage is thought to be a major cause in development of pathologies and aging. However, quantification of oxidative damage is methodologically difficult. Here, we present a robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach for accurate, sensitive, and linear in vivo

  4. Bisphenol a promotes cell survival following oxidative DNA damage in mouse fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie R Gassman

    Full Text Available Bisphenol A (BPA is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3 or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.

  5. Evaluation of oxidative DNA damage promoted by storage in sperm from sex-reversed rainbow trout.

    Science.gov (United States)

    Pérez-Cerezales, S; Martínez-Páramo, S; Cabrita, E; Martínez-Pastor, F; de Paz, P; Herráez, M P

    2009-03-01

    Short-term storage and cryopreservation of sperm are two common procedures in aquaculture, used for routine practices in artificial insemination reproduction and gene banking, respectively. Nevertheless, both procedures cause injuries affecting sperm motility, viability, cell structure and DNA stability, which diminish reproductive success. DNA modification is considered extremely important, especially when sperm storage is carried out with gene banking purposes. DNA damage caused by sperm storage is not well characterized and previous studies have reported simple and double strand breaks that have been attributed to oxidative events promoted by the generation of free radicals during storage. The objective of this study was to reveal DNA fragmentation and to explore the presence of oxidized bases that could be produced by oxidative events during short-term storage and cryopreservation in sex-reversed rainbow trout (Oncorhynchus mykiss) spermatozoa. Sperm from six males was analyzed separately. Different aliquots of the samples were stored 2h (fresh) or 5 days at 4 degrees C or were cryopreserved. Then spermatozoa were analyzed using the Comet assay, as well as combining this method with digestion with two endonucleases from Escherichia coli (Endonuclease III, that cut in oxidized cytosines, and FPG, cutting in oxidized guanosines). Both storage procedures yielded DNA fragmentation, but only short-term storage oxidative events were clearly detected, showing that oxidative processes affect guanosines rather than cytosines. Cryopreservation increases DNA fragmentation but the presence of oxidized bases was not noticed, suggesting that mechanisms other than oxidative stress could be involved in DNA fragmentation promoted by freezing.

  6. Protective Effect of Nitric Oxide (NO against Oxidative Damage in Larix gmelinii Seedlings under Ultraviolet-B Irradiation

    Directory of Open Access Journals (Sweden)

    Haiqing Hu

    2016-10-01

    Full Text Available Ultraviolet-B (UV-B stress appears to be more striking than other research works because of the thin ozone layer. The protective influence of an exogenous nitric oxide donor and sodium nitroprusside (SNP on the growth properties of Larix gmelinii seedlings was investigated under ultraviolet-B radiation conditions. The results indicated that 0.1 mM SNP could effectively alleviate the damage caused by ultraviolet-B radiation, and improved the seedling growth properties, the relative water content, and photosynthetic pigment content in leaves. Additionally, the photosynthetic capacity and antioxidant enzyme activity were increased during the exposure. On the contrary, the damage caused by active oxygen was decreased in SNP-treated seedling leaves. The damage caused by ultraviolet-B radiation was slightly reduced after treating with 0.01 mM SNP. Nevertheless, treatment with 0.5 mM SNP had a negative effect under ultraviolet-B radiation. Furthermore, supplementing NO (nitric oxide improved the photosynthetic capacity and antioxidant enzyme activity and alleviated the damage of caused by active oxygen. The best effective concentration of SNP was 0.1 mM. Therefore, a suitable amount of exogenous NO can protect the Larix gmelinii seedlings and increase their tolerance to ultraviolet-B radiation.

  7. Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Filippo Cellai

    2017-04-01

    Full Text Available Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosylpyrimido[1,2-α]purin-10(3H-one deoxyguanosine (M1dG and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe3O4-nanoparticles (NPs versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF of 186 kHz using 32P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 μg/mL of Fe3O4-NPs. Significant dose–response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death.

  8. Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Cells.

    Science.gov (United States)

    Cellai, Filippo; Munnia, Armelle; Viti, Jessica; Doumett, Saer; Ravagli, Costanza; Ceni, Elisabetta; Mello, Tommaso; Polvani, Simone; Giese, Roger W; Baldi, Giovanni; Galli, Andrea; Peluso, Marco E M

    2017-04-29

    Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3 H )-one deoxyguanosine (M₁dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe₃O₄-nanoparticles (NPs) versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF) of 186 kHz using 32 P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 μg/mL of Fe₃O₄-NPs. Significant dose-response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death.

  9. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  10. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    International Nuclear Information System (INIS)

    Zana, Marianna; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Szabo, Krisztina; Vetro, Agnes; Szucs, Peter; Varkonyi, Agnes; Pakaski, Magdolna; Boda, Krisztina; Rasko, Istvan; Janka, Zoltan; Kalman, Janos

    2006-01-01

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults

  11. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    International Nuclear Information System (INIS)

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-01-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ∼ 1.3 fold in the nuclear protein extracts (NE) and ∼ 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ∼ 1.5 fold higher, whereas in the MEs it was ∼ 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative

  12. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage

    Directory of Open Access Journals (Sweden)

    Jie Deng

    2018-04-01

    Full Text Available Oxidative DNA damage in bone marrow cells is the main side effect of chemotherapy drugs including cyclophosphamide (CTX. However, not all antioxidants are effective in inhibiting oxidative DNA damage. In this study, we report the beneficial effect of carnosine (β-alanyl-l-histidine, a special antioxidant with acrolein-sequestering ability, on CTX-induced bone marrow cell suppression. Our results show that carnosine treatment (100 and 200 mg/kg, i.p. significantly inhibited the generation of reactive oxygen species (ROS and 8-hydroxy-2′-deoxyguanosine (8-oxo-dG, and decreased chromosomal abnormalities in the bone marrow cells of mice treated with CTX (20 mg/kg, i.v., 24 h. Furthermore, carnosine evidently mitigated CTX-induced G2/M arrest in murine bone marrow cells, accompanied by reduced ratios of p-Chk1/Chk1 and p-p53/p53 as well as decreased p21 expression. In addition, cell apoptosis caused by CTX was also suppressed by carnosine treatment, as assessed by decreased TUNEL-positive cell counts, down-regulated expressions of Bax and Cyt c, and reduced ratios of cleaved Caspase-3/Caspase-3. These results together suggest that carnosine can protect murine bone marrow cells from CTX-induced DNA damage via its antioxidant activity. Keywords: Carnosine, Cyclophosphamide, Oxidative DNA damage, Sister chromatid exchange, Apoptosis, Cell cycle arrest

  13. [Damage effects of chronic hypoxia on medulla oblongata associated with oxidative stress and cell apoptosis].

    Science.gov (United States)

    Hou, Xuefei; Ding, Yan; Nie, Zheng; Li, Hui; Tang, Yuhong; Zhou, Hua; Chen, Li; Zheng, Yu

    2012-08-01

    The aim of this study is to study the damage effects of chronic hypoxia on medulla oblongata and to explore whether the damage is associated with oxidative stress and cell apoptosis. Adult male SD rats were randomly divided into two groups: control group and chronic hypoxia group. Medulla oblongata was obtained for the following methods of analyses. Nissl's staining was used to examine the Niss bodies of neurons in medullary respiratory related nuclei, biochemistry methods were utilized to examine oxidant stress damage induced by chronic hypoxia on medulla oblongata through measuring malondialdehyde (MDA) content and superoxide dismutase (SOD) activity, and RT-PCR technique was used to study the influence of apoptosis induced by chronic hypoxia on medulla oblongata through analyzing the levels of Bax mRNA and Bcl-2 mRNA. The results showed the optical densities of Nissl's staining in pre-BötC, NA, NTS, FN, and 12N were significantly decreased in chronic hypoxia group in comparison with that in control group (P 0.05). Bax mRNA expression had no obvious change and Bcl-2 mRNA expression significantly decreased in chronic hypoxia group in comparison with that in control group (P < 0.05). The results suggest that chronic hypoxia could bring about serious damage to medullary respiratory centers through aggravating oxidative stress and increasing cell apoptosis.

  14. Nitroxides are more efficient inhibitors of oxidative damage to calf skin collagen than antioxidant vitamins.

    Science.gov (United States)

    Venditti, Elisabetta; Scirè, Andrea; Tanfani, Fabio; Greci, Lucedio; Damiani, Elisabetta

    2008-01-01

    Reactive oxygen species generated upon UV-A exposure appear to play a major role in dermal connective tissue transformations including degradation of skin collagen. Here we investigate on oxidative damage to collagen achieved by exposure to (i) UV-A irradiation and to (ii) AAPH-derived radicals and on its possible prevention using synthetic and natural antioxidants. Oxidative damage was identified through SDS-PAGE, circular dichroism spectroscopy and quantification of protein carbonyl residues. Collagen (2 mg/ml) exposed to UV-A and to AAPH-derived radicals was degraded in a time- and dose-dependent manner. Upon UV-A exposure, maximum damage was observable at 730 kJ/m2 UV-A, found to be equivalent to roughly 2 h of sunshine, while exposure to 5 mM AAPH for 2 h at 50 degrees C lead to maximum collagen degradation. In both cases, dose-dependent protection was achieved by incubation with muM concentrations of nitroxide radicals, where the extent of protection was shown to be dictated by their structural differences whereas the vitamins E and C proved less efficient inhibitors of collagen damage. These results suggest that nitroxide radicals may be able to prevent oxidative injury to dermal tissues in vivo alternatively to commonly used natural antioxidants.

  15. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  16. Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice

    International Nuclear Information System (INIS)

    Eybl, Vladislav; Kotyzova, Dana; Koutensky, Jaroslav

    2006-01-01

    The present study was designed to examine the antioxidative effect of curcumin, resveratrol and melatonin pre-treatment on cadmium-induced oxidative damage and cadmium distribution in an experimental model in mice. Male CD mice were treated once daily for 3 days with curcumin (50 mg/kg b.w., p.o.), resveratrol (20 mg/kg b.w., p.o.) or melatonin (12 mg/kg, p.o.), dispersed in 0.5% methylcellulose. One hour after the last dose of antioxidants cadmium chloride was administered (7 mg/kg b.w., s.c.) to pre-treated animals and control animals receiving methylcellulose. At 24th h after Cd administration the lipid peroxidation (LP - expressed as malondialdehyde production), reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx) were estimated in liver homogenates. Cadmium concentration was measured in the liver, kidneys, testes and brain by AAS. Cadmium chloride administration to mice induced hepatic lipid peroxidation (to 133%, p < 0.001), decreased GSH content (to 65%, p < 0.001) and inhibited catalase (to 68%, p < 0.001) and GPx activity (to 60%, p < 0.001) in the liver. Curcumin, resveratrol and melatonin oral pre-treatment completely prevented the Cd-induced lipid peroxidation and Cd-induced inhibition of GPx hepatic activity. Resveratrol was effective against Cd-induced inhibition of catalase activity (p < 0.001). The decrease in hepatic GSH level was not prevented by curcumin, resveratrol or melatonin pre-treatment. In mice treated with antioxidants alone the level of LP, GSH, GPx or CAT was not different from control levels. The pre-treatment with antioxidants did not affect cadmium distribution in the tissues of Cd-intoxicated mice. The results demonstrate that curcumin, resveratrol and melatonin pre-treatment effectively protect against cadmium-induced lipid peroxidation and ameliorate the adverse effect of cadmium on antioxidant status without any reduction in tissue Cd burden

  17. Assessing and ameliorating the influence of the electron beam on carbon nanotube oxidation in environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Ai Leen, E-mail: alkoh@stanford.edu [Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305 (United States); Sinclair, Robert [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2017-05-15

    In this work, we examine how the imaging electron beam can induce damage in carbon nanotubes (CNTs) at varying oxygen gas pressures and electron dose rates using environmental transmission electron microscopy (ETEM). Our studies show that there is a threshold cumulative electron dose which brings about damage in CNTs in oxygen – through removal of their graphitic walls – which is dependent on O{sub 2} pressure, with a 4–5 fold decrease in total electron dose per decade increase at a lower pressure range (10{sup −6} to 10{sup −5} mbar) and approximately 1.3 –fold decrease per decade increase at a higher pressure range (10{sup −3} to 10{sup 0} mbar). However, at a given pressure, damage in CNTs was found to occur even at the lowest dose rate utilized, suggesting the absence of a lower limit for the latter parameter. This study provides guidelines on the cumulative dose required to damage nanotubes in the 10{sup −7} mbar to 10{sup 0} mbar pressure regimes, and discusses the role of electron dose rate and total electron dose on beam-induced CNT degradation experiments. - Highlights: • The electron beam ionizes gas molecules in ETEM and affects experimental outcomes. • Beam-induced damage in CNTs occurs at varying O{sub 2} pressures and electron dose rates. • There is a threshold cumulative dose to damage CNTs which depends on O{sub 2} pressure. • At a given pressure, CNT damage occurs even at the electron dose rate utilized.

  18. Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Palli, Domenico, E-mail: d.palli@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Sera, Francesco, E-mail: f.sera@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Giovannelli, Lisa, E-mail: lisag@pharm.unifi.i [Department of Pharmacology, University of Florence, Viale G.Pieraccini 6, 50139 Florence (Italy); Masala, Giovanna, E-mail: g.masala@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Grechi, Daniele [Regional Environmental Protection Agency of Tuscany (ARPAT), Via Porpora 22, 50144 Florence (Italy); Bendinelli, Benedetta, E-mail: b.bendinelli@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Caini, Saverio, E-mail: s.caini@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Dolara, Piero, E-mail: piero.dolara@unifi.i [Department of Pharmacology, University of Florence, Viale G.Pieraccini 6, 50139 Florence (Italy); Saieva, Calogero, E-mail: c.saieva@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy)

    2009-05-15

    In 71 adults residing in Florence, Italy, enrolled in a prospective study, we investigated the correlation between individual levels of oxidative DNA damage detected by the Comet assay in circulating lymphocytes, and a specific ozone exposure score calculated in 10 different time-windows (0-5 to 0-90 days) before blood drawing, based on daily measurements provided by the local environmental monitoring system. Overall, statistically significant positive correlations between average ozone concentrations and DNA damage emerged in almost all time-windows considered; correlations were more evident among males, non-smokers, and traffic-exposed workers. Multivariate regression analyses taking into account selected individual characteristics, showed an independent effect on DNA damage of average ozone concentrations in the last 60-90 days before blood drawing. Local residents showed a divergent pattern with correlations restricted to shorter time-windows. Our results suggest that ozone concentrations at ground levels modulate oxidative DNA damage in circulating lymphocytes of residents of polluted areas. - Ozone concentrations over the 60-90 days before blood drawing correlated with DNA damage in circulating lymphocytes of adults living in the metropolitan area of Florence, Italy.

  19. Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy

    International Nuclear Information System (INIS)

    Palli, Domenico; Sera, Francesco; Giovannelli, Lisa; Masala, Giovanna; Grechi, Daniele; Bendinelli, Benedetta; Caini, Saverio; Dolara, Piero; Saieva, Calogero

    2009-01-01

    In 71 adults residing in Florence, Italy, enrolled in a prospective study, we investigated the correlation between individual levels of oxidative DNA damage detected by the Comet assay in circulating lymphocytes, and a specific ozone exposure score calculated in 10 different time-windows (0-5 to 0-90 days) before blood drawing, based on daily measurements provided by the local environmental monitoring system. Overall, statistically significant positive correlations between average ozone concentrations and DNA damage emerged in almost all time-windows considered; correlations were more evident among males, non-smokers, and traffic-exposed workers. Multivariate regression analyses taking into account selected individual characteristics, showed an independent effect on DNA damage of average ozone concentrations in the last 60-90 days before blood drawing. Local residents showed a divergent pattern with correlations restricted to shorter time-windows. Our results suggest that ozone concentrations at ground levels modulate oxidative DNA damage in circulating lymphocytes of residents of polluted areas. - Ozone concentrations over the 60-90 days before blood drawing correlated with DNA damage in circulating lymphocytes of adults living in the metropolitan area of Florence, Italy.

  20. Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage

    Science.gov (United States)

    Redgrove, Kate A.; McLaughlin, Eileen A.

    2017-01-01

    In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte. PMID:29312475

  1. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.

    Science.gov (United States)

    Park, Su-Jung; Ciccone, Samantha L M; Beck, Brian D; Hwang, Byounghoon; Freie, Brian; Clapp, D Wade; Lee, Suk-Hee

    2004-07-16

    Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.

  2. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Sirtuin type 1 (SIRT1 belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs, as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP. The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1.

  3. Modelling of Zircaloy-steam-oxidation under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Malang, S.; Neitzel, H.J.

    1983-01-01

    Small break loss-of-coolant accidents and special transients in an LWR, in combination with loss of required safety systems, may lead to an uncovered core for an extended period of time. As a consequence, the cladding temperature could rise up to the melting point due to the decay heat, resulting in severely damaged fuel rods. During heat-up the claddings oxidize due to oxygen uptake from the steam atmosphere in the core. The modeling and assessment of the Zircaloy-steam oxidation under such conditions is important, mainly for two reasons: The oxidation of the cladding influences the temperature transients due to the exothermic heat of reaction; the amount of liquified fuel depends on the oxide layer thickness and the oxygen content of the remaining Zircaloy metal when the melting point is reached. (author)

  4. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    Directory of Open Access Journals (Sweden)

    Annemarie Grindel

    Full Text Available Diabetes mellitus type 2 (T2DM is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration.Female T2DM patients (n = 146 were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72. In addition, tertiles according to diabetes duration (DD were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49. Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals.No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group.BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical

  5. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    International Nuclear Information System (INIS)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-01-01

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75±1.55 μm versus after supplementation: 70.25±1.31 μm; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels

  6. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-08-28

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75{+-}1.55 {mu}m versus after supplementation: 70.25{+-}1.31 {mu}m; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels.

  7. Ginseng essence, a medicinal and edible herbal formulation, ameliorates carbon tetrachloride-induced oxidative stress and liver injury in rats

    Directory of Open Access Journals (Sweden)

    Kuan-Hung Lu

    2017-07-01

    Conclusion: These findings demonstrate that GE improves CCl4-induced liver inflammation and fibrosis by attenuating oxidative stress. Therefore, GE could be a promising hepatoprotective herbal formulation for future development of phytotherapy.

  8. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs

    Directory of Open Access Journals (Sweden)

    Nikolai Engedal

    2018-01-01

    Full Text Available Oxidative stress can alter the expression level of many microRNAs (miRNAs, but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.

  9. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    Science.gov (United States)

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  10. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    Science.gov (United States)

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  11. NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.

    Directory of Open Access Journals (Sweden)

    Altaf H Sarker

    Full Text Available Secondhand smoke (SHS is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS, the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

  12. Depletion of the Third Complement Component Ameliorates Age-Dependent Oxidative Stress and Positively Modulates Autophagic Activity in Aged Retinas in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Dorota Rogińska

    2017-01-01

    Full Text Available The aim of the study was to investigate the influence of complement component C3 global depletion on the biological structure and function of the aged retina. In vivo morphology (OCT, electrophysiological function (ERG, and the expression of selected oxidative stress-, apoptosis-, and autophagy-related proteins were assessed in retinas of 12-month-old C3-deficient and WT mice. Moreover, global gene expression in retinas was analyzed by RNA arrays. We found that the absence of active C3 was associated with (1 alleviation of the age-dependent decrease in retinal thickness and gradual deterioration of retinal bioelectrical function, (2 significantly higher levels of antioxidant enzymes (catalase and glutathione reductase and the antiapoptotic survivin and Mcl-1/Bak dimer, (3 lower expression of the cellular oxidative stress marker—4HNE—and decreased activity of proapoptotic caspase-3, (4 ameliorated retinal autophagic activity with localization of ubiquitinated protein conjugates commonly along the retinal pigment epithelium (RPE layer, and (5 significantly increased expression of several gene sets associated with maintenance of the physiological functions of the neural retina. Our findings shed light on mechanisms of age-related retinal alterations by identifying C3 as a potential therapeutic target for retinal aging.

  13. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice.

    Science.gov (United States)

    Eo, Hyeyoon; Lee, Hea-Ji; Lim, Yunsook

    2016-09-23

    Among the diabetic complications, diabetic foot ulcer due to delayed wound healing is one of the most significant clinical problems. Early inflammatory stage is important for better prognosis during wound healing. Thus, regulation of inflammatory response during early stage of wound healing is main target for complete cutaneous recovery. This study investigated the role of genistein supplementation in inflammation and oxidative stress, which are related to NLRP3 inflammasome, NFκB and Nrf2 activation, during cutaneous wound healing in alloxan-induced diabetic mice. Mice with diabetes with fasting blood glucose (FBG) levels > 250 mg/dl were fed diets with AIN-93G rodent diet containing 0%, 0.025% (LG) or 0.1% (HG) genistein. After 2 weeks of genistein supplementation, excisional wounds were made by biopsy punches (4 mm). Genistein supplementation improved fasting glucose levels and wound closure rate. Moreover, genistein supplementation restored NLRP3 inflammasome (NLRP3, ASC and caspase-1) at the basal level and ameliorated both inflammation (TNFα, iNOS, COX2 and NFκB) and antioxidant defense system (Nrf2, HO-1, GPx, and catalase) during early stage of wound healing in diabetic mice. Taken together, genistein supplementation would be a potential therapeutic nutrient in prevention and treatment of delayed wound healing by modulation of inflammation and oxidative stress during inflammatory stage. Copyright © 2016. Published by Elsevier Inc.

  14. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-κB signaling pathway.

    Science.gov (United States)

    Raish, Mohammad

    2017-04-01

    The polysaccharide extract of Momordica charantia has various biological activities; however, its effect on endothelial dysfunction in myocardial infarction remains unclear. To elucidate this, myocardial infarction was induced in rats using isoproterenol (ISP). Pretreatment with M. charantia polysaccharides (MCP; 150 or 300mg/kg) for 25days significantly inhibited increases in heart weight, the heart-weight-to-body-weight ratio, and infarction size, and ameliorated the increased serum levels of aspartate transaminase, creatine kinase, lactate dehydrogenase, total cholesterol, triglycerides, very-low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. In addition, MCP enhanced the activity of superoxide dismutase, catalase, and non-protein sulfhydryls, and decreased the level of lipid peroxidation. Moreover, MCP pretreatment downregulated the expression of proinflammatory cytokines (tumor necrosis factor alpha, interleukin (IL)-6, and IL-10), inflammatory markers (nitric oxide, myeloperoxidase, and inducible nitric oxide synthase), and apoptotic markers (caspase-3 and BAX), and upregulated Bcl-2 expression. Pretreatment with MCP reduced myonecrosis, edema, and inflammatory cell infiltration, and restored cardiomyocytes architecture. This myocardial protective effect could be related to the enhancement of the antioxidant defense system through the nuclear factor kappa B (NF-kB) pathways, and to anti-apoptosis through regulation of Bax, caspase-3, and Bcl-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  16. Echinacoside Induces Apoptosis in Human SW480 Colorectal Cancer Cells by Induction of Oxidative DNA Damages

    Directory of Open Access Journals (Sweden)

    Liwei Dong

    2015-06-01

    Full Text Available Echinacoside is a natural compound with potent reactive oxygen species (ROS-scavenging and anti-oxidative bioactivities, which protect cells from oxidative damages. As cancer cells are often under intense oxidative stress, we therefore tested if Echinacoside treatment would promote cancer development. Surprisingly, we found that Echinacoside significantly inhibited the growth and proliferation of a panel of cancer cell lines. Treatment of the human SW480 cancer cells with Echinacoside resulted in marked apoptosis and cell cycle arrest, together with a significant increase in active caspase 3 and cleaved PARP, and upregulation of the G1/S-CDK blocker CDKN1B (p21. Interestingly, immunocytochemistry examination of drug-treated cancer cells revealed that Echinacoside caused a significant increase of intracellular oxidized guanine, 8-oxoG, and dramatic upregulation of the double-strand DNA break (DSB-binding protein 53BP1, suggesting that Echinacoside induced cell cycle arrest and apoptosis in SW480 cancer cells via induction of oxidative DNA damages. These results establish Echinacoside as a novel chemical scaffold for development of anticancer drugs.

  17. Mild Oxidative Damage in the Diabetic Rat Heart Is Attenuated by Glyoxalase-1 Overexpression

    Directory of Open Access Journals (Sweden)

    Casper G. Schalkwijk

    2013-07-01

    Full Text Available Diabetes significantly increases the risk of heart failure. The increase in advanced glycation endproducts (AGEs and oxidative stress have been associated with diabetic cardiomyopathy. We recently demonstrated that there is a direct link between AGEs and oxidative stress. Therefore, the aim of the current study was to investigate if a reduction of AGEs by overexpression of the glycation precursor detoxifying enzyme glyoxalase-I (GLO-I can prevent diabetes-induced oxidative damage, inflammation and fibrosis in the heart. Diabetes was induced in wild-type and GLO-I transgenic rats by streptozotocin. After 24-weeks of diabetes, cardiac function was monitored with ultrasound under isoflurane anesthesia. Blood was drawn and heart tissue was collected for further analysis. Analysis with UPLC-MSMS showed that the AGE Nε-(1-carboxymethyllysine and its precursor 3-deoxyglucosone were significantly elevated in the diabetic hearts. Markers of oxidative damage, inflammation, and fibrosis were mildly up-regulated in the heart of the diabetic rats and were attenuated by GLO-I overexpression. In this model of diabetes, these processes were not accompanied by significant changes in systolic heart function, i.e., stroke volume, fractional shortening and ejection fraction. This study shows that 24-weeks of diabetes in rats induce early signs of mild cardiac alterations as indicated by an increase of oxidative stress, inflammation and fibrosis which are mediated, at least partially, by glycation.

  18. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    ; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  19. γ-Glutamyl semialdehyde and 2-amino-adipic semialdehyde: biomarkers of oxidative damage to proteins

    DEFF Research Database (Denmark)

    Daneshvar, B.; Frandsen, H.; Autrup, Herman

    1997-01-01

    proteins collected from eight different mammalian species was found to be inversely proportional to their maximum lifespan potential. The content of AAS in plasma proteins of untreated adult rats showed a positive correlation with the age of the rat. In young rats a negative correlation with age was found......Reactive oxygen species are formed in the body by several natural processes and by induced oxidative stress. The reactive oxygen species may react with the various biomolecules of the body, including proteins. In order to assess the impact of oxidative damage to proteins, we have tried to identify...

  20. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles

    DEFF Research Database (Denmark)

    Møller, Peter; Folkmann, J K; Danielsen, P H

    2012-01-01

    that gastrointestinal exposure to single-walled carbon nanotubes (SWCNT), fullerenes C60, carbon black, titanium dioxide and diesel exhaust particles generates oxidized DNA base lesions in organs such as the bone marrow, liver and lung. Oral exposure to nanosized carbon black has also been associated with increased...... level of lipid peroxidation derived exocyclic DNA adducts in the liver, suggesting multiple pathways of oxidative stress for particle-generated damage to DNA. At equal dose, diesel exhaust particles (SRM2975) generated larger levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in rat liver than carbon black...

  1. Oxidative stress damage as a detrimental factor in preterm birth pathology.

    Science.gov (United States)

    Menon, Ramkumar

    2014-01-01

    Normal term and spontaneous preterm births (PTB) are documented to be associated with oxidative stress (OS), and imbalances in the redox system (balance between pro- and antioxidant) have been reported in the maternal-fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term) and pathophysiologic (preterm) pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging). The aging of the fetal cells is predominated by p38 mitogen activated kinase (p38MAPK) pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways.

  2. Oxidative stress damage as a detrimental factor in preterm birth pathology

    Directory of Open Access Journals (Sweden)

    Ramkumar eMenon

    2014-11-01

    Full Text Available Normal term and spontaneous preterm births (PTB are documented to be associated with oxidative stress (OS, and imbalances in the redox system (balance between pro- and antioxidant have been reported in the maternal-fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term and pathophysiologic (preterm pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging. The aging of the fetal cells are predominated by p38 mitogen activated kinase (p38MAPK pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes (pPROM, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways.

  3. ATM-dependent pathways of chromatin remodelling and oxidative DNA damage responses.

    Science.gov (United States)

    Berger, N Daniel; Stanley, Fintan K T; Moore, Shaun; Goodarzi, Aaron A

    2017-10-05

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Author(s).

  4. Female plumage colour influences seasonal oxidative damage and testosterone profiles in a songbird.

    Science.gov (United States)

    Vitousek, Maren N; Stewart, Rosemary A; Safran, Rebecca J

    2013-10-23

    Across diverse taxa, morphological traits mediate social interactions and mate selection. Physiological constraints on signal elaboration have been widely documented, but the potential for trait display to influence physiological state remains poorly understood. We tested for the presence of causal links between ventral plumage colour-a trait known to covary with reproductive performance-and physiological measures in female North American barn swallows, Hirundo rustica erythrogaster. Naturally darker swallows have lower levels of plasma oxidative damage. Females manipulated to display darker ventral plumage during reproduction rapidly decreased oxidative damage, adopting the physiological state of naturally darker individuals. These results support the presence of a social mechanism that links static plumage traits with the physiological state of their bearer during trait advertisement, long after the completion of signal development.

  5. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice.

    Science.gov (United States)

    Li, Bin; Cui, Wei; Liu, Jia; Li, Ru; Liu, Qian; Xie, Xiao-Hua; Ge, Xiao-Li; Zhang, Jing; Song, Xiu-Juan; Wang, Ying; Guo, Li

    2013-12-01

    Sulforaphane (SFN) is an organosulfur compound present in vegetables and has potent anti-oxidant and anti-inflammatory activities. This study was aimed at investigating the effect of treatment with SFN on inflammation and oxidative stress, and the potential mechanisms underlying the action of SFN in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. Treatment with SFN significantly inhibited the development and severity of EAE in mice, accompanied by mitigating inflammatory infiltration and demyelination in the spinal cord of mice. The protective effect of SFN was associated with significantly improved distribution of claudin-5 and occludin, and decreased levels of MMP-9 expression, preserving the blood-brain barrier. Furthermore, the protection of SFN was also related to decreased levels of oxidative stress in the brains of mice by enhanced activation of the Nrf2/ARE pathway and increased levels of anti-oxidant HO-1 and NQO1 expression. In addition, treatment with SFN inhibited antigen-specific Th17 responses and enhanced IL-10 responses. Our data indicated that treatment with SFN inhibited EAE development and severity in mice by its anti-oxidant activity and antagonizing autoimmune inflammation. Our findings suggest that SFN and its analogues may be promising reagents for intervention of multiple sclerosis and other autoimmune diseases. © 2013.

  6. Benchmark Theoretical and Experimental Study on N-15 NMR Shifts of Oxidatively Damaged Guanine

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Šála, Michal; Klepetářová, Blanka; Šebera, Jakub; Fukal, Jiří; Holečková, Veronika; Tanaka, Y.; Nencka, Radim; Sychrovský, Vladimír

    2016-01-01

    Roč. 120, č. 5 (2016), s. 915-925 ISSN 1520-6106 R&D Projects: GA ČR GA13-27676S; GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * DFT calculations * oxidatively damaged guanine * hOGG1 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  7. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  8. Effect of Oxidative Damage on the Stability and Dimerization of Superoxide Dismutase 1

    OpenAIRE

    Petrov, Drazen; Daura, Xavier; Zagrovic, Bojan

    2016-01-01

    During their life cycle, proteins are subject to different modifications involving reactive oxygen species. Such oxidative damage to proteins may lead to the formation of insoluble aggregates and cytotoxicity and is associated with age-related disorders including neurodegenerative diseases, cancer, and diabetes. Superoxide dismutase 1 (SOD1), a key antioxidant enzyme in human cells, is particularly susceptible to such modifications. Moreover, this homodimeric metalloenzyme has been directly l...

  9. Effects of environmental pollution on endogenous oxidative DNA damage in humans

    Czech Academy of Sciences Publication Activity Database

    Singh, R.; Kaur, B.; Kalina, I.; Popov, T. A.; Georgieva, T.; Garte, S.; Binková, Blanka; Šrám, Radim; Taioli, E.; Farmer, P. B.

    2007-01-01

    Roč. 620, - (2007), s. 71-82 ISSN 0027-5107 Grant - others:EU(NO) 2000 -00091; EU(NO) G0100873 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : oxidative DNA damage * polycyclic aromatic hydrocarbons * -oxo-deoxyguanosine Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.159, year: 2007

  10. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    International Nuclear Information System (INIS)

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C.

    2011-01-01

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20–120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic β-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic β-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: ► Oxidative stress is suggested as a key event in the pathogenesis of diabetes. ► D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. ► DSL normalizes cellular antioxidant machineries disturbed due to alloxan toxicity. ► DSL inhibits pancreatic β-cells apoptosis

  11. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Semantee [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Manna, Prasenjit [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India); Gachhui, Ratan [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India)

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  12. Oxidative Damage Caused by Common Foodborne Pathogenic Bacteria in Egg Yolk

    Directory of Open Access Journals (Sweden)

    Reyhaneh Afshordi

    2016-02-01

    Full Text Available Background: Bacteria in foodstuff are the most important agent of foodborne disease. Aside from their infectious effects, obligate aerobes have a respiratory metabolism with oxygen as the terminal electron acceptor. Therefore, they can produce reactive oxygen species and free radicals in contaminated food. Malondialdehyde (MDA is a product of lipid peroxidation used as an indicator of oxidative stress. Objectives: This study aimed to evaluate the oxidative damage produced by two common food pathogenic bacteria in foodstuff. Materials and Methods: The egg yolks were incubated with different dilutions (105,106, and 107 of Staphylococcus aureus and Salmonella enteritidis at 37°C for 20 hours. The level of MDA in egg yolk was measured by fast and simple enzymatic or colorimetric methods, such as the thiobarbituric acid reactive species method. Results: The high group (107 had a higher MDA level of 1.97 ± 0.11 (μg MDA/g in S. aureus and 1.65 ± 0.27 (mg MDA/L in S. enteritidis than the control (0.90 ± 0.13 mg MDA/L. Conclusions: We concluded that common food pathogenic bacteria can induce oxidative damage in foodstuff aside from other common problems. Heating or sterilization methods cannot protect foodstuff from the damage caused by the presence of pathogenic bacteria.

  13. Pigmented macrophage aggregates as a biomarker of oxidative damage in yellow bullhead catfish, Ameiurus natalis

    International Nuclear Information System (INIS)

    McCreedy, C.D.; HoganEsch, H.; Turek, J.; Jagoe, C.H.

    1995-01-01

    Pigmented macrophage aggregates (PMs) occur when peroxidized lipids resulting from oxidative damage in tissues are scavenged by macrophages. Ionizing radiation causes oxidative damage, so the authors evaluated PMs as a biomarker in the pronephros of yellow bullheads (Ameiurus natalis) inhabiting Pond B, Savannah River Site, SC, a reservoir contaminated with low levels of 137 Cs. ANOVA, ANCOVA, and stepwise regression were used to relate the mean number of PMs, per 0.15 mm 2 of tissue section, to fish sex (females: N = 61; males: N = 84), age (1--6 yrs), body-condition, and muscle 137 Cs concentration. Mean pronephric PMs differed by six and with fish muscle 137 Cs concentration. Among males, PMs were positively correlated with fish age and 137 Cs. In females, PMs were also correlated with fish age and 137 Cs. ANCOVA, with age as covariate, affirmed that sex and muscle 137 Cs were significantly associated with the mean number of pronephric PMs. Using stepwise regression, the interaction of age and 137 Cs concentration was most strongly associated with pronephric PMs in males. Among females, the product of age, body-condition, and 137 Cs concentration was most strongly associated with pronephric PMs. The positive relationships between the number of pronephric PMs and 137 Cs concentration suggest that oxidative damage related to long-term exposure to low-level radiation is detectable in these fish. Secondarily, these results demonstrate the importance of considering covariates such as age and sex when evaluating effects of environmental contaminants

  14. Increased Chromosomal and Oxidative DNA Damage in Patients with Multinodular Goiter and Their Association with Cancer

    Directory of Open Access Journals (Sweden)

    Hamiyet Donmez-Altuntas

    2017-01-01

    Full Text Available Thyroid nodules are a common clinical problem worldwide. Although thyroid cancer accounts for a small percentage of thyroid nodules, the majority are benign. 8-Hydroxy-2′-deoxyguanosine (8-OHdG levels are a marker of oxidative stress and play a key role in the initiation and development of a range of diseases and cancer types. This study evaluates cytokinesis-block micronucleus cytome (CBMN-cyt assay parameters and plasma 8-OHdG levels and their association with thyroid nodule size and thyroid hormones in patients with multinodular goiter. The study included 32 patients with multinodular goiter and 18 age- and sex-matched healthy controls. CBMN-cyt assay parameters in peripheral blood lymphocytes of patients with multinodular goiter and controls were evaluated, and plasma 8-OHdG levels were measured. The micronucleus (MN frequency (chromosomal DNA damage, apoptotic and necrotic cells (cytotoxicity, and plasma 8-OHdG levels (oxidative DNA damage were significantly higher among patients with multinodular goiter. Our study is the first report of increased chromosomal and oxidative DNA damage in patients with multinodular goiter, which may predict an increased risk of thyroid cancer in these patients. MN frequency and plasma 8-OHdG levels may be markers of the carcinogenic potential of multinodular goiters and could be used for early detection of different cancer types, including thyroid cancer.

  15. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  16. Effect of recoiled O on damage regrowth and electrical properties of through-oxide implanted Si

    International Nuclear Information System (INIS)

    Sadana, D.K.; Wu, N.R.; Washburn, J.; Current, M.; Morgan, A.; Reed, D.; Maenpaa, M.

    1982-10-01

    High dose (4 to 7.5 x 10 15 cm -2 ) As implantations into p-type (100) Si have been carried out through a screen-oxide of thicknesses less than or equal to 775A and without screen oxide. The effect of recoiled O on damage annealing and electrical properties of the implanted layers has been investigated using a combination of the following techniques: TEM, RBS/MeV He + channeling, SIMS and Hall measurements in conjunction with chemical stripping and sheet resistivity measurements. The TEM results show that there is a dramatically different annealing behavior of the implantation damage for the through oxide implants (Case I) as compared to implants into bare silicon (Case II). Comparison of the structural defect profiles with O distributions obtained by SIMS demonstrated that retardation in the secondary damage growth in Case I can be directly related with the presence of O. Weak-beam TEM showed that a high density of fine defect clusters (less than or equal to 50A) were present both in Case I and Case II. The electrical profiles showed only 30% of the total As to be electrically active. The structural and electrical results have been explained by a model that entails As-O, Si-O and As-As complex formation and their interaction with the dislocations

  17. Portulaca oleracea Linn seed extract ameliorates hydrogen ...

    African Journals Online (AJOL)

    Portulaca oleracea Linn seed extract ameliorates hydrogen ... induced cell death by inhibiting oxidative stress and ROS generation. Keywords: ... culture medium; therefore the stock solutions of ... acetic acid (1 %) and ethanol (50 %) to extract.

  18. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation.

    Science.gov (United States)

    Kang, Kyoung Ah; Lee, Kyoung Hwa; Chae, Sungwook; Zhang, Rui; Jung, Myung Sun; Ham, Young Min; Baik, Jong Seok; Lee, Nam Ho; Hyun, Jin Won

    2006-02-15

    We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway. (c) 2005 Wiley-Liss, Inc.

  19. Grape (Vitis vinifera) extracts protect against radiation-induced oxidative stress and DNA damage

    International Nuclear Information System (INIS)

    Singha, Indrani; Das, Subir Kumar; Saxena, S.; Gautam, S.

    2016-01-01

    Ionizing radiation (IR) causes oxidative stress through the overwhelming generation of reactive oxygen species (ROS) in the living cells leading further to the oxidative damage to biomolecules. Grapes (Vitis vinifera) contain several bioactive phytochemicals and are the richest source of antioxidant. In this study, we investigated and compared in vitro antioxidant activity and DNA damage protective property of the grape extracts of four different cultivars, including the Thompson seedless, Flame seedless, Kishmish chorni and Red globe. The activities of ascorbic acid oxidase and catalase significantly (p<0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly among extracts of any cultivar. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay and ABTS. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. DNA damage was evaluated in acellular system using pBR322 plasmid relaxation. Grape extract was able to effectively scavenge free radicals in vitro. It could significantly prevent radiation-induced DNA damage. Furthermore, the protective action of grape depends on the source of extract and type of the cultivars. (author)

  20. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  1. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  2. An ameliorative protocol for the quantification of purine 5',8-cyclo-2'-deoxynucleosides in oxidized DNA

    Science.gov (United States)

    Terzidis, Michael; Chatgilialoglu, Chryssostomos

    2015-07-01

    5',8-Cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG) are lesions resulting from hydroxyl radical (HO•) attack on the 5'H of the nucleoside sugar moiety and exist in both 5'R and 5'S diastereomeric forms. Increased levels of cdA and cdG are linked to Nucleotide Excision Repair mechanism deficiency and mutagenesis. Discrepancies in the damage measurements reported over recent years indicated the weakness of the actual protocols, in particular for ensuring the quantitative release of these lesions from the DNA sample and the appropriate method for their analysis. Herein we report the detailed revision leading to a cost-effective and efficient protocol for the DNA damage measurement, consisting of the nuclease benzonase and nuclease P1 enzymatic combination for DNA digestion followed by liquid chromatography isotope dilution tandem mass spectrometry analysis.

  3. Inhibition of myeloperoxidase oxidant production by N-acetyl lysyltyrosylcysteine amide reduces brain damage in a murine model of stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Huang, Ziming; Jones, Deron W; Pritchard, Kirkwood A; Zhang, Hao

    2016-05-24

    Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase (MPO) is a highly potent oxidative enzyme that is capable of inducing both oxidative and nitrosative stress in vivo. To determine if and the extent to which MPO-generated oxidants contribute to brain I/R injury, we treated mice subjected to middle cerebral artery occlusion (MCAO) with N-acetyl lysyltyrosylcysteine amide (KYC), a novel, specific and non-toxic inhibitor of MPO. Behavioral testing, ischemic damage, blood-brain-barrier disruption, apoptosis, neutrophils infiltration, microglia/macrophage activation, and MPO oxidation were analyzed within a 7-day period after MCAO. Our studies show that KYC treatment significantly reduces neurological severity scores, infarct size, IgG extravasation, neutrophil infiltration, loss of neurons, apoptosis, and microglia/macrophage activation in the brains of MCAO mice. Immunofluorescence studies show that KYC treatment reduces the formation of chlorotyrosine (ClTyr), a fingerprint biomarker of MPO oxidation, nitrotyrosine (NO2Tyr), and 4-hydroxynonenal (4HNE) in MCAO mice. All oxidative products colocalized with MPO in the infarcted brains, suggesting that MPO-generated oxidants are involved in forming the oxidative products. MPO-generated oxidants play detrimental roles in causing brain damage after stroke which is effectively reduced by KYC.

  4. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

    Science.gov (United States)

    Batchuluun, Battsetseg; Inoguchi, Toyoshi; Sonoda, Noriyuki; Sasaki, Shuji; Inoue, Tomoaki; Fujimura, Yoshinori; Miura, Daisuke; Takayanagi, Ryoichi

    2014-01-01

    Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. Production of reactive oxygen species (ROS), activation of protein kinase C (PKC) and NAD(P)H oxidase, and changes in signaling molecules in response to high glucose exposure were evaluated in human aortic endothelial cells with and without treatment of metformin and liraglutide, alone or in combination. PKC-NAD(P)H oxidase pathway was assessed by translocation of GFP-fused PKCβ2 isoform and GFP-fused p47phox, a regulatory subunit of NAD(P)H oxidase, in addition to endogenous PKC phosphorylation and NAD(P)H oxidase activity. High glucose-induced ROS overproduction was blunted by metformin or liraglutide treatment, with a further decrease by a combination of these drugs. Exposure to high glucose caused PKCβ2 translocation and a time-dependent phosphorylation of endogenous PKC but failed to induce its translocation and phosphorylation in the cells treated with metformin and liraglutide. Furthermore, both drugs inhibited p47phox translocation and NAD(P)H oxidase activation, and prevented the high glucose-induced changes in intracellulalr diacylglycerol (DAG) level and phosphorylation of AMP-activated protein kinase (AMPK). A combination of these drugs further enhanced all of these effects. Metformin and liraglutide ameliorate high glucose-induced oxidative stress by inhibiting PKC-NAD(P)H oxidase pathway. A combination of these two drugs provides augmented protective effects, suggesting the clinical usefulness in prevention of diabetic vascular complications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Active form of vitamin D ameliorates non-alcoholic fatty liver disease by alleviating oxidative stress in a high-fat diet rat model.

    Science.gov (United States)

    Zhu, Chong-Gui; Liu, Ya-Xin; Wang, Hao; Wang, Bao-Ping; Qu, Hui-Qi; Wang, Bao-Li; Zhu, Mei

    2017-07-28

    The purpose of this study was to determine whether treatment using the active form of vitamin D (1,25(OH) 2 D 3 ) could protect against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats and ameliorate oxidative stress. Male Sprague-Dawley rats were divided into three groups and treated with standard chow, HFD, or HFD plus intraperitoneal injection of 1,25(OH) 2 D 3 (5 μg/kg body weight, twice per week), respectively, for 16 weeks. Serum lipid profiles, hepatic function, intrahepatic lipid, and calcium levels were determined. Hepatic histology was examined using hematoxylin/eosin, Masson's trichrome, and Oil Red O staining. Oxidative stress was assessed by measuring hepatic malondialdehyde (MDA) and F2α-isoprostane content. Expression of nuclear factor-erythroid-2-related factor 2 (Nrf2) and downstream target genes was analyzed using quantitative RT-PCR. 1,25(OH) 2 D 3 treatment improved the serum lipid profile, reduced intrahepatic lipid levels, and attenuated hepatic steatosis and inflammation in HFD rats. Furthermore, MDA and F2α-isoprostane levels in liver tissue were reduced by 1,25(OH) 2 D 3 administration. Although 1,25(OH) 2 D 3 did not regulate the expression of Nrf2 mRNA, it did induce Nrf2 nuclear translocation. The expression of Nrf2 target genes, including Gclc, Nqo1, Sod2, and Cat, was up-regulated by 1,25(OH) 2 D 3 . We conclude that 1,25(OH) 2 D 3 protects against HFD-induced NAFLD by attenuating oxidative stress, inducing NRF2 nuclear translocation, and up-regulating the expression of genes encoding antioxidant enzymes.

  6. Preconditioning with Azadirachta indica ameliorates cardiorenal dysfunction through reduction in oxidative stress and extracellular signal regulated protein kinase signalling

    Directory of Open Access Journals (Sweden)

    Temidayo Olutayo Omóbòwálé

    2016-10-01

    Conclusions: Together, A. indica and vitamin C prevented IRI-induced cardiorenal dysfunction via reduction in oxidative stress, improvement in antioxidant defence system and increase in the ERK1/2 expressions. Therefore, A. indica can be a useful chemopreventive agent in the prevention and treatment of conditions associated with intestinal ischaemia-reperfusion injury.

  7. Expression of Aluminum-Induced Genes in Transgenic Arabidopsis Plants Can Ameliorate Aluminum Stress and/or Oxidative Stress1

    Science.gov (United States)

    Ezaki, Bunichi; Gardner, Richard C.; Ezaki, Yuka; Matsumoto, Hideaki

    2000-01-01

    To examine the biological role of Al-stress-induced genes, nine genes derived from Arabidopsis, tobacco (Nicotiana tabacum L.), wheat (Triticum aestivum L.), and yeast (Saccharomyces cerevisiae) were expressed in Arabidopsis ecotype Landsberg. Lines containing eight of these genes were phenotypically normal and were tested in root elongation assays for their sensitivity to Al, Cd, Cu, Na, Zn, and to oxidative stresses. An Arabidopsis blue-copper-binding protein gene (AtBCB), a tobacco glutathione S-transferase gene (parB), a tobacco peroxidase gene (NtPox), and a tobacco GDP-dissociation inhibitor gene (NtGDI1) conferred a degree of resistance to Al. Two of these genes, AtBCB and parB, and a peroxidase gene from Arabidopsis (AtPox) also showed increased resistance to oxidative stress induced by diamide, while parB conferred resistance to Cu and Na. Al content of Al-treated root tips was reduced in the four Al-resistant plant lines compared with wild-type Ler-0, as judged by morin staining. All four Al-resistant lines also showed reduced staining of roots with 2′,7′-dichloro fluorescein diacetate (H2DCFDA), an indicator of oxidative stress. We conclude that Al-induced genes can serve to protect against Al toxicity, and also provide genetic evidence for a link between Al stress and oxidative stress in plants. PMID:10712528

  8. Enantioselective oxidative stress and oxidative damage caused by Rac- and S-metolachlor to Scenedesmus obliquus.

    Science.gov (United States)

    Liu, Huijun; Xia, YiLu; Cai, Weidan; Zhang, Yina; Zhang, Xiaoqiang; Du, Shaoting

    2017-04-01

    The rational use and environmental security of chiral pesticides has gained the interest of many researchers. The enantioselective effects of Rac- and S-metolachlor on oxidative stress in Scenedesmus obliquus were determined in this study. Stronger green fluorescence was observed in response to S-metolachlor treatment than to Rac-metolachlor treatment, suggesting that more reactive oxygen species (ROS) were stimulated by S-metolachlor. ROS levels following S-metolachlor treatment were 1.92-, 8.31-, and 1.08-times higher than those observed following Rac-metolachlor treatment at 0.1, 0.2, and 0.3 mg/L, respectively. Superoxide dismutase (SOD) and catalase (CAT) were stimulated with increasing herbicide concentrations, with S-metolachlor exhibiting a greater effect. Oxidative damage in terms of chlorophyll (Chl) content, cellular membrane permeability, and cellular ultrastructures of S. obliquus were investigated. Chla and Chlb contents in algae treated with Rac-metolachlor were 2-6-fold higher than those in algae treated with S-metolachlor at 0.1, 0.2, and 0.3 mg/L. The cellular membrane permeability of algae exposed to 0.3 mg/L Rac- and S-metolachlor was 6.19- and 42.5-times that of the control. Correlation analysis implied that ROS are the major factor responsible for the oxidative damage caused by Rac- and S-metolachlor. Damage to the chloroplasts and cell membrane of S. obliquus, low production of starch granules, and an increased number of vacuoles were observed upon ultrastructural morphology analysis by transmission electron microscope. These results indicate that S-metolachlor has a greater effect on S. obliquus than Rac-metolachlor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Electroacupuncture ameliorates post-stroke learning and memory through minimizing ultrastructural brain damage and inhibiting the expression of MMP-2 and MMP-9 in cerebral ischemia-reperfusion injured rats.

    Science.gov (United States)

    Lin, Ruhui; Yu, Kunqiang; Li, Xiaojie; Tao, Jing; Lin, Yukun; Zhao, Congkuai; Li, Chunyan; Chen, Li-Dian

    2016-07-01

    The aim of the present study was to investigate the potential neuroprotective effects of electroacupuncture (EA) in the treatment of cerebral ischemia/reperfusion (I/R) injury, and to elucidate the association between this neuroprotective effect and brain ultrastructure and expression of matrix metalloproteinase (MMP)‑2 and 9. Rats underwent focal cerebral I/R injury by arterial ligation and received in vivo therapeutic EA at the Baihui (DU20) and Shenting (DU24) acupoints. The therapeutic efficacy was then evaluated following the surgery. The results of the current study demonstrated that EA treatment significantly ameliorated neurological deficits and reduced cerebral infarct volume compared with I/R injured rats. Furthermore, EA improved the learning and memory ability of rats following I/R injury, inhibited blood brain barrier breakdown and reduced neuronal damage in the ischemic penumbra. Furthermore, EA attenuated ultrastructural changes in the brain tissue following ischemia and inhibited MMP‑2/MMP‑9 expression in cerebral I/R injured rats. The results suggest that EA ameliorates anatomical deterioration, and learning and memory deficits in rats with cerebral I/R injury.

  10. Zerumbone, a Bioactive Sesquiterpene, Ameliorates Diabetes-Induced Retinal Microvascular Damage through Inhibition of Phospho-p38 Mitogen-Activated Protein Kinase and Nuclear Factor-κB Pathways

    Directory of Open Access Journals (Sweden)

    Wayne Young Liu

    2016-12-01

    Full Text Available Zerumbone ameliorates retinal damage by blocking advanced glycation end products and their receptor system in streptozotocin-diabetic rats. Because of the multiple factors involved in diabetic retinopathy (DR etiology, the mechanisms of zerumbone that are mainly responsible for its ameliorative effect on DR need to be further clarified. In the present study, zerumbone (20 mg or 40 mg/kg or fenofibric acid (100 mg/kg was orally administered to diabetic rats by intragastric gavage once daily for three consecutive months. Zerumbone displayed similar characteristics to fenofibric acid in reducing retinal vascular permeability and leukostasis in diabetic rats. Fundus photographs showed that large retinal vessel diameters were decreased in zerumbone-treated diabetic rats. Zerumbone not only down-regulated the gene expression of retinal angiogenic parameters, but also reduced the expression of inflammatory cytokines and chemokines in the retina of diabetic rats. Moreover, zerumbone reduced the p38 MAPK phosphorylation and abrogated the nuclear translocation of NF-κB p65 in the retina of diabetic rats. In conclusion, treatment of diabetic rats with zerumbone attenuates the severity of retinal inflammation and angiogenesis, via inhibition of p38 MAPK and NF-κB signaling pathways. These benefits of zerumbone for DR appear to be linked to its antihyperglycemic and antihyperlipidemic effects.

  11. Damage recovery and optical activity in europium implanted wide gap oxides

    International Nuclear Information System (INIS)

    Alves, E.; Marques, C.; Franco, N.; Alves, L.C.; Peres, M.; Soares, M.J.; Monteiro, T.

    2010-01-01

    In this study we compare and discuss the defects and optical behaviour of sapphire and magnesium oxide single crystals implanted at room temperature with different fluences (1 x 10 15 -1 x 10 16 cm -2 ) of europium ions. Rutherford backscattering channelling shows that for fluences above 5 x 10 15 cm -2 the surface disorder level in the Al-sublattice reaches the random level. Implantation damage recovers fast for annealing in oxidizing atmosphere but even for the highest fluence we recover almost completely all the damage after annealing at 1300 o C, independently of the annealing environment (reducing or oxidizing). Annealing above 1000 o C promotes the formation of Eu 2 O 3 in the samples with higher concentration of Eu. The optical activation of the rare earth ions at room temperature was observed after annealing at 800 o C by photoluminescence and ionoluminescence. In Al 2 O 3 lattice the highest intensity line of the Eu 3+ ions corresponds to the forced electric dipole 5 D 0 → 7 F 2 transition that occurs ∼616 nm. For the MgO samples the Eu 3+ optical activation was also achieved after implantation with different fluences. Here, the lanthanide recombination is dominated by the magnetic dipole 5 D 0 → 7 F 1 transition near by 590 nm commonly observed for samples were Eu 3+ is placed in a high symmetry local site. The results clearly demonstrate the possibility to get Eu incorporated in optical active regular lattice sites in wide gap oxides.

  12. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    Directory of Open Access Journals (Sweden)

    Ye Han

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer and analyzed by high performance liquid chromatography (HPLC and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days drastically prevented the elevated activities of aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP and triglyceride (TG in serum and the levels of malondialdehyde (MDA, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β in liver tissue (p < 0.05. Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05. Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  13. Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine.

    Science.gov (United States)

    Rodrigo, Ramón; Rivera, Gonzalo

    2002-08-01

    Over the last decade, oxidative stress has been implicated in the pathogenesis of a wide variety of seemingly unrelated renal diseases. Epidemiological studies have documented an association of moderate wine consumption with a decreased risk of cardiovascular and neurological diseases; however, similar studies in the kidney are still lacking. The kidney is an organ highly vulnerable to damage caused by reactive oxygen species (ROS), likely due to the abundance of polyunsaturated fatty acids in the composition of renal lipids. ROS are involved in the pathogenic mechanism of conditions such as glomerulosclerosis and tubulointerstitial fibrosis. The health benefits of moderate consumption of red wine can be partly attributed to its antioxidant properties. Indeed, the kidney antioxidant defense system is enhanced after chronic exposure to moderate amounts of wine, a response arising from the combined effects of ethanol and the nonalcoholic components, mainly polyphenols. Polyphenols behave as potent ROS scavengers and metal chelators; ethanol, in turn, modulates the activity of antioxidant enzymes. Therefore, a hypothesis that red wine causes a decreased vulnerability of the kidney to the oxidative challenges could be proposed. This view is partly supported by direct evidences indicating that wine and antioxidants isolated from red wine, as well as other antioxidants, significantly attenuate or prevent the oxidative damage to the kidney. The present hypothesis paper provides a collective body of evidence suggesting a protective role of moderate wine consumption against the production and progression of renal diseases, based on the existing concepts on the pathophysiology of kidney injury mediated by oxidative stress.

  14. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.

    Science.gov (United States)

    Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S

    2012-11-01

    Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.

  15. [Effect of germacrone in alleviating HUVECs damaged by H2O2-induced oxidative stress].

    Science.gov (United States)

    Chen, Qiong-Fang; Wang, Gang; Tang, Li-Qing; Yu, Xian-Wen; Li, Zhao-Fei; Yang, Xiu-Fen

    2017-09-01

    This study focuses on the protective effect of germacrone on human umbilical vein endothelial cells(HUVECs) damaged by H2O2-induced oxidative stress and its possible mechanisms. The oxidative damage model was established by using 500 μmol•L⁻¹ H2O2 to treat HUVECs for 3 hours, and then protected with different concentrations of germacrone for 24 hours. The effect of germacrone on cell viability of HUVECs damaged by H2O2 was detected by MTT. The contents of PGI2, TXB2, ET-1, t-PA, PAI-1, TNF-α and IL-6 were detected by ELISA. The content of NO was detected by using nitrate reductase method. Colorimetry was used to detect NOS and GSH-Px. The contents of MDA, SOD and LDH were detected by TBA, WST-1 and microplate respectively. Apoptosis was observed by Hoechst 33258 fluorescent staining. The mRNA expressions of Bax, Bcl-2 and Caspase-3 in cells were detected by RT-PCR. The results showed that the cell damage rate was 52% after treated with 500 μmol•L⁻¹ H2O2 for 3 hours. The cell activity was increasing with the rise of germacrone concentration within the range of 20-200 mol•L⁻¹. Compared with normal group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were lower after damaged with H2O2. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were increased. Compared with model group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were increased after treated with germacrone. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were lower after treated with germacrone. According to Hoechst 33258 fluorescence staining, compared with normal group, the cell membrane and the nucleus showed strong dense blue fluorescence, and the number of cells significantly decreased in model group. Compared with model group, blue fluorescence intensity decreased in drug group. The above findings demonstrate that

  16. [Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxicants].

    Science.gov (United States)

    Zhao, Jian; Li, Hongli; Zhai, Qingfeng; Qiu, Yugang; Niu, Yong; Dai, Yufei; Zheng, Yuxin; Duan, Huawei

    2014-03-01

    The aim of this study was to investigate the use of the lesion-specific endonucleases-modified comet assay for analysis of DNA oxidation in cell lines. DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNA-glycosylase (FPG) modified comet assays. Cytotoxicity were assessed by MTT method. The human bronchial epithelial cell (16HBE) were treated with benzo (a) pyrene (B(a)P), methyl methanesulfonate (MMS), colchicine (COL) and vincristine (VCR) respectively, and the dose is 20 µmol/L, 25 mg/ml, 5 mg/L and 0.5 mg/L for 24 h, respectively. Oxidative damage was also detected by levels of reactive oxygen species in treated cells. Four genotoxicants give higher cytotoxicity and no significant changes on parameters of comet assay treated by enzyme buffer. Cell survival rate were (59.69 ± 2.60) %, (54.33 ± 2.81) %, (53.11 ± 4.00) %, (51.43 ± 3.92) % in four groups, respectively. There was the direct DNA damage induced by test genotoxicants presented by tail length, Olive tail moment (TM) and tail DNA (%) in the comet assay. The presence of FPG in the assays increased DNA migration in treated groups when compared to those without it, and the difference was statistically significant which indicated that the clastogen and aneugen could induce oxidative damage in DNA strand. In the three parameters, the Olive TM was changed most obviously after genotoxicants treatment. In the contrast group, the Olive TM of B(a) P,MMS, COL,VCR in the contrast groups were 22.99 ± 17.33, 31.65 ± 18.86, 19.86 ± 9.56 and 17.02 ± 9.39, respectively, after dealing with the FPG, the Olive TM were 34.50 ± 17.29, 43.80 ± 10.06, 33.10 ± 12.38, 28.60 ± 10.53, increased by 58.94%, 38.48%, 66.86% and 68.21%, respectively (t value was 3.91, 3.89, 6.66 and 3.87, respectively, and all P comet assay appears more specific for detecting oxidative DNA damage induced by genotoxicants exposure, and the application of comet assay will be expanded. The endonuclease

  17. Mitochondrial Modulation by Epigallocatechin 3-Gallate Ameliorates Cisplatin Induced Renal Injury through Decreasing Oxidative/Nitrative Stress, Inflammation and NF-kB in Mice

    Science.gov (United States)

    Wang, Xueping; Wang, Ping; Fu, Guanghou; Meng, Hongzhou; Wang, Yimin; Jin, Baiye

    2015-01-01

    Cancer chemotherapy drug cisplatin is known for its nephrotoxicity. The aim of this study is to investigate whether Epigallocatechin 3-Gallate (EGCG) can reduce cisplatin mediated side effect in kidney and to understand its mechanism of protection against tissue injury. We used a well-established 3-day cisplatin induced nephrotoxicity mice model where EGCG were administered. EGCG is a major active compound in Green Tea and have strong anti-oxidant and anti-inflammatory properties. EGCG protected against cisplatin induced renal dysfunction as measured by serum creatinine and blood urea nitrogen (BUN). EGCG improved cisplatin induced kidney structural damages such as tubular dilatation, cast formation, granulovaculoar degeneration and tubular cell necrosis as evident by PAS staining. Cisplatin induced kidney specific mitochondrial oxidative stress, impaired activities of mitochondrial electron transport chain enzyme complexes, impaired anti-oxidant defense enzyme activities such as glutathione peroxidase (GPX) and manganese superoxide dismutase (MnSOD) in mitochondria, inflammation (tumor necrosis factor α and interleukin 1β), increased accumulation of NF-κB in nuclear fraction, p53 induction, and apoptotic cell death (caspase 3 activity and DNA fragmentation). Treatment of mice with EGCG markedly attenuated cisplatin induced mitochondrial oxidative/nitrative stress, mitochondrial damages to electron transport chain activities and antioxidant defense enzyme activities in mitochondria. These mitochondrial modulations by EGCG led to protection mechanism against cisplatin induced inflammation and apoptotic cell death in mice kidney. As a result, EGCG improved renal function in cisplatin mediated kidney damage. In addition to that, EGCG attenuated cisplatin induced apoptotic cell death and mitochondrial reactive oxygen species (ROS) generation in human kidney tubular cell line HK-2. Thus, our data suggest that EGCG may represent new promising adjunct candidate for

  18. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  19. Studies on the protective effect of the artichoke (Cynara scolymus) leaf extract against cadmium toxicity-induced oxidative stress, hepatorenal damage, and immunosuppressive and hematological disorders in rats.

    Science.gov (United States)

    El-Boshy, Mohamed; Ashshi, Ahmad; Gaith, Mazen; Qusty, Naeem; Bokhary, Thalat; AlTaweel, Nagwa; Abdelhady, Mohamed

    2017-05-01

    Our objective was to explore the protective effect of artichoke leaf extract (ALE) against cadmium (Cd) toxicity-induced oxidative organ damage in rats. Male albino Wistar rats were divided into four equal groups of eight animals each. The first group was assigned as a control. Groups 2-4 were orally administered with ALE (300 mg/kg bw), Cd (CdCl 2 , 100 mg/L drinking water), and ALE plus Cd, respectively, daily for 4 weeks. After treatment with Cd, the liver and kidney malondialdehyde (MDA) increased significantly compared with the control rats. The sera interleukin (IL)-1β, tumor necrosis factor (TNF-α), and IL-10, liver transaminase, urea, creatinine, and peripheral neutrophil count were significantly increased in Cd-exposed rats compared to the control group. The reduced glutathione (GSH), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) decreased in the liver and kidney in Cd-exposed group. In combination treatment, Cd and ALE significantly improved immune response, an antioxidant system, and hepatorenal function with a significant decline in MDA. In conclusion, ALE ameliorates the immunosuppressive and hepatorenal oxidative injury stimulated by Cd in rats. These results suggest that artichoke has shown promising effects against adverse effects of Cd toxicity.

  20. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.

    Science.gov (United States)

    Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M

    2006-03-01

    Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. Copyright 2005 Wiley-Liss, Inc.

  1. Melatonin and schistosomal antigens ameliorate the anti-oxidative and biochemical response to Schistosoma mansoni infection in hamster

    Directory of Open Access Journals (Sweden)

    Omema SALAH

    2009-04-01

    Full Text Available The present study was designed to investigate the potential protective effect of melatonin as an antioxidant separately or in combination with antigens (cercarial; CAP or soluble worm; SWAP against Schistosoma mansoni infection in hamsters. Each hamster was sensitized with an initial immunization of 0.6 ml of the extracted antigen (30 μg protein/mL. After four days, a second injection of 0.4 mL was given (20 μg protein/mL. Then, each hamster was exposed to 260 ± 20 S.mansoni cercariae followed with melatonin treatment (3.5 mg/kg for thirty days from the 1st day of post infection. Levels of lipid peroxidation (LPO products, catalase (CAT activity, hepatic glutathione (GSH and biochemical changes in the liver and kidneys functions were investigated. The results revealed a high significant increasing of LPO and decreasing of CAT and GSH in liver of infected hamsters. Biochemical observations showed severe damage in the liver enzyme activities and increasing cholesterol level in infected animals. Melatonin co-treatment with antigen to the infected-hamster attenuated the increase of LPO and restored the activity of CAT and levels of hepatic GSH. Also, the biochemical damages in the liver and kidneys functions were reduced. The present study suggests that melatonin may be useful in combating free radical-induced damage due to infection toxicity. The immunization with previous antigens resulted in a remarkable improvement on the liver enzyme activities, which were increased after infection. Thus, vaccination of hamsters with antigens (both CAP and SWAP and melatonin treatment has more potent effect on the enhancement of antioxidant and biochemical of S. mansoni infected-hamster than each treatment separately. Immunization of the hamster with SWAP followed by melatonin was the best way among the other regime treatments to improve the biochemical and antioxidant parameters of the infected-hamsters

  2. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats.

    Directory of Open Access Journals (Sweden)

    M Garcés-Rimón

    Full Text Available The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications.

  3. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  4. [Action mechanism of electroacupuncture at stomach meridian acupoints for oxidative damage in rats with gastric ulcer].

    Science.gov (United States)

    Yang, Zongbao; Wang, Yadong; Liu, Qiong; Liu, Mi; Chen, Huijuan; Chang, Xiaorong

    2016-06-12

    To observe the effects of electroacupuncture (EA) at stomach meridian acupoints on expression of oxidation damage factors in serum and gastric mucosal cells in rats with gastric ulcer, and to explore the mechanism of EA at stomach meridian acupoints for oxidative damage in rats with gastric ulcer. Forty clean-grade SD rats were randomly divided into a normal group, a model group, a stomach meridian group and a gallbladder meridian group, ten rats in each one. Except the normal group, rats in the remaining groups were applied the restraint-cold stress method to establish the model of gastric ulcer. Rats in the normal group and model group received no treatment; rats in the stomach meridian group were treated with EA at "Liangmen" (ST 21) and "Zusanli" (ST 36); rats in the gallbladder meridian group were treated with EA at "Riyue" (GB 24) and "Yanglingquan" (GB 34). The EA was given for 30 min, once a day for 7 days totally. The change of gastric mucosal morphology was observed by routine light microscope; enzyme linked immunosorbent assay was used to detect the expressions of malondialdehyde (MDA), glutathione peroxidase (GSH-px) and tumor necrosis factor-α (TNF-α), interleukin-2(IL-2), interleukin-6(IL-6) in serum and gastric mucosal cells of rats. After treatment, compared with the model group, the gastric mucosal damage index was decreased in the stomach meridian group and gallbladder meridian group (both P stomach meridian group (all P stomach meridian group rats ( P stomach meridian acupoints is likely to inhibit the expressions of oxidative damage factors to promote the repair of gastric mucosal injury, which indicates the correlation between meridians and zang-fu .

  5. The Ameliorating Effect of Berberine-Rich Fraction against Gossypol-Induced Testicular Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Samar R. Saleh

    2018-01-01

    Full Text Available This study was aimed at evaluating the efficacy of berberine-rich fraction (BF as a protective and/or a therapeutic agent against inflammation and oxidative stress during male infertility. Sexually mature Sprague-Dawley male rats were divided into five groups treated with either corn oil, BF (100 mg/kg BW, orally, daily for 30 days, gossypol acetate (5 mg/kg BW, i.p. eight times for 16 days, BF alone for 14 days then coadministered with gossypol acetate for the next 16 days (protected group, or gossypol acetate for 16 days then treated with BF for 30 days (treated group. All animals completed the experimental period (46 days without obtaining any treatments in the gap period. Sperm parameters, oxidative index, and inflammatory markers were measured. Gossypol injection significantly decreased the semen quality and testosterone level that resulted from the elevation of testicular reactive oxygen and nitrogen species (TBARS and NO, TNF-α, TNF-α-converting enzyme, and interleukins (IL-1β, IL-6, and IL-18 by 230, 180, 12.5, 97.9, and 300%, respectively, while interleukin-12 and tissue inhibitors of metalloproteinases-3 were significantly decreased by 59 and 66%, respectively. BF (protected and treated groups significantly improved the semen quality, oxidative stress, and inflammation associated with male infertility. It is suitable to use more advanced studies to validate these findings.

  6. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis.

    Science.gov (United States)

    El-Missiry, Mohamed A; Othman, Azza I; Al-Abdan, Monera A; El-Sayed, Aml A

    2014-12-15

    Epidemiological reports have indicated a correlation between the increasing of bisphenol-A (BPA) levels in the environment and the incidence of neurodegenerative diseases. In the present study, the protective effect of melatonin on oxidative stress and the death receptor apoptotic proteins in the cerebrum of the bisphenol-A-treated rats were examined. Adult male rats were orally administered melatonin (10mg/kg bw) concurrently with BPA (50mg/kg bw) 3 days a week for 6 weeks. BPA exposure resulted in significant elevations of oxidative stress, as evidenced by the increased malondialdehyde level and the decreased glutathione level and superoxide dismutase activity in the cerebrum. BPA caused an upregulation of p53 and CD95-Fas and activation of capsases-3 and 8, resulting in cerebral cell apoptosis. Melatonin significantly attenuated the BPA-evoked brain oxidative stress, modulated apoptotic-regulating proteins and protected against apoptosis. These data suggest that melatonin modulated important steps in the death receptor apoptotic pathway which likely related to its redox control properties. Melatonin is a promising pharmacological agent for preventing the potential neurotoxicity of BPA following occupational or environmental exposures. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of Berberine on Amelioration of Hyperglycemia and Oxidative Stress in High Glucose and High Fat Diet-Induced Diabetic Hamsters In Vivo

    Directory of Open Access Journals (Sweden)

    Cong Liu

    2015-01-01

    Full Text Available This study investigated the effects of berberine on amelioration of hyperglycemia and hyperlipidemia and the mechanism involved in high glucose and high fat diet-induced diabetic hamsters. Golden hamsters fed with high glucose and high fat diet were medicated with metformin, simvastatin, and low or high dose of berberine (50 and 100 mg·kg−1 for 6 weeks. The results showed that the body weights were significantly lower in berberine-treated groups than control group. Histological analyses revealed that the treatment of berberine inhibited hepatic fat accumulation. Berberine significantly reduced plasma total cholesterol, triglyceride, free fatty acid, low density lipoprotein cholesterol, malondialdehyde, thiobarbituric acid-reactive substance, and 8-isoprostane level but significantly increased plasma superoxide dismutase activity. Glucose and insulin levels were significantly reduced in metformin and berberine-treated groups. Glucose tolerance tests documented that berberine-treated mice were more glucose tolerant. Berberine treatment increased expression of skeletal muscle glucose transporter 4 mRNA and significantly decreased liver low density lipoprotein receptor mRNA expression. The study suggested that berberine was effective in lowering blood glucose and lipids levels, reducing the body weight, and alleviating the oxidative stress in diabetic hamsters, which might be beneficial in reducing the cardiovascular risk factors in diabetes.

  9. Guidance for the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health (Revision 1)

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2018-01-01

    of additional health claim applications related to antioxidants, oxidative damage and cardiovascular health, and the information collected from a Grant launched in 2014. This guidance is intended to assist applicants in preparing applications for the authorisation of health claims related to the antioxidants......EFSA asked the Panel on Dietetic Products, Nutrition and Allergies (NDA) to update the guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health published in 2011. The update takes into accounts experiences gained with evaluation......, oxidative damage and cardiovascular health. The document was subject to public consultation (from 12 July to 3 September 2017). This document supersedes the guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health published in 2011...

  10. Increased urinary excretion of 8-oxo-2'-deoxyguanosine, a biomarker of oxidative DNA damage, in urban bus drivers

    DEFF Research Database (Denmark)

    Loft, S; Poulsen, H E; Vistisen, K

    1999-01-01

    Oxidative damage to DNA could be involved in the increased risk of cancer associated with exposure to polluted urban air, which contains a number of oxidants. CYP1A2 is induced by and metabolizes polyaromatic hydrocarbons (PAH) and aromatic amines and could modify effects of exposure to ambient air...... pollution. Similarly, DNA repair may be influenced by occupational and other exposures as well as modify the effect of DNA damaging agents. As part of a large investigation of the genotoxic burden to diesel exposed workers in transport sectors we studied oxidative DNA damage in 57 non-smoking bus drivers...... from the greater Copenhagen area. The drivers were studied on a workday and on a day off work. Comparisons were made between drivers from the central (n=30) and rural/suburban (n=27) areas of Copenhagen. The rate of oxidative DNA damage was estimated from 24 h urinary excretion of 8-oxo-2...

  11. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    Science.gov (United States)

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  12. Oxidative DNA damage in vitamin C-supplemented guinea pigs after intratracheal instillation of diesel exhaust particles

    DEFF Research Database (Denmark)

    Moller, P.; Daneshvar, B.; Loft, S.

    2003-01-01

    . The concentrations of ascorbate in liver, lung, and plasma were unaltered by the DEP exposure. The results indicate that in guinea pigs DEP causes oxidative DNA damage rather than bulky DNA adducts in the lung. Guinea pigs, which are similar to humans with respect to vitamin C metabolism, may serve as a new model...... for the study of oxidative damage induced by particulate matter. (C) 2003 Elsevier Science (USA). All rights reserved....

  13. Alpha-Lipoic acid counteracts the promoted oxidative DNA damage in the liver of septic rats

    International Nuclear Information System (INIS)

    Abd-Allah, Adel R.A.

    2006-01-01

    Viral, parasitic infections and chemical carcinogens are among the etiological factors of liver cancer. It seems important to study the initiating and promoting agents to evaluate the etiology and prevention of such life threatening disease. Intestine-derived bacteria product, lipopolysaccharide (LPS), is mainly detoxified by the liver. It has shown to induce a state of oxidative DNA damage is not fully investigated. Increased oxidative DNA damage and rate of cell proliferation may initiate or even promote cancer. In the present work, the capability of LPS to induce 8-hydroxydeoxyguanosine (8-HDG), a specific DNA adduct for oxidative DNA damage, in rat livers is tested. Furthermore, a possible protective effect of alpha lipoic acid (ALA) is also assessed. Investigated parameters are liver contents of glutathione (GSH), lipid peroxides (MDA), nitric oxide (NO) and 8-HDG in the liver-extracted DNA. Serum activities of ALT, AST and GGT as liver-function markers as well as IL2 are assessed. Moreover, liver histology is examined. LPS was given doses of 1, 3, 5, 7 and 9 mg/kg once i.p. while, the rat mortality was examined 24 hours later. ALA was given in doses of 50, 100 and 200 mg/kg once i.p. 3h before LPS is found to be 5mg/kg. LPS increased the level of 8-HDG, MDA and NO in the liver. It also induced acute liver necrosis and inflammatory cell infiltration as shown in liver-histopathology and in the significant increase in the activities of ALT, AST and GGT. LPS increased the serum level of IL2 as well. The dose 200mg/kg of ALA revealed a 100% protection against LPS-induced lethality. It also, prevented the LPS-induced increase in 8-HDG in liver extracted DNA, the liver contents of MDA and NO. ALA also rescued the LPS-induced GSH depletion. It corrected the liver function as shown by the prevention of increases in the activity of ALT, AST and GGT with a remarkable improvement in the liver histology. Moreover, it prevented the increase in serum level of IL2. These

  14. Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH

    Science.gov (United States)

    Pal, Anoop K.; Hsieh, Shu-Feng; Khatri, Madhu; Isaacs, Jacqueline A.; Demokritou, Philip; Gaines, Peter; Schmidt, Daniel F.; Rogers, Eugene J.; Bello, Dhimiter

    2014-02-01

    Several acellular assays are routinely used to measure oxidative stress elicited by engineered nanomaterials (ENMs), yet little comparative evaluations of such methods exist. This study compares for the first time the performance of the dichlorofluorescein (DCFH) assay which measures reactive oxygen species (ROS) generation, to that of the ferric-reducing ability of serum (FRAS) assay, which measures biological oxidant damage in serum. A diverse set of 28 commercially important and extensively characterized ENMs were tested on both the assays. Intracellular oxidative stress was also assessed on a representative subset of seven ENMs in THP-1 (phorbol 12-myristate 13-acetate matured human monocytes) cells. Associations between assay responses and ENM physicochemical properties were assessed via correlation and regression analysis. DCFH correlated strongly with FRAS after dose normalization for mass ( R 2 = 0.78) and surface area ( R 2 = 0.68). Only 10/28 ENMs were positive in DCFH versus 21/28 in FRAS. Both assays were strongly associated with specific surface area and transition metal content. Qualitatively, a similar response ranking was observed for acellular FRAS and intracellular reduced:oxidized glutathione ratio (GSH:GSSG) in cells. Quantitatively, weak correlation was found between intracellular GSSG and FRAS or DCFH ( R 2 < 0.25) even after calculating effective dose to cells. The FRAS assay was more sensitive than DCFH, especially for ENMs with low to moderate oxidative damage potential, and may serve as a more biologically relevant substitute for acellular ROS measurements of ENMs. Further in vitro and in vivo validations of FRAS against other toxicological endpoints with larger datasets are recommended.

  15. Ameliorative effects of 5-hydroxymethyl-2-furfural (5-HMF) from Schisandra chinensis on alcoholic liver oxidative injury in mice.

    Science.gov (United States)

    Li, Wei; Qu, Xin-Nan; Han, Ye; Zheng, Si-Wen; Wang, Jia; Wang, Ying-Ping

    2015-01-22

    The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF) on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg) for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase), AST (aspartate transaminase), TC (total cholesterol), TG (triglyceride), L-DLC (low density lipoprotein) in serum and the levels of MDA (malondialdehyde) in liver tissue, decreased significantly (p < 0.05) in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase), GSH-Px (glutathione peroxidase), and GSH SOD (superoxide dismutase) were markedly elevated in liver tissue treated with 5-HMF (p < 0.05). Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were significantly suppressed (p < 0.05). Histopathological examination revealed that 5-HMF (30 mg/kg) pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  16. Ameliorative Effects of 5-Hydroxymethyl-2-furfural (5-HMF from Schisandra chinensis on Alcoholic Liver Oxidative Injury in Mice

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-01-01

    Full Text Available The aim of this paper is to evaluate the protective effect of 5-hydroxymethyl-2-furfural (5-HMF on acute alcohol-induced liver oxidative injury in mice. 5-HMF, a maillard reaction product, was isolated from the fruits of Schisandra chinensis for animal experiments. Experimental ICR mice were pretreated with different doses of 5-HMF (7.5, 15, and 30 mg/kg for seven days by gavage feeding. Biochemical markers and enzymatic antioxidants from serum and liver tissue were examined. Our results showed that the activities of ALT (alanine aminotransferase, AST (aspartate transaminase, TC (total cholesterol, TG (triglyceride, L-DLC (low density lipoprotein in serum and the levels of MDA (malondialdehyde in liver tissue, decreased significantly (p < 0.05 in the 5-HMF-treated group compared with the alcohol group. On the contrary, enzymatic antioxidants CAT (catalase, GSH-Px (glutathione peroxidase, and GSH SOD (superoxide dismutase were markedly elevated in liver tissue treated with 5-HMF (p < 0.05. Furthermore, the hepatic levels of pro-inflammatory response marker tumor necrosis factor-alpha (TNF-α and interleukin-1β (IL-1β were significantly suppressed (p < 0.05. Histopathological examination revealed that 5-HMF (30 mg/kg pretreatment noticeably prevented alcohol-induced hepatocyte apoptosis and fatty degeneration. It is suggested that the hepatoprotective effects exhibited by 5-HMF on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  17. Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats

    Directory of Open Access Journals (Sweden)

    Ebaid Hossam

    2013-02-01

    Full Text Available Abstract This study investigated the protective effects of melatonin and folic acid against carbon tetrachloride (CCl4-induced hepatic injury in rats. Oxidative stress, liver function, liver histopathology and serum lipid levels were evaluated. The levels of protein kinase B (Akt1, interferon gamma (IFN-γ, programmed cell death-receptor (Fas and Tumor necrosis factor-alpha (TNF-α mRNA expression were analyzed. CCl4 significantly elevated the levels of lipid peroxidation (MDA, cholesterol, LDL, triglycerides, bilirubin and urea. In addition, CCl4 was found to significantly suppress the activity of both catalase and glutathione (GSH and decrease the levels of serum total protein and HDL-cholesterol. All of these parameters were restored to their normal levels by treatment with melatonin, folic acid or their combination. An improvement of the general hepatic architecture was observed in rats that were treated with the combination of melatonin and folic acid along with CCl4. Furthermore, the CCl4-induced upregulation of TNF-α and Fas mRNA expression was significantly restored by the three treatments. Melatonin, folic acid or their combination also restored the baseline levels of IFN-γ and Akt1 mRNA expression. The combination of melatonin and folic acid exhibited ability to reduce the markers of liver injury induced by CCl4 and restore the oxidative stability, the level of inflammatory cytokines, the lipid profile and the cell survival Akt1 signals.

  18. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease.

    Science.gov (United States)

    Singh, Preeti; Hanson, Peter S; Morris, Christopher M

    2017-06-02

    Sirtuins (SIRTs) are NAD + dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and α-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-кB and cPARP expression. SIRT1 reduced the formation of α-synuclein aggregates but showed minimal co-localisation with α-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.

  19. An association of cocoa consumption with improved physical fitness and decreased muscle damage and oxidative stress in athletes.

    Science.gov (United States)

    González-Garrido, José A; García-Sánchez, José R; Garrido-Llanos, Silvia; Olivares-Corichi, Ivonne M

    2017-04-01

    Several studies have demonstrated the protective effects of cocoa consumption, due to its anti-inflammatory and antioxidant properties. Acute exercise induces oxidative stress and causes muscular damage during training. This study was designed to examine the effect of cocoa consumption on the markers of muscle damage, oxidative stress and physical fitness in professional soccer players. Fifteen players (15-18 years old) were included in the study. Biochemical parameters, markers of muscle damage and oxidative stress, and physical performance were evaluated before and after cocoa consumption. Biochemical parameters determined the healthy metabolic status of the study group; biomarkers of muscle and oxidative damage were measured in blood to establish muscle and redox status. However, high levels of biomarkers of muscle damage were detected. Interestingly, cocoa consumption decreased the muscle damage biomarkers of CK and LDH by 39.4% and 23.03%, respectively. The redox status was modified by a decrease in oxidative damage (carbonyl groups, 26.31%; thiol groups, 27.52%; MDA, 32.42%) and an increase in total antioxidant capacity (15.98%) and GSH-Px activity (26.37%). In addition, we observed an increase in physical performance by 4% in the Cooper Test. Our findings suggest that a short period of cocoa consumption could be useful in maintaining a good physical fitness, due to the favourable effects on muscle and redox status in athletes during exhaustive exercise.

  20. Geraniol, alone and in combination with pioglitazone, ameliorates fructose-induced metabolic syndrome in rats via the modulation of both inflammatory and oxidative stress status.

    Directory of Open Access Journals (Sweden)

    Sherehan M Ibrahim

    Full Text Available Geraniol (GO potent antitumor and chemopreventive effects are attributed to its antioxidant and anti-inflammatory properties. In the current study, the potential efficacy of GO (250 mg/kg in ameliorating metabolic syndrome (MetS induced by fructose in drinking water was elucidated. Moreover, the effect of pioglitazone (5 and 10 mg/kg; PIO and the possible interaction of the co-treatment of GO with PIO5 were studied in the MetS model. After 4 weeks of treatment, GO and/or PIO reduced the fasting blood glucose and the glycemic excursion in the intraperitoneal glucose tolerance test. GO and PIO5/10 restrained visceral adiposity and partly the body weight gain. The decreased level of peroxisome proliferator activated receptor (PPAR-γ transcriptional activity in the visceral adipose tissue of MetS rats was increased by single treatment regimens. Though GO did not affect MetS-induced hyperinsulinemia, PIO5/10 lowered it. Additionally, GO and PIO5/10 suppressed glycated hemoglobin and the receptor for advanced glycated end products (RAGE. These single regimens also ameliorated hyperuricemia, the disrupted lipid profile, and the elevated systolic blood pressure evoked by MetS. The rise in serum transaminases, interleukin-1β, and tumor necrosis factor-α, as well as hepatic lipid peroxides and nitric oxide (NO was lowered by the single treatments to different extents. Moreover, hepatic non-protein thiols, as well as serum NO and adiponectin were enhanced by single regimens. Similar effects were reached by the combination of GO with PIO5; however, a potentiative interaction was noted on fasting serum insulin level, while synergistic effects were reflected as improved insulin sensitivity, as well as reduced RAGE and triglycerides. Therefore, GO via the transcriptional activation of PPAR-γ reduces inflammation and free radical injury produced by MetS. Thereby, these effects provide novel mechanistic insights on GO management of MetS associated critical

  1. Photo-oxidative damage to isolated rat liver mitochondria induced by phenothiazines

    Directory of Open Access Journals (Sweden)

    T. RODRIGUES

    2009-01-01

    Full Text Available

    Photosensitization is a well-known side-effect of phenothiazines that could involve photochemically promoted oxidative damage to mitochondria, leading to the impairment of metabolic functions and apoptosis. In this work, for the first time, we investigated the effects of photoexcited thioridazine (TR, trifluoperazine (TFP and fluphenazine (FP on isolated rat liver mitochondria. Under UV irradiation, the presence of these phenothiazines led to a dose-dependent lack of the respiratory control ratio. These effects were not accompanied by significant swelling and oxidation of protein thiol groups but were accompanied by lipid peroxidation. Lycopene and sorbate, well-known quenchers of singlet oxygen and triplet species, respectively, were ineffective at protecting mitochondrial lipids against the damage promoted by the excited phenothiazines, suggesting that photochemically-produced cation radicals were the prooxidant species. Corroborating this proposal, butylated hydroxytoluene (BHT completely inhibited the lipid peroxidation induced by UV irradiation in the presence of phenothiazines. These novel results make a significant contribution to the understanding of the photochemical properties of phenothiazines in biological systems. Keywords: Trifluoperazine, thioridazine, fluphenazine, rat liver mitochondria, oxidative stress, photochemistry, photodamage, respiratory chain.

  2. Oxidative stress induced damage in benign and malignant breast diseases: histopathological and biochemical aspects

    Directory of Open Access Journals (Sweden)

    Seema Khanna

    2012-04-01

    Full Text Available Increasing evidences indicate involvement of free radicals in the pathogenesis of benign and malignant breast diseases. Free radicals are highly reactive molecules and react with non–radicals in chain reaction leading to formation of new free radicals. If the defense mechanism of body fails to combat them, these free radicals pose a threat of injuring tissues by reacting with cell lipids. Lipids in the cell membrane undergo degradation to form hydroperoxides, which decompose to form a variety of products including malondialdehyde (MDA. MDA therefore was used as a marker to assess oxidative damage of cells and tissues. The aim of the present study was to assess the status of oxidative stress in the patients of benign and malignant breast diseases. Study has been made on the blood samples of 25 cases of benign breast disease and on an equal number of breast carcinoma patients. 20 healthy subjects were taken as the control cases.Mean MDA levels were significantly raised with depletion of antioxidant activity in all the patients in comparison to their control group suggesting the role of oxidative damage in the aetiopathogenesis of disease.

  3. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  4. Prdx6 Upregulation by Curcumin Attenuates Ischemic Oxidative Damage via SP1 in Rats after Stroke

    Directory of Open Access Journals (Sweden)

    Gongwei Jia

    2017-01-01

    Full Text Available Background. The role of Peroxiredoxin 6 (Prdx6 in brain ischemia remains unclear. Curcumin (Cur treatment elicits neuroprotective effects against cerebral ischemic injury, and the associated mechanisms may involve Prdx6. In this study, we investigated whether Prdx6 and the transcription factor specific protein 1 (SP1 were involved in the antioxidant effect of Cur after stoke. Methods. Focal cerebral ischemic injury was induced by transient middle cerebral artery occlusion for 2 hours in male Sprague-Dawley rats treated with or without Prdx6 siRNA. Expression of Prdx6 in the penumbra was assessed by Real-Time PCR (RT-PCR, Western blot analysis, and immunoflourescent staining. In addition, infarct volume, neurological deficit score, and oxidative stress were evaluated. Prdx6 levels were also determined in the presence and absence of SP1 antagonist mithramycin A (MTM-A. Results. Cur treatment upregulated Prdx6 protein expression and the number of Prdx6-positive neuronal cells 24 hours after reperfusion. Cur treatment also attenuated oxidative stress and induced neuroprotective effects against ischemic damage, whereas the beneficial effects of Cur treatment were lost in animals treated with Prdx6-siRNA. Prdx6 upregulation by Cur treatment was abolished by SP1 antagonists MTM. Conclusions. Prdx6 upregulation by Cur treatment attenuates ischemic oxidative damage through SP1 induction in rats after stroke. This represents a novel mechanism of Cur-induced neuroprotection against cerebral ischemia.

  5. Effect of complex polyphenols and tannins from red wine (WCPT) on chemically induced oxidative DNA damage in the rat.

    Science.gov (United States)

    Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P

    1999-08-01

    Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.

  6. Damage to Aspergillus fumigatus and Rhizopus oryzae Hyphae by Oxidative and Nonoxidative Microbicidal Products of Human Neutrophils In Vitro

    OpenAIRE

    Diamond, Richard D.; Clark, Robert A.

    1982-01-01

    Our previous studies established that human neutrophils could damage and probably kill hyphae of Aspergillus fumigatus and Rhizopus oryzae in vitro, primarily by oxygen-dependent mechanisms active at the cell surface. These studies were extended, again quantitating hyphal damage by reduction in uptake of 14C-labeled uracil or glutamine. Neither A. fumigatus nor R. oryzae hyphae were damaged by neutrophils from patients with chronic granulomatous disease, confirming the importance of oxidative...

  7. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage

    Science.gov (United States)

    Klungland, Arne; Rosewell, Ian; Hollenbach, Stephan; Larsen, Elisabeth; Daly, Graham; Epe, Bernd; Seeberg, Erling; Lindahl, Tomas; Barnes, Deborah E.

    1999-01-01

    DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency. PMID:10557315

  8. Effect of complex polyphenols and tannins from red wine on DNA oxidative damage of rat colon mucosa in vivo.

    Science.gov (United States)

    Giovannelli, L; Testa, G; De Filippo, C; Cheynier, V; Clifford, M N; Dolara, P

    2000-10-01

    Dietary polyphenols have been reported to have a variety of biological actions, including anti-carcinogenic, antioxidant and anti-inflammatory activities. In the present study we have evaluated the effect of an oral treatment with complex polyphenols and tannins from red wine and tea on DNA oxidative damage in the rat colon mucosa. Isolated colonocytes were prepared from the colon mucosa of rats treated for ten days with either wine complex polyphenols (57.2 mg/kg/d) or thearubigin (40 mg/kg/d) by oral gavage. Colonocyte oxidative DNA damage was analysed at the single cell level using a modification of the comet assay technique. The results show that wine complex polyphenols and tannins induce a significant decrease (-62% for pyrimidine and -57% for purine oxidation) in basal DNA oxidative damage in colon mucosal cells without affecting the basal level of single-strand breaks. On the other hand, tea polyphenols, namely a crude extract of thearubigin, did not affect either strand breaks or pyrimidine oxidation in colon mucosal cells. Our experiments are the first demonstration that dietary polyphenols can modulate in vivo oxidative damage in the gastrointestinal tract of rodents. These data support the hypothesis that dietary polyphenols might have both a protective and a therapeutic potential in oxidative damage-related pathologies.

  9. CURCUMIN IN COMBINATION WITH TRIPLE THERAPY REGIMES AMELIORATES OXIDATIVE STRESS AND HISTOPATHOLOGIC CHANGES IN CHRONIC GASTRITIS-ASSOCIATED HELICOBACTER PYLORI INFECTION.

    Science.gov (United States)

    Judaki, Arezu; Rahmani, Asghar; Feizi, Jalil; Asadollahi, Khairollah; Hafezi Ahmadi, Mohammad Reza

    2017-01-01

    Helicobacter pylori (H. pylori) gastric infection is a main cause of inflammatory changes and gastric cancers. The aim of this study was finding the effects of curcumin on oxidative stress and histological changes in chronic gastritis associated with H. pylori. In a randomized clinical trial, patients were divided into two groups: a standard triple therapy group and triple therapy with curcumin group. Endoscopic and histological examinations were measured for all patients before and after 8 weeks. Triple therapy with curcumin treatment group significantly decreased malondialdehyde markers, glutathione peroxides and increased total antioxidant capacity of the gastric mucosa at the end of study compared to baseline and triple regimen groups. In addition, the oxidative damage to DNA was significantly decreased in triple therapy with curcumin group at the end of study compared to baseline and compared to triple therapy (Pgastritis associated by H. pylori.

  10. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage

    DEFF Research Database (Denmark)

    Savorani, Cecilia; Manfé, Valentina; Biskup, Edyta

    2015-01-01

    (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored...... the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage....... Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma....

  11. Oxidative damage in liver after perinatal intoxication with lead and/or cadmium.

    Science.gov (United States)

    Massó, Elvira Luján; Corredor, Laura; Antonio, Maria Teresa

    2007-01-01

    Lead acetate (300 mg Pb/L) and/or cadmium acetate (10mg Cd/L) in blood and liver were administrated as drinking water to pregnant Wistar rats from day 1 of pregnancy to parturition (day 0) or until weaning (day 21), to investigate the toxic effects in blood and in the liver. Both metals produced mycrocitic anaemia in the pups as well as oxidative damage in the liver, as suggested by the significant increase in TBARS production and the high catalase activity. Moreover, intense alkaline and acid phosphatase activity, used as biomarkers of liver adaptation to damaging factors, was observed. In addition, the toxikinetics are different for Pb and Cd: while Cd is a hepatotoxic from day 0, Pb is not until day 21. Finally, simultaneous perinatal administration of both metals seems to protect, at least, in the liver TBARS production against the toxicity produced by Cd or Pb separately.

  12. Nigella sativa (black cumin) ameliorates potassium bromate-induced early events of carcinogenesis: diminution of oxidative stress.

    Science.gov (United States)

    Khan, Naghma; Sharma, Sonia; Sultana, Sarwat

    2003-04-01

    Potassium bromate (KBrO3) is a potent nephrotoxic agent. In this paper, we report the chemopreventive effect of Nigella sativa (black cumin) on KBrO3-mediated renal oxidative stress, toxicity and tumor promotion response in rats. KBrO3 (125 mg/kg body weight, intraperitoneally) enhances lipid peroxidation, gamma-glutamyl transpeptidase, hydrogen peroxide and xanthine oxidase with reduction in the activities of renal antioxidant enzymes and renal glutathione content. A marked increase in blood urea nitrogen and serum creatinine has also been observed. KBrO3 treatment also enhances ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into renal DNA. Prophylaxis of rats orally with Nigella sativa extract (50 mg/kg body weight and 100 mg/kg body weight) resulted in a significant decrease in renal microsomal lipid peroxidation (P stress, toxicity and tumour promotion response in rats.

  13. (−)-EPICATECHIN IMPROVES MITOCHONDRIAL RELATED PROTEIN LEVELS AND AMELIORATES OXIDATIVE STRESS IN DYSTROPHIC DELTA SARCOGLYCAN NULL MOUSE STRIATED MUSCLE

    Science.gov (United States)

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-01-01

    Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (−)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration. PMID:25284161

  14. Oxidative damage induced by heat stress could be relieved by nitric oxide in Trichoderma harzianum LTR-2.

    Science.gov (United States)

    Yu, Yang; Yang, Zijun; Guo, Kai; Li, Zhe; Zhou, Hongzi; Wei, Yanli; Li, Jishun; Zhang, Xinjian; Harvey, Paul; Yang, Hetong

    2015-04-01

    Trichoderma harzianum is an important commercial biocontrol fungal agent. The temperature has been shown to be an important parameter and strain-specific to the mycelia growth of fungi, but less report makes the known of the mechanisms in T. harzianum. In our study, a 6-h treatment of heat increased the thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) concentration in mycelia to 212 and 230 % the level of the control, respectively. The exogenous NO donor sodium nitroprusside (150 μM) reduced the TBARS concentration to 53 % of that under heat stress (HS). At the same time, the NO-specific scavenger at 250 μM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxyl-3-oxide, prevented the exogenous NO-relieved TBARS accumulation under HS. The increased NO concentration under HS was reduced 41 % by the NO synthase (NOS) inhibitor L-N(G)-nitroarginine methyl ester, but not the nitrate reductase (NR) inhibitor tungstate. Our study exhibited that NO can protect the mycelia of T. harzianum from HS and reduce the oxidative damage by enhancing the activity of NOS and NR.

  15. Seasonal variability of oxidative stress markers in city bus drivers. Part II. Oxidative damage to lipids and proteins.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2008-07-03

    The aim of the present study was to investigate the seasonal variability of markers of oxidative damage to lipids (15-F2t-isoprostane, 15-F2t-IsoP) and proteins (protein carbonyl levels) in 50 bus drivers and 50 controls from Prague, Czech Republic, and to identify factors affecting oxidative stress markers. The samples were collected in three seasons with different levels of air pollution. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter, PM2.5 and PM10, and volatile organic compounds, VOC) was monitored by personal and/or stationary monitors. For the analysis of both markers, ELISA techniques were used. The median levels of individual markers in bus drivers versus controls were as follows: 15-F2t-IsoP (nmol/mmol creatinine): winter 2005, 0.81 versus 0.68 (pbus drivers in winter seasons, but not in summer. Lipid peroxidation was positively correlated with c-PAHs and PM exposure; protein oxidation correlated negatively and was highest in summer suggesting another factor(s) affecting protein carbonyl levels.

  16. Moderate Dose of Trolox Preventing the Deleterious Effects of Wi-Fi Radiation on Spermatozoa In vitro through Reduction of Oxidative Stress Damage

    Science.gov (United States)

    Ding, Shang-Shu; Sun, Ping; Zhang, Zhou; Liu, Xiang; Tian, Hong; Huo, Yong-Wei; Wang, Li-Rong; Han, Yan; Xing, Jun-Ping

    2018-01-01

    Background: The worsening of semen quality, due to the application of Wi-Fi, can be ameliorated by Vitamin E. This study aimed to demonstrate whether a moderate dose of trolox, a new Vitamin E, inhibits oxidative damage on sperms in vitro after exposure to Wi-Fi radiation. Methods: Each of the twenty qualified semen, gathered from June to October 2014 in eugenics clinic, was separated into four aliquots, including sham, Wi-Fi-exposed, Wi-Fi plus 5 mmol/L trolox, and Wi-Fi plus 10 mmol/L trolox groups. At 0 min, all baseline parameters of the 20 samples were measured in sequence. Reactive oxygen species, glutathione, and superoxide dismutase were evaluated in the four aliquots at 45 and 90 min, as were sperm DNA fragments, sperm mitochondrial potential, relative amplification of sperm mitochondrial DNA, sperm vitality, and progressive and immotility sperm. The parameters were analyzed by one-way analysis of variance and Tukey's posttest. Results: Among Wi-Fi plus 5 mmol/L trolox, Wi-Fi-exposed and Wi-Fi plus 10 mmol/L trolox groups, reactive oxygen species levels (45 min: 3.80 ± 0.41 RLU·10−6·ml−1 vs. 7.50 ± 0.35 RLU·10−6·ml−1 vs. 6.70 ± 0.47 RLU·10−6·ml−1, P Fi plus 5 mmol/L trolox group at 45 and 90 min, respectively. Other parameters were not affected, while the sham group maintained the baseline. Conclusion: This study found that 5 mmol/L trolox protected the Wi-Fi-exposed semen in vitro from the damage of electromagnetic radiation-induced oxidative stress. PMID:29451144

  17. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    Science.gov (United States)

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  18. Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed indian mustard (brassica juncea) plants

    International Nuclear Information System (INIS)

    Yousuf, P. Y.; Ahmad, A.; Hemant, M.; Ganie, A. H.; Iqbal, M.; Aref, I. M.

    2015-01-01

    The effect of potassium (K) and calcium (Ca) on growth and antioxidant defence system of salt-stressed Indian mustard plants was studied. Twenty-day-old Indian mustard plants grown hydroponically in Hoagland growth medium were randomly divided into five groups. To served as control and did not receive any additional K or Ca (except that present in Hoagland solution), T1 received 150 mM NaCl, T2 was given an additional doze of 6 mM K, T3 was given 5.6 mM Ca as additional doze, while as T4 received a combination of 150 mM NaCl + 6 mM K + 5.6 mM Ca. The response of the plants was studied ten days after treatment. Salt stress inhibited growth parameters including biomass, chlorophyll content, protein content and NR activity. Membrane damage was induced by the salt treatment with a concurrent increase in antioxidant defence system and proline content. Individual application of K and Ca mitigated the negative influence of the stress with the maximum alleviating potential exhibited by the combined application of these nutrients. Results obtained on real time expression of genes encoding enzymatic antioxidants (SOD, APX, CAT and GR), NR and proline supported our findings with biochemical assays. We conclude from the study that maintaining high K and Ca levels may serve as an effective means for regulating the growth and productivity of Indian mustard plants under saline conditions. (author)

  19. Gymnaster koraiensis and its major components, 3,5-di-O-caffeoylquinic acid and gymnasterkoreayne B, reduce oxidative damage induced by tert-butyl hydroperoxide or acetaminophen in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Eun Hye Jho

    2013-10-01

    Full Text Available We investigated the protective effects of Gymnaster koraiensisagainst oxidative stress-induced hepatic cell damage. We usedtwo different cytotoxicity models, i.e., the administration oftert-butyl hydroperoxide (t-BHP and acetaminophen, in HepG2cells to evaluate the protective effects of G. koraiensis. The ethylacetate (EA fraction of G. koraiensis and its major compound,3,5-di-O-caffeoylquinic acid (DCQA, exerted protective effectsin the t-BHP-induced liver cytotoxicity model. The EA fractionand DCQA ameliorated t-BHP-induced reductions in GSHlevels and exhibited free radical scavenging activity. The EAfraction and DCQA also significantly reduced t-BHP-inducedDNA damage in HepG2 cells. Furthermore, the hexane fractionof G. koraiensis and its major compound, gymnasterkoreayne B(GKB, exerted strong hepatoprotection in the acetaminopheninducedcytotoxicity model. CYP 3A4 enzyme activity wasstrongly inhibited by the extract, hexane fraction, and GKB. Thehexane fraction and GKB ameliorated acetaminophen-inducedreductions in GSH levels and protected against cell death. [BMBReports 2013; 46(10: 513-518

  20. A chronic increase of corticosterone age-dependently reduces systemic DNA damage from oxidation in rats

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Kalliokoski, Otto; Forsberg, Kristin

    2017-01-01

    Stress and depression are associated with an acceleration of brain and bodily aging; effects which have been attributed to chronic elevations of glucocorticoids. We tested the hypothesis that a three week administration of stress-associated levels of corticosterone (CORT, the principal rodent...... glucocorticoid) would increase systemic and CNS DNA and RNA damage from oxidation; a phenomenon known to be centrally involved in the aging process. We also hypothesized that older individuals would be more sensitive to this effect and that the chronic CORT administration would exacerbate age-related memory...

  1. Guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health

    DEFF Research Database (Denmark)

    Tetens, Inge

    2011-01-01

    The Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked by the European Food Safety Authority (EFSA) t to draft guidance on scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health. This guidance has been drawn from scientific...... opinions of the NDA Panel on such health claims. Thus, this guidance document represents the views of the NDA Panel based on the experience gained to date with the evaluation of health claims in these areas. It is not intended that the document should include an exhaustive list of beneficial effects...