Sample records for ambient seismic noise

  1. Ambient Seismic Noise Tomography of Southern Norway (United States)

    Köhler, Andreas; Weidle, Christian; Maupin, Valerie


    The noise cross-correlation technique is especially useful in regions like southern Norway since local seismicity is rare and teleseismic records are not able to resolve the upper crust. Within the TopoScandiaDeep project, which aims to investigate the relation between surface topography and lithosphere-asthenosphere structure, we process seismic broadband data from the temporary MAGNUS network in Southern Norway. The receivers were recording 20 months of continuous data between September 2006 and June 2008. Additionally, permanent stations of the National Norwegian Seismic Network, NORSAR and GSN stations in the region are used. After usual preprocessing steps (filtering, prewhitening, temporal normalization), we compute 820 cross-correlation functions from 41 receivers for three month time windows. Evaluation of the azimuthal and temporal variation of signal to noise ratios and f-k analysis of NORSAR array data shows that the dominant propagation direction of seismic noise is south-west to north, corresponding well to the Norwegian coast line. During summer months, the signal to noise ratios decrease and the azimuthal distribution becomes smoother. Time-frequency analysis is applied to measure Rayleigh and Love wave group velocity dispersion curves between each station pair for each three-month correlation stack. The mean and variance of all dispersion curves is computed for each path. After rejection of low-quality data using a signal to noise ratio, minimum wavelength and velocity variance criterion, we obtain a large number of reliable velocity estimates (about 600) for periods between 2 and 15 seconds, which we invert for group velocity maps at respective periods. At all inverted periods, we find positive and negative velocity anomalies for Rayleigh and Love waves that correlate very well with local surface geology. While higher velocities (+5%) can be associated with the Caledonian nappes in the central part of southern Norway, the Oslo Graben is reflected

  2. The persistent signature of tropical cyclones in ambient seismic noise (United States)

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M. E.; Ekström, Göran


    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  3. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia


    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  4. Improving Seismic Velocity Models with Constraints from Autocorrelation of Ambient Seismic Noise and Signal (United States)


    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0098 TR-2016-0098 IMPROVING SEISMIC VELOCITY MODELS WITH CONSTRAINTS FROM AUTOCORRELATION OF AMBIENT SEISMIC ...TYPE Final Report 3. DATES COVERED (From - To) 24 Apr 2014 – 24 Mar 2016 4. TITLE AND SUBTITLE Improving Seismic Velocity Models with Constraints from...Autocorrelation of Ambient Seismic Noise and Signal 5a. CONTRACT NUMBER FA9453-14-C-0214 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6

  5. A high-resolution ambient seismic noise model for Europe (United States)

    Kraft, Toni


    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. Due to this development an increasing number of seismic monitoring networks are being installed in densely populated areas with strongly heterogeneous, and unfavorable ambient noise conditions. This poses a major challenge on the network design process, which aims to find the sensor geometry that optimizes the

  6. Investigation of ambient seismic noise using seismic interferometry in western Montana (United States)

    Krzywosz, Natalia

    Passive seismic interferometry is a process by which ambient noise data recorded at different seismic stations can be cross-correlated to estimate Green's functions. In the past, both surface waves and body waves have successfully been extracted by cross-correlation of ambient noise data on both regional and global scales. In this study, I have generated Matlab code to simulate an application of seismic interferometry on a synthetic model with pre-defined layers and p-wave velocities. For areas with known velocity models, the Matlab code produced in this study can be used to generate synthetic seismograms, and model the effects of cross-correlation on receiver responses. In order to develop a general understanding of the ambient noise wavefield in western Montana, a spectral analysis program was developed in Matlab. This program is used to process ambient noise data from the Transportable Array (TA) Seismographic Network, and to generate its power spectral density plots and probability density functions. The detailed spectral analysis provides some insight to the ambient noise sources, and their energy distribution throughout western Montana. In addition, an attempt was made to preprocess ambient noise data from the TA array in Matlab for later use. Although preprocessing of the data was successful, limitations in computing power and time, allowed for temporal stacking of only one month of data. The one month period was not long enough to produce Green's functions which contain coherent body waves.

  7. MSNoise: a Python Package for Monitoring Seismic Velocity Changes using Ambient Seismic Noise (United States)

    Lecocq, Thomas; Caudron, Corentin; Brenguier, Florent


    We present MSNoise, a complete software suite to compute relative seismic velocity changes under a seismic network, using ambient seismic noise. The whole is written in Python, from the monitoring of data archives, to the production of high quality figures. All steps have been optimized to only compute the necessary steps and to use 'job'-based processing. All steps can be changed by matching the in/outs. MSNoise exposes an API for communication with the data archive and the database. We present a validation of the software on a dataset acquired during the UnderVolc project on the Piton de la Fournaise Volcano, La Réunion Island, France, for which precursory relative changes of seismic velocity are visible for three eruptions betwee 2009 and 2011. MSNoise is available on

  8. Development of a low cost method to estimate the seismic signature of a geothermal field form ambient noise analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Tibuleac, Ileana [Univ. of Nevada, Reno, NV (United States)


    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. The material included in this report demonstrates that, with the advantage of initial S-velocity models estimated from ambient noise surface waves, the seismic reflection survey, although with lower resolution, reproduces the results of the active survey when the ambient seismic noise is not contaminated by strong cultural noise. Ambient noise resolution is less at depth (below 1000m) compared to the active survey. In general, the results are promising and useful information can be recovered from ambient seismic noise, including dipping features and fault locations.

  9. Detection capability of the IMS seismic network based on ambient seismic noise measurements (United States)

    Gaebler, Peter J.; Ceranna, Lars


    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  10. Rayleigh wave tomography in North-China from ambient seismic noise


    Fang, Lihua


    2008/2009 The theory and methodology of ambient noise tomography has been studied and applied to North-China successfully. Continuous vertical-component seismograms, spanning the period from January 1, 2007 to February 28, 2008 recorded by 190 broadband stations and 10 very broadband stations, have been used. The cross correlation technique has been applied to ambient noise data recorded by North-China Seismic Array for each station pairs of the array. Rayleigh wave group ve...

  11. Crustal structure of Australia from ambient seismic noise tomography (United States)

    Saygin, Erdinc; Kennett, B. L. N.


    Surface wave tomography for Australian crustal structure has been carried out using group velocity measurements in the period range 1-32 s extracted from stacked correlations of ambient noise between station pairs. Both Rayleigh wave and Love wave group velocity maps are constructed for each period using the vertical and transverse component of the Green's function estimates from the ambient noise. The full suite of portable broadband deployments and permanent stations on the continent have been used with over 250 stations in all and up to 7500 paths. The permanent stations provide a useful link between the various shorter-term portable deployments. At each period the group velocity maps are constructed with a fully nonlinear tomographic inversion exploiting a subspace technique and the Fast Marching Method for wavefront tracking. For Rayleigh waves the continental coverage is good enough to allow the construction of a 3D shear wavespeed model in a two stage approach. Local group dispersion information is collated for a distribution of points across the continent and inverted for a 1D SV wavespeed profile using a Neighbourhood Algorithm method. The resulting set of 1D models are then interpolated to produce the final 3D wavespeed model. The group velocity maps show the strong influence of thick sediments at shorter periods, and distinct fast zones associated with cratonic regions. Below the sediments the 3D shear wavespeed model displays significant heterogeneity with only moderate correlation with surface tectonic features. For example, there is no evident expression of the Tasman Line marking the eastern edge of Precambrian outcrop. The large number of available inter-station paths extracted from the ambient noise analysis provide detailed shear wavespeed information for crustal structure across the Australian continent for the first time, including regions where there was no prior sampling because of difficult logistics.

  12. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise (United States)

    Ye, F.; Lyu, S.; Lin, J.


    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  13. Transdimensional, hierarchical, Bayesian inversion of ambient seismic noise: Australia (United States)

    Crowder, E.; Rawlinson, N.; Cornwell, D. G.


    We present models of crustal velocity structure in southeastern Australia using a novel, transdimensional and hierarchical, Bayesian inversion approach. The inversion is applied to long-time ambient noise cross-correlations. The study area of SE Australia is thought to represent the eastern margin of Gondwana. Conflicting tectonic models have been proposed to explain the formation of eastern Gondwana and the enigmatic geological relationships in Bass Strait, which separates Tasmania and the mainland. A geologically complex area of crustal accretion, Bass Strait may contain part of an exotic continental block entrained in colliding crusts. Ambient noise data recorded by an array of 24 seismometers is used to produce a high resolution, 3D shear wave velocity model of Bass Strait. Phase velocity maps in the period range 2-30 s are produced and subsequently inverted for 3D shear wave velocity structure. The transdimensional, hierarchical Bayesian, inversion technique is used. This technique proves far superior to linearised inversion. The inversion model is dynamically parameterised during the process, implicitly controlled by the data, and noise is treated as an inversion unknown. The resulting shear wave velocity model shows three sedimentary basins in Bass Strait constrained by slow shear velocities (2.4-2.9 km/s) at 2-10 km depth. These failed rift basins from the breakup of Australia-Antartica appear to be overlying thinned crust, where typical mantle velocities of 3.8-4.0 km/s occur at depths greater than 20 km. High shear wave velocities ( 3.7-3.8 km/s) in our new model also match well with regions of high magnetic and gravity anomalies. Furthermore, we use both Rayleigh and Love wave phase data to to construct Vsv and Vsh maps. These are used to estimate crustal radial anisotropy in the Bass Strait. We interpret that structures delineated by our velocity models support the presence and extent of the exotic Precambrian micro-continent (the Selwyn Block) that was

  14. Frequency Dependent Polarization Analysis of Ambient Seismic Noise Recorded at Broadband Seismometers (United States)

    Koper, K.; Hawley, V.


    Analysis of ambient seismic noise is becoming increasingly relevant to modern seismology. Advances in computational speed and storage have made it feasible to analyze years and even decades of continuous seismic data in short amounts of time. Therefore, it is now possible to perform longitudinal studies of station performance in order to identify degradation or mis-installation of seismic equipment. Long-term noise analysis also provides insight into the evolution of the ocean wave climate, specifically whether the frequency and intensity of storms have changed as global temperatures have changed. Here we present a new approach to polarization analysis of seismic noise recorded by three-component seismometers. Essentially, eigen-decomposition of the 3-by-3 Hermitian spectral matrix associated with a sliding window of data is applied to yield various polarization attributes as a function of time and frequency. This in turn yields fundamental information about the composition of seismic noise, such as the extent to which it is polarized, its mode of propagation, and the direction from which it arrives at the seismometer. The polarization attributes can be viewed as function of time or binned over 2D frequency-time space to deduce regularities in the ambient noise that are unbiased by transient signals from earthquakes and explosions. We applied the algorithm to continuous data recorded in 2009 by the seismic station SLM, located in central North America. A rich variety of noise sources was observed. At low frequencies (3 Hz), Rayleigh-type energy was again dominant, in the form of Rg waves created by nearby cultural activities. Analysis of the time dependence of noise power shows that a frequency range of at least 0.02-1.0 Hz (much larger than the microseism band) is sensitive to annual, meteorologically induced sources of noise. We are currently applying our technique to selected seismometers from USArray and the University of Utah Seismic Network.

  15. Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary)

    Czech Academy of Sciences Publication Activity Database

    Szanyi, G.; Gráczer, Z.; Györi, E.; Kaláb, Zdeněk; Lednická, Markéta


    Roč. 173, č. 8 (2016), s. 2913-2928 ISSN 0033-4553 Institutional support: RVO:68145535 Keywords : seismic interferometry * ambient noise * group velocity * tomography * landslide * high bank Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016

  16. The crustal structure beneath the Netherlands inferred from ambient seismic noise

    NARCIS (Netherlands)

    Yudistira, T.


    A 3-D shear velocity model of the crust beneath the Netherlands is determined from fundamental mode Rayleigh and Love wave group measurements derived from ambient seismic noise recordings. The data are obtained from a temporary array of broad-band seismometers in and around the Netherlands (the

  17. Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise (United States)

    Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin


    Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the

  18. Ambient Noise Tomography Applied to Nodal Data Sets in Induced Seismicity Regions (United States)

    Sufri, O.; DeShon, H. R.; Ogwari, P.; Hayward, C.; Magnani, M. B.


    We present results of ambient noise tomography performed using nodal datasets with different array apertures and geometries deployed in northern Texas and northern Oklahoma to capture induced earthquakes. We show that ambient noise tomography techniques can be performed on small aperture, oddly shaped array datasets. In northern Texas, the nodal data was collected on 10 Hz single-component vertical sensors that were deployed from the collaboration between SMU and Nodal Seismic. The data was acquired between 25 February and 8 March 2014. First, we compute the cross-correlation between the geophone pairs, which are used as Green's functions to perform ambient noise tomography, and find acceptable results between 0.3-1.0 seconds. We compute the phase velocities for these periods and invert the phase velocities to obtain shear wave velocity structure for up to depths of 200 meters underneath the array. The small aperture of the array (2.6 km x 2.92 km) limits depth resolution. The resulting shear wave velocity model is then used as a shallow velocity constraint to improve double-difference local earthquake tomography using the earthquake data from a co-located local seismic network. We present tomography results aimed at resolving 3D velocity heterogeneity associated with the 2013-2015 Azle-Reno induced earthquake sequence. These techniques are also applied to conduct ambient noise tomography in northern Oklahoma using the IRIS Wavefield Community Experiment data. This data was acquired between 23 June and 20 July 2016 from a larger (6 km x 14 km) aperture array consisting of 5 Hz 3-component nodes. Because the aperture of Wavefield network was larger than the north Texas array, we expect to resolve shear velocity to greater depth and provide 3D information on near surface velocity heterogeneity, and possibly resolve faulting associated with earthquakes beneath the array.

  19. Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland) (United States)

    Obermann, A.; Kraft, T.; Larose, E.; Wiemer, S.


    The failures of two recent deep geothermal energy projects in Switzerland (Basel, 2006; St. Gallen, 2013) have again highlighted that one of the key challenges for the successful development and operation of deep underground heat exchangers is to control the risk of inducing potentially hazardous seismic events. In St. Gallen, after an injection test and two acid injections that were accompanied by a small number of micro-earthquakes (MLkick). The "killing" procedures that had to be initiated following standard drilling procedures led to a ML3.5 earthquake. With ambient seismic noise cross correlations from nine stations, we observe a significant loss of waveform coherence that we can horizontally and vertically constrain to the injection location of the fluid. The loss of waveform coherence starts with the onset of the fluid injections 4 days prior to the gas kick. We interpret the loss of coherence as a local perturbation of the medium. We show how ambient seismic noise analysis can be used to assess the aseismic response of the subsurface to geomechanical well operations and how this method could have helped to recognize the unexpected reservoir dynamics at an earlier stage than the microseismic response alone, allowed.

  20. Potential of ambient seismic noise techniques to monitor injection induced subsurface changes (United States)

    Obermann, A.; Kraft, T.; Wiemer, S.


    The failures of two recent deep geothermal energy projects in Switzerland (Basel, 2006; St. Gallen, 2013) have again highlighted that one of the key challenges for the successful development and operation of deep underground heat exchangers is to control the risk of inducing potentially hazardous seismic events. In St. Gallen, after an injection test and two acid injections that were accompanied by a small number of micro-earthquakes (ML kick). The "killing" procedures that had to be initiated following standard drilling procedures led to a ML3.5 earthquake. With ambient seismic noise cross correlations from nine stations, we observe a significant loss of waveform coherence that we can horizontally and vertically constrain to the injection location of the fluid. The loss of waveform coherence starts with the onset of the fluid injections 4 days prior to the gas kick. We interpret the loss of coherence as a local perturbation of the medium. We show how ambient seismic noise analysis can be used to assess the aseismic response of the subsurface to geomechanical well operations and how this method could have helped to recognize the unexpected reservoir dynamics at an earlier stage than the microseismic response alone, allowed.

  1. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise. (United States)

    Chaves, Esteban J; Schwartz, Susan Y


    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.

  2. Seismic tomography and ambient noise reflection interferometry on Reykjanes, SW Iceland (United States)

    Jousset, Philippe; Verdel, Arie; Ágústsson, Kristján; Blanck, Hanna; Franke, Steven; Metz, Malte; Ryberg, Trond; Weemstra, Cornelius; Hersir, Gylfi; Bruhn, David


    Recent advances in volcano-seismology and seismic noise interferometry have introduced new processing techniques for assessing subsurface structures and controls on fluid flow in geothermal systems. We present tomographic results obtained from seismic data recorded around geothermal reservoirs located both on-land Reykjanes, SW-Iceland and offshore along Reykjanes Ridge. We gathered records from a network of 234 seismic stations (including 24 Ocean Bottom Seismometers) deployed between April 2014 and August 2015. In order to determine the orientation of the OBS stations, we used Rayleigh waves planar particle motions from large magnitude earthquakes. This method proved suitable using the on-land stations: orientations determined using this method with the orientations measured using a giro-compass agreed. We obtain 3D velocity images from two fundamentally different tomography methods. First, we used local earthquakes to perform travel time tomography. The processing includes first arrival picking of P- and S- phases using an automatic detection and picking technique based on Akaike Information Criteria. We locate earthquakes by using a non-linear localization technique, as a priori information for deriving a 1D velocity model. We then computed 3D velocity models of velocities by joint inversion of each earthquake's location and lateral velocity anomalies with respect to the 1D model. Our models confirms previous models obtained in the area, with enhanced details. Second, we performed ambient noise cross-correlation techniques in order to derive an S velocity model, especially where earthquakes did not occur. Cross-correlation techniques involve the computation of cross- correlation between seismic records, from which Green's functions are estimated. Surface wave inversion of the Green's functions allows derivation of an S wave velocity model. Noise correlation theory furthermore shows that zero-offset P-wave reflectivity at selected station locations can be

  3. Ambient noise tomography across Mount St. Helens using a dense seismic array

    KAUST Repository

    Wang, Yadong


    We investigated upper crustal structure with data from a dense seismic array deployed around Mount St. Helens for 2 weeks in the summer of 2014. Interstation cross correlations of ambient seismic noise data from the array were obtained, and clear fundamental mode Rayleigh waves were observed between 2.5 and 5 s periods. In addition, higher-mode signals were observed around 2 s period. Frequency-time analysis was applied to measure fundamental mode Rayleigh wave phase velocities, which were used to invert for 2-D phase velocity maps. An azimuth-dependent traveltime correction was implemented to mitigate potential biases introduced due to an inhomogeneous noise source distribution. Reliable phase velocity maps were only obtained between 3 and 4 s periods due to limitations imposed by the array aperture and higher-mode contamination. The phase velocity tomography results, which are sensitive to structure shallower than 6 km depth, reveal an ~10–15% low-velocity anomaly centered beneath the volcanic edifice and peripheral high-velocity anomalies that likely correspond to cooled igneous intrusions. We suggest that the low-velocity anomaly reflects the high-porosity mixture of lava and ash deposits near the surface of the edifice, a highly fractured magmatic conduit and hydrothermal system beneath the volcano, and possibly a small contribution from silicate melt.

  4. Crustal Structure of the Gulf of Aden Continental Margins, from Afar to Oman, by Ambient Noise Seismic Tomography (United States)

    Korostelev, F.; Weemstra, C.; Boschi, L.; Leroy, S. D.; Ren, Y.; Stuart, G. W.; Keir, D.; Rolandone, F.; Ahmed, A.; Al Ganad, I.; Khanbari, K. M.; Doubre, C.; Hammond, J. O. S.; Kendall, J. M.


    Continental rupture processes under mantle plume influence are still poorly known although extensively studied. The Gulf of Aden presents volcanic margins to the west, where they are influenced by the Afar hotspot, and non volcanic margins east of longitude 46° E. We imaged the crustal structure of the Gulf of Aden continental margins from Afar to Oman to evaluate the role of the Afar plume on the evolution of the passive margin and its extent towards the East. We use Ambient Noise Seismic Tomography to better understand the architecture and processes along the Gulf of Aden. This recent method, developed in the last decade, allows us to study the seismic signal propagating between two seismic stations. Ambient Noise Seismic Tomography is thus free from artifacts related to the distribution of earthquakes. We collected continuous records from about 200 permanent or temporary stations since 1999 to compute Rayleigh phase velocity maps over the Gulf of Aden.

  5. Directionality analysis and Rayleigh wave tomography of ambient seismic noise in southern Norway (United States)

    Köhler, Andreas; Weidle, Christian; Maupin, Valérie


    We process seismic broad-band data from southern Norway by cross correlation of ambient seismic noise in view of getting a better image of the crustal structure in the area. The main data set sterns from the temporary MAGNUS network which operated continuously from 2006 September to 2008 June. Additionally, data from permanent stations of the National Norwegian Seismic Network, the NORSAR array and GSN stations in the region are used. We compute vertical component cross-correlation functions using 41 receivers for 3-month time windows. Evaluation of the azimuthal and temporal variation of signal-to-noise ratios (SNRs) and f-k analysis of data from NORSAR array between 3 and 25 s period shows that the dominant source areas of seismic noise are located to the west and north of the network during most of the measurement time, which corresponds well to the Norwegian coast line. During summer months, the SNRs decrease but the azimuthal distribution becomes more uniform between 7 and 12 s period, suggesting a more diffuse character of the wavefield. Primary ocean microseisms above 12 s show different dominant source azimuths during this time period compared to the winter months. Time-frequency analysis is applied to measure Rayleigh wave group velocity dispersion curves between each station pair for each 3-month correlation stack and the mean and variance of all dispersion curves is computed for each path. After rejection of low-quality data, a careful analysis shows that the group velocities are not biased by noise directionality. We invert the data for group velocity maps at period bands between 3 and 25 s. At short periods, we find an average Rayleigh wave group speed of about 3 km s-1 and velocity anomalies that correlate very well with local surface geology. While higher velocities (+5 per cent) can be associated with the Caledonian nappes in the central part of southern Norway, the Oslo Graben is reflected by negative velocity anomalies (-3 to -5 per cent). At

  6. Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary) (United States)

    Szanyi, Gyöngyvér; Gráczer, Zoltán; Győri, Erzsébet; Kaláb, Zdeněk; Lednická, Markéta


    Loess high banks along the right side of the Danube in Hungary are potential subjects of landslides. Small scale ambient seismic noise tomography was used at the Dunaszekcső high bank. The aim of the study was to map near surface velocity anomalies since we assume that the formation of tension cracks—which precede landslides—are represented by low velocities. Mapping Rayleigh wave group velocity distribution can help to image intact and creviced areas and identify the most vulnerable sections. The study area lies at the top of the Castle Hill of Dunaszekcső, which was named after Castellum Lugio, a fortress of Roman origin. The presently active head scarp was formed in April 2011, and our study area was chosen to be at its surroundings. Cross-correlation functions of ambient noise recordings were used to retrieve the dispersion curves, which served as the input of the group velocity tomography. Phase cross-correlation and time-frequency phase weighted stacking was applied to calculate the cross-correlation functions. The average Rayleigh wave group velocity at the loess high bank was found to be 171 ms^{-1}. The group velocity map at a 0.1 s period revealed a low-velocity region, whose location coincides with a highly creviced area, where slope failure takes place along a several meter wide territory. Another low velocity region was found, which might indicate a previously unknown loosened domain. The highest velocities were observed at the supposed remnants of Castellum Lugio.

  7. Uppermost mantle and crustal structure at Tristan da Cunha derived from ambient seismic noise (United States)

    Ryberg, T.; Geissler, W. H.; Jokat, W.; Pandey, S.


    According to classical plume theory, the Tristan da Cunha hotspot, located ∼400 km east off the Mid-Atlantic Ridge, is thought to have played a major role in the rifting while creating an aseismic Walvis Ridge during and after the breakup of the South Atlantic margins. Volcanic activity on the Tristan da Cunha Island shows that the hotspot might still be there influencing the upper mantle and crustal structure. In this study we present ambient noise data from 24 broadband OBS around Tristan da Cunha and a seismic station on Nightingale Island, which provide first constraints on the crustal and uppermost mantle structure around the island. By combining ambient noise techniques, dispersion curve analysis of Rayleigh waves, 2D tomographic inversion of travel times and 3D depth inversion of dispersion data we derived a 3D VS velocity model around the archipelago of Tristan da Cunha. The model shows an isolated, vertically sharp bounded thickened and modified crust beneath the islands surrounded by thin oceanic crust (feeding system/magmatic underplating, respectively. The observed simple and localized volcanic structure, embedded in a rather homogeneous crust and upper mantle indicates only minor and very localized magmatic overprinting of the existing lithosphere by the Tristan da Cunha hotspot. The uppermost mantle S wave velocity beneath nearby seamounts and to the SW of the islands is also slow and could indicate a thermal influence from a deeper source, whereas the Tristan da Cunha Fracture Zone shows no signs of modification.

  8. Seismic site characterization of the Kastelli (Kissamos) Basin in northwest Crete (Greece): Assessments using ambient noise recordings


    Moisidi, M; Vallianatos, F; Kershaw, S; Collins, P


    Crete is actively seismic and site response studies are needed for estimating local site conditions subjected to seismic activity. In order to collect basic data, we performed ambient noise recordings to estimate the site response of the surface and near subsurface structure of the small-scale Kastelli Basin in northwest Crete. The spatial horizontal to vertical spectral ratios (HVSR) resonance pattern of the investigated sites in the centre of the Basin consists of either one or two peaks di...

  9. Rayleigh wave tomography of the British Isles from ambient seismic noise (United States)

    Nicolson, Heather; Curtis, Andrew; Baptie, Brian


    We present the first Rayleigh wave group speed maps of the British Isles constructed from ambient seismic noise. The maps also constitute the first surface wave tomography study of the crust under the British Isles at a relatively high resolution. We computed interferometric, interstation Rayleigh waves from vertical component records of ambient seismic noise recorded on 63 broad-band and short-period stations across the UK and Ireland. Group velocity measurements were made from the resulting surface wave dispersion curves between 5 and 25 s using a multiple phase-matched filter method. Uncertainties in the group velocities were computed by calculating the standard deviation of four dispersion curves constructed by stacking a random selection of daily cross-correlations. Where an uncertainty could not be obtained for a ray path using this method, we estimated it as a function of the interreceiver distance. Group velocity maps were computed for 5-25-s period using the Fast Marching forward solution of the eikonal equation and iterative, linearized inversion. At short and intermediate periods, the maps show remarkable agreement with the major geological features of the British Isles including: terrane boundaries in Scotland; regions of late Palaeozoic basement uplift; areas of exposed late Proterozoic/early Palaeozoic rocks in southwest Scotland, northern England and northwest Wales and, sedimentary basins formed during the Mesozoic such as the Irish Sea Basin, the Chester Basin, the Worcester Graben and the Wessex Basin. The maps also show a consistent low-velocity anomaly in the region of the Midlands Platform, a Proterozoic crustal block in the English Midlands. At longer periods, which are sensitive velocities in the lower crustal/upper mantle, the maps suggest that the depth of Moho beneath the British Isles decreases towards the north and west. Areas of fast velocity in the lower crust also coincide with areas thought to be associated with underplating of the

  10. A seismic waves velocity model for Gran Canaria Island from ambient noise correlations (United States)

    García-Jerez, Antonio; Almendros, Javier; Martínez-Arévalo, Carmen; de Lis Mancilla, Flor; Luzón, Francisco; Carmona, Enrique; Martín, Rosa; Sánchez, Nieves


    We have analysed continuous ambient seismic noise recorded by a temporary array in Gran Canaria (Canary Islands, Spain) in order to find a velocity model for the top few kilometers. The SISTEVOTENCAN-IGN seismic array consisted of five broadband stations surrounding a sixth central one placed close to Pico de las Nieves, at the center of the island. The array had a radius of 12-14 km, with interstation distances ranging from 10 to 27 km. This network was operative from December 2009 to November 2011. The Green's functions between the 15 pairs of stations have been estimated in the time domain by stacking cross-correlations of 60-s time windows for the whole recording period (~2 years). The effects of several processing adjustments such as 1-bit normalization and spectral whitening are discussed. We observe significant differences (mainly in amplitude) between causal and acausal parts of the estimated Green's functions, which can be associated to an uneven distribution of the seismic noise sources. The application of a phase-matched filter based on an average dispersion curve allowed the effective reduction of some spurious early arrivals and the selection of fundamental-mode Rayleigh wave pulses, making possible an automatic extraction of their group velocities. Then, Rayleigh-wave dispersion curves were retrieved for the set of paths by using frequency-time analysis (FTAN) as well as by following the procedure described by Herrin and Goforth (1977, BSSA) based on the iterative fitting of a phase-matched filter which optimally undisperses the signal. Reliable curves were obtained from 1 s to 6-7 s with group velocities ranging between 1.5 and 2.2 km/s. Some lateral variations in velocity have been detected in spite of the limited spatial coverage and path density, which substantially restricted the resolution. A mean S-wave velocity model has been inverted for this area down to ~3 km.

  11. Ambient seismic noise levels: A survey of the permanent and temporary seismographic networks in Morocco, North Africa (United States)

    El Fellah, Y.; Khairy Abd Ed-Aal, A.; El Moudnib, L.; Mimoun, H.; Villasenor, A.; Gallart, J.; Thomas, C.; Elouai, D.; Mimoun, C.; Himmi, M.


    Abstract The results, of a conducted study carried out to analyze variations in ambient seismic noise levels at sites of the installed broadband stations in Morocco, North Africa, are obtained. The permanent and the temporary seismic stations installed in Morocco of the Scientific Institute ( IS, Rabat, Morocco), institute de Ciencias de la Tierra Jaume almera (ICTJA, Barcelona, Spain) and Institut für Geophysik (Munster, Germany) were used in this study. In this work, we used 23 broadband seismic stations installed in different structural domains covering all Morocco from south to north. The main purposes of the current study are: 1) to present a catalog of seismic background noise spectra for Morocco obtained from recently installed broadband stations, 2) to assess the effects of experimental temporary seismic vault construction, 3) to determine the time needed for noise at sites to stabilize, 4) to establish characteristics and origin of seismic noise at those sites. We calculated power spectral densities of background noise for each component of each broadband seismometer deployed in the different investigated sites and then compared them with the high-noise model and low-noise Model of Peterson (1993). All segments from day and night local time windows were included in the calculation without parsing out earthquakes. The obtained results of the current study could be used forthcoming to evaluate permanent station quality. Moreover, this study could be considered as a first step to develop new seismic noise models in North Africa not included in Peterson (1993). Keywords Background noise; Power spectral density; Model of Peterson; Scientific Institute; Institute de Ciencias de la Tierra Jaume almera; Institut für Geophysik

  12. High resolution Rayleigh wave group velocity tomography in North-China from ambient seismic noise

    International Nuclear Information System (INIS)

    Fang Lihua; Wu Jianping; Ding Zhifeng; Panza, G.F.


    This study presents the results of the Rayleigh wave group velocity tomography in North-China performed using ambient seismic noise observed at 190 broadband and 10 very broadband stations of the North-China Seismic Array. All available vertical component time-series for the 14 months span between January, 2007 and February, 2008 are cross-correlated to obtain empirical Rayleigh wave Green functions that are subsequently processed, with the multiple filter method, to isolate the group velocity dispersion curves of the fundamental mode of Rayleigh wave. Tomographic maps, with a grid spacing of 0.25 deg. x 0.25 deg., are computed at the periods of 4.5s, 12s, 20s, 28s. The maps at short periods reveal an evident lateral heterogeneity in the crust of North-China, quite well in agreement with known geological and tectonic features. The North China Basin is imaged as a broad low velocity area, while the Taihangshan and Yanshan uplifts and Ordos block are imaged as high velocity zones, and the Quaternary intermountain basins show up as small low-velocity anomalies. The group velocity contours at 4.5s, 12s and 20s are consistent with the Bouguer gravity anomalies measured in the area of the Taihangshan fault, that cuts through the lower crust at least. Most of the historical strong earthquakes (M≥6.0) are located where the tomographic maps show zones with moderate velocity gradient. (author)

  13. Shallow structure of Deception Island, Antarctica, from correlations of ambient seismic noise on a set of dense seismic arrays (United States)

    Luzón, F.; Almendros, J.; García-Jerez, A.


    We investigated the shallow velocity structure of Deception Island volcano, Antarctica, using correlations of ambient seismic noise. We selected long records of noise obtained by eight seismic arrays deployed along the inner coast of Deception during the period 2003-2005. Using these data, we calculated average dispersion curves and estimated local 1-D velocity models for the array sites. The combination of these profiles allowed us to obtain a comprehensive model of the shallow velocity structure of the island. The volcano is composed of relatively soft layers of pyroclastic deposits and sediments extending to a depth of about 400 m, with different degrees of compaction. Two layers with thicknesses of about 100 and 300 m and S-wave velocities of around 0.2-0.8 and 0.7-1.1 km s-1, respectively, can be differentiated. The deeper structure is highly variable in terms of wave velocities and layer depths. Although the resolving capabilities are reduced for these layers, the larger S-wave velocities in the range 1.3-2.8 km s-1 indicate that they can be associated with pre-caldera structures and products. There are substantial differences between the different models, which can be spatially related to heterogeneities in the volcano structure. The lowest S-wave velocities may be related to the alterations produced by hydrothermal activity near the surface. On the contrary, the largest velocities occur near the caldera border, revealing the presence of compact materials at shallow depths. Sharp lateral variations can also be observed in the northwest of the bay, which points to the presence of NW-SE faults and/or strong velocity gradients.

  14. Study of site effect using mining induced seismic events and ambient noise from Karviná region

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Lyubushin, A. A.


    Roč. 5, č. 2 (2008), s. 105-113 ISSN 1214-9705. [Polish-Czech-Slovakian Symposium on Mining and Environmental Geophysics/31./. Janov nad Nisou, 24.09.2007-27.09.2007] R&D Projects: GA ČR GA105/07/0878 Institutional research plan: CEZ:AV0Z30860518 Keywords : mining induced seismic event * ambient noise * frequency analysis Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  15. Crustal Seismic Vs and Vs anisotropy of Northeast Japan Revealed by Ambient Noise Tomography (United States)

    Chen, K. X.; Gung, Y.; Kuo, B. Y.; Huang, T. Y.


    We present 3D crustal models of Vs and Vs azimuthal anisotropy of the Tohoku region, Japan. We employ the Welch's method to derive the empirical Green's functions (EGF) of Rayleigh waves from one year of continuous records of 123 short-period stations of the dense high-sensitivity seismograph network (Hi-net). We compute EGFs for about 4000 station pairs with interstation distance less than 300 km. For each qualified EGF, we measure the dispersion in the period range from 3 to 16 seconds. We then construct the models by using a wavelet-based multi-scale inversion technique. In the resulting models, characteristics of Vs variations and Vs azimuthal anisotropy are closely related to surface geology, Quaternary volcano activities, and plate motions. For the Vs variations in the shallow crust (well correlated to the volcano belt. For the Vs anisotropy, the strength and the patterns of fast polarization directions (FPD) are depth-dependent. In the shallow crust, the anisotropy is strong, and are dominated by the typical orogeny parallel anisotropy, with FPDs parallel to the main strikes of the mountain range. While in the lower crust, the FPDs are generally parallel to the absolute plate motion. Interestingly, the distribution of PFDs is rather chaotic and strength of anisotropy is weak in the middle crust ( 8 - 20 km). We propose that the weak and random anisotropy in this layer is likely related to the presence of magma reservoirs beneath the volcano belt, as the associated active volcanism may cause the destruction of the alignment of crustal fabrics Key words: Tohoku, ambient noise, seismic anisotropy, surface wave tomography, volcano activities

  16. The crustal structure beneath The Netherlands derived from ambient seismic noise

    NARCIS (Netherlands)

    Yudistira, Tedi; Paulssen, Hanneke; Trampert, Jeannot


    This work presents the first comprehensive 3-D model of the crust beneath The Netherlands. To obtain this model, we designed the NARS-Netherlands project, a dense deployment of broadband stations in the area. Rayleigh and Love wave group velocity dispersion was measured from ambient noise

  17. Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves (United States)

    Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.


    The purpose of this study is to develop and test a modification to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but confidence ellipses are smallest when both types of waves are used.

  18. Crustal structure and Seismic Hazard studies in Nigeria from ambient noise and earthquakes (United States)

    Kadiri, U. A.


    The crust, upper Mantle and seismic hazard studies have been carried out in Nigeria using noise and earthquake data. The data were acquired from stations in Nigeria and international Agencies. Firstly, known depths of sediments in the Lower Benue Trough (LBT) were collected from wells; Resonance frequency (Fo) and average shear-wave velocities (Vs) were then computed using Matlab. Secondly, average velocities were estimated from noise cross-correlation along seismic stations. Thirdly, the moho depths beneath Ife, Kaduna and Nsukka stations were estimated, as well as Vp/Vs ratio using 2009 earthquake with epicenter in Nigeria. Finally, Statistical and Probabilistic Seismic Hazard Assessment (PSHA) were used to compute seismic hazard parameters in Nigeria and its surroundings. The results showed that, soils on the LBT with average shear wave velocity of about 5684m/s would experience more amplification in case of an earthquake, compared to the basement complex in Nigeria. The Vs beneath the seismic stations in Nigeria were also estimated as 288m/s, 1019m/s, 940.6m/s and 255.02m/s in Ife, Nsukka, Awka, and Abakaliki respectively. The average velocity along the station paths was 4.5km/secs, and the Vp, Vs for depths 100-500km profile in parts of South West Nigeria increased from about 5.83-6.42Km/sec and 3.48-6.31km/s respectively with Vp/Vs ratio decreasing from 1.68 to 1.02. Statistical analysis revealed a trend of increasing earthquake occurrence along the Mid-Atlantic Ridge and tending to West African region. The analysis of PSHA shows the likelihood of earthquakes with different magnitudes occurring in Nigeria and other parts West Africa in future. This work is aimed at addressing critical issues regarding sites effect characterization, improved earthquake location and robust seismic hazards assessment for planning in the choice of sites for critical facilities in Nigeria. Keywords: Sediment thickness, Resonance Frequency, Average Velocity, Seismic Hazard, Nigeria

  19. Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise (United States)

    Mordret, Aurélien; Mikesell, T. Dylan; Harig, Christopher; Lipovsky, Bradley P.; Prieto, Germán A.


    The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth’s crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations. PMID:27386524

  20. Time-Lapse Monitoring with 4D Seismic Coda Waves in Active, Passive and Ambient Noise Data (United States)

    Lumley, D. E.; Kamei, R.; Saygin, E.; Shragge, J. C.


    The Earth's subsurface is continuously changing, due to temporal variations in fluid flow, stress, temperature, geomechanics and geochemistry, for example. These physical changes occur at broad tectonic and earthquake scales, and also at very detailed near-surface and reservoir scales. Changes in the physical states of the earth cause time-varying changes in the physical properties of rocks and fluids, which can be monitored with natural or manmade seismic waves. Time-lapse (4D) seismic monitoring is important for applications related to natural and induced seismicity, hydrocarbon and groundwater reservoir depletion, CO2 sequestration etc. An exciting new research area involves moving beyond traditional methods in order to use the full complex time-lapse scattered wavefield (4D coda waves) for both manmade active-source 3D/4D seismic data, and also to use continuous recordings of natural-source passive seismic data, especially (micro) earthquakes and ocean ambient noise. This research involves full wave-equation approaches including waveform inversion (FWI), interferometry, Large N sensor arrays, "big data" information theory, and high performance supercomputing (HPC). I will present high-level concepts and recent data results that are quite spectacular and highly encouraging.

  1. Ambient seismic noise as an interesting indirect cue for the Cerithidea decollata migrations (United States)

    Pazzi, Veronica; Lotti, Alessia


    Presence or absence of water, food availability, capability of avoiding predation, and body temperature are constantly changing according to the tidal excursion. In fact, more than the diurnal light-dark variation, tide is shaping the whole intertidal animal life. Therefore, physiological and behavioural systems exist to reduce the stress that the intertidal fauna may face during the unsuitable tidal phase. Cerithidea decollata is a common western Indian Ocean mangrove gastropod. It feeds on the ground at low tide, and climbs the trees two/three hours before the water arrival to avoid submersion. In spite of the irregular East African tidal pattern, it also regularly settles on trunks roughly 40 cm above the maximum level of the incoming tide. Migrations usually take place about twice a day unless at Neap Tide, when snails may remain on the dry ground. Past experiments showed that a biological clock cannot account for water level foreseeing, nor direct visual cues or chemical information from the water itself or from previous migrations have been detected. On the other hand, tidal gravity variations can be felt by the snails. Moreover, other indirect cues could be hypothesize related to a) the oceanic waves reaching the coast and the barrier reef (seismic noise), or b) the changes in ground resistivity (self potential) caused by the sea water moving close. To verify these hypotheses, an integrated geophysical survey (single-station seismic noise and self potential survey) was carried out at Mida Creek (Kenya) to characterize the local seismic wavefield in terms of its amplitude and to measure the temporal variations of the electric potential field. Final goal was to verify whether a correlation exists between the time evolution of these phenomena and the snail movements. Here we present the first results of the seismic noise measurements. Data were acquired by means of a single station all-in-one 3-directional 24-bit digital tromometer equipped with 4.5 Hz

  2. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    International Nuclear Information System (INIS)

    Trichandi, Rahmantara; Yudistira, Tedi; Nugraha, Andri Dian; Zulhan, Zulfakriza; Saygin, Erdinc


    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps

  3. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Trichandi, Rahmantara, E-mail: [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, 40132, Bandung (Indonesia); Yudistira, Tedi; Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Zulhan, Zulfakriza [Earth Science Graduate Program, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Saygin, Erdinc [Research School of Earth Sciences, The Australian National University, Canberra ACT 0200 (Australia)


    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.

  4. Time-lapse imaging of fault properties at seismogenic depth using repeating earthquakes, active sources and seismic ambient noise (United States)

    Cheng, Xin


    The time-varying stress field of fault systems at seismogenic depths plays the mort important role in controlling the sequencing and nucleation of seismic events. Using seismic observations from repeating earthquakes, controlled active sources and seismic ambient noise, five studies at four different fault systems across North America, Central Japan, North and mid-West China are presented to describe our efforts to measure such time dependent structural properties. Repeating and similar earthquakes are hunted and analyzed to study the post-seismic fault relaxation at the aftershock zone of the 1984 M 6.8 western Nagano and the 1976 M 7.8 Tangshan earthquakes. The lack of observed repeating earthquakes at western Nagano is attributed to the absence of a well developed weak fault zone, suggesting that the fault damage zone has been almost completely healed. In contrast, the high percentage of similar and repeating events found at Tangshan suggest the existence of mature fault zones characterized by stable creep under steady tectonic loading. At the Parkfield region of the San Andreas Fault, repeating earthquake clusters and chemical explosions are used to construct a scatterer migration image based on the observation of systematic temporal variations in the seismic waveforms across the occurrence time of the 2004 M 6 Parkfield earthquake. Coseismic fluid charge or discharge in fractures caused by the Parkfield earthquake is used to explain the observed seismic scattering properties change at depth. In the same region, a controlled source cross-well experiment conducted at SAFOD pilot and main holes documents two large excursions in the travel time required for a shear wave to travel through the rock along a fixed pathway shortly before two rupture events, suggesting that they may be related to pre-rupture stress induced changes in crack properties. At central China, a tomographic inversion based on the theory of seismic ambient noise and coda wave interferometry

  5. Impact of wind on ambient noise recorded by the "13 BB star" seismic array in northern Poland (United States)

    Lepore, Simone; Markowicz, Krzysztof; Grad, Marek


    Seismic interferometry and beam forming techniques were applied to ambient noise recorded during January 2014 at the "13 BB star" array, composed of thirteen seismic stations located in northern Poland, with the aim of evaluating the azimuth of noise sources and the velocities of surface waves. After normalizing the raw recordings in time and frequency domain, the spectral characteristics of the ambient noise were studied to choose a frequency band suitable for the waves' retrieval. To get the velocity of surface waves by seismic interferometry, the crosscorrelation between all station pairs was analysed for the vertical and horizontal components in the 0.05-0.1 Hz, 0.1-1 Hz and 1 10 Hz frequency bands. For each pair, the crosscorrelation was applied to one hour recordings extracted from the ambient noise. The obtained traces were calculated for a complete day, and then summed together: the daily results were stacked for the whole January 2014. In the lowest frequency range, most of the energy is located around the 3.0 km/s line, meaning that the surface waves coming from the uppermost mantle will be retrieved. The intermediate frequency range shows most of the energy between the 2.0 km/s and 1.5 km/s lines: consequently, surface waves originating from the crust will be retrieved. In the highest frequency range, the surface waves are barely visible on the crosscorrelation traces, implying that the associated energy is strongly attenuated. The azimuth variation associated to the noise field was evaluated by means of the beam forming method, using the data from the whole array for all the three components. To that, the beam power was estimated in a small range of frequencies every day for the whole month. For each day, one hour long results of beam forming applications were stacked together. To avoid aliasing and near field effects, the minimum frequency was set at 0.05 Hz and the maximum to 0.1 Hz. In this frequency band, the amplitude maximum was sought

  6. Polarization Analysis of Ambient Seismic Noise Green's Functions for Monitoring Glacial State (United States)

    Fry, B.; Horgan, H. J.; Levy, R. H.; Bertler, N. A. N.


    Analysis of continuously recorded background seismic noise has emerged as a powerful technique to monitor changes within the Earth. In a process analogous to Einstein's 'Brownian motion', seismic energy enters the Earth through a variety of mechanisms and then is dissipated through scattering processes or through a semi-random distribution of sources. Eventually, in stratified media, some of this energy assembles itself in coherent packets and propagates as seismic surface waves. Through careful analysis of these waves as recorded by two seismic stations over a short period of time, we can reconstruct Empirical Green's Functions (EGF). EGF are sensitive to the material through which the waves are travelling between the two stations. They can thus provide 4D estimates of material properties such as seismic velocity and anisotropy. We specifically analyze both the bulk velocity and the complex phase of these EGF to look for subtle changes in velocity with direction of propagation as well as the nature of particle polarization and ellipticity. These characteristics can then be used as a proxy for contemporaneous stress and strain or 'inherited' strain. Similar approaches have proven successful in mapping stresses and strain in the crust, on plate interface faults, volcanoes, and on glaciers and the Greenland ice sheet. We will present results from applying this approach to continuous broadband data recorded on the West Antarctic Ice Sheet through the Polenet project. Our results suggest that we can reconstruct EGF at least between frequencies of 300mHz and 50mHz for time periods, providing information about the contemporary state of ice and underlying lithosphere on a seasonal or annual basis. Our primary goals are determining glacial state by linking wave propagation to material fabric on micro (crystal orientation) and macro (strain marker) scales and well as rebound processes in the lithosphere during glacial loading and unloading. We will present our current

  7. Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings (United States)

    Improta, Luigi; di Giulio, Giuseppe; Rovelli, Antonio

    The city of Benevento (Southern Italy) has been repeatedly struck by large historical earthquakes. A heterogeneous geologic structure and widespread soft soil conditions make the estimation of site effects crucial for the seismic hazard assessment of the city. From 2000 until 2004, we installed seismic stations to collect earthquake data over zones with different geological conditions. Despite the high level of urban noise, we recorded more than 150 earthquakes at twelve sites. This data set yields the first, well documented experimental evidence for weak to moderate local amplifications. We investigated site effects primarily by the classical spectral ratio technique (CSR) using a rock station placed on the Benevento hill as reference. All sites in the Calore river valley and in the eastern part of the Benevento hill show a moderate high-frequency (f > 4 Hz) amplification peak. Conversely, sites in the Sabato river valley share weak-to-moderate amplification in a wide frequency band (from 1-2 to 7-10 Hz), without evident frequency peaks. Application of no-reference-site techniques to earthquake and noise data confirms the results of the CSRs in the sites of the Calore river valley and of the eastern part of the Benevento hill, but fails in providing indications for site effects in the Sabato river valley, being the H/V ratios nearly flat. One-dimensional modeling indicates that the ground motion amplification can be essentially explained in terms of a vertically varying geologic structure. High-frequency narrow peaks are caused by the strong impedance contrast existing between near-surface soft deposits and stiff cemented conglomerates. Conversely, broad-band amplifications in the Sabato river valley are likely due to a more complex layering with weak impedance contrasts both in the shallow and deep structure of the valley.

  8. Seismic constraints on magma evolution beneath Mount Baekdu (Changbai) volcano from transdimensional Bayesian inversion of ambient noise data (United States)

    Kim, Seongryong; Tkalčić, Hrvoje; Rhie, Junkee


    The magmatic process of continental intraplate volcanism (CIV) is difficult to understand due to heterogeneous interactions with the crust and the lithospheric upper mantle. Mount Baekdu (Changbai) volcano (MBV) is one of the prominent CIVs in northeast Asia that has shown a complex history of eruptions and associated magmatic structures. In addition, the relationship between the crustal magmatic structures and upper mantle phenomena are enigmatic due to the lack of consistent seismic constraints for the lithospheric structure. To enhance comprehensive understanding of the MBV magma evolution, we image the lithospheric structure beneath the MBV and surrounding regions using ambient noise data and the following two approaches: (1) multiple measures of ambient noise dispersion are acquired through different methods and (2) a transdimensional Bayesian inversion method is utilized to obtain unbiased results in joint analysis of the multiple data sets. The estimated Earth structure shows a thick crust ( 40 km) and a crustal anomaly with relatively high S wave velocity in the depth range 20-40 km. This type of structure extends to 100 km north from the MBV and is accompanied by the shallow and rapid S wave velocity decrease beneath the mantle lid ( 80 km). Through a comparison with previous P wave models, we interpret this structure as a consequence of compositional partitioning by mafic underplating and overlying cooled felsic layers as a result of fractional crystalization.

  9. Detection of very long period solar free oscillations in ambient seismic array noise (United States)

    Caton, R.; Pavlis, G. L.; Thomson, D. J.; Vernon, F.


    For nearly two decades long-period seismologists have been aware that the Earth's free oscillations are in a constant state of excitement, even in the absence of large earthquakes. This phenomenon is now called the "Earth's hum," and much research has been done to determine what generates this hum. Here we examine a hypothesis first put forward by Thomson et al. in 2007 that a portion of the hum's energy comes from the sun. They hypothesized that solar free oscillations couple into the solid Earth, likely through electromagnetic processes, and produce signals that are observable in the frequency domain. If this is true, then at least some measurement of helioseismic oscillations may be possible using relatively cheap, ground-based instruments rather than spacecraft. In this project we attempt to improve upon previous studies by producing spectra from seismic arrays, rather than a single station. We use data from two arrays: The Homestake Mine 3D array in Lead, SD, and the Pinyon Flats array, which has seismometers in boreholes drilled into bedrock. Both have exceptionally low noise levels at ultra long periods and show easily visible earth tides on horizontal component data filtered to below the microseism band. In the Homestake data, below 500 μHz we have found evidence of what we suggest may be closely spaced solar g-mode lines. Such modes are produced by a density inversion at the top of the solar core. There is no sign of these modes in the Pinyon Flats data, but we find this is likely due to the signal-to-noise ratio of those data, which is significantly lower than Homestake. Significance tests of bands below 500 μHz indicate with probability levels as high as 40σ that these lines are not the result of random processes. Critical examination of our processing steps for sources of bias indicate that the observed line structure is not a processing artifact.

  10. A Trial for Detecting the Temporal Variation in Seismic Velocity Accompanied by a Slow Slip Event using Seismic Interferometry of Ambient Noise (United States)

    Uemura, Miyuu; Ito, Yoshihiro; Ohta, Kazuaki; Hino, Ryota; Shinohara, Masanao


    Seismic interferometry is one of the most effective techniques to detect temporal variations in seismic velocity before or after a large earthquake. Some previous studies have been reported on seismic velocity reduction due to the occurrence of large earthquakes (e.g., Wegler et al., 2009; Yamada et al., 2010) as well as preceding them (e.g., Lockner et al., 1977; Yoshimitsu et al., 2009). However, there have only been a few studies thus far which attempt to detect seismic velocity changes associated with slow slip events (SSEs). In this study, we focus on applying seismic interferometry to ambient noise data from ocean bottom seismometers (OBSs) deployed near a subduction zone. Between the end of January 2011 and the largest foreshock occurring on March 9th that precedes the March 11, 2011 Tohoku-Oki earthquake, SSEs and low-frequency tremors were detected offshore Miyagi Prefecture (Ito et al., 2013, 2015; Katakami et al., 2016). We applied our seismic interferometry analysis using ambient noise to recordings from 17 OBS stations that were installed in the vicinity of the 2011 Tohoku-Oki earthquake source region, and only considered the recordings from before that major earthquake. All the OBSs are short-period seismometers with three components which have an eigenfrequency of 4.5 Hz. These OBSs were deployed offshore Miyagi Prefecture between November 2010 and April 2011. Before proceeding with the seismic interferometry analysis, we needed to estimate the two horizontal components of the original deployment orientation for 13 OBSs in (we could not estimate them for 4 OBSs). To obtain the OBS orientation, we used particle orbits of some direct P waves from selected tectonic earthquakes, in order to extract one vertical and two horizontal components. Then, the seismic interferometry analysis consisted of the following steps. First, we applied a band-pass filter of 0.25-2.0 Hz and one-bit technique to the ambient noise signal. Second, we calculated auto

  11. The crustal structure beneath The Netherlands derived from ambient seismic noise (United States)

    Yudistira, Tedi; Paulssen, Hanneke; Trampert, Jeannot


    This work presents the first comprehensive 3-D model of the crust beneath The Netherlands. To obtain this model, we designed the NARS-Netherlands project, a dense deployment of broadband stations in the area. Rayleigh and Love wave group velocity dispersion was measured from ambient noise cross-correlations. Azimuthally anisotropic group velocity maps were then constructed and the isotropic part was used to determine a shear wave speed model that includes the effects of radial anisotropy. Employing the Neighbourhood Algorithm for the depth inversion, we obtained probabilistic estimates of the radially anisotropic model parameters. We found that the variations in the thickness of the top layer largely match the transition from sediments of Permian age to those of Carboniferous age. Regions of high faulting density such as the West Netherlands Basin and Roer Valley Graben are recognized in our model by their negative radial anisotropy (VSH - VSV Love wave group velocity data at periods of around 20 s show evidence for azimuthal anisotropy with a NW-SE fast direction. This anisotropy is likely related to NW-SE rock fabric in the lower crust thought to originate from the Caledonian deformation.

  12. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  13. Crustal and uppermost mantle structure of southern Norway: results from surface wave analysis of ambient seismic noise and earthquake data (United States)

    Köhler, Andreas; Weidle, Christian; Maupin, Valérie


    We use ambient seismic noise and earthquake recordings on a temporary regional network in southern Norway to produce Rayleigh and Love wave phase velocity maps from 3 to 67 s period. Local dispersion curves are then jointly inverted for a 3-D shear wave velocity model of the region. We perform a two-step inversion approach. First, a direct search, Monte Carlo algorithm is applied to find best fitting isotropic velocity depth profiles. Those profiles are then used as initial models for a linearised inversion which takes into account radial anisotropy in the shear wave structure. Results reveal crustal as well as uppermost mantle structures in the studied region. Velocity anomalies in the upper crust are rather small in amplitude and can in most parts be related to surface geology in terms of rock densities. Old tectonic units like the Oslo Graben (300-240 Ma) and the Caledonian nappes (440-410 Ma) are clearly imaged. Furthermore, we find clear indications for localized crustal anisotropy of about 3 per cent. Despite generally poor resolution of interface depths in surface wave inversion, we find lateral variation of crustal thickness in agreement with previous studies. We are able to confirm and locate the transition from a slow lithospheric upper mantle underneath southern Norway to a fast shield-like mantle towards Sweden.

  14. Spatio-temporal changes of seismic velocity at Miyakejima volcano associated with the 2000 eruption based on the cross-correlation analyses of ambient seismic noise records (United States)

    Anggono, T.; Nishimura, T.; Sato, H.; Ueda, H.; Ukawa, M.


    Miyakejima Island is located about 170 km to the south of Tokyo, Japan. The 2000 activity started with a small submarine eruption in late June 2000, which accompanied earthquake swarms. A caldera was formed from July to August and had a diameter of about 1.6 km. Since then the volcanic gas was effused and the activity continued for more than four years. We analyze the ambient seismic noise recorded from July 1999 to December 2002 at four NIED seismic stations to study the volcano structure behavior associated with this volcanic activity. The continuous records are sampled at frequency of 100 Hz with an A/D resolution of 16-bit. We apply cross-correlation analyses to the continuous records of vertical component of short period seismometers (1 s) for every possible pair of stations. Before calculating the cross-correlation function (CCF), we bandpass filter the data using three-order Butterworth filter with frequency bands 0.4 - 0.8 Hz and 0.8 - 1.6 Hz. We calculate the CCFs with 60 s window length, and then stack for one day data. The observed CCFs are symmetric at both negative and positive lag times; this means that the distribution of noise sources is quite homogeneous surrounding the Miyakejima Island. We define a reference Green’s function (RGF) for every station pair by stacking the CCFs for about 10 months in 2002 during which no major instrumental errors were found. Once RGF is defined for each station pair, we calculate the cross-correlation coefficient between the RGF and the CCFs of each day, and select “good” CCFs that have cross-correlation coefficient larger than 0.7 and lag time smaller than +/- 0.5 s. We pick travel times of the maximum amplitude of the wave packets at positive and negative lag times, which correspond to the travel time of Rayleigh waves between two stations, from the RGF and the “good” CCFs of each day. To estimate the changes in the medium, we calculate the average travel time difference for periods July 1999 - May 2000

  15. Seismic monitoring leveraging existing telecom infrastructure at the SDASA: Active, passive, and ambient-noise analysis

    KAUST Repository

    Martin, Eileen R.


    We analyze active and passive seismic data recorded by the Stanford distributed acoustic sensing array (SDASA) located in conduits under the Stanford University campus. For the active data we used low-energy sources (betsy gun and sledge hammer) and recorded data using both the DAS array and 98 three-component nodes deployed along a 2D line. The joint analysis of shot profiles extracted from the two data sets shows that some surface waves and refracted events are consistently recorded by the DAS array. In areas where geophone coupling was suboptimal because of surface obstructions, DAS recordings are more coherent. In contrast, surface waves are more reliably recorded by the geophones than the DAS array. Because of the noisy environment and weak sources, neither data set shows clear reflections. We demonstrate the repeatability of DAS recordings of local earthquakes by comparing two weak events (magnitude 0.95 and 1.34) with epicenters 100 m apart that occurred only one minute from each other. Analyzing another local, and slightly stronger, earthquake (magnitude 2.0) we show how the kinematics of both the P-arrival and S-arrival can be measured from the DAS data. Interferometric analysis of passive data shows that reliable virtual-source responses can be extracted from the DAS data. We observe Rayleigh waves when correlating aligned receivers, and Love waves when correlating receivers belonging to segments of the array parallel to each other. Dispersion analysis of the virtual sources shows the expected decrease in surface-wave velocity with increasing frequency.

  16. Joint inversion of teleseismic P waveforms and surface-wave group velocities from ambient seismic noise in the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Růžek, Bohuslav; Plomerová, Jaroslava; Babuška, Vladislav


    Roč. 56, č. 1 (2012), s. 107-140 ISSN 0039-3169 R&D Projects: GA ČR GA205/07/1088; GA AV ČR IAA300120709; GA MŠk LM2010008 Institutional research plan: CEZ:AV0Z30120515 Keywords : receiver function * seismic noise * joint inversion * Bohemian Massif * velocity structure Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2012

  17. Spatio-temporal changes in seismic velocity associated with the 2000 activity of Miyakejima volcano as inferred from cross-correlation analyses of ambient noise (United States)

    Anggono, Titi; Nishimura, Takeshi; Sato, Haruo; Ueda, Hideki; Ukawa, Motoo


    Miyakejima volcano, Japan, showed strong and interesting volcanic activities in 2000 with the occurrence of dike intrusions, caldera formation and a large amount of gas emission. To understand temporal changes of the volcanic structure associated with this activity, we apply ambient noise correlation analyses to the seismic records of five seismic stations at Miyakejima volcano from July 1999 to December 2002. We calculate cross-correlation functions (CCFs) for eight available station pairs at frequency bands of 0.4-0.8 Hz and 0.8-1.6 Hz, and retrieve the Rayleigh waves propagating with a group velocity of about 1.0 km/s. Comparing CCFs obtained for each day with the reference CCFs that are calculated from a few months of data, we estimate seismic velocity changes before and after the 2000 activity. Results at the two frequency bands show seismic velocity increase and decrease. Shallow structure at the volcanic edifice on the flanks experienced a seismic velocity increase up to 3.3%. On the other hand, the regions located close to the collapsed caldera show a seismic velocity decrease down to 2.3%. To understand the mechanisms that may introduce these seismic velocity increase and decrease, we examine several possible mechanisms of the velocity changes: stress changes due to volcanic pressure sources and caldera formation, and topographic changes. By using the deflation sources previously determined from GPS data, we calculate the stresses at depths of 0 km and 1 km at the volcano. The results suggest that the seismic velocity increases observed at seismic paths on the volcanic flank are explained by the compression caused by the deflation sources associated with magma activity in 2000. Stress sensitivities of the seismic velocity changes are estimated to be 1.5 × 10- 2 to 2.2 × 10- 2 MPa- 1 and 4.6 × 10- 3 to 2.4 × 10- 2 MPa- 1 at frequency bands of 0.4-0.8 Hz and 0.8-1.6 Hz, respectively, which are in the range of the previously reported results. Our three

  18. Expected Seismicity and the Seismic Noise Environment of Europa (United States)

    Panning, Mark P.; Stähler, Simon C.; Huang, Hsin-Hua; Vance, Steven D.; Kedar, Sharon; Tsai, Victor C.; Pike, William T.; Lorenz, Ralph D.


    Seismic data will be a vital geophysical constraint on internal structure of Europa if we land instruments on the surface. Quantifying expected seismic activity on Europa both in terms of large, recognizable signals and ambient background noise is important for understanding dynamics of the moon, as well as interpretation of potential future data. Seismic energy sources will likely include cracking in the ice shell and turbulent motion in the oceans. We define a range of models of seismic activity in Europa's ice shell by assuming each model follows a Gutenberg-Richter relationship with varying parameters. A range of cumulative seismic moment release between 1016 and 1018 Nm/yr is defined by scaling tidal dissipation energy to tectonic events on the Earth's moon. Random catalogs are generated and used to create synthetic continuous noise records through numerical wave propagation in thermodynamically self-consistent models of the interior structure of Europa. Spectral characteristics of the noise are calculated by determining probabilistic power spectral densities of the synthetic records. While the range of seismicity models predicts noise levels that vary by 80 dB, we show that most noise estimates are below the self-noise floor of high-frequency geophones but may be recorded by more sensitive instruments. The largest expected signals exceed background noise by ˜50 dB. Noise records may allow for constraints on interior structure through autocorrelation. Models of seismic noise generated by pressure variations at the base of the ice shell due to turbulent motions in the subsurface ocean may also generate observable seismic noise.

  19. Antarctic ice sheet thickness estimation using the horizontal-to-vertical spectral ratio method with single-station seismic ambient noise (United States)

    Yan, Peng; Li, Zhiwei; Li, Fei; Yang, Yuande; Hao, Weifeng; Bao, Feng


    We report on a successful application of the horizontal-to-vertical spectral ratio (H / V) method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0) related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure ice sheet thickness in Antarctica.

  20. Automated Processing Workflow for Ambient Seismic Recordings (United States)

    Girard, A. J.; Shragge, J.


    Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that

  1. Engineering geological zonation of a complex landslide system through seismic ambient noise measurements at the Selmun Promontory (Malta) (United States)

    Iannucci, Roberto; Martino, Salvatore; Paciello, Antonella; D'Amico, Sebastiano; Galea, Pauline


    The cliff slope of the Selmun Promontory, located in the Northern part of the island of Malta (Central Mediterranean Sea) close to the coastline, is involved in a landslide process as exhibited by the large block-size talus at its bottom. The landslide process is related to the geological succession outcropping in the Selmun area, characterised by the over-position of a grained limestone on a plastic clay, that induces a lateral spreading phenomenon associated with detachment and collapse of different-size rock blocks. The landslide process shapes a typical landscape with a stable plateau of stiff limestone bordered by an unstable cliff slope. The ruins of Għajn Ħadid Tower, the first of the thirteen watchtowers built in 1658 by the Grand Master Martin de Redin, stand out on the Selmun Promontory. The conservation of this important heritage site, already damaged by an earthquake which struck the Maltese Archipelago on October 12th 1856, is currently threatened by a progressive retreat of the landslide process towards the inland plateau area. During 2015 and 2016, field surveys were carried out to derive an engineering geological model of the Selmun Promontory. After a high-resolution geomechanical survey, the spatial distribution of the joints affecting the limestone was obtained. At the same time, 116 single-station noise measurements were carried out to cover the inland and edge plateau zones as well as the clayey slope area. The obtained 1-hour time histories were analysed through the horizontal to vertical spectral ratio (HVSR) technique, as well as polarity and ellipticity analysis of particle motion to define the local seismic response in zones having different stability conditions, i.e. related to the presence of unstable rock blocks characterised by different vibrational modes. The results obtained confirm the suitability of passive seismic geophysical techniques for zoning landslide hazard in case of rock slopes and demonstrate the relevance of

  2. The seismic wave speed structure of the Ontong Java Plateau determined from joint ambient noise and earthquake waveform data (United States)

    Covellone, B. M.; Savage, B. K.; Shen, Y.


    The Ontong Java Plateau (OJP) represents the result of a significant event in the Earth's geologic history. Limited geophysical and geochemical data, as well as the plateau's relative isolation in the Pacific Ocean, have made interpretation of the modern day geologic structure and its 120 Ma formation history difficult. Here we present the highest resolution images to date of the wave speed structure of the OJP region. We use an iterative finite-frequency tomography methodology and a unique data set that combines empirical Green's functions extracted from ambient noise and earthquake waveforms. The uniqueness and combination of datasets allow us to best exploit the limited station distribution in the Pacific and image wave speed structures between 35 km and greater than 250 km into the Earth. We image a region of fast shear wave speeds, greater than 4.75 km/s, that extends to greater than 100 km beneath the plateau. The wave speeds are similar to as observed in cratonic environments and are consistent with a compositional anomaly likely a result of eclogite entrainment during the plateau's formation.

  3. Radial anisotropy ambient noise tomography of volcanoes (United States)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph


    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  4. Seismic structure of the upper crust in the Albertine Rift from travel-time and ambient-noise tomography - a comparison (United States)

    Jakovlev, Andrey; Kaviani, Ayoub; Ruempker, Georg


    Here we present results of the investigation of the upper crust in the Albertine rift around the Rwenzori Mountains. We use a data set collected from a temporary network of 33 broadband stations operated by the RiftLink research group between September 2009 and August 2011. During this period, 82639 P-wave and 73408 S-wave travel times from 12419 local and regional earthquakes were registered. This presents a very rare opportunity to apply both local travel-time and ambient-noise tomography to analyze data from the same network. For the local travel-time tomographic inversion the LOTOS algorithm (Koulakov, 2009) was used. The algorithm performs iterative simultaneous inversions for 3D models of P- and S-velocity anomalies in combination with earthquake locations and origin times. 28955 P- and S-wave picks from 2769 local earthquakes were used. To estimate the resolution and stability of the results a number of the synthetic and real data tests were performed. To perform the ambient noise tomography we use the following procedure. First, we follow the standard procedure described by Bensen et al. (2007) as modified by Boué et al. (2014) to compute the vertical component cross-correlation functions between all pairs of stations. We also adapted the algorithm introduced by Boué et al. (2014) and use the WHISPER software package (Briand et al., 2013) to preprocess individual daily vertical-component waveforms. On the next step, for each period, we use the method of Barmin et al. (2001) to invert the dispersion measurements along each path for group velocity tomographic maps. Finally, we adapt a modified version of the algorithm suggested by Macquet et al. (2014) to invert the group velocity maps for shear velocity structure. We apply several tests, which show that the best resolution is obtained at a period of 8 seconds, which correspond to a depth of approximately 6 km. Models of the seismic structure obtained by the two methods agree well at shallow depth of about

  5. Crustal and upper mantle S-wave velocity structures across the Taiwan Strait from ambient seismic noise and teleseismic Rayleigh wave analyses (United States)

    Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.


    Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.

  6. The seismic ambient noise spectral ratio H/V under de diffuse field approach for simple layered models: Asymptotic behavior for low and high frequencies (United States)

    Luzón, F.; García-Jerez, A.; Sanchez-Sesma, F. J.; Lunedei, E.; Albarello, D.; Santoyo, M. A.; Almendros, J.


    The possibility of retrieving the elastodynamic Green's tensor between two points within an elastic medium from time-domain correlation of ambient noise recorded at such sites was duly confirmed in the pioneering seismic experiments by Campillo and Paul (2003) and Shapiro and Campillo (2004). Afterwards, several theoretical works on this subject have been conducted for simple models showing that such a possibility implies the condition of diffuse wavefield which requires isotropy of the illumination or the fulfillment of certain relationships between the energies of different types of waves (derived from the energy equipartition principle). In this work we examine the reliability of the usual assumptions that emerge from the Diffuse Field Approach (DFA). In particular we deal with the wavefield composition in applications regarding the passive seismic prospecting. We revise briefly the more general formulation of the DFA for full wavefield (FW). In this case the contribution of each wave to the horizontal-and vertical power spectra at surface are analyzed for a simple elastic waveguide (for instance the continental crust-upper mantle interface). Special attention is paid to their compositions at low-and high-frequencies, obtaining the relative powers of each surface wave (SW) type by means of a semi-analytical analysis. We found for some simple models that if body waves are removed from the analysis, the high-frequency horizontal asymptote of the H/V spectral ratio decreases slightly (from 1.33 for FW to around 1.14 for SW) and shows dependence on both the Poisson's ratio of the crust and the S-wave velocity contrast (while FW-H/V asymptote depends on the former only). Experimental tests for a broad band network deployed at SW Pyrenees edge provide H/V curves compatible with any of these values in the band 0.2-1Hz, approximately, supporting the applicability of the DFA approximation. Coexistence of multiple SW-modes produces distortion in the amplitude of both

  7. A Near Real-Time Seismic Exploration and Monitoring (i.e., Ambient Seismic Noise Interferometry) Solution Based Upon a Novel "At the Edge" Approach that Leverages Commercially Available Digitizers, Embedded Systems, and an Open-Source Big Data Architecture (United States)

    Sepulveda, F.; Thangraj, J. S.; Quiros, D.; Pulliam, J.; Queen, J. H.; Queen, M.; Iovenitti, J. L.


    Seismic interferometry that makes use of ambient noise requires that cross-correlations of data recorded at two or more stations be stacked over a "long enough" time interval that off-axis sources cancel and the estimated inter-station Green's function converges to the actual function. However, the optimal length of the recording period depends on the characteristics of ambient noise at the site, which vary over time and are therefore not known before data acquisition. Data acquisition parameters cannot be planned in ways that will ensure success while minimizing cost and effort. Experiment durations are typically either too long or too short. Automated, in-field processing can provide inter-station Green's functions in near-real-time, allowing for the immediate evaluation of results and enabling operators to alter data acquisition parameters before demobilizing. We report on the design, system integration, and testing of a strategy for the automation of data acquisition, distribution, and processing of ambient noise using industry-standard, widely-available instrumentation (Reftek 130-01 digitizers and 4.5 Hz geophones). Our solution utilizes an inexpensive embedded system (Raspberry Pi 3), which is configured to acquire data from the Reftek and insert it into a big data store called Apache Cassandra. Cassandra distributes and maintains up-to-date copies of the data, through a WiFi network, as defined by tunable consistency levels and replication factors thus allowing for efficient multi-station computations. At regular intervals, data is extracted from Cassandra and is used to compute Green's functions for all receiver pairs. Results are reviewed and progress toward convergence can be assessed. We successfully tested a 20-node prototype of what we call the "Raspberry Pi-Enhanced Reftek" (RaPiER) array at the Soda Lake Geothermal Field in Nevada in June 2017. While intermittent problems with the WiFi network interfered with the real-time data delivery from some

  8. Ambient noise levels and detection threshold in Norway. (United States)

    Demuth, Andrea; Ottemöller, Lars; Keers, Henk


    Ambient seismic noise is caused by a number of sources in specific frequency bands. The quantification of ambient noise makes it possible to evaluate station and network performance. We evaluate noise levels in Norway from the 2013 data set of the Norwegian National Seismic Network as well as two temporary deployments. Apart from the station performance, we studied the geographical and temporal variations, and developed a local noise model for Norway. The microseism peaks related to the ocean are significant in Norway. We, therefore, investigated the relationship between oceanic weather conditions and noise levels. We find a correlation of low-frequency noise (0.125-0.25 Hz) with wave heights up to 900 km offshore. High (2-10 Hz) and intermediate (0.5-5 Hz) frequency noise correlates only up to 450 km offshore with wave heights. From a geographic perspective, stations in southern Norway show lower noise levels for low frequencies due to a larger distance to the dominant noise sources in the North Atlantic. Finally, we studied the influence of high-frequency noise levels on earthquake detectability and found that a noise level increase of 10 dB decreases the detectability by 0.5 magnitude units. This method provides a practical way to consider noise variations in detection maps.

  9. A statistical assessment of seismic models of the U.S. continental crust using Bayesian inversion of ambient noise surface wave dispersion data (United States)

    Olugboji, T. M.; Lekic, V.; McDonough, W.


    We present a new approach for evaluating existing crustal models using ambient noise data sets and its associated uncertainties. We use a transdimensional hierarchical Bayesian inversion approach to invert ambient noise surface wave phase dispersion maps for Love and Rayleigh waves using measurements obtained from Ekström (2014). Spatiospectral analysis shows that our results are comparable to a linear least squares inverse approach (except at higher harmonic degrees), but the procedure has additional advantages: (1) it yields an autoadaptive parameterization that follows Earth structure without making restricting assumptions on model resolution (regularization or damping) and data errors; (2) it can recover non-Gaussian phase velocity probability distributions while quantifying the sources of uncertainties in the data measurements and modeling procedure; and (3) it enables statistical assessments of different crustal models (e.g., CRUST1.0, LITHO1.0, and NACr14) using variable resolution residual and standard deviation maps estimated from the ensemble. These assessments show that in the stable old crust of the Archean, the misfits are statistically negligible, requiring no significant update to crustal models from the ambient noise data set. In other regions of the U.S., significant updates to regionalization and crustal structure are expected especially in the shallow sedimentary basins and the tectonically active regions, where the differences between model predictions and data are statistically significant.

  10. Ambient Noise Characteristics During the Sheba Experiment

    National Research Council Canada - National Science Library

    Shaw, Ronald


    The ambient noise data recorded by two free-drifting buoys during the 1997-98 SHEBA experiment presented a unique opportunity to gauge the noise field of the Arctic Ocean in a unique and changing environment...

  11. Eastern Arctic ambient noise on a drifting vertical array. (United States)

    Ozanich, Emma; Gerstoft, Peter; Worcester, Peter F; Dzieciuch, Matthew A; Thode, Aaron


    Ambient noise in the eastern Arctic was studied from April to September 2013 using a 22 element vertical hydrophone array as it drifted from near the North Pole (89° 23'N, 62° 35'W) to north of Fram Strait (83° 45'N, 4° 28'W). The hydrophones recorded for 108 min/day on six days per week with a sampling rate of 1953.125 Hz. After removal of data corrupted by non-acoustic transients, 19 days throughout the transit period were analyzed. Noise contributors identified include broadband and tonal ice noises, bowhead whale calling, seismic airgun surveys, and earthquake T phases. The bowhead whale or whales detected are believed to belong to the endangered Spitsbergen population, and were recorded when the array was as far north as 86° 24'N. Median power spectral estimates and empirical probability density functions along the array transit show a change in the ambient noise levels corresponding to seismic survey airgun occurrence and received level at low frequencies and transient ice noises at high frequencies. Median power for the same periods across the array shows that this change is consistent in depth. The median ambient noise for May 2013 was among the lowest of the sparse reported observations in the eastern Arctic but comparable to the more numerous observations of western Arctic noise levels.

  12. Shear velocity of the Rotokawa geothermal field using ambient noise (United States)

    Civilini, F.; Savage, M. K.; Townend, J.


    Ambient noise correlation is an increasingly popular seismological technique that uses the ambient seismic noise recorded at two stations to construct an empirical Green's function. Applications of this technique include determining shear velocity structure and attenuation. An advantage of ambient noise is that it does not rely on external sources of seismic energy such as local or teleseismic earthquakes. This method has been used in the geothermal industry to determine the depths at which magmatic processes occur, to distinguish between production and non-production areas, and to observe seismic velocity perturbations associated with fluid extraction. We will present a velocity model for the Rotokawa geothermal field near Taupo, New Zealand, produced from ambient noise cross correlations. Production at Rotokawa is based on the "Rotokawa A" combined cycle power station established in 1997 and the "Nga Awa Purua" triple flash power plant established in 2010. Rotokawa Joint Venture, a partnership between Mighty River Power and Tauhara North No. 2 Trust currently operates 174 MW of generation at Rotokawa. An array of short period seismometers was installed in 2008 and occupies an area of roughly 5 square kilometers around the site. Although both cultural and natural noise sources are recorded at the stations, the instrument separation distance provides a unique challenge for analyzing cross correlations produced by both signal types. The inter-station spacing is on the order of a few kilometers, so waves from cultural sources generally are not coherent from one station to the other, while the wavelength produced by natural noise is greater than the station separation. Velocity models produced from these two source types will be compared to known geological models of the site. Depending on the amount of data needed to adequately construct cross-correlations, a time-dependent model of velocity will be established and compared with geothermal production processes.

  13. Global-scale Full Waveform Ambient Noise Inversion (United States)

    Sager, K.; Ermert, L. A.; Boehm, C.; Krischer, L.; Afanasiev, M.; Fichtner, A.


    In earthquake tomography, modern tomographic methods exploit waveforms for the benefit of improved resolution. However, these techniques cannot be applied to noise correlation functions without knowing the distribution of noise sources. To overcome this limitation, we develop a method - referred to as full waveform ambient noise inversion - that is valid for arbitrary noise source distributions in both space and frequency, accounts for 3D heterogeneous and attenuating media and the full seismic wave propagation physics. The fundamental idea is to drop the principle of Green function retrieval, which is the basis for current noise tomographic studies, and to establish correlation functions as self-consistent observables in seismology. Based on a synthetic study in 2D, investigating the prerequisites for a joint inversion for noise sources and Earth structure, we extend the open-source waveform modelling and inversion package Salvus ( It allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface and the corresponding sensitivity kernels for the distribution of noise sources and Earth structure. We present sensitivity kernels for different cross-correlation time lags and various noise source distributions, and study the effect of 3D heterogeneous Earth structure. For a validation of full waveform ambient noise inversion, we apply it to a global dataset focusing on the Earth's hum period band.

  14. Ocean Ambient Noise Measurement and Theory

    CERN Document Server

    Carey, William M


    This book develops the theory of ocean ambient noise mechanisms and measurements, and also describes general noise characteristics and computational methods.  It concisely summarizes the vast ambient noise literature using theory combined with key representative results.  The air-sea boundary interaction zone is described in terms of non-dimensional variables requisite for future experiments.  Noise field coherency, rare directional measurements, and unique basin scale computations and methods are presented.  The use of satellite measurements in these basin scale models is demonstrated.  Finally, this book provides a series of appendices giving in-depth mathematical treatments.  With its complete and careful discussions of both theory and experimental results, this book will be of the greatest interest to graduate students and active researchers working in fields related to ambient noise in the ocean.

  15. Long-term Self-noise Estimates of Seismic Sensors From a High-noise Vault (United States)

    Hicks, S. P.; Goessen, S.; Hill, P.; Rietbrock, A.


    To understand the detection capabilities of seismic stations and for reducing biases in ambient noise imaging, it is vital to assess the contribution of instrument self-noise to overall site noise. Self-noise estimates typically come from vault installations in continental interiors with very low ambient noise levels. However, this approach restricts the independent assessment of self-noise by individual end-users to assess any variations in their own instrument pools from nominal specifications given by manufacturers and from estimations given in comparative test papers. However, the calculation method should be adapted to variable installation conditions. One problem is that microseism noise can contaminate self-noise results caused by instrument misalignment errors or manufacturing limits; this effect becomes stronger where ambient noise is higher. Moreover, due to expected stochastic and time-varying sensor noise, estimates based on hand-picking small numbers of data segments may not accurately reflect true self-noise. We report on results from a self-noise test experiment of Güralp seismic instruments (3T, 3ESPC broadband seismometers, Fortis strong motion accelerometer) that were installed in the sub-surface vault of the Eskdalemuir Seismic Observatory in Scotland, UK over the period October 2016-August 2017. Due to vault's proximity to the ocean, secondary microseism noise is strong, so we efficiently compute the angle of misalignment that maximises waveform coherence with a reference sensor. Self-noise was calculated using the 3-sensor correlation technique and we compute probability density functions of self-noise to assess its spread over time. We find that not correcting for misalignments as low as 0.1° can cause self-noise to be artificially higher by up to 15 dB at frequencies of 0.1-1 Hz. Our method thus efficiently removes the effect of microseism contamination on self-noise; for example, it restores the minimum noise floor for a 360s - 50 Hz 3T to

  16. Near surface structure of the North Anatolian Fault Zone near 30°E from Rayleigh and Love wave tomography using ambient seismic noise. (United States)

    Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.


    By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.

  17. Seismic interferometry-turning noise into signal

    NARCIS (Netherlands)

    Curtis, A.; Gerstoft, P.; Sato, H.; Snieder, R.; Wapenaar, C.P.A.


    Turning noise into useful data—every geophysicist's dream? And now it seems possible. The field of seismic interferometry has at its foundation a shift in the way we think about the parts of the signal that are currently filtered out of most analyses—complicated seismic codas (the multiply scattered

  18. Amplification and Attenuation across USArray using Ambient Noise Wavefront Tracking

    KAUST Repository

    Bowden, Daniel C.


    As seismic travel-time tomography continues to be refined using data from the vast USArray dataset, it is advantageous to also exploit the amplitude information carried by seismic waves. We use ambient noise cross correlation to make observations of surface-wave amplification and attenuation at shorter periods (8 – 32 seconds) than can be observed with only traditional teleseismic earthquake sources. We show that the wavefront tracking approach of [Lin et al., 2012a] can be successfully applied to ambient noise correlations, yielding results quite similar to those from earthquake observations at periods of overlap. This consistency indicates that the wavefront tracking approach is viable for use with ambient noise correlations, despite concerns of the inhomogeneous and unknown distribution of noise sources. The resulting amplification and attenuation maps correlate well with known tectonic and crustal structure; at the shortest periods, our amplification and attenuation maps correlate well with surface geology and known sedimentary basins, while our longest period amplitudes are controlled by crustal thickness and begin to probe upper mantle materials. These amplification and attenuation observations are sensitive to crustal materials in different ways than travel-time observations and may be used to better constrain temperature or density variations. We also value them as an independent means of describing the lateral variability of observed Rayleigh-wave amplitudes without the need for 3D tomographic inversions.

  19. Background noise spectra of global seismic stations

    Energy Technology Data Exchange (ETDEWEB)

    Wada, M.M.; Claassen, J.P.


    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  20. Evidence of Non-extensivity in Earth's Ambient Noise (United States)

    Koutalonis, Ioannis; Vallianatos, Filippos


    The study of ambient seismic noise is one of the important scientific and practical research challenges, due to its use in a number of geophysical applications. In this work, we describe Earth's ambient noise fluctuations in terms of non-extensive statistical physics. We found that Earth's ambient noise increments follow the q-Gaussian distribution. This indicates that Earth's ambient noise's fluctuations are not random and present long-term memory effects that could be described in terms of Tsallis entropy. Our results suggest that q values depend on the time length used and that the non-extensive parameter, q, converges to value q → 1 for short-time windows and a saturation value of q ≈ 1.33 for longer ones. The results are discussed from the point of view of superstatistics introduced by Beck [Contin Mech Thermodyn 16(3):293-304, 2004] and connects the q values with the system's degrees of freedom. Our work indicates that the converged (maximum) value is q = 1.33 and is related to 5 degrees of freedom.

  1. Towards full waveform ambient noise inversion (United States)

    Sager, Korbinian; Ermert, Laura; Boehm, Christian; Fichtner, Andreas


    In this work we investigate fundamentals of a method—referred to as full waveform ambient noise inversion—that improves the resolution of tomographic images by extracting waveform information from interstation correlation functions that cannot be used without knowing the distribution of noise sources. The fundamental idea is to drop the principle of Green function retrieval and to establish correlation functions as self-consistent observables in seismology. This involves the following steps: (1) We introduce an operator-based formulation of the forward problem of computing correlation functions. It is valid for arbitrary distributions of noise sources in both space and frequency, and for any type of medium, including 3-D elastic, heterogeneous and attenuating media. In addition, the formulation allows us to keep the derivations independent of time and frequency domain and it facilitates the application of adjoint techniques, which we use to derive efficient expressions to compute first and also second derivatives. The latter are essential for a resolution analysis that accounts for intra- and interparameter trade-offs. (2) In a forward modelling study we investigate the effect of noise sources and structure on different observables. Traveltimes are hardly affected by heterogeneous noise source distributions. On the other hand, the amplitude asymmetry of correlations is at least to first order insensitive to unmodelled Earth structure. Energy and waveform differences are sensitive to both structure and the distribution of noise sources. (3) We design and implement an appropriate inversion scheme, where the extraction of waveform information is successively increased. We demonstrate that full waveform ambient noise inversion has the potential to go beyond ambient noise tomography based on Green function retrieval and to refine noise source location, which is essential for a better understanding of noise generation. Inherent trade-offs between source and structure

  2. Ambient Noise in an Urbanized Tidal Channel (United States)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  3. On the attenuation of the ambient seismic field

    International Nuclear Information System (INIS)

    Weemstra, C.


    Although myriad applications exploiting the ambient seismic field have been reported to date, comparatively little attention has been paid to its potential to resolve subsurface attenuation. The ambient seismic field, however, may ultimately prove itself an invaluable asset in constraining subsurface attenuation structure. Especially areas with dense seismometer coverage hold great potential. Moreover, since this coverage continues to grow, significant developments may await in the future. Subsurface structure in terms of attenuation is of great importance for many reasons. For example, knowledge of the attenuation structure may aid in predicting ground motions caused by future large earthquakes. From a scientific perspective, a great deal of new information may be extracted, potentially fostering research in related fields (e.g., geodynamics, hydrology). Both from an environmental and economic point of view, inversion of the ambient seismic wavefield for attenuation structure may in the future provide a means to image hydrocarbon reservoirs. In sufficiently diffuse wavefields, simple cross-correlation of long noise time series recorded by two receivers results in the response at one of the receivers as if there was a source at the position of the other. I present a case study that shows that thus retrieved surface waves can be used to recover attenuation beneath an array of ocean-bottom seismometers. Given the small aperture of the seismic survey, this is unprecedented. Unambiguous interpretation of recovered attenuation values is of major importance. Lack of understanding of the effect that preprocessing has on the amplitude of the noise cross-correlation prevents such unambiguous interpretation. I carefully examine the effect spectral whitening has on the noise cross-correlation. Emphasis is given to the dependence of the amplitudes on the length of the time windows employed in the cross-correlation procedure. Short time-window lengths may require an additional

  4. Seismic noise level variation in South Korea (United States)

    Sheen, D.; Shin, J.


    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  5. Ambient noise tomography of Eyjafjallajökull volcano, Iceland (United States)

    Benediktsdóttir, Ásdís; Gudmundsson, Ólafur; Brandsdóttir, Bryndís; Tryggvason, Ari


    We present a shear-velocity model for the Eyjafjallajökull stratovolcano, based on ambient seismic noise tomography applied to seven months of data from six permanent stations and 10 temporary seismic stations, deployed during and after the 2010 volcanic unrest. Vertical components of noise were cross correlated resulting in 30 robust phase-velocity dispersion curves between 1.6 and 6.5 s in period, displaying a ± 20% variation in phase velocity beneath the volcano. The uneven distribution of noise sources, evaluated using signal-to-noise ratios, was estimated to cause less than 2% error in most curves. Sensitivity kernels showed resolution down to 10 km and the lateral resolution of the resulting phase-velocity maps was about 5 km. The model reveals east-west oriented high-velocity anomalies due east and west of the caldera. Between these a zone of lower velocity is identified, coinciding with the location of earthquakes that occurred during the summit eruption in April 2010. A shallow, southwest elongated low-velocity anomaly is located 5 km southwest of the caldera. The limited depth resolution of the shear-velocity model precludes detection of melt within the volcano.

  6. Ambient noise analysis of deep ocean measurements (United States)

    Gaul, Roy D.; Knobles, David P.; Wittenborn, A. F.


    In October 1975 a measurement exercise designated CHURCH OPAL was done in the northeast Pacific Ocean to assess undersea acoustic noise and propagation phenomena. In 2003 the 10 days of deep ocean multiple hydrophone recordings during CHURCH OPAL were recovered and digitized. This paper presents results previously reported but unavailable for general distribution. The earlier work is augmented with more complete and detailed analyses using modern analytical techniques. Particular attention is given to statistical characterization of ambient noise within and beneath the deep sound channel in relation to distant shipping and local wind speed. [Work supported by ONR.

  7. Noise Model Analysis and Estimation of Effect due to Wind Driven Ambient Noise in Shallow Water

    Directory of Open Access Journals (Sweden)

    S. Sakthivel Murugan


    Full Text Available Signal transmission in ocean using water as a channel is a challenging process due to attenuation, spreading, reverberation, absorption, and so forth, apart from the contribution of acoustic signals due to ambient noises. Ambient noises in sea are of two types: manmade (shipping, aircraft over the sea, motor on boat, etc. and natural (rain, wind, seismic, etc., apart from marine mammals and phytoplanktons. Since wind exists in all places and at all time: its effect plays a major role. Hence, in this paper, we concentrate on estimating the effects of wind. Seven sets of data with various wind speeds ranging from 2.11 m/s to 6.57 m/s were used. The analysis is performed for frequencies ranging from 100 Hz to 8 kHz. It is found that a linear relationship between noise spectrum and wind speed exists for the entire frequency range. Further, we developed a noise model for analyzing the noise level. The results of the empirical data are found to fit with results obtained with the aid of noise model.

  8. Improving ambient noise cross-correlations in the noisy ocean bottom environment of the Juan de Fuca plate (United States)

    Tian, Ye; Ritzwoller, Michael H.


    Ambient noise tomography exploits seismic ground motions that propagate coherently over long interstation distances. Such ground motions provide information about the medium of propagation that is recoverable from interstation cross-correlations. Local noise sources, which are particularly strong in ocean bottom environments, corrupt ambient noise cross-correlations and compromise the effectiveness of ambient noise tomography. Based on 62 ocean bottom seismometers (OBSs) located on Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 40 continental stations near the coast of the western United States obtained in 2011 and 2012, we attempt to reduce the effects of local noise on vertical component seismic records across the plate and onto US continent. The goal is to provide better interstation cross-correlations for use in ambient noise tomography and the study of ambient noise directionality. As shown in previous studies, tilt and compliance noise are major sources of noise that contaminate the vertical channels of the OBSs and such noise can be greatly reduced by exploiting information on the horizontal components and the differential pressure gauge records, respectively. We find that ambient noise cross-correlations involving OBSs are of significantly higher signal-to-noise ratio at periods greater than 10 s after reducing these types of noise, particularly in shallow water environments where tilt and compliance noise are especially strong. The reduction of tilt and compliance noise promises to improve the accuracy and spatial extent of ambient noise tomography, allowing measurements based on coherently propagating ambient noise to be made at stations in the shallower parts of the JdF plate and at longer periods than in previous studies. In addition such local noise reduction produces better estimates of the azimuthal content of ambient noise.

  9. Near-surface elastic changes in the Ross Ice Shelf arising from transient storm and melt forcing observed with high-frequency ambient seismic noise (United States)

    Chaput, J.; Aster, R. C.; Baker, M. G.; Gerstoft, P.; Bromirski, P. D.; Nyblade, A.; Stephen, R. A.; Wiens, D.


    Ice shelf collapse can herald subsequent grounded ice instability. However, robust understanding of external mechanisms capable of triggering rapid changes remains elusive. Improved understanding therefore requires improved remote and in-situ measurements of ice shelf properties. Using nearly three years of continuous data from a recently deployed 34-station broadband seismic array on the Ross Ice Shelf, we analyze persistent temporally varying, anisotropic near-surface resonant wave modes at frequencies above 1 Hz that are highly sensitive to small changes in elastic shelf properties to depths of tens of m. We further find that these modes exhibit both progressive (on the scale of months) and rapid (on the scale of hours) changes in frequency content. The largest and most rapid excursions are associated with forcing from local storms, and with a large regional ice shelf melt event in January 2016. We hypothesize that temporally variable behavior of the resonance features arises from wind slab formation during storms and/or to porosity changes, and to the formation of percolation-related refrozen layers and thinning in the case of surface melting. These resonance variations can be reproduced and inverted for structural changes using numerical wave propagation models, and thus present an opportunity for 4-D structural monitoring of shallow ice shelf elasticity and structure using long-duration seismic recordings.

  10. Ambient Noise Tomography in Koyna-Warna region. (United States)

    Rohilla, S.; Rao, N. P.; Gerstoft, P.; Yao, H.; Fang, H.; Davulluri, S.


    In the present study Ambient Noise tomography has been done in the Koyna-Warna region of western India to decipher the complex structural setting and its linkage to the seismogenesis in this unique Reservoir Triggered Seismicity zone. The 3-D velocity model obtained from the study clearly brings out the lateral and vertical variations of shear velocity in the region down to a depth of about 10 km. In the Koyna region, seismicity distribution along the NNE-SSW trending Donachiwada fault zone is seen coinciding with a low velocity zone between two competent zones with a very high velocity > 4.0 km/s. The seismicity between the Koyna and Warna regions roughly trending NW-SE can be clearly seen in the NE-SW depth sections coinciding with a low velocity zone interspersed between two high velocity zones. The most active seismicity cluster south of the Warna Lake correlates with a near-vertical velocity discontinuity with a contrast of about 0.5 km/s is seen in an EW depth section. The study has helped in delineating the major fault zones of the Koyna-Warna region and enabled understanding the seismogenesis with respect to the structural controls in a RTS enviroment.

  11. Stress Monitoring Potential of Ambient Noise Interferometry in Deep Mine Environments (United States)

    Dales, P.; Audet, P.; Mercier, J. P.; de Beer, W.; Pascu, A.


    Understanding the response of the rock mass to mining is of key importance for the planning of mine operations as well as assessing and mitigating the seismic risk. For decades, studies have shown that passive source tomography, also called local earthquake tomography, can provide information on the rock mass response through the estimation of the temporal variation and 3D distribution (spatio-temporal variations) of stress. The spatio-temporal resolution afforded by passive source tomography depends on the seismicity rate and the location of microseismic events. In a mine, seismicity is not stationary, i.e. the locus and rate of seismicity vary with time, thus limiting the spatio-temporal resolution of this technique. Recent developments in the field of ambient noise seismic interferometry (Green's function retrieval from ambient noise) provide hints that continuous recordings of ambient vibrations collected around mines could be used to obtain information on the evolution and 3D distribution of the stress in the rock mass by providing measures of seismic travel times between pairs of sensors. In contrast to passive source tomography that relies on the distribution of seismic events, the resolution afforded by ambient noise interferometry tomography depends solely on the locations of sensors and the frequency content of the ambient noise. We present preliminary results which focus on the temporal stability of the estimated Green's functions, the effect of mine infrastructure on signal quality and preliminary methods to quantify stress changes in the rock mass. In addition, we present the adopted processing scheme built on the Apache Spark engine and demonstrate its effectiveness in parallelizing the computationally intensive cross-correlation routines.

  12. Three-component ambient noise beamforming in the Parkfield area (United States)

    Löer, Katrin; Riahi, Nima; Saenger, Erik H.


    We apply a three-component beamforming algorithm to an ambient noise data set recorded at a seismic array to extract information about both isotropic and anisotropic surface wave velocities. In particular, we test the sensitivity of the method with respect to the array geometry as well as to seasonal variations in the distribution of noise sources. In the earth's crust, anisotropy is typically caused by oriented faults or fractures and can be altered when earthquakes or human activities cause these structures to change. Monitoring anisotropy changes thus provides time dependent information on subsurface processes, provided they can be distinguished from other effects. We analyse ambient noise data at frequencies between 0.08 {{Hz}} and 0.52 {{Hz}} recorded at a three-component array in the Parkfield area, California (US), between November 2001 and April 2002. During this time, no major earthquakes were identified in the area and structural changes are thus not expected. We compute dispersion curves of Love and Rayleigh waves and estimate anisotropy parameters for Love waves. For Rayleigh waves, the azimuthal source coverage is too limited to perform anisotropy analysis. For Love waves, ambient noise sources are more widely distributed and we observe significant and stable surface wave anisotropy for frequencies between 0.2 {{Hz}} and 0.4 {{Hz}}. Synthetic data experiments indicate that the array geometry introduces apparent anisotropy, especially when waves from multiple sources arrive simultaneously at the array. Both the magnitude and the pattern of apparent anisotropy, however, differ significantly from the anisotropy observed in Love wave data. Temporal variations of anisotropy parameters observed at frequencies below 0.2 {{Hz}} and above 0.4 {{Hz}} correlate with changes in the source distribution. Frequencies between 0.2 {{Hz}} and 0.4 {{Hz}}, however, are less affected by these variations and provide relatively stable results over the period of study.

  13. Seismic Noise Studies of Urbanized Areas at Puerto Vallarta Mexico (United States)

    Lara Huerta, K. C.; Escudero, C. R.; Gomez, A.; Madrigal, L.


    The application of seismic noise techniques in urbanized environment becomes a valuable tool to obtain information that is critical in areas exposed to earthquakes. Damage distribution during large earthquakes is frequently conditioned by site effects, in this way we determine site effect using ambient noise measurements in the area of Puerto Vallarta, Mexico. We focus our microtremor measurements to the estimation of a subsoil structure. To perform this we use three different techniques H/V spectral ratios, array measurements of microtremors applying the SPAC and F-k techniques. This work discusses the results that were obtained applying these techniques to the urbanized areas of Puerto Vallarta city. We present a series of maps showing the result as well as analyzed its application to risk assessment.

  14. Body Wave and Ambient Noise Tomography of Makushin Volcano, Alaska (United States)

    Lanza, F.; Thurber, C. H.; Syracuse, E. M.; Ghosh, A.; LI, B.; Power, J. A.


    Located in the eastern portion of the Alaska-Aleutian subduction zone, Makushin Volcano is among the most active volcanoes in the United States and has been classified as high threat based on eruptive history and proximity to the City of Unalaska and international air routes. In 2015, five individual seismic stations and three mini seismic arrays of 15 stations each were deployed on Unalaska island to supplement the Alaska Volcano Observatory (AVO) permanent seismic network. This temporary array was operational for one year. Taking advantage of the increased azimuthal coverage and the array's increased earthquake detection capability, we developed body-wave Vp and Vp/Vs seismic images of the velocity structure beneath the volcano. Body-wave tomography results show a complex structure with the upper 5 km of the crust dominated by both positive and negative Vp anomalies. The shallow high-Vp features possibly delineate remnant magma pathways or conduits. Low-Vp regions are found east of the caldera at approximately 6-9 km depth. This is in agreement with previous tomographic work and geodetic models, obtained using InSAR data, which had identified this region as a possible long-term source of magma. We also observe a high Vp/Vs feature extending between 7 and 12 km depth below the caldera, possibly indicating partial melting, although the resolution is diminished at these depths. The distributed stations allow us to further complement body-wave tomography with ambient noise imaging and to obtain higher quality of Vs images. Our data processing includes single station data preparation and station-pair cross-correlation steps (Bensen et al., 2007), and the use of the phase weighted stacking method (Schimmel and Gallart, 2007) to improve the signal-to-noise ratio of the cross-correlations. We will show surface-wave dispersion curves, group velocity maps, and ultimately a 3D Vs image. By performing both body wave and ambient noise tomography, we provide a high

  15. Ambient noise levels and characterization in Aegean region, Turkey (United States)

    Sevim, Fatih; Zor, Ekrem; Açıkgöz, Cem; Tarancıoğlu, Adil


    We assessed the ambient noise level in the Aegean region and analyzed its diurnal variation and its relation to the earthquake detection capability of the Aegean Region Seismic Network (ARSN). We prepared probability density functions (PDFs) for 19 broadband stations in the Aegean region operated by the Earth and Marine Sciences Institute (EMSI) of the Marmara Research Center (MRC) of the Turkish Scientific Research Council (TÜBİTAK). The power spectral densities (PSDs) used to construct PDFs for each station were computed for the periods between 0.02 and 180 s. In addition, we generated noise map of the Aegean region for different periods using the PDFs to assess the origin of the noise. We analyzed earthquake activity in the region and found that there are more local events recorded at night than during the day for each station. This difference is strongly related to diurnal variation of background noise level for the period range mostly covering the frequency range for the local events. We observed daytime noise level 15 to 20 dB higher than that at the nighttime in high frequencies for almost all stations caused by its proximity to settled areas and roads. Additionally, we observed a splitting peak within the Double Frequency (DF) microseism band; it showed a clear noise increase around the short period DF band at all the stations, decreasing inland. This peak may be related to sea waves locally generated in the Aegean Sea. We also identified a prominent increase related to marble saw companies in some stations' noise PDFs.

  16. Ambient noise levels and characterization in Aegean region, Turkey (United States)

    Sevim, Fatih; Zor, Ekrem; Açıkgöz, Cem; Tarancıoğlu, Adil


    We assessed the ambient noise level in the Aegean region and analyzed its diurnal variation and its relation to the earthquake detection capability of the Aegean Region Seismic Network (ARSN). We prepared probability density functions (PDFs) for 19 broadband stations in the Aegean region operated by the Earth and Marine Sciences Institute (EMSI) of the Marmara Research Center (MRC) of the Turkish Scientific Research Council (TÜBİTAK). The power spectral densities (PSDs) used to construct PDFs for each station were computed for the periods between 0.02 and 180 s. In addition, we generated noise map of the Aegean region for different periods using the PDFs to assess the origin of the noise. We analyzed earthquake activity in the region and found that there are more local events recorded at night than during the day for each station. This difference is strongly related to diurnal variation of background noise level for the period range mostly covering the frequency range for the local events. We observed daytime noise level 15 to 20 dB higher than that at the nighttime in high frequencies for almost all stations caused by its proximity to settled areas and roads. Additionally, we observed a splitting peak within the Double Frequency (DF) microseism band; it showed a clear noise increase around the short period DF band at all the stations, decreasing inland. This peak may be related to sea waves locally generated in the Aegean Sea. We also identified a prominent increase related to marble saw companies in some stations' noise PDFs.

  17. Monitoring and imaging the atmosphere with infrasonic ambient noise correlations (United States)

    Haney, Matthew; Evers, Laslo


    gradient, when the infrasound propagates in a leaky waveguide. To move beyond guided infrasound waves in the atmospheric boundary layer, we discuss the prospect of retrieving, from correlations, infrasound waves that have transmitted through the upper atmosphere. Such waves could be used, for example, to better delineate the structure and extent of Sudden Stratospheric Warming events. In addition, atmospheric flows in the stratosphere are more laminar than in the boundary layer and thus more conducive to long-range wave propagation. The situation for retrieval of infrasound from the upper atmosphere is similar to that encountered in exploration seismology, where seismic waves reflected from deep interfaces (1 km) must be extracted from surface measurements contaminated by large amplitude guided waves. We discuss the use of array-based techniques to preferentially attenuate large amplitude, laterally propagating guided waves in the atmospheric boundary layer. We expect wind direction and speed to play a major role in the propagation of infrasound in the upper atmosphere and discuss the effects of wind on the ambient noise correlations.

  18. Structural control on the directional amplification of seismic noise (Campo Imperatore, central Italy) (United States)

    Pischiutta, M.; Fondriest, M.; Demurtas, M.; Magnoni, F.; Di Toro, G.; Rovelli, A.


    Seismic signals propagating across a fault may yield information on the internal structure of the fault zone. Here we have assessed the amplification of seismic noise (i.e., ambient vibrations generated by natural or anthropogenic disturbances) across the Vado di Corno Fault (Campo Imperatore, central Italy). The fault zone is considered as an exhumed analogue of the normal faults activated during the L'Aquila 2009 earthquake sequence. Detailed structural geological survey of the footwall block revealed that the fault zone is highly anisotropic and is affected by a complex network of faults and fractures with dominant WNW-ESE strike. We measured seismic noise with portable seismometers along a ∼500 m long transect perpendicular to the average fault strike. Seismic signals were processed calculating the horizontal-to-vertical spectral ratios and performing wavefield polarization analyses. We found a predominant NE-SW to NNE-SSW (i.e., ca. perpendicular to the average strike of the fault-fracture network) amplification of the horizontal component of the seismic waves. Numerical simulations of earthquake-induced ground motions ruled out the role of topography in controlling the polarization and the amplitude of the waves. Therefore, the higher seismic noise amplitude observed in the fault-perpendicular direction was related to the measured fracture network and the resulting stiffness anisotropy of the rock mass. These observations open new perspectives in using measures of ambient seismic noise, which are fast and inexpensive, to estimate the dominant orientation of fracture networks within fault zones.

  19. Ambient noise as the new source for urban engineering seismology and earthquake engineering: a case study from Beijing metropolitan area (United States)

    Liu, Lanbo; Chen, Qi-fu; Wang, Weijun; Rohrbach, Eric


    In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and microtremor, though are generally weak but available anywhere and anytime, can be an ideal supplementary source for conducting seismic surveys for engineering seismology and earthquake engineering. This is fundamentally supported by advanced digital signal processing techniques for effectively extracting the useful information out from the noise. Thus, it can be essentially regarded as a passive seismic method. In this paper we first make a brief survey of the ambient vibration noise, followed by a quick summary of digital signal processing for passive seismic surveys. Then the applications of ambient noise in engineering seismology and earthquake engineering for urban settings are illustrated with examples from Beijing metropolitan area. For engineering seismology the example is the assessment of site effect in a large area via microtremor observations. For earthquake engineering the example is for structural characterization of a typical reinforced concrete high-rise building using background vibration noise. By showing these examples we argue that the ambient noise can be treated as a new source that is economical, practical, and particularly valuable to engineering seismology and earthquake engineering projects for seismic hazard mitigation in urban areas.

  20. Monitoring Klyuchevskoy group of volcanoes (Kamchatka) using seismic noise records (United States)

    Gómez-García, Clara; Brenguier, Florent; Shapiro, Nikolai M.; Droznin, Dmitry V.; Droznina, Svetlana Y.; Chebrov, Victor N.; Gordeev, Evgenii I.


    In the last decade, extraction of Green functions from seismic ambient noise has been used extensive and efficiently in different contexts and scales: from imaging to monitoring the Earth's interior and from global to local scales. By using coda waves of noise cross-correlations to estimate travel time perturbations, we can assign changes in delay times to changes in the medium's velocity. Due to this technique attribute of continuous recording of the medium, it can accurately detect very small seismic velocity changes linked to small disturbances in volcano interiors. However, cross-correlation functions (CCF) do not necessary converge to media Green function: measurements of waveforms perturbations within a volcanic edifice are affected by the noise fluctuation. The Klyuchevskoy volcanic group, located above the edge of the Pacific Plate subducting beneath Kamchatka, is one of the most active clusters of volcanoes in the word. It is characterized by strongly localized volcanic tremor sources, which often dominate the recorded wavefield. To monitor and get measurements of temporal changes of these active volcanoes, we use coda waves of daily CCF from a total of 19 seismic stations from the seismic network operated by the Kamchatka Branch of the Geophysical Service (KBGS) of the Russian Academy of Sciences. Our study period goes from January 2009 to July 2013 in which two eruptions occurred: one from the Klyuchevskoy volcano (2009-2010) and the other from the Tolbachik volcano (2012-2013). After a quality checking of the records and testing different filters, we filter data in the frequency range 0.08 - 7 Hz and we use the Moving Window Cross Spectrum (MWCS) method to measure the relative time shifts. As both eruptions are characterized by emissions of seismic tremors, we avoid the choice of an arbitrary reference CCF: we compute velocity changes between all pairs of daily CCF. We retrieve a continuous velocity change time series for each station pair using a

  1. Seismic Interferometry Using Persistent Noise Sources for Temporal Subsurface Monitoring (United States)

    Dales, Philippe; Audet, Pascal; Olivier, Gerrit


    In passive source seismology, seismic interferometry typically refers to the cross correlation of ambient noise to construct an estimate of the Green's function between sensors. The presence of persistent natural and/or anthropogenic sources can bias or prevent the retrieval of these estimated Green's functions. Here we show how these strong persistent sources can be used to measure small changes in the medium between a source and either (or both) source-sensor pairs. The method relies on localizing the sources and using this information to identify and select cross-correlation functions for each source of interest. We illustrate this method by monitoring growth of a block cave at an underground mine using three nearly continuously operating ore crushers which dominate the wavefield. This technique should work equally well in natural environments using sources such as volcanic tremor, hydrothermal bubble cavitation, and microseisms.

  2. New comprehensive standard seismic noise models and 3D seismic noise variation for Morocco territory, North Africa, obtained using seismic broadband stations (United States)

    El Fellah, Younes; El-Aal, Abd El-Aziz Khairy Abd; Harnafi, Mimoun; Villaseñor, Antonio


    In the current work, we constructed new comprehensive standard seismic noise models and 3D temporal-spatial seismic noise level cubes for Morocco in north-west Africa to be used for seismological and engineering purposes. Indeed, the original global standard seismic noise models published by Peterson (1993) and their following updates by Astiz and Creager (1995), Ekström (2001) and Berger et al. (2003) had no contributing seismic stations deployed in North Africa. Consequently, this preliminary study was conducted to shed light on seismic noise levels specific to north-west Africa. For this purpose, 23 broadband seismic stations recently installed in different structural domains throughout Morocco are used to study the nature and characteristics of seismic noise and to create seismic noise models for Morocco. Continuous data recorded during 2009, 2010 and 2011 were processed and analysed to construct these new noise models and 3D noise levels from all stations. We compared the Peterson new high-noise model (NHNM) and low-noise model (NLNM) with the Moroccan high-noise model (MHNM) and low-noise model (MLNM). These new noise models are comparable to the United States Geological Survey (USGS) models in the short period band; however, in the period range 1.2 s to 1000 s for MLNM and 10 s to 1000 s for MHNM display significant variations. This variation is attributed to differences in the nature of seismic noise sources that dominate Morocco in these period bands. The results of this study have a new perception about permanent seismic noise models for this spectacular region and can be considered a significant contribution because it supplements the Peterson models and can also be used to site future permanent seismic stations in Morocco.

  3. MSNoise: A framework for Continuous Seismic Noise Analysis (United States)

    Lecocq, Thomas; Caudron, Corentin; De Plaen, Raphaël; Mordret, Aurélien


    MSNoise is an Open and Free Python package known to be the only complete integrated workflow designed to analyse ambient seismic noise and study relative velocity changes (dv/v) in the crust. It is based on state of the art and well maintained Python modules, among which ObsPy plays an important role. To our knowledge, it is officially used for continuous monitoring at least in three notable places: the Observatory of the Piton de la Fournaise volcano (OVPF, France), the Auckland Volcanic Field (New Zealand) and on the South Napa earthquake (Berkeley, USA). It is also used by many researchers to process archive data to focus e.g. on fault zones, intraplate Europe, geothermal exploitations or Antarctica. We first present the general working of MSNoise, originally written in 2010 to automatically scan data archives and process seismic data in order to produce dv/v time series. We demonstrate that its modularity provides a new potential to easily test new algorithms for each processing step. For example, one could experiment new methods of cross-correlation (done by default in the frequency domain), stacking (default is linear stacking, averaging), or dv/v estimation (default is moving window cross-spectrum "MWCS", so-called "doublet"), etc. We present the last major evolution of MSNoise from a "single workflow: data archive to dv/v" to a framework system that allows plugins and modules to be developed and integrated into the MSNoise ecosystem. Small-scale plugins will be shown as examples, such as "continuous PPSD" (à la McNamarra & Buland) or "Seismic Amplitude Ratio Analysis" (Taisne, Caudron). We will also present the new MSNoise-TOMO package, using MSNoise as a "cross-correlation" toolbox and demystifying surface wave tomography ! Finally, the poster will be a meeting point for all those using or willing to use MSNoise, to meet the developer, exchange ideas and wishes !

  4. Ambient noise in large rivers (L). (United States)

    Vračar, Miodrag S; Mijić, Miomir


    This paper presents the results of hydroacoustic noise research in three large European rivers: the Danube, the Sava, and the Tisa. Noise in these rivers was observed during a period of ten years, which includes all annual variation in hydrological and meteorological conditions (flow rate, speed of flow, wind speed, etc.). Noise spectra are characterized by wide maximums at frequencies between 20 and 30 Hz, and relatively constant slope toward higher frequencies. Spectral level of noise changes in time in relatively wide limits. At low frequencies, below 100 Hz, the dynamics of noise level is correlated with the dynamics of water flow and speed. At higher frequencies, noise spectra are mostly influenced by human activities on river and on riverbanks. The influence of wind on noise in rivers is complex due to the annual variation of river surface. The influence of wind is less pronounced than in oceans, seas, and lakes. © 2011 Acoustical Society of America

  5. Seismic random noise attenuation using modified wavelet thresholding

    Directory of Open Access Journals (Sweden)

    Qi-sheng Zhang


    Full Text Available In seismic exploration, random noise deteriorates the quality of acquired data. This study analyzed existing denoising methods used in seismic exploration from the perspective of random noise. Wavelet thresholding offers a new approach to reducing random noise in simulation results, synthetic data, and real data. A modified wavelet threshold function was developed by considering the merits and demerits of conventional soft and hard thresholding schemes. A MATLAB (matrix laboratory simulation model was used to compare the signal-to-noise ratios (SNRs and mean square errors (MSEs of the soft, hard, and modified threshold functions. The results demonstrated that the modified threshold function can avoid the pseudo-Gibbs phenomenon and produce a higher SNR than the soft and hard threshold functions. A seismic convolution model was built using seismic wavelets to verify the effectiveness of different denoising methods. The model was used to demonstrate that the modified thresholding scheme can effectively reduce random noise in seismic data and retain the desired signal. The application of the proposed tool to a real raw seismogram recorded during a land seismic exploration experiment located in north China clearly demonstrated its efficiency for random noise attenuation.

  6. Retrieving impulse response function amplitudes from the ambient seismic field (United States)

    Viens, Loïc; Denolle, Marine; Miyake, Hiroe; Sakai, Shin'ichi; Nakagawa, Shigeki


    Seismic interferometry is now widely used to retrieve the impulse response function of the Earth between two distant seismometers. The phase information has been the focus of most passive imaging studies, as conventional seismic tomography uses traveltime measurements. The amplitude information, however, is harder to interpret because it strongly depends on the distribution of ambient seismic field sources and on the multitude of processing methods. Our study focuses on the latter by comparing the amplitudes of the impulse response functions calculated between seismic stations in the Kanto sedimentary basin, Japan, using several processing techniques. This region provides a unique natural laboratory to test the reliability of the amplitudes with complex wave propagation through the basin, and dense observations from the Metropolitan Seismic Observation network. We compute the impulse response functions using the cross correlation, coherency and deconvolution techniques of the raw ambient seismic field and the cross correlation of 1-bit normalized data. To validate the amplitudes of the impulse response functions, we use a shallow Mw 5.8 earthquake that occurred on the eastern edge of Kanto Basin and close to a station that is used as the virtual source. Both S and surface waves are retrieved in the causal part of the impulse response functions computed with all the different techniques. However, the amplitudes obtained from the deconvolution method agree better with those of the earthquake. Despite the expected wave attenuation due to the soft sediments of the Kanto Basin, seismic amplification caused by the basin geometry dominates the amplitudes of S and surface waves and is captured by the ambient seismic field. To test whether or not the anticausal part of the impulse response functions from deconvolution also contains reliable amplitude information, we use another virtual source located on the western edge of the basin. We show that the surface wave amplitudes

  7. 3D basin structure of the Santa Clara Valley constrained by ambient noise tomography (United States)

    Cho, H.; Lee, S. J.; Rhie, J.; Kim, S.


    The basin structure is an important factor controls the intensity and duration of ground shaking due to earthquake. Thus it is important to study the basin structure for better understanding seismic hazard and also improving the earthquake preparedness. An active source seismic survey is the most appropriate method to determine the basin structure in detail but its applicability, especially in urban areas, is limited. In this study, we tested the potential of an ambient noise tomography, which can be a cheaper and more easily applicable method compared to a traditional active source survey, to construct the velocity model of the basin. Our testing region is the Santa Clara Valley, which is one of the major urban sedimentary basins in the States. We selected this region because continuous seismic recordings and well defined velocity models are available. Continuous seismic recordings of 6 months from short-period array of Santa Clara Valley Seismic Experiment are cross-correlated with 1 hour time window. And the fast marching method and the subspace method are jointly applied to construct 2-D group velocity maps between 0.2 - 4.0 Hz. Then, shear wave velocity model of the Santa Clara Valley is calculated up to 5 km depth using bayesian inversion technique. Although our model cannot depict the detailed structures, it is roughly comparable with the velocity model of the US Geological Survey, which is constrained by active seismic surveys and field researches. This result indicate that an ambient noise tomography can be a replacement, at least in part, of an active seismic survey to construct the velocity model of the basin.

  8. Seismic noise suppression using weighted nuclear norm minimization method (United States)

    Li, Juan; Wang, Daixiang; Ji, Shuo; Li, Yue; Qian, Zhihong


    The weighted nuclear norm minimization method as an extension of nuclear-norm minimization was applied to image denoising originally. It is a kind of low rank matrix approximation method that can estimate the noiseless matrix from its noise version. The effective structures of image have a certain degree of repeatability and the weighted nuclear norm minimization method just utilizes this property to construct an approximate low rank matrix. Taking into account the spatial characteristics of seismic data and the redundancies of valid information, we propose to adopt the weighted nuclear norm minimization method to suppress seismic random noise. In this method the block matching algorithm is helpful for the recovery of seismic events because the texture blocks sharing the same reflection events are the most similar. Even when the signal to noise ratio is - 10 dB, this novel method still be able to clearly recover signals. Experiments on both synthetic and real seismic data show that the weighted nuclear norm minimization method can not only suppress the random noise but also better preserves the valid information of seismic signal when compared to the common seismic denoising methods such as the Wavelet and Time Frequency Peak Filter.

  9. Ambient Seismic Imaging of Hydraulically Active Fractures at km Depths (United States)

    Malin, P. E.; Sicking, C.


    Streaming Depth Images of ambient seismic signals using numerous, densely-distributed, receivers have revealed their connection to hydraulically active fractures at 0.5 to 5 km depths. Key for this type of imaging is very high-fold stacking over both multiple receives and periods of a few hours. Also important is suppression of waveforms from fixed, repeating sources such as pumps, generators, and traffic. A typical surface-based ambient SDI survey would use a 3D seismic receiver grid. It would have 1,000 to 4,000 uniformly distributed receivers at a density of 50/km2over the target. If acquired by borehole receivers buried 100 m deep, the density can be dropped by an order of magnitude. We show examples of the acquisition and signal processing scenarios used to produce the ambient images. (Sicking et al., SEG Interpretation, Nov 2017.) While the fracture-fluid source connection of SDI has been verified by drilling and various types of hydraulic tests, the precise nature of the signal's origin is not clear. At the current level of observation, the signals do not have identifiable phases, but can be focused using P wave velocities. Suggested sources are resonances of pressures fluctuations in the fractures, or small, continuous, slips on fractures surfaces. In either case, it appears that the driving mechanism is tectonic strain in an inherently unstable crust. Solid earth tides may enhance these strains. We illustrate the value of the ambient SDI method in its industrial application by showing case histories from energy industry and carbon-capture-sequestration projects. These include ambient images taken before, during, and after hydraulic treatments in un-conventional reservoirs. The results show not only locations of active fractures, but also their time responses to stimulation and production. Time-lapse ambient imaging can forecast and track events such as well interferences and production changes that can result from nearby treatments.

  10. Accurate Ambient Noise Assessment Using Smartphones (United States)

    Zamora, Willian; Calafate, Carlos T.; Cano, Juan-Carlos; Manzoni, Pietro


    Nowadays, smartphones have become ubiquitous and one of the main communication resources for human beings. Their widespread adoption was due to the huge technological progress and to the development of multiple useful applications. Their characteristics have also experienced a substantial improvement as they now integrate multiple sensors able to convert the smartphone into a flexible and multi-purpose sensing unit. The combined use of multiple smartphones endowed with several types of sensors gives the possibility to monitor a certain area with fine spatial and temporal granularity, a procedure typically known as crowdsensing. In this paper, we propose using smartphones as environmental noise-sensing units. For this purpose, we focus our study on the sound capture and processing procedure, analyzing the impact of different noise calculation algorithms, as well as in determining their accuracy when compared to a professional noise measurement unit. We analyze different candidate algorithms using different types of smartphones, and we study the most adequate time period and sampling strategy to optimize the data-gathering process. In addition, we perform an experimental study comparing our approach with the results obtained using a professional device. Experimental results show that, if the smartphone application is well tuned, it is possible to measure noise levels with a accuracy degree comparable to professional devices for the entire dynamic range typically supported by microphones embedded in smartphones, i.e., 35–95 dB. PMID:28430126

  11. Accurate Ambient Noise Assessment Using Smartphones. (United States)

    Zamora, Willian; Calafate, Carlos T; Cano, Juan-Carlos; Manzoni, Pietro


    Nowadays, smartphones have become ubiquitous and one of the main communication resources for human beings. Their widespread adoption was due to the huge technological progress and to the development of multiple useful applications. Their characteristics have also experienced a substantial improvement as they now integrate multiple sensors able to convert the smartphone into a flexible and multi-purpose sensing unit. The combined use of multiple smartphones endowed with several types of sensors gives the possibility to monitor a certain area with fine spatial and temporal granularity, a procedure typically known as crowdsensing. In this paper, we propose using smartphones as environmental noise-sensing units. For this purpose, we focus our study on the sound capture and processing procedure, analyzing the impact of different noise calculation algorithms, as well as in determining their accuracy when compared to a professional noise measurement unit. We analyze different candidate algorithms using different types of smartphones, and we study the most adequate time period and sampling strategy to optimize the data-gathering process. In addition, we perform an experimental study comparing our approach with the results obtained using a professional device. Experimental results show that, if the smartphone application is well tuned, it is possible to measure noise levels with a accuracy degree comparable to professional devices for the entire dynamic range typically supported by microphones embedded in smartphones, i.e., 35-95 dB.

  12. Upper crustal structure of Madeira Island revealed from ambient noise tomography (United States)

    Matos, Catarina; Silveira, Graça; Matias, Luís; Caldeira, Rita; Ribeiro, M. Luísa; Dias, Nuno A.; Krüger, Frank; Bento dos Santos, Telmo


    We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.

  13. A generalized formulation for noise-based seismic velocity change measurements (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.


    The observation of continuous seismic velocity changes is a powerful tool for detecting seasonal variations in crustal structure, volcanic unrest, co- and post-seismic evolution of stress in fault areas or the effects of fluid injection. The standard approach for measuring such velocity changes relies on comparison of travel times in the coda of a set of seismic signals, usually noise-based cross-correlations retrieved at different dates, and a reference trace, usually a averaged function over dates. A good stability in both space and time of the noise sources is then the main assumption for reliable measurements. Unfortunately, these conditions are often not fulfilled, as it happens when ambient-noise sources are non-stationary, such as the emissions of low-frequency volcanic tremors.We propose a generalized formulation for retrieving continuous time series of noise-based seismic velocity changes without any arbitrary reference cross-correlation function. We set up a general framework for future applications of this technique performing synthetic tests. In particular, we study the reliability of the retrieved velocity changes in case of seasonal-type trends, transient effects (similar to those produced as a result of an earthquake or a volcanic eruption) and sudden velocity drops and recoveries as the effects of transient local source emissions. Finally, we apply this approach to a real dataset of noise cross-correlations. We choose the Klyuchevskoy volcanic group (Kamchatka) as a case study where the recorded wavefield is hampered by loss of data and dominated by strongly localized volcanic tremor sources. Despite the mentioned wavefield contaminations, we retrieve clear seismic velocity drops associated with the eruptions of the Klyuchevskoy an the Tolbachik volcanoes in 2010 and 2012, respectively.

  14. Simulating the seismic pressure noise on Mars (United States)

    Murdoch, N.; Kenda, B.; Kawamura, T.; Spiga, A.; Lognonné, P.; Mimoun, D.; Banerdt, W. B.


    The atmospheric pressure fluctuations on Mars will induce an elastic response in the ground that will create a ground tilt, detectable as a seismic signal on SEIS. We use Large Eddy Simulations of the wind and surface pressure at the InSight landing site, combined with ground deformation models to investigate the atmospheric pressure signals on SEIS.

  15. Rayleigh wave group-velocity across the Dominican Republic and Puerto Rico from ambient noise tomography (United States)

    Quiros, D.; Pulliam, J.; Polanco Rivera, E.; Huerfano Moreno, V. A.


    The eastern North America-Caribbean (NA-CAR) plate boundary near the islands of Hispaniola (which is comprised of the Dominican Republic and Haiti) and Puerto Rico is a complex transition zone in which strain is accommodated by two transform fault systems and oblique subduction. In 2013, scientists from Baylor University, the Autonomous University of Santo Domingo, and the Puerto Rico Seismic Network deployed 16 broadband stations on the Dominican Republic to expand the local permanent network. The goal of the Greater Antilles Seismic Program (GrASP) is to combine its data with that from permanent networks in Puerto Rico, Haiti, Cuba, the Cayman Islands, and Jamaica to develop a better understanding of the crust and upper mantle structure in the Northeastern Caribbean (Greater Antilles). One important goal of GrASP is to develop robust velocity models that can be used to improve earthquake location and seismic hazard efforts. In this study, we focus on obtaining Rayleigh wave group velocity maps from ambient noise tomography. By cross-correlating ambient seismic noise recorded at 53 stations between 2010 to present, we obtain Green's functions between 1165 pairs of stations. From these, we obtain dispersion curves by the application of FTAN methods with phase-matched filtering. Selection criteria depend on the signal-to-noise ratio and seasonal variability, with further filtering done by rejecting velocities incompatible with maps produced from overdamped tomographic inversions. Preliminary dispersion maps show strong correlations with large-scale geological and tectonic features for periods between 5 - 20 s, such as the Cordillera Central in both the Dominican Republic and Puerto Rico, the Mona Passage, and the NA-CAR subduction zone. Ongoing efforts focus on including shorter periods in Puerto Rico as its denser station distribution could allow us to retrieve higher resolution group velocity maps.

  16. Seismic noise attenuation using an online subspace tracking algorithm (United States)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang


    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  17. Qademah Fault Artificial Ambient Noise Test

    KAUST Repository

    Hanafy, Sherif M.


    This data set was collected on 7 Dec. 2014 by Sherif and Abdullah. The receiver layout is the same as that of the passive data test at the same location, which is described as follow: 288 receivers are used and arranged as follow - 12 lines, cross-line offset = 10 m - 24 receiver in each line, inline offset = 5 m - Additional 24 receivers are placed at line # 6, where the receiver interval is decreased to 2.5 m. Data Recording: We start recording at 10:10 am and stop recording at 11:25 am. Each record has total of 20 s, with time interval of 0.004 ms and around 2 s overlap between each two successive files. Source: We used a piece of wood attached to a pick-up truck to create the noise; we drove around the array of receivers in a rectangle-shape route during the recording time.

  18. Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study. (United States)

    Dou, Shan; Lindsey, Nate; Wagner, Anna M; Daley, Thomas M; Freifeld, Barry; Robertson, Michelle; Peterson, John; Ulrich, Craig; Martin, Eileen R; Ajo-Franklin, Jonathan B


    Ambient-noise-based seismic monitoring of the near surface often has limited spatiotemporal resolutions because dense seismic arrays are rarely sufficiently affordable for such applications. In recent years, however, distributed acoustic sensing (DAS) techniques have emerged to transform telecommunication fiber-optic cables into dense seismic arrays that are cost effective. With DAS enabling both high sensor counts ("large N") and long-term operations ("large T"), time-lapse imaging of shear-wave velocity (V S ) structures is now possible by combining ambient noise interferometry and multichannel analysis of surface waves (MASW). Here we report the first end-to-end study of time-lapse V S imaging that uses traffic noise continuously recorded on linear DAS arrays over a three-week period. Our results illustrate that for the top 20 meters the V S models that is well constrained by the data, we obtain time-lapse repeatability of about 2% in the model domain-a threshold that is low enough for observing subtle near-surface changes such as water content variations and permafrost alteration. This study demonstrates the efficacy of near-surface seismic monitoring using DAS-recorded ambient noise.

  19. Very broadband seismic background noise analysis of permanent good vaulted seismic stations (United States)

    Abd el-aal, Abd el-aziz Khairy


    This paper describes the results of a preliminary study conducted to analyze seismic background noise at sites of recently deployed very broadband stations of the Egyptian National Seismological Network (ENSN). The main purpose of the study is to assess the effects of permanent seismic vault construction and also to establish characteristics and origin of seismic noise at those sites. Another goal of this study is to determine the time needed for noise at those sites to stabilize. The power spectral densities of background noise at short period band (SP), very broadband (VBB), and ultra long period band (ULP) for each component of each broadband seismometer deployed in the different investigated sites are calculated. A MATLAB code has been developed that manages data processing and data analysis and compares the results with the high-noise model (NHNM) and low-noise model (NLNM) of Peterson (1993). Based on the obtained analysis, the noise stability and the efficiency of each station to record regional and teleseismic events are measured. The results of this study could be used in the future to evaluate station quality, to improve those processes that require background noise values, such as automatic association, and to improve the estimation of station and network detection and location thresholds.

  20. Seismic random noise attenuation using shearlet and total generalized variation

    International Nuclear Information System (INIS)

    Kong, Dehui; Peng, Zhenming


    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better. (paper)

  1. Seismic random noise attenuation using shearlet and total generalized variation (United States)

    Kong, Dehui; Peng, Zhenming


    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better.

  2. Retrieval of Body-Wave Reflections Using Ambient Noise Interferometry Using a Small-Scale Experiment (United States)

    Dantas, Odmaksuel Anísio Bezerra; do Nascimento, Aderson Farias; Schimmel, Martin


    We report the retrieval of body-wave reflections from noise records using a small-scale experiment over a mature oil field. The reflections are obtained by cross-correlation and stacking of the data. We used the stacked correlograms to create virtual source-to-receiver common shot gathers and are able to obtain body-wave reflections. Surface waves that obliterate the body-waves in our noise correlations were attenuated following a standard procedure from active source seismics. Further different strategies were employed to cross-correlate and stack the data: classical geometrical normalized cross-correlation (CCGN), phase cross-correlation (PCC), linear stacking**** and phase weighted stacking (PWS). PCC and PWS are based on the instantaneous phase coherence of analytic signals. The four approaches are independent and reveal the reflections; nevertheless, the combination of PWS and CCGN provided the best results. Our analysis is based on 2145 cross-correlations of 600 s data segments. We also compare the resulted virtual shot gathers with an active 2D seismic line near the passive experiment. It is shown that our ambient noise analysis reproduces reflections which are present in the active seismic data.

  3. Icequakes and ambient noise sources detected by a geophone array at the Kaskawulsh glacier (United States)

    Aso, N.; Tsai, V. C.; Schoof, C.; Whiteford, A.; Flowers, G. E.


    Both sliding and meltwater drainage processes of glaciers are expected to generate seismic signals. The confluence of the North and Central arms of the Kaskawulsh glacier in the Yukon Territory is an especially attractive place to study such phenomena not only because of the confluence but also because a nearby ice-dammed lake fills and drains rapidly every summer. We analyzed geophone data from nine stations at the Kaskawulsh glacier during the summer of 2014 to detect and locate icequakes and ambient noise sources. We first detected icequakes automatically by picking arrivals. Then we located events using differential arrival times between stations obtained precisely by cross-correlations, and also applied a double-difference relocation technique. During the 1-month observation period, we found 183 events that clustered near the medial moraine. More icequakes are observed from midnight to noon, potentially due to lower noise levels. These events are distributed on a dipping plane sub-parallel to the glacier flow direction. The depths below the surface range from 200m on the shallower side to 500m on the deeper side. This structure may correspond to the basal slope of the medial moraine and implies that these icequake signals come from either shear basal sliding or an englacial splay fault. We also determined ambient noise source locations for each 1-hour record sequence using the same process as for the icequakes. We located 31 sequences, among which more sequences were observed in the afternoon, possibly related to melting of the glacier. Most of the ambient noise sequences were located in two vertical clusters, with each cluster potentially corresponding to a crevasse or a moulin. We interpret this ambient noise as being produced by meltwater drainage. In both analyses, we find that inter-station differential arrival times obtained by cross-correlations provide effective information to locate sliding or meltwater drainage processes.

  4. Statistical Properties of Seismic Noise Measured in Underground Spaces During Seismic Swarm

    Czech Academy of Sciences Publication Activity Database

    Lyubushin, A. A.; Kaláb, Zdeněk; Lednická, Markéta


    Roč. 49, č. 2 (2014), s. 209-224 ISSN 2213-5812 R&D Projects: GA ČR GA105/09/0089; GA MŠk LM2010008 Institutional support: RVO:68145535 Keywords : seismic noise * multifractals * wavelet s * kurtosis * West Bohemia seismic swarm Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.543, year: 2014

  5. Statistical Properties of Seismic Noise Measured in Underground Spaces During Seismic Swarm

    Czech Academy of Sciences Publication Activity Database

    Lyubushin, A. A.; Kaláb, Zdeněk; Lednická, Markéta


    Roč. 49, č. 2 (2014), s. 209-224 ISSN 2213-5812 R&D Projects: GA ČR GA105/09/0089; GA MŠk LM2010008 Institutional support: RVO:68145535 Keywords : seismic noise * multifractals * wavelets * kurtosis * West Bohemia seismic swarm Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.543, year: 2014

  6. Seismic Background Noise Analysis of BRTR (PS-43) Array (United States)

    Ezgi Bakir, Mahmure; Meral Ozel, Nurcan; Umut Semin, Korhan


    The seismic background noise variation of BRTR array, composed of two sub arrays located in Ankara and in Ankara-Keskin, has been investigated by calculating Power Spectral Density and Probability Density Functions for seasonal and diurnal noise variations between 2005 and 2011. PSDs were computed within the frequency range of 100 s - 10 Hz. The results show us a little change in noise conditions in terms of time and location. Especially, noise level changes were observed at 3-5 Hz in diurnal variations at Keskin array and there is a 5-7 dB difference in day and night time in cultural noise band (1-10 Hz). On the other hand, noise levels of medium period array is high in 1-2 Hz frequency rather than short period array. High noise levels were observed in daily working times when we compare it to night-time in cultural noise band. The seasonal background noise variation at both sites also shows very similar properties to each other. Since these stations are borehole instruments and away from the coasts, we saw a small change in noise levels caused by microseism. Comparison between Keskin short period array and Ankara medium period array show us Keskin array is quiter than Ankara array.

  7. Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations (United States)

    Becker, G.; Knapmeyer-Endrun, B.


    We derive autocorrelations from ambient seismic noise to image the reflectivity of the subsurface and to extract the Moho depth beneath the stations for two different data sets in Central Europe. The autocorrelations are calculated by smoothing the spectrum of the data in order to suppress high amplitude, narrow-band signals of industrial origin, applying a phase autocorrelation algorithm and time-frequency domain phase-weighted stacking. The stacked autocorrelation results are filtered and analysed predominantly in the frequency range of 1-2 Hz. Moho depth is automatically picked inside uncertainty windows obtained from prior information. The processing scheme we developed is applied to data from permanent seismic stations located in different geological provinces across Europe, with varying Moho depths between 25 and 50 km, and to the mainly short period temporary PASSEQ stations along seismic profile POLONAISE P4. The autocorrelation results are spatially and temporarily stable, but show a clear correlation with the existence of cultural noise. On average, a minimum of six months of data is needed to obtain stable results. The obtained Moho depth results are in good agreement with the subsurface model provided by seismic profiling, receiver function estimates and the European Moho depth map. In addition to extracting the Moho depth, it is possible to identify an intracrustal layer along the profile, again closely matching the seismic model. For more than half of the broad-band stations, another change in reflectivity within the mantle is observed and can be correlated with the lithosphere-asthenosphere boundary to the west and a mid-lithospheric discontinuity beneath the East European Craton. With the application of the developed autocorrelation processing scheme to different stations with varying crustal thicknesses, it is shown that Moho depth can be extracted independent of subsurface structure, when station coverage is low, when no strong seismic sources are

  8. Seismic and Biological Sources of Ambient Ocean Sound (United States)

    Freeman, Simon Eric

    Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed

  9. Ambient-noise tomography of Katla volcano, south Iceland (United States)

    Jeddi, Zeinab; Gudmundsson, Olafur; Tryggvason, Ari


    A shear-wave velocity model of subglacial Katla volcano, southern Iceland, has been developed using ambient seismic noise tomography based on data from a temporary network operating between May 2011 and August 2013 and permanent stations around the volcano. Phase-velocity dispersion curves were obtained using cross-correlations of vertical components of 136 station pairs and non-linearly inverted for phase-velocity maps between 1.7 and 7.5 s. Local dispersion curves were inverted for shear-velocity variation with depth using a grid search imposing a fixed ice layer at the top. The resulting one-dimensional (1-D) velocity models were combined to obtain a pseudo three-dimensional (3-D) model with estimated lateral resolution of 8 km and depth resolution varying from close to 1 km near the surface to about 8 km at 10 km depth. Shear wave velocities are generally higher within the Katla central volcano than in its surroundings. The most striking feature of the model is a high-velocity anomaly beneath the caldera at > 6 km depth interpreted to be due to cumulates resulting from differentiation of shallower magma intrusions and remelting of subsiding upper crust. No shallow low-velocity anomaly is resolved beneath the central caldera, but a low-velocity region is found at 2-4 km depth beneath the western half of the caldera. VP/VS ratios, estimated from average velocity-depth profiles from surface-wave data and higher frequency P-wave data, are anomalously high (> 1.9) compared to average Icelandic crust, particularly in the top 2-3 km. This is argued not to be an artifact due to lateral refraction or topography. Instead, this anomaly could be explained as an artifact caused by velocity dispersion due to attenuation and a difference in frequency content, and possibly to a degree by the compositional difference between the transalkalic Fe-Ti basalts of Katla and average tholeiitic Icelandic crust.

  10. Investigating Near Surface S-Wave Velocity Properties Using Ambient Noise in Southwestern Taiwan

    Directory of Open Access Journals (Sweden)

    Chun-Hsiang Kuo


    Full Text Available Ambient noise is typically used to estimate seismic site effects and velocity profiles instead of earthquake recordings, especially in areas with limited seismic data. The dominant Horizontal to Vertical Spectral Ratio (HVSR frequency of ambient noise is correlated to Vs30, which is the average S-wave velocity in the top 30 m. Vs30 is a widely used parameter for defining seismic amplification in earthquake engineering. HVSR can detect the vertical discontinuity of velocities, that is, the interfaces between hard bedrock and soft sediments. In southwestern Taiwan most strong motion stations are located in the plains and show a dominant frequency lower than 3 Hz. Several stations near the coast have low dominant frequencies of less than 1 Hz. The dominant frequencies are higher than 4 Hz at piedmont stations. The stations in the mountains with dominant frequencies over 8 Hz are typically located on very hard sites. This study analyzed the HVSR characteristics under different seismic site conditions considering the Vs30 from previous study (Kuo et al. 2012. The result implies that HVSRs are a better tool than Vs30 to classify the sites where bedrock is deeper than 30 m. Furthermore, we found a linear correlation between Vs30 and dominant HVSR frequency which could be used as a proxy of Vs30. The Vs30 map in this area was derived using the Engineering Geological Database for Taiwan Strong Motion Instrumentation Program (EGDT. The comparable distribution pattern between the dominant frequency and Vs30 demonstrate that HVSR can recognize S-wave velocity properties at the shallow subsurface.

  11. Imaging architecture of the Jakarta Basin, Indonesia with transdimensional inversion of seismic noise (United States)

    Saygin, E.; Cummins, P. R.; Cipta, A.; Hawkins, R.; Pandhu, R.; Murjaya, J.; Masturyono, Irsyam, M.; Widiyantoro, S.; Kennett, B. L. N.


    In order to characterize the subsurface structure of the Jakarta Basin, Indonesia, a dense portable seismic broad-band network was operated by The Australian National University (ANU) and the Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG) between October 2013 and February 2014. Overall 96 locations were sampled through successive deployments of 52 seismic broad-band sensors at different parts of the city. Oceanic and anthropogenic noises were recorded as well as regional and teleseismic earthquakes. We apply regularized deconvolution to the recorded ambient noise of the vertical components of available station pairs, and over 3000 Green's functions were retrieved in total. Waveforms from interstation deconvolutions show clear arrivals of Rayleigh fundamental and higher order modes. The traveltimes that were extracted from group velocity filtering of fundamental mode Rayleigh wave arrivals, are used in a 2-stage Transdimensional Bayesian method to map shear wave structure of subsurface. The images of S wave speed show very low velocities and a thick basin covering most of the city with depths up to 1.5 km. These low seismic velocities and the thick basin beneath the city potentially cause seismic amplification during a subduction megathrust or other large earthquake close to the city of Jakarta.

  12. Body-wave retrieval and imaging from ambient seismic fields with very dense arrays (United States)

    Nakata, N.; Boué, P.; Beroza, G. C.


    Correlation-based analyses of ambient seismic wavefields is a powerful tool for retrieving subsurface information such as stiffness, anisotropy, and heterogeneity at a variety of scales. These analyses can be considered to be data-driven wavefield modeling. Studies of ambient-field tomography have been mostly focused on the surface waves, especially fundamental-mode Rayleigh waves. Although the surface-wave tomography is useful to model 3D velocities, the spatial resolution is limited due to the extended depth sensitivity of the surface wave measurements. Moreover, to represent elastic media, we need at least two stiffness parameters (e.g., shear and bulk moduli). We develop a technique to retrieve P diving waves from the ambient field observed by the dense geophone network (~2500 receivers with 100-m spacing) at Long Beach, California. With two-step filtering, we improve the signal-to-noise ratio of body waves to extract P wave observations that we use for tomography to estimate 3D P-wave velocity structure. The small scale-length heterogeneity of the velocity model follows a power law with ellipsoidal anisotropy. We also discuss possibilities to retrieve reflected waves from the ambient field and show other applications of the body-wave extraction at different locations and scales. Note that reflected waves penetrate deeper than diving waves and have the potential to provide much higher spatial resolution.

  13. Monitoring temporal variations of seismic properties of the crust induced by the 2013 Ruisui earthquake in eastern Taiwan from coda wave interferometry with ambient seismic and strain fields (United States)

    Dai, W. P.; Hung, S. H.; Wu, S. M.; Hsu, Y. J.


    Owing to the rapid development in ambient noise seismology, time-lapse variations in delay time and waveform decorrelation of coda derived from noise cross correlation (NCF) have been proved very effective to monitor slight changes in seismic velocity and scattering properties of the crust induced by various loadings such as the earthquake and healing process. In this study, we employ coda wave interferometry to detect the crustal perturbations immediately preceding and following the 2013 Mw 6.2 Ruisui Earthquake which struck the northern segment of the Longitudinal Valley Fault in eastern Taiwan, a seismically very active thrust suture zone separating the Eurasian and Philippine Sea Plate. By comparing the pre- and post-event coda waves extracted from the auto- and cross-correlation functions (ACFs and CCFs) of ambient seismic and strain fields recorded by the seismometers and borehole strainmeters, respectively, in the vicinity of the source region, we present a strong case that not only coseismic velocity reduction but also preceding decorrelation of waveforms are explicitly revealed in both the seismic and strain CCFs filtered in the secondary microseism frequency band of 0.1-0.9 Hz. Such precursory signals susceptible to the scattering properties of the crust are more unequivocally identified in the coda retrieved from the strainmeter data, suggesting that the ambient strain field can act as a more sensible probe to detect tiny structural perturbations in the critically stressed fault zone at the verge of failure. In addition to coseismic velocity changes detected in both the seismic and strain NCFs, we find quasi-periodic velocity variations that only appear in the strain retrieved coda signals, with a predominant cycle of 3-4 months correlating with the groundwater fluctuations observed at Ruisui.

  14. Imaging of upper crustal structure beneath East Java-Bali, Indonesia with ambient noise tomography (United States)

    Martha, Agustya Adi; Cummins, Phil; Saygin, Erdinc; Sri Widiyantoro; Masturyono


    The complex geological structures in East Java and Bali provide important opportunities for natural resource exploitation, but also harbor perils associated with natural disasters. Such a condition makes the East Java region an important area for exploration of the subsurface seismic wave velocity structure, especially in its upper crust. We employed the ambient noise tomography method to image the upper crustal structure under this study area. We used seismic data recorded at 24 seismographs of BMKG spread over East Java and Bali. In addition, we installed 28 portable seismographs in East Java from April 2013 to January 2014 for 2-8 weeks, and we installed an additional 28 seismographs simultaneously throughout East Java from August 2015 to April 2016. We constructed inter-station Rayleigh wave Green's functions through cross-correlations of the vertical component of seismic noise recordings at 1500 pairs of stations. We used the Neighborhood Algorithm to construct depth profiles of shear wave velocity (Vs). The main result obtained from this study is the thickness of sediment cover. East Java's southern mountain zone is dominated by higher Vs, the Kendeng basin in the center is dominated by very low Vs, and the Rembang zone (to the North of Kendeng zone) is associated with medium Vs. The existence of structures with oil and gas potential in the Kendeng and Rembang zones can be identified by low Vs.

  15. Seismic noise filtering based on Generalized Regression Neural Networks (United States)

    Djarfour, Nouredine; Ferahtia, Jalal; Babaia, Foudel; Baddari, Kamel; Said, El-adj; Farfour, Mohammed


    This paper deals with the application of Generalized Regression Neural Networks to the seismic data filtering. The proposed system is a class of neural networks widely used for the continuous function mapping. They are based on the well known nonparametric kernel statistical estimators. The main advantages of this neural network include adaptability, simplicity and rapid training. Several synthetic tests are performed in order to highlight the merit of the proposed topology of neural network. In this work, the filtering strategy has been applied to remove random noises as well as source-related noises from real seismic data extracted from a field in the South of Algeria. The obtained results are very promising and indicate the high performance of the proposed filter in comparison to the well known frequency-wavenumber filter.

  16. When ambient noise impairs parent-offspring communication. (United States)

    Lucass, Carsten; Eens, Marcel; Müller, Wendt


    Ambient noise has increased in extent, duration and intensity with significant implications for species' lives. Birds especially, because they heavily rely on vocal communication, are highly sensitive towards noise pollution. Noise can impair the quality of a territory or hamper the transmission of vocal signals such as song. The latter has significant fitness consequences as it may erode partner preferences in the context of mate choice. Additional fitness costs may arise if noise masks communication between soliciting offspring and providing parents during the period of parental care. Here, we experimentally manipulated the acoustic environment of blue tit (Cyanistes caeruleus) families within their nest boxes with playbacks of previously recorded highway noise and investigated the consequences on parent-offspring communication. We hypothesized that noise interferes with the acoustic cues of parental arrival and vocal components of offspring begging. As such we expected an increase in the frequency of missed detections, when nestlings fail to respond to the returning parent, and a decrease in parental provisioning rates. Parents significantly reduced their rate of provisioning in noisy conditions compared to a control treatment. This reduction is likely to be the consequence of a parental misinterpretation of the offspring hunger level, as we found that nestlings fail to respond to the returning parent more frequently in the presence of noise. Noise also potentially masks vocal begging components, again contributing to parental underestimation of offspring requirements. Either way, it appears that noise impaired parent-offspring communication is likely to reduce reproductive success. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Spots of Seismic Danger Extracted by Properties of Low-Frequency Seismic Noise (United States)

    Lyubushin, Alexey


    A new method of seismic danger estimate is presented which is based on using properties of low-frequency seismic noise from broadband networks. Two statistics of noise waveforms are considered: multi-fractal singularity spectrum support width D and minimum normalized entropy En of squared orthogonal wavelet coefficients. The maps of D and En are plotted in the moving time window. Let us call the regions extracted by low values of D and high values of En as "spots of seismic danger" - SSD. Mean values of D and En are strongly anti-correlated - that is why statistics D and En extract the same SSD. Nevertheless their mutual considering is expedient because these parameters are based on different approaches. The physical mechanism which underlies the method is consolidation of small blocks of the Earth's crust into the large one before the strong earthquake. This effect has a consequence that seismic noise does not include spikes which are connected with mutual movements of small blocks. The absence of irregular spikes in the noise follows the decreasing of D and increasing of entropy En. The stability in space and size of the SSD provides estimates of the place and energy of the probable future earthquake. The increasing or decreasing of SSD size and minimum or maximum values of D and En within SSD allows estimate the trend of seismic danger. The method is illustrating by the analysis of seismic noise from broadband seismic network F-net in Japan [1-5]. Statistically significant decreasing of D allowed a hypothesis about approaching Japan to a future seismic catastrophe to be formulated at the middle of 2008. The peculiarities of correlation coefficient estimate within 1 year time window between median values of D and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake [3]. The method extracted a huge SSD near Japan which includes the region of future Tohoku mega-earthquake and the

  18. Full-Wave Ambient Noise Tomography of the Long Valley Volcanic Region (California) (United States)

    Flinders, A. F.; Shelly, D. R.; Dawson, P. B.; Hill, D. P.; Shen, Y.


    In the late 1970s, and throughout the 1990s, Long Valley Caldera (California) experienced intense periods of unrest characterized by uplift of the resurgent dome, earthquake swarms, and CO2 emissions around Mammoth Mountain. While modeling of the uplift and gravity changes support the possibility of new magmatic intrusions beneath the caldera, geologic interpretations conclude that the magmatic system underlying the caldera is moribund. Geophysical studies yield diverse versions of a sizable but poorly resolved low-velocity zone at depth (> 6km), yet whether this zone is indicative of a significant volume of crystal mush, smaller isolated pockets of partial melt, or magmatic fluids, is inconclusive. The nature of this low-velocity zone, and the state of volcano's magmatic system, carry important implications for the significance of resurgent-dome inflation and the nature of associated hazards. To better characterize this low-velocity zone we present preliminary results from a 3D full-waveform ambient-noise seismic tomography model derived from the past 25 years of vertical component broadband and short-period seismic data. This new study uses fully numerical solutions of the wave equation to account for the complex wave propagation in a heterogeneous, 3D earth model, including wave interaction with topography. The method ensures that wave propagation is modeled accurately in 3D, enabling the full use of seismic records. By using empirical Green's functions, derived from ambient noise and modeled as Rayleigh surface waves, we are able to extend model resolution to depths beyond the limits of previous local earthquake studies. The model encompasses not only the Long Valley Caldera, but the entire Long Valley Volcanic Region, including Mammoth Mountain and the Mono Crater/Inyo Domes volcanic chain.

  19. An intelligent subsurface buoy design for measuring ocean ambient noise (United States)

    Li, Bing; Wang, Lei


    A type of ultra-low power subsurface buoy system is designed to measure and record ocean ambient noise data. The buoy utilizes a vector hydrophone (pass band 20Hz-1.2kHz) and a 6-element vertical hydrophone array (pass band 20Hz-2kHz) to measure ocean ambient noise. The acoustic signals are passed through an automatically modified gain, a band pass filter, and an analog-to-digital (A/D) conversion module. They are then stored in high-capacity flash memory. In order to identify the direction of noise source, the vector sensor measuring system has integrated an electric-magnetic compass. The system provides a low-rate underwater acoustic communication system which is used to report the buoy state information and a high-speed USB interface which is used to retrieve the recorded data on deck. The whole system weighs about 125kg and can operate autonomously for more than 72 hours. The system's main architecture and the sea-trial test results are provided in this paper.

  20. Characteristics of Broadband Seismic Noise in Taiwan and Neighboring Islands (United States)

    Chen, Ching-Wei; Rau, Ruey-Juin


    We used seismic waveform data from 115 broad-band stations of BATS (Institute of Earth Science, Academia Sinica) and Central Weather Bureau Seismic Network from 2012 to 2016 for noise-level mapping in Taiwan and neighboring islands. We computed Power Spectral Density (PSD) for each station and analyzed long-term variance of microseism energy and polarizations of noise for severe weather events. The island of Taiwan is surrounded by ocean and the Central Range which has the highest peak Jade Mountain at 3,952 meters height occupies more than 66% of the island and departs it into the east and west coasts. The geographic settings then result in the high population density in the western plain and northern Taiwan. The dominant noise source in the microseism band (periods from 4-20 seconds) is the coupling between the near-coast ocean and sea floor which produces the high noise of averaging -130 dB along the west coastal area. In the eastern volcanic-arc coastal areas, the noise level is about 7% smaller than the west coast due to its deeper offshore water depth. As for the shorter periods (0.1-0.25 seconds) band, the so-called culture noise, an anthropic activity variance with the highest -103 dB can be identified in the metropolitan areas, such as the Taipei city and the noise level in the Central Range area is averaging -138 dB. Moreover, the noise also shows a daily and temporal evolution mainly related to the traffic effect. Furthermore, we determined the noise level for the entire island of Taiwan during 26-28 September, 2016, when the typhoon Megi hit the island and retrieved the enhancement of secondary microseism energy for each stations. Typhoon Megi landed in eastern and central Taiwan and reached the maximum wind speed of 45m/s in the surrounded eyewall. The Central Range, as a barrier, decreased the wind speed in southern Taiwan making an enhancement less than 10 dB, while in northern Taiwan where the direction the typhoon headed to, can reach more than 35

  1. Variations of Background Seismic Noise Before Strong Earthquakes, Kamchatka. (United States)

    Kasimova, V.; Kopylova, G.; Lyubushin, A.


    The network of broadband seismic stations of Geophysical Service (Russian Academy of Science) works on the territory of Kamchatka peninsula in the Far East of Russia. We used continuous records on Z-channels at 21 stations for creation of background seismic noise time series in 2011-2017. Average daily parameters of multi-fractal spectra of singularity have been calculated at each station using 1-minute records. Maps and graphs of their spatial distribution and temporal changes were constructed at time scales from days to several years. The analysis of the coherent behavior of the time series of the statistics was considered. The technique included the splitting of seismic network into groups of stations, taking into account the coastal effect, the network configuration and the main tectonic elements of Kamchatka. Then the time series of median values of noise parameters from each group of stations were made and the frequency-time diagrams of the evolution of the spectral measure of the coherent behavior of four time series were analyzed. The time intervals and frequency bands of the maximum values showing the increase of coherence in the changes of all statistics were evaluated. The strong earthquakes with magnitudes M=6.9-8.3 occurred near the Kamchatka peninsula during the observations. The synchronous variations of the background noise parameters and increase in the coherent behavior of the median values of statistical parameters was shown before two earthquakes 2013 (February 28, Mw=6.9; May 24, Mw=8.3) within 3-9 months and before earthquake of January 30, 2016, Mw=7.2 within 3-6 months. The maximum effect of increased coherence in the range of periods 4-5.5 days corresponds to the time of preparation of two strong earthquakes in 2013 and their aftershock processes. Peculiarities in changes of statistical parameters at stages of preparation of strong earthquakes indicate the attenuation in high-amplitude outliers and the loss of multi-fractal properties in

  2. Thirty years of progress in applications and modeling of ocean ambient noise (United States)

    Siderius, Martin; Buckingham, Michael J.


    Ambient noise in the ocean is a stochastic process, which traditionally was considered to be a nuisance, since it reduced the detectability of sonar signals of interest. However, over the last thirty years, it has come to be recognized that the ambient noise itself contains useful information about the ocean and ocean processes. To extract the information, various inversion procedures have been developed, based upon which a number of practical applications of the ambient noise have evolved. Since naturally generated ambient noise is always present in the ocean, it has the advantage of being non-invasive and non-damaging to marine life, including marine mammals. In this article, a summary of the commonly encountered ambient noise models is offered, along with the associated inversion procedures, and some of the more recent applications of the ambient noise are highlighted.

  3. On the effect of topography on short-period ambient noise tomography (United States)

    Köhler, A.; Weidle, C.; Maupin, V.


    Due to the increasing popularity of using empirical Green's functions obtained from ambient seismic noise, more and more regional tomographical studies based on short-periods surface waves are published. Results could potentially be biased in mountainous regions where topography is not small compared to the wavelength and penetration depth of the considered waves. We investigate the effect of topography on the propagation of short-period (3-10 seconds) Rayleigh waves empirically by means of synthetic data using a spectral element code and a 3-D model with real topography. We show that topography along a profile through the studied area can result in an underestimation of phase velocities of up to about 0.7% at the shortest investigated period (3 seconds). Contrary to the expectation that this bias results from the increased surface distance along topography, we find that this error can be estimated by local topographic contrasts in the vicinity of the receiver alone. We discuss and generalize our results by considering topographic profiles through other mountain ranges and find that southern Norway is a good proxy to assess the topography effect. Nevertheless, topographic bias on phase velocity measurements is in general not large enough to produce a significant effect on ambient noise tomographies.

  4. On the effect of topography on surface wave propagation in the ambient noise frequency range (United States)

    Köhler, Andreas; Weidle, Christian; Maupin, Valérie


    Due to the increasing popularity of analyzing empirical Green's functions obtained from ambient seismic noise, more and more regional tomographical studies based on short-period surface waves are published. Results could potentially be biased in mountainous regions where topography is not small compared to the wavelength and penetration depth of the considered waves. We investigate the effect of topography on the propagation of short-period Rayleigh waves empirically by means of synthetic data using a spectral element code and a 3-D model with real topography. We show that topography along a profile through the studied area can result in an underestimation of phase velocities of up to about 0.7% at the shortest investigated period (3 s). Contrary to the expectation that this bias results from the increased surface distance along topography, we find that this error can be estimated by local topographic contrasts in the vicinity of the receiver alone. We discuss and generalize our results by considering topographic profiles through other mountain ranges and find that southern Norway is a good proxy to assess the topography effect. Nevertheless, topographic bias on phase velocity measurements is in general not large enough to significantly affect recovered velocity variations in the ambient noise frequency range.

  5. Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region (United States)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Keir, Derek; Ren, Yong; Molinari, Irene; Ahmed, Abdulhakim; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. M.; Doubre, Cécile; Ganad, Ismail Al; Goitom, Berhe; Ayele, Atalay


    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading.

  6. Statistical redundancy of instantaneous phases: theory and application to the seismic ambient wavefield (United States)

    Gaudot, Ianis; Beucler, Éric; Mocquet, Antoine; Schimmel, Martin; Le Feuvre, Mathieu


    to zero for most time lags, except for specific time windows in which a clear signal emerges. Converting mean overall coherences into geographical locations and using a standard 3.5 km/s group velocity value, the maximum coherence is obtained with a source located at 5.5°N, 1.5°E, in a very good agreement with previous locations found in the literature. This result demonstrates that our approach enables us to properly localize persistent sources, and to quantify their contribution to the overall seismic ambient wavefield. The strength of the phase coherence statistics relies in its ability to quantify the redundancy of a given phase among a set of ambient noise cross-correlations without using classical amplitude normalization processing schemes. The method has various useful applications in seismic noise-based studies (tomography and/or source characterization). Depending on the application, the method may be used to exclude either poorly contributing traces for efficient signal extraction, or to exclude highly contributing traces to avoid contamination from a persistent signal.

  7. The Utility of the Extended Images in Ambient Seismic Wavefield Migration (United States)

    Girard, A. J.; Shragge, J. C.


    Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.

  8. Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result

    International Nuclear Information System (INIS)

    Martha, Agustya Adi; Widiyantoro, Sri; Cummins, Phil; Saygin, Erdinc; Masturyono


    East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images

  9. Characterization of site-effects in the urban area of Canakkale, Turkey, using ambient noise measurements (United States)

    Demirci, Alper; Bekler, Tolga; Karagöz, Özlem


    The local site conditions can cause variations in the ground motion during the earthquake events. These local effects can be estimated by Nakamura method (1989) which is based on the analysis and treatment of earth vibration records by calculating the ratio of horizontal spectrum to vertical spectrum (H/V). This approach uses ambient noises and aids to estimate the dynamic soil conditions like fundamental vibration period and soil amplification of the surface layers, to characterize the seismic hazard during earthquakes and to provide detailed information for seismic microzonation in small scale urban areas. Due to these advantages, the method has been frequently used by a great number of seismologists and engineers. In this study, we aimed at explaining the soil conditions in Çanakkale and Kepez basins by using H/V technique. Çanakkale and Kepez (NW, Turkey) have fairly complex tectonic structure and have been exposed to serious earthquake damages in historical and instrumental period. Active faults, which have influence on the Çanakkale and Kepez settlements, are the Yenice-Gönen fault, Saroz-Gaziköy fault and Etili fault. It is well known that, these faults have produced high magnitude earthquakes such as 7.2 in 1912 and 7.3 in 1953. The surface geology of the surveyed area is covered by quaternary aged sediments. Sarıçay river, which originates from the eastern hilly area, accumulates sediment deposits and forms this alluvial basin. Considering the geological conditions, ambient noises were recorded at 88 measurement points which were selected to provide good coverage of the study area. All records were acquired during the midnight (between 1:00 am and 6:00 am) to reduce the artificial effects in the urban area. Taking into account the effects of undesirable traffic and industrial noises in the vicinity of measurements stations, record lengths were chosen in the range of 25-75 minutes with the sampling rate of 100 Hz. Once the required signal processes

  10. Characteristics of seismic survey pulses and the ambient soundscape in Baffin Bay and Melville Bay, West Greenland. (United States)

    Martin, S Bruce; Matthews, Marie-Noël R; MacDonnell, Jeff T; Bröker, Koen


    In 2012 a seismic survey campaign involving four vessels was conducted in Baffin Bay, West Greenland. Long-distance (150 km) pre-survey acoustic modeling was performed in accordance with regulatory requirements. Four acoustic recorders, three with hydrophones at 100, 200, and 400 m depths, measured ambient and anthropogenic sound during the survey. Additional recordings without the surveys were made from September 2013 to September 2014. The results show that (1) the soundscape of Baffin Bay is typical for open ocean environments and Melville Bay's soundscape is dominated by glacial ice noise; (2) there are distinct multipath arrivals of seismic pulses 40 km from the array; (3) seismic sound levels vary little as a function of depth; (4) high fidelity pre-survey acoustic propagation modeling produced reliable results; (5) the daily SEL did not exceed regulatory thresholds and were different using Southall, Bowles, Ellison, Finneran, Gentry, Greene, Kastak, Ketten, Miller, Nachtigall, Richardson, Thomas, and Tyack [(2007) Aquat. Mamm. 33, 411-521] or NOAA weightings [National Marine Fisheries Service (2016). NOAA Technical Memorandum NMFS-OPR-55, p. 178]; (6) fluctuations of SPL with range were better described by additive models than linear regression; and (7) the survey increased the 1-min SPL by 28 dB, with most of the energy below 100 Hz; energy in the 16 000 Hz octave band was 20 dB above the ambient background 6 km from the source.

  11. Study on the application of ambient vibration tests to evaluate the effectiveness of seismic retrofitting (United States)

    Liang, Li; Takaaki, Ohkubo; Guang-hui, Li


    In recent years, earthquakes have occurred frequently, and the seismic performance of existing school buildings has become particularly important. The main method for improving the seismic resistance of existing buildings is reinforcement. However, there are few effective methods to evaluate the effect of reinforcement. Ambient vibration measurement experiments were conducted before and after seismic retrofitting using wireless measurement system and the changes of vibration characteristics were compared. The changes of acceleration response spectrum, natural periods and vibration modes indicate that the wireless vibration measurement system can be effectively applied to evaluate the effect of seismic retrofitting. The method can evaluate the effect of seismic retrofitting qualitatively, it is difficult to evaluate the effect of seismic retrofitting quantitatively at this stage.

  12. Mechanical monolithic horizontal sensor for low frequency seismic noise measurement. (United States)

    Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio


    This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70 mHz with a Q=140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning.

  13. Radial anisotropy of Northeast Asia inferred from Bayesian inversions of ambient noise data (United States)

    Lee, S. J.; Kim, S.; Rhie, J.


    The eastern margin of the Eurasia plate exhibits complex tectonic settings due to interactions with the subducting Pacific and Philippine Sea plates and the colliding India plate. Distributed extensional basins and intraplate volcanoes, and their heterogeneous features in the region are not easily explained with a simple mechanism. Observations of radial anisotropy in the entire lithosphere and the part of the asthenosphere provide the most effective evidence for the deformation of the lithosphere and the associated variation of the lithosphere-asthenosphere boundary (LAB). To infer anisotropic structures of crustal and upper-mantle in this region, radial anisotropy is measured using ambient noise data. In a continuation of previous Rayleigh wave tomography study in Northeast Asia, we conduct Love wave tomography to determine radial anisotropy using the Bayesian inversion techniques. Continuous seismic noise recordings of 237 broad-band seismic stations are used and more than 55,000 group and phase velocities of fundamental mode are measured for periods of 5-60 s. Total 8 different types of dispersion maps of Love wave from this study (period 10-60 s), Rayleigh wave from previous tomographic study (Kim et al., 2016; period 8-70 s) and longer period data (period 70-200 s) from a global model (Ekstrom, 2011) are jointly inverted using a hierarchical and transdimensional Bayesian technique. For each grid-node, boundary depths, velocities and anisotropy parameters of layers are sampled simultaneously on the assumption of the layered half-space model. The constructed 3-D radial anisotropy model provides much more details about the crust and upper mantle anisotropic structures, and about the complex undulation of the LAB.

  14. Ambient and at-the-ear occupational noise exposure and serum lipid levels

    DEFF Research Database (Denmark)

    Arlien-Søborg, Mai C; Schmedes, Astrid S; Stokholm, Z A


    -the-ear occupational noise exposure and serum levels of total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, and triglycerides when accounting for well-established predictors of lipid levels. METHODS: This cross-sectional study included 424 industrial workers and 84 financial...... workers to obtain contrast in noise exposure levels. They provided a serum sample and wore portable dosimeters that every 5-s recorded ambient noise exposure levels during a 24-h period. We extracted measurements obtained during work and calculated the full-shift mean ambient noise level. For 331 workers...... who kept a diary on the use of a hearing protection device (HPD), we subtracted 10 dB from every noise recording obtained during HPD use and estimated the mean full-shift noise exposure level at the ear. RESULTS: Mean ambient noise level was 79.9 dB (A) [range 55.0-98.9] and the mean estimated level...

  15. On inferring the noise in probabilistic seismic AVO inversion using hierarchical Bayes

    DEFF Research Database (Denmark)

    Madsen, Rasmus Bødker; Zunino, Andrea; Hansen, Thomas Mejer


    A realistic noise model is essential for trustworthy inversion of geophysical data. Sometimes, as in case of seismic data, quan- tification of the noise model is non-trivial. To remedy this, a hierarchical Bayes approach can be adopted in which proper- ties of the noise model, such as the amplitu...

  16. Subsurface Characterization Beneath the Coso Geothermal Field by Ambient Noise Tomography (United States)

    Ritzwoller, M. H.; Yang, Y.; Levshin, A. L.; Barmin, M. P.; Jones, C. H.


    The Coso Geothermal Area has been the subject of numerous geophysical studies over the past 30 years. Various seismological techniques have been applied to evaluate the regional stress distribution, velocity and attenuation structure of the subsurface. None of these studies has imaged subsurface shear velocity using surface waves generated either by local micro-earthquakes or by regional or teleseismic earthquakes, nor have any used interferometric methods based on ambient noise. In this study, we apply an interferometic method based on ambient seismic noise aimed at imaging the shallow shear velocity structure beneath the Coso Geothermal Area. Data are from a PASSCAL experiment deployed between 1998 and 2000 and regional broad-band seismometers operated by CalTech. Cross-correlations are performed between each pair of the COSO PASSCAL and CalTech stations for 15 months from March 1999 to May 2000. After compensating for or correcting instrumental irregularities and selecting reliable Rayleigh wave dispersion measurements from the inter-station cross-correlations, we obtain about 300 measurement paths as the basis for surface wave tomography at periods from 3 to 10 sec. Uncertainties of both group and phase velocity measurements are estimated using the variations among the dispersion curves from one-month cross-correlations in different months. The resulting dispersion maps reveal low group and phase velocities in the COSO volcanic field, especially at 3 sec period for group velocities, and high velocities to the east of the COSO volcanic field. The velocity variations are consistent with surface geological features, which encourages future inversion for 3-D shear velocity structure in the top 15 km of the crust.

  17. Correction of clock errors in seismic data using noise cross-correlations (United States)

    Hable, Sarah; Sigloch, Karin; Barruol, Guilhem; Hadziioannou, Céline


    Correct and verifiable timing of seismic records is crucial for most seismological applications. For seismic land stations, frequent synchronization of the internal station clock with a GPS signal should ensure accurate timing, but loss of GPS synchronization is a common occurrence, especially for remote, temporary stations. In such cases, retrieval of clock timing has been a long-standing problem. The same timing problem applies to Ocean Bottom Seismometers (OBS), where no GPS signal can be received during deployment and only two GPS synchronizations can be attempted upon deployment and recovery. If successful, a skew correction is usually applied, where the final timing deviation is interpolated linearly across the entire operation period. If GPS synchronization upon recovery fails, then even this simple and unverified, first-order correction is not possible. In recent years, the usage of cross-correlation functions (CCFs) of ambient seismic noise has been demonstrated as a clock-correction method for certain network geometries. We demonstrate the great potential of this technique for island stations and OBS that were installed in the course of the Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel (RHUM-RUM) project in the western Indian Ocean. Four stations on the island La Réunion were affected by clock errors of up to several minutes due to a missing GPS signal. CCFs are calculated for each day and compared with a reference cross-correlation function (RCF), which is usually the average of all CCFs. The clock error of each day is then determined from the measured shift between the daily CCFs and the RCF. To improve the accuracy of the method, CCFs are computed for several land stations and all three seismic components. Averaging over these station pairs and their 9 component pairs reduces the standard deviation of the clock errors by a factor of 4 (from 80 ms to 20 ms). This procedure permits a continuous monitoring of clock errors where small clock

  18. Circadian Rhythm of Ambient Noise Off the Southeast Coast of India (United States)

    Kannan, R.; Latha, G.; Prashanthi Devi, M.

    An ambient noise system consisting of a vertical linear hydrophone array was deployed in the shallow waters off Chennai, southeast coast of India from 1 August to 16 September 2013 to record ambient ocean noise of frequencies up to 10kHz. Biological sounds, which are broadband, short duration signals resulting from Terapon theraps, a native species, are a prominent feature of the ocean soundscape. Terapon activity peaks at 8pm and 11pm, and its presence is not observed after 12 midnight in both the months. In the other period, the ambient noise fluctuation is due to wind and vessel traffic. Hence, the present study focuses on the description of the ambient noise fluctuation over two 12h periods, i.e., 12 midnight-12 noon considered as period I, and 12 noon-12 midnight as period II in order to show the circadian rhythm of ambient noise. In this study area, Terapon vocalization reached 25dB above the ambient noise level and it dominates the short-term spectra records in the 0.4-4kHz range. All Terapon signals had daily patterns of sound production with highest levels of activity after dusk during the study period. The result shows that the circadian rhythm of ambient noise is mainly of biological sound generated by Terapon and it is reported first time in the shallow waters off the southeast coast of India.

  19. The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment (United States)

    Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.


    The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.

  20. The influence of ambient noise on maternal behavior in a Bornean sun bear (Helarctos malayanus euryspilus). (United States)

    Owen, Megan A; Hall, Suzanne; Bryant, Lisa; Swaisgood, Ronald R


    Anthropogenic noise has become a pervasive feature of both marine and terrestrial habitats worldwide. While a comprehensive understanding of the biologically significant impacts of noise on wildlife is lacking, concerns regarding its influence persist. Noise is also a common feature in the zoological setting, and much can be learned regarding the species-typical response to ambient noise by studying animals in captivity. Here we correlate behavioral and vocal patterns in a Bornean sun bear (Helarctos malayanus euryspilus) mother and cub with ambient noise levels during the 6-month post-partum period. We hypothesized that loud ambient noise would be correlated with changes in behavior, and predicted that noise would be negatively correlated with maternal care behavior, potentially masking cub vocalizations or providing a distraction to the mother. Contrary to expectation, we found that the mother spent significantly more time attending to her cub (P=0.03) on loud days. We also found that she tended to spend less time feeding (P=0.08); however her time spent resting was not affected. The cub was approximately twice as vocal on loud days, although these results were not statistically significant (humming: P=0.10; squawks/cries: P=0.14). Taken together, these results suggest that the behavioral response to ambient noise may have potential energetic costs, and as a result efforts should be made to reduce ambient noise exposure during the post-partum period. © 2013 Wiley Periodicals, Inc.

  1. Ambient Noise Levels in Acute Neonatal Intensive Care Unit of a Tertiary Referral Hospital

    Directory of Open Access Journals (Sweden)

    Sonia R. B D'Souza


    Full Text Available Background: Advances in neonatal care have resulted in improved survival of neonates admitted to the intensive care of the Neonatal Intensive Care Unit (NICU. However, the NCU may be an inappropriate milieu, with presence of overwhelming stimuli, most potent being the continuous presence of noise in the ambience of the NICU. Aim and Objectives: To determine and describe the ambient noise levels in the acute NICU of a tertiary referral hospital. Material and Methods: The ambient noise, in this study was the background sound existing in the environment of the acute NICU of a tertiary referral hospital in South India. The ambient noise levels were analyzed by an audiologist and acoustical engineer using a standardized and calibrated Sound Level Meter (SLM i.e., the Hand Held Analyzer type 2250, Brüel and Kjær, Denmark on a weighted frequency A and reported as dB (A. Results: The ambient noise levels were timed measurements yielded by the SLM in terms of L eq, L as well as L exceeded the standard A 10 Aeqmax levels (Leq< 45 dB, L ≤ 50 dB, and Lmax ≤ 65 10 dB.The L eq ranged from 59.4 to 62.12 dB A. A Ventilators with alarms caused the maximum amount of ambient noise yielding a L Sound Pressure Level AF (SPL of 82.14 dB A. Conclusion: The study has found high levels of ambient noise in the acute NICU. Though there are several measures to reduce the ambient noise levels in the NICU, it is essential to raise awareness among health care personnel regarding the observed ambient noise levels and its effects on neonates admitted to the NICU.

  2. Potential Impacts of Ambient Noise in the on Marine Mammals

    National Research Council Canada - National Science Library

    Frisk, George


    The Committee was charged with assessing our state of knowledge of underwater noise and recommending research areas to assist in determining whether noise in the ocean adversely affects marine mammals...

  3. Design and implementation of a low-cost multichannel seismic noise recorder for array measurements (United States)

    Soler-Llorens, Juan Luis; Juan Giner-Caturla, Jose; Molina-Palacios, Sergio; Galiana-Merino, Juan Jose; Rosa-Herranz, Julio; Agea-Medina, Noelia


    Soil characterization is the starting point for seismic hazard studies. Currently, the methods based on ambient noise measurements are very used because they are non-invasive methods and relatively easy to implement in urban areas. Among these methods, the analysis of array measurements provides the dispersion curve and subsequently the shear-wave velocity profile associated to the site under study. In this case, we need several sensors recording simultaneously and a data acquisition system with one channel by sensor, what can become the complete equipment unaffordable for small research groups. In this work, we have designed and implemented a low-cost multichannel ambient noise recorder for array measurements. The complete system is based on Arduino, an open source electronic development platform, which allows recording 12 differential input channels simultaneously. Besides, it is complemented with a conditioning circuit that includes an anti-aliasing filter and a selectable gain between 0 and 40dB. The data acquisition is set up through a user-friendly graphical user interface. It is important to note that the electronic scheme as well as the programming code are open hardware and software, respectively, so it allows other researchers to suite the system to their particular requirements. The developed equipment has been tested at several sites around the province of Alicante (southeast of Spain), where the soil characteristics are well-known from previous studies. Array measurements have been taken and after that, the recorded data have been analysed using the frequency-wavenumber (f-k) and the extended spatial autocorrelation (ESAC) methods. The comparison of the obtained dispersion curves with the ones obtained in previous studies shows the suitability of the implemented low-cost system for array measurements.

  4. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications (United States)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.


    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  5. The Plumbing System Feeding the Lusi Eruption Revealed by Ambient Noise Tomography (United States)

    Fallahi, Mohammad Javad; Obermann, Anne; Lupi, Matteo; Karyono, Karyono; Mazzini, Adriano


    Lusi is a sediment-hosted hydrothermal system featuring clastic-dominated geyser-like eruption behavior in East Java, Indonesia. We use 10 months of ambient seismic noise cross correlations from 30 temporary seismic stations to obtain a 3-D model of shear wave velocity anomalies beneath Lusi, the neighboring Arjuno-Welirang volcanic complex, and the Watukosek fault system connecting the two. Our work reveals a hydrothermal plume, rooted at a minimum 6 km depth that reaches the surface at the Lusi site. Furthermore, the inversion shows that this vertical anomaly is connected to the adjacent volcanic complex through a narrow ( 3 km wide) low velocity corridor slicing the survey area at a depth of 4-6 km. The NE-SW direction of this elongated zone matches the strike of the Watukosek fault system. Distinct magmatic chambers are also inferred below the active volcanoes. The large-scale tomography features an exceptional example of a subsurface connection between a volcanic complex and a solitary erupting hydrothermal system hosted in a hydrocarbon-rich back-arc sedimentary basin. These results are consistent with a scenario where deep-seated fluids (e.g., magmas and released hydrothermal fluids) flow along a region of enhanced transmissivity (i.e., the Watukosek fault system damage zone) from the volcanic arc toward the back arc basin where Lusi resides. The triggered metamorphic reactions occurring at depth in the organic-rich sediments generated significant overpressure and fluid upwelling that is today released at the spectacular Lusi eruption site.

  6. Ambient air pollution, traffic noise and adult asthma prevalence : A BioSHaRE approach

    NARCIS (Netherlands)

    Cai, Yutong; Zijlema, Wilma L.; Doiron, Dany; Blangiardo, Marta; Burton, Paul R.; Fortier, Isabel; Gaye, Amadou; Gulliver, John; de Hoogh, Kees; Hveem, Kristian; Mbatchou, Stephane; Morley, David W; Stolk, Ronald P.; Elliott, Paul; Hansell, Anna L.; Hodgson, Susan


    We investigated the effects of both ambient air pollution and traffic noise on adult asthma prevalence, using harmonised data from three European cohort studies established in 2006-2013 (HUNT3, Lifelines and UK Biobank). Residential exposures to ambient air pollution (particulate matter with

  7. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.


    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  8. Environmental seismology: What can we learn on earth surface processes with ambient noise? (United States)

    Larose, Eric; Carrière, Simon; Voisin, Christophe; Bottelin, Pierre; Baillet, Laurent; Guéguen, Philippe; Walter, Fabian; Jongmans, Denis; Guillier, Bertrand; Garambois, Stéphane; Gimbert, Florent; Massey, Chris


    Environmental seismology consists in studying the mechanical vibrations that originate from, or that have been affected by external causes, that is to say causes outside the solid Earth. This includes for instance the coupling between the solid Earth and the cryosphere, or the hydrosphere, the anthroposphere and the specific sources of vibration developing there. Environmental seismology also addresses the modifications of the wave propagation due to environmental forcing such as temperature and hydrology. Recent developments in data processing, together with increasing computational power and sensor concentration have led to original observations that allow for the development of this new field of seismology. In this article, we will particularly review how we can track and interpret tiny changes in the subsurface of the Earth related to external changes from modifications of the seismic wave propagation, with application to geomechanics, hydrology, and natural hazard. We will particularly demonstrate that, using ambient noise, we can track 1) thermal variations in the subsoil, in buildings or in rock columns; 2) the temporal and spatial evolution of a water table; 3) the evolution of the rigidity of the soil constituting a landslide, and especially the drop of rigidity preceding a failure event.

  9. Magmatism on rift flanks: insights from Ambient-Noise Phase-velocity in Afar region (United States)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Ren, Yong; Ahmed, Abdulhakim; Keir, Derek; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. Michael; Doubre, Cécile; Ganad, Ismail Al


    During the breakup of continent in the presence of magma, strain is commonly assumed to initially occur by border faulting, and progressively migrate in space and time towards axial magma intrusion. Magmatic processes near the rift flanks are commonly ignored. We present phase-velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only upper crust beneath the axial volcanic systems, but also both upper and lower crust beneath rift flanks where ongoing volcanism and hydrothermal activity occurs at the surface. The results show that magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process, and may persist through to early seafloor spreading. Since ongoing flank magmatism during breakup impacts the thermal evolution of the lithosphere, it has implications for the subsidence history of the rift.

  10. 4-D permafrost thaw observations from ambient road traffic noise and a very dense distributed fiber optic sensing array (United States)

    Lindsey, N.; Dou, S.; Martin, E. R.; Wagner, A. M.; Ajo Franklin, J. B.


    How does frozen soil thaw? The answer to this question affects hydrology, ecology, climate, and human infrastructure. We are using the local ambient noise field from a road recorded on a distributed fiber optic acoustic sensing (DAS) array to monitor the evolution in seismic parameters related to the top-down permafrost thaw process in the upper 10 m. Our field experiment demonstrates the advantages of "Large N" ambient noise studies using DAS, particularly to probe near surface critical zone dynamics. Over 60 days beginning in August 2016, we made continuous seismic recordings with a >4000 channel trenched fiber optic DAS dataset above a controlled permafrost warming demonstration experiment in Fairbanks, AK. The warming experiment accelerated the state of permafrost degradation by approximately two decades in a small 15 m x 20 m area, deepening the permafrost table from 4 m to 5.5 m. Continuous seismic DAS recording of high frequency surface waves (5-30 Hz) generated by vehicles traveling along a nearby road enables our investigation of hypothesized shear wave speed and attenuation changes, which lab measurements suggest may result from decreasing shear modulus and increasing saturation. We develop daily auto- and crosscorrelation function estimates using combinations of horizontal inline, collinear, and crossline DAS sensor orientations and vertical component geophone data, and then invert for maps of Love and Rayleigh wave speed that are sensitive to the upper 30 m. Many issues related to the accuracy, stability, and repeatability of the recovered empirical Green's tensor, as well as the sensitivity of the DAS sensor network will be considered.

  11. Seismic noise study for a new seismic station at King Fahd University of Petroleum and Minerals in Saudi Arabia (United States)

    Kaka, S. I.


    We have carried out a seismic noise study in order to understand the noise level at three selected locations at King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia. The main purpose is to select a suitable site with low seismic noise and good signal-to-noise ratio for our new broadband seismic station. There are several factors involved in the selection of a site location for a new station. Most importantly, we need to strike a balance between a logistically convenient site versus a technically suitable site. As a starting point, we selected six potential sites due to accessibility and proximity to the seismic processing center laboratory in the Department of Earth Sciences (ESD) at KFUPM. We then eliminated two sites that are relatively close to possible low-frequency noise sources. We have considered many possible noise sources which include: vehicle traffic / heavy machinery, the direct path of air flowing from air conditioning vent, tall trees / power poles and metal doorways. One more site was eliminated because the site was located in the open where it experiences maximum wind speed which is considered a major source of noise. All three potential sites are situated within the Dammam Dome where both lower middle and upper Rus Formations are exposed. The upper Rus is mainly made up of fine grained chalky limestone and the lower Rus is made up of alternation of marls and thin dolomitic limestone. The area is not known for any major faults and considered very low seismicity and hence the identification of seismoteconic features is not required. Before conducting the noise study, we calibrated and tested the seismic recording system, which was recently acquired by the ESD at KFUPM. The system includes a seismic recorder and a sensor with a GPS device. We deployed the system in order to measure the low-frequency background noise. Knowing the low frequency noise will help in predicting the high-frequency noise. The recording systems were

  12. Random noise suppression of seismic data using non-local Bayes algorithm (United States)

    Chang, De-Kuan; Yang, Wu-Yang; Wang, Yi-Hui; Yang, Qing; Wei, Xin-Jian; Feng, Xiao-Ying


    For random noise suppression of seismic data, we present a non-local Bayes (NL-Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.

  13. Source localization analysis using seismic noise data acquired in exploration geophysics (United States)

    Roux, P.; Corciulo, M.; Campillo, M.; Dubuq, D.


    Passive monitoring using seismic noise data shows a growing interest at exploration scale. Recent studies demonstrated source localization capability using seismic noise cross-correlation at observation scales ranging from hundreds of kilometers to meters. In the context of exploration geophysics, classical localization methods using travel-time picking fail when no evident first arrivals can be detected. Likewise, methods based on the intensity decrease as a function of distance to the source also fail when the noise intensity decay gets more complicated than the power-law expected from geometrical spreading. We propose here an automatic procedure developed in ocean acoustics that permits to iteratively locate the dominant and secondary noise sources. The Matched-Field Processing (MFP) technique is based on the spatial coherence of raw noise signals acquired on a dense array of receivers in order to produce high-resolution source localizations. Standard MFP algorithms permits to locate the dominant noise source by matching the seismic noise Cross-Spectral Density Matrix (CSDM) with the equivalent CSDM calculated from a model and a surrogate source position that scans each position of a 3D grid below the array of seismic sensors. However, at exploration scale, the background noise is mostly dominated by surface noise sources related to human activities (roads, industrial platforms,..), which localization is of no interest for the monitoring of the hydrocarbon reservoir. In other words, the dominant noise sources mask lower-amplitude noise sources associated to the extraction process (in the volume). Their location is therefore difficult through standard MFP technique. The Multi-Rate Adaptative Beamforming (MRABF) is a further improvement of the MFP technique that permits to locate low-amplitude secondary noise sources using a projector matrix calculated from the eigen-value decomposition of the CSDM matrix. The MRABF approach aims at cancelling the contributions of

  14. Detection capability of seismic network based on noise analysis and magnitude of completeness (United States)

    Fischer, Tomáš; Bachura, Martin


    Assessing the detection threshold of seismic networks becomes of increased importance namely in the context of monitoring induced seismicity due to underground operations. Achieving the maximum possible sensitivity of industrial seismic monitoring is a precondition for successful control of technological procedures. Similarly, the lowest detection threshold is desirable when monitoring the natural seismic activity aimed to imaging the fault structures in 3D and to understanding the ongoing processes in the crust. We compare the application of two different methods to the data of the seismic network WEBNET that monitors the earthquake swarm activity of the West-Bohemia/Vogtland region. First, we evaluate the absolute noise level and its possible non-stationary character that results in hampering the detectability of the seismic network by producing false alarms. This is realized by the statistical analysis of the noise amplitudes using the ratio of 99 and 95 percentiles. Second, the magnitude of completeness is determined for each of the nine stations by analysing the automatic detections of an intensive swarm period from August 2011. The magnitude-frequency distributions of all detected events and events detected at individual stations are compared to determine the magnitude of completeness at a selected completeness level. The resulting magnitude of completeness M c of most of the stations varies between -0.9 and -0.5; an anomalous high M c of 0.0 is found at the most distant station, which is probably due to inadequate correction for attenuation. We find that while the absolute noise level has no significant influence to the station sensitivity, the noise stationarity correlates with station sensitivity expressed in low magnitude of completeness and vice versa. This qualifies the method of analysing the stationary character of seismic noise as an effective tool for site surveying during the seismic station deployment.

  15. Analysis of seismic noise to check the mechanical isolation of a medical device

    Directory of Open Access Journals (Sweden)

    Sara Rombetto


    Full Text Available We have investigated the mechanical response of a magnetically shielded room that hosts a magnetoencephalography system that is subject to external vibrations. This is a superconducting quantum interference device, which are the most sensitive sensors for magnetic flux variations. When the magnetoencephalography operates with people inside the room, the spectrum of the flux of the magnetic field shows anomalous peaks at several frequencies between 1 Hz and 20 Hz, independent of the experiment that is being run. As the variations in the flux of the magnetic field through the sensors might not only be related to the electrical currents circulating inside the brain, but also to non-damped mechanical oscillations of the room, we installed seismic instrumentation to measure the effective motion inside the room and to compare it to the external motion. For this analysis, we recorded the ambient seismic noise at two very close stations, one inside the magnetically shielded room, the other one outside in the room in which the magnetically shielded room is itself located. Data were collected over four days, including a week-end, to study the response of the magnetically shielded room subjected to different energy levels of external vibrations. The root mean square, Fourier spectra and power spectral density show significant differences between the signal recorded inside and outside the magnetically shielded room, with several anomalous peaks in the frequency band of 1 Hz to 20 Hz. The normalized spectral quantities (horizontal to vertical spectral ratio, and ratio between the internal and external spectra show large amplification at several frequencies, reaching in some cases one order of magnitude. We concluded that the magnetically shielded room does not dampen the external vibrations, but it instead appears to amplify these across a broad frequency range.

  16. Integral Analysis of Seismic Refraction and Ambient Vibration Survey for Subsurface Profile Evaluation (United States)

    Hazreek, Z. A. M.; Kamarudin, A. F.; Rosli, S.; Fauziah, A.; Akmal, M. A. K.; Aziman, M.; Azhar, A. T. S.; Ashraf, M. I. M.; Shaylinda, M. Z. N.; Rais, Y.; Ishak, M. F.; Alel, M. N. A.


    Geotechnical site investigation as known as subsurface profile evaluation is the process of subsurface layer characteristics determination which finally used for design and construction phase. Traditionally, site investigation was performed using drilling technique thus suffers from several limitation due to cost, time, data coverage and sustainability. In order to overcome those problems, this study adopted surface techniques using seismic refraction and ambient vibration method for subsurface profile depth evaluation. Seismic refraction data acquisition and processing was performed using ABEM Terraloc and OPTIM software respectively. Meanwhile ambient vibration data acquisition and processing was performed using CityShark II, Lennartz and GEOPSY software respectively. It was found that studied area consist of two layers representing overburden and bedrock geomaterials based on p-wave velocity value (vp = 300 – 2500 m/s and vp > 2500 m/s) and natural frequency value (Fo = 3.37 – 3.90 Hz) analyzed. Further analysis found that both methods show some good similarity in term of depth and thickness with percentage accuracy at 60 – 97%. Consequently, this study has demonstrated that the application of seismic refractin and ambient vibration method was applicable in subsurface profile depth and thickness estimation. Moreover, surface technique which consider as non-destructive method adopted in this study was able to compliment conventional drilling method in term of cost, time, data coverage and environmental sustainaibility.

  17. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms. (United States)

    Rumyantsev, S; Liu, G; Stillman, W; Shur, M; Balandin, A A


    We fabricated a large number of single and bilayer graphene transistors and carried out a systematic experimental study of their low-frequency noise characteristics. Special attention was given to determining the dominant noise sources in these devices and the effect of aging on the current-voltage and noise characteristics. The analysis of the noise spectral density dependence on the area of graphene channel showed that the dominant contributions to the low-frequency electronic noise come from the graphene layer itself rather than from the contacts. Aging of graphene transistors due to exposure to ambient conditions for over a month resulted in substantially increased noise, attributed to the decreasing mobility of graphene and increasing contact resistance. The noise spectral density in both single and bilayer graphene transistors either increased with deviation from the charge neutrality point or depended weakly on the gate bias. This observation confirms that the low-frequency noise characteristics of graphene transistors are qualitatively different from those of conventional silicon metal-oxide-semiconductor field-effect transistors.

  18. Spatial correlation in the ambient core noise field of a turbofan engine. (United States)

    Miles, Jeffrey Hilton


    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0-400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NO(x) and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  19. Seismic signal and noise on Europa and how to use it (United States)

    Panning, M. P.; Stähler, S. C.; Bills, B. G.; Castillo, J.; Huang, H. H.; Husker, A. L.; Kedar, S.; Lorenz, R. D.; Pike, W. T.; Schmerr, N. C.; Tsai, V. C.; Vance, S.


    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for a potential Europa lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect predicted seismic observations using 2D numerical seismic simulations. We also show some of the key seismic observations to determine interior properties of Europa (Stähler et al., 2017). M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, "Expected seismicity and the seismic noise environment of Europa," J. Geophys. Res., in revision, 2017. S. C. Stähler, M. P. Panning, S. D. Vance, R. D. Lorenz, M. van Driel, T. Nissen-Meyer, S. Kedar, "Seismic wave propagation in icy ocean worlds," J. Geophys. Res., in revision, 2017.

  20. Seismic reflection response from cross-correlations of ambient vibrations on non-conventional hidrocarbon reservoir (United States)

    Huerta, F. V.; Granados, I.; Aguirre, J.; Carrera, R. Á.


    Nowadays, in hydrocarbon industry, there is a need to optimize and reduce exploration costs in the different types of reservoirs, motivating the community specialized in the search and development of alternative exploration geophysical methods. This study show the reflection response obtained from a shale gas / oil deposit through the method of seismic interferometry of ambient vibrations in combination with Wavelet analysis and conventional seismic reflection techniques (CMP & NMO). The method is to generate seismic responses from virtual sources through the process of cross-correlation of records of Ambient Seismic Vibrations (ASV), collected in different receivers. The seismic response obtained is interpreted as the response that would be measured in one of the receivers considering a virtual source in the other. The acquisition of ASV records was performed in northern of Mexico through semi-rectangular arrays of multi-component geophones with instrumental response of 10 Hz. The in-line distance between geophones was 40 m while in cross-line was 280 m, the sampling used during the data collection was 2 ms and the total duration of the records was 6 hours. The results show the reflection response of two lines in the in-line direction and two in the cross-line direction for which the continuity of coherent events have been identified and interpreted as reflectors. There is certainty that the events identified correspond to reflections because the time-frequency analysis performed with the Wavelet Transform has allowed to identify the frequency band in which there are body waves. On the other hand, the CMP and NMO techniques have allowed to emphasize and correct the reflection response obtained during the correlation processes in the frequency band of interest. The results of the processing and analysis of ASV records through the seismic interferometry method have allowed us to see interesting results in light of the cross-correlation process in combination with

  1. Crustal structure determined from ambient noise tomography near the magmatic centers of the Coso region, southeastern California (United States)

    Yang, Yingjie; Ritzwoller, Michael H.; Jones, Craig H.


    We apply seismic ambient noise tomography to image and investigate the shallow shear velocity structure beneath the Coso geothermal field and surrounding areas. Data from a PASSCAL experiment operated within the Coso geothermal field between 1998 and 2000 and surrounding broadband stations from the Southern California Seismic Network are acquired and processed. Daily cross correlations of ambient noise between all pairs of stations that overlapped in time of deployment were calculated and then stacked over the duration of deployment. Phase velocities of Rayleigh waves between 3 and 10 s periods are measured from the resulting cross correlations. Depending on the period, between about 300 and 600 reliable phase velocity measurements are inverted for phase velocity maps from 3 to 10 s periods, which in turn are inverted for a 3-D shear velocity model beneath the region. The resulting 3-D model reveals features throughout the region that correlate with surface geology. Beneath the Coso geothermal area shear velocities are generally depressed, a prominent low-velocity anomaly is resolved clearly within the top 2 km, no significant anomaly is seen below about 14 km depth, and a weakly resolved anomaly is observed between 6 and 12 km depth. The anomaly in the top 2 km probably results from geothermal alteration in the shallow subsurface, no magmatic body is imaged beneath 14 km depth, but the shear velocity anomaly between 6 and 12 km may be attributable to partial melt. The thickness and amplitude of the magma body trade off in the inversion and are ill determined. Low velocities in the regions surrounding Coso at depths near 7 km underlie areas with Miocene to recent volcanism, suggesting that some magmatic processing of the crust could be focused near this depth.

  2. Crustal and uppermantle velocity structure of the northern Korean Peninsula constrained by ambient noise cross-correlations (United States)

    Lee, S. J.; Rhie, J.; Kim, S.


    The seismic velocity structure of the northern Korean Peninsula has not been well known because available seismic data observed inside the region is very rare. Therefore, constructing a one-dimensional (1-D) reference velocity model will be a meaningful first step to understand the detailed velocity structure and also the tectonic evolution of the region. In this study, we use two-year long (2010-2011) ambient noise data recorded by three component broadband seismometers of KIGAM, KMA, F-net, and IRIS networks surrounding the study area. Ambient noise cross-correlations are calculated for station pairs sampling the study area. Multiple filter technique is applied to measure group and phase velocity dispersions of the fundamental mode Rayleigh and Love waves for period ranges between 5 and 70 s, which are sensitive to shear wave velocities in the crust and uppermost mantle. Recently developed inversion method using the Bayesian technique is applied to estimate 1-D models of shear wave velocities and corresponding uncertainties. Combined with the Markov chain Monte Carlo (MCMC) technique, the posterior probability density is evaluated for given data and the prior. Boundaries, velocities, and anisotropy parameters of layers are searched together on the assumption of the layered half-space model. The used method automatically adjusts the number of layers and degree of data fitting by the Bayesian Information Criterion (BIC) estimation and scaling of the data-covariance matrix, respectively. The estimated anisotropic S-wave velocity model in the crust and upper-mantle can help to investigate tectonic processes of the region. For practical use, our velocity model for the Northern Korean Peninsula can be useful to enhance monitoring power of the underground nuclear tests in given area.

  3. Wind seismic noise introduced by external infrastructure: field data and transfer mechanism (United States)

    Martysevich, Pavel; Starovoyt, Yuri


    Background seismic noise generated by wind was analyzed at six co-located seismic and infrasound arrays with the use of the wind speed data. The main factors affecting the noise level were identified as (a) external structures as antenna towers for intrasite communication, vegetation and heavy solar panels fixtures, (b) borehole casing and (c) local lithology. The wind-induced seismic noise peaks in the spectra can be predicted by combination of inverted pendulum model for antenna towers and structures used to support solar panels, free- or clamped-tube resonance of the borehole casing and is dependent on the type of sedimentary upper layer. Observed resonance frequencies are in agreement with calculated clamped / free tube modes for towers and borehole casings. Improvement of the seismic data quality can be achieved by minimizing the impact of surrounding structures close to seismic boreholes. The need and the advantage of the borehole installation may vanish and appear to be even not necessary at locations with non-consolidated sediments because the impact of surrounding structures on seismic background may significantly deteriorate the installation quality and therefore the detection capability of the array. Several IMS arrays where the radio telemetry antennas are used for data delivery to the central site may benefit from the redesign of the intrasite communication system by its substitute with the fiber-optic net as less harmful engineering solution.

  4. Noiseonomics: the relationship between ambient noise levels in the sea and global economic trends. (United States)

    Frisk, George V


    In recent years, the topic of noise in the sea and its effects on marine mammals has attracted considerable attention from both the scientific community and the general public. Since marine mammals rely heavily on acoustics as a primary means of communicating, navigating, and foraging in the ocean, any change in their acoustic environment may have an impact on their behavior. Specifically, a growing body of literature suggests that low-frequency, ambient noise levels in the open ocean increased approximately 3.3 dB per decade during the period 1950-2007. Here we show that this increase can be attributed primarily to commercial shipping activity, which in turn, can be linked to global economic growth. As a corollary, we conclude that ambient noise levels can be directly related to global economic conditions. We provide experimental evidence supporting this theory and discuss its implications for predicting future noise levels based on global economic trends.

  5. Self-organizing map and its application in the analysis of ambient noise characteristics (United States)

    Meng, Chunxia; Li, Guijuan; Che, Shuwei; Bai, Jin


    The Self-organizing map (SOM) is an unsupervised neural network based on competitive learning, and can solve the problem that the center of clustering is unknown. SOM's theory and the implementation of algorithm are studied in this paper. Simulating example is given to approve the feasibility of SOM in characteristic assessment for multivariate sample. The Ambient sea noise measurement is made in August 2014 on some sea of China. The total source level was forecasted using "ROSS formula" and the sailing information. The statistical variability of broadband ambient noise at frequencies between 20Hz and 31.5 kHz is obtained using SOM. The comparison between measured sound pressure and forecasting pressure is given, and the preliminary analysis of the relationship between ambient noise level and vessels is carried out. The results provide the technical reference to understand the temporal and spatial statistical variability of ambient noise, and are an efficient tool in assessing the potential effect of shipping noise on marine mammals in the special sea area.

  6. Understanding the formation of the Ontong Java Plateau through joint ambient noise earthquake tomography and laboratory modeling (United States)

    Covellone, B. M.; Szwaja, S.; Savage, B. K.; Shen, Y.; Kincaid, C. R.


    Current knowledge of the Ontong Java Plateau (OJP) comes from a broad range of research disciplines. Despite decades of work, numerous hypotheses on the origin of the OJP do not fully address all of the geophysical and geochemical observations. A more complete image of the current lower crust and upper mantle seismic structure beneath the plateau will provide a link between the plateau's 120 Ma complex history and it's formation. We investigate the anomalous wave speed structure underlying the OJP using an iterative, full-waveform, joint ambient noise and earthquake tomography approach. A 3-dimensional wave speed model is determined from ambient noise data at periods between 25 and 200 seconds. Data from over 100 earthquakes, recorded between 1990 and 2012, are then added to the inversion to improve data coverage and model resolution. The combination of datasets allows us to best exploit the limited station distribution in the Pacific, resulting in resolution better than 5-degrees beneath the plateau and extending to depths greater than 350 km. To improve our sense of expected deformation patterns for sub-plateau mantle through geologic time, a set of laboratory models were run where OJP residuum viscosity is changed relative to the ambient fluid. Models focus on the interaction between OJP residuum and the rollback-driven flow associated with passage of the Tonga subduction system to the south. Model results show dramatic thinning and extraction of the southern portion of sub-OJP fluid due to subduction induced torroidal flows. Significant distortion of the sub-OJP material over roughly the last 40 Ma is predicted in cases where residuum is either stronger or weaker than ambient fluid. The results of this work confirm an anomalously slow mantle beneath the OJP extending to depths greater than 300 km and provide high-resolution images constraining the magnitude and dimensions of wave speed anomalies that can be used to determine thermal and compositional variations

  7. Environmental interference: impact of acoustic noise on seismic communication and mating success


    Shira D. Gordon; George W. Uetz


    Sound is abundant in the environment, often creating "noise" that interferes with animal communication. Animals cope with acoustic interference in a variety of ways, including raising their signal volume (the Lombard effect), changing the pattern, frequency or duration of signals, or changing the time of day when signaling. Although many arthropods use substrate-borne vibration (seismic) signals, the effect of interference from (airborne) acoustic noise on their communication is not well stud...

  8. Seismic Coupling of Short-Period Wind Noise Through Mars’ Regolith for NASA’s InSight Lander


    Teanby, N. A.; Stevanović, J.; Wookey, J.; Murdoch, Naomi; Hurley, J.; Myhill, R.; Bowles, N. E.; Calcutt, S. B.; Pike, William T.


    NASA’s InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, w...

  9. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas


    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  10. Shear wave velocity versus quality factor: results from seismic noise recordings (United States)

    Boxberger, Tobias; Pilz, Marco; Parolai, Stefano


    The assessment of the shear wave velocity (vs) and shear wave quality factor (Qs) for the shallow structure below a site is necessary to characterize its site response. In the past, methods based on the analysis of seismic noise have been shown to be very efficient for providing a sufficiently accurate estimation of the vs versus depth at reasonable costs for engineering seismology purposes. In addition, a slight modification of the same method has proved to be able to provide realistic Qs versus depth estimates. In this study, data sets of seismic noise recorded by microarrays of seismic stations in different geological environments of Europe and Central Asia are used to calculate both vs and Qs versus depth profiles. Analogous to the generally adopted approach in seismic hazard assessment for mapping the average shear wave velocity in the uppermost 30 m (vs30) as a proxy of the site response, this approach was also applied to the quality factor within the uppermost 30 m (Qs30). A slightly inverse correlation between both parameters is found based on a methodological consistent determination for different sites. Consequently, a combined assessment of vs and Qs by seismic noise analysis has the potential to provide a more comprehensive description of the geological structure below a site.

  11. Effects of bladdered fish on ambient noise measurements close to the port of Rotterdam

    NARCIS (Netherlands)

    Ainslie, M.A.; Jong C.A.F. de; Dreschler, J.


    Ambient noise in the frequency range 25 Hz to 80 kHz was measured at a site close to the Port of Rotterdam in September 2008, before construction began of a port extension known as ‘Maasvlakte 2’ [], and in September-October 2009 (during construction). Day-night

  12. Horizontal Directionality of Ambient Sea Noise in the North Pacific Ocean (United States)


    interpreting the horizontal directionalit- of the ambient noise shown in figures 11, 12" and 13. This location was in the transpacific shipping lanes...types of errors encountered when determining horizontal arrival angles for the beam response data. The first is due to the angular nature of both the

  13. Significance of geological units of the Bohemian Massif, Czech Republic, as seen by ambient noise interferometry

    Czech Academy of Sciences Publication Activity Database

    Růžek, Bohuslav; Valentová, L.; Gallovič, F.


    Roč. 173, č. 5 (2016), s. 1663-1682 ISSN 0033-4553 R&D Projects: GA ČR GAP210/12/2336; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : ambient noise * geological units * Bohemian Massif * velocity model Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016

  14. Sub-bottom profiling with ambient noise measured on a drifting vertical array

    NARCIS (Netherlands)

    Harrison, C.H.; Schippers, P.; Snellen, M.; Weterings, A.


    The angle and frequency dependent reflective properties of the seabed can be determined from beam-steered ambient noise measurements on a vertical array of hydrophones. From the up-to-down ratio the beam-smeared modulus square of the plane wave reflection coefficient is obtained. Geo-acoustic

  15. The effects of music, white noise, and ambient noise on sedation and anxiety in patients under spinal anesthesia during surgery. (United States)

    Ilkkaya, Nazan Koylu; Ustun, Faik Emre; Sener, Elif Bengi; Kaya, Cengiz; Ustun, Yasemin Burcu; Koksal, Ersin; Kocamanoglu, Ismail Serhat; Ozkan, Fatih


    To compare effects of music, white noise, and ambient (background) noise on patient anxiety and sedation. Open, parallel, and randomized controlled trial. Seventy-five patients aged 18 to 60 years who were scheduled for surgical procedures under spinal anesthesia were randomly assigned to ambient noise (Group O), white noise (Group B), or music groups (Group M). We evaluated patients' anxiety and sedation levels via the Observer's Assessment of Alertness/Sedation (OAA/S) scale and the State-Trait Anxiety Inventory (STAI) questionnaire. At 5 minutes before surgery, the STAI-State Anxiety Inventory (SA) value was significantly lower in Group M than the other groups. At 30-minute recovery, Group M showed significantly lower STAI-SA values than the other groups. Patient satisfaction was highest in Group M. OAA/S values were not significantly different between groups during any period (P > .05). We suggest that patient-selected music reduces perioperative anxiety and contributes to patient satisfaction during the perioperative period. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  16. Velocity and structural model of the Lower Tagus Basin according to the study of environmental seismic noise (United States)

    Gomes Torres, Ricardo Jorge; Furtado, José Augusto; Gonçalves Silva, Hugo; Borges, José Fernando; Caldeira, Bento; Bezzeghoud, Mourad; Carvalho, João


    Along his history the Lower Tagus Valley (LTV) region was shaken by several earthquakes, some of them produced in large ruptures of offshore structures located southwest of the Portuguese coastline. Among these is the Lisbon earthquake of 1 November 1755 (M~8.5-8.7), and other moderates earthquakes that were produced by local sources such as the 1344 (M6.0), 1531 (M7.1) and 1909 (M6.0) earthquakes. Previous simulations [1] have shown high velocity amplification in the region. The model used in the simulations was updated from low to high resolution using all the new available geophysical and geotechnical data on the area (seismic reflection, aeromagnetic, gravimetric, deep wells and geological outcrops) [2]. To confirm this model in the areas where it was derived by potential field methods we use broadband ambient noise measurements collected in about 200 points along seven profiles on the LTV basin, six perpendicular and one parallel to the basin axis. We applied the horizontal to vertical (H/V) spectral ratio method [3] to the seismic noise profiles in order to estimate the distribution of amplification in the basin. The H/V curves obtained reveals the existence of two low frequency peaks centered on 0.2 and 1 Hz [4]. These peaks are strongly related with the thickness of Cenozoic and alluvial sediments. The velocity model obtained by inversion of the H/V curves is in good agreement with borehole data, and results obtained using seismic reflection and gravimetric methods. However, aeromagnetic data overestimates the depth of the base of Cenozoic in the areas where it overlies directly the paleozoic basement, which we attribute either to the existence of Mesozoic units or higher magnetic susceptibilities than expected for the Paleozoic. References: [1] Bezzeghoud, M., Borges, J.F., M., Caldeira (2011). Ground motion simulations of the SW Iberia margin: rupture directivity and earth structure effects. Natural Hazards, pages 1-17. doi:10.1007/s11069-011-9925-2 [2

  17. Ground Motion Prediction of Subduction Earthquakes using the Onshore-Offshore Ambient Seismic Field (United States)

    Viens, L.; Miyake, H.; Koketsu, K.


    Seismic waves produced by earthquakes already caused plenty of damages all around the world and are still a real threat to human beings. To reduce seismic risk associated with future earthquakes, accurate ground motion predictions are required, especially for cities located atop sedimentary basins that can trap and amplify these seismic waves. We focus this study on long-period ground motions produced by subduction earthquakes in Japan which have the potential to damage large-scale structures, such as high-rise buildings, bridges, and oil storage tanks. We extracted the impulse response functions from the ambient seismic field recorded by two stations using one as a virtual source, without any preprocessing. This method allows to recover the reliable phases and relative, rather than absolute, amplitudes. To retrieve corresponding Green's functions, the impulse response amplitudes need to be calibrated using observational records of an earthquake which happened close to the virtual source. We show that Green's functions can be extracted between offshore submarine cable-based sea-bottom seismographic observation systems deployed by JMA located atop subduction zones and on-land NIED/Hi-net stations. In contrast with physics-based simulations, this approach has the great advantage to predict ground motions of moderate earthquakes (Mw ~5) at long-periods in highly populated sedimentary basin without the need of any external information about the velocity structure.

  18. High ambient noise levels in Vadodara City, India, affected by urbanization. (United States)

    Singh, Neha; Dhiman, Hitesh; Shaikh, Sadaf; Shah, Purvish; Sarkar, Roma; Patel, Shashin


    The present research was conducted to study the urbanization of Vadodara city and to monitor the ambient noise level in the industrial, commercial, residential and silence zones of the city. A settlement map created by unsupervised classification for the land use and land cover study of Vadodara city clearly shows the increasing pattern of urbanization in its central part, which may be the result of urban sprawl due to migration of people from the rural to the urban areas. The fluctuation in ambient noise level was recorded using an A-weighted sound level meter in all the four zones of Vadodara city for 3 h at regular intervals of 15 min on 3 consecutive days at the same time. The results showed the highest equivalent noise level of 93.7 dBA in the commercial zone followed by 85.5 dBA in the industrial zone, 73.2 dBA in silence zone, and 70.2 dBA in the residential zone. The values of noise level were high in all the zones of the city increasing remarkably over the prescribed limit given in the Noise Pollution (Control and Regulation) Rules, 2000. Continuous exposure to such high level of noise may lead to detrimental effect on people.

  19. Effect of Seafloor Current on low Frequency Seismic Noise Observed in the Seafloor (United States)

    Araki, E.; Kawaguchi, K.; Matsumoto, H.; Sugioka, H.; Ito, A.; Suetsugu, D.; Kaneda, Y.


    Seismometer installed in the seafloor is affected by water flow in the seafloor. Such effect is significant especially for low frequencies below 0.1 Hz. Burial of seismometer, or installation using deep borehole, is suggested to reduce effect of seafloor current. There are a number of examples showing burial in the seafloor significantly reduce low frequency seismic noise. The reason for such improvement is explained by improved seafloor coupling of seismometer and reduction of tilting effect due to force from water flow by minimizing area of seismometer exposed in the water flow. Another mechanism is that turbulence in the seafloor current impose load on the seafloor that deforms and tilt the seafloor. There are few example, though, to demonstrate a model which explain relationship between speed of seafloor water flow and expected low frequency seismic noise quantitatively. We are currently planning to build seafloor broadband seismic network off Kii Peninsula, Honshu, Japan, where recurrence of magnitude 8 class earthquake is expected in the future. In such location, a network of broadband seismometer will be deployed in the seafloor. In order to design for optimum low frequency performance of seismometers, we conducted test installation of three broadband seismometers (Guralp CMG3T) closely, within 150m distances from each other. The test observation was conducted in the Kumano Basin, from late December, 2007 to early February, 2008. The one cylindrical seismometer was buried in the seafloor, while the other two sit on the seafloor. The seafloor seismometers were different in that the one had grid type anchor and the other had wide planar anchor. Difference in these arrangements was intended to find optimum design of seismometer package and installation method. Differential pressure gauges, a seafloor current meter, thermometers were installed to monitor environmental change during the test observation. Observation data from deployed broadband seismometers

  20. Seismic survey in southeastern Socorro Island: Background noise measurements, seismic events, and T phases

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Raul W [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Galindo, Marta [Comprehensive Nuclear-Test-Ban Treaty Organization, IMS, Vienna (Austria); Pacheco, Javier F; Iglesias, Arturo; Teran, Luis F [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Barreda, Jose L; Coba, Carlos [Facultad de Ingenieria, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)


    We carried out a seismic survey and installed five portable, broadband seismometers in the southeastern corner of Socorro Island during June 1999. Power spectral densities for all five sites were relatively noisy when compared to reference curves around the world. Power spectral densities remain constant regardless of the time of day, or the day of the week. Cultural noise at the island is very small. Quiet and noisy sites were identified to determine the best location of the T phase station to be installed jointly by the Universidad Nacional Autonoma de Mexico and the Comprehensive Nuclear-Test-Ban Treaty Organization. During the survey six earthquakes were recorded at epicentral distances between 42 km and 2202 km, with magnitudes between 2.8 and 7.0. Two small earthquakes (M{sub c} = 2.8 and 3.3) occurred on the Clarion Fracture Zone. The four largest and more distant earthquakes produced T waves. One T wave from an epicenter near the coast of Guatemala had a duration of about 100 s and a frequency content between 2 and 8 Hz, with maximum amplitude at about 4.75 Hz. The Tehuacan earthquake of June 15, 1999 (M{sub w} = 7.0) produced arrivals of P {yields} T and S {yields} T waves, with energy between 2 Hz and 3.75 Hz. The earthquake occurred inland within the subducted Cocos plate at a depth of 60 km; a significant portion of the path was continental. Seismic P and S waves probably propagated upward in the subducted slab, and were converted to acoustic energy at the continental slope. Total duration of the T phase is close to 500 s and reaches its maximum amplitude about 200 s after the P {yields} T arrival. The T wave contains energy at frequencies between 2 and 10 Hz and reaches its maximum amplitude at about 2.5 Hz. T phases were also recorded from two earthquakes in Guerrero, Mexico and in the Rivera Fracture Zone. [Spanish] En junio de 1999 instalamos cinco sismometros portatiles de banda ancha en el sureste de la Isla Socorro. Se encontro que las densidades

  1. Anisotropic full waveform ambient noise and earthquake tomography of the Ontong Java Plateau and surrounding Pacific upper mantle (United States)

    Hirsch, A. C.; Savage, B.; Shen, Y.


    The Ontong Java (OJP) and Manihiki plateau (MP) large igneous provinces (LIP) of the Southwest Pacific took shape from a complicated, but poorly understood geological history. Unraveling the formation and deformation of these Pacific LIPs is not straightforward due to limited available data, remote location, and atypical geology. Origin hypotheses include melting of a plume or a fast-spreading triple junction, but distinguishing between these requires a further understanding of 120 Ma of deformation of each LIP. A previous tomographic model of OJP observed highly abnormal Rayleigh shear wave speeds, >4.75km/s, and attributed these to an unusual composition, garnet and clinopyroxene residual from melting pyroxenite entrained within a rising plume. Unfortunately, this model lacks constraints on the horizontally polarized shear wave speeds, SH or Love waves, anisotropy, and attenuation. We therefore perform a transverse-isotropic, scattering-integral, full-waveform tomography between periods of 25 and 200 seconds utilizing both ambient noise empirical Green's functions and seismic data from regional earthquakes. Our tomographic model improves upon previous work using permanent and temporary seismic stations, increased model space, and utilizing three components of seismic data (vertical, radial, and tangential). Included is also an assessment of the anelastic attenuation in the western Pacific using both surface waves and multiple core reflections. Our results will improve the tomographic resolution around OJP and the Pacific upper mantle between 35 and 300 km depth. This improved model will enhance our understanding of the tectonic history of the OJP and MP regions, and the Pacific Indo-Australian plate boundary.

  2. Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions (United States)

    Asano, Kimiyuki; Iwata, Tomotaka; Sekiguchi, Haruko; Somei, Kazuhiro; Miyakoshi, Ken; Aoi, Shin; Kunugi, Takashi


    Inter-station cross-correlation functions estimated using continuous ambient noise or microtremor records were used to extract the seismic wave propagation characteristics of the Osaka sedimentary basin, Japan. Temporary continuous observations were conducted at 15 sites in the Osaka basin between 2011 and 2013. The data were analyzed using seismic interferometry. The target period range was 2-8 s. Cross-correlations between all of the possible station pairs were calculated and stacked to produce a year-long data set, and Rayleigh wave signals in the vertical and radial components and Love wave signals in the transverse component were identified from the results. Simulation of inter-station Green's functions using the finite difference method was conducted to check the performance of the current three-dimensional velocity structure model. The measured time lag between the observed and theoretical Green's functions was less than 2 s for most station pairs, which is less than the wave period of interest in the target frequency range. Group velocity tomography was applied to group delay times estimated by means of multiple filter analysis. The estimated group velocities for longer periods of 5-8 s exhibited spatial variation within the basin, which is consistent with the bedrock depth distribution; however, the group velocities for shorter periods of 2-3 s were almost constant over the studied area. The waveform and group velocity information obtained by seismic interferometry analysis can be useful for future reconstruction of a three-dimensional velocity structure model in the Osaka basin.[Figure not available: see fulltext.

  3. Ambient noise forecasting with a large acoustic array in a complex shallow water environment. (United States)

    Rogers, Jeffrey S; Wales, Stephen C; Means, Steven L


    Forecasting ambient noise levels in the ocean can be a useful way of characterizing the detection performance of sonar systems and projecting bounds on performance into the near future. The assertion is that noise forecasting can be improved with a priori knowledge of source positions coupled with the ability to resolve closely separated sources in bearing. One example of such a system is the large aperture research array located at the South Florida Test Facility. Given radar and Automatic Identification System defined source positions and environmental information, transmission loss (TL) is computed from known source positions to the array. Source levels (SLs) of individual ships are then estimated from computed TL and the pre-determined beam response of the array using a non-negative least squares algorithm. Ambient noise forecasts are formed by projecting the estimated SLs along known ship tracks. Ambient noise forecast estimates are compared to measured beam level data and mean-squared error is computed. A mean squared error as low as 3.5 dB is demonstrated in 30 min forecast estimates when compared to ground truth.

  4. Regional scale tomography in central Mexico. Preliminary results from the correlation of seismic noise (United States)

    Chávez-García, F.; Quintanar, L.


    In addition to local site effects, ground motion from coastal earthquakes on rock sites in central Mexico is amplified in a regional scale, relative to ground motion observed along a direction parallel to the coast. This regional amplification attains a factor of 10 at frequencies that are critical in seismic risk analyses (from 0.2 to at least 2 Hz). This amplification has been related to the irregular crustal structure associated with the presence of the Mexican Volcanic Belt (oblique to the trench along the subduction zone). However, this has not yet been verified. The available models are not well constrained and there is a significant lack of data regarding the crustal structure in this region. Recent publications have shown that the Green's function between two seismic stations may be estimated from the cross-correlation of seismic noise. Most papers have shown that surface wave modes emerge in those correlation functions. The larger the distance between stations, the longer the records of seismic noise that are needed to obtain a useful result. In this paper, we use seismic noise recorded by three different arrays to estimate Rayleigh wave dispersion between stations. two arrays were temporal and one, recently installed, is permanent. The first array consisted of only four stations. It operated continuously for three months in 1997. The second temporary array operated a line of 100 seismic recorders installed perpendicularly to the subduction zone in Mexico, the MASE (Middle American Seismic Experiment) array. From this large array we use data from 18 stations in central Mexico. Finally, we use data from the permanent Mexico basin seismic array, recently installed. We use week- and month-long noise records to compute cross-correlation between vertical components for all possible station pairs. The results show clearly the emergence of clear Rayleigh wave pulses. We use the multiple filter technique to determine group velocities in the period band 4 to 10 s

  5. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography (United States)

    Comani, S.; Mantini, D.; Alleva, G.; Di Luzio, S.; Romani, G. L.


    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz.

  6. A survey of models for the prediction of ambient ocean noise: Circa 1995

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, R.


    The state of the art of model development for application to computer studies of undersea search systems utilizing acoustics is surveyed in this document. Due to the demands for surveillance of submarines operating in ocean basins, the development of noise models for application in deep oceans is fairly advanced and somewhat generic. This is due to the deep sound channel, discovered during World War II, which when present allows for long-range sound propagation with little or no interaction with the bottom. Exceptions to this channel, also well understood, are found in both the high latitudes where the sound is upward refracting and in tropical ocean areas with downward refracting sound transmission. The controlling parameter is the sound speed as a function of depth within the ocean, the sound speed profile. When independent of range, this profile may be converted to a noise-versus-depth profile with well-validated consequences for deep-ocean ambient noise. When considering ocean areas of shallow water, the littoral regions, the idea of a genenic ocean channel advisedly is abandoned. The locally unique nature of both the noise production mechanisms and of the channel carrying the sound, obviates the generic treatment. Nevertheless, idealizations of this case exist and promote the understanding if not the exact predictability of the statistics of shallow water ambient noise. Some examples of these models are given in this document.

  7. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography

    International Nuclear Information System (INIS)

    Comani, S; Mantini, D; Alleva, G; Luzio, S Di; Romani, G L


    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz

  8. Vertical line array measurements of ambient noise in the North Pacific. (United States)

    Farrokhrooz, Mehdi; Wage, Kathleen E; Dzieciuch, Matthew A; Worcester, Peter F


    Shipping noise and wind are the dominant sources of ocean noise in the frequency band between 20 and 500 Hz. This paper analyzes noise in that band using data from the SPICEX experiment, which took place in the North Pacific in 2004-2005, and compares the results with other North Pacific experiments. SPICEX included vertical arrays with sensors above and below the surface conjugate depth, facilitating an analysis of the depth dependence of ambient noise. The paper includes several key results. First, the 2004-05 noise levels at 50 Hz measured in SPICEX had not increased relative to levels measured by Morris [(1978). J. Acoust. Soc. Am. 64, 581-590] at a nearby North Pacific site three decades earlier, but rather were comparable to those levels. Second, at 50 Hz the noise below the conjugate depth decreases at a rate of -9.9 dB/km, which is similar to the rate measured by Morris and much less than the rate measured by Gaul, Knobles, Shooter, and Wittenborn [(2007). IEEE J. Ocean. Eng. 32, 497-512] for the CHURCH OPAL experiment. Finally, the paper describes the seasonal trends in noise over the year-long time series of the measurements.

  9. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification (United States)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.


    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  10. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones. (United States)

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli


    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near

  11. Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets (United States)

    Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph


    Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  12. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication - YIP (United States)


    Detectability, Distribution, and Acoustic Communication - YIP Jennifer L. Miksis-Olds Applied Research Laboratory The Pennsylvania State University...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Pennsylvania State University,Applied Research Laboratory ,PO...0039 to David Bradley titled “Ambient Noise Analysis from Selected CTBTO Hydroacoustic Sites”. Patterns and trends of ocean sound observed in this

  13. Ambient Noise Tomography at Regional and Local Scales in Southern California using Rayleigh Wave Phase Dispersion and Ellipticity (United States)

    Berg, E.; Lin, F. C.; Qiu, H.; Wang, Y.; Allam, A. A.; Clayton, R. W.; Ben-Zion, Y.


    Rayleigh waves extracted from cross-correlations of ambient seismic noise have proven useful in imaging the shallow subsurface velocity structure. In contrast to phase velocities, which are sensitive to slightly deeper structure, Rayleigh wave ellipticity (H/V ratios) constrains the uppermost crust. We conduct Rayleigh wave ellipticity and phase dispersion measurements in Southern California between 6 and 18 second periods, computed from multi-component ambient noise cross-correlations using 315 stations across the region in 2015. Because of the complimentary sensitivity of phase velocity and H/V, this method enables simple and accurate resolution of near-surface geological features from the surface to 20km depth. We compare the observed H/V ratios and phase velocities to predictions generated from the current regional models (SCEC UCVM), finding strong correspondence where the near-surface structure is well-resolved by the models. This includes high H/V ratios in the LA Basin, Santa Barbara Basin and Salton Trough; and low ratios in the San Gabriel, San Jacinto and southern Sierra Nevada mountains. Disagreements in regions such as the Western Transverse Ranges, Salton Trough, San Jacinto and Elsinore fault zones motivate further work to improve the community models. A new updated 3D isotropic model of the area is derived via a joint inversion of Rayleigh phase dispersions and H/V ratios. Additionally, we examine azimuthal dependence of the H/V ratio to ascertain anisotropy patterns for each station. Clear 180º periodicity is observed for many stations suggesting strong shallow anisotropy across the region including up to 20% along the San Andreas fault, 15% along the San Jacinto Fault and 25% in the LA Basin. To better resolve basin structures, we apply similar techniques to three dense linear geophone arrays in the San Gabriel and San Bernardino basins. The three arrays are composed by 50-125 three-component 5Hz geophones deployed for one month each with 15-25km

  14. Wind dependence of ambient noise in a biologically rich coastal area. (United States)

    Mathias, Delphine; Gervaise, Cédric; Di Iorio, Lucia


    The wind dependence of acoustic spectrum between 100 Hz and 16 kHz is investigated for coastal biologically rich areas. The analysis of 5 months of continuous measurements run in a 10 m deep shallow water environment off Brittany (France) showed that wind dependence of spectral levels is subject to masking by biological sounds. When dealing with raw data, the wind dependence of spectral levels was not significant for frequencies where biological sounds were present (2 to 10 kHz). An algorithm developed by Kinda, Simard, Gervaise, Mars, and Fortier [J. Acoust. Soc. Am. 134(1), 77-87 (2013)] was used to automatically filter out the loud distinctive biological contribution and estimated the ambient noise spectrum. The wind dependence of ambient noise spectrum was always significant after application of this filter. A mixture model for ambient noise spectrum which accounts for the richness of the soundscape is proposed. This model revealed that wind dependence holds once the wind speed was strong enough to produce sounds higher in amplitude than the biological chorus (9 kn at 3 kHz, 11 kn at 8 kHz). For these higher wind speeds, a logarithmic affine law was adequate and its estimated parameters were compatible with previous studies (average slope 27.1 dB per decade of wind speed increase).

  15. Optimized suppression of coherent noise from seismic data using the Karhunen-Loeve transform

    International Nuclear Information System (INIS)

    Montagne, Raul; Vasconcelos, Giovani L.


    Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loeve transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle)

  16. Seismic site response of unstable steep slope using noise measurements: the case study of Xemxija Bay area, Malta

    Directory of Open Access Journals (Sweden)

    F. Panzera


    Full Text Available Landslide phenomena involve the northern coast of Malta, affecting in particular the urban area of Xemxija. Limestones overlying a clayey formation represent the shallower lithotypes that characterize the surficial geology of this area, where lateral spreading phenomena and rockfalls take place.

    Ambient noise records, processed through spectral ratio techniques, were analysed in order to characterize the dynamic behavior of the rock masses affected by the presence of fractures linked to the landslide body existing in the area. Experimental spectral ratios were also calculated after rotating the horizontal components of the seismic signal, and a direct estimate of the polarization angle was also performed in order to investigate the existence of directional effects in the ground motion.

    The results of the morphologic survey confirmed the existence of large cliff-parallel fractures that cause cliff-edge and unstable boulder collapses. Such phenomena appear connected to the presence, inside the clay formation, of a sliding surface that was identified through the interpretation of the noise measurement data. The boundaries of the landslide area appear quite well defined by the pronounced polarization effects, trending in the northeastern direction, observed in the fractured zone and in the landslide body in particular.

  17. The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling (United States)

    Schmitz, Frederic H.; Greenwood, Eric


    A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.

  18. Classifying seismic noise and sources from OBS data using unsupervised machine learning (United States)

    Mosher, S. G.; Audet, P.


    The paradigm of plate tectonics was established mainly by recognizing the central role of oceanic plates in the production and destruction of tectonic plates at their boundaries. Since that realization, however, seismic studies of tectonic plates and their associated deformation have slowly shifted their attention toward continental plates due to the ease of installation and maintenance of high-quality seismic networks on land. The result has been a much more detailed understanding of the seismicity patterns associated with continental plate deformation in comparison with the low-magnitude deformation patterns within oceanic plates and at their boundaries. While the number of high-quality ocean-bottom seismometer (OBS) deployments within the past decade has demonstrated the potential to significantly increase our understanding of tectonic systems in oceanic settings, OBS data poses significant challenges to many of the traditional data processing techniques in seismology. In particular, problems involving the detection, location, and classification of seismic sources occurring within oceanic settings are much more difficult due to the extremely noisy seafloor environment in which data are recorded. However, classifying data without a priori constraints is a problem that is routinely pursued via unsupervised machine learning algorithms, which remain robust even in cases involving complicated datasets. In this research, we apply simple unsupervised machine learning algorithms (e.g., clustering) to OBS data from the Cascadia Initiative in an attempt to classify and detect a broad range of seismic sources, including various noise sources and tremor signals occurring within ocean settings.

  19. Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise (United States)

    Ziegler, Abra E.

    The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was

  20. Ambient awareness: From random noise to digital closeness in online social networks. (United States)

    Levordashka, Ana; Utz, Sonja


    Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empirically. We provide evidence for the occurrence of ambient awareness and examine key questions related to its content and functions. A diverse sample of participants reported experiencing awareness, both as a general feeling towards their network as a whole, and as knowledge of individual members of the network, whom they had not met in real life. Our results indicate that ambient awareness can develop peripherally, from fragmented information and in the relative absence of extensive one-to-one communication. We report the effects of demographics, media use, and network variables and discuss the implications of ambient awareness for relational and informational processes online.

  1. A method to establish seismic noise baselines for automated station assessment (United States)

    McNamara, D.E.; Hutt, C.R.; Gee, L.S.; Benz, H.M.; Buland, R.P.


    We present a method for quantifying station noise baselines and characterizing the spectral shape of out-of-nominal noise sources. Our intent is to automate this method in order to ensure that only the highest-quality data are used in rapid earthquake products at NEIC. In addition, the station noise baselines provide a valuable tool to support the quality control of GSN and ANSS backbone data and metadata. The procedures addressed here are currently in development at the NEIC, and work is underway to understand how quickly changes from nominal can be observed and used within the NEIC processing framework. The spectral methods and software used to compute station baselines and described herein (PQLX) can be useful to both permanent and portable seismic stations operators. Applications include: general seismic station and data quality control (QC), evaluation of instrument responses, assessment of near real-time communication system performance, characterization of site cultural noise conditions, and evaluation of sensor vault design, as well as assessment of gross network capabilities (McNamara et al. 2005). Future PQLX development plans include incorporating station baselines for automated QC methods and automating station status report generation and notification based on user-defined QC parameters. The PQLX software is available through the USGS (http://earthquake. and IRIS ( pqlx/).

  2. Structure of magma reservoirs beneath Merapi and surrounding volcanic centers of Central Java modeled from ambient noise tomography (United States)

    Koulakov, Ivan; Maksotova, Gulzhamal; Jaxybulatov, Kayrly; Kasatkina, Ekaterina; Shapiro, Nikolai M.; Luehr, Birger-G.; El Khrepy, Sami; Al-Arifi, Nassir


    We present a three-dimensional model of the distribution of S-wave velocity in the upper crust to a depth of 20 km beneath Central Java based on the analysis of seismic ambient noise data recorded by more than 100 seismic stations in 2004 associated with the MERAMEX project. To invert the Rayleigh wave dispersion curves to construct 2-D group-velocity maps and 3-D distributions of S-wave velocity, we have used a new tomographic algorithm based on iterative linearized inversion. We have performed a series of synthetic tests that demonstrate significantly higher resolution in the upper crust with this model compared to the local earthquake travel-time tomography (LET) model previously applied for the same station network. Beneath the southern flank of Merapi, we identify a large low-velocity anomaly that can be split into two layers. The upper layer reflects the ˜1 km thick sedimentary cover of volcanoclastic deposits. The deeper anomaly at depths of ˜4-8 km may represent a magma reservoir with partially molten rock that feeds several volcanoes in Central Java. Beneath the Merapi summit, we observe another low-velocity anomaly as deep as 8 km that may be associated with the active magma reservoir that feeds the eruptive activity of Merapi. In the southern portion of the study area, in the lower crust, we identify a low-velocity anomaly that may represent the top of the pathways of volatiles and melts ascending from the slab that was previously inferred from the LET model results. We observe that this anomaly is clearly separate from the felsic magma reservoirs in the upper crust.

  3. Ambient noise tomography of the Cameroon Volcanic Line and Northern Congo craton: new constraints on the structure of the lithosphere (United States)

    Guidarelli, M.; Aoudia, A.


    We investigate the lithospheric structure of Cameroon inverting Rayleigh waves obtained from the cross-correlation of ambient seismic noise. We correlate seismic records between 32 broad-band stations and we obtain good quality Rayleigh waves for 310 interstation paths. We measure group velocity dispersion curves from the reconstructed Rayleigh waves in the period range 10-35 s and we invert the group velocities for tomographic images. After the tomography the group velocities are then inverted, together with longer period group velocity measurements from existing literature, to compute a 3-D S-wave velocity model of the Cameroon lithosphere down to 100 km depth. Our results provide an unprecedented mapping of the physical properties of the different crustal units and their correlations with surface geology, as well as with mantle lithospheric variations. The Cameroon Volcanic Line (CVL) appears as a segmented feature exhibiting different physical properties along strike. The active Mt Cameroon volcano is underlain by very low velocities, unlike the other segments of the CVL. The along-strike variations in crustal structure suggest that lateral heterogeneities in lithospheric thickness and physical properties have influenced the location and distribution of magmatism. The crust beneath the Central African Shear Zone exhibits a sizeable low velocity anomaly. The lithosphere beneath Cameroon is characterised by a heterogeneous crust with a relatively constant thickness and a low velocity uppermost mantle at the edge of the Congo Craton. Our results favour processes combining small-scale upwelling at the edge of a thick lithosphere and reactivation of Precambrian basement structures to explain the distribution of Holocene-Recent magmatism and plateau uplift. Our results also indicate that Mt Cameroon and surroundings areas are the most at risk zones for magmatic activity during this stage of CVL development.

  4. Statistical Inversion of Seismic Noise Inversion statistique du bruit sismique

    Directory of Open Access Journals (Sweden)

    Adler P. M.


    Full Text Available A systematic investigation of wave propagation in random media is presented. Spectral analysis, inversion of codas and attenuation of the direct wave front are studied for synthetic data obtained in isotropic or anisotropic, 2D or 3D media. A coda inversion process is developed and checked on two sets of real data. In both cases, it is possible to compare the correlation lengths obtained by inversion to characteristic lengths measured on seismic logs, for the full scale seismic survey, or on a thin section, for the laboratory experiment. These two experiments prove the feasibility and the efficiency of the statistical inversion of codas. Correct characteristic lengths can be obtained which cannot be determined by another method. Le problème de la géophysique est la recherche d'informations concernant le sous-sol, dans des signaux sismiques enregistrés en surface ou dans des puits. Ces informations sont habituellement recherchées sous forme déterministe, c'est-à-dire sous la forme de la donnée en chaque point d'une valeur du paramètre étudié. Notre point de vue est différent puisque notre objectif est de déduire certaines propriétés statistiques du milieu, supposé hétérogène, à partir des sismogrammes enregistrés après propagation. Il apparaît alors deux moyens de remplir l'objectif fixé. Le premier est l'analyse spectrale des codas ; cette analyse permet de déterminer les tailles moyennes des hétérogénéités du sous-sol. La deuxième possibilité est l'étude de l'atténuation du front direct de l'onde, qui conduit aussi à la connaissance des longueurs caractéristiques du sous-sol ; contrairement à la première méthode, elle ne semble pas pouvoir être transposée efficacement à des cas réels. Dans la première partie, on teste numériquement la proportionnalité entre le facteur de rétrodiffraction, relié aux propriétés statistiques du milieu, et le spectre des codas. Les distributions de vitesse, à valeur

  5. Ambient Noise Tomography of Southern California Images Dipping San Andreas-Parallel Structure and Low-Velocity Salton Trough Mantle (United States)

    Barak, S.; Klemperer, S. L.; Lawrence, J. F.


    Ambient noise tomography (ANT) images the entire crust but does not depend on the spatial and temporal distribution of events. Our ANT high-resolution 3D velocity model of southern California uses 849 broadband stations, vastly more than previous studies, and four years of data, 1997-1998, 2007, and 2011, chosen to include our own broadband Salton Seismic Imaging Project, a 40-station transect across the Salton Trough, as well as other campaign stations in both Mexico and the U.S.A., and permanent stations. Our shear-wave model has 0.05° x 0.05° lateral and 1 km vertical blocks. We used the Harvard Community Velocity Model (CVM-H) as the initial model for the inversion. We show significant differences relative to the CVM-H model, especially in the lower crust and upper mantle. We observe prominent low-velocity anomalies in the upper mantle under the Salton Buttes and Cerro Prieto geothermal fields, indicating high-temperatures and possibly partial-melt. Similar low-velocity zones have been previously observed along the Gulf of California. We also observe vertical to gradually dipping lateral velocity contrasts in the lower crust under the southern part of the San Andreas Fault. The east to northeast dip may represent crustal fabric sheared by movement of the Pacific plate under the North American plate prior to the initiation of transform motion.

  6. An analysis of seismic background noise variation and evaluation of detection capability of Keskin Array (BRTR PS-43) in Turkey (United States)

    Bakir, M. E.; Ozel, N. M.; Semin, K. U.


    Bogazici University, Kandilli Observatory and Earthquake Research Institute (KOERI) is currently operating the Keskin seismic array (BRTR-PS 43) located in town Keskin, providing real-time data to IDC. The instrumentaion of seismic array includes six short period borehole seismometers and one broadband borehole seismometer. The seismic background noise variation of Keskin array are studied in order to estimate the local and regional event detection capability in the frequency range from 1 Hz to 10 Hz. The Power density spectrum and also probability density function of Keskin array data were computed for seasonal and diurnal noise variations between 2008 and 2010. The computation will be extended to cover the period between 2005 and 2008. We attempt to determine the precise frequency characteristics of the background noise, which will help us to assess the station sensitivity. Minimum detectable magnitude versus distance for Keskin seismic array will be analyzed based on the seismic noise analysis. Detailed analysis results of seismic background noise and detection capability will be presented by this research.

  7. The Influence of Geography and Geology on Seismic Background Noise Levels Across the United States as Revealed by the Transportable Array (United States)

    Anthony, R. E.; Ringler, A. T.; Holland, A. A.; Wilson, D. C.


    The EarthScope USArray Transportable Array (TA) has now covered the US with 3-component broadband seismometers at approximately 70 km station spacing and deployment durations of approximately 2 years. This unprecedented coverage, combined with high-quality and near homogenous installation techniques, offers a novel dataset in which to characterize spatially varying levels of background seismic noise across the United States. We present background noise maps in period bands of interest to earthquake and imaging seismology across the US (lower 48 states and Alaska). Early results from the contiguous 48 states demonstrate that ambient noise levels within the body wave period band (1-5 s) vary by > 20 dB (rel. 1 (m/s2)2/Hz) with the highest noise levels occurring at stations located within sedimentary basins and lowest within the mountain ranges of the Western US. Additionally, stations around the Great Lakes observe heightened noise levels in this band beyond the aforementioned basin amplification. We attribute this observation to local swell activity in the Great Lakes generating short-period microseism signals. This suggests that lake-generated microseisms may be a significant source of noise for Alaskan deployments situated in close proximity to lakes to facilitate float plane access. We further investigate how basin amplification and short-period lake microseism signals may noticeably impact detection and signal-to-noise of teleseismic body wave signals during certain time periods. At longer-periods (> 20 s), we generally observe larger noise levels on the horizontal components of stations situated in basins or on soft sediment, likely caused by locally induced tilt of the sensor. We will present similar analysis from the initial Alaska TA dataset to quantitatively assess how utilization of posthole sensors affects signal-to-noise for the long-period horizontal wavefield.

  8. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms (United States)

    Forrest, R.; Ray, J.; Hansen, C. W.


    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  9. Empirical Green's tensor retrieved from ambient noise cross-correlations at The Geysers geothermal field, Northern California (United States)

    Nayak, Avinash; Taira, Taka'aki; Dreger, Douglas S.; Gritto, Roland


    We retrieve empirical Green's functions in the frequency range (˜0.2-0.9 Hz) for interstation distances ranging from ˜1 to ˜30 km (˜0.22 to ˜6.5 times the wavelength) at The Geysers geothermal field, Northern California, from coherency of ambient seismic noise being recorded by a variety of sensors (broad-band, short-period surface and borehole sensors, and one accelerometer). The applied methodology preserves the intercomponent relative amplitudes of the nine-component Green's tensor that allows us to directly compare noise-derived Green's functions (NGFs) with normalized displacement waveforms of complete single-force synthetic Green's functions (SGFs) computed with various 1-D and 3-D velocity models using the frequency-wavenumber integration method and a 3-D finite-difference wave propagation method, respectively. These comparisons provide an effective means of evaluating the suitability of different velocity models to different regions of The Geysers, and assessing the quality of the sensors and the NGFs. In the T-Tangential, R-Radial, Z-Vertical reference frame, the TT, RR, RZ, ZR and ZZ components (first component: force direction, second component: response direction) of NGFs show clear surface waves and even body-wave phases for many station pairs. They are also broadly consistent in phase and intercomponent relative amplitudes with SGFs for the known local seismic velocity structure that was derived primarily from body-wave traveltime tomography, even at interstation distances less than one wavelength. We also find anomalous large amplitudes in TR, TZ, RT and ZT components of NGFs at small interstation distances (≲4 km) that can be attributed to ˜10°-30° sensor misalignments at many stations inferred from analysis of longer period teleseismic waveforms. After correcting for sensor misalignments, significant residual amplitudes in these components for some longer interstation distance (≳8 km) paths are better reproduced by the 3-D velocity

  10. Surface wave tomography across the Sorgenfrei-Tornquist Zone, SW Scandinavia, using ambient noise and earthquake data (United States)

    Köhler, Andreas; Maupin, Valérie; Balling, Niels


    We produce a S-wave velocity model of the crust and upper mantle around the Sorgenfrei-Tornquist Zone, southern Scandinavia, by analysing ambient seismic noise and earthquake recordings on temporary and permanent regional network stations. In a first step, we perform tomographical inversion of surface wave dispersion data from seismic noise to obtain Rayleigh and Love wave phase-velocity maps from 3 to about 30 s period. Local dispersion curves are then combined with regionally averaged surface wave velocities from earthquake data measured between 15 and about 100 s period. Dispersion curves are jointly inverted for a 3-D model of the S-wave velocity and radial velocity anisotropy by using a combined Monte Carlo and linearized inversion approach. Results reveal significant crustal as well as uppermost mantle velocity variations at all depth levels. Upper crustal structural variations are mainly controlled by the thick sedimentary Danish Basin with both low S-wave velocities and high anisotropy. Despite of the known limited capability of surface wave inversion to constrain interface depths and model parameter trade-offs, obtained Moho depths are in good agreement with previous studies in the region. Marked crustal thinning is clearly revealed beneath the Danish Basin with a narrow transition to the thicker crust in Swedish shield areas. Despite very different crustal and morphological structures, Denmark and southern Norway both have similar well-defined upper-mantle low-velocity zones, interpreted as asthenosphere, starting a depth of about 100 km. Compared with southern Sweden, showing high upper-mantle velocities, characteristic for shields, velocities are reduced by 0.30-0.40 km s-1 (6-8 per cent) at the depth levels of 140-200 km and radial anisotropy of 2-4 per cent is observed. Our study confirms the importance of the Sorgenfrei-Tornquist Zone, as a very deep structural boundary, separating old, thick, cratonic Baltica lithosphere in southern Sweden from

  11. 6C polarization analysis - seismic direction finding in coherent noise, automated event identification, and wavefield separation (United States)

    Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.


    Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase

  12. Shallow velocity structure above the Socorro Magma Body from ambient noise tomography using the large-N Sevilleta array, central Rio Grande Rift, New Mexico (United States)

    Worthington, L. L.; Ranasinghe, N. R.; Schmandt, B.; Jiang, C.; Finlay, T. S.; Bilek, S. L.; Aster, R. C.


    The Socorro Magma Body (SMB) is one of the largest recognized active mid-crustal magma intrusions globally. Inflation of the SMB drives sporadically seismogenic uplift at rates of up to of few millimeters per year. We examine the upper crustal structure of the northern section of the SMB region using ambient noise seismic data collected from the Sevilleta Array and New Mexico Tech (NMT) seismic network to constrain basin structure and identify possible upper crustal heterogeneities caused by heat flow and/or fluid or magma migration to shallower depths. The Sevilleta Array comprised 801 vertical-component Nodal seismic stations with 10-Hz seismometers deployed within the Sevilleta National Wildlife Refuge in the central Rio Grande rift north of Socorro, New Mexico, for a period of 12 days during February 2015. Five short period seismic stations from the NMT network located south of the Sevilleta array are also used to improve the raypath coverage outside the Sevilleta array. Inter-station ambient noise cross-correlations were computed from all available 20-minute time windows and stacked to obtain estimates of the vertical component Green's function. Clear fundamental mode Rayleigh wave energy is observed from 3 to 6 s period. Beamforming indicates prominent noise sources from the southwest, near Baja California, and the southeast, in the Gulf of Mexico. The frequency-time analysis method was implemented to measure fundamental mode Rayleigh wave phase velocities and the resulting inter-station travel times were inverted to obtain 2-D phase velocity maps. One-dimensional sensitivity kernels indicate that the Rayleigh wave phase velocity maps are sensitive to a depth interval of 1 to 8 km, depending on wave period. The maps show (up to 40%) variations in phase velocity within the Sevilleta Array, with the largest variations found for periods of 5-6 seconds. Holocene to upper Pleistocene, alluvial sediments found in the Socorro Basin consistently show lower phase

  13. Mechanical monolithic accelerometer for suspension inertial damping and low frequency seismic noise measurement

    International Nuclear Information System (INIS)

    Acernese, F; Romano, R; Barone, F; Rosa, R D; Giordano, G


    This paper describes a mechanical monolithic tunable sensor prototype with elliptical hinges, shaped with electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer in the control of mechanical suspensions of interferometric gravitational waves detectors. The monolithic mechanical design and a laser optical readout make it a very compact instrument, very sensitive in the low-frequency seismic noise band and with a very good immunity to environmental noises. The theoretical sensitivity curves and the simulations show a very good agreement with the measurements. Very interesting scientific result its measured natural resonance frequency of ∼ 70mHz with a Q ∼ 140 in air

  14. Broadband seismic noise attenuation versus depth at the Albuquerque Seismological Laboratory (United States)

    Hutt, Charles R.; Ringler, Adam; Gee, Lind


    Seismic noise induced by atmospheric processes such as wind and pressure changes can be a major contributor to the background noise observed in many seismograph stations, especially those installed at or near the surface. Cultural noise such as vehicle traffic or nearby buildings with air handling equipment also contributes to seismic background noise. Such noise sources fundamentally limit our ability to resolve earthquake‐generated signals. Many previous seismic noise versus depth studies focused separately on either high‐frequency (>1  Hz">>1  Hz) or low‐frequency (modern high‐quality broadband (BB) and very broadband (VBB) seismometers installed at depths ranging from 1.5 to 188 m at the Albuquerque Seismological Laboratory to evaluate noise attenuation as a function of depth over a broad range of frequencies (0.002–50 Hz). Many modern seismometer deployments use BB or VBB seismometers installed at various depths, depending on the application. These depths range from one‐half meter or less in aftershock study deployments, to one or two meters in the Incorporated Research Institutions for Seismology Transportable Array (TA), to a few meters (shallow surface vaults) up to 100 m or more (boreholes) in the permanent observatories of the Global Seismographic Network (GSN). It is important for managers and planners of these and similar arrays and networks of seismograph stations to understand the attenuation of surface‐generated noise versus depth so that they can achieve desired performance goals within their budgets as well as their frequency band of focus. The results of this study will assist in decisions regarding BB and VBB seismometer installation depths. In general, we find that greater installation depths are better and seismometer emplacement in hard rock is better than in soil. Attenuation for any given depth varies with frequency. More specifically, we find that the dependence of depth will be application dependent based on the

  15. Effects of noise from non-traffic-related ambient sources on sleep: Review of the literature of 1990-2010

    Directory of Open Access Journals (Sweden)

    Sarah Omlin


    Full Text Available This article reviews the literature about the effects of specific non-traffic-related ambient noise sources on sleep that appeared in the last two decades. Although everybody is faced with noise of non-traffic and non-industry origin (e.g. sounds made by neighbors, talk, laughter, music, slamming doors, structural equipment, ventilation, heat pumps, noise from animals, barking dogs, outdoor events etc., little scientific knowledge exists about its effects on sleep. The findings of the present extensive literature search and review are as follows: Only a small number of surveys, laboratory and field studies about mainly neighborhood, leisure and animal noise have been carried out. Most of them indicate that ambient noise has some effect on human sleep. However, a quantitative meta-analysis and comparison is not possible due to the small number of studies available and at times large differences in quality.

  16. Deriving Deep Ocean Temperature Changes From the Ambient Acoustic Noise Field (United States)

    Sambell, K.; Evers, L. G.; Snellen, M.


    Passively deriving the deep ocean temperature is a challenge. However, knowledge about changes in the deep ocean temperature are important in relation to climate change. In-situ observations are are and satellite observations are hardly applicable. Low-frequency sound waves of a few hertz can penetrate the deep oceans over long distances. As their propagation is temperature dependent, these waves contain valuable information that can be used for temperature monitoring. In this study, the use of interferometry is demonstrated by applying this technique to ambient noise measured at two hydrophone arrays located near Robinson Crusoe Island in the South Pacific Ocean. The arrays are separated by 40 km and are located at a depth of 800 m. Both arrays consist of three hydrophones with an interstation distance of 2 km. It is shown that the acoustic velocity, and with this the temperature variation, can be derived from measured hydro-acoustic data. Furthermore, the findings are supported by ocean models that describe the propagation of sound between the hydrophone arrays. This study shows the potential of using the ambient noise field for temperature monitoring in the deep ocean.

  17. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    Directory of Open Access Journals (Sweden)

    Qiulong Yang


    Full Text Available Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP and Volunteer Observation System (VOS were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line

  18. Reducing Risk of Noise-Induced Hearing Loss in Collegiate Music Ensembles Using Ambient Technology. (United States)

    Powell, Jason; Chesky, Kris


    Student musicians are at risk for noise-induced hearing loss (NIHL) as they develop skills and perform during instructional activities. Studies using longitudinal dosimeter data show that pedagogical procedures and instructor behaviors are highly predictive of NIHL risk, thus implying the need for innovative approaches to increase instructor competency in managing instructional activities without interfering with artistic and academic freedom. Ambient information systems, an emerging trend in human-computer interaction that infuses psychological behavioral theories into technologies, can help construct informative risk-regulating systems. The purpose of this study was to determine the effects of introducing an ambient information system into the ensemble setting. The system used two ambient displays and a counterbalanced within-subjects treatment study design with six jazz ensemble instructors to determine if the system could induce a behavior change that alters trends in measures resulting from dosimeter data. This study assessed efficacy using time series analysis to determine changes in eight statistical measures of behavior over a 9-wk period. Analysis showed that the system was effective, as all instructors showed changes in a combination of measures. This study is in an important step in developing non-interfering technology to reduce NIHL among academic musicians.

  19. VS of the uppermost crust structure of the Campi Flegrei caldera (southern Italy) from ambient noise Rayleigh wave analysis (United States)

    Costanzo, M. R.; Nunziata, C.; Strollo, R.


    Shear wave velocities (VS) are defined in the uppermost 1-2 km of the Campi Flegrei caldera through the non-linear inversion of the group velocity dispersion curves of fundamental-mode Rayleigh waves extracted from ambient noise cross-correlations between two receivers. Noise recordings, three months long, at 12 seismic stations are cross-correlated between all couples of stations. The experiment provided successful results along 54 paths (inter-stations distance), of which 27 sampled a depth > 1 km. VS contour lines are drawn from 0.06 km b.s.l. to 1 km depth b.s.l. and show difference between the offshore (gulf of Pozzuoli and coastline) and the onshore areas. At 0.06 km b.s.l., the gulf of Pozzuoli and the coastline are characterized by VS of 0.3-0.5 km/s and of 0.5-0.7 km/s, respectively. Such velocities are typical of Neapolitan pyroclastic soils and fractured or altered tuffs. The inland shows VS in the range 0.7-0.9 km/s, typical of Neapolitan compact tuffs. Velocities increase with depth and, at 1 km depth b.s.l., velocities lower than 1.5 km/s are still present in the gulf and along the coastline while velocities higher than 1.9 km/s characterize the eastern sector (grossly coincident with the Neapolitan Yellow Tuff caldera rim), the S. Vito plain and the area between Solfatara and SW of Astroni. Such features are much more evident along two cross-sections drawn in the offshore and onshore sectors by integrating our VS models with literature data. Our models join previous noise cross-correlation studies at greater scale at depths of 0.7-0.8 km, hence the picture of the Campi Flegrei caldera is shown up to a depth of 15 km. VS of about 1.7 km/s, corresponding to compression velocities (VP) of about 3 km/s (computed by using the VP/VS ratio resulted in the inversion), are found at depths of 1.1 km, in the centre of the gulf of Pozzuoli, and at a depth of about 0.7 km b.s.l. onshore. An increment of VS velocity ( 1.9-2.0 km/s) is locally observed onshore

  20. Rift Structure in Eastern Papua New Guinea From the Joint Inversion of Receiver Functions and Seismic Noise (United States)

    Abers, G. A.; Obrebski, M. J.; Jin, G.; Eilon, Z.


    The recent CDPapua seismic array in the active D'Entrecasteaux-Woodlark Rift provides insights into how continental crust accommodates large extension. Here, >100 km of extension has occurred in the last 4-6 Ma, exhuming rocks from 100 km depth. To better understand the modes of deformation of the crust, we analyze shear wave velocity (Vs) distribution for a set of temporary land and ocean bottom broadband stations. We resolve the depth of the main velocity contrasts using receiver function (RF) analysis, alleviating the intrinsic trade-off between depth and velocity intrinsic by joint inversion with dispersion constraints (10 - 100 s) from earthquake surface waves and ambient noise. A transdimensional Bayesian scheme explores the model space (Vs in each layer, number of interfaces and their respective depths), minimizing the number of layers required to fit the observations given their noise level. Preliminary results suggest that the Moho is sharp in most places, with a depth of 28-38 km and 20-27 km below the Papuan Peninsula and the highly-extended D'Entracasteaux Islands, respectively. The mid-lower crust of these regions appears to be similar and consistent with felsic compositions, 3.25≤Vs≤3.5 km/s, and may represent the Owen-Stanley Metamorphic Belt or underlying continental rocks. A fast layer (3.75≤Vs≤4 km/s) is observed below the Papuan Peninsula in the 20-30 km depth range and may indicate more mafic lower crust. In contrast, faster velocities between 10 and 20km depth are modeled below the Goodenough Basin (3.75≤Vs≤4 km/s) and the Trobriand Basin (3.5≤Vs≤3.75 km/s) where rocks of the Papuan Ultramafic Belt have been suggested, although these results partly depend upon complicated signals from ocean-bottom seismometers. Well-located seismicity shows that active fault systems generally follow the boundaries between regions of different crustal velocity structure. Overall these results confirm a continental velocity structure for the

  1. Seismic and resistivity anisotropy analysis at the Low-Noise Underground Laboratory (LSBB) of Rustrel (France) (United States)

    Zeyen, H. J.; Bereš, J.; Gaffet, S.; Sénéchal, G.; Rousset, D.; Pessel, M.


    Many geological materials exhibit anisotropic behaviour. A limestone massif, especially if cracked with fractures and faults in a predominant orientation is expected to manifest seismic and electric resistivity anisotropy. Seismic velocity within air- or water-filled cracks is smaller than in the rock matrix. Therefore, the velocity parallel to fractures, controlled mainly by the rock matrix, is expected to be faster than perpendicular to the fractures, where waves have to cross fractures and rock matrix. Seismic and resistivity measurements were conducted in three underground galleries of the Low-Noise Underground Gallery (LSBB) in southern France forming a horse-shoe setting. The galleries are located inside a karstic limestone massif. Around 22500 first arrival travel-times were picked and different types of pole-pole and dipole-dipole resistivity measurement were carried out in parallel. Resistivities and velocities vary strongly with direction of observation. The direction of fast velocities is at right angle with the one of slow velocities, a typical sign for anisotropy. Observation of a system of subparallel fractures allows to approximate the actual rock anisotropy by a horizontal transverse isotropy model. The dataset was treated by different approaches, including simple cosine fit, inversion of average anisotropy parameters using a Monte-Carlo approach, isotropic and anisotropic tomography inversion. All of the above confirm the directions of fast and slow velocities (30°N and 120°N respectively) and an anisotropy of about 10%. Common measurements of seismic and resistivity data at different periods of the year will have the potential to determine quantitatively the fracture density and the free water content in this karst massif.

  2. Association between ambient noise exposure, hearing acuity, and risk of acute occupational injury. (United States)

    Cantley, Linda F; Galusha, Deron; Cullen, Mark R; Dixon-Ernst, Christine; Rabinowitz, Peter M; Neitzel, Richard L


    This study aimed to examine the associations between acute workplace injury risk, ambient noise exposure, and hearing acuity, adjusting for reported hearing protection use. In a cohort of 9220 aluminum manufacturing workers studied over six years (33 300 person-years, 13 323 person-jobs), multivariate mixed effects models were used to estimate relative risk (RR) of all injuries as well as serious injuries by noise exposure category and hearing threshold level (HTL) adjusting for recognized and potential confounders. Compared to noise exposure was associated with elevated risk in a monotonic and statistically significant exposure-response pattern for all injuries and serious injuries with higher risk estimates observed for serious injuries [82-84.99 dBA: RR 1.26, 95% confidence interval (95% CI) 0.96-1.64; 85-87.99 dBA: RR 1.39, 95% CI 1.05-1.85; ≥88 dBA: RR 2.29, 95% CI 1.52-3.47]. Hearing loss was associated with increased risk for all injuries, but was not a significant predictor of risk for the subset of more serious injuries. Compared to those without hearing loss, workers with HTL ≥25 dB had 21% increased all injury risk (RR 1.21, 95% CI 1.09-1.33) while those with HTL 10-24.99 dB had 6% increased risk (RR 1.06, 95% CI 1.00-1.13). Reported hearing protection type did not predict injury risk. Noise exposure levels as low as 85 dBA may increase workplace injury risk. HTL was associated with increased risk for all, but not the subset of serious, injuries. Additional study is needed both to confirm the observed associations and explore causal pathways.

  3. Crustal structure beneath Liaoning province and the Bohai Sea and its adjacent region in China based on ambient noise tomography (United States)

    Pang, Guang-hua; Feng, Ji-Kun; Lin, Jun


    The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series from the 12-month span between January and December 2013 were cross-correlated to yield empirical Green's functions for Rayleigh and Love waves. Phase-velocity dispersion curves for the Rayleigh waves and the Love waves were measured by applying the frequency-time analysis method. Dispersion measurements of the Rayleigh wave and the Love wave were then utilized to construct 2D phase-velocity maps for the Rayleigh wave at 8-35 s periods and the Love wave at 9-32 s periods, respectively. Both Rayleigh and Love phase-velocity maps show significant lateral variations that are correlated well with known geological features and tectonics units in the study region. Next, phase dispersion curves of the Rayleigh wave and the Love wave extracted from each cell of the 2D Rayleigh wave and Love wave phase-velocity maps, respectively, were inverted simultaneously to determine the 3D shear wave velocity structures. The horizontal shear wave velocity images clearly and intuitively exhibit that the earthquake swarms in the Haicheng region and the Tangshan region are mainly clustered in the transition zone between the low- and high-velocity zones in the upper crust, coinciding with fault zones, and their distribution is very closely associated with these faults. The vertical shear wave velocity image reveals that the lower crust downward to the uppermost mantle is featured by distinctly high velocities, with even a high-velocity thinner layer existing at the bottom of the lower crust near Moho in central and northern the Bohai sea along the Tanlu fault, and these phenomena could be caused by the intrusion of mantle material, indicating the Tanlu fault could be just as the uprising channel of deep materials.

  4. 3D structures of crust and uppermost mantle and azimuthal anisotropy in Tibet and surrounding regions from ambient noise tomography (United States)

    Yang, Y.; Zheng, Y.; Ritzwoller, M. H.


    Tibet is our planet’s natural laboratory for studying how continents interact and deform in response to the collision between the Indian and the Eurasian plates. Although numerous seismic studies of Tibet have been performed, there remain fundamental disagreements in first-order questions about crustal deformation; e.g., whether the crust deforms coherently vertically or is perhaps coupled to the mantle. The reason is that existing models either do not model the crust effectively or only model the crust beneath parts of Tibet due to limitations in the distribution of seismic stations. In this study, we have applied ambient noise tomography (ANT) to data from FDSN stations, several temporary US PASSCAL installations and the Chinese provincial networks in and around Tibet during 2003 to 2009. Inter-station Rayleigh wave dispersion curves are measured from cross correlations of vertical components. These dispersion measurements are used to invert for isotropic phase velocity maps and azimuthal anisotropy of Rayleigh waves. Major basins, including Tarim, Qadaim and Sichuan, are all well delineated by slow phase velocities at short periods (8-15 sec). Crustal thinning from Tibet to the surrounding regions is manifest as a phase velocity increase at periods from 25 to 40 sec. Resulting phase velocity maps are further inverted for 3D Vs structures of crust and uppermost mantle. Low velocities are observed across most of the Tibetan Plateau at the depth range of 20-50 km. In southeastern Tibet, low velocities extend to the Yunnan Plateau while, in northeastern Tibet, low velocities are confined to the Plateau region and there is no low velocity existing beneath the Qingling Orogen between the Ordos Block and the Sichuan Basin in the crust and uppermost mantle. Prominent high velocities are observed in the middle and lower crust and in the uppermost mantle beneath the Tarim Basin, the Ordos Block and the Sichuan Basin. Patterns of Rayleigh wave azimuthal anisotropy at

  5. Preliminary Results From the CAUGHT Experiment: Investigation of the North Central Andes Subsurface Using Receiver Functions and Ambient Noise Tomography (United States)

    Ryan, J. C.; Ward, K. M.; Porter, R. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.


    Altiplano and portions of the Eastern Cordillera, and at approximately 40 under the sub-Andes and westernmost edge of the Beni basin. Unlike previous studies farther south, we do not see an increased crustal thickness beneath the Eastern Cordillera. The CAUGHT station coverage is also ideal for Ambient Noise Tomography (ANT) to investigate the seismic shear wave velocities in the upper crust (<30 km depth). ANT will be used to estimate the depth of basins in the northern Altiplano, and aid in constraining the upper crustal shear wave velocities for improved migration of receiver functions to depth. McQuarrie, N., Barnes, J., and Ehlers, T.A., 2008, Geometric, kinematic and erosional history of the central Andean Plateau (15-17°S), northern Bolivia: Tectonics, v. 27, TC3007, doi:10.1029/2006TC002054.

  6. 3D shear wave velocity structure revealed with ambient noise tomography on a DAS array (United States)

    Zeng, X.; Thurber, C. H.; Wang, H. F.; Fratta, D.


    An 8700-m Distributed Acoustic Sensing (DAS) cable was deployed at Brady's Hot Springs, Nevada in March 2016 in a 1.5 by 0.5 km study area. The layout of the DAS array was designed with a zig-zag geometry to obtain relatively uniform areal and varied angular coverage, providing very dense coverage with a one-meter channel spacing. This array continuously recorded signals of a vibroseis truck, earthquakes, and traffic noise during the 15-day deployment. As shown in a previous study (Zeng et al., 2017), ambient noise tomography can be applied to DAS continuous records to image shear wave velocity structure in the near surface. To avoid effects of the vibroseis truck operation, only continuous data recorded during the nighttime was used to compute noise cross-correlation functions for channel pairs within a given linear segment. The frequency band of whitening was set at 5 to 15 Hz and the length of the cross-correlation time window was set to 60 second. The phase velocities were determined using the multichannel analysis of surface waves (MASW) methodology. The phase velocity dispersion curve was then used to invert for shear wave velocity profiles. A preliminarily velocity model at Brady's Hot Springs (Lawrence Livermore National Laboratory, 2015) was used as the starting model and the sensitivity kernels of Rayleigh wave group and phase velocities were computed with this model. As the sensitivity kernel shows, shear wave velocity in the top 200 m can be constrained with Rayleigh wave group and phase velocities in our frequency band. With the picked phase velocity data, the shear wave velocity structure can be obtained via Occam's inversion (Constable et al., 1987; Lai 1998). Shear wave velocity gradually increases with depth and it is generally faster than the Lawrence Livermore National Laboratory (2015) model. Furthermore, that model has limiting constraints at shallow depth. The strong spatial variation is interpreted to reflect the different sediments and

  7. Using Seismic Arrays to Detect Triggered and Ambient Tremor in Taiwan (United States)

    Sun, W.; Peng, Z.; Lin, C.; Chao, K.


    Deep tectonic tremor triggered by teleseismic surface waves have been recently observed in the southern Central Range in Taiwan, an arc-continental type collision environment. Aiming to capture more tremor events, we installed two dense 36-element, small-aperture seismic arrays in 2011 around the Liouguei and Lidao areas, which are located about 20 km in southwest and northeast to the tremor sources. In each array, short-period, vertical-channel GS-11D sensors with 4.5Hz natural frequency seismometers were laid out on the relatively flat parts of the mountain areas with a spacing of approximately 100 by 80 meters. We had successfully recorded continuously for a total of 4,034 hours in 2011. As expected, the two arrays recorded tremor bursts triggered by the great Tohoku earthquake (Mw=9.0) on March 11, 2011. We apply the broadband frequency wavenumber (BBFK) beamforming method to measure the back-azimuth and incident angles for each tremor burst and through the whole data set. Our initial results show that obtained array parameters closely match those predicted from locations using tremor envelope cross-correlations (WECC) and we detect more tremor duration by BBFK than WECC. We further use a moving-window grid-search (MWGS) method to detect regular earthquakes. Our result indicates the southwestern array provides more stable results than the northeastern array. Our next step is to apply the same MWGS procedure to detect ambient tremor recorded by the southwestern array. Our systematic analysis of deep tremor in Taiwan could help to better understand critical conditions related to tremor occurrence and fault mechanics at the bottom of the seismogenic layer.

  8. Environmental Resources of Selected Areas of Hawaii: Climate, Ambient Air Quality, and Noise (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Hamilton, C.B.


    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate and air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui, and Oahu. It also presents a literature review as baseline information on the health effects of hydrogen sulfide. the scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  9. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)


    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  10. Ambient noise tomography reveals basalt and sub-basalt velocity structure beneath the Faroe Islands, North Atlantic (United States)

    Sammarco, Carmelo; Cornwell, David G.; Rawlinson, Nicholas


    Ambient noise tomography is applied to seismic data recorded by a portable array of seismographs deployed throughout the Faroe Islands in an effort to illuminate basalt sequences of the North Atlantic Igneous Province, as well as underlying sedimentary layers and Precambrian basement. Rayleigh wave empirical Green's functions between all station pairs are extracted from the data via cross-correlation of long-term recordings, with phase weighted stacking implemented to boost signal-to-noise ratio. Dispersion analysis is applied to extract inter-station group travel-times in the period range 0.5-15 s, followed by inversion for period-dependent group velocity maps. Subsequent inversion for 3-D shear wave velocity reveals the presence of significant lateral heterogeneity (up to 25%) in the crust. Main features of the final model include: (i) a near-surface low velocity layer, interpreted to be the Malinstindur Formation, which comprises subaerial compound lava flows with a weathered upper surface; (ii) a sharp velocity increase at the base of the Malinstindur Formation, which may mark a transition to the underlying Beinisvørð Formation, a thick laterally extensive layer of subaerial basalt sheet lobes; (iii) a low velocity layer at 2.5-7.0 km depth beneath the Beinisvørð Formation, which is consistent with hyaloclastites of the Lopra Formation; (iv) an upper basement layer between depths of 5-9 km and characterized by S wave velocities of approximately 3.2 km/s, consistent with low-grade metamorphosed sedimentary rocks; (v) a high velocity basement, with S wave velocities in excess of 3.6 km/s. This likely reflects the presence of a crystalline mid-lower crust of Archaean continental origin. Compared to previous interpretations of the geological structure beneath the Faroe Islands, our new results point to a more structurally complex and laterally heterogeneous crust, and provide constraints which may help to understand how continental fragments are rifted from the

  11. Fast principal component analysis for stacking seismic data (United States)

    Wu, Juan; Bai, Min


    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  12. Enhancement of the Signal-to-Noise Ratio in Sonic Logging Waveforms by Seismic Interferometry

    KAUST Repository

    Aldawood, Ali


    Sonic logs are essential tools for reliably identifying interval velocities which, in turn, are used in many seismic processes. One problem that arises, while logging, is irregularities due to washout zones along the borehole surfaces that scatters the transmitted energy and hence weakens the signal recorded at the receivers. To alleviate this problem, I have extended the theory of super-virtual refraction interferometry to enhance the signal-to-noise ratio (SNR) sonic waveforms. Tests on synthetic and real data show noticeable signal-to-noise ratio (SNR) enhancements of refracted P-wave arrivals in the sonic waveforms. The theory of super-virtual interferometric stacking is composed of two redatuming steps followed by a stacking procedure. The first redatuming procedure is of correlation type, where traces are correlated together to get virtual traces with the sources datumed to the refractor. The second datuming step is of convolution type, where traces are convolved together to dedatum the sources back to their original positions. The stacking procedure following each step enhances the signal to noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces severe artifacts denoted as correlation artifacts in super-virtual data. To overcome this problem, I replace the datuming with correlation step by datuming with deconvolution. Although the former datuming method is more robust, the latter one reduces the artifacts significantly. Moreover, deconvolution can be a noise amplifier which is why a regularization term is utilized, rendering the datuming with deconvolution more stable. Tests of datuming with deconvolution instead of correlation with synthetic and real data examples show significant reduction of these artifacts. This is especially true when compared with the conventional way of applying the super-virtual refraction interferometry method.

  13. Imaging the Iceland Hotspot Track Beneath Greenland with Seismic Noise Correlations (United States)

    Mordret, A.


    During the past 65 million years, the Greenland craton drifted over the Iceland hotspot; however, uncertainties in geodynamic modeling and a lack of geophysical evidence prevent an accurate reconstruction of the hotspot track. I image the Greenland lithosphere down to 300 km depth with seismic noise tomography. The hotspot track is observed as a linear high-velocity anomaly in the middle crust associated with magmatic intrusions. In the upper mantle, the remnant thermal signature of the hotspot manifests as low velocity and low viscosity bodies. This new detailed picture of the Greenland lithosphere will drive more accurate geodynamic reconstructions of tectonic plate motions and prediction of Greenland heat flow, which in turn will enable more precise estimations of the Greenland ice-sheet mass balance.

  14. Seismic Coupling of Short-Period Wind Noise Through Mars' Regolith for NASA's InSight Lander (United States)

    Teanby, N. A.; Stevanović, J.; Wookey, J.; Murdoch, N.; Hurley, J.; Myhill, R.; Bowles, N. E.; Calcutt, S. B.; Pike, W. T.


    NASA's InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3-1.0 mm, surface densities of 1.3-1.8 g cm^{-3}, and an effective regolith Young's modulus of 2.5^{+1.9}_{-1.4} MPa. At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02-0.04 for the vertical component and 0.01-0.02 for the horizontal component. These values are 3-6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be ˜2×10^{-10} ms^{-2} Hz^{-1/2} with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of 10^{-8} ms^{-2} Hz^{-1/2}.

  15. Depth and sharpness variations of 410-km and 660-km discontinuities in North China Craton from dense array ambient noise interferometry (United States)

    Yao, H.; Feng, J.; Poli, P.; Fang, L.; Wu, Y.


    Recent studies have demonstrated that body waves between pairs of stations can be successfully retrieved from ambient noise cross-correlation at both regional and global scales, although surface waves are the dominant signals. However, it is still difficult to use these retrieved body wave signals to map lateral depth variations of main structural discontinuities or velocity contrasts because of its low signal to noise ratio (SNR). In this research, based on a dense seismic array in eastern North China Craton, reflected P-wave signals from 410-km and 660-km discontinuities can be successfully recovered from ambient noise cross-correlation. To improve SNR of the reflected phases, the cross-correlations are stacked within each bin with the phase-weighted stack (PWS) method. In addition, there exist apparent spatial variations of the relative amplitude ratios between the reflected P410P and P660P phases. The retrieved P410P and P660P phases from stacked correlations reveal lateral variations of both depths and sharpness of the 410-km and 660-km discontinuities along two profiles, which may be related with hot material upwelling and the effect of stagnant Pacific plate in the transition zone beneath North China Craton. The imaging results are generally consistent with the results from teleseismic receiver functions, which demonstrate the possibility of mapping high-resolution topography and sharpness of deep internal discontinuities without earthquake-station geometric limitations. Future joint imaging with both interferometric and passive signals will be better for understanding interface architectures and related dynamic processes of the Earth.

  16. Analysis of ambient noise in Yalova, Turkey: discrimination between artificial and natural excitations (United States)

    Yalcinkaya, Esref; Tekebas, Serhat; Pinar, Ali


    Ambient noise measurements acquired in Yalova, which was highly damaged during the 1999 Izmit earthquake, are analyzed to explore the site characteristics. The region of Yalova is governed by complex geological and geomorphological structures consisting of river beds extending from the mountains to the sea, ridges between them, plains in front of them with different size, and the sea coast. As a result of these shallow geological features, the H/V curves exhibit complex patterns. Clear peaks in the H/V curves, which can be interpreted as reliable site resonance frequency, are observed only at about half of the measurement sites. At the remaining sites industrial peaks, broad peaks, or flat responses dominate the spectral ratio graphs. We observed that man-made noises generated by marble cutting machines in Hersek delta mask the site resonance frequencies or can be misinterpreted as a resonance frequency. In total, we identified three anthropogenic noise sources at fundamental frequencies of 1.3, 1.5, and 1.7 Hz along with their two- and threefold harmonics. The parts of H/V curves showing unusual low scattering can be a clue to identify anthropogenic effects. In the assessment of H/V curves, the site location and the similarity of the near surface geology were taken into account. The Laledere plain with thick and soft sediment sequence surprisingly displays flat responses due to a possible low impedance contrast. The Ciftlikkoy and Hacimehmet plains exhibit clear resonance peaks at nearly 1 Hz possessing the largest amplitudes. These sites experienced the highest damage in Yalova during the Izmit earthquake. In contrast, the Cinarcik region which was also exposed to high damage, do not show any obvious amplifications on the H/V curves. Generally, the H/V curves for valley and ridge sites in Yalova reveals a resonance peak at approximately 1 Hz and almost flat curves, respectively. However, several sites on the ridges and valleys portray different patterns.

  17. Ambient noise tomography of Ecuador: Fore- and back-arc velocity structure and radial anisotropy (United States)

    Lynner, C.; Beck, S. L.; Porritt, R.; Meltzer, A.; Alvarado, A. P.; Gabriela, P.; Ruiz, M. C.; Hoskins, M.; Stachnik, J.; Rietbrock, A.; Leon-Rios, S.; Regnier, M. M.; Agurto-Detzel, H.; Font, Y.; Charvis, P.


    In northern South America, the oceanic Nazca plate subducts beneath the South American continent, giving rise to the high mountains of the northern Andes. The Ecuador subduction zone has a history of large megathrust earthquakes, most recently the Mw=7.8 April 16, 2016, Pedernales earthquake. The volcanic arc in Ecuador is broad with active volcanoes along both the western and eastern cordilleras. Many of these volcanoes surround the city of Quito putting millions of people at risk. A recent international broadband aftershock deployment was conducted for approximately one year after the Pedernales mainshock and this data combined with a sub-set of data from from the permanent IGEPN national network provide an ideal data set to use for ambient noise tomography (ANT) to constrain absolute Vsh and Vsv across Ecuador. ANT studies use noise-generated surface wave dispersion measurements to invert for 3D shear velocity in the crust. Having a precise understanding of crustal velocity structure is necessary to advance a number of projects, including better earthquake locations of the April 16, 2016 Pedernales-earthquake aftershock sequence and identifying large-scale partial melt zones associated with the active volcanic arc. The majority of ANT studies use only Rayleigh waves to constrain Vsv structure. Initial Rayleigh wave ANT results, using periods between 8 and 40 seconds, show a fast phase velocities for the forearc and much slower phase velocities for the high elevation volcanic arc. Including Love wave dispersion measurements can improve overall crustal velocity models, as well as provide constraints on radial anisotropy. Radial anisotropy can develop in a variety of ways but most typically arises from the deformation-induced alignment of anisotropic minerals. Radial anisotropy, therefore, can inform on patterns of ductile crustal flow. Strong radial anisotropy at mid-crustal depths from ANT has already been observed south of Ecuador, in the Central Andean Plateau

  18. Inversion of seismic arrival times with erratic noise using robust Tikhonov-TV regularization (United States)

    Alrajawi, M.; Siahkoohi, H. R.; Gholami, A.


    A variety of methods have been presented to invert arrival times of seismic waves for velocity distribution. In real world, the velocity distribution models are piecewise smooth and consist of blocky structures as well as smooth varying parts. In such cases, implementation of Tikhonov regularization alone will recover the smooth varying parts of the velocity model, while the total variation (TV) regularization only is capable of recovering the blocky varying parts of the velocity model. In previous studies, combination of Tikhonov and TV regularizations (hereafter called classic Tikhonov-TV regularization) was used as a remedy for solving such inverse problems. In this study, we propose a method to minimize a cost function which of both Tikhonov and TV regularizations. The method is capable of suppressing undesired effects of the erratic noises and recovering both blocky and smooth varying parts of the model. An iteratively reweighted least-squares technique is used as a fast and efficient algorithm for minimization of the cost function. To demonstrate the effectiveness of the method, it is tested on both synthetic and real vertical seismic profiling arrival times as well as on a synthetic and real cross well arrival times. The proposed robust Tikhonov-TV method estimates better velocity model as compared to the robust Tikhonov and robust TV regularization methods. According to the results, the proposed hybrid method efficiently eliminates the individual weaknesses of constituent regularization methods.

  19. Ambient noise causes independent changes in distinct spectro-temporal features of echolocation calls in horseshoe bats. (United States)

    Hage, Steffen R; Jiang, Tinglei; Berquist, Sean W; Feng, Jiang; Metzner, Walter


    One of the most efficient mechanisms to optimize signal-to-noise ratios is the Lombard effect - an involuntary rise in call amplitude due to ambient noise. It is often accompanied by changes in the spectro-temporal composition of calls. We examined the effects of broadband-filtered noise on the spectro-temporal composition of horseshoe bat echolocation calls, which consist of a constant-frequency component and initial and terminal frequency-modulated components. We found that the frequency-modulated components became larger for almost all noise conditions, whereas the bandwidth of the constant-frequency component increased only when broadband-filtered noise was centered on or above the calls' dominant or fundamental frequency. This indicates that ambient noise independently modifies the associated acoustic parameters of the Lombard effect, such as spectro-temporal features, and could significantly affect the bat's ability to detect and locate targets. Our findings may be of significance in evaluating the impact of environmental noise on echolocation behavior in bats. © 2014. Published by The Company of Biologists Ltd.

  20. Two-receiver measurements of phase velocity: cross-validation of ambient-noise and earthquake-based observations

    NARCIS (Netherlands)

    Kästle, Emanuel D.; Soomro, Riaz; Weemstra, C.; Boschi, Lapo; Meier, Thomas


    Phase velocities derived from ambient-noise cross-correlation are compared with phase velocities calculated from cross-correlations of waveform recordings of teleseismic earthquakes whose epicentres are approximately on the station–station great circle. The comparison is conducted both for Rayleigh

  1. Maximal Ambient Noise Levels and Type of Voice Material Required for Valid Use of Smartphones in Clinical Voice Research. (United States)

    Lebacq, Jean; Schoentgen, Jean; Cantarella, Giovanna; Bruss, Franz Thomas; Manfredi, Claudia; DeJonckere, Philippe


    Smartphone technology provides new opportunities for recording standardized voice samples of patients and transmitting the audio files to the voice laboratory. This drastically improves the achievement of baseline designs, used in research on efficiency of voice treatments. However, the basic requirement is the suitability of smartphones for recording and digitizing pathologic voices (mainly characterized by period perturbations and noise) without significant distortion. In a previous article, this was tested using realistic synthesized deviant voice samples (/a:/) with three precisely known levels of jitter and of noise in all combinations. High correlations were found between jitter and noise to harmonics ratio measured in (1) recordings via smartphones, (2) direct microphone recordings, and (3) sound files generated by the synthesizer. In the present work, similar experiments were performed (1) in the presence of increasing levels of ambient noise and (2) using synthetic deviant voice samples (/a:/) as well as synthetic voice material simulating a deviant short voiced utterance (/aiuaiuaiu/). Ambient noise levels up to 50 dB A are acceptable. However, signal processing occurs in some smartphones, and this significantly affects estimates of jitter and noise to harmonics ratio when formant changes are introduced in analogy with running speech. The conclusion is that voice material must provisionally be limited to a sustained /a/. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Waveform correlation and coherence of short-period seismic noise within Gauribidanur array with implications for event detection

    International Nuclear Information System (INIS)

    Bhadauria, Y.S.; Arora, S.K.


    In continuation with our effort to model the short-period micro seismic noise at the seismic array at Gauribidanur (GBA), we have examined in detail time-correlation and spectral coherence of the noise field within the array space. This has implications of maximum possible improvement in signal-to-noise ratio (SNR) relevant to event detection. The basis of this study is about a hundred representative wide-band noise samples collected from GBA throughout the year 1992. Both time-structured correlation as well as coherence of the noise waveforms are found to be practically independent of the inter element distances within the array, and they exhibit strong temporal and spectral stability. It turns out that the noise is largely incoherent at frequencies ranging upwards from 2 Hz; the coherency coefficient tends to increase in the lower frequency range attaining a maximum of 0.6 close to 0.5 Hz. While the maximum absolute cross-correlation also diminishes with increasing frequency, the zero-lag cross-correlation is found to be insensitive to frequency filtering regardless of the pass band. An extremely small value of -0.01 of the zero-lag correlation and a comparatively higher year-round average estimate at 0.15 of the maximum absolute time-lagged correlation yields an SNR improvement varying between a probable high of 4.1 and a low of 2.3 for the full 20-element array. 19 refs., 6 figs

  3. Crust azimuthal anisotropy beneath the eastern Tibetan Plateau revealed by ambient noise tomography (United States)

    Bao, X.; Song, X.


    The continental collision between India and Eurasia in the Cenozoic has resulted in the rise and growth of the vast Tibetan Plateau (TP). Various geodynamic models, such as rigid-block extrusion, continuous deformation, and the mid-lower crustal flow, have been proposed to describe the growth and expansion of eastern Tibet. To better understand the deformation mechanism of the eastern TP, we performed ambient noise tomography using data from permanent and temporary stations and constructed Rayleigh wave azimuthally anisotropic phase-velocity maps at periods from 8 to 30 s, which mainly sample the crustal structure. The dominant direction of fast wave propagation is oriented NW-SE in the northeastern and eastern TP and N-S in the southeastern TP, which is consistent with the trends of main strike-slip faults and the fast polarization directions of SKS waves and suggests vertically coherent deformation. Furthermore, the magnitude of crustal anisotropy is continuous across main strike-slip faults, which contracts with the prediction of rigid-block extrusion model. Taken together, our model supports vertically coherent distributed deformation in the eastern TP.

  4. Extraction of Stoneley and acoustic Rayleigh waves from ambient noise on ocean bottom observations (United States)

    Tonegawa, T.; Fukao, Y.; Takahashi, T.; Obana, K.; Kodaira, S.; Kaneda, Y.


    In the interferometry, the wavefield propagating between two positions can be retrieved by correlating ambient noise recorded on the two positions. This approach is useful for applying to various kinds of wavefield, such as ultrasonic, acoustic (ocean acoustic), and also seismology. Off the Kii Peninsula, Japan, more than 150 short-period (4.5 Hz) seismometers, in which hydrophone is also cosited, had been deployed for ~2 months on 2012 by Japan Agency for Marine-Earth Science and Technology (JAMSTEC) as a part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. In this study, correlating ambient noise recorded on the sensors and hydrophones, we attempt to investigate characteristics of wavefield relative to the ocean, sediment, and solid-fluid boundary. The observation period is from Sep. 2012 to Dec. 2012. Station spacing is around 5 km. For 5 lines off the Kii Peninsula, the 30-40 seismometers are distributed at each line. Sampling interval is 200 Hz for both seismometer and hydrophone. The vertical component is just used in this study for correlation analysis. The instruments are located at 100-4800 m in water depth. In the processing for the both records, we applied a bandpass filter of 1-3 Hz, replaced the amplitude to zero if it exceeds a value that was set in this study, and took one-bit normalization. We calculated cross-correlation function (CCF) by using continuous records with a time length of 600 s, stacked the CCFs over the whole observation period. As a result of the analysis for hydrophone, a strong peak can be seen in the CCF for pairs of stations where the separation distance is ~5 km. Although the peak emerges in the CCFs for the separation distance up to 10 km, it disappears in the case that two stations are greater than 15 km separated. As a next approach, along a line off the Kii Peninsula, we aligned CCFs for two stations with

  5. Crustal and uppermost mantle S-wave velocity below the East European Craton in northern Poland from the inversion of ambient-noise records (United States)

    Lepore, Simone; Polkowski, Marcin; Grad, Marek


    The P-wave velocities (V p) within the East European Craton in Poland are well known through several seismic experiments which permitted to build a high-resolution 3D model down to 60 km depth. However, these seismic data do not provide sufficient information about the S-wave velocities (V s). For this reason, this paper presents the values of lithospheric V s and P-wave-to-S-wave velocity ratios (V p/V s) calculated from the ambient noise recorded during 2014 at "13 BB star" seismic array (13 stations, 78 midpoints) located in northern Poland. The 3D V p model in the area of the array consists of six sedimentary layers having total thickness within 3-7 km and V p in the range 1.85.3 km/s, a three-layer crystalline crust of total thickness 40 km and V p within 6.15-7.15 km/s, and the uppermost mantle, where V p is about 8.25 km/s. The V s and V p/V s values are calculated by the inversion of the surface-wave dispersion curves extracted from the noise cross correlation between all the station pairs. Due to the strong velocity differences among the layers, several modes are recognized in the 0.021 Hz frequency band: therefore, multimodal Monte Carlo inversions are applied. The calculated V s and V p/V s values in the sedimentary cover range within 0.992.66 km/s and 1.751.97 as expected. In the upper crust, the V s value (3.48 ± 0.10 km/s) is very low compared to the starting value of 3.75 ± 0.10 km/s. Consequently, the V p/V s value is very large (1.81 ± 0.03). To explain that the calculated values are compared with the ones for other old cratonic areas.

  6. Variability in ambient noise levels and call parameters of North Atlantic right whales in three habitat areas. (United States)

    Parks, Susan E; Urazghildiiev, Ildar; Clark, Christopher W


    The North Atlantic right whale inhabits the coastal waters off the east coasts of the United States and Canada, areas characterized by high levels of shipping and fishing activities. Acoustic communication plays an important role in the social behavior of these whales and increases in low-frequency noise may be leading to changes in their calling behavior. This study characterizes the ambient noise levels, including both natural and anthropogenic sources, and right whale upcall parameters in three right whale habitat areas. Continuous recordings were made seasonally using autonomous bottom-mounted recorders in the Bay of Fundy, Canada (2004, 2005), Cape Cod Bay, (2005, 2006), and off the coast of Georgia (2004-2005, 2006-2007). Consistent interannual trends in noise parameters were found for each habitat area, with both the band level and spectrum level measurements higher in the Bay of Fundy than in the other areas. Measured call parameters varied between habitats and between years within the same habitat area, indicating that habitat area and noise levels alone are not sufficient to predict variability in call parameters. These results suggest that right whales may be responding to the peak frequency of noise, rather than the absolute noise level in their environment.

  7. Assessment of ambient noise levels in the intensive care unit of a university hospital

    Directory of Open Access Journals (Sweden)

    Hatem O Qutub


    Conclusion : Some sources of environmental noise, such as the use of oxygen, suction equipment or respirators are unavoidable. Nevertheless, hospital ICUs should have measures to minimize the level of exposure to noise in the ICU. Further research in this area might focus on the noise level and other modifiable environmental stress factors in the ICU that affect patients as well as the staff.

  8. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?

    DEFF Research Database (Denmark)

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias


    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association...... to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10µg/m(3) nitrogen dioxide (NO2) and 10dB road traffic noise at the residential address...... was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air...

  9. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication - YIP (United States)


    various species of marine mammals, physical events, and anthropogenic sources such as seismic array signals, allowing for development of automated...shipping, animal vocalizations, and seismic airguns making this a “transitional” band. The 85-105 Hz band was selected as representative of the dominant...computed using a custom script written in MATLAB . Temporal (Ht) and spectral (Hf) acoustic entropies were computed and then multiplied to obtain the

  10. Auditory map reorganization and pitch discrimination in adult rats chronically exposed to low-level ambient noise (United States)

    Zheng, Weimin


    Behavioral adaption to a changing environment is critical for an animal's survival. How well the brain can modify its functional properties based on experience essentially defines the limits of behavioral adaptation. In adult animals the extent to which experience shapes brain function has not been fully explored. Moreover, the perceptual consequences of experience-induced changes in the brains of adults remain unknown. Here we show that the tonotopic map in the primary auditory cortex of adult rats living with low-level ambient noise underwent a dramatic reorganization. Behaviorally, chronic noise-exposure impaired fine, but not coarse pitch discrimination. When tested in a noisy environment, the noise-exposed rats performed as well as in a quiet environment whereas the control rats performed poorly. This suggests that noise-exposed animals had adapted to living in a noisy environment. Behavioral pattern analyses revealed that stress or distraction engendered by the noisy background could not account for the poor performance of the control rats in a noisy environment. A reorganized auditory map may therefore have served as the neural substrate for the consistent performance of the noise-exposed rats in a noisy environment. PMID:22973201

  11. On the seismic response of instable rock slopes based on ambient vibration recordings

    Czech Academy of Sciences Publication Activity Database

    Kleinbrod, U.; Burjánek, Jan; Fäh, D.


    Roč. 69, September (2017), č. článku 126. ISSN 1880-5981 Institutional support: RVO:67985530 Keywords : ambient vibrations * instable rock slopes * site amplification Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.243, year: 2016

  12. On the seismic response of instable rock slopes based on ambient vibration recordings

    Czech Academy of Sciences Publication Activity Database

    Kleinbrod, U.; Burjánek, Jan; Fäh, D.


    Roč. 69, September (2017), č. článku 126. ISSN 1880-5981 Institutional support: RVO:67985530 Keywords : ambient vibrations * instable rock slopes * site amplification Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.243, year: 2016

  13. On the application of Hidden Markov Model and Bayesian Belief Network to seismic noise at Las Canadas Caldera, Tenerife, Spain

    International Nuclear Information System (INIS)

    Quintero Oliveros, Anggi; Carniel, Roberto; Tarraga, Marta; Aspinall, Willy


    The Teide-Pico Viejo volcanic complex situated in Tenerife Island (Canary Islands, Spain) has recently shown signs of unrest, long after its last eruptive episode at Chinyero in 1909, and the last explosive episode which happened at Montana Blanca, 2000 years ago. In this paper we study the seismicity of the Teide-Pico Viejo complex recorded between May and December 2004, in order to show the applicability of tools such as Hidden Markov Models and Bayesian Belief Networks which can be used to build a structure for evaluating the probability of given eruptive or volcano-related scenarios. The results support the existence of a bidirectional relationship between volcano-tectonic events and the background seismic noise - in particular its frequency content. This in turn suggests that the two phenomena can be related to one unique process influencing their generation

  14. On the application of Hidden Markov Model and Bayesian Belief Network to seismic noise at Las Canadas Caldera, Tenerife, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Quintero Oliveros, Anggi [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy); Departamento de Ciencias de La Tierra, Universidad Simon Bolivar, Caracas (Venezuela); Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy)], E-mail:; Tarraga, Marta [Departamento de Volcanologia, Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Aspinall, Willy [Aspinall and Associates, 5 Woodside Close, Beaconsfield, Bucks (United Kingdom)


    The Teide-Pico Viejo volcanic complex situated in Tenerife Island (Canary Islands, Spain) has recently shown signs of unrest, long after its last eruptive episode at Chinyero in 1909, and the last explosive episode which happened at Montana Blanca, 2000 years ago. In this paper we study the seismicity of the Teide-Pico Viejo complex recorded between May and December 2004, in order to show the applicability of tools such as Hidden Markov Models and Bayesian Belief Networks which can be used to build a structure for evaluating the probability of given eruptive or volcano-related scenarios. The results support the existence of a bidirectional relationship between volcano-tectonic events and the background seismic noise - in particular its frequency content. This in turn suggests that the two phenomena can be related to one unique process influencing their generation.

  15. Does ambient noise or hypobaric atmosphere influence olfactory and gustatory function? (United States)

    Rahne, Torsten; Köppke, Robert; Nehring, Michael; Plontke, Stefan K; Fischer, Hans-Georg


    Multidimensional food perception is based mainly on gustatory and olfactory function. Recent research has demonstrated that hypobaric pressure impairs gustatory function and that background noise or distracting auditory stimulation impairs olfactory function. Using a hypobaric chamber, the odor identification, discrimination, and thresholds as well as taste identification and threshold scores were measured in 16 healthy male volunteers under normal and hypobaric (6380 ft) conditions using clinically validated tests. In both conditions, background noise was either canceled out or replaced by white noise presentation (70 dB sound pressure level). Olfactory sensitivity for n-butanol and gustatory sensitivity were impaired in a hypobaric atmosphere. White noise did not influence the odor test results. White noise stimulation impaired sensitivity for sour and sweet but not for bitter or salty tastants. We conclude that hypobaric or noisy environments could impair gustatory and olfactory sensitivity selectively for particular tastants and odorants.

  16. Underwater Ambient Noise in a Baleen Whale Migratory Habitat Off the Azores

    Directory of Open Access Journals (Sweden)

    Miriam Romagosa


    Full Text Available Assessment of underwater noise is of particular interest given the increase in noise-generating human activities and the potential negative effects on marine mammals which depend on sound for many vital processes. The Azores archipelago is an important migratory and feeding habitat for blue (Balaenoptera musculus, fin (Balaenoptera physalus and sei whales (Balaenoptera borealis en route to summering grounds in northern Atlantic waters. High levels of low frequency noise in this area could displace whales or interfere with foraging behavior, impacting energy intake during a critical stage of their annual cycle. In this study, bottom-mounted Ecological Acoustic Recorders were deployed at three Azorean seamounts (Condor, Açores, and Gigante to measure temporal variations in background noise levels and ship noise in the 18–1,000 Hz frequency band, used by baleen whales to emit and receive sounds. Monthly average noise levels ranged from 90.3 dB re 1 μPa (Açores seamount to 103.1 dB re 1 μPa (Condor seamount and local ship noise was present up to 13% of the recording time in Condor. At this location, average contribution of local boat noise to background noise levels is almost 10 dB higher than wind contribution, which might temporally affect detection ranges for baleen whale calls and difficult communication at long ranges. Given the low time percentatge with noise levels above 120 dB re 1 μPa found here (3.3% at Condor, we woud expect limited behavioral responses to ships from baleen whales. Sound pressure levels measured in the Azores are lower than those reported for the Mediterranean basin and the Strait of Gibraltar. However, the currently unknown effects of baleen whale vocalization masking and the increasing presence of boats at the monitored sites underline the need for continuous monitoring to understand any long-term impacts on whales.

  17. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke? (United States)

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias; Andersen, Zorana J; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole


    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association with risk for stroke. In a population-based cohort of 57,053 people aged 50-64 years at enrollment, we identified 1999 incident stroke cases in national registries, followed by validation through medical records. Mean follow-up time was 11.2 years. Present and historical residential addresses from 1987 to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10 µg/m(3) nitrogen dioxide (NO2) and 10 dB road traffic noise at the residential address was associated with ischemic stroke with incidence rate ratios (IRR) of 1.11 (95% CI: 1.03, 1.20) and 1.16 (95% CI: 1.07, 1.24), respectively, in single exposure models. In two-exposure models road traffic noise (IRR: 1.15) and not NO2 (IRR: 1.02) was associated with ischemic stroke. The strongest association was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air pollution affected risk for fatal strokes. There were indications of combined effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission


    Murdoch, Naomi; Kenda, Balthasar; Kawamura, Taichi; Spiga, Aymeric; Lognonné, Philippe; Mimoun, David; Banerdt, William B.


    International audience; The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green’s function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an ...

  19. Integrating ambient noise with GIS for a new perspective on volcano imaging and monitoring: The case study of Mt. Etna (United States)

    Guardo, R.; De Siena, L.


    The timely estimation of short- and long-term volcanic hazard relies on the availability of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centres and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The study recovers a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows that anomalies are generally related to volcano-tectonic structures active during the last 17 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource to monitor volcanoes in unrest, reducing the risk of loss of human lives and instrumentation.

  20. From Initial Models of Seismicity, Structure and Noise to Synthetic Seismograms for Mars (United States)

    Ceylan, Savas; van Driel, Martin; Euchner, Fabian; Khan, Amir; Clinton, John; Krischer, Lion; Böse, Maren; Stähler, Simon; Giardini, Domenico


    The InSight mission will land a single seismic station on Mars in November 2018, and the resultant seismicity catalog will be a key component for studies aiming to understand the interior structure of the planet. Here, we present a preliminary version of the web services that will be used to distribute the event and station metadata in practice, employing synthetic seismograms generated for Mars using a catalog of expected seismicity. Our seismicity catalog consists of 120 events with double-couple source mechanisms only. We also provide Green's functions databases for a total of 16 structural models, which are constructed to reflect one-dimensional thin (30 km) and thick (80 km) Martian crust with varying seismic wave speeds and densities, combined with two different profiles for temperature and composition for the mantle. Both the Green's functions databases and the precomputed seismograms are accessible online. These new utilities allow the researchers to either download the precomputed synthetic waveforms directly, or produce customized data sets using any desired source mechanism and event distribution via our servers.

  1. Analysis of the levels of ambient noise present in the Colonia Auditorium (October 2001) (United States)

    Jalisco, Zapopan; Palafox, Lourdes; Orozco, Martha; Rodriguez, Erika


    The study area is located in the city of Guadalajara, defined by: delimited in the north by the Gonzlez Gallo street; in the south by the Anillo Perifrico street; in the east by Avenida Mezquitan; and in the west by Avenida Alcalde. There were 38 measurement points outside the auditorium and 25 inside. A poll was conducted among the neighbors and visitors in both areas, getting 70 replies. Noise levels were between 41-101 dB(A) on the outside, average Leq on the outside was 64.5 dB(A), and inside was 80.15 dB(A). The conclusion is that the whole area is affected by traffic noise, as well by the huge number of visitors, the electric games, and the electric generators that supply energy to them. On the outside 21 points were above 65 dB(A), which means that 55% were above the average; on the inside, 100% were above 65 dB(A). Thus the neighbors are exposed to high noise levels due to the festivities during October. The biggest problem, however, is the noise exposure of the workers inside the auditorium, due to music, games, people, and electric generators.

  2. Gestational diabetes mellitus and exposure to ambient air pollution and road traffic noise

    DEFF Research Database (Denmark)

    Pedersen, Marie; Olsen, Sjurdur F; Halldorsson, Thorhallur I


    Background: Road traffic is a main source of air pollution and noise. Both exposures have been associated with type 2 diabetes, but associations with gestational diabetes mellitus (GDM) have been studied less. Objectives: We aimed to examine single and joint associations of exposure to air pollut...

  3. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  4. Using Seismic Interferometry to Investigate Seismic Swarms (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.


    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  5. Gestational diabetes mellitus and exposure to ambient air pollution and road traffic noise: A cohort study. (United States)

    Pedersen, Marie; Olsen, Sjurdur F; Halldorsson, Thorhallur I; Zhang, Cuilin; Hjortebjerg, Dorrit; Ketzel, Matthias; Grandström, Charlotta; Sørensen, Mette; Damm, Peter; Langhoff-Roos, Jens; Raaschou-Nielsen, Ole


    Road traffic is a main source of air pollution and noise. Both exposures have been associated with type 2 diabetes, but associations with gestational diabetes mellitus (GDM) have been studied less. We aimed to examine single and joint associations of exposure to air pollution and road traffic noise on GDM in a prospective cohort. We identified GDM cases from self-reports and hospital records, using two different criteria, among 72,745 singleton pregnancies (1997-2002) from the Danish National Birth Cohort. We modeled nitrogen dioxide (NO 2 ) and noise from road traffic (L den ) exposure at all pregnancy addresses. According to the two diagnostic criteria: the Danish clinical guidelines, which was our main outcome, and the WHO standard during recruitment period, a total of 565 and 210 women, respectively, had GDM. For both exposures no risk was evident for the common Danish criterion of GDM. A 10-μg/m 3 increase in NO 2 exposure during first trimester was, however, associated with an increased risk of WHO-GDM (adjusted odds ratio (OR)=1.24; 95% confidence interval (CI): 1.03, 1.49). The corresponding OR associated with a 10-dB higher road traffic noise level was 1.15 (0.94 to 1.18). In mutually adjusted models the OR for NO 2 remained similar 1.22 (0.98, 1.53) whereas that for road traffic noise decreased to 1.03 (0.80, 1.32). Significant associations were also observed for exposure averaged over the 2nd and 3rd trimesters and the full pregnancy. No risk was evident for the common Danish criterion of GDM. NO 2 was associated with higher risk for GDM according to the WHO criterion, which might be due to selection bias. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ambient Noise Analysis from Selected CTBTO (Comprehensive Test Ban Treaty Organization) Sites (United States)


    at sound channel axis depth; second are seismic "T-phase" sensors, located on a " seamount -like" island, either mounted on land or in the water as...Program, Code 32 (James Eckman, Program Manager) for a more focused Ocean Biology study using the same data sets as above. Progress/Results • Close to...REPORT DOCUMENTATION PAGE Form Approved 0MB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1

  7. SPREE: A Successful Seismic Array by a Failed Rift System; Analysis of Seismic Noise in the Seismically Quiet Mid-continent (United States)

    Wolin, E.; van der Lee, S.; Bollmann, T. A.; Revenaugh, J.; Aleqabi, G. I.; Darbyshire, F. A.; Frederiksen, A. W.; Wiens, D.; Shore, P.


    The Superior Province Rifting Earthscope Experiment (SPREE) completed its field recording phase last fall with over 96% data return. While 60% of the stations returned data 100% of the time, only 9 performed below 90% and one station had questionable timing. One station was vandalized, another stolen. One station continued recording after its solar panels were pierced by a bullet, while another two stations survived a wildfire and a blow-down, respectively. The blow-down was an extreme wind event that felled hundreds of thousands of trees around the station. SPREE stations recorded many hundreds of earthquakes. Two regional earthquakes and over 400 teleseismic earthquakes had magnitudes over 5.5 and three, smaller local earthquakes had magnitudes over 2.5. We have calculated power spectral estimates between 0.1-1000 s period for the ~2.5-year lifespan of all 82 SPREE stations. Vertical channels performed quite well across the entire frequency range, falling well below the high noise model of Peterson (1993) and usually within 10-15 dB of nearby Transportable Array stations. SPREE stations' horizontal components suffer from long-period (> 30 s) noise. This noise is quietest at night and becomes up to 30 dB noisier during the day in the summer months. We explore possible causes of this variation, including thermal and atmospheric pressure effects. One possibility is that stations are insulated by snow during the winter, reducing temperature variations within the vault. Spring snowmelt creates instability at many of the SPREE stations, evidenced by frequent recenterings and enhanced long-period noise. For all channels, power in the microseismic band (4-16 s) is strongest in the winter, corresponding to storm season in the Northern Hemisphere, and approximately 20 dB weaker during the summer. The power spectrum and temporal variation of microseismic energy is consistent across the entire SPREE array.

  8. San Andreas Fault dip, Peninsular Ranges mafic lower crust and partial melt in the Salton Trough, Southern California, from ambient-noise tomography (United States)

    Barak, Shahar; Klemperer, Simon L.; Lawrence, Jesse F.


    We use ambient-noise tomography to improve CVM-H11.9, a community velocity model of southern California. Our new 3-D shear-velocity model with 0.05° x 0.05° lateral and 1 km vertical blocks reveals new structure beneath the San Andreas Fault (SAF), Peninsular Ranges batholith (PRB), southern Sierra Nevada batholith (SNB), and the Salton Trough (ST). We use 4 years of data recorded on 849 broadband stations, vastly more than previous studies and including our own broadband Salton Seismic Imaging Project, a 40 station transect across the ST, as well as other campaign stations in both Mexico and the United States. Mean lower crust and upper mantle wave speeds (3.6 km/s at 20 km, 4.2 km/s at 40 km) are low by global standards. Across the SAF, southeast of San Gorgonio Pass, we observe vertical to steeply dipping lateral velocity contrasts that extend beneath the Moho. Beneath the western PRB and westernmost southern SNB, we observe relatively high shear velocities (≥3.8 km/s) in the lower crust that we interpret as the mafic roots of the overlying arc. Relatively high-velocity upper mantle (up to ˜4.5 km/s) may be part of the intact arc, or possibly a remnant of the Farallon plate. Beneath the ST, we observe zones of low shear-velocity in the lower crust and upper mantle which permit up to ˜4.5% melt in the lower crust and up to ˜6% melt in the upper mantle, depending on the assumed composition and pore geometry. Our results preclude the existence of older continental crust beneath the ST and support the creation of new crust beneath the ST.

  9. Noise (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  10. Offshore Rayleigh Group Velocity Observations of the South Island, New Zealand, from Ambient Noise Data

    KAUST Repository

    Yeck, William L.


    We present azimuthally anisotropic Rayleigh group velocity models from 8 - 35 s both offshore and onshore of the South Island of New Zealand. We use MOANA (Marine Observations of Anisotropy Near Aotearoa) broadband ocean seismic data in combination with on land data from the New Zealand National Seismography Network (NZNSN) to investigate the seismic structure of the flanks of the Australian-Pacific plate boundary. At 8 s, we observe low offshore group velocities best explained by the influence of the water layer and thick water-laden sediments. At long periods (20-30 s), group velocities are lower on the South Island relative to its offshore flanks, due to thickened crust beneath the island, with the lowest velocities primarily beneath the Southern Alps. Group velocity azimuthal anisotropy fast directions near the Alpine Fault align with the direction of relative plate motion between the Australian and Pacific plates. In the southern portion of the island, fast directions rotate anticlockwise, likely in response to a decrease in dextral shearing away from the plate boundary. Azimuthal anisotropy fast directions align with absolute plate motion offshore on the Pacific plate. Based on the depth sensitivity of our observations, we suggest diffuse deformation occurs throughout the crust. Our observations match trends in previous Pn anisotropy and SKS shear wave splitting observations, and therefore suggest a consistent pattern of distributed deformation throughout the lithosphere.

  11. Detection capability of seismic network based on noise analysis and magnitude of completeness

    Czech Academy of Sciences Publication Activity Database

    Fischer, Tomáš; Bachura, M.


    Roč. 18, č. 1 (2014), s. 137-150 ISSN 1383-4649 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : seismic monitoring * magnitude of completeness * detection capability Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 1.386, year: 2014

  12. The Impact of Offshore Wind Turbines on Underwater Ambient Noise Levels


    Glegg, Stewart


    The underwater sound levels generated by offshore wind turbine farms is a concern because of the possible environmental impact on marine mammals. This paper will consider how sound generated by a wind turbine is transmitted into a shallow water channel. It is shown that the underwater sound levels can be calculated for a typical offshore wind turbine by using the theory of Chapman and Ward (1990) combined with aeroacoustic models of trailing edge noise on the wind turbine blades. A procedure ...

  13. Adaptive elimination of optical fiber transmission noise in fiber ocean bottom seismic system (United States)

    Zhong, Qiuwen; Hu, Zhengliang; Cao, Chunyan; Dong, Hongsheng


    In this paper, a pressure and acceleration insensitive reference Interferometer is used to obtain laser and public noise introduced by transmission fiber and laser. By using direct subtraction and adaptive filtering, this paper attempts to eliminate and estimation the transmission noise of sensing probe. This paper compares the noise suppression effect of four methods, including the direct subtraction (DS), the least mean square error adaptive elimination (LMS), the normalized least mean square error adaptive elimination (NLMS) and the least square (RLS) adaptive filtering. The experimental results show that the noise reduction effect of RLS and NLMS are almost the same, better than LMS and DS, which can reach 8dB (@100Hz). But considering the workload, RLS is not conducive to the real-time operating system. When it comes to the same treatment effect, the practicability of NLMS is higher than RLS. The noise reduction effect of LMS is slightly worse than that of RLS and NLMS, about 6dB (@100Hz), but its computational complexity is small, which is beneficial to the real time system implementation. It can also be seen that the DS method has the least amount of computational complexity, but the noise suppression effect is worse than that of the adaptive filter due to the difference of the noise amplitude between the RI and the SI, only 4dB (@100Hz) can be reached. The adaptive filter can basically eliminate the influence of the transmission noise, and the simulation signal of the sensor is kept intact.

  14. Cultural noise and the night-day asymmetry of the seismic activity recorded at the Bunker-East (BKE) Vesuvian Station (United States)

    Scafetta, Nicola; Mazzarella, Adriano


    Mazzarella and Scafetta (2016) showed that the seismic activity recorded at the Bunker-East (BKE) Vesuvian station from 1999 to 2014 suggests a higher nocturnal seismic activity. However, this station is located at about 50 m from the main road to the volcano's crater and since 2009 its seismograms also record a significant diurnal cultural noise due mostly to tourist tours to Mt. Vesuvius. Herein, we investigate whether the different seismic frequency between day and night times could be an artifact of the peculiar cultural noise that affects this station mostly from 9:00 am to 5:00 pm from spring to fall. This time-distributed cultural noise should evidently reduce the possibility to detect low magnitude earthquakes during those hours but not high magnitude events. Using hourly distributions referring to different magnitude thresholds from M = 0.2 to M = 2.0, the Gutenberg-Richter magnitude-frequency diagram applied to the day and night-time sub-catalogs and Montecarlo statistical modeling, we demonstrate that the day-night asymmetry persists despite an evident disruption induced by cultural noise during day-hours. In particular, for the period 1999-2017, and for earthquakes with M ≥ 2 we found a Gutenberg-Richter exponent b = 1.66 ± 0.07 for the night-time events and b = 2.06 ± 0.07 for day-time events. Moreover, we repeat the analysis also for an older BKE catalog covering the period from 1992 to 2000 when cultural noise was not present. The analysis confirms a higher seismic nocturnal activity that is also characterized by a smaller Gutenberg-Richter exponent b for M ≥ 2 earthquakes relative to the day-time activity. Thus, the found night-day seismic asymmetric behavior is likely due to a real physical feature affecting Mt. Vesuvius.

  15. Monitoring gas reservoirs by seismic interferometry (United States)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico


    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  16. Noise suppression in surface microseismic data by τ-p transform (United States)

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael


    Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.

  17. Association between ambient noise exposure and school performance of children living in an urban area: a cross-sectional population-based study. (United States)

    Pujol, Sophie; Levain, Jean-Pierre; Houot, Hélène; Petit, Rémy; Berthillier, Marc; Defrance, Jérôme; Lardies, Joseph; Masselot, Cyril; Mauny, Frédéric


    Most of the studies investigating the effects of the external noise on children's school performance have concerned pupils in schools exposed to high levels due to aircraft or freeway traffic noise. However, little is known about the consequences of the chronic ambient noise exposure at a level commonly encountered in residential urban areas. This study aimed to assess the relationship between the school performance of 8- to 9-year-old-children living in an urban environment and their chronic ambient noise exposure at home and at school. The children's school performances on the national standardized assessment test in French and mathematics were compared with the environmental noise levels. Children's exposure to ambient noise was calculated in front of their bedrooms (Lden) and schools (LAeq,day) using noise prediction modeling. Questionnaires were distributed to the families to collect potential confounding factors. Among the 746 respondent children, 586 were included in multilevel analyses. On average, the LAeq,day at school was 51.5 dB (SD= 4.5 dB; range = 38-58 dB) and the outdoor Lden at home was 56.4 dB (SD= 4.4 dB; range = 44-69 dB). LAeq,day at school was associated with impaired mathematics score (p = 0.02) or impaired French score (p = 0.01). For a + 10 dB gap, the French and mathematics scores were on average lower by about 5.5 points. Lden at home was significantly associated with impaired French performance when considered alone (p school exposure was considered (p = 0.06). The magnitude of the observed effect on school performance may appear modest, but should be considered in light of the number of people who are potentially chronically exposed to similar environmental noise levels.

  18. Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission (United States)

    Murdoch, Naomi; Kenda, Balthasar; Kawamura, Taichi; Spiga, Aymeric; Lognonné, Philippe; Mimoun, David; Banerdt, William B.


    The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green's function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells' theory (Sorrells, Geophys. J. Int. 26:71-82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14-16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically ˜ 2 - 40 nm/s2 in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be ˜ 0.1-6 nm/s2 in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects. We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer. In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the

  19. Estimation of time varying system parameters from ambient response using improved Particle-Kalman filter with correlated noise (United States)

    Sen, Subhamoy; Crinière, Antoine; Mevel, Laurent; Cerou, Frederic; Dumoulin, Jean


    within a PF environment that estimates the parameters. This facilitates employing relatively less expensive linear KF for linear state estimation problem while costly PF is employed only for parameter estimation. Additionally, the proposed algorithm also takes care of those systems for which system and measurement noises are not uncorrelated as it is commonly idealized in standard filtering algorithms. As an example, for mechanical systems under ambient vibration it happens when acceleration response is considered as measurement. Thus the process and measurement noise in these system descriptions are obviously correlated. For this, an improved description for the Kalman gain is developed. Further, to enhance the consistency of particle filtering based parameter estimation involving high dimensional parameter space, a new temporal evolution strategy for the particles is defined. This strategy aims at restricting the solution from diverging (up to the point of no return) because of an isolated event of infeasible estimation which is very much likely especially when dealing with high dimensional parameter space.

  20. Can we trace the eastern Gondwanan margin in Australia? New perspectives from transdimensional inversion of ambient noise for 3D shear velocity structure (United States)

    Pilia, S.; Rawlinson, N.; Direen, N. G.


    Although the notion of Rodinia is quite well accepted in the geoscience community, the location and nature of the eastern continental margin of the Gondwana fragment in Australia is still vague and remains one of the most hotly debated topics in Australian geology. Moreover, most post-Rodinian reconstructions models choose not to tackle the ';Tasmanian challenge', and focus only on the tectonic evolution of mainland southeast Australia, thereby conveniently ignoring the wider tectonic implications of Tasmania's complex geological history. One of the chief limitations of the tectonic reconstructions in this region is a lack of information on Paleozoic (possibly Proterozoic) basement structures. Vast Mesozoic-Cainozoic sedimentary and volcanic cover sequences obscure older outcrops and limit the power of direct observational techniques. In response to these challenges, our effort is focused on ambient seismic noise for imaging 3D crustal shear velocity structure using surface waves, which is capable of illuminating basement structure beneath younger cover. The data used in this study is sourced from the WOMBAT transportable seismic array, which is compounded by around 650 stations spanning the majority of southeastern Australia, including Tasmania and several islands in Bass Strait. To produce the highest quality Green's functions, careful processing of the data has been performed, after which group velocity dispersion measurements have been carried out using a frequency-time analysis method on the symmetric component of the empirical Green's functions (EGFs). Group dispersion measurements from the EGFs have been inverted using a novel hierarchical, transdimensional, Bayesian algorithm to obtain Rayleigh-wave group velocity maps at different periods from 2 to 30 s. The new approach has several advantages in that the number and distribution of model parameters are implicitly controlled by the data, in which the noise is treated as unknown in the inversion. This

  1. Land 3D-seismic data: Preprocessing quality control utilizing survey design specifications, noise properties, normal moveout, first breaks, and offset (United States)

    Raef, A.


    The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from a CO2-flood monitoring survey is used for demonstrating QC diagnostics. An important by-product of the QC workflow is establishing the number of layers for a refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  2. Time-Lapse Monitoring of an Engineering Scaled Excavation at Federal District, Brazil by Passive Ambient NoiseInterferometry (United States)

    Cárdenas-Soto, M., Sr.; Hussain, Y.; Martinez-Carvajal, H., Sr.; Martino, S., Sr.; Rocha, M., Sr.


    Understanding the dynamics of stress relief mechanisms that lead to complete material collapse of unstable slopes is challenging. This research is focused on the novel use of Passive Ambient Noise Interferometry (PANI), a new technique that has revolutionized the seismology. In this technique the impulse response or Green function between two sensors is calculated by cross-correlation of the noise rescored at these stations. We applied PANI to monitor the deformational behavior of a prototype field experiment under semi controlled conditions for their use in landsliding early warning systems.The experimental setup consists of a 2 m engineering-scaled excavation,where induced failure was monitored by ambient vibrations propagating in tropical clayey deposits. The experimental setup consisted of dense network of 20 three components short period seismometers (Sercel L4C-3D) installed in three circular arrays with their distances from face of normal slope as 10, 20 and 30 meters, respectively.The frequency response of these seismometers is in range of 2-100 Hz. Recording was done in continuous mode at sampling rate of 1000 Hz with datalogger (RefTek DAS-130/3). Sensors were time synchronized by twenty 130 GPS/01. In this stage, the stress was applied on the one flank of this normal slope dug in the experimental field of University of Brasilia, by a hydraulic jack through a metallic plate. This incremental loading was kept on rising until the slope failure took place. This loading mechanism provided an opportunity to monitoring the changes in Rayleigh wave velocity before, during and after the complete failure. After initial processing, the green function (GF) or impulse response was calculated between each pair of sensors by cross correlation at time step of 4 second. All individual GFs, for entire monitoring period (30 minutes) were stacked to obtained a single reference GF. Stretching (dt/t) in waveform is calculated by subtracting individual GF from average GF, that

  3. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus


    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  4. Near-bottom hydrophone measurements of ambient noise and sperm whale vocalizations in the northern Gulf of Mexico (United States)

    Newcomb, Joal; Fisher, Robert; Field, Robert; Turgut, Altan; Ioup, George; Ioup, Juliette; Rayborn, Grayson; Kuczaj, Stan; Caruthers, Jerald; Goodman, Ralph; Sidorovskaia, Natalia


    Three bottom-moored hydrophones, 50 m above the bottom, were placed on a downslope line, ending at the largest concentration of sperm whale sightings in the northern Gulf of Mexico, in 600 m, 800 m, and 1000 m water depths. These depths were chosen after upslope propagation modeling, using historical databases, showed transmission losses greater than 110 dB at hydrophones near the bottom in water shallower than 600 m for a 500 m deep source at the 1000 m contour. These autonomously recording hydrophones were environmental acoustic recording system (EARS) buoys obtained from the Naval Oceanographic Office. They were capable of recording signals up to 5500 Hz continuously for 36 days and were deployed from July 17 through August 21. During this period a major marine mammal exercise was being conducted at the surface by the Minerals Management Service and the National Marine Fisheries Service, with other government and university scientists, in which temporary acoustic recording devices were attached to the whales and the whales were monitored by a surface towed array. Our near-bottom measurements of ambient noise and sperm whale vocalizations are discussed and compared to those surface and on-whale measurements. [Research supported by ONR.

  5. Three-dimensional S-wave velocity model of the Bohemian Massif from Bayesian ambient noise tomography (United States)

    Valentová, Lubica; Gallovič, František; Maierová, Petra


    We perform two-step surface wave tomography of phase-velocity dispersion curves obtained by ambient noise cross-correlations in the Bohemian Massif. In the first step, the inter-station dispersion curves were inverted for each period (ranging between 4 and 20 s) separately into phase-velocity maps using 2D adjoint method. In the second step, we perform Bayesian inversion of the set of the phase-velocity maps into an S-wave velocity model. To sample the posterior probability density function, the parallel tempering algorithm is employed providing over 1 million models. From the model samples, not only mean model but also its uncertainty is determined to appraise the reliable features. The model is correlated with known main geologic structures of the Bohemian Massif. The uppermost low-velocity anomalies are in agreement with thick sedimentary basins. In deeper parts (4-20 km), the S-wave velocity anomalies correspond, in general, to main tectonic domains of the Bohemian Massif. The exception is a stable low-velocity body in the middle of the high-velocity Moldanubian domain and high-velocity body resembling a promontory of the Moldanubian into the Teplá-Barrandian domain. The most pronounced (high-velocity) anomaly is located beneath the Eger Rift that is a part of a Tertiary rift system across Europe.

  6. 3-D structure of the crust and uppermost mantle at the junction between the Southeastern Alps and External Dinarides from ambient noise tomography (United States)

    Guidarelli, Mariangela; Aoudia, Abdelkrim; Costa, Giovanni


    We use ambient noise tomography to investigate the crust and the uppermost mantle structure beneath the junction between the Southern Alps, the Dinarides and the Po Plain. We obtained Rayleigh wave empirical Green's functions from cross-correlation of vertical component seismic recordings for three years (2010-2012) using stations from networks in Italy, Slovenia, Austria, Croatia, Serbia and Switzerland. We measure group and phase velocity dispersion curves from the reconstructed Rayleigh waves in the period range 5-30 and 8-37 s, respectively, and we invert the surface wave velocities for tomographic images on a grid of 0.1° × 0.1°. After the tomography, the group velocities are then inverted to compute the 3-D shear wave velocity model of the crust and the upper mantle beneath the region. Our shear wave velocity model provides the 3-D image of the structure in the region between Northeastern Italy, Slovenia and Austria. The velocity variations at shallow depths correlate with known geological and tectonic domains. We find low velocities below the Po Plain, the northern tip of the Adriatic and the Pannonian Basin, whereas higher velocities characterize the Alpine chain. The vertical cross-sections reveal a clear northward increase of the crustal thickness with a sharp northward dipping of the Moho that coincides at the surface with the leading edge of the Alpine thrust front adjacent to the Friuli Plain in Northeastern Italy. This geometry of the Moho mimics fairly well the shallow north dipping geometry of the decollement inferred from permanent GPS velocity field where high interseismic coupling is reported. From the northern Adriatic domain up to the Idrija right lateral strike-slip fault system beneath Western Slovenia, the crustal thickness is more uniform. Right across Idrija fault, to the northeast, and along its strike, we report a clear change of the physical properties of the crust up to the uppermost mantle as reflected by the lateral distribution

  7. Postseismic velocity changes following the 2010 Mw 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis (United States)

    Heckels, R. E. G.; Savage, M. K.; Townend, J.


    Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the September 2010 Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum inter-station distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 4 September 2010 earthquake until 10 January 2011. Using the moving-window cross-spectral method seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 % ± 0.04 % was determined near the Greendale Fault, providing a new constraint on postseismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to postseismic relaxation via crack-healing of the Greendale Fault and throughout the surrounding region.

  8. Shear velocity model for the westernmost Mediterranean from ambient noise and ballistic finite-frequency Rayleigh wave tomography (United States)

    Palomeras, I.; Villasenor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.


    The westernmost Mediterranean comprises the Iberian Peninsula and Morocco, separated by the Alboran Sea and the Algerian Basin. From north to south this region consists of the Pyrenees, resulting from Iberia-Eurasia collision; the Iberian Massif, which has been undeformed since the end of the Paleozoic; the Central System and Iberian Chain, regions with intracontinental Oligocene-Miocene deformation; the Gibraltar Arc (Betics, Rif and Alboran terranes), resulting from post-Oligocene subduction roll-back; and the Atlas Mountains. We analyzed data from recent broad-band array deployments and permanent stations in the area (IberArray and Siberia arrays, the PICASSO array, the University of Munster array, and the Spanish, Portuguese and Moroccan National Networks) to characterize its lithospheric structure. The combined array of 350 stations has an average interstation spacing of ~60 km. We calculated the Rayleigh waves phase velocities from ambient noise (periods 4 to 40 s) and teleseismic events (periods 20 to 167 s). We inverted the phase velocities to obtain a shear velocity model for the lithosphere to ~200 km depth. Our results correlate well with the surface expression of the main structural units with higher crustal velocity for the Iberian Massif than for the Alpine Iberia and Atlas Mountains. The Gibraltar Arc has lower crustal shear velocities than the regional average at all crustal depths. It also shows an arc shaped anomaly with high upper mantle velocities (>4.6 km/s) at shallow depths (volcanic fields in Iberia and Morocco, indicative of high temperatures at relatively shallow depths, and suggesting that the lithosphere has been removed beneath these areas.

  9. Measuring changes in ambient noise levels from the installation and operation of a surge wave energy converter in the coastal ocean

    Energy Technology Data Exchange (ETDEWEB)

    Haxel, Joe H [Oregon State Univ., Newport, OR (United States); Henkel, Sarah K [Oregon State Univ., Newport, OR (United States)


    Ecosystem impacts resulting from elevated underwater noise levels generated by anthropogenic activities in the coastal ocean are poorly understood and remain difficult to address as a result of a significant gap in knowledge for existing nearshore sound levels. Ambient noise is an important habitat component for marine mammals and fish that use sound for essential functions such as communication, navigation, and foraging. Questions surrounding the amplitudes, frequency distributions, and durations of noise emissions from renewable wave energy conversion (WEC) projects during their construction and operation present concerns for long-term consequences in marine habitats. Oregon’s dynamic nearshore environment presents significant challenges for passive acoustic monitoring that include flow noise contamination from wave orbital motions, turbulence from breaking surf, equipment burial, and fishing pressure from sport and commercial crabbers. This project included 2 techniques for passive acoustic data collection: 1) campaign style deployments of fixed hydrophone lander stations to capture temporal variations in noise levels and 2) a drifting hydrophone system to record spatial variations within the project site. The hydrophone lander deployments were effective and economically feasible for enabling robust temporal measurements of ambient noise levels in a variety of sea state conditions. Limiting factors for the fixed stations included 1) a flow shield mitigation strategy failure in the first deployment resulting in significant wideband data contamination and 2) flow noise contamination of the unshielded sensors restricting valuable analysis to frequencies above 500 Hz for subsequent deployments. Drifting hydrophone measurements were also effective and economically feasible (although logistically challenging in the beginning of the project due to vessel time constraints) providing a spatial distribution of sound levels, comparisons of noise levels in varying levels

  10. Installation of the light tight cover for the SSD modules (the modules are behind the aluminium plate). The silicon sensors are sensitive to light tight, so ambient light will increase the noise and may even damage them.

    CERN Multimedia

    Nooren, G.


    Installation of the light tight cover for the SSD modules (the modules are behind the aluminium plate). The silicon sensors are sensitive to light tight , so ambient light will increase the noise and may even damage them.

  11. Correlações entre ruído ambiental em sala de aula e voz do professor Correlations between classroom environmental noise and teachers' voice

    Directory of Open Access Journals (Sweden)

    Rafaela Fernanda Guidini


    Full Text Available OBJETIVO: Identificar se existe correlação entre ruído ambiental no interior da sala de aula, intensidade da voz e presença de alteração vocal em professores. MÉTODOS: Foi realizada medição do ruído ambiental em dez salas de escolas municipais de ensino fundamental. A intensidade das vozes das professoras foi medida durante atividade de ensino. Amostras de vogal prolongada [é] e contagem de 1 a 20 emitidas pelas professoras foram analisadas utilizando escala GRBASI. Os resultados obtidos foram correlacionados. RESULTADOS: A média de ruído ambiental sem a presença das crianças em sala de aula variou de 40 a 51 dB(A e com a presença das crianças de 45 a 65 dB(A. Entre as professoras, houve 70% de ocorrência de vozes alteradas no grau geral (G e 90% com tensão na voz (S, variando entre graus discreto e moderado. Constatou-se variação entre 52 dB(A e 68 dB(A na intensidade da voz das professoras, atingindo 7,48 dB(A acima do nível do ruído ambiental. Houve correlação entre a intensidade vocal das professoras e ruído ambiental na presença das crianças durante a aula. CONCLUSÃO: Os níveis de ruído ambiental em sala de aula são altos e se correlacionam com o aumento da intensidade das vozes das professoras. Embora com alta ocorrência de vozes alteradas, não é possível correlacioná-las com o nível de ruído ambiental.PURPOSE: To explore the existence of correlations between environmental noise in classrooms, voice intensity and teacher's vocal problems. METHODS: Environmental noise was measured in 10 classrooms of municipal elementary schools; the intensity of teachers' voice was measured during teaching practice; teachers' speech samples containing emissions of sustained vowel [é] and counting from 1 to 20 were analyzed using the GRBASI protocol; and the results were tested for correlation. RESULTS: The average of environmental noise varied from 40 to 51 dB(A without the presence of children in the classroom, and

  12. Seismic Tomography and the Development of a State Velocity Profile (United States)

    Marsh, S. J.; Nakata, N.


    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  13. Long-term exposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts. (United States)

    Cai, Yutong; Hansell, Anna L; Blangiardo, Marta; Burton, Paul R; de Hoogh, Kees; Doiron, Dany; Fortier, Isabel; Gulliver, John; Hveem, Kristian; Mbatchou, Stéphane; Morley, David W; Stolk, Ronald P; Zijlema, Wilma L; Elliott, Paul; Hodgson, Susan


    Blood biochemistry may provide information on associations between road traffic noise, air pollution, and cardiovascular disease risk. We evaluated this in two large European cohorts (HUNT3, Lifelines). Road traffic noise exposure was modelled for 2009 using a simplified version of the Common Noise Assessment Methods in Europe (CNOSSOS-EU). Annual ambient air pollution (PM10, NO2) at residence was estimated for 2007 using a Land Use Regression model. The statistical platform DataSHIELD was used to pool data from 144 082 participants aged ≥20 years to enable individual-level analysis. Generalized linear models were fitted to assess cross-sectional associations between pollutants and high-sensitivity C-reactive protein (hsCRP), blood lipids and for (Lifelines only) fasting blood glucose, for samples taken during recruitment in 2006-2013. Pooling both cohorts, an inter-quartile range (IQR) higher day-time noise (5.1 dB(A)) was associated with 1.1% [95% confidence interval (95% CI: 0.02-2.2%)] higher hsCRP, 0.7% (95% CI: 0.3-1.1%) higher triglycerides, and 0.5% (95% CI: 0.3-0.7%) higher high-density lipoprotein (HDL); only the association with HDL was robust to adjustment for air pollution. An IQR higher PM10 (2.0 µg/m3) or NO2 (7.4 µg/m3) was associated with higher triglycerides (1.9%, 95% CI: 1.5-2.4% and 2.2%, 95% CI: 1.6-2.7%), independent of adjustment for noise. Additionally for NO2, a significant association with hsCRP (1.9%, 95% CI: 0.5-3.3%) was seen. In Lifelines, an IQR higher noise (4.2 dB(A)) and PM10 (2.4 µg/m3) was associated with 0.2% (95% CI: 0.1-0.3%) and 0.6% (95% CI: 0.4-0.7%) higher fasting glucose respectively, with both remaining robust to adjustment for air/noise pollution. Long-term exposures to road traffic noise and ambient air pollution were associated with blood biochemistry, providing a possible link between road traffic noise/air pollution and cardio-metabolic disease risk. Published on behalf of the European Society of

  14. Monitoring ground water storage at mesoscale using seismic noise: 30 years of continuous observation and thermo-elastic and hydrological modeling. (United States)

    Lecocq, Thomas; Longuevergne, Laurent; Pedersen, Helle Anette; Brenguier, Florent; Stammler, Klaus


    Groundwater is a vital freshwater resource for both humans and ecosystems. Achieving sustainable management requires a detailed knowledge of the aquifer structure and of its behavior in response to climatic and anthropogenic forcing. Traditional monitoring is carried out using piezometer networks, and recently complemented with new geophysical or satellite-based observations. These techniques survey either local (small-scale) water systems or regional areas (large scale) but, to date, adequate observation tools are lacking at the water management scale (i.e. several tens of kms), which is generally explored by modeling. Using 30 years of continuous recording by four seismic stations of the Gräfenberg Array (Germany), we demonstrate that long-term observations of velocity variations (approximately 0.01%) of surface waves can be extracted from such recordings of ocean-generated seismic noise. These small variations can be explained by changes to mechanical properties of the complex aquifer system in the top few hundred meters of the crust. The velocity changes can be interpreted as effects of temperature diffusion and water storage changes. Seismic noise recordings may become a new and valuable tool to monitor heterogeneous groundwater systems at mesoscale, in addition to existing observation methods.

  15. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal

    DEFF Research Database (Denmark)

    Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie


    We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...

  16. Lithospheric structure of Iberia and Morocco using finite-frequency Rayleigh wave tomography from earthquakes and seismic ambient noise (United States)

    Palomeras, I.; Villaseñor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.


    We present a new 3-D shear velocity model of the western Mediterranean from the Pyrenees, Spain, to the Atlas Mountains, Morocco, and the estimated crustal and lithospheric thickness. The velocity model shows different crustal and lithospheric velocities for the Variscan provinces, those which have been affected by Alpine deformation, and those which are actively deforming. The Iberian Massif has detectable differences in crustal thickness that can be related to the evolution of the Variscan orogen in Iberia. Areas affected by Alpine deformation have generally lower velocities in the upper and lower crust than the Iberian Massif. Beneath the Gibraltar Strait and surrounding areas, the crustal thickness is greater than 50 km, below which a high-velocity anomaly (>4.5 km/s) is mapped to depths greater than 200 km. We identify this as a subducted remnant of the NeoTethys plate referred to as the Alboran and western Mediterranean slab. Beneath the adjacent Betic and Rif Mountains, the Alboran slab is still attached to the base of the crust, depressing it, and ultimately delaminating the lower crust and mantle lithosphere as the slab sinks. Under the adjacent continents, the Alboran slab is surrounded by low upper mantle shear wave velocities (Vs lateral flow induced by the Alboran slab.

  17. Inversion of seismic data: how to take the correlated nature of noise into account; Inversion de donnees sismiques: prise en compte de la nature correlee du bruit

    Energy Technology Data Exchange (ETDEWEB)

    Renard, F.


    The goal of seismic inversion is to recover an Earth model that best fits some observed data. To reach that goal, we have to minimize an objective function that measures the amplitude of the misfits according to a norm to be chosen in data space. In general, the used norm is the L2 norm. Unfortunately, such a norm is not adapted to data corrupted by correlated noise: the noise is in that case inverted as signal and the inversion results are unacceptable. The goal of this thesis is to obtain satisfactory results to the inverse problem in that situation. For this purpose, we study two inverse problems: reflection tomography and waveform inversion. In reflection tomography, we propose a new formulation of the continuum inverse problem which relies on a H1 norm in data space. This allows us to account for the correlated nature of the noise that corrupts the kinematic information. However, this norm does not give more satisfactory results than the ones obtained with the classical formalism. This is why, for sake of simplicity, we recommend to use this classical formalism. Then we try to understand how to properly sample the kinematic information so as to obtain an accurate approximation of the continuum inverse problem. In waveform inversion, we propose to directly invert data corrupted by some correlated noise. A first idea consists in rejecting the noise in the residues. In that goal, we can use a semi-norm to formulate the inverse problem. This technique gives very good results, except when the data are corrupted by random noise. Thus we propose a second method which consists in retrieving, by solving an inverse problem, the signal and the noise whose sum best fits the data. This technique gives very satisfactory results, even if some random noise pollutes the data, and is moreover solved, thanks to an original algorithm, in a very efficient way. (author)

  18. Passive seismic investigation of Harrat Rahat

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, Robert J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Ambient noise correlation was applied to 18 months of continuous seismic data from 14 stations. The procedure of Bensen et al [2007] was followed with some changes to optimize signal-to-noise of the results. The 18 months of correlations (representing about 1 week of CPU time on a 12 core machine) were stacked and manually inspected to yield about 40 cross-correlations. These cross-correlations represent the Green’s function between the station pairs and will be analyzed in part two of this project to yield velocity structure.

  19. Long-termexposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts

    NARCIS (Netherlands)

    Cai, Yutong; Hansell, Anna L.; Blangiardo, Marta; Burton, Paul R.; de Hoogh, Kees; Doiron, Dany; Fortier, Isabel; Gulliver, John; Hveem, Kristian; Mbatchou, Stéphane; Morley, DavidW.; Stolk, Ronald P.; Zijlema, Wilma L.; Elliott, Paul; Hodgson, Susan


    Aims: Blood biochemistry may provide information on associations between road traffic noise, air pollution, and cardiovascular disease risk. We evaluated this in two large European cohorts (HUNT3, Lifelines). Methods and results: Road traffic noise exposure was modelled for 2009 using a simplified

  20. The Effects of Ambient Shipping Noise on the Performance of Single and Multiple Channel Moment Detectors for Unknown Transient Signals

    National Research Council Canada - National Science Library

    Pflug, Lisa


    ...) detector in both the Gaussian noise and the measured noise. Although the application of one-dimensional passband filters before the moment calculations improves the performance of all three detectors, it induces additional detection gain for the higher order moment detectors.

  1. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)


    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  2. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    International Nuclear Information System (INIS)

    Karyono; Mazzini, Adriano; Sugiharto, Anton; Lupi, Matteo; Syafri, Ildrem; Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat


    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface

  3. Accelerometer Sensor Specifications to Predict Hydrocarbon Using Passive Seismic Technique

    Directory of Open Access Journals (Sweden)

    M. H. Md Khir


    Full Text Available The ambient seismic ground noise has been investigated in several surveys worldwide in the last 10 years to verify the correlation between observed seismic energy anomalies at the surface and the presence of hydrocarbon reserves beneath. This is due to the premise that anomalies provide information about the geology and potential presence of hydrocarbon. However a technology gap manifested in nonoptimal detection of seismic signals of interest is observed. This is due to the fact that available sensors are not designed on the basis of passive seismic signal attributes and mainly in terms of amplitude and bandwidth. This is because of that fact that passive seismic acquisition requires greater instrumentation sensitivity, noise immunity, and bandwidth, with active seismic acquisition, where vibratory or impulsive sources were utilized to receive reflections through geophones. Therefore, in the case of passive seismic acquisition, it is necessary to select the best monitoring equipment for its success or failure. Hence, concerning sensors performance, this paper highlights the technological gap and motivates developing dedicated sensors for optimal solution at lower frequencies. Thus, the improved passive seismic recording helps in oil and gas industry to perform better fracture mapping and identify more appropriate stratigraphy at low frequencies.

  4. More noise, please: How cultural overprinting in the urban environment can be exploited for improved subsurface imaging (Invited) (United States)

    Weiss, C. J.


    A long standing issue for geophysical imaging methods revolves around the proper treatment of "noise": Defining what noise is; separating "noise" for "signal"; filtering and suppressing noise; and recently, challenging the prevailing view that noise is a nuisance to see if, instead, it may contribute favorably toward improving subsurface imaging fidelity. This last point is particularly relevant to geophysical imaging in the urban environment where noise sources are abundant, complex, and logistical constraints on geophysical field procedures prohibit a crude "turning up the volume" approach to simply drown out the noise with powerful sources of electromagnetic and seismic energy. In this contribution I explore the concept passive geophysical imaging which uses uncorrelated ambient noise as the source of geophysical imaging energy to be used in the urban environment. Examples will be presented from seismic and ground penetrating radar methods, in addition to new theoretical results bearing on the feasibility of low-frequency electromagnetic induction techniques.

  5. Intérvalo unitario de tiempo de medición para ruido ambiental Unit timing for environmental noise measurements

    Directory of Open Access Journals (Sweden)

    William A. Giraldo A.


    Full Text Available En las entidades ambientales, los encargados de las mediciones de ruido ambiental y en general todas las personas que de una u otra forma han trabajado en esta temática, en algún momento se han puesto a pensar sobre la representatividad del tiempo unitario de muestreo y la forma de realizar evaluaciones para dar cumplimiento con dicho tiempo, sin que se aumenten considerablemente los costos de medición. En este artículo se plantea una metodología para determinar cómo un intervalo de cierta duración -en este caso, quince (15 minutos- para el muestreo del nivel de presión sonora es representativo para el período de una (1 hora, logrando de esta manera optimizar el uso de los sonómetros "fijos" y proponiendo una estrategia para reducir los costos en las mediciones de ruido ambiental y en general la elaboración de mapas de ruido.The managers of environmental noise measurements in environmental control agencies, or in general every person that work in this subject, have to think on the representativity of the unit measurement time interval, and how to evaluate it in order to get good quality results regarding the unit measurement time without increasing the measurement costs. A methodology for deciding if a certain measuring time interval -in this case, fifteen (15 minutes- is representative of noise pressure levels occurring during one hour, is proposed in this paper. This methodology allows to optimize the use of stationary sound level meters and to propose a strategy for reducing the costs of environmental noise measurements and of the designing of noise maps in general.

  6. High-Resolution Analysis of Seismic Air Gun Impulses and Their Reverberant Field as Contributors to an Acoustic Environment. (United States)

    Guerra, Melania; Dugan, Peter J; Ponirakis, Dimitri W; Popescu, Marian; Shiu, Yu; Rice, Aaron N; Clark, Christopher W


    In September and October 2011, a seismic survey took place in Baffin Bay, Western Greenland, in close proximity to a marine protected area (MPA). As part of the mitigation effort, five bottom-mounted marine acoustic recording units (MARUs) collected data that were used for the purpose of measuring temporal and spectral features from each impulsive event, providing a high-resolution record of seismic reverberation persistent after the direct impulse. Results were compared with ambient-noise levels as computed after the seismic survey to evidence that as a consequence of a series of repeating seismic impulses, sustained elevated levels create the potential for masking.

  7. Can we use the q-Gaussian of ambient noise fluctuations as a vulnerability index? A case study in Cultural Heritage buildings (United States)

    Vallianatos, Filippos; Koutalonis, Ioannis; Moisidi, Margarita; Chatzopoulos, Georgios


    In this work we study in terms of Tsallis statistical mechanics the properties of microtremors' fluctuations in two church bell towers, which are monuments of cultural heritage, in the city of Chania (Crete, Greece). We have shown that fluctuations of ambient vibrations recordings in the Church tower bells follow a q-Gaussian distribution. The behavior of Tsallis q parameter with the level (high) of the measuring point within the tower and the amplification factors at that points as extracted from horizontal-to-vertical (HVSR) spectral ratios are presented and discussed. Since q decreases as the amplification factor increases, we could suggest q as a vulnerability index, where, as q decreases approaching unity, then the structural system is getting more vulnerable. The latter approach suggests that introducing ideas of Tsallis statistics could be useful in characterizing extremely complex processes as that governed the estimation of seismic vulnerability in which a multidisciplinary approach is required.

  8. First to Flush: The Effects of Ambient Noise on Songbird Flight Initiation Distances and Implications for Human Experiences with Nature

    Directory of Open Access Journals (Sweden)

    Alissa R. Petrelli


    Full Text Available Throughout the world, birds represent the primary type of wildlife that people experience on a daily basis. However, a growing body of evidence suggests that alterations to the acoustic environment can negatively affect birds as well as humans in a variety of ways, and altered acoustics from noise pollution has the potential to influence human interactions with wild birds. Birds respond to approaching humans in a manner analogous to approaching predators, but the context of the interaction can also greatly influence the distance at which a bird initiates flight or escape behavior (i.e., flight initiation distance or FID. Here, we hypothesized that reliance on different sensory modalities to balance foraging and threat detection can influence how birds respond to approaching threats in the presence of background noise. We surveyed 12 songbird species in California and Wyoming and categorized each species into one of three foraging guilds: ground foragers, canopy gleaners, and hawking flycatchers and predicted FIDs to decrease, remain the same and increase with noise exposure, respectively. Contrary to expectations, the canopy gleaning and flycatching guilds exhibited mixed responses, with some species exhibiting unchanged FIDs with noise while others exhibited increased FIDs with noise. However, FIDs of all ground foraging species and one canopy gleaner decreased with noise levels. Additionally, we found no evidence of phylogenetic structure among species' mean FID responses and only weak phylogenetic structure for the relationship between FIDs and noise levels. Although our results provide mixed support for foraging strategy as a predictor of bird response to noise, our finding that most of the species we surveyed have shorter FIDs with increases in noise levels suggest that human observers may be able to approach ground foraging species more closely under noisy conditions. From an ecological perspective, however, it remains unclear whether

  9. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer


    location problem. Optimization for additional criteria (e.g., focal mechanism determination or installation costs) can be included. We consider a 3D seismic velocity model, an European ambient seismic noise model derived from high-resolution land-use data, and existing seismic stations in the vicinity of the geotechnical site. Additionally, we account for the attenuation of the seismic signal with travel time and ambient seismic noise with depth to be able to correctly deal with borehole station networks. Using this algorithm we are able to find the optimal geometry and size of the seismic monitoring network that meets the predefined application-oriented performance criteria. This talk will focus on optimal network geometries for deep geothermal projects of the EGS and hydrothermal type, and discuss the requirements for basic seismic surveillance and high-resolution reservoir monitoring and characterization.

  10. Improving the sensitivity of future GW observatories in the 1-10 Hz band: Newtonian and seismic noise

    NARCIS (Netherlands)

    Beker, M.G.; Cella, G.; DeSalvo, R.; Doets, M.; Grote, H.; Harms, J.; Hennes, E.; Mandic, V.; Rabeling, D.S.; van den Brand, J.F.J.; van Leeuwen, C.M.


    The next generation gravitational wave interferometric detectors will likely be underground detectors to extend the GW detection frequency band to frequencies below the Newtonian noise limit. Newtonian noise originates from the continuous motion of the Earth's crust driven by human activity, tidal

  11. Seismic monitoring by piezoelectric accelerometers of a damaged historical monument in downtown L’Aquila


    Giuseppe Di Giulio; Maurizio Vassallo; Giosuè Boscato; Alessandra Dal Cin; Salvatore Russo


    We show the preliminary seismic monitoring of a historical church in L’Aquila (central Italy), which was strongly damaged by the 2009 seismic sequence. This structure, S. Maria del Suffragio church, suffered the collapse of a great part of the dome during the April 6th 2009 Mw 6.1 earthquake. In this paper, recordings of ambient noise and local earthquakes have been analyzed. The seismic data were recorded by means of a dynamic monitoring system (19 mono-directional and 3 tri-directional piez...

  12. Thermal conductivity of silver loaded conductive epoxy from cryogenic to ambient temperature and its application for precision cryogenic noise measurements (United States)

    Amils, Ricardo I.; Gallego, Juan Daniel; Sebastián, José Luis; Muñoz, Sagrario; Martín, Agustín; Leuther, Arnulf


    The pressure to increase the sensitivity of instrumentation has pushed the use of cryogenic Low Noise Amplifier (LNA) technology into a growing number of fields. These areas range from radio astronomy and deep space communications to fundamental physics. In this context manufacturing for cryogenic environments requires a proper thermal knowledge of the materials to be able to achieve adequate design behavior. In this work, we present experimental measurements of the thermal conductivity of a silver filled conductive epoxy (EPO-TEK H20E) which is widely used in cryogenic electronics applications. The characterization has been made using a sample preparation which mimics the practical use of this adhesive in the fabrication of cryogenic devices. We apply the data obtained to a detailed analysis of the effects of the conductive epoxy in a monolithic thermal noise source used for high accuracy cryogenic microwave noise measurements. In this application the epoxy plays a fundamental role since its limited thermal conductivity allows heating the chip with relatively low power. To our knowledge, the cryogenic thermal conductivity data of this epoxy has not been reported before in the literature in the 4-300 K temperature range. A second non-conductive epoxy (Gray Scotch-Weld 2216 B/A), also widely used in cryogenic applications, has been measured in order to validate the method by comparing with previous published data.

  13. Surface wave imaging of the weakly extended Malawi Rift from ambient-noise and teleseismic Rayleigh waves from onshore and lake-bottom seismometers (United States)

    Accardo, N. J.; Gaherty, J. B.; Shillington, D. J.; Ebinger, C. J.; Nyblade, A. A.; Mbogoni, G. J.; Chindandali, P. R. N.; Ferdinand, R. W.; Mulibo, G. D.; Kamihanda, G.; Keir, D.; Scholz, C.; Selway, K.; O'Donnell, J. P.; Tepp, G.; Gallacher, R.; Mtelela, K.; Salima, J.; Mruma, A.


    Located at the southernmost sector of the Western Branch of the East African Rift System, the Malawi Rift exemplifies an active, magma-poor, weakly extended continental rift. To investigate the controls on rifting, we image crustal and uppermost mantle structure beneath the region using ambient-noise and teleseismic Rayleigh-wave phase velocities between 9 and 100 s period. Our study includes six lake-bottom seismometers located in Lake Malawi (Nyasa), the first time seismometers have been deployed in any of the African rift lakes. Noise levels in the lake are lower than that of shallow oceanic environments and allow successful application of compliance corrections and instrument orientation determination. Resulting phase-velocity maps reveal slow velocities primarily confined to Lake Malawi at short periods (T 25 s), a prominent low-velocity anomaly exists beneath the Rungwe Volcanic Province at the northern terminus of the rift basin. Estimates of phase-velocity sensitivity indicates these low velocities occur within the lithospheric mantle and potentially uppermost asthenosphere, suggesting that mantle processes may control the association of volcanic centres and the localization of magmatism. Beneath the main portion of the Malawi Rift, a modest reduction in velocity is also observed at periods sensitive to the crust and upper mantle, but these velocities are much higher than those observed beneath Rungwe.

  14. GSpecDisp: A matlab GUI package for phase-velocity dispersion measurements from ambient-noise correlations (United States)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur; Tryggvason, Ari


    We present a graphical user interface (GUI) package to facilitate phase-velocity dispersion measurements of surface waves in noise-correlation traces. The package, called GSpecDisp, provides an interactive environment for the measurements and presentation of the results. The selection of a dispersion curve can be done automatically or manually within the package. The data are time-domain cross-correlations in SAC format, but GSpecDisp measures phase velocity in the spectral domain. Two types of phase-velocity dispersion measurements can be carried out with GSpecDisp; (1) average velocity of a region, and (2) single-pair phase velocity. Both measurements are done by matching the real part of the cross-correlation spectrum with the appropriate Bessel function. Advantages of these two types of measurements are that no prior knowledge about surface-wave dispersion in the region is needed, and that phase velocity can be measured up to that period for which the inter-station distance corresponds to one wavelength. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor. First, we briefly present the theory behind the methods that are used, and then describe different modules of the package. Finally, we validate the developed algorithms by applying them to synthetic and real data, and by comparison with other methods. The source code of GSpecDisp can be downloaded from:

  15. The Ongoing Addition of Infrasound Sensors and the Flexette Wind-Noise Reducing System to Global Seismic Network Stations Operated by Project IDA (United States)

    Ebeling, C. W.; Coon, C.


    Infrasound sensors are now being installed at Global Seismic Network (GSN) stations meeting certain infrastructure criteria. Manufactured by Hyperion Technology Group, Inc., these instruments (model IFS-3312) have a nominal sensitivity of 140 mV/Pa (at 1 Hz), a full-scale range of ±100 Pa, and a dynamic range of 120 dB. Low power consumption (750 mW at 12 VDC) and small size (153 mm x 178 mm) ease incorporation into the mix of existing GSN instrumentation. The accompanying flexible rosette ("Flexette") acoustic wind-noise reducing system, designed by Project IDA (International Deployment of Accelerometers-IDA), optimally includes 24 inlets, 4 secondary manifolds, and a single primary manifold. Each secondary manifold is connected to 6 inlets and to the primary manifold by 10-ft air hoses, thus eliminating stresses and the greater potential for leaks associated with the use of pipe. While the main design goal was to maximize the reduction of acoustic wind-noise over the widest range of wind speeds possible, consideration of additional criteria resulted in a Flexette base design easily tailored to meet individual station constraints and restrictions, made up of inexpensive (total cost Management Center (IRIS-DMC).

  16. Ambiente urbano e percepção da poluição sonora Urban environment and perception to noise pollution

    Directory of Open Access Journals (Sweden)

    Adriana Bender Moreira de Lacerda


    Full Text Available A presente pesquisa avaliou a percepção da população de uma grande cidade em relação à poluição sonora (ruído urbano. Buscou-se identificar quais fontes sonoras são percebidas com maior freqüência pela população e quais reações psico-sociais relacionadas ao ruído urbano são identificados por ela. Foi utilizado um questionário composto de questões fechadas, abrangendo aspectos demográficos e aspectos psico-sociais referentes ao ruído ambiental. Oitocentos e noventa e dois (892 indivíduos participaram da pesquisa. As principais fontes de ruído citadas pelos moradores como causadoras de incômodo foram: 1 o tráfego de veículos (67 %, 2 os vizinhos (33%, 3 o barulho de sirenes (23%, 4 o barulho de animais (21% e 5 o barulho gerado pela construção civil (21 %. As principais reações psico-sociais foram: 1 irritabilidade (55%, 2 baixa concentração (28%, 3 insônia (20% e 4 dor de cabeça (19%. Os resultados obtidos coincidem com dados obtidos em pesquisas desenvolvidas na Europa, EUA e no Brasil, de que a poluição sonora ambiental influencia a qualidade de vida da população, gerando reações psico-sociais importantes, como: 1 irritabilidade e 2 insônia. Estes podem estar na base de outras doenças (disfunções cardiovasculares, podendo interferir na saúde e no bem estar dos indivíduos em particular e de uma população urbana como um todo, gerando um problema de saúde pública.The present study investigated the psychosocial complaints related to urban noise among the population of Curitiba. We used a questionnaire of closed-set questions to collect data on demographics and psychosocial reactions to environmental noise when subjects are at home. Eight hundred and ninety-two individuals (892 participated of the study. The main noise sources associated with discomfort or annoyance were traffic noise (67%, neighbors (33%, sirens (23%, animals (21%, and construction (21%. The main psychosocial complaints were

  17. Crustal and upper mantle shear velocities of Iberia, the Alboran Sea, and North Africa from ambient noise and ballistic finite-frequency Rayleigh wave tomography (United States)

    Palomeras, I.; Villasenor, A.; Thurner, S.; Levander, A.; Gallart, J.; mimoun, H.


    The complex Mesozoic-Cenozoic Alpine deformation in the western Mediterranean extends from the Pyrenees in northern Spain to the Atlas Mountains in southern Morocco. The Iberian plate was accreted to the European plate in late Cretaceous, resulting in the formation of the Pyrenees. Cenozoic African-European convergence resulted in subduction of the Tethys oceanic plate beneath Europe. Rapid Oligocene slab rollback from eastern Iberia spread eastward and southward, with the trench breaking into three segments by the time it reached the African coast. One trench segment moved southwestward and westward creating the Alboran Sea, floored by highly extended continental crust, and building the encircling Betics Rif mountains comprising the Gibraltar arc, and the Atlas mountains, which formed as the inversion of a Jurassic rift. A number of recent experiments have instrumented this region with broad-band arrays (the US PICASSO array, Spanish IberArray and Siberia arrays, the University of Munster array), which, including the Spanish, Portuguese, and Moroccan permanent networks, provide a combined array of 350 stations having an average interstation spacing of ~60 km. Taking advantage of this dense deployment, we have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). Approximately 50,000 stations pairs were used to measure the phase velocity from ambient noise and more than 160 teleseismic events to measure phase velocity for longer periods. The inversion of the phase velocity dispersion curves provides a 3D shear velocity for the crust and uppermost mantle. Our results show differences between the various tectonic regions that extend to upper mantle depths (~200 km). In Iberia we obtain, on average, higher upper mantle shear velocities in the western Variscan region than in the younger eastern part. We map high upper mantle velocities (>4.6 km/s) beneath the

  18. Spatial and temporal variation of seismic velocity during earthquakes and volcanic eruptions in western Japan: Insight into mechanism for seismic velocity variation (United States)

    Tsuji, T.; Ikeda, T.; Nimiya, H.


    We report spatio-temporal variations of seismic velocity around the seismogenic faults in western Japan. We mainly focus on the seismic velocity variation during (1) the 2016 Off-Mie earthquake in the Nankai subduction zone (Mw5.8) and (2) the 2016 Kumamoto earthquake in Kyushu Island (Mw7.0). We applied seismic interferometry and surface wave analysis to the ambient noise data recorded by Hi-net and DONET seismometers of National Research Institute for Earth Science and Disaster Resilience (NIED). Seismic velocity near the rupture faults and volcano decreased during the earthquake. For example, we observed velocity reduction around the seismogenic Futagawa-Hinagu fault system and Mt Aso in the 2016 Kumamoto earthquake. We also identified velocity increase after the eruptions of Mt Aso. During the 2016 Off-Mie earthquake, we observed seismic velocity variation in the Nankai accretionary prism. After the earthquakes, the seismic velocity gradually returned to the pre-earthquake value. The velocity recovering process (healing process) is caused by several mechanisms, such as pore pressure reduction, strain change, and crack sealing. By showing the velocity variations obtained at different geologic settings (volcano, seismogenic fault, unconsolidated sediment), we discuss the mechanism of seismic velocity variation as well as the post-seismic fault healing process.

  19. Seismic detectability of meteorite impacts on Europa (United States)

    Tsuji, Daisuke; Teanby, Nicholas


    only appropriate for order of magnitude calculations because of considerable uncertainties in the small impactor source population, internal structure, and ambient noise level. However, our results suggest that probing the deep interior using impacts will be challenging and require an extended mission duration and low noise levels to give a reasonable chance of detection. Therefore, for future seismic exploration, faulting due to stresses in the rigid outer ice shell is likely to be much more viable mechanism for probing the interior.

  20. Correlation of Crustal Structures and Seismicity Patterns in Northern Appalachians (United States)

    Yang, X.; Gao, H.


    The earthquake distributions in northern Appalachians are bounded by major geologically-defined terrane boundaries. There is a distinct seismic gap within Taconic Belt between the Western Quebec Seismic Zone (WQSZ) to the west and the seismically active Ganderia terrane to the east. It is not clear, however, what crustal structures control the characteristics of earthquake clustering in this region. Here we present a newly constructed crustal shear velocity model for the northern Appalachians using Rayleigh wave data extracted from ambient noises. Our tomographic model reveals strongly heterogeneous seismic structures in the crust. We observe multiple NW-dipping patches of high-velocity anomalies in the upper crust beneath the southeastern WQSZ. The upper crust shear velocities in the Ganderia and Avalonia region are generally lower than those beneath the WQSZ. The middle crust has relatively lower velocities in the study area. The earthquakes in the study area are constrained within the upper crust. Most of the earthquake hypocenters within the WQSZ are concentrated along the NW-dipping boundaries separating the high-velocity anomalies. In contrast, most of the earthquake hypocenters in the Ganderia and Avalonia region are diffusely distributed without clear vertical lineaments. The orientations of maximum compressive stresses change from W-E in the Ganderia and Avalonia region to SW-NE in the WQSZ. The contrasts in seismicity, velocity, and stress field across the Taconic Belt indicate that the Taconic Belt terrane may act as a seismically inactive buffer zone in northern Appalachians.

  1. High-Resolution Seismic Imaging of Near-Surface Voids (United States)

    Gritto, R.; Korneev, V. A.; Elobaid, E. A.; Mohamed, F.; Sadooni, F.


    to detect and locate the object. Furthermore, we show that ambient noise recordings may generate data with sufficient signal-to-noise ratio to successfully detect and locate subsurface voids. Being able to use ambient noise recordings would eliminate the need to employ active seismic sources that are time consuming and more expensive to operate.

  2. Interferometric seismic imaging around the active Lalor mine in the Flin Flon greenstone belt, Canada (United States)

    Roots, Eric; Calvert, Andrew J.; Craven, Jim


    Seismic interferometry, which recovers the impulse response of the Earth by cross-correlation of ambient noise recorded at sets of two receivers, has found several applications, including the generation of virtual shot gathers for use in seismic reflection processing. To evaluate the effectiveness of this passive recording technique in mineral exploration in a hard-rock environment, 336 receivers recorded 300 h of ambient noise over the volcanogenic massive sulphide deposit of the recently discovered Lalor mine in the Canadian Flin Flon greenstone belt. A novel time-domain beamforming algorithm was developed to search for individual source locations, demonstrating that the vast majority of noise originated from the mine and ventilation shafts of the Lalor mine. The results of the beamforming were utilized in conjunction with frequency-wavenumber filtering to remove undesirable, mostly monochromatic surface wave noise originating from nearby sources. Virtual shot gathers were generated along three receiver lines, each of which was processed as a separate 2-D reflection line. Two of the resulting unmigrated reflection profiles are compared against coincident dipmoveout-stacked data from a larger, coincident 3-D dynamite seismic survey that was also acquired over the Lalor mine in 2013. Using knowledge of the local geology derived from numerous boreholes, coherent events recovered in the passive reflection profiles are inferred to be either spurious arrivals or real reflections, some of which can be interpreted in terms of geological contacts, indicating the future potential of passive recording surveys in hard rock settings.

  3. Network Optimization for Induced Seismicity Monitoring in Urban Areas (United States)

    Kraft, T.; Husen, S.; Wiemer, S.


    design that aims to minimize the error ellipsoid of the linearized location problem. Optimization for additional criteria (e.g., focal mechanism determination or installation costs) can be included. We consider a 3D seismic velocity model, an European ambient seismic noise model derived from high-resolution land-use data and existing seismic stations in the vicinity of the geotechnical site. Using this algorithm we are able to find the optimal geometry and size of the seismic monitoring network that meets the predefined application-oriented performance criteria. In this talk we will focus on optimal network geometries for deep geothermal projects of the EGS and hydrothermal type. We will discuss the requirements for basic seismic surveillance and high-resolution reservoir monitoring and characterization.

  4. Seismic reflection and refraction methods

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    of noise that we attempt to suppress. In all of the remaining discussion about seismic waves, we will consider only body waves. 216 Factors affecting the amplitude of seismic waves Many factors affect the amplitude of seismic waves and some.... Factors which affect amplitude of seismic wave. Absorption is another factor, which affects amplitude. The loss of energy in the Earth due to absorption is described in various ways viz., i) by a quantity called ‘Q’ (the amount of energy in a seismic...

  5. Seismic properties of soil in the Eastern Baltiс Sea Region based on the horizontal to vertical spectral ratio method

    Directory of Open Access Journals (Sweden)

    Valerijs Nikulins


    Full Text Available The purpose of this study was to estimate and compare seismic properties of soil under different geological conditions of the southern part of the Baltic Shield and the northwestern part of the East European Platform. Horizontal to vertical spectral ratios (HVSRs were estimated with respect to seismic stations of the Baltic Virtual Seismic Network (BAVSEN. The HVSRs were made based on the analysis of ambient seismic noise and regional seismic events. Distinct peak amplitudes of HVSRs for the stations located on the Baltic Shield, the southern slope of the Baltic Shield and the sedimentary cover of the northwestern part of East European Platform were revealed. The stability of amplitudes and frequencies of HVSR peaks, soil vulnerability index and interrelation between frequency and unconsolidated sediment thickness were estimated. The results can be of practical importance for the solution of problems of engineering seismology and for the assessment of dynamic properties of soil and vulnerability of buildings.

  6. A neural network for noise correlation classification (United States)

    Paitz, Patrick; Gokhberg, Alexey; Fichtner, Andreas


    We present an artificial neural network (ANN) for the classification of ambient seismic noise correlations into two categories, suitable and unsuitable for noise tomography. By using only a small manually classified data subset for network training, the ANN allows us to classify large data volumes with low human effort and to encode the valuable subjective experience of data analysts that cannot be captured by a deterministic algorithm. Based on a new feature extraction procedure that exploits the wavelet-like nature of seismic time-series, we efficiently reduce the dimensionality of noise correlation data, still keeping relevant features needed for automated classification. Using global- and regional-scale data sets, we show that classification errors of 20 per cent or less can be achieved when the network training is performed with as little as 3.5 per cent and 16 per cent of the data sets, respectively. Furthermore, the ANN trained on the regional data can be applied to the global data, and vice versa, without a significant increase of the classification error. An experiment where four students manually classified the data, revealed that the classification error they would assign to each other is substantially larger than the classification error of the ANN (>35 per cent). This indicates that reproducibility would be hampered more by human subjectivity than by imperfections of the ANN.

  7. Combined GPS and seismic monitoring of a 12-story structure in a region of induced seismicity in Oklahoma (United States)

    Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.


    This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic

  8. Estimation of strain sensitivity of seismic velocity changes using the Earth tide: Analyses of seismic small array data at Izu-Oshima volcano, Japan (United States)

    Takano, T.; Nishimura, T.; Nakahara, H.; Ueda, H.; Fujita, E.


    Seismic velocity changes in the crust and/or subsurface have been often observed in association with the occurrences of earthquakes or volcanic activities. Mechanisms of the velocity changes are, for example, non-linear behavior of subsurface, strain changes, ground water level changes etc. To examine the effects of strain changes, the solid earth tide is a good input signal because the strain sensitivity of velocity changes can be measured at many places by using seismic interferometry [Takano et al., 2014; Hillers et al., 2015]. However, there are few reports which detect the velocity changes due to the Earth tide by seismic interferometry. The aim of this study is to estimate the strain sensitivity of velocity changes using the Earth tide at Izu-Oshima volcano, where the small seismic array and seismic network are deployed. We analyze the ambient noises recorded at the seismic array operated by NIED. The array consists of 7 short-period sensors with a diameter of 100 m. The continuous data from 1 Apr. 2014 to 1 Apr. 2015 is analyzed. The tidal strain is extracted from the raw data of the strain-meter deployed by JMA using Baytap-08 [Tamura et al., 1991]. We estimate the velocity changes due to the Earth tide as follows. First, we divide the observation period into five episodes: dilatational and contractional, according to volumetric strain values. CCFs of ambient noise at 2 - 4 Hz are separately stacked for each divided episode. Subsequently, we measure the velocity changes by calculating the phase delay between stacked CCFs at lapse time of less than 6 s. It is recognized that seismic velocity decreases during the dilatational episode with respect to the contractional episode. Strain sensitivity of seismic velocity changes, which is obtained by averaging for six station pairs, is estimated to be (-1.6±0.5)×104 strain-1. The strain sensitivity of the seismic velocity changes is consistent with that at the foot of Mt. Iwate [Takano et al., 2014]. We also

  9. Ambient diagnostics

    CERN Document Server

    Cai, Yang


    Part I. FundamentalsIntroductionWhat is Ambient Diagnostics?Diagnostic ModelsMultimedia IntelligenceCrowd SourcingSoft SensorsScience of SimplicityPersonal DiagnosesBasic AlgorithmsBasic ToolsSummaryProblemsTransformationEarly Discoveries of Heartbeat PatternsTransforms, Features, and AttributesSequential FeaturesSpatiotemporal FeaturesShape FeaturesImagery FeaturesFrequency Domain FeaturesMulti-Resolution FeaturesSummaryProblemsPattern RecognitionSimilarities and DistancesClustering MethodsClassification MethodsClassifier Accuracy MeasuresSummaryProblemsPart II. Multimedia IntelligenceSound RecognitionMicrophone AppsModern Acoustic Transducers (Microphones)Frequency Response CharacteristicsDigital Audio File FormatsHeart Sound SensingLung Sound SensingSnore MeterSpectrogram (STFT)Ambient Sound AnalysisSound RecognitionRecognizing Asthma SoundPeak ShiftFeature CompressionRegroupingNoise IssuesFuture ApplicationsSummaryProblemsColor SensorsColor SensingHuman Color VisionColor SensorsColor Matching ExperimentsC...

  10. An Empiric Relationship between Sediment Thickness of Different data and Resonance Frequency which Calculated by Using the H/V Ratio Method of Seismic Noise for Gölcük-Deǧirmendere Area (Turkey) (United States)

    Livaoğlu, Hamdullah; Irmak, T. Serkan; Güven, İ. Talih; Ozer, M. Fırat


    Over the past decades ambient noise surveys gain importance by the broad band instruments technology advanced. Despite the fact that the source of the surface ways on ambient noise is definitely is not proved, acquired resonant frequencies are quite reliable. Within this scope noise measurements were done in the Gölcük-Değirmendere area (Turkey) and the resonance frequency of each site was estimated from the main peak in the spectral ratio between horizontal and vertical components. It was carried out 43 one-station tremor measurement points as a part of the TUBITAK project named "Determining the risk analysis and management of urban disaster areas of Kocaeli- Gölcük- Değirmendere town". The calculated parameters and H/V was criticized with reliable H/V curve and clear H/V peak limitations. It was obtained a velocity-depth function for the study area. Calculated resonant frequencies and iteratively obtained shear wave velocities were used to determining a best-fitting exponential function for our empiric depth-frequency relation. By this means it was calculated up to 800 m the soft-sediment thickness for the study area which would pose a danger to the area and crucial local site effects under dynamic load. Keywords: Ground resonance frequencies, velocity-depth function, soft sediment thickness.

  11. Adaptive prediction applied to seismic event detection

    International Nuclear Information System (INIS)

    Clark, G.A.; Rodgers, P.W.


    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data

  12. Adaptive prediction applied to seismic event detection

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.A.; Rodgers, P.W.


    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data.

  13. Exploration and Visualization of Continuous Seismic Data Recorded by the Earthscope Transportable Array in 2009 (United States)

    Sufri, O.; Koper, K. D.


    We explore the structure of Earth's ambient noise field in the frequency range of 0.002-10 Hz as recorded by the Earthscope Transportable Array (TA) in calendar year 2009. Identifying and characterizing specific sources of ambient seismic energy can aide in the imaging of the crust and upper mantle, and is relevant to understanding ocean-atmosphere-solid Earth interactions. The TA is well-suited to studying ambient seismic noise because it has wide aperture, regular spacing, and uniform instrumentation, and the large volume of data are quickly and easily available from the IRIS DMC. We downloaded continuous, 40 sps, three-component seismograms from over 580 TA stations that were active during 2009, resulting in about 1.4 Tb of data in miniseed format. The data were reformatted into a database of SAC binary files and processed with a polarization procedure that returns the frequency dependent eigen-properties of the 3-by-3 spectral matrix (Koper & Hawley, 2010) for each hour of data, at each station. The eigen-properties give insight into the mode-type of the seismic noise and its geographical source region. We are currently experimenting with three methods of visualizing the noise attributes as a function of space and time. For single stations we have created year-long animations in which each hour-averaged frame shows the value of a scalar noise attribute as a function frequency, as well as color plots in which the value of the noise attribute is presented as a function of time and frequency. For the TA as a whole we are developing animations in which each hour-averaged frame consists of the value of a noise attribute (averaged over a frequency band) as a function of station location. To date we have focused on visualizing power as measured on single components (ZNE) and eigenvalues of the spectral matrix, and the most interesting observation is how common it is for the classic double-frequency peak (~ 0.10-0.25 Hz) in the power spectrum to split into two sub

  14. Gran Canaria temporary broadband seismic network: an study of the seismicity and Earth structure (United States)

    Almendros, Javier; de Lis Mancilla, Flor; Martinez-Arevalo, Carmen; Carmona, Enrique; Sanchez, Nieves; Heit, Benjamin; Garcia, Alicia; Martin-Leon, Rosa; Buontempo, Luisa; Yuan, Xiahoui


    The present project is a joint effort between different institutions to deploy a dense seismic network at Gran Canaria island (Canary Islands, Spain). The interstation distance is around 20 km. The broadband seismic network is composed of one permanent (Guralp CMG-3T 120 s) and five temporary stations (Guralp CMG-3ESP 60 s). The permanent station is a 120 s Guralp CMG-3T and belongs to the Canary Island Seismic Network, run by the Instituto Geográfico Nacional (IGN) of Spain. The temporary stations are 60 s Guralp CMG-3ESP, provided by the GFZ seismic pool. The deployment was carried out in December 2009. The stations will be recording during two years. The improvement of the seismic network allow us to tackle the following issues: the detection and analysis of any local seismicity of tectonic and/or volcanic origin at Gran Canaria island; to contribute to the understanding of the regional seismicity with special interest in the oceanic channel between Tenerife and Gran Canaria Island in collaboration with a project running a dense temporary seismic network in Tenerife; to study the crustal and upper mantle structure, under Gran Canaria to constrain the crustal structure, the source of the volcanism, and better sample the mantle discontinuities and anisotropy. To study the Earth structure, we use receiver function analysis, ambient seismic noise and SKS anisotropy techniques, This project is part of a long-term research of the crustal and the mantle structure of the Canary Islands, which has started with Gran Canaria and Tenerife Islands and will eventually continue with the rest of the archipelago. The origin of the Canary Islands is generally attributed to a broad mantle upwelling under a slow moving plate, resulting in spatially and temporally distributed volcanic activity and a large number of seamounts and islands. A controversial discussion has been going on about the factors that control the evolution of the volcanic edifices, the type of the melting

  15. Single-station seismic noise measures, microgravity, and 3D electrical tomographies to assess the sinkhole susceptibility: the "Il Piano" area (Elba Island - Italy) case study (United States)

    Pazzi, Veronica; Di Filippo, Michele; Di Nezza, Maria; Carlà, Tommaso; Bardi, Federica; Marini, Federico; Fontanelli, Katia; Intrieri, Emanuele; Fanti, Riccardo


    Sudden subsurface collapse, cavities, and surface depressions, regardless of shape and origin, as well as doline are currently indicate by means of the term "sinkhole". This phenomenon can be classified according to a large variety of different schemes, depending on the dominant formation processes (soluble rocks karstic processes, acidic groundwater circulation, anthropogenic caves, bedrock poor geomechanical properties), and on the geological scenario behind the development of the phenomenon. Considering that generally sinkholes are densely clustered in "sinkhole prone areas", detection, forecasting, early warning, and effective monitoring are key aspects in sinkhole susceptibility assessment and risk mitigation. Nevertheless, techniques developed specifically for sinkhole detection, forecasting and monitoring are missing, probably because of a general lack of sinkhole risk awareness, and an intrinsic difficulties involved in detecting precursory sinkhole deformations before collapse. In this framework, integration of different indirect/non-invasive geophysical methods is the best practice approach. In this paper we present the results of an integrated geophysical survey at "Il Piano" (Elba Island - Italy), where at least nine sinkholes occurred between 2008 and 2014. 120 single-station seismic noise measures, 17 3D electrical tomographies (min area 140.3 m2, max area 10,188.9 m2; min electrode spacing 2 m, max electrode spacing 5 m), 964 measurement of microgravity spaced in a grid of 6 m to 8 m were carried out at the study area. The most likely origin for these sinkholes was considered related to sediment net erosion from the alluvium, caused by downward water circulation between aquifers. Therefore, the goals of the study were: i) obtaining a suitable geological and hydrogeological model of the area; ii) detecting possible cavities which could evolve in sinkholes, and finally iii) assess the sinkhole susceptibility of the area. Among the results of the

  16. Microtremors for seismic response assessments of important modern and historical structures of Crete (United States)

    Margarita, Moisidi; Filippos, Vallianatos


    Strengthening seismic risk resilience undertaken by the civil protection authorities is an important issue towards to the guidelines given by Sendai Framework, 2013 European Union Civil Protection legislation and the global agenda 2030 for sustainable development. Moreover, in recent years it has been emphasized that site effect specifications are important issues for the seismic hazard assessments of modern, historical and monumental structures. This study assess the frequencies of vibration of historical, monumental and modern structures in the cities of Chania, Rethymno and Heraklion of Crete using ambient noise recordings processed through the Horizontal to Vertical spectral ratio and examines potential soil-structure interaction phenomena. Examples of the seismic response of high rise structures such as a church bell tower and the lighthouses in Chania are presented.

  17. ASDF: An Adaptable Seismic Data Format with Full Provenance (United States)

    Smith, J. A.; Krischer, L.; Tromp, J.; Lefebvre, M. P.


    In order for seismologists to maximize their knowledge of how the Earth works, they must extract the maximum amount of useful information from all recorded seismic data available for their research. This requires assimilating large sets of waveform data, keeping track of vast amounts of metadata, using validated standards for quality control, and automating the workflow in a careful and efficient manner. In addition, there is a growing gap between CPU/GPU speeds and disk access speeds that leads to an I/O bottleneck in seismic workflows. This is made even worse by existing seismic data formats that were not designed for performance and are limited to a few fixed headers for storing metadata.The Adaptable Seismic Data Format (ASDF) is a new data format for seismology that solves the problems with existing seismic data formats and integrates full provenance into the definition. ASDF is a self-describing format that features parallel I/O using the parallel HDF5 library. This makes it a great choice for use on HPC clusters. The format integrates the standards QuakeML for seismic sources and StationXML for receivers. ASDF is suitable for storing earthquake data sets, where all waveforms for a single earthquake are stored in a one file, ambient noise cross-correlations, and adjoint sources. The format comes with a user-friendly Python reader and writer that gives seismologists access to a full set of Python tools for seismology. There is also a faster C/Fortran library for integrating ASDF into performance-focused numerical wave solvers, such as SPECFEM3D_GLOBE. Finally, a GUI tool designed for visually exploring the format exists that provides a flexible interface for both research and educational applications. ASDF is a new seismic data format that offers seismologists high-performance parallel processing, organized and validated contents, and full provenance tracking for automated seismological workflows.

  18. Teaching hands-on geophysics: examples from the Rū seismic network in New Zealand (United States)

    van Wijk, Kasper; Simpson, Jonathan; Adam, Ludmila


    Education in physics and geosciences can be effectively illustrated by the analysis of earthquakes and the subsequent propagation of seismic waves in the Earth. Educational seismology has matured to a level where both the hard- and software are robust and user friendly. This has resulted in successful implementation of educational networks around the world. Seismic data recorded by students are of such quality that these can be used in classic earthquake location exercises, for example. But even ocean waves weakly coupled into the Earth’s crust can now be recorded on educational seismometers. These signals are not just noise, but form the basis of more recent developments in seismology, such as seismic interferometry, where seismic waves generated by ocean waves—instead of earthquakes—can be used to infer information about the Earth’s interior. Here, we introduce an earthquake location exercise and an analysis of ambient seismic noise, and present examples. Data are provided, and all needed software is freely available.

  19. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage (United States)

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.


    ISNet ( is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  20. SeismoDome: Sonic and visual representation of earthquakes and seismic waves in the planetarium (United States)

    Holtzman, B. K.; Candler, J.; Repetto, D.; Pratt, M. J.; Paté, A.; Turk, M.; Gualtieri, L.; Peter, D. B.; Trakinski, V.; Ebel, D. S. S.; Gossmann, J.; Lem, N.


    Since 2014, we have produced four "Seismodome" public programs in the Hayden Planetarium at the American Museum of Natural History in New York City. To teach the general public about the dynamics of the Earth, we use a range of seismic data (seismicity catalogs, surface and body wave fields, ambient noise, free oscillations) to generate movies and sounds conveying aspects of the physics of earthquakes and seismic waves. The narrative aims to stretch people's sense of time and scale, starting with 2 billion years of convection, then zooming in seismicity over days to twenty years at different length scales, to hours of global seismic wave propagation, all compressed to minute long movies. To optimize the experience in the planetarium, the 180-degree fisheye screen corresponds directly to the surface of the Earth, such that the audience is inside the planet. The program consists of three main elements (1) Using sonified and animated seismicity catalogs, comparison of several years of earthquakes on different plate boundaries conveys the dramatic differences in their dynamics and the nature of great and "normal" earthquakes. (2) Animations of USArray data (based on "Ground Motion Visualizations" methods from IRIS but in 3D, with added sound) convey the basic observations of seismic wave fields, with which we raise questions about what they tell us about earthquake physics and the Earth's interior structure. (3) Movies of spectral element simulations of global seismic wave fields synchronized with sonified natural data push these questions further, especially when viewed from the interior of the planet. Other elements include (4) sounds of the global ambient noise field coupled to movies of mean ocean wave height (related to the noise source) and (5) three months of free oscillations / normal modes ringing after the Tohoku earthquake. We use and develop a wide range of sonification and animation methods, written mostly in python. Flat-screen versions of these movies

  1. Joint inversion of ambient noise surface wave and gravity data to image the upper crustal structure of the Tanlu fault zone to the southeast of Hefei, China (United States)

    Wang, K.; Gu, N.; Zhang, H.; Zhou, G.


    The Tanlu fault is a major fault located in the eastern China, which stretches 2400 km long from Tancheng in the north to Lujiang in the south. It is generally believed that the Tanlu fault zone was formed in Proterozoic era and underwent a series of complicated processes since then. To understand the upper crustal structure around the southern segment of the Tanlu fault zone, in 2017 we deployed 53 short period seismic stations around the fault zone to the southeast of Hefei, capital city of Anhui province. The temporary array continuously recorded the data for about one month from 17 March to 26 April 2017. The seismic array spans an area of about 30km x 30Km with an average station spacing of about 5-6km. The vertical component data were used for extracting Rayleigh wave phase and group velocity dispersion data for the period of 0.2 to 5 seconds. To improve imaging the upper crustal structure of the fault zone, we jointly inverted the surface wave dispersion data and the gravity data because they have complementary strengths. To combine surface wave dispersion data and gravity observations into a single inversion framework, we used an empirical relationship between seismic velocity and density of Maceira and Ammon (2009). By finding the optimal relative weighting between two data types, we are able to find a shear wave velocity (Vs) model that fits both data types. The joint inversion can resolve the upper crustal fault zone structure down to about 7 km in depth. The Vs model shows that in this region the Tanlu fault is associated with high velocity anomalies, corresponding well to the Feidong complex seen on the surface. This indicates that the Tanlu fault zone may provide a channel for the intrusion of hot materials.

  2. Classroom Noise and Teachers' Voice Production (United States)

    Rantala, Leena M.; Hakala, Suvi; Holmqvist, Sofia; Sala, Eeva


    Purpose: The aim of this study was to research the associations between noise (ambient and activity noise) and objective metrics of teachers' voices in real working environments (i.e., classrooms). Method: Thirty-two female and 8 male teachers from 14 elementary schools were randomly selected for the study. Ambient noise was measured during breaks…

  3. Relating seismicity to the velocity structure of the San Andreas Fault near Parkfield, CA (United States)

    Lippoldt, Rachel; Porritt, Robert W.; Sammis, Charles G.


    The central section of the San Andreas Fault (SAF) displays a range of seismic phenomena including normal earthquakes, low-frequency earthquakes (LFE), repeating microearthquakes (REQ) and aseismic creep. Although many lines of evidence suggest that LFEs are tied to the presence of fluids, their geological setting is still poorly understood. Here, we map the seismic velocity structures associated with LFEs beneath the central SAF using surface wave tomography from ambient seismic noise to provide constraints on the physical conditions that control LFE occurrence. Fault perpendicular sections show that the SAF, as revealed by lateral contrasts in relative velocities, is contiguous to depths of 50 km and appears to be relatively localized at depths between about 15 and 30 km. This is consistent with the hypothesis that LFEs are shear-slip events on a deep extension of the SAF. We find that along strike variations in seismic behaviour correspond to changes in the seismic structure, which support proposed connections between fluids and seismicity. LFEs and REQs occur within low-velocity structures, suggesting that the presence of fluids, weaker minerals, or hydrous phase minerals may play an important role in the generation of slow-slip phenomena.

  4. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...

  5. Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). (United States)

    Fuks, Kateryna B; Weinmayr, Gudrun; Basagaña, Xavier; Gruzieva, Olena; Hampel, Regina; Oftedal, Bente; Sørensen, Mette; Wolf, Kathrin; Aamodt, Geir; Aasvang, Gunn Marit; Aguilera, Inmaculada; Becker, Thomas; Beelen, Rob; Brunekreef, Bert; Caracciolo, Barbara; Cyrys, Josef; Elosua, Roberto; Eriksen, Kirsten Thorup; Foraster, Maria; Fratiglioni, Laura; Hilding, Agneta; Houthuijs, Danny; Korek, Michal; Künzli, Nino; Marrugat, Jaume; Nieuwenhuijsen, Mark; Östenson, Claes-Göran; Penell, Johanna; Pershagen, Göran; Raaschou-Nielsen, Ole; Swart, Wim J R; Peters, Annette; Hoffmann, Barbara


    We investigated whether traffic-related air pollution and noise are associated with incident hypertension in European cohorts. We included seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). We modelled concentrations of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), >2.5, and ≤10 µm (PMcoarse), soot (PM2.5 absorbance), and nitrogen oxides at the addresses of participants with land use regression. Residential exposure to traffic noise was modelled at the facade according to the EU Directive 2002/49/EC. We assessed hypertension as (i) self-reported and (ii) measured (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg or intake of BP lowering medication (BPLM). We used Poisson regression with robust variance estimation to analyse associations of traffic-related exposures with incidence of hypertension, controlling for relevant confounders, and combined the results from individual studies with random-effects meta-analysis. Among 41 072 participants free of self-reported hypertension at baseline, 6207 (15.1%) incident cases occurred within 5-9 years of follow-up. Incidence of self-reported hypertension was positively associated with PM2.5 (relative risk (RR) 1.22 [95%-confidence interval (CI):1.08; 1.37] per 5 µg/m³) and PM2.5 absorbance (RR 1.13 [95% CI:1.02; 1.24] per 10 - 5m - 1). These estimates decreased slightly upon adjustment for road traffic noise. Road traffic noise was weakly positively associated with the incidence of self-reported hypertension. Among 10 896 participants at risk, 3549 new cases of measured hypertension occurred. We found no clear associations with measured hypertension. Long-term residential exposures to air pollution and noise are associated with increased incidence of self-reported hypertension. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email:

  6. Seismic signal processing on heterogeneous supercomputers (United States)

    Gokhberg, Alexey; Ermert, Laura; Fichtner, Andreas


    The processing of seismic signals - including the correlation of massive ambient noise data sets - represents an important part of a wide range of seismological applications. It is characterized by large data volumes as well as high computational input/output intensity. Development of efficient approaches towards seismic signal processing on emerging high performance computing systems is therefore essential. Heterogeneous supercomputing systems introduced in the recent years provide numerous computing nodes interconnected via high throughput networks, every node containing a mix of processing elements of different architectures, like several sequential processor cores and one or a few graphical processing units (GPU) serving as accelerators. A typical representative of such computing systems is "Piz Daint", a supercomputer of the Cray XC 30 family operated by the Swiss National Supercomputing Center (CSCS), which we used in this research. Heterogeneous supercomputers provide an opportunity for manifold application performance increase and are more energy-efficient, however they have much higher hardware complexity and are therefore much more difficult to program. The programming effort may be substantially reduced by the introduction of modular libraries of software components that can be reused for a wide class of seismology applications. The ultimate goal of this research is design of a prototype for such library suitable for implementing various seismic signal processing applications on heterogeneous systems. As a representative use case we have chosen an ambient noise correlation application. Ambient noise interferometry has developed into one of the most powerful tools to image and monitor the Earth's interior. Future applications will require the extraction of increasingly small details from noise recordings. To meet this demand, more advanced correlation techniques combined with very large data volumes are needed. This poses new computational problems that

  7. Noise suppression by noise


    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel


    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  8. Local seismic monitoring east and north of Toronto - Volume 1

    International Nuclear Information System (INIS)

    Mohajer, A.A.; Doughty, M.


    Monitoring of small magnitude ('micro') earthquakes in a dense local network is one of the techniques used to delineate currently active faults and seismic sources. The conventional wisdom is that smaller, but more frequent, seismic events normally occur on active fault planes and a log linear empirical relation between frequency and magnitude can be used to estimate the magnitude and recurrence (frequency) of the larger events. A program of site-specific seismic monitoring has been supported by the AECB since 1991, to investigate the feasibility of microearthquake detection in suburban areas of east Toronto in order to assess the rate activity of local events in the vicinity of the nuclear power plants at Pickering and Darlington. For deployment of the seismic stations at the most favorable locations an extensive background noise survey was carried out. This survey involved measuring and comparing the amplitude response of the ambient vibration caused by natural phenomena (e.g. wind blow, water flow, wave action) or human activities such as farming, mining and industrial work at 25 test sites. Subsequently, a five-station seismic network, with a 30 km aperture, was selected between the Pickering and Darlington nuclear power plants on Lake Ontario, to the south, and Lake Scugog to the north. The detection threshold obtained for two of the stations allows recording of local events M L =0-2, a magnitude range which is usually not detected by regional seismic networks. An analysis of several thousand triggered signals resulted in the identification of about 120 local events, which can not be assigned to any source other than the natural release of crustal stresses. The recurrence frequency of these microearthquakes shows a linear relationship which matches that of larger events in the last two centuries in this region. The preliminary results indicate that the stress is currently accumulating and is being released within clusters of small earthquakes

  9. Natural and anthropogenic ocean noise recorded at long-term and temporary observatories (United States)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony B.; Geissler, Wolfram


    Most people worldwide would assume that the oceans are silent. However, a number of natural phenomenon's like ocean waves, wind, lightening, ice noise, earthquakes, and submarine volcanic activity contributes to the ambient ocean noise. During their evolution, marine animals like fish and mammals have adopted in many ways to the acoustic properties of the sea. Yet in recent decades, anthropogenic and hence manmade ocean noise level has risen profoundly. Due to extreme reliance of fish and mammals on underwater sounds for basic life functions, including searching for food or mate and the absence of any mechanism to safeguard them against it, underwater noise pollution may disrupt marine life. The primary sources of low-frequency anthropogenic noise include sounds associated with shipping, military operations, oil and gas exploration and production, and even research activities. Some scientists suggest that today virtually no marine environment is without any noise pollution. Thus, all marine life forms that rely heavily on the integrity of their acoustic habitat may have to adapt to new conditions. Of greatest concern for whales are low-frequency sounds that travel long distances in the ocean. Ship propellers and motors, for instance, produce sound at low frequencies, as do natural and manmade seismic activity. These profound, loud noises reverberate in the deep ocean and can effectively mask or block vital whale communication. However, in general very little is known about the world-wide distribution of ambient ocean noise. Thus, on a global scale and considering the vast areas of the world's oceans, we know virtually nothing about noise levels in different parts of the oceans and how anthropogenic noise contributes to ambient noise. Here, we use hydrophone recordings from the UN's Comprehensive Nuclear-Test-Ban Treaty organization (CTBTO) and ocean-bottom seismometers to provide an assessment of noise in all major basins, including the Pacific, Atlantic and Indian

  10. Schenberg microwave cabling seismic isolation. (United States)

    Bortoli, F. S.; Frajuca, C.; Aguiar, O. D.


    SCHENBERG is a resonant-mass gravitational wave detector with a frequency about 3.2 kHz. Its spherical antenna, weighing 1.15 metric ton, is connected to the external world by a system which must attenuate seismic noise. When a gravitational wave passes the antenna vibrates, its motion is monitored by transducers. These parametric transducers uses microwaves carried by coaxial cables that are also connected to the external world, they also carry seismic noise. In this analysis the system was modeled using finite element method. This work shows that the addition of masses along these cables can decrease this noise, so that this noise is below the thermal noise of the detector when operating at 50 mK.

  11. Classroom Noise and Teachers' Voice Production. (United States)

    Rantala, Leena M; Hakala, Suvi; Holmqvist, Sofia; Sala, Eeva


    The aim of this study was to research the associations between noise (ambient and activity noise) and objective metrics of teachers' voices in real working environments (i.e., classrooms). Thirty-two female and 8 male teachers from 14 elementary schools were randomly selected for the study. Ambient noise was measured during breaks in unoccupied classrooms and, likewise, the noise caused by pupils' activity during lessons. Voice samples were recorded before and after a working day. Voice variables measured were sound pressure level (voice SPL), fundamental frequency, jitter, shimmer, and the tilt of the sound spectrum slope (alpha ratio). The ambient noise correlated most often with the fundamental frequency of men and voice SPL, whereas activity noise correlated with the alpha ratio and perturbation values. Teachers working in louder ambient noise spoke more loudly before work than those working in lower noise levels. Voice variables generally changed less during work among teachers working in loud activity noise than among those working in lower noise levels. Ambient and activity noises affect teachers' voice use. Under loud ambient noise teachers seem to speak habitually loudly, and under loud activity noise teachers' ability to react to loading deteriorates.

  12. The Effect of Recent Volcanic Activity on the Seismic Structure of Madagascar (United States)

    Wysession, M. E.; Aleqabi, G. I.; Pratt, M. J.; Shore, P.; Wiens, D. A.; Nyblade, A.; Rambolamanana, G.; Andriampenomanana Ny Ony, F. S. T.; Tsiriandrimanana, R.


    The seismic structure of Madagascar is determined using ambient-noise and two-plane-wave earthquake surface waves analyses. A deep low-velocity anomaly is seen in regions of recent volcanic activity in the central and northern regions of the island. The primary data used are from the 2011-2013 MACOMO (Madagascar, the Comoros, and Mozambique) broadband seismic array from the PASSCAL program of IRIS (Incorporated Research Institutions for Seismology), funded by the NSF. Additional data came from the RHUM-RUM project (led by G. Barruol and K. Sigloch), the Madagascar Seismic Profile (led by F. Tilmann), and the GSN. For the ambient-noise study, Rayleigh wave green's functions for all interstation paths are extracted from the broadband seismic data recorded from August 2011 until October 2013. Rayleigh wave group and phase velocity dispersion curves are extracted in the 8 - 50 s period range, identifying shallow crustal structure. For deeper structure, the two-plane-wave method is used on teleseismic earthquake data to obtain surface wave phase velocities in the 20 - 182 s period range. In the inversion, a finite-frequency kernel is used for each period, and a 1-D shear velocity structure is determined at each location. A three-dimensional S-wave velocity model of the crust and upper mantle is obtained from assembling the 1-D models. Preliminary results show a good correlation between the Rayleigh wave velocities and the geology of Madagascar, which includes areas of ancient Archaean craton. The slowest seismic velocities are associated with known volcanic regions in both the central and northern regions, which have experienced volcanic activity within the past million years.

  13. An overview on the seismic microzonation and site effect studies in Central Asia

    Directory of Open Access Journals (Sweden)

    Marco Pilz


    Full Text Available During the past centuries, many cities in Central Asia have suffered significant damages caused by earthquakes. A crucial step towards preparedness for future events, the definition of the optimal engineering designs for civil structures and the mitigation of earthquake risks involves the accomplishment of site response studies. To accurately identify local variations of the site response at different locations within the cities, earthquakes recorded by seismic networks as well as measurements of the seismic noise can be used for estimating the resonance frequencies and for evaluating the expected level of ground motion at each site. Additionally, the measurements can help identifying site specific features like more-dimensional resonances and directional effects. This information can be complemented with array measurements of ambient seismic noise in order to estimate local shear-wave velocity profiles, an essential parameter for evaluating the dynamic properties of soil, and to characterize the corresponding sediment layers at each site. The present study gives an overview on the progressive development of the seismic zonation studies in the frame of EMCA carried out in several cities in Central Asia.

  14. Moon meteoritic seismic hum: Steady state prediction (United States)

    Lognonne, P.; Feuvre, M.L.; Johnson, C.L.; Weber, R.C.


    We use three different statistical models describing the frequency of meteoroid impacts on Earth to estimate the seismic background noise due to impacts on the lunar surface. Because of diffraction, seismic events on the Moon are typically characterized by long codas, lasting 1 h or more. We find that the small but frequent impacts generate seismic signals whose codas overlap in time, resulting in a permanent seismic noise that we term the "lunar hum" by analogy with the Earth's continuous seismic background seismic hum. We find that the Apollo era impact detection rates and amplitudes are well explained by a model that parameterizes (1) the net seismic impulse due to the impactor and resulting ejecta and (2) the effects of diffraction and attenuation. The formulation permits the calculation of a composite waveform at any point on the Moon due to simulated impacts at any epicentral distance. The root-mean-square amplitude of this waveform yields a background noise level that is about 100 times lower than the resolution of the Apollo long-period seismometers. At 2 s periods, this noise level is more than 1000 times lower than the low noise model prediction for Earth's microseismic noise. Sufficiently sensitive seismometers will allow the future detection of several impacts per day at body wave frequencies. Copyright 2009 by the American Geophysical Union.

  15. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.


    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  16. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central......, dehierarchization, ubiquity and the production of unfocused sensations in contrast to the conventional notion of the aesthetic experience as a focused contemplation of a stationary object....

  17. Seismic Methods (United States)

    Seismic methods are the most commonly conducted geophysical surveys for engineering investigations. Seismic refraction provides engineers and geologists with the most basic of geologic data via simple procedures with common equipment.

  18. AcquisitionFootprintAttenuationDrivenbySeismicAttributes

    Directory of Open Access Journals (Sweden)

    Cuellar-Urbano Mayra


    Full Text Available Acquisition footprint, one of the major problems that PEMEX faces in seismic imaging, is noise highly correlated to the geometric array of sources and receivers used for onshore and offshore seismic acquisitions. It prevails in spite of measures taken during acquisition and data processing. This pattern, throughout the image, is easily confused with geological features and misguides seismic attribute computation. In this work, we use seismic data from PEMEX Exploración y Producción to show the conditioning process for removing random and coherent noise using linear filters. Geometric attributes used in a workflow were computed for obtaining an acquisition footprint noise model and adaptively subtract it from the seismic data.

  19. Ambient Vibrations Measurements and 1D Site Response Modelling as a Tool for Soil and Building Properties Investigation

    Directory of Open Access Journals (Sweden)

    Sebastiano Imposa


    Full Text Available The safety of historic buildings heritage is an important task that becomes more substantial when the buildings are directed to educational purposes. The present study aims at evaluating the dynamic features of the Benedettini complex, an historic monastery located in downtown Catania, which is at present the headquarters of the humanistic studies department of the University of Catania. Both the building’s complex response to a seismic input and the soil-to-structure interaction were investigated using ambient noise recordings. The results point out a multiple dynamic behaviour of the monastery structure that shows several oscillation modes, whereas the identification of a single natural frequency can be observed in some sites where the structure can more freely oscillate. This observation is also confirmed by the variability of computed damping values that appear linked to the different rigidity of the structure, as a function of the either the longitudinal or transversal orientation of the investigated structural elements. Moreover, the comparison between the building’s fundamental period and spectral ratios frequencies, which were obtained from free field ambient noise measurements located outside the monastery, outline the presence of potential resonance effects between the site and structure during a seismic event. Numerical modelling of the local seismic response confirms the obtained experimental site frequencies, setting into evidence that higher amplification factors are reached in the same frequency range characterizing the building.

  20. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)


    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  1. Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake. (United States)

    Nimiya, Hiro; Ikeda, Tatsunori; Tsuji, Takeshi


    Monitoring of earthquake faults and volcanoes contributes to our understanding of their dynamic mechanisms and to our ability to predict future earthquakes and volcanic activity. We report here on spatial and temporal variations of seismic velocity around the seismogenic fault of the 2016 Kumamoto earthquake [moment magnitude ( M w ) 7.0] based on ambient seismic noise. Seismic velocity near the rupture faults and Aso volcano decreased during the earthquake. The velocity reduction near the faults may have been due to formation damage, a change in stress state, and an increase in pore pressure. Further, we mapped the post-earthquake fault-healing process. The largest seismic velocity reduction observed at Aso volcano during the earthquake was likely caused by pressurized volcanic fluids, and the large increase in seismic velocity at the volcano's magma body observed ~3 months after the earthquake may have been a response to depressurization caused by the eruption. This study demonstrates the usefulness of continuous monitoring of faults and volcanoes.

  2. Random noise attenuation of non-uniformly sampled 3D seismic data along two spatial coordinates using non-equispaced curvelet transform (United States)

    Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi


    The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.

  3. Characterization of site conditions for selected seismic stations in eastern part of Romania (United States)

    Grecu, B.; Zaharia, B.; Diaconescu, M.; Bala, A.; Nastase, E.; Constantinescu, E.; Tataru, D.


    Strong motion data are essential for seismic hazard assessment. To correctly understand and use this kind of data is necessary to have a good knowledge of local site conditions. Romania has one of the largest strong motion networks in Europe with 134 real-time stations. In this work, we aim to do a comprehensive site characterization for eight of these stations located in the eastern part of Romania. We make use of a various seismological dataset and we perform ambient noise and earthquake-based investigations to estimate the background noise level, the resonance frequencies and amplification of each site. We also derive the Vs30 parameter from the surface shear-wave velocity profiles obtained through the inversion of the Rayleigh waves recorded in active seismic measurements. Our analyses indicate similar results for seven stations: high noise levels for frequencies larger than 1 Hz, well defined fundamental resonance at low frequencies (0.15-0.29 Hz), moderate amplification levels (up to 4 units) for frequencies between 0.15 and 5-7 Hz and same soil class (type C) according to the estimated Vs30 and Eurocode 8. In contrast, the eighth station for which the soil class is evaluated of type B exhibits a very good noise level for a wide range of frequencies (0.01-20 Hz), a broader fundamental resonance at high frequencies ( 8 Hz) and a flat amplification curve between 0.1 and 3-4 Hz.

  4. Noise thermometer

    International Nuclear Information System (INIS)

    Von Brixy, H.; Kakuta, Tsunemi.


    The noise thermometry (NT) is a temperature measuring method by which the absolute temperature measurement can be performed with a very high accuracy and without any influence of ambient environments and of the thermal history of its NT sensor (electric resistor). Hence it is quite suitable for application as a standard thermometry to the in-situ temperature calibration of incore thermocouples. The KFA Juelich had played a pioneering role in the development of NT and applied the results successfully to the AVR for testing its feasibility. In this report, all about the NT including its principle, sensor elements and system configurations are presented together with the experiences in the AVR and the results of investigation to apply it to high temperature measurement. The NT can be adopted as a standard method for incore temperature measurement and in situ temperature calibration in the HTTR. (author). 85 refs

  5. Noise thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Von Brixy, H. [Forschungszentrum Juelich GmbH (Germany); Kakuta, Tsunemi


    The noise thermometry (NT) is a temperature measuring method by which the absolute temperature measurement can be performed with a very high accuracy and without any influence of ambient environments and of the thermal history of its NT sensor (electric resistor). Hence it is quite suitable for application as a standard thermometry to the in-situ temperature calibration of incore thermocouples. The KFA Juelich had played a pioneering role in the development of NT and applied the results successfully to the AVR for testing its feasibility. In this report, all about the NT including its principle, sensor elements and system configurations are presented together with the experiences in the AVR and the results of investigation to apply it to high temperature measurement. The NT can be adopted as a standard method for incore temperature measurement and in situ temperature calibration in the HTTR. (author). 85 refs.

  6. Det ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Om begrebet "det ambiente", der beskriver, hvad der sker, når vi fornemmer baggrundsmusikkens diskrete beats, betragter udsigten gennem panoramavinduet eller tager 3D-brillerne på og læner os tilbage i biografsædet. Bogen analyserer, hvorfan ambiente oplevelser skabes, og hvilke konsekvenser det...

  7. Det Ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Det ambiente er iscenesættelsen af en karakteristisk sanseoplevelse, der er kendetegnet ved fornemmelsen af at være omgivet. I dag bliver begrebet om det ambiente mest anvendt i forbindelse med musikgenren ’ambient musik’. Det ambiente er dog ikke essentielt knyttet til det musikalske, men må...... forstås som et betydeligt bredere fænomen i den moderne æstetiske kultur, der spiller en væsentlig rolle i oplevelsen af moderne transportformer, arkitektur, film, lydkunst, installationskunst og digitale multimedieiscenesættelser. En forståelse af det ambiente er derfor centralt for forståelsen af en...... moderne æstetiseret oplevelseskultur i almindelighed. Da det ambiente ikke hidtil har været gjort til genstand for en mere indgående teoretisk behandling, er der dog stor usikkerhed omkring, hvad fænomenet overhovedet indebærer. Hovedformålet med Det ambiente – Sansning, medialisering, omgivelse er derfor...

  8. Active and passive seismic investigations in Alpine Permafrost at Hoher Sonnblick (Austria) (United States)

    Steiner, Matthias; Maierhofer, Theresa; Pfeiler, Stefan; Chwatal, Werner; Behm, Michael; Reisenhofer, Stefan; Schöner, Wolfgang; Straka, Wolfgang; Flores Orozco, Adrian


    Different geophysical measurements have been applied at the Hoher Sonnblick study area to gain information about permafrost distribution as well as heterogeneities controlling heat circulation, in the frame of the ÖAW-AtmoPerm project, which aims at the understanding the impacts of atmospheric extreme events on the thermal state of the active layer. Electrical Resistivity Tomography (ERT) has been widely accepted as a suitable method to characterize permafrost processes; however, limitations are imposed due to the challenges to inject high current densities in the frozen periods and the loss of resolution of electrical images at depth require the application of further geophysical methods. To overcome such problems, we investigate here the application of active and seismic methods. Seismic campaigns were performed using permanent borehole and temporarily installed surface geophones. A total of 15 borehole geophones are installed at depths of 1 m, 2 m, 5 m, 10 m and 20 m in three boreholes which are separated by a horizontal distance of 30 m between each other. Active measurements utilized 41 surface and 15 borehole geophones and a total of 199 excitation points. Surface geophones were laid out along two crossing lines with lengths of 92 m and 64 m, respectively. The longer line was placed directly along the borehole transect and the shorter one was oriented perpendicular to it. Hammer blows were performed with a spacing of 1 m inline the geophones and 4 m in crosslines rotated by 45 degrees, permitting 3D acquisition geometry. In addition to the active sources, data loggers connected to the borehole geophones permitted the collection of continuous 36-hours datasets for two different thermal conditions. Seismic ambient noise interferometry is applied to this data and aims at the identification of velocity changes in the subsurface related to seasonal changes of the active layer. A potential source of ambient seismic energy is the noise excited by hikers and the

  9. Investigating the seismic signal of elephants: using seismology to mitigate elephant human conflict (United States)

    Webb, S. J.; Manzi, M.; Naidoo, A.; Raveloson, A.


    Human interactions with wild elephants are often a source of conflict, as elephants invade inhabited lands looking for sustenance. In order to mitigate these interactions, a number of elephant defense systems are under development. These include electric fences, bees and the playback of warning calls recorded from elephants. With the discovery that elephants use seismic signals to communicate (O'Connell-Rodwell et al., 2006, Behav. Ecol. Sociobiol.), it is hoped that seismic signals can also be used to help reduce conflict. Our current research project investigates the spectral content of the elephant seismic signal that travels through the ground using a variety of geophones and seismometers. Our experimental setup used a Geometrics Geode 24 channel seismic system with an array of 24 geophones spaced 1 m apart in an area of compact soil overlying weathered granites. Initially we used 14 Hz vertical geophones. The ground and ambient noise conditions were characterized by recording several hammer shots. These were used to identify the air wave, wind noise, and the direct wave, which had a dominant frequency of ~50 Hz. Several trained elephants that 'rumble' on command were then deployed ~5 m perpendicular to a line of 24 (14 Hz) vertical geophones between the 1 and 10 m geophone positions. We recorded a number of different elephants and configurations, and digitally recorded video for comparison. An additional deployment of 20 (14 Hz) horizontal geophones was also used. For all data, the sample interval was 0.25 ms and the recording length was 16 s as the timing of the rumbles could not be precisely controlled. We were able to identify the airwave due to the elephant's rumble with velocities between 305-310 m/s and the ground seismic signal due to the rumble with frequencies between 20-30 Hz. Our next experiment will include broadband seismometers at a further distance, to more fully characterize the frequency content of the elephant signal.

  10. Study of environmental noise in a BWR plant like the Nuclear Power Plant Laguna Verde; Estudio de ruido ambiental en una planta BWR como la Central Nuclear Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Cruz G, M.; Amador C, C., E-mail: [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Cardel-Nautla Km. 42.5, Alto Lucero, Veracruz (Mexico)


    In all industry type the health costs generated by the noise are high, because the noise can cause nuisance and to harm the capacity to work when causing tension and to perturb the concentration, and in more severe cases to reach to lose the sense of the hearing in the long term. The noise levels in the industry have been designated for the different types of use like residential, commercial, and industrial and silence areas. The noise can cause accidents when obstructing the communications and alarm signs. For this reason the noise should be controlled and mitigated, at a low level as reasonably is possible, taking into account that the noise is an acoustic contamination. The present study determines a bases line of the environmental noise levels in a nuclear power plant BWR-5 as Laguna Verde, (like reference) to be able to determine and to give pursuit to the possible solutions to eliminate or to limit the noise level in the different job areas. The noise levels were registered with a meter of integrative noise level (sonometer) and areas of noise exposure levels mapping the general areas in the buildings were established, being the registered maximum level of 96.94 dba in the building of the Reactor-elevation 0.65 m under the operation conditions of Extended Power Up rate (EPU) of 120% PTN. Knowing that the exposition to noises and the noise dose in the job place can influence in the health and in the safety of the workers, are extensive topics that they should be analyzed for separate as they are: to) the effects in the health of the exposure to the noise, b) how measuring the noise, c) the methods and technologies to combat and to control the noise in the industry by part of engineering area and d) the function of the industrial safety bodies as delegates of the health and safety in the task against the noise in the job. (author)

  11. Tracing the Farallon plate through seismic imaging with USArray (United States)

    Porritt, Robert William

    The Farallon plate system has been subducting off the western United States since at least the middle Mesozoic. This plate has undergone virtually every subduction process during this time including a long episode of flat-slab subduction, generation of microplates, and formation of oceanic plateaus. The shallow remains of this plate are two small microplates, the Gorda and Juan de Fuca, in the Pacific Northwest. The anomalous nature of these two small plates and the missing deeper evidence of subduction has motivated this study. The USArray seismic experiment has provided unprecedented spatial sampling of the seismic wavefield in the continuous United States. Utilizing this dataset, new imaging methods have been implemented and older imaging methods have been revitalized. This study first uses ambient seismic noise in the Pacific Northwest to extract short period Rayleigh waves which are sensitive to lithospheric scale structure. Phase velocities from this model are then combined with teleseismic delay times of body waves and surface waves to image the structure of the continuous United States from the surface through the mantle transition zone. The resolving power of this model allows tracing of the Farallon plate from the trench to the lower mantle. The seismic velocity structure of the continuous United States is broadly composed of a slow western half and fast eastern half separated by the Rocky Mountain Front. The low velocity of the western U.S. contains several high velocity anomalies. While previous work has focused on individual anomalies and suggested they represent lithospheric instabilities, a larger regional view indicates that these are the western remnants of the Farallon plate. Below the thick cratonic lithosphere of the eastern U.S., the Farallon plate contains significant topography due to a subducted heterogeneity of the oceanic plate and a viscosity contrast through the mantle transition zone. The velocity models presented herein provide a

  12. Seismic monitoring by piezoelectric accelerometers of a damaged historical monument in downtown L’Aquila

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Giulio


    Full Text Available We show the preliminary seismic monitoring of a historical church in L’Aquila (central Italy, which was strongly damaged by the 2009 seismic sequence. This structure, S. Maria del Suffragio church, suffered the collapse of a great part of the dome during the April 6th 2009 Mw 6.1 earthquake. In this paper, recordings of ambient noise and local earthquakes have been analyzed. The seismic data were recorded by means of a dynamic monitoring system (19 mono-directional and 3 tri-directional piezoelectric accelerometers and of two velocimeters, with all the instruments installed into the church. The aim of this research is the evaluation of the performance of the accelerometers of the monitoring system in case of low-amplitude vibrations. Simple techniques of analysis commonly employed in the seismic characterization of buildings have been applied. The reliability of the in-situ data was evaluated and the main modal parameters (natural frequencies and damping ratio of the church were presented.

  13. Seismic and thermodynamics constraints on temperature and composition of the Italian crust. (United States)

    Diaferia, G.; Cammarano, F.; Piana Agostinetti, N.; Gao, C.; Boschi, L.; Molinari, I.


    Describing the variation of temperature and composition within the crust is of key importance for the understanding of its formation, evolution and its volcano-tectonic processes. We combine different geophysical observations with information on material properties, contributing to improve our knowledge on the structure, chemical and thermal heterogeneity of the crust. We use thermodynamic modeling to assess the effects of temperature, pressure and water content on seismic velocities. We find that i) temperature, rather than composition and water content, plays a major role in affecting seismic properties of crustal rocks, ii) mineralogical phase transitions, such as the α-β quartz transition and the plagioclase breakdown, play an important role on seismic observables, iii) the ratio between shear-wave velocity and density does not change appreciably in the crust, even as temperature and mineralogy are varied. Informed by these findings, we apply a trans-dimensional Montecarlo Markov-Chain inversion algorithm to jointly invert Rayleigh wave dispersion curves and receiver functions. Dispersion curves are derived from ambient-noise and provide a homogeneous coverage of the Italian Peninsula. More than 200 receiver functions are used with their error and correlation functions included during the inversion phase, to account for data uncertainty. The ensemble of seismic models obtained through the joint inversion is analyzed and preliminary interpretations based on petrological and thermodynamics constraints are presented.

  14. Significant technical advances in broadband seismic stations in the Lesser Antilles (United States)

    Anglade, A.; Lemarchand, A.; Saurel, J.-M.; Clouard, V.; Bouin, M.-P.; De Chabalier, J.-B.; Tait, S.; Brunet, C.; Nercessian, A.; Beauducel, F.; Robertson, R.; Lynch, L.; Higgins, M.; Latchman, J.


    In the last few years, French West Indies observatories from the Institut de Physique du Globe de Paris (IPGP), in collaboration with The UWI Seismic Research Centre (SRC, University of West Indies), have modernized the Lesser Antilles Arc seismic and deformation monitoring network. 15 new, permanent stations have been installed that strengthen and expand its detection capabilities. The global network of the IPGP-SRC consortium is now composed of 20 modernized stations, all equipped with broadband seismometers, strong motion sensors, Global Positioning System (GPS) sensors and satellite communication for real-time data transfer. To enhance the sensitivity and reduce ambient noise, special efforts were made to improve the design of the seismic vault and the original Stuttgart shielding of the broadband seismometers (240 and 120s corner period). Tests were conducted for several months, involving different types of countermeasures, to achieve the highest performance level of the seismometers. GPS data, realtime and validated seismic data (only broadband) are now available from the IPGP data centre ( This upgraded network feeds the Caribbean Tsunami Warning System supported by UNESCO and establishes a monitoring tool that produces high quality data for studying subduction and volcanic processes in the Lesser Antilles arc.

  15. Periodismo ambiental

    Directory of Open Access Journals (Sweden)

    Lucía Lemos


    Full Text Available Los periodistas toman el tema del medio ambiente cada vez más en serio. El uso de temas relacionados con el medio ambiente, debe estar ligado al análisis socio-económico y a las posibilidades de comunicación y educación de diferentes regiones del mundo. A continuación se presenta un resumen de la situación ambiental, las acciones de prensa y comunicación que se llevan a cabo en América Central (Panamá, El Salvador, Costa Rica y en Sudamérica Brasil,Colombia, Chile, México, y Perú. Se concluye en la necesidad de formar hábitos ecológicos. Los comunicadores deben presentar soluciones a los problemas, fomentar campañas comunes, compartir información y velar por el ambiente ambiente para que las generaciones futuras no tengan que perecer.

  16. Anomalous Amplitude Attenuation Method to Enhance Seismic Resolution

    Directory of Open Access Journals (Sweden)

    Muchlis .


    Full Text Available Anomalous Amplitude Attenuation (AAA is a method to process seismic data with multilevel processing (multi step flow. AAA is indicated for identifying anomalous seismic amplitude (amplitude noise such as: spike noise, noise and noised trace. AAA is a filter applied to the data in the frequency domain, range, both in CMP/CDP, offset or gather shot. Processing of the data depends on how the sensor (the geophone receives seismic waves, and then set the data back into the format demultiplex (SEG-Y and then processed according to the rules (flowchart seismic reflection processing.This method has been applied to improve the old seismic data of an exploration company in prospecting the unseen structure in prospecting the hydrocarbon trapped within sedimentary rock subsurface.

  17. Seismic waves and seismic barriers (United States)

    Kuznetsov, S. V.


    The basic idea of seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers are suggested. For example, vertical barriers resembling a wall in a soil can protect from Rayleigh and bulk waves. The FEM simulation reveals that to be effective, such a barrier should be (i) composed of layers with contrast physical properties allowing "trapping" of the wave energy inside some of the layers, and (ii) depth of the barrier should be comparable or greater than the considered seismic wave length. Another type of seismic barrier represents a relatively thin surface layer that prevents some types of surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick's result concerning non-propagation condition for Rayleigh waves in a clamped half-space, and Love's theorem that describes condition of non-existence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.

  18. Characterization of an Outdoor Ambient Radio Frequency Environment (United States)


    TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 06-2-595 Characterization of an Outdoor Ambient ...DTIC), AD No.: 14. ABSTRACT This TOP provides procedures to characterize an ambient radio frequency (RF) environment (sometimes referred to as...spectrum analyzer, ambient RF noise floor, RF interference 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18

  19. Noise Pollution (United States)

    ... Us Share Clean Air Act Title IV - Noise Pollution The 1990 Clean Air Act Amendments added a ... abatement 7642 Authorization of appropriations What is Noise Pollution? The traditional definition of noise is “unwanted or ...

  20. Seismic detection of meteorite impacts on Mars (United States)

    Teanby, N. A.; Wookey, J.


    Meteorite impacts provide a potentially important seismic source for probing Mars' interior. It has recently been shown that new craters can be detected from orbit using high resolution imaging, which means the location of any impact-related seismic event could be accurately determined - thus improving the constraints that could be placed on internal structure using a single seismic station. This is not true of other seismic sources on Mars such as sub-surface faulting, which require location using multiple seismic stations. This study aims to determine the seismic detectability of meteorite impacts and assess whether they are a viable means of probing deep internal structure. First, we derive a relation between crater diameter and equivalent seismic moment based on observational data compiled from impact tests, controlled explosions, and earthquake seismology. Second, this relation was combined with updated cratering rates based on newly observed craters to derive the impact induced seismicity on Mars, which we estimate to total 10 13-10 14 N m per year. Finally, seismic waveform modelling was used to determine the detectability of these impacts based on reasonable assumptions about likely seismometer performance and background noise levels. For our nominal noise/instrument case we find that detectable impacts at teleseismic distances (source-receiver offsets greater than 60°) are very rare and occur approximately once every 10 years. For our most optimistic noise/instrument case, approximately one such event occurs each year. This suggests that using solely meteorite impacts is not a reliable way of probing the Martian interior, although local impacts are more frequently detectable and could provide important constraints on near surface seismic properties.

  1. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling. (United States)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio


    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  2. Azimuthal and thickness variabilities of seismic site effect response of the Utiku landslide (North Island, New-Zealand) (United States)

    Garambois, Stéphane; Quintero, Anggi; Massey, Chris; Voisin, Christophe


    A monotoring seismic network was installed for 14 months on the re-activated deep-seated landslide of Utiku (North Island, New-Zealand). As this landslide caused subsidence since 1964 to the main Wellington-Auckland highway and more seriously to the railway, it is thoroughly instrumented and monitored nowadays. Boreholes and permanent GPS measurements conducted for surveillance purposes by Geological and Nuclear Sciences Institute (GNS) notably showed that its thickness varies from 70 m to less than 20 m, while its velocity can reach more than 2 m /year in the most active zone. All the studies conducted on this landslide also suggest that its dynamics is mainly controlled by rainfall and is unaffected until now by earthquakes, despite being located in a moderate to active seismic zone. Like other similar landslides, it is however important to assess potential seismic site effects generated by the weathered material. During the seismic monitoring, thousands of earthquakes have been recorded displaying a large variability in magnitude, distance and back-azimuths. It permitted a thorough study on site effect response variability of such 3D objects. A network of 6 broadband (30s - 40 Hz) seismic stations recorded ambient vibrations as well as thousand of earthquakes over a period of 14 months from November 2008 to January 2010. We present a comparison of spectral amplification analyses derived from the classical ambient seismic noise ratio (H/V), from a near seismic excitation (train) and from a large set of earthquakes measurements (spectral ratio). We study the variability of this amplification along the landslide: 74 measurements were performed disposed along 5 profiles cutting across the landslide. A comparison with boreholes inclinometers measurements first show that small scale variations of landslide thickness control spatial variation of seismic site amplification, both in amplitudes (from 6 to 10) and frequency (1D fundamental frequency from 1.6 to 4.3 Hz). We

  3. A Dense Small-Scale Seismic Network in the Ngorongoro Conservation Area (Northern Tanzania) (United States)

    Parisi, L.; Lombardo, L.; Rodriguez-Mustafa, M.; Mai, P. M.


    A temporary deployment consisting of sixteen broadband seismic stations is conducted for the first time in the Ngorongoro Conservation Area (NCA, Northern Tanzania), located at the boundary between the Tanzanian Craton and East African Rift. A deep knowledge of the faulting systems and tectonics of the area is needed to better understand the contribution of the synsedimentary faults to the deposition of the Olduvai and surrounding basins affecting the landscapes of the Homo Habilis first settlements. Complex fault systems have been mapped in the field but their connection, especially at depth, is not well known. A first batch of ten instruments was installed in June 2016. In June 2017 two stations were dismissed and a second batch of six stations was installed in new locations. The current network of fourteen stations will record until May 2018. Stations are equipped with Nanometrics Trillium Compact Posthole 120 s sensor and Centaur digitiser recording continuously at 200 Hz. The whole network covers 1400 km2 and station interspace ranges from 8 to 15 km. We analyse probabilistic power spectra densities of the seismic noise to obtain insights of its origin and test the performances of the stations. Although factories do not exist in the area and most of the stations are far from roads, ambient noise in the range 0.01 - 1 s is relatively high (between -120 dB and -100dB at 0.1 s) probably because of the abundance of livestock living in the NCA. Ambient noise in the period range 1 - 10 s (secondary microseisms) decreases from east to west. Although the main source of the microseisms is located in the Indian Ocean (east of the study area), a contribution from the low period tremors coming from the nearby active volcano Ol Doinyo Lengai (north-east of the study area) is expected. Whereas the longer period noise (10 - 100 s) is very low in the vertical component seismograms, it is higher than the high noise model in the horizontal components for most of the stations

  4. The Canarian Seismic Monitoring Network: design, development and first result (United States)

    D'Auria, Luca; Barrancos, José; Padilla, Germán D.; García-Hernández, Rubén; Pérez, Aaron; Pérez, Nemesio M.


    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk. In June 2016 Instituto Volcanologico de Canarias started the deployment of a seismological volcano monitoring network consisting of 15 broadband seismic stations. The network began its full operativity in November 2016. The aim of the network are both volcano monitoring and scientific research. Currently data are continuously recorded and processed in real-time. Seismograms, hypocentral parameters, statistical informations about the seismicity and other data are published on a web page. We show the technical characteristics of the network and an estimate of its detection threshold and earthquake location performances. Furthermore we present other near-real time procedures on the data: analysis of the ambient noise for determining the shallow velocity model and temporal velocity variations, detection of earthquake multiplets through massive data mining of the seismograms and automatic relocation of events through double-difference location.

  5. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild


    A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S

  6. Seismic structure of the Slave craton crust (United States)

    Barantseva, O.; Vinnik, L. P.; Farra, V.; van der Hilst, R. D.; Artemieva, I. M.; Montagner, J. P.


    We present P- and S-receiver functions for 20 stations along a 200-km-long NNW-SSE seismological profile across the Slave craton, and estimate the average crustal Vp/Vs ratio which is indicative of rock composition. We observe high Vp/Vs ratio ( 1.85-2.00) for the bulk crust and elevated Vp values at a depth range from 20-30 km to 40 km. High Vp values (>7.0 km/s) suggest mafic composition of the lower crust. In case of dry lower crustal rocks, the Vp/Vs ratio is expected to range from 1.6 to 1.8, which is lower than the observed values of 1.9-2.0. Laboratory studies show that Vp/Vs 1.9-2.0 can be explained by the presence of numerous cracks saturated with an incompressible fluid. Our results are at odds with the structure of the cratonic crust in many regions worldwide, and may suggest a unique geodynamic evolution of the Slave crust. Possible explanations for the observed crustal structure include the presence of an underplated mafic material, possibly related to intraplate magmatism or paleosubduction. Receiver functions are highly sensitive to the change of acoustic impedance and S-wave velocities, but do not resolve the internal seismic structure with a high precision. We extend our study of the crustal structure by using ambient noise tomography (ANT). We measure Rayleigh wave dispersion from Green's functions that are estimated from one-year noise cross-correlation (NCF). The phase velocity maps are inverted for 1D wave speed profiles which are then combined to form 2D and 3D models of the crust of the Slave Province. The combined results of RF analyses and ANT are interpreted in terms of crustal structure, composition, and evolution.

  7. Broad Band Data and Noise Observed with Surface Station and Borehole Station (United States)

    Tunc, Suleyman; Ozel, Oguz; Safa Arslan, Mehmet; Behiye Akşahin, Bengi; Hatipoglu, Mustafa; Cagin Yalcintepe, Ragip; Ada, Samim; Meral Ozel, Nurcan


    Marmara region tectonically is very active and many destructive earthquakes happened in the past. North Anatolian Fault Zone crosses the Marmara region and it has three branches. The northern branch passes through Marmara Sea and expected future large earthquake will happen along this fault zone. There is a gap in seismic network in the Marmara region at offshore and onshore areas. We have started broadband borehole seismographic observations to obtain the detailed information about fault geometry and its stick-slip behavior beneath the western Marmara Sea, as a part of the MARsite collaborative Project, namely "New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite-MARsite". The target area western Marmara of Turkey. In the beginning of the project, we installed eight Broadband surface station around Marmara Sea in April 2014. Then, we added broadband sensor and broadband surface sensor at the same location in November 2014. In this study, we developed a Matlab application to calculate Power Spectral Density against the New Low Noise Model (NLNM) and New High Noise Model (NHNM) determined for one-hour segments of the data. Also we compared ambient noise of broadband borehole sensor and surface broadband sensor.

  8. Seismic instrumentation

    International Nuclear Information System (INIS)

    Maubach, K.


    For better understanding of the specification for seismic instrumentation of a nuclear power plant, the lecture gives some fundamental remarks to the seismic risk in the Federal Republic of Germany and to the data characterizing an earthquake event. Coming from the geophysical properties of an earthquake, the quantities are explained which are used in the design process of nuclear power plants. This process is shortly described in order to find the requirements for the specification of the seismic instrumentation. In addition the demands of licensing authorities are given. As an example the seismic instrumentation of KKP-1, BWR, is shown. The paper deals with kind and number of instruments, their location in the plant and their sensitivity and calibration. Final considerations deal with the evaluation of measured data and with plant operation after an earthquake. Some experience concerning the earthquake behaviour of equipment not designed to withstand earthquake loads is mentioned. This experience has initiated studies directed to quantification of the degree of conservatism of the assumptions in the seismic design of nuclear power plants. A final garget of these studies are more realistic design rules. (RW)

  9. Towards Noise Tomography and Passive Monitoring Using Distributed Acoustic Sensing (United States)

    Paitz, P.; Fichtner, A.


    Distributed Acoustic Sensing (DAS) has the potential to revolutionize the field of seismic data acquisition. Thanks to their cost-effectiveness, fiber-optic cables may have the capability of complementing conventional geophones and seismometers by filling a niche of applications utilizing large amounts of data. Therefore, DAS may serve as an additional tool to investigate the internal structure of the Earth and its changes over time; on scales ranging from hydrocarbon or geothermal reservoirs to the entire globe. An additional potential may be in the existence of large fibre networks deployed already for telecommunication purposes. These networks that already exist today could serve as distributed seismic antennas. We investigate theoretically how ambient noise tomography may be used with DAS data. For this we extend the theory of seismic interferometry to the measurement of strain. With numerical, 2D finite-difference examples we investigate the impact of source and receiver effects. We study the effect of heterogeneous source distributions and the cable orientation by assessing similarities and differences to the Green's function. We also compare the obtained interferometric waveforms from strain interferometry to displacement interferometric wave fields obtained with existing methods. Intermediate results show that the obtained interferometric waveforms can be connected to the Green's Functions and provide consistent information about the propagation medium. These simulations will be extended to reservoir scale subsurface structures. Future work will include the application of the theory to real-data examples. The presented research depicts the early stage of a combination of theoretical investigations, numerical simulations and real-world data applications. We will therefore evaluate the potentials and shortcomings of DAS in reservoir monitoring and seismology at the current state, with a long-term vision of global seismic tomography utilizing DAS data from

  10. Slab dehydration in Cascadia and its relationship to volcanism, seismicity, and non-volcanic tremor (United States)

    Delph, J. R.; Levander, A.; Niu, F.


    The characteristics of subduction beneath the Pacific Northwest (Cascadia) are variable along strike, leading to the segmentation of Cascadia into 3 general zones: Klamath, Siletzia, and Wrangelia. These zones show marked differences in tremor density, earthquake density, seismicity rates, and the locus and amount of volcanism in the subduction-related volcanic arc. To better understand what controls these variations, we have constructed a 3D shear-wave velocity model of the upper 80 km along the Cascadia margin from the joint inversion of CCP-derived receiver functions and ambient noise surface wave data using 900 temporary and permanent broadband seismic stations. With this model, we can investigate variations in the seismic structure of the downgoing oceanic lithosphere and overlying mantle wedge, the character of the crust-mantle transition beneath the volcanic arc, and local to regional variations in crustal structure. From these results, we infer the presence and distribution of fluids released from the subducting slab and how they affect the seismic structure of the overriding lithosphere. In the Klamath and Wrangelia zones, high seismicity rates in the subducting plate and high tremor density correlate with low shear velocities in the overriding plate's forearc and relatively little arc volcanism. While the cause of tremor is debated, intermediate depth earthquakes are generally thought to be due to metamorphic dehydration reactions resulting from the dewatering of the downgoing slab. Thus, the seismic characteristics of these zones combined with rather sparse arc volcanism may indicate that the slab has largely dewatered by the time it reaches sub-arc depths. Some of the water released during earthquakes (and possibly tremor) may percolate into the overriding plate, leading to slow seismic velocities in the forearc. In contrast, Siletzia shows relatively low seismicity rates and tremor density, with relatively higher shear velocities in the forearc

  11. Seismic protection

    International Nuclear Information System (INIS)

    Herbert, R.


    To ensure that a nuclear reactor or other damage-susceptible installation is, so far as possible, tripped and already shut down before the arrival of an earthquake shock at its location, a ring of monitoring seismic sensors is provided around it, each sensor being spaced from it by a distance (possibly several kilometres) such that (taking into account the seismic-shock propagation velocity through the intervening ground) a shock monitored by the sensor and then advancing to the installation site will arrive there later than a warning signal emitted by the sensor and received at the installation, by an interval sufficient to allow the installation to trip and shut down, or otherwise assume an optimum anti-seismic mode, in response to the warning signal. Extra sensors located in boreholes may define effectively a three-dimensional (hemispherical) sensing boundary rather than a mere two-dimensional ring. (author)

  12. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer


    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  13. Analysis of passive surface-wave noise in surface microseismic data and its implications (United States)

    Forghani-Arani, F.; Willis, M.; Haines, S.; Batzle, M.; Davidson, M.


    Tight gas reservoirs are projected to be a major portion of future energy resources. Because of their low permeability, hydraulic fracturing of these reservoirs is required to improve the permeability and reservoir productivity. Passive seismic monitoring is one of the few tools that can be used to characterize the changes in the reservoir due to hydraulic fracturing. Although the majority of the studies monitoring hydraulic fracturing exploit down hole microseismic data, surface microseismic monitoring is receiving increased attention because it is potentially much less expensive to acquire. Due to a broader receiver aperture and spatial coverage, surface microseismic data may be more advantageous than down hole microseismic data. The effectiveness of this monitoring technique, however, is strongly dependent on the signal-to-noise ratio of the data. Cultural and ambient noise can mask parts of the waveform that carry information about the subsurface, thereby decreasing the effectiveness of surface microseismic analysis in identifying and locating the microseismic events. Hence, time and spatially varying suppression of the surface-wave noise ground roll is a critical step in surface microseismic monitoring. Here, we study a surface passive dataset that was acquired over a Barnett Shale Formation reservoir during two weeks of hydraulic fracturing, in order to characterize and suppress the surface noise in this data. We apply techniques to identify the characteristics of the passive ground roll. Exploiting those characteristics, we can apply effective noise suppression techniques to the passive data. ?? 2011 Society of Exploration Geophysicists.

  14. Combustion noise (United States)

    Strahle, W. C.


    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  15. High resolution 3C fiber laser micro-seismic geophone array for cross-well seismic (United States)

    Zhang, Fa-xiang; Jiang, Shao-dong; Zhang, Xiao-lei; Sun, Zhi-hui; Liu, Xiao-hui; Wang, Chang; Ni, Jia-sheng


    A two level 3-component distributed feed-back (DFB) fiber laser micro-seismic geophone array based on wavelength/space division multiplexing is developed. High resolution dynamic wavelength demodulation was realized with a coherent detection technology. The geophone array was tested in laboratory and showed that the detection capability of the weak vibration signals between 5-500 Hz was better than conventional moving-coil geophone. A cross-well test of the array was performed in a 100 m depth well in Changqing Oil Field in northwest China. The two level 3-component fiber laser micro-seismic geophone array was compared with the traditional in-well seismic geophone and showed better signal noise ratio (SNR) in the cross-well seismic signal acquisition. This 3C fiber laser micro-seismic geophone array system is promising in the cross-well seismic monitoring.

  16. The need for review of environmental licensing rules taking into accounts innovations in the area of onshore seismic data acquisition; A necessidade de revisao das regras de licenciamento ambiental considerando inovacoes na area de aquisicao de dados sismicos terrestres

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Victor M. [Faculdade de Tecnologia e Ciencias - FTC, Salvador, BA (Brazil); Stilgoe, George [GeoDynamics Brasil Ltda., Rio de Janeiro, RJ (Brazil); Ferreira, Doneivan F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Dept. de Geologia e Geofisica Aplicada


    Activities involving seismic data acquisition aimed at the exploration, characterization, and monitoring of onshore oil and gas fields are expected to cause environmental impacts. Therefore, all seismic-related activities which require the use of traditional technologies must be licensed beforehand. The environmental licensing process is complex and subjected to interruptions and delays which will affect project schedule and cash flow. Some innovations in this field and other alternative techniques will allow data acquisition with reduced or insignificant environmental impacts. Within this context, the present paper proposes a description of the current onshore seismic acquisition techniques commonly used and their potential environmental impacts; presents and describes the innovative technique known as Infrasonic Passive Differential Spectroscopy (IPDS); and proposes a regulatory model which will allow a simplified licensing process. Additionally, this paper considers some positive impacts of regulatory flexibility, including: the possibility of using innovative techniques to fulfill obligations under the ANP Initial Work Program (PTI); time and cost reduction within the environmental licensing process; potential impacts on the recently-created market of oil production in fields with marginal accumulations. (author)

  17. Micromachined silicon seismic accelerometer development

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S. [and others


    Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  18. Probing dynamic hydrologic system of slowly-creeping landslides with passive seismic imaging: A comprehensive landslide monitoring site at Lantai, Ilan area in Taiwan (United States)

    Huang, H. H.; Hsu, Y. J.; Kuo, C. Y.; Chen, C. C.; Kuo, L. W.; Chen, R. F.; Lin, C. R.; Lin, P. P.; Lin, C. W.; Lin, M. L.; Wang, K. L.


    A unique landslide monitoring project integrating multidisciplinary geophysics experiments such as GPS, inclinometer, piezometer, and spontaneous potential log has been established at Lantai, Ilan area to investigating the possible detachment depth range and the physical mechanism of a slowly creeping landslide. In parallel with this, a lately deployed local seismic network also lends an opportunity to employ the passive seismic imaging technique to detect the time-lapse changes of seismic velocity in and around the landslide area. Such technique that retrieves Green's functions by cross-correlation of continuous ambient noise has opened new opportunities to seismologically monitoring the environmental and tectonic events such as ground water variation, magma intrusion under volcanos, and co-seismic medium damage in recent years. Integrating these geophysical observations, we explore the primary controls of derived seismic velocity changes and especially the hydrological response of the landslide to the passage of Megi typhoon in the last September 2016, which could potentially further our understanding of the dynamic system of landslides and in turn help the hazard mitigation.

  19. Seismic Symphonies (United States)

    Strinna, Elisa; Ferrari, Graziano


    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  20. The Seismic Structure of the Crust of Madagascar (United States)

    Wysession, M. E.; Andriampenomanana Ny Ony, F. S. T.; Tsiriandrimanana, R.; Pratt, M. J.; Aleqabi, G. I.; Wiens, D. A.; Nyblade, A.; Shore, P.; Rambolamanana, G.; Tilmann, F. J.


    The structure of Madagascar's crust is determined using both body wave receiver functions as well as an analysis of surface waves using ambient-noise and two-plane-wave earthquake surface waves analyses. The primary data used are from the 2011-2013 MACOMO (Madagascar, the Comoros, and Mozambique) broadband seismic array from the PASSCAL program of IRIS (Incorporated Research Institutions for Seismology), funded by the NSF. Additional data came from the RHUM-RUM project (led by G. Barruol and K. Sigloch), the Madagascar Seismic Profile (led by F. Tilmann), and the GSN. The crustal structure of Madagascar, which had previously only been inferred from a gravity survey assuming isostasy, shows a strong correlation with its tectonic history. Crustal thicknesses are greatest, reaching 45 km, along the spine of Madagascar's mountains, which run north-south across the island. Crustal thicknesses thin to the east and west, which are both regions of tectonic separation, however, with very different results. Extensive crustal thinning occurred along the western coasts of Madagascar when the island rifted away from mainland Africa beginning 160 Ma ago. The crust is as thin as 20 km here, but the thickness of basin sediments is as great as 9 km, with the crystalline basement continental crust thinning to 12 km at its thinnest. Along the east coast, the crustal thickness is within the 33-38 km range, but it is thickest in the two places where mesoarchaean crust was rifted off from the Indian subcontinent when it broke away from Madagascar. Surface wave studies show that velocities beneath Madagascar are generally slow, when compared to global models such as AK135. This appears to be due to the occurrence of Cenozoic intraplate volcanism in three regions of Madagascar (north, central, and southwest), each of which has strong underlying seismic low-velocity anomalies in the lithospheric mantle and asthenosphere.

  1. Towards time domain finite element analysis of gravity gradient noise

    International Nuclear Information System (INIS)

    Beker, M G; Brand, J F J van den; Hennes, E; Rabeling, D S


    Gravity gradient noise generated by seismic displacements constitute a limiting factor for the sensitivity of ground based gravitational wave detectors at frequencies below 10 Hz. We present a finite element framework to calculate the soil response to various excitations. The accompanying gravity gradients as a result of the seismic displacement field can then be evaluated. The framework is first shown to accurately model seismic waves in homogenous media. Calculations of the gravity gradient noise are then shown to be in agreement with previous analytical results. Finally results of gravity gradient noise from a single pulse excitation of a homogenous medium are discussed.

  2. PRESS40: a project for involving students in active seismic risk mitigation (United States)

    Barnaba, Carla; Contessi, Elisa; Rosa Girardi, Maria


    To memorialize the anniversary of the 1976 Friuli earthquake, the Istituto Statale di Istruzione Superiore "Magrini Marchetti" in Gemona del Friuli (NE Italy), with the collaboration of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), has promoted the PRESS40 Project (Prevenzione Sismica nella Scuola a 40 anni dal terremoto del Friuli, that in English sounds like "Seismic Prevention at School 40 years later the Friuli earthquake"). The project has developed in the 2015-2016 school year, starting from the 40th anniversary of the Friuli earthquake, and it aims to disseminate historical memory, seismic culture and awareness of seismic safety in the young generations, too often unconscious of past experiences, as recent seismic hazard perception tests have demonstrated. The basic idea of the PRESS40 Project is to involve the students in experimental activities to be active part of the seismic mitigation process. The Project is divided into two main parts, the first one in which students learn-receive knowledge from researchers, and the second one in which they teach-bring knowledge to younger students. In the first part of the project, 75 students of the "Magrini Marchetti" school acquired new geophysical data, covering the 23 municipalities from which they come from. These municipalities represent a wide area affected by the 1976 Friuli earthquake. In each locality a significant site was examined, represented by a school area. At least, 127 measurements of ambient noise have been acquired. Data processing and interpretation of all the results are still going on, under the supervision of OGS researchers.The second part of the project is planned for the early spring, when the students will present the results of geophysical survey to the younger ones of the monitored schools and to the citizens in occasion of events to commemorate the 40th anniversary of the Friuli earthquake.

  3. The multidisciplinary, Seismic-Hydroacoustic-Infrasound, observatory in offshore site of the northeastern South Korea (United States)

    Cho, H. M.; Che, I. Y.; Kim, G.; Lim, I. S.; Shin, I. C.; Kim, Y.


    The long-term seismic observation on the sea-floor is a challenging idea that can provide useful information in offshore area and help us to understand the tectonics better. Projects in the United States, Canada, Japan, and Europe were successfully implemented. We report on the installation of a long-term sea-floor multidisciplinary observatory in offshore site of the northeastern South Korea. The site is located 4.5 km from the shore, at a water depth of about 80 m. The novelty of our project is the development of an integrated detection system for earthquake combining seismic, hydroacoutic, and infrasound technologies. The observatory consists of three sea-floor seismometer modules and associated elastic beacon type buoys each of which is equipped with solar power supply, infrasound and meteorological sensors, RF and LTE network for continuous and real-time data transmission, and SOH system. Three elastic beacon type buoys were successfully deployed during July 29 - 31, 2015. The sea-floor seismometer module is equipped with a 3-component CMG-3T-OBS system with 24-bit 8-channel digitizer in titanium sphere. A current meter, a Differential Pressure Gauge, and a HTI hydrophone are mounted on the lifting frame. The whole module is covered and protected with Trawl resistant concrete dome. Three land broadband seismic stations nearby (land and ocean. We analyzed the seismic ambient noise characteristics on the offshore site from the data of temporary OBS operated for 4 months. The power spectral density was calculated and compared with the NLNM and NHNM. Now, we are preparing the installation of three seismometer modules scheduled to do in early September, 2016. The integrated data and the technique analyzing the Seismic-Hydroacoustic-Infrasound data will improve our detection system for earthquake in offshore.

  4. The use of multiwavelets for uncertainty estimation in seismic surface wave dispersion.

    Energy Technology Data Exchange (ETDEWEB)

    Poppeliers, Christian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report describes a new single-station analysis method to estimate the dispersion and uncer- tainty of seismic surface waves using the multiwavelet transform. Typically, when estimating the dispersion of a surface wave using only a single seismic station, the seismogram is decomposed into a series of narrow-band realizations using a bank of narrow-band filters. By then enveloping and normalizing the filtered seismograms and identifying the maximum power as a function of frequency, the group velocity can be estimated if the source-receiver distance is known. However, using the filter bank method, there is no robust way to estimate uncertainty. In this report, I in- troduce a new method of estimating the group velocity that includes an estimate of uncertainty. The method is similar to the conventional filter bank method, but uses a class of functions, called Slepian wavelets, to compute a series of wavelet transforms of the data. Each wavelet transform is mathematically similar to a filter bank, however, the time-frequency tradeoff is optimized. By taking multiple wavelet transforms, I form a population of dispersion estimates from which stan- dard statistical methods can be used to estimate uncertainty. I demonstrate the utility of this new method by applying it to synthetic data as well as ambient-noise surface-wave cross-correlelograms recorded by the University of Nevada Seismic Network.

  5. Temporary seismic networks on active volcanoes of Kamchatka (Russia) (United States)

    Jakovlev, Andrey; Koulakov, Ivan; Abkadyrov, Ilyas; Shapiro, Nikolay; Kuznetsov, Pavel; Deev, Evgeny; Gordeev, Evgeny; Chebrov, Viktor


    We present details of four field campaigns carried out on different volcanoes of Kamchatka in 2012-2015. Each campaign was performed in three main steps: (i) installation of the temporary network of seismic stations; (ii) autonomous continuous registration of three component seismic signal; (III) taking off the network and downloading the registered data. During the first campaign started in September 2012, 11 temporary stations were installed over the Avacha group of volcanoes located 30 km north to Petropavlovsk-Kamchatsky in addition to the seven permanent stations operated by the Kamchatkan Branch of the Geophysical Survey (KBGS). Unfortunately, with this temporary network we faced with two obstacles. The first problem was the small amount of local earthquakes, which were detected during operation time. The second problem was an unexpected stop of several stations only 40 days after deployment. Nevertheless, after taking off the network in August 2013, the collected data appeared to be suitable for analysis using ambient noise. The second campaign was conducted in period from August 2013 to August 2014. In framework of the campaign, 21 temporary stations were installed over Gorely volcano, located 70 km south to Petropavlovsk-Kamchatsky. Just in time of the network deployment, Gorely Volcano became very seismically active - every day occurred more than 100 events. Therefore, we obtain very good dataset with information about thousands of local events, which could be used for any type of seismological analysis. The third campaign started in August 2014. Within this campaign, we have installed 19 temporary seismic stations over Tolbachik volcano, located on the south side of the Klyuchevskoy volcano group. In the same time on Tolbachik volcano were installed four temporary stations and several permanent stations operated by the KBGS. All stations were taking off in July 2015. As result, we have collected a large dataset, which is now under preliminary analysis

  6. CNOSSOS-EU: Development of a common environmental noise assessment method in the European Union; CNOSSOS-EU: desarrollo de un metodo comun de evaluacion del ruido ambiental en la Union Europea

    Energy Technology Data Exchange (ETDEWEB)

    Aspuru Soloaga, I.; Segues Echazarreta Segues, F.


    This article presents the main aspects of the work undertaken in the development of the common european method of environmental noise assessment CNOSSOS-EU. It summarizes the design, structure and content, and the methodological basis on which it is based. Taking into account the experience gained in the first round of strategic noise mapping, some conclusions are settled about its applications for the third round, and tits implications for the Spanish case. (Author) 9 refs.



    Alexandre Eniz; Sérgio Luiz Garavelli


    Urban noises are more and more presents in our daily life, invading residences, work places, leisure locations, hospitals and schools, becoming a potential harm to social interaction, communication, behavior, school performance, health etc. The main objective of this work was to analyze and quantify the environmental noise in ten schools of the basic education in District Federal, Brazil. The adopted parameter was the equivalent sound pressure level Leq (A), which was evaluated according to t...

  8. A probabilistic framework for single-station location of seismicity on Earth and Mars (United States)

    Böse, M.; Clinton, J. F.; Ceylan, S.; Euchner, F.; van Driel, M.; Khan, A.; Giardini, D.; Lognonné, P.; Banerdt, W. B.


    Mars that incorporate existing knowledge of Mars internal structure, and include expected ambient and instrumental noise. While our probabilistic framework is developed mainly for application to Mars in the context of the upcoming InSight mission, it is also relevant for locating seismic events on Earth in regions with sparse instrumentation.

  9. Seismic and thermal structure of the crust and uppermost mantle beneath Antarctica from inversion of multiple seismic datasets (United States)

    Wiens, D.; Shen, W.; Anandakrishnan, S.; Aster, R. C.; Gerstoft, P.; Bromirski, P. D.; Dalziel, I.; Hansen, S. E.; Heeszel, D.; Huerta, A. D.; Nyblade, A.; Stephen, R. A.; Wilson, T. J.; Winberry, J. P.; Stern, T. A.


    Since the last decade of the 20th century, over 200 broadband seismic stations have been deployed across Antarctica (e.g., temporary networks such as TAMSEIS, AGAP/GAMSEIS, POLENET/ANET, TAMNNET and RIS/DRIS by U.S. geoscientists as well as stations deployed by Japan, Britain, China, Norway, and other countries). In this presentation, we discuss our recent efforts to build reference crustal and uppermost mantle shear velocity (Vs) and thermal models for continental Antarctica based on those seismic arrays. By combing the high resolution Rayleigh wave dispersion maps derived from both ambient noise and teleseismic earthquakes, together with P receiver function waveforms, we develop a 3-D Vs model for the crust and uppermost mantle beneath Central and West Antarctica to a depth of 200 km. Additionally, using this 3-D seismic model to constrain the crustal structure, we re-invert for the upper mantle thermal structure using the surface wave data within a thermodynamic framework and construct a 3-D thermal model for the Antarctic lithosphere. The final product, a high resolution thermal model together with associated uncertainty estimates from the Monte Carlo inversion, allows us to derive lithospheric thickness and surface heat flux maps for much of the continent. West Antarctica shows a much thinner lithosphere ( 50-90 km) than East Antarctica ( 130-230 km), with a sharp transition along the Transantarctic Mountains (TAM). A variety of geological features, including a slower/hotter but highly heterogeneous West Antarctica and a much faster/colder East Antarctic craton, are present in the 3-D seismic/thermal models. Notably, slow seismic velocities observed in the uppermost mantle beneath the southern TAM are interpreted as a signature of lithospheric foundering and replacement with hot asthenosphere. The high resolution image of these features from the 3-D models helps further investigation of the dynamic state of Antarctica's lithosphere and underlying asthenosphere

  10. Mesoscopics of ultrasound and seismic waves: application to passive imaging (United States)

    Larose, É.


    This manuscript deals with different aspects of the propagation of acoustic and seismic waves in heterogeneous media, both simply and multiply scattering ones. After a short introduction on conventional imaging techniques, we describe two observations that demonstrate the presence of multiple scattering in seismic records: the equipartition principle, and the coherent backscattering effect (Chap. 2). Multiple scattering is related to the mesoscopic nature of seismic and acoustic waves, and is a strong limitation for conventional techniques like medical or seismic imaging. In the following part of the manuscript (Chaps. 3 5), we present an application of mesoscopic physics to acoustic and seismic waves: the principle of passive imaging. By correlating records of ambient noise or diffuse waves obtained at two passive sensors, it is possible to reconstruct the impulse response of the medium as if a source was placed at one sensor. This provides the opportunity of doing acoustics and seismology without a source. Several aspects of this technique are presented here, starting with theoretical considerations and numerical simulations (Chaps. 3, 4). Then we present experimental applications (Chap. 5) to ultrasound (passive tomography of a layered medium) and to seismic waves (passive imaging of California, and the Moon, with micro-seismic noise). Physique mésoscopique des ultrasons et des ondes sismiques : application à l'imagerie passive. Cet article de revue rassemble plusieurs aspects fondamentaux et appliqués de la propagation des ondes acoustiques et élastiques dans les milieux hétérogènes, en régime de diffusion simple ou multiple. Après une introduction sur les techniques conventionelles d'imagerie sismique et ultrasonore, nous présentons deux expériences qui mettent en évidence la présence de diffusion multiple dans les enregistrements sismologiques : l'équipartition des ondes, et la rétrodiffusion cohérente (Chap. 2). La diffusion multiple des

  11. Seismic Discrimination (United States)


    Plate Tectonics ,’ in The Earth: Its Origin. Structure and Evolution (Academic Press. London. f9-79). pp. 491-542. 185. M. A. Chinnery. "A Comparison of...stations in Eurasia-SHIO (Shillong, india), ANTO ( Ankara , Turkey), GRFO (Graefenberg, Germany), and KONO (Kongsberg, Norway) started producing data, and we...34 Tectonics of the Caribbean and Middle America Regions from Focal Mechanisms and Seismicity." Geol. Soc. Am. Bull. 80. 1639-1684 (1969). 10. T. J

  12. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.


    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  13. Minimizing noise-temperature measurement errors (United States)

    Stelzried, C. T.


    An analysis of noise-temperature measurement errors of low-noise amplifiers was performed. Results of this analysis can be used to optimize measurement schemes for minimum errors. For the cases evaluated, the effective noise temperature (Te) of a Ka-band maser can be measured most accurately by switching between an ambient and a 2-K cooled load without an isolation attenuator. A measurement accuracy of 0.3 K was obtained for this example.

  14. Micromachined silicon seismic transducers

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Sniegowski, J.J.; Armour, D.L.; Fleming, R.P.


    Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  15. Seismic data acquisition at the FACT site for the CASPAR project.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kyle R.; Chael, Eric Paul; Hart, Darren M.


    Since May 2010, we have been recording continuous seismic data at Sandia's FACT site. The collected signals provide us with a realistic archive for testing algorithms under development for local monitoring of explosive testing. Numerous small explosive tests are routinely conducted around Kirtland AFB by different organizations. Our goal is to identify effective methods for distinguishing these events from normal daily activity on and near the base, such as vehicles, aircraft, and storms. In this report, we describe the recording system, and present some observations of the varying ambient noise conditions at FACT. We present examples of various common, non-explosive, sources. Next we show signals from several small explosions, and discuss their characteristic features.

  16. Predicting the performance of local seismic networks using Matlab and Google Earth.

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Eric Paul


    We have used Matlab and Google Earth to construct a prototype application for modeling the performance of local seismic networks for monitoring small, contained explosions. Published equations based on refraction experiments provide estimates of peak ground velocities as a function of event distance and charge weight. Matlab routines implement these relations to calculate the amplitudes across a network of stations from sources distributed over a geographic grid. The amplitudes are then compared to ambient noise levels at the stations, and scaled to determine the smallest yield that could be detected at each source location by a specified minimum number of stations. We use Google Earth as the primary user interface, both for positioning the stations of a hypothetical local network, and for displaying the resulting detection threshold contours.

  17. Non-stationary least-squares complex decomposition for microseismic noise attenuation (United States)

    Chen, Yangkang


    Microseismic data processing and imaging are crucial for subsurface real-time monitoring during hydraulic fracturing processing. Unlike the active-source seismic events or large-scale earthquake events, the microseismic event is usually of very small magnitude, which makes their detection challenging. The biggest trouble of microseismic data is the low signal-to-noise ratio (SNR) issue. Because of the small energy difference between effective microseismic signal and ambient noise, the effective signals are usually buried in strong random noise. I propose a useful microseismic denoising algorithm that is based on decomposing a microseismic trace into an ensemble of components using least-squares inversion. Based on the predictive property of useful microseismic event along the time direction, the random noise can be filtered out via least-squares fitting of multiple damping exponential components. The method is flexible and almost automated since the only parameter needed to be defined is a decomposition number. I use some synthetic and real data examples to demonstrate the potential of the algorithm in processing complicated microseismic datasets.

  18. High level white noise generator

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Blalock, T.V.


    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application

  19. High level white noise generator (United States)

    Borkowski, Casimer J.; Blalock, Theron V.


    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  20. National Seismic Network of Georgia (United States)

    Tumanova, N.; Kakhoberashvili, S.; Omarashvili, V.; Tserodze, M.; Akubardia, D.


    Georgia, as a part of the Southern Caucasus, is tectonically active and structurally complex region. It is one of the most active segments of the Alpine-Himalayan collision belt. The deformation and the associated seismicity are due to the continent-continent collision between the Arabian and Eurasian plates. Seismic Monitoring of country and the quality of seismic data is the major tool for the rapid response policy, population safety, basic scientific research and in the end for the sustainable development of the country. National Seismic Network of Georgia has been developing since the end of 19th century. Digital era of the network started from 2003. Recently continuous data streams from 25 stations acquired and analyzed in the real time. Data is combined to calculate rapid location and magnitude for the earthquake. Information for the bigger events (Ml>=3.5) is simultaneously transferred to the website of the monitoring center and to the related governmental agencies. To improve rapid earthquake location and magnitude estimation the seismic network was enhanced by installing additional 7 new stations. Each new station is equipped with coupled Broadband and Strong Motion seismometers and permanent GPS system as well. To select the sites for the 7 new base stations, we used standard network optimization techniques. To choose the optimal sites for new stations we've taken into account geometry of the existed seismic network, topographic conditions of the site. For each site we studied local geology (Vs30 was mandatory for each site), local noise level and seismic vault construction parameters. Due to the country elevation, stations were installed in the high mountains, no accessible in winter due to the heavy snow conditions. To secure online data transmission we used satellite data transmission as well as cell data network coverage from the different local companies. As a result we've already have the improved earthquake location and event magnitudes. We

  1. Seismic evaluation of existing nuclear facilities. Proceedings

    International Nuclear Information System (INIS)


    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies

  2. Academia vs Industry: vanishing boundaries between global earthquake seismology and exploration seismics. (United States)

    van der Hilst, R. D.


    Global seismology and exploration seismics have long lived in parallel universes, with little cross-fertilization of methodologies and with interaction between the associated communities often limited to company recruitment of students. Fortunately, this traditional separation of technology and people has begun to disappear. This is driven not only by continuing demands for human and financial resources (for companies and academia, respectively) but increasingly also by overlapping intellectual interest. First, 'waves are waves' (that is, the fundamental physics - and math to describe/handle it - is scale invariant) and many artificial boundaries are being removed by use of better wave theory, faster computers, and new data acquisition paradigms. For example, the development of dense sensor arrays (in USA, Europe, Asia - mostly China and Japan) is increasing the attraction (and need) of industry-style interrogation of massive data sets. Examples include large scale seismic exploration of Earth's deep interior with inverse scattering of teleseismic wavefields (e.g., Van der Hilst et al., Science, 2007). On the other hand, reservoir exploration and production benefits from expertise in earthquake seismology, both for better characterization of reservoirs and their overburden and for (induced) micro-earthquake analysis. Passive source methods (including but not restricted to ambient noise tomography) are providing new, economic opportunities for velocity analysis and monitoring, and studies of (micro)seismicity (e.g., source location, parameters, and moment tensor) allow in situ stress determination, tomographic velocity analysis with natural sources in the reservoir, and 4D monitoring (e.g., for hydrocarbon production, carbon sequestration, enhanced geothermal systems, and unconventional gas production). Second, the gap between the frequency ranges traditionally considered by both communities is being bridged by better theory, new sensor technology, and through

  3. Noise Protection (United States)


    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  4. Seismic instrumentation

    International Nuclear Information System (INIS)


    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  5. Small aperture seismic arrays for studying planetary interiors and seismicity (United States)

    Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.


    Seismic arrays