WorldWideScience

Sample records for ambient particulate matter

  1. Particulate Matter Levels in Ambient Air Adjacent to Industrial Area

    Science.gov (United States)

    Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.

    2016-07-01

    Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.

  2. 77 FR 38760 - National Ambient Air Quality Standards for Particulate Matter; Correction

    Science.gov (United States)

    2012-06-29

    ... AGENCY 40 CFR Parts 50, 51, 52, 53, and 58 RIN 2060-AO47 National Ambient Air Quality Standards for... revise the national ambient air quality standards (NAAQS) for particulate matter (PM). This action...: Questions concerning the ``National Ambient Air Quality Standards for Particulate Matter'' proposed...

  3. The origin of ambient particulate matter concentrations in the Netherlands

    NARCIS (Netherlands)

    Hendriks, C.; Kranenburg, R.; Kuenen, J.; Gijlswijk, R. van; Wichink Kruit, R.; Segers, A.; Denier van der Gon, H.; Schaap, M.

    2013-01-01

    Particulate matter poses a significant threat to human health. To be able to develop effective mitigation strategies, the origin of particulate matter needs to be established. The regional air quality model LOTOS-EUROS, equipped with a newly developed labeling routine, was used to establish the orig

  4. Ultrafine ambient particulate matter enhances cardiac ischemia and reperfusion injury

    Science.gov (United States)

    Epidemiological studies have demonstrated a consistent link between exposure to ambient particulate air pollutant (PM) and the incidence of cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of ambient PM. Mice were exposed to 1...

  5. Ambient particulate matter affects cardiac recovery in a Langendorff ischemia model.

    NARCIS (Netherlands)

    Bagate, Karim; Meiring, James J; Gerlofs-Nijland, Miriam E; Cassee, Flemming R; Wiegand, Herbert; Osornio-Vargas, Alvaro; Borm, Paul J A

    2006-01-01

    Exposure to ambient particulate matter (PM) is associated with increased mortality and morbidity among subjects with cardiovascular impairment. We hypothesized that exposure of spontaneously hypertensive (SH) rats to PM impairs the recovery of cardiovascular performance after coronary occlusion and

  6. Cardiac Effects of Seasonal Ambient Particulate Matter and Ozone Co-exposure in Rats

    Science.gov (United States)

    BackgroundThe potential for seasonal differences in the physicochemical characteristics of ambient particulate matter (PM) to modify interactive effects with gaseous pollutants has not been thoroughly examined. The purpose of this study was to compare cardiac responses in conscio...

  7. The origin of ambient particulate matter concentrations in the Netherlands

    Science.gov (United States)

    Hendriks, Carlijn; Kranenburg, Richard; Kuenen, Jeroen; van Gijlswijk, René; Wichink Kruit, Roy; Segers, Arjo; Denier van der Gon, Hugo; Schaap, Martijn

    2013-04-01

    Particulate matter poses a significant threat to human health. To be able to develop effective mitigation strategies, the origin of particulate matter needs to be established. The regional air quality model LOTOS-EUROS, equipped with a newly developed labeling routine, was used to establish the origin of PM10 and PM2.5 in the Netherlands for 2007-2009 at the source sector level, distinguishing between national and foreign sources. The results suggest that 70-80% of modeled PM10 and 80-95% of PM2.5 in the Netherlands is of anthropogenic origin. About 1/3 of anthropogenic PM10 is of Dutch origin and 2/3 originates in foreign countries. Agriculture and transport are the Dutch sectors with the largest contribution to PM10 mass in the Netherlands, whereas the foreign contribution is more equally apportioned to road transport, other transport, industry, power generation and agriculture. For the PM2.5 fraction, a larger share is apportioned to foreign and anthropogenic origin than for PM10, but the same source sectors are dominant. The national contribution to PM levels is significantly higher in the densely populated Randstad area than for the country on average and areas close to the borders. In general, the Dutch contribution to the concentration of primary aerosol is larger than for secondary species. The sectoral origin varies per component and is location and time dependent. During peak episodes, natural sources are less important than under normal conditions, whereas especially road transport and agriculture become more important.

  8. METEOROLOGICAL MONITORING PROGRAM. PARTICULATE MATTER AMBIENT AIR QUALITY MONITORING REPORT, JANUARY THROUGH DECEMBER 1996

    International Nuclear Information System (INIS)

    Environmental field studies in the Yucca Mountain site characterization activities have included monitoring ambient levels of particulate matter since April 1989. The monitoring and reporting work was performed by the Management and Operating Environmental Field Programs Division. The parameters monitored, methods used in the monitoring, and the sampling schedule complied with U.S. Environmental Protection Agency regulations and monitoring guidance. The inhalable particulate matter results have been reported to the State of Nevada since July 1991 to comply with State of Nevada air quality permit requirements. Three previous project reports presented the results obtained through 1995 (Environmental Field Programs Division 1992a; 1992b; 1996). This report presents the results obtained during 1996. Results of this monitoring program continue to identify that particulate matter remains well below applicable ambient air quality standards. The maximum inhalable particulate matter result was 60 micrograms per standard cubic meter; this result is less than one-half of the applicable 24-hour National (and Nevada) Ambient Air Quality Standard of 150 micrograms per standard cubic meter. The annual inhalable particulate matter averages for the period were approximately one-fifth of the applicable annual standard of 50 micrograms per standard cubic meter. The 1996 results were similar to results from 1989 to 1995

  9. Characteristics and cellular effects of ambient particulate matter from Beijing

    International Nuclear Information System (INIS)

    In vitro tests using human adenocarcinomic alveolar epithelial cell line A549 and small mouse monocyte-macrophage cell line J774A.1 were conducted to test toxicity of six PM (particulate matter) samples from Beijing. The properties of the samples differ significantly. The production of inflammatory cytokine (TNF-α for J774A.1) and chemokine (IL-8 for A549) and the level of intracellular reactive oxygen species (ROS) were used as endpoints. There was a positive correlation between water soluble organic carbon and DTT-based redox activity. Both cell types produced increased levels of inflammatory mediators and had higher level of intracelllar ROS, indicating the presence of PM-induced inflammatory response and oxidative stress, which were dose-dependent and significantly different among the samples. The releases of IL-8 from A549 and TNF-α from J774A.1 were significantly correlated to PM size, Zeta potential, endotoxin, major metals, and polycyclic aromatic hydrocarbons. No correlation between ROS and these properties was identified. - Highlights: • Six PMs from Beijing were tested for toxicity using A549 and J774A.1 cell lines. • The properties of the PM samples differ significantly. • Dose-dependent inflammatory response and oxidative stress were found. • The release of inflammatory cytokine was significantly correlated to PM properties. • No correlation between ROS and PM properties was identified. - Cellular toxicity of PM2.5 from Beijing depends on their properties

  10. Possible Noncausal Bases for Correlations Between Low Concentrations of Ambient Particulate Matter and Daily Mortality

    OpenAIRE

    Valberg, Peter A

    2003-01-01

    Numerous studies of populations living in areas with good air quality have reported correlations between daily average levels of ambient particulate matter (PM) and daily mortality rates. These associations persist at PM levels below current air quality standards and are difficult to reconcile with the toxicology of PM chemical constituents. The unusual level of lethality per unit PM mass predicted by these associations may result from confounding by unmeasured societal, behavioral, or stress...

  11. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  12. The impact of ambient particulate matter (PM10) on the population mortality for cerebrovascular diseasesa case-crossover study

    Institute of Scientific and Technical Information of China (English)

    王旭英

    2013-01-01

    Objective To analyze the association between the concentration of ambient inhalable particulate matter(PM10) and population mortality for cerebrovascular diseases and to explore the impact of PM10 on cerebrovascular

  13. Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers

    Science.gov (United States)

    Background: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. Objective: In this study we evaluated the efficacy of...

  14. Cardiopulmonary Toxicity Induced by Ambient Particulate Matter (BI City Concentrated Ambient Particle Study)

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr; James Wagner Masako Morishita; Gerald Keeler; Jack Harkema

    2010-06-30

    Alterations in heart rate variability (HRV) have been reported in rodents exposed to concentrated ambient particles (CAPs) from different regions of the United States. The goal of this study was to compare alterations in cardiac function induced by CAPs in two distinct regional atmospheres. AirCARE 1, a mobile laboratory with an EPA/Harvard fine particle (particulate matter <2.5 {micro}m; PM{sub 2.5}) concentrator was located in urban Detroit, MI, where the PM mixture is heavily influenced by motor vehicles, and in Steubenville, OH, where PM is derived primarily from long-range transport and transformation of power plant emissions, as well as from local industrial operations. Each city was studied during both winter and summer months, for a total of four sampling periods. Spontaneously hypertensive rats instrumented for electrocardiogram (ECG) telemetry were exposed to CAPs 8 h/day for 13 consecutive days during each sampling period. Heart rate (HR), and indices of HRV (standard deviation of the average normal-to-normal intervals [SDNN]; square root of the mean squared difference of successive normal-to-normal intervals [rMSSD]), were calculated for 30-minute intervals during exposures. A large suite of PM components, including nitrate, sulfate, elemental and organic carbon, and trace elements, were monitored in CAPs and ambient air. In addition, a unique sampler, the Semi-Continuous Elements in Air Sampler (SEAS) was employed to obtain every-30-minute measurements of trace elements. Positive matrix factorization (PMF) methods were applied to estimate source contributions to PM{sub 2.5}. Mixed modeling techniques were employed to determine associations between pollutants/CAPs components and HR and HRV metrics. Mean CAPs concentrations in Detroit were 518 and 357 {micro}g/m{sup 3} (summer and winter, respectively) and 487 and 252 {micro}g/m{sup 3} in Steubenville. In Detroit, significant reductions in SDNN were observed in the summer in association with cement

  15. Cardiopulmonary Toxicity Induced by Ambient Particulate Matter (BI City Concentrated Ambient Particle Study)

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr; James Wagner Masako Morishita; Gerald Keeler; Jack Harkema

    2010-06-30

    Alterations in heart rate variability (HRV) have been reported in rodents exposed to concentrated ambient particles (CAPs) from different regions of the United States. The goal of this study was to compare alterations in cardiac function induced by CAPs in two distinct regional atmospheres. AirCARE 1, a mobile laboratory with an EPA/Harvard fine particle (particulate matter <2.5 {micro}m; PM{sub 2.5}) concentrator was located in urban Detroit, MI, where the PM mixture is heavily influenced by motor vehicles, and in Steubenville, OH, where PM is derived primarily from long-range transport and transformation of power plant emissions, as well as from local industrial operations. Each city was studied during both winter and summer months, for a total of four sampling periods. Spontaneously hypertensive rats instrumented for electrocardiogram (ECG) telemetry were exposed to CAPs 8 h/day for 13 consecutive days during each sampling period. Heart rate (HR), and indices of HRV (standard deviation of the average normal-to-normal intervals [SDNN]; square root of the mean squared difference of successive normal-to-normal intervals [rMSSD]), were calculated for 30-minute intervals during exposures. A large suite of PM components, including nitrate, sulfate, elemental and organic carbon, and trace elements, were monitored in CAPs and ambient air. In addition, a unique sampler, the Semi-Continuous Elements in Air Sampler (SEAS) was employed to obtain every-30-minute measurements of trace elements. Positive matrix factorization (PMF) methods were applied to estimate source contributions to PM{sub 2.5}. Mixed modeling techniques were employed to determine associations between pollutants/CAPs components and HR and HRV metrics. Mean CAPs concentrations in Detroit were 518 and 357 {micro}g/m{sup 3} (summer and winter, respectively) and 487 and 252 {micro}g/m{sup 3} in Steubenville. In Detroit, significant reductions in SDNN were observed in the summer in association with cement

  16. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    Science.gov (United States)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures

  17. Ambient particulate matter exposure and cardiovascular diseases: a focus on progenitor and stem cells.

    Science.gov (United States)

    Cui, Yuqi; Sun, Qinghua; Liu, Zhenguo

    2016-05-01

    Air pollution is a major challenge to public health. Ambient fine particulate matter (PM) is the key component for air pollution, and associated with significant mortality. The majority of the mortality following PM exposure is related to cardiovascular diseases. However, the mechanisms for the adverse effects of PM exposure on cardiovascular system remain largely unknown and under active investigation. Endothelial dysfunction or injury is considered one of the major factors that contribute to the development of cardiovascular diseases such as atherosclerosis and coronary heart disease. Endothelial progenitor cells (EPCs) play a critical role in maintaining the structural and functional integrity of vasculature. Particulate matter exposure significantly suppressed the number and function of EPCs in animals and humans. However, the mechanisms for the detrimental effects of PM on EPCs remain to be fully defined. One of the important mechanisms might be related to increased level of reactive oxygen species (ROS) and inflammation. Bone marrow (BM) is a major source of EPCs. Thus, the number and function of EPCs could be intimately associated with the population and functional status of stem cells (SCs) in the BM. Bone marrow stem cells and other SCs have the potential for cardiovascular regeneration and repair. The present review is focused on summarizing the detrimental effects of PM exposure on EPCs and SCs, and potential mechanisms including ROS formation as well as clinical implications. PMID:26988063

  18. Daily variations of size-segregated ambient particulate matter in Beijing

    International Nuclear Information System (INIS)

    Daily, size-segregated particulate matter (PM) samples were collected at Peking University from March 2012 to April 2013. Seventeen indoor air samples were also collected over this period. Winter PM concentrations decreased compared with those reported a decade ago, but summer PM concentrations increased over the same time period. Increasing summer PM concentrations likely resulted from a shift in the major source of PM from primary coal burning to vehicle-associated secondary particle formation. A multiple regression model explained 62% of daily PM concentration variations, and wind direction was the most important factor controlling PM concentrations. Severe pollution was often associated with southeasterly winds, while westerly and northwesterly winds brought relatively clean air. Temperature, precipitation and relative humidity also affected PM concentrations. PM concentrations indoors were generally lower than, but significantly correlated with ambient concentrations. Indoor PM concentrations were also affected by wind speed and temperature. - Highlights: • Daily concentrations of five size fraction PMs were measured for a year. • The seasonality and source pattern were different from those reported a decade ago. • Severe pollution epidoses were associated with southeasterly winds. • Indoor PM concentrations were lower than but correlated with those in ambient air. - Size-segregated ambient PM concentrations in Beijing varied depending on wind direction; and PM concentrations indoors were well-correlated with, but lower than those outdoors

  19. Ambient Carbon Monoxide and Fine Particulate Matter in Relation to Preeclampsia and Preterm Delivery in Western Washington State

    OpenAIRE

    Rudra, Carole B.; Williams, Michelle A.; Sheppard, Lianne; Koenig, Jane Q.; Schiff, Melissa A.

    2011-01-01

    Background Preterm delivery and preeclampsia are common adverse pregnancy outcomes that have been inconsistently associated with ambient air pollutant exposures. Objectives We aimed to prospectively examine relations between exposures to ambient carbon monoxide (CO) and fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] and risks of preeclampsia and preterm delivery. Methods We used data from 3,509 western Washington women who delivered infants between 1996 and 2006. We predic...

  20. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions

    Science.gov (United States)

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January–March and October–December 2011–2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m−3, which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m−3, respectively. In the warm season (April–September 2011–2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  1. Properties and cellular effects of particulate matter from direct emissions and ambient sources.

    Science.gov (United States)

    Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2016-10-14

    The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis. PMID:27409416

  2. Ambient Fine Particulate Matter and Mortality among Survivors of Myocardial Infarction: Population-Based Cohort Study

    Science.gov (United States)

    Chen, Hong; Burnett, Richard T.; Copes, Ray; Kwong, Jeffrey C.; Villeneuve, Paul J.; Goldberg, Mark S.; Brook, Robert D.; van Donkelaar, Aaron; Jerrett, Michael; Martin, Randall V.; Brook, Jeffrey R.; Kopp, Alexander; Tu, Jack V.

    2016-01-01

    Background: Survivors of acute myocardial infarction (AMI) are at increased risk of dying within several hours to days following exposure to elevated levels of ambient air pollution. Little is known, however, about the influence of long-term (months to years) air pollution exposure on survival after AMI. Objective: We conducted a population-based cohort study to determine the impact of long-term exposure to fine particulate matter ≤ 2.5 μm in diameter (PM2.5) on post-AMI survival. Methods: We assembled a cohort of 8,873 AMI patients who were admitted to 1 of 86 hospital corporations across Ontario, Canada in 1999–2001. Mortality follow-up for this cohort extended through 2011. Cumulative time-weighted exposures to PM2.5 were derived from satellite observations based on participants’ annual residences during follow-up. We used standard and multilevel spatial random-effects Cox proportional hazards models and adjusted for potential confounders. Results: Between 1999 and 2011, we identified 4,016 nonaccidental deaths, of which 2,147 were from any cardiovascular disease, 1,650 from ischemic heart disease, and 675 from AMI. For each 10-μg/m3 increase in PM2.5, the adjusted hazard ratio (HR10) of nonaccidental mortality was 1.22 [95% confidence interval (CI): 1.03, 1.45]. The association with PM2.5 was robust to sensitivity analyses and appeared stronger for cardiovascular-related mortality: ischemic heart (HR10 = 1.43; 95% CI: 1.12, 1.83) and AMI (HR10 = 1.64; 95% CI: 1.13, 2.40). We estimated that 12.4% of nonaccidental deaths (or 497 deaths) could have been averted if the lowest measured concentration in an urban area (4 μg/m3) had been achieved at all locations over the course of the study. Conclusions: Long-term air pollution exposure adversely affects the survival of AMI patients. Citation: Chen H, Burnett RT, Copes R, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, van Donkelaar A, Jerrett M, Martin RV, Brook JR, Kopp A, Tu JV. 2016. Ambient fine

  3. Ambient particulate matter air pollution in Mpererwe District, Kampala, Uganda: a pilot study.

    Science.gov (United States)

    Schwander, Stephan; Okello, Clement D; Freers, Juergen; Chow, Judith C; Watson, John G; Corry, Melody; Meng, Qingyu

    2014-01-01

    Air quality in Kampala, the capital of Uganda, has deteriorated significantly in the past two decades. We made spot measurements in Mpererwe district for airborne particulate matter PM2.5 (fine particles) and coarse particles. PM was collected on Teflon-membrane filters and analyzed for mass, 51 elements, 3 anions, and 5 cations. Both fine and coarse particle concentrations were above 100 µg/m(3) in all the samples collected. Markers for crustal/soil (e.g., Si and Al) were the most abundant in the PM2.5 fraction, followed by primary combustion products from biomass burning and incinerator emissions (e.g., K and Cl). Over 90% of the measured PM2.5 mass can be explained by crustal species (41% and 59%) and carbonaceous aerosol (33%-55%). Crustal elements dominated the coarse particles collected from Kampala. The results of this pilot study are indicative of unhealthy air and suggest that exposure to ambient air in Kampala may increase the burden of environmentally induced cardiovascular, metabolic, and respiratory diseases including infections. Greater awareness and more extensive research are required to confirm our findings, to identify personal exposure and pollution sources, and to develop air quality management plans and policies to protect public health. PMID:24693293

  4. Concentrations of toxic heavy metals in ambient particulate matter in an industrial area of northeastern China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper investigates concentrations of various heavy metals in ambient particulate matter(PM)and provide evidence for prevention from air pollution.The concentrations of heavy metal components in the PM were determined by inductively coupled plasma/Mass spectrometry(ICP/MS)from September 2000 to August 2002 in a northeast industrial city in China.Concentrations of Cd,Mn,Pb,Ni,Cr and As in the PM were 9.3,461.9,588.7,69.5,205.7 and 57.4 ng/m3 in the industrial area,and 5.7,245.5,305.0,31.4,58.8 and 32.5 ng/m3 in the main road,respectively.Concentrations of these heavy metals except Cd were significantly higher in the industrial area and main road than those in the suburban area(P<0.05 or P<0.01).The change curves of the six heavy metal concentrations show their concentrations increased in the winter and spring,but decreased in the summer and autumn.The results indicate that concentrations of the metals in the PM are relatively high in the indu.strial area and main road.

  5. Effects of organic chemicals derived from ambient particulate matter on lung inflammation related to lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Ken-ichiro; Yanagisawa, Rie; Hirano, Seishiro; Kobayashi, Takahiro [National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba, Ibaraki (Japan); Takano, Hirohisa [National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba, Ibaraki (Japan); Kyoto Prefectural University of Medicine, Inflammation and Immunology, Graduate School of Medical Science, Kyoto (Japan); Ichinose, Takamichi [Oita University of Nursing and Health Sciences, Department of Health Science, Oita (Japan); Yoshikawa, Toshikazu [Kyoto Prefectural University of Medicine, Inflammation and Immunology, Graduate School of Medical Science, Kyoto (Japan)

    2006-12-15

    The effects of components of ambient particulate matter (PM) on individuals with predisposing respiratory disorders are not well defined. We have previously demonstrated that airway exposure to diesel exhaust particles (DEP) or organic chemicals (OC) extracted from DEP (DEP-OC) enhances lung inflammation related to bacterial endotoxin (lipopolysaccharide, LPS). The present study aimed to examine the effects of airway exposure to OC extracted from urban PM (PM-OC) on lung inflammation related to LPS. ICR mice were divided into four experimental groups that intratracheally received vehicle, LPS (2.5 mg/kg), PM-OC (4 mg/kg), or PM-OC + LPS. Lung inflammation, lung water content, and lung expression of cytokines were evaluated 24 h after intratracheal administration. LPS challenge elicited lung inflammation evidenced by cellular profiles of bronchoalveolar lavage fluid and lung histology, which was further aggravated by the combined challenge with PM-OC. The combination with PM-OC and LPS did not significantly exaggerate LPS-elicited pulmonary edema. LPS instillation induced elevated lung expression of interleukin-1{beta}, macrophage inflammatory protein-1{alpha}, macrophage chemoattractant protein-1, and keratinocyte chemoattractant, whereas the combined challenge with PM-OC did not influence these levels. All the results were consistent with our previous reports on DEP-OC. These results suggest that the extracted organic chemicals from PM exacerbate infectious lung inflammation. The mechanisms underlying the enhancing effects are not mediated via the enhanced local expression of proinflammatory cytokines. (orig.)

  6. No association between ambient particulate matter exposure during pregnancy and stillbirth risk in the north of England, 1962–1992

    OpenAIRE

    Pearse, M.S.; Glinianaia, Svetlana V; Rankin, Judith; Rushton, Steven; Charlton, Martin; Parker, L.; Pless-Mulloli, Tanja

    2010-01-01

    Objectives: Research evidence suggests that exposure to ambient air pollutants can adversely affect the growth and development of the foetus and infant survival. Much less is known regarding the potential for an association between black smoke air pollution and stillbirth risk. This potential association was examined using data from the historical cohort UK Particulate Matter and Perinatal Events Research (PAMPER) study. Methods: Using data from paper-based neonatal recor...

  7. Patients with asthma demonstrate airway inflammation after exposure to concentrated ambient particulate matter

    Science.gov (United States)

    ..To the Editor"': Of the three major particulate matter (PM) size fractions (ultrafme, fine and coarse),coarse PM (PM2.5- 10) has been the least examined in terms of its health effects on susceptible populations, this despite having characteristics that make it particula...

  8. Hydroxyl-radical-dependent DNA damage by ambient particulate matter from contrasting sampling locations

    International Nuclear Information System (INIS)

    Exposure to ambient particulate matter (PM) has been reported to be associated with increased respiratory, cardiovascular, and malignant lung disease. Previously we have shown that PM can induce oxidative DNA damage in A549 human lung epithelial cells. The aims of the present study were to investigate the variability of the DNA-damaging properties of PM sampled at different locations and times and to relate the observed effects to the hydroxyl-radical (·OH)-generating activities of these samples. Weekly samples of coarse (10-2.5 μm) and fine (<2.5 μm) PM from four sites (Nordrheim Westfalen, Germany) were analyzed for hydrogen-peroxide-dependent ·OH formation using electron paramagnetic resonance and formation of 8-hydroxydeoxyguanosine (8-OHdG) in calf thymus DNA using an immuno-dot-blot assay. DNA strand breakage by fine PM in A549 human lung epithelial cells was quantified using the alkaline comet assay. Both PM size distribution fractions elicited ·OH generation and 8-OHdG formations in calf thymus DNA. Significantly higher ·OH generation was observed for PM sampled at urban/industrial locations and for coarse PM. Samples of fine PM also caused DNA strand breakage in A549 cells and this damage could be prevented using the hydroxyl-radical scavengers 5,5-dimethyl-1-pyrroline-N-oxide and dimethyl sulfoxide. The observed DNA strand breakage appeared to correlate with the hydroxyl-radical-generating capacities of the PM samples but with different profiles for rural versus urban/industrial samples. In conclusion, when considered at equal mass, ·OH formation of PM shows considerable variability with regard to the sampling location and time and is correlated with its ability to cause DNA damage

  9. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter

    Science.gov (United States)

    Kelly, Frank J.; Fussell, Julia C.

    2012-12-01

    Particulate matter (PM) is a complex, heterogeneous mixture that changes in time and space. It encompasses many different chemical components and physical characteristics, many of which have been cited as potential contributors to toxicity. Each component has multiple sources, and each source generates multiple components. Identifying and quantifying the influences of specific components or source-related mixtures on measures of health-related impacts, especially when particles interact with other co-pollutants, therefore represents one of the most challenging areas of environmental health research. Current knowledge does not allow precise quantification or definitive ranking of the health effects of PM emissions from different sources or of individual PM components and indeed, associations may be the result of multiple components acting on different physiological mechanisms. Some results do suggest a degree of differential toxicity, namely more consistent associations with traffic-related PM emissions, fine and ultrafine particles, specific metals and elemental carbon and a range of serious health effects, including increased morbidity and mortality from cardiovascular and respiratory conditions. A carefully targeted programme of contemporary toxicological and epidemiological research, incorporating more refined approaches (e.g. greater speciation data, more refined modelling techniques, accurate exposure assessment and better definition of individual susceptibility) and optimal collaboration amongst multidisciplinary teams, is now needed to advance our understanding of the relative toxicity of particles from various sources, especially the components and reactions products of traffic. This will facilitate targeted abatement policies, more effective pollution control measures and ultimately, a reduction in the burden of disease attributable to ambient PM pollution.

  10. Variation in characteristics of ambient particulate matter at eight locations in the Netherlands - The RAPTES project

    Science.gov (United States)

    Strak, Maciej; Steenhof, Maaike; Godri, Krystal J.; Gosens, Ilse; Mudway, Ian S.; Cassee, Flemming R.; Lebret, Erik; Brunekreef, Bert; Kelly, Frank J.; Harrison, Roy M.; Hoek, Gerard; Janssen, Nicole A. H.

    2011-08-01

    Numerous epidemiological studies have shown health effects related to short- and long-term exposure to elevated levels of ambient particulate matter (PM). It is not clear however which specific characteristics (e.g., size, components) or sources of PM are responsible for the observed effects. The aim of RAPTES (Risk of Airborne Particles: a Toxicological-Epidemiological hybrid Study) was to investigate which specific physical, chemical or oxidative characteristics of ambient PM are associated with adverse effects of PM on health. This was done by performing experimental exposure of human volunteers to air pollution at several real-world settings that had high contrast and low correlation between several PM characteristics. For this goal, eight sites in the Netherlands that differed in local PM emission sources were chosen for extensive air pollution characterization. Measurement sites included an underground train station, three different road traffic sites, an animal farm, a sea harbor, a site located in the vicinity of steelworks, and an urban background site. Five- to six-hours average concentration measurements at each site were made between June 2007 and October 2009. We measured PM 10, PM 2.5, particle number concentration (PNC), oxidative potential of PM, absorbance, endotoxin content, as well as elemental and chemical composition of PM, and gaseous pollutants concentrations. This paper presents a detailed characterization of particulate air pollution at the sampling sites. We found significant differences in all PM characteristics between the sites. The underground train station, compared to each outdoor location, had substantially higher concentrations of nearly all PM characteristics. The average PM 10 and PM 2.5 mass concentrations at the underground train station were 394 μg m -3 and 137 μg m -3, respectively, which was 14.1 and 7.6 times higher than the urban background. The sum of the concentrations of trace metals in fine and coarse PM was nearly

  11. Black carbon and elemental concentration of ambient particulate matter in Makassar Indonesia

    International Nuclear Information System (INIS)

    Airborne particulate matter with aerodynamic diameter of less or equal to 10 um or PM10, has been collected on a weekly basis for one year from February 2012 to January 2013 at one site of Makassar, Province of South Sulawesi Indonesia. The samples were collected using a size selective high volume air sampler sited at Daya, a mixed urban, commercial and industrial area in the city of Makassar. The concentration of black carbon (BC) along with a total of 14 elements (i.e Al, Ba, Ca, Cr, Fe, K, Mg, Ba, Na, Ni, Pb, Si, Ti and Zn) were determined from the sample. Results showed that the average particulate mass concentration was 32.9 ± 11.6 μg/m3 with BC and elemental concentration constituted 6.1% and 10.6% of the particulate concentration, respectively. Both BC and elemental constituents contributed 16.7% while 83.3% of the particulate matter remained to be counted for. The black carbon concentration was higher during the dry months which may be attributed to rampant biomass burning during hot and dry weather conditions, apart from other possible sources. Most of the elements were enriched relative to soil origin illustrating of their possible associations with other sources such as marine and anthropogenic derived aerosols, particularly Cr, Ni, Pb, and Zn, which are known to originate from man-made activities

  12. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    Science.gov (United States)

    Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus

    2015-11-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.

  13. Exposure of chronic obstructive pulmonary disease patients to particulate matter: relationships between personal and ambient air concentrations.

    Science.gov (United States)

    Ebelt, S T; Petkau, A J; Vedal, S; Fisher, T V; Brauer, M

    2000-07-01

    Mot time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects. Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2.5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4(2-), which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2.5 samples as an indicator of accumulation mode particulate matter of ambient origin. The mean personal and ambient PM2.5 concentrations were 18 micrograms/m3 and 11 micrograms/m3, respectively. In analyses relating personal and ambient measurements, ambient concentrations were expressed either as an average of the values obtained from five ambient monitoring sites for each day of personal sampling, or as the concentration obtained at the ambient site closest to each subject's home. The mean personal to ambient concentration ratio of all samples was 1.75 (range = 0.24 to 10.60) for PM2.5, and 0.75 (range = 0.09 to 1.42) for SO4(2-). Regression analyses were conducted for each subject separately and on pooled data. The median correlation (Pearson's r) between personal and average ambient PM2.5 concentrations was 0.48 (range = -0.68 to 0.83). Using SO4(2-) as the exposure metric, the median r between personal and average ambient concentrations was 0.96 (range

  14. Vascular effects of ambient particulate matter instillation in spontaneous hypertensive rats

    International Nuclear Information System (INIS)

    Exposure to ambient particulate matter (PM) is associated with increased mortality and morbidity among those people with cardiovascular impairment. We have studied the effects of exposure to PM or lypopolysaccharide (LPS) on ex vivo vascular function of spontaneous hypertensive rats (SHR) at 4 and 24 h post-instillation. Receptor-dependent and -independent relaxation was studied by using acetylcholine (ACh) and sodium nitroprusside (SNP), respectively. We have used phenylephrine (Phe) and KCl for receptor-dependent and -independent contraction. The role of the endothelium was investigated using denuded aorta rings. Exposure to PM (EHC-93, 10 mg/kg) or LPS (350 EU/animal) caused maximal pulmonary inflammation at 24 h post-instillation. PM and LPS elicited a significant increase in receptor-dependent vasorelaxation of aorta compared to saline-instilled rats. The largest effect was seen with PM at 4 h post-instillation (EC50 ACh = 2.3 vs. 5 nM control), while at 24 h effects were much smaller (EC50 ACh = 5.6 vs. 5 nM control). SNP-induced vasorelaxation was increased only in EHC-93-treated rats (EC50 = 71.9 vs. 95.7 nM) at 4 h, and this response was higher than that observed at 24 h. Phe induced a dose-dependent vasoconstriction, but no difference was seen between treatments in the presence or absence of endothelium at 4 h. However, at 24 h after instillation of LPS, a right shift of contraction curve was seen (EC50 = 65.3 vs. 43.3 nM). No change was seen in receptor-independent vasoconstriction induced by KCl, except in the LPS group at 24 h. A direct relaxation was also observed upon in vitro exposure of aorta rings to PM, and model particles coated with metals. Blood metal analysis showed an increase of zinc and vanadium concentration at 1 and 4 h post-instillation. In conclusion, our data show that PM and LPS instillation has a transient effect on the vasorelaxation of rat aorta that is maximal at 4 h. On the other hand, pulmonary inflammation reaches a maximum at

  15. Particulate Matter

    Science.gov (United States)

    ... the National Ambient Air Quality Standards for Particle Pollution. Video PSAs EPA's Burn Wise program released two ... announcements (PSAs) to help the public reduce PM pollution from wood smoke. Your Air Quality Good Moderate ...

  16. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... Environmental Protection Agency Search Search Particulate Matter (PM) Pollution Share Facebook Twitter Google+ Pinterest Contact Us Most ... issues final PM Implementation Rule Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  17. Technical comments on EPA`s proposed revisions to the National Ambient Air Quality Standard for particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.

    1997-03-01

    The US Environmental Protection Agency (EPA) has proposed new ambient air quality standards specifically for fine particulate matter, regulating concentrations of particles with median aerodynamic diameters less than 2.5 {mu}m (PM{sub 2.5}). Two new standards have been proposed: a maximum 24-hr concentration that is intended to protect against acute health effects, and an annual concentration limit that is intended to protect against longer-term health effects. EPA has also proposed a slight relaxation of the 24-hr standard for inhalable particles (PM{sub 10}), by allowing additional exceedances each year. Fine particles are currently being indirectly controlled by means of regulations for PM{sub 10} and TSP, under the Clean Air Act of 1970 and subsequent amendments. Although routine monitoring of PM{sub 2.5} is rare and data are sparse, the available data indicate that ambient concentrations have been declining at about 6% per year under existing regulations.

  18. Assessment of levels of inhalable particulate matter in ambient air at Legon-Adenta road construction site

    International Nuclear Information System (INIS)

    The study sought to assess the ambient air pollution with regard to the particulate matter levels (coarse, fine PM fractions and selected elements present in coarse and fine particulate matter) at a road construction site (Adenta-Legon road) in Accra-Ghana. Consequently 60 samples each of fine and coarse particulate were collected at the site on a nucleopore filter using a Gent sampler at an average flow rate of 16.5L/Min. The mass concentrations of PM10, coarse (PM10-2.5) and fine (PM2.5) particulate matter were determined gravimetrically. The black carbon concentrations of both fine and coarse particles were determined by reflectometer. AAS elemental analyses of relevant elements like Al, Si, Mn, Ca, Cu, V, Cr, Cd and Fe were performed after digestion of filter samples. The study revealed that daily mean PM10 mass concentrations of 125.32μg/m3 exceeded the WHO and Ghana EPA 24hr daily mean values of 50μg/m3 and 70μ/m3 (97.47% and 89.49%) respectively. The PM2.5 mass concentration of 33.77μg/m3 exceeded; (87.47%) of the WHO and USEPA daily 24hr limit value of 25 μg/m3. Black carbon mean concentrations of 2.40μg/m3 representing 2.62% and 15.99% of coarse and fine PM masses respectively were found. The mean mass concentrations of elements such as Al, Si, Ca, Fe, Mn, V, Cd, Pb, Cr and Zn were found to be relatively higher in both coarse and fine PM fraction. Good correlation existed among elemental concentrations and this indicated that they were of the same source. (au)

  19. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    International Nuclear Information System (INIS)

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 μm or less, PM10) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 μm or less, PM2.5) and ultrafine particles (0.1 μm or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-κB and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-κB pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  20. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  1. Real-time Diesel Particulate Matter ambient monitoring in underground mines

    Institute of Scientific and Technical Information of China (English)

    Gillies A D S

    2011-01-01

    A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National Institute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit.The objectives of a recently completed Australian Coal Association Research Program (ACARP) study was to modify the PDM to measure the submicrometre fraction of the aerosol in a real-time monitoring underground instrunent.Mine testing focused on use of the monitor in engineering evaluations of Longwall (LW) moves demonstrated how DPM concentrations from vehicles fluctuate under varying ventilation and operational conditions.The strong influence of mine ventilation systems is reviewed.Correlation between the current SKC DPM measurement system and real-time DPM monitors were conducted and results from eight mines show a correlation between elemental carbon (EC) and the new monitor DPM mass ranging from 0.45 to 0.82 with R2>0.86 in all but two cases.This differences in suspected to be due to variations from mine to mine in aspects such as mine atmospheric contamination,vehicle fleet variations,fuel type,engine maintenance,engine combustion efficiency,engine behavior or interference from other submicrometre aerosol.Real-time monitoring clearly reflects the movement of individual diesel vehicles and allows pin-pointing of high exposure zones such as those encountered where various vehicles engage in intense work in areas of constrained or difficult ventilation.DPM shift average monitoring approaches do not readily allow successful engineering evaluation exercises to determine acceptability of pollution levels.Identification of high DPM concentration zones allows efficient modification of mine ventilation,operator positioning and other work practices to reduce miners' exposures without waiting for laboratory analysis results.

  2. Determination of Cr(VI) in ambient airborne particulate matter by a species-preserving scrubber-sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Metze, Detlef; Herzog, Helmut; Gosciniak, Bernhard; Jakubowski, Norbert [Institute for Spectrochemistry and Applied Spectroscopy (ISAS), PO Box 10 13 52, 44013, Dortmund (Germany); Gladtke, Dieter [Landesumweltamt Nordrhein-Westfalen, PO Box 10 23 63, 45023 Essen (Germany)

    2004-01-01

    Airborne particulate matter has been sampled at a location close to a metallurgical plant in North-Rhine-Westphalia, Germany, and first results on the chromium(VI) content in the collected dust are presented. A special procedure using a scrubber as sampling device was used to preserve Cr(VI) during the sampling procedure. The scrubber solution which consisted of 0.1 mol L{sup -1} TRIS-buffer solution was adjusted to a slightly alkaline pH of 8.6 to reduce the oxidation potential of Cr(VI) and to avoid possible oxidation of Cr(III) to Cr(VI), for example by oxygen (or ozone at ambient concentrations). After sampling Cr(VI) was pre-concentrated on an anion-exchange material and eluted with aqueous 0.6 mol L{sup -1} sodium perchlorate solution. After elution, a species-selective complex of Cr(VI) with diphenylcarbazide (DPC) was prepared; this was extracted into n-hexanol and quantified by UV-visible spectrophotometry. A detection limit of 0.9 ng m{sup -3} for Cr(VI) in ambient aerosols can be achieved with this method. (orig.)

  3. Short-term exposure to ambient particulate matter and emergency ambulance dispatch for acute illness in Japan.

    Science.gov (United States)

    Tasmin, Saira; Ueda, Kayo; Stickley, Andrew; Yasumoto, Shinya; Phung, Vera Ling Hui; Oishi, Mizuki; Yasukouchi, Shusuke; Uehara, Yamato; Michikawa, Takehiro; Nitta, Hiroshi

    2016-10-01

    Short-term exposure to air pollution may be linked to negative health outcomes that require an emergency medical response. However, few studies have been undertaken on this phenomenon to date. The aim of this study therefore was to examine the association between short-term exposure to ambient suspended particulate matter (SPM) and emergency ambulance dispatches (EADs) for acute illness in Japan. Daily EAD data, daily mean SPM and meteorological data were obtained for four prefectures in the Kanto region of Japan for the period from 2007 to 2011. The area-specific association between daily EAD for acute illness and SPM was explored using generalized linear models while controlling for ambient temperature, relative humidity, seasonality, long-term trends, day of the week and public holidays. Stratified analyses were conducted to evaluate the modifying effects of age, sex and medical conditions. Area-specific estimates were combined using meta-analyses. For the total study period the mean level of SPM was 23.7μg/m(3). In general, higher SPM was associated with a significant increase in EAD for acute illness [estimated pooled relative risk (RR): 1.008, 95% CI: 1.007 to 1.010 per 10μg/m(3) increase in SPM at lag 0-1]. The effects of SPM on EAD for acute illness were significantly greater for moderate/mild medical conditions (e.g. cases that resulted in 3weeks hospitalization or which resulted in death). Using EAD data, this study has shown the adverse health effects of ambient air pollution. This highlights the importance of reducing the level of air pollution in order to maintain population health and well-being. PMID:27235903

  4. Investigation of the ambient particulate matter concentration changes and assessing its health impacts in Tabriz

    Directory of Open Access Journals (Sweden)

    A Gholampour

    2014-07-01

    Conclusion: This research found that the concentrations of PM10 and PM2.5 were 73 and 69% more than National Standard; and 8 and 5% more than USEPA Standards respectively. In Tabriz, especially industrial area, the soils of surrounding ground and re-suspension of particles fromcontaminated soils have a significant contribution to particulate emissions.

  5. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    International Nuclear Information System (INIS)

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  6. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyelim [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Park, Sanghoon; Jeon, Hyunju [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Byeong-Wook [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Kim, Jin-Bae [Division of Cardiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Chang-Soo [The Department of Preventive Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Pak, Hui-Nam [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Hwang, Ki-Chul [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ji Hyung, E-mail: jhchung@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of)

    2013-01-15

    Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  7. EFFECT OF CONCENTRATED AMBIENT PARTICULATE MATTER ON BLOOD COAGULATION PARAMETERS IN RATS

    Science.gov (United States)

    Dr. Nadziejko and her colleagues at the New York University School of Medicine plan to evaluate the effects of exposing healthy rats to concentrated ambient particles (CAPs) and changes in blood coagulation parameters. The investigators expect to measure platelet number, bl...

  8. Co-exposure to inhaled ambient particulate matter and acrolein alters myocardial synchrony in mice: evidence for TRPA1 involvement

    Science.gov (United States)

    Because air pollution is a complex mixture of constituents, often including particulates and aldehydes, attributing health effects to air pollutants in a given ambient air shed can be difficult when pollutants are studied in isolation. The purpose of this study was to examine the...

  9. Development and evaluation of a novel monitor for online measurement of iron, manganese, and chromium in ambient particulate matter (PM).

    Science.gov (United States)

    Wang, Dongbin; Sowlat, Mohammad H; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos

    2016-09-15

    A prototype atmospheric aerosol monitor was developed for online measurement of three toxicologically relevant redox-active metals (Fe, Mn, and Cr) in ambient fine particulate matter (PM2.5). The monitor has the unique ability to quantify these metals in specific chemical oxidation states in addition to both their total and water-soluble fractions in the ambient PM2.5. This information is critical for advancing our understanding of mechanisms of PM-induced toxicity as well as chemical processing of aerosol in the atmosphere. The metal monitor utilizes a high flow rate aerosol-into-liquid collector to collect ambient PM2.5 directly as concentrated aqueous slurry samples. The concentrations of target metals in the collected slurries are subsequently measured in a aerosol-into-liquid collector, micro volume flow cell (MVFC) using spectrophotometry to quantify the light absorption of colored complexes resulting from the reaction between the target metals and added analytical reagents. Our experimental evaluation indicated that, overall, this novel monitor can achieve accurate and reliable measurements over long sampling periods (i.e. at least several weeks). The online measurements for all three target elements were in good agreement (i.e., with slopes of the linear regression lines ranging between 0.90 and 1.07, and R(2) values between 0.76 and 0.95) with time-integrated filter samples collected in parallel and analyzed by magnetic sector inductively coupled plasma mass spectrometry (SF-ICPMS). Moreover, this metal monitor can provide semi-continuous measurements (i.e., every 2h) for at least 5 consecutive days without obvious shortcomings in its field operation. The online monitor measured total concentrations of Fe that ranged between 4.8 and 65.6ng/m(3), for Mn from below detection limit to 10.0ng/m(3), and for Cr from below detection limit to 6.6ng/m(3), respectively. Our results indicate that the developed metal monitor is a promising technology for online

  10. Characterization of the finest and coarse airborne particulate matter in Kuala Lumpur's ambient air

    International Nuclear Information System (INIS)

    We will report the mass concentration of the finest (PM2.5) and coarse (PM2.5-10) airborne particles in ambient air of Kuala Lumpur area collected using GENT Stack filter unit fitted with appropriate polycarbonate filters. The sampling site (Lat: 03deg 10' 30'' Long: 101deg 43' 24.2'') is about 1 km from Kuala Lumpur City Center. Elemental concentration in the samples collected once every month throughout the year 2002 has been analyzed using the currently available NAA facilities at MINT. Elements determined in the study include Al, As, Br, Co, Cr, K, Lu, Mn, NA, Sb, Sc, Ti, V, and Zn. Quality control material used to control the quality of the analytical procedures was NBS 1633a. (author)

  11. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Science.gov (United States)

    2010-07-01

    ... particulate matter data to determine attainment of the 24-hour standards specified in 40 CFR 50.6. For the... Determinations 2.124-Hour Primary and Secondary Standards (a) Under 40 CFR 50.6(a) the 24-hour primary and....1, which is the lowest rate for nonattainment). 2.2Reserved 2.3Data Requirements (a) 40 CFR...

  12. Adjuvant activity of ambient particulate matter of different sites, sizes, and seasons in a respiratory allergy mouse model

    International Nuclear Information System (INIS)

    In the framework of an EU project entitled, 'Respiratory Allergy and Inflammation due to Ambient Particles (RAIAP)', various ambient particulate matter samples were tested for their adjuvant potency in an animal allergy model to ovalbumin. Coarse (2.5-10 μm) and fine (0.15-2.5 μm) particles were collected during the spring, summer, and winter in Rome, Oslo, Lodz, and Amsterdam. Coarse and fine particles were also collected near a seaside location in the Netherlands, where prevailing winds are westerly. These latter particles served as a control, with a minimum contribution by traffic. Ottawa dust (EHC-93) was used as a standard reference sample. Immunoglobulins (IgE, IgG1, and IgG2a), histopathological changes in the lung, cytokines, and the number of cells and their differentiation in lung lavages were used as effect parameters to study the adjuvant potency of these particles. The particles (3 mg/ml) were mixed with ovalbumin (0.4 mg/ml) and intranasally administered during the sensitization or the challenge phase. Intranasal administration of ovalbumin only induced very little antibody response, but introduced a minor inflammatory response in the lung or BAL during the sensitization and challenge phase. On the contrary, after coexposure to EHC-93 and ovalbumin, a major increase was found in immunoglobulin levels specific for ovalbumin, and a major inflammatory response in lung and BAL was induced. Coexposure to ovalbumin with 4 out of 12 collected PM samples (3 mg/ml) resulted in an increase of mainly IgE and IgG1. The histopathological changes consisted of a small to severe peribronchial and perivascular inflammatory response, a hypertrophy of bronchiolar mucous cells and an increase in eosinophils and neutrophils in the BAL. Statistical evaluation of the above-mentioned parameters showed associations with PMx (coarse and fine), site, season, season x PMx, season x site and PMx x site. In addition, adjuvant activity of the PMx can be ranked as Lodz > Rome

  13. Carbon in Atmospheric Particulate Matter

    International Nuclear Information System (INIS)

    Carbon compounds account for a large fraction of airborne particulate matter ('carbonaceous aerosols'). Their presence raises a number of scientific questions dealing with climate issues and possible effects on human health. This review describes the current state of knowledge with respect to the ambient concentrations levels (elemental carbon, organic carbon and organic matter) and the various emission sources, and summarizes the role of atmospheric carbon in the various environmental issues. The report finishes by identifying the actual gaps in knowledge and gives (related) suggestions for future research

  14. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    OpenAIRE

    KARAGULIAN Federico; BELIS CLAUDIO; DORA Carlos Francisco; Prüss-Ustün, Annette; Bonjour, Sophie; ROHANI Heather; Ammann, Markus

    2015-01-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also deve...

  15. Determination of Total Suspended Particulate Matter and Heavy Metals in Ambient Air of Four Cities of Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Awan,

    2011-01-01

    Full Text Available Total suspended particulates (TSPs in ambient air of four cities of Pakistan were collected using a high volume sampling technique for subsequent heavy metal analysis. The sampling was conducted for 24hours and the concentration of TSPs ranged 568-2074, 1191-3976, 1133-4400 and 112-280 μg/m3 for Islamabad, Gujranwala, Faisalabad and Bahwalnagar, respectively. The level of TSP contamination was very high in ambient air of two big industrial cities, Gujranwala and Faisalabad. TSPs were also analyzed for Cd, Pb and Zn using flame atomic absorption spectrometry (FAAS following digestion using a mixture of analytical grade nitric acid and hydrochloric acid. Compared to other metals, concentration of Cd was slightly high (around 325 ng/m3 in the samples of Gujranwala and Faisalabad. Overall, the order of metal concentrations were Cd > Pb > Zn.

  16. Toxicity of Ambient Particulate Matter IV: Acute toxicity study in pulmonary hypertensive rats after exposure to model compounds for the secondary aerosol fraction of PM10 - ammonium bisulfate, ferrosulfate and nitrate

    NARCIS (Netherlands)

    Cassee FR; Boere AJF; Fokkens PHB; Dormans JAMA; Bree L van; Rombout PJA; LEO; LPI

    1999-01-01

    This (4th) report on the toxicity of ambient particulate matter (PM) presents effects of the model compounds for PM in ambient air - ammonium bisulfate, ammonium ferrosulfate and ammonium nitrate - on healthy rats and rats with monocrotaline-induced pulmonary hypertension (PH). The objective was bas

  17. Particulate matter dynamics

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  18. Seasonal variation of the size distribution of urban particulate matter and associated organic pollutants in the ambient air

    Science.gov (United States)

    Chrysikou, Loukia P.; Samara, Constantini A.

    Size-segregated samples of urban particulate matter (7.5 μm) were collected in Thessaloniki, northern Greece, during winter and summer of 2007-2008, in order to study the size distribution of organic compounds such as polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (AHs) including n-alkanes and the isoprenoids pristane and phytane, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). All organic compounds were accumulated in the particle size fraction <0.95 μm particularly in the cold season. Particulate matter displayed a bimodal normalized distribution in both seasons with a stable coarse mode located at 3.0-7.5 μm and a fine mode shifting from 0.95-1.5 μm in winter to <0.95 μm in summer. Unimodal normalized distributions, predominant at 0.95-1.5 μm size range, were found for most organic compounds in both seasons, suggesting gas-to-particle transformation after emission. A second minor mode at larger particles (3.0-7.5 μm) was observed for C 19 and certain OCPs suggesting redistribution due to volatilization and condensation.

  19. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood and dung cooking fires, brick kilns, generators, trash and crop residue burning

    Science.gov (United States)

    Stone, Elizabeth; Jayarathne, Thilina; Stockwell, Chelsea; Christian, Ted; Bhave, Prakash; Siva Praveen, Puppala; Panday, Arnico; Adhikari, Sagar; Maharjan, Rashmi; Goetz, Doug; DeCarlo, Peter; Saikawa, Eri; Yokelson, Robert

    2016-04-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in situ characterization of widespread and under-sampled combustion sources. In Kathmandu and the Terai, southern Nepal's flat plains, samples of fine particulate matter (PM2.5) were collected from wood and dung cooking fires (n = 22), generators (n = 2), groundwater pumps (n = 2), clamp kilns (n = 3), zig-zag kilns (n = 3), trash burning (n = 4), one heating fire, and one crop residue fire. Co-located measurements of carbon dioxide, carbon monoxide, and volatile organic compounds allowed for the application of the carbon mass balance approach to estimate emission factors for PM2.5, elemental carbon, organic carbon, and water-soluble inorganic ions. Organic matter was chemically speciated using gas chromatography - mass spectrometry for polycyclic aromatic hydrocarbons, sterols, n-alkanes, hopanes, steranes, and levoglucosan, which accounted for 2-8% of the measured organic carbon. These data were used to develop molecular-marker based profiles for use in source apportionment modeling. This study provides quantitative emission factors for particulate matter and its constituents for many important combustion sources in Nepal and South Asia.

  20. Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London.

    Directory of Open Access Journals (Sweden)

    Krystal J Godri

    Full Text Available As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP. Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OP(AA m(-3 and glutathione (OP(GSH m(-3 depletion, the highest OP per cubic metre of air was in the largest size fraction, PM(1.9-10.2. However, when expressed per unit mass of particles OP(AA µg(-1 showed no significant dependence upon particle size, while OP(GSH µg(-1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between

  1. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Exposure to ambient fine particular matter (PM2.5) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m−3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  2. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter.

    Science.gov (United States)

    Valavanidis, A; Fiotakis, K; Bakeas, E; Vlahogianni, T

    2005-01-01

    A range of epidemiological studies in the 1990s showed that exposure to ambient particulate matter (PM) is associated with adverse health effects in the respiratory system and increased morbidity and mortality rates. Oxidative stress has emerged as a pivotal mechanism that underlies the toxic pulmonary effects of PM. A key question from a variety of studies was whether the adverse health effects of PM are mediated by the carbonaceous particles of their reactive chemical compounds adsorbed into the particles. Experimental evidence showed that PM contains redox-active transition metals, redox cycling quinoids and polycyclic aromatic hydrocarbons (PAHs) which act synergistically to produce reactive oxygen species (ROS). Fine PM has the ability to penetrate deep into the respiratory tree where it overcomes the antioxidant defences in the fluid lining of the lungs by the oxidative action of ROS. From a previous study [Valavanidis A, Salika A, Theodoropoulou A. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions. Atmospher Environ 2000; 34 : 2379-2386], we established that ferrous ions in PM play an important role in the generation of hydroxyl radicals in the presence of hydrogen peroxide (H2O2). In the present study, we investigated the synergistic effect of transition metals and persistent quinoid and semiquinone radicals for the generation of ROS without the presence of H2O2. We experimented with airborne particulate matter, such as TSPs (total suspended particulates), fresh automobile exhaust particles (diesel, DEP and gasoline, GEP) and fresh wood smoke soot. Using electron paramagnetic resonance (EPR), we examined the quantities of persistent free radicals, characteristic of a mixture of quinoid radicals with different structures and a carbonaceous core of carbon-centred radicals. We extracted, separated and analysed the quinoid compounds by EPR at alkaline solution (pH 9.5) and by TLC. Also, we studied the direct

  3. Pro-inflammatory response and oxidative stress induced by specific components in ambient particulate matter in human bronchial epithelial cells.

    Science.gov (United States)

    Yang, Lawei; Liu, Gang; Lin, Ziying; Wang, Yahong; He, Huijuan; Liu, Tie; Kamp, David W

    2016-08-01

    Previous studies have shown that biological effect of particulate matter (PM2.5) is involved in including chemical composition and mass concentration, but the precise components and biological action on human bronchial epithelial cell line (BEAS-2B) are still unclear. The aim of this study was to evaluate the in vitro toxicity of PM2.5 collected at six urban sites in China, and to investigate how particle composition affects cytotoxicity. We used human bronchial epithelial (BEAS-2B) cell lines as model in vitro to expose to PM2.5 from different source, and then reactive oxygen species (ROS), superoxide dismutase activity and total antioxidant capacity were analyzed. Furthermore, we estimated the polycyclic aromatic hydrocarbon (PAH) and transition metal and the endotoxin contents. The mRNA expression of IL-1β and IL-10 following exposure to PM2.5 was measured by QRT-PCR. We also observed the mitochondrial membrane potential (MMP) using JC-1 staining, and apoptosis of BEAS-2B using flow cytometry. In addition, double-stranded DNA breaks (DSBs) were assessed using γ-H2AX immunofluorescence. Our results show that high concentrations of PAHs and elemental Ni were strongly associated with high apoptosis rates and high expression of IL-1β, in addition, Fe element was associated with the ROS level, furthermore, Fe and Cr element were associated with DNA damage in BEAS-2B cells. The cytotoxic effects of urban PM2.5 derived from six different cities in China appear dependent on the specific components in each. Our results indicate that air quality standards based on PM2.5 components may be more relevant than concentration-response functions (CRF). © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 923-936, 2016. PMID:25533354

  4. Ambient Particulate Matter during MILAGRO in Mexico City: Main Findings, Impacts (on AQ and Climate), and Future Research Needs

    Science.gov (United States)

    Jimenez, Jose-Luis; Schauer, James J.; Molina, Luisa T.; MILAGRO Pm Team

    2010-05-01

    The MILAGRO campaign was a large international field experiments conduced in Mexico City and Central Mexico during March 2006. We present an overview of the main findings related to particulate matter and aerosol radiative properties. PM levels inside Mexico City were similar or higher than those in the most polluted North American cities, but ~5 times lower than levels in the most polluted Asian megacities During the study, PM10 and PM2.5 concentrations in the urban area of were about double the concentrations in the rural areas surrounding Mexico City. PM2.5 made up about half of the PM10 concentrations, with small amounts of mass in the PM2.5-PM1.0 range. Mineral matter made up approximately 25% of the PM10 and on average 15% and 28% of the PM2.5 in the urban and rural areas, respectively. Approximately 25% of the PM2.5 was secondary inorganic ions with the remaining PM2.5 mass being comprised of largely carbonaceous aerosol. Except for surface measurements at the central sampling sites in Mexico city, the elemental carbon mass absorption efficiency was relatively constant for aircraft and surface measurements throughout the study, contrary to expectations. Although different organic aerosol (OA) source apportionment methods had some differences, there was agreement that the dominant sources of carbonaceous aerosol were secondary OA (SOA), biomass burning, and mobile sources. The impact of biomass burning to the aerosol outflow from the region was much larger than to the surface concentrations inside the city. SOA formation from primary semivolatile and intermediate volatility precursors has the potential to close the gap in predicted vs. measured SOA, while formation from glyoxal also makes an important contribution, especially to organic oxygen. Biogenic SOA advected from the coastal mountain ranges contributes about 1 μg m-3 to concentrations in the MCMA. Primary OA from anthropogenic and biomass burning sources was found to be semivolatile, while secondary

  5. ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE

    Science.gov (United States)

    Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM exposure. The goal of thi...

  6. Chemical Coupling Between Atmospheric Ozone and Particulate Matter

    OpenAIRE

    Meng, Z.; DABDUB, D; Seinfeld, J. H.

    1997-01-01

    A major fraction of ambient particulate matter arises from atmospheric gas-to-particle conversion. Attempts to reduce particulate matter levels require control of the same organic and nitrogen oxide (NO_x) emissions that are precursors to urban and regional ozone formation. Modeling of the gas-aerosol chemical interactions that govern levels of particulate components showed that control of gas-phase organic and NO_x precursors does not lead to proportionate reductions of the gas-phase–derived...

  7. Relationship between the Particulate Matter Concentrations in the Indoor and Ambient Air of the Tehran Children Hospital in 2007

    OpenAIRE

    Soheila Rezaei; Kazem Naddafi; Hossain Jabbari; Masoud Yonesian; Arsalan Jamshidi; Abdolmohamad Sadat; Alireza Raygan Shirazinejad

    2013-01-01

    Background and Objectives: In recent years exposure to fine airborne particles has been identified as an important factor affecting human health. Epidemiological studies have showed that the aerosol laden air can be an agent for microorganisms’ dispersion. Ignoring internal sources, ambient air quality significantly affects indoor air quality. Since people spend most of their times in the indoor spaces and little data are available on the general understanding of the indoor air quality, the...

  8. Ambient air particulate matter in Lagos, Nigeria: a study using receptor modeling with x-ray flourescence analysis

    Directory of Open Access Journals (Sweden)

    E.A. Oluyemi

    2001-12-01

    Full Text Available The need for comprehensive air pollution studies in Lagos cannot be overemphasized in view of the level of industrialization of the city and its nearness to the ocean. Air particulate samples collected with a high-volume air sampler at three locations in Lagos, Nigeria were analyzed by the combination of wavelength-dispersive X-ray fluorescence and atomic absorption spectroscopy methods. Elemental concentrations were subjected to factor analysis for source identification and chemical mass balance model was used for source apportionment. Prominent among sources identified with the ranges of their contributions at the sites are: soil 35-54%, marine 26-34%, automobile exhaust 0.3-3.5%, refuse incineration 2-3%, and regional sulphate 2-12%.

  9. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter

    International Nuclear Information System (INIS)

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0–100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. -- Highlights: ► The study compares the toxicological effects of different source-related particles with regard to their chemical composition. ► The chemical characterization of the coarse particles revealed clear differences in elemental, TC and PAH composition. ► Equal mass concentrations of urban traffic and rural PM caused different toxicological responses. ► The observations confirm the hypothesis that particle composition, as well as origin, influence the PM-induced toxicity. -- The toxicological responses of lung epithelial cells and macrophages differ significantly after an exposure to equal mass concentrations of urban traffic and rural PM

  10. Heart Rate Variability, Ambient Particulate Matter Air Pollution, and Glucose Homeostasis: The Environmental Epidemiology of Arrhythmogenesis in the Women's Health Initiative

    Science.gov (United States)

    Quibrera, P. Miguel; Christ, Sharon L.; Liao, Duanping; Prineas, Ronald J.; Anderson, Garnet L.; Heiss, Gerardo

    2009-01-01

    Metabolic neuropathophysiology underlying the prediabetic state may confer susceptibility to the adverse health effects of ambient particulate matter <10 μm in diameter (PM10). The authors therefore examined whether impaired glucose homeostasis modifies the effect of PM10 on heart rate variability in a stratified, random sample of 4,295 Women's Health Initiative clinical trial participants, among whom electrocardiograms and fasting blood draws were repeated at 3-year intervals from 1993 to 2004. In multilevel, mixed models weighted for sampling design and adjusted for clinical and environmental covariables, PM10 exposure was inversely associated with heart rate variability. Inverse PM10–heart rate variability associations were strongest for the root mean square of successive differences in normal-to-normal RR intervals (RMSSD). Among participants with impaired fasting glucose, there were −8.3% (95% confidence interval: −13.9, −2.4) versus −0.6% (95% confidence interval: −2.4, 1.3), −8.4% (95% confidence interval: −13.8, −2.7) versus −0.3% (95% confidence interval: −2.1, 1.6), and −4.3% (95% confidence interval: −9.4, 1.0) versus −0.8% (95% confidence interval: −2.7, 1.0) decreases in the RMSSD per 10-μg/m3 increase in PM10 at high versus low levels of insulin (P < 0.01), insulin resistance (P < 0.01), and glucose (P = 0.16), respectively. These associations were stronger among participants with diabetes and weaker among those without diabetes or impaired fasting glucose. The findings suggest that insulin and insulin resistance exacerbate the adverse effect of PM10 on cardiac autonomic control and thus risk of coronary heart disease among nondiabetic, postmenopausal women with impaired fasting glucose. PMID:19208727

  11. Increases in ambient particulate matter air pollution, acute changes in platelet function, and effect modification by aspirin and omega-3 fatty acids: A panel study.

    Science.gov (United States)

    Becerra, Adan Z; Georas, Steve; Brenna, J Thomas; Hopke, Philip K; Kane, Cathleen; Chalupa, David; Frampton, Mark W; Block, Robert; Rich, David Q

    2016-01-01

    Increased particulate matter (PM) air pollutant concentrations have been associated with platelet activation. It was postulated that elevated air pollutant concentrations would be associated with increases in measures of platelet function and that responses would be blunted when taking aspirin and/or fish oil. Data from a sequential therapy trial (30 subjects with type 2 diabetes mellitus), with 4 clinic visits (first: no supplements, second: aspirin, third: omega-3 fatty acid supplements, fourth: aspirin and omega-3 fatty acids) per subject, were utilized. Using linear mixed models, adjusted for relative humidity, temperature, visit number, and season, changes in three platelet function measures including (1) aggregation induced by adenosine diphosphate (ADP), (2) aggregation induced by collagen, and (3) thromboxane B2 production were associated with interquartile range (IQR) increases in mean concentrations of ambient PM2.5, black carbon, ultrafine particles (UFP; 10-100 nm), and accumulation mode particles (AMP; 100-500 nm) in the previous 1-96 h. IQR increases in mean UFP and AMP concentrations were associated with significant decreases in platelet response, with the largest being a -0.43 log(pg/ml) decrease in log(thromboxane B2) (95% CI = -0.8, -0.1) associated with each 582-particles/cm(3) increase in AMP, and a -1.7 ohm reduction in collagen-induced aggregation (95% CI = -3.1, -0.3) associated with each 2097-particles/cm(3) increase in UFP in the previous 72 h. This UFP effect on thromboxane B2 was significantly muted in diabetic subjects taking aspirin (-0.01 log[pg/ml]; 95% CI = -0.4, 0.3). The reason for this finding remains unknown, and needs to be investigated in future studies. PMID:27029326

  12. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  13. Trends in health burden of ambient particulate matter pollution in Iran, 1990-2010: findings from the Global Burden of Disease study 2010.

    Science.gov (United States)

    Poursafa, Parinaz; Kelishadi, Roya; Ghasemian, Anoosheh; Sharifi, Farshad; Djalalinia, Shirin; Khajavi, Alireza; Nejatifar, Masoumeh; Asayesh, Hamid; Mansourian, Morteza; Qorbani, Mostafa; Ansari, Hossein

    2015-12-01

    This paper aims to report the assessment of trends in deaths and disability-adjusted life years (DALYs) attributed to ambient particulate matter (PM) pollution from 1990 to 2010 by sex and age in Iran. We used the data of the Global Burden of Disease (GBD) 2010 Study, and then we extracted its data on Iran for the years 1990, 2005, and 2010. The proportion of deaths and the DALYs caused by specific risk factors were assessed by using the comparative risk assessment and calculating the attributed burden of exposure level to each risk factor compared with the theoretical minimum level of risk exposure. Uncertainties in distribution of exposure, relative risks, and relevant outcomes calculation were disseminated into the estimates of the attributable deaths and DALYs. We found that the age-standardized death rate attributed to ambient PM pollution decreased to 27.90 cases per 100,000 populations from 1990 to 2010 [86, 95% uncertainty interval (UI) 76-97 to 62; 95% UI 54-71 per 100,000 populations, respectively]. This was mainly because of greater decrease in cardiovascular diseases (CVDs) than in the other diseases attributed to PM pollution. Despite a decrease in the total DALYs and mortality rate attributed to PM pollution, the death percent increased by 6.94%, 95% UI 6.06-7.90% from 1990 to 2010. The number of the DALYs and death in age groups of more than 70 years increased in 2010 compared to that in 1990. The median percent change of the DALYs and death for all age groups shows that the DALYs and death increased by 6% (95% UI 8-19%) and 45% (95% UI 30-60%), respectively, in 2010 in comparison to that in 1990. The increase in the DALYs and mortality attributable to PM pollution emphasizes the necessity of the effective interventions for improving air quality, as well as for increasing the public awareness to reduce the exposure of vulnerable age groups to PM pollution. PMID:26490896

  14. HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR

    Science.gov (United States)

    Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...

  15. Composition of Indoor Particulate Matter

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Schwarz, Jaroslav; Dohányosová, Pavla

    -: -, 2006 - (Fernandes, D.), s. 283-286. (Indoor Climate. II). [Healthy Buildings 2006. Lisboa (PT), 04.06.2006-08.06.2006] R&D Projects: GA ČR(CZ) GA101/04/1190; GA ČR(CZ) GA205/03/1560 Institutional research plan: CEZ:AV0Z40720504 Keywords : indoor particulate matter * chemical composition Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Particulate Organic Matter (POM) Separation

    International Nuclear Information System (INIS)

    Information on soil organic matter (SOM) pools is of vital importance for studying the impact of soil management and environmental factors on soil organic carbon, an important part of the global carbon cycle. Several conceptual SOM pools with different turnover rates are available to feed models or to study carbon cycles. The fractionation scheme of Zimmermann allows isolating the labile particulate organic matter (POM) pool. Besides its use in conventional soil organic carbon dynamics studies and modelling, this pool can be determining as well in the evaluation of soil organic carbon stability based on the use of stable 15N and 13C isotopes

  17. Ambient Fine Particulate Matter Exposure and Myocardial Ischemia in the Environmental Epidemiology of Arrhythmogenesis in the Women’s Health Initiative (EEAWHI) Study

    Science.gov (United States)

    Zhang, Zhu-ming; Whitsel, Eric A.; Quibrera, P. Miguel; Smith, Richard L.; Liao, Duanping; Anderson, Garnet L.; Prineas, Ronald J.

    2009-01-01

    Background Ambient particulate matter (PM) air pollution is associated with coronary heart disease, but the pathways underlying the association remain to be elucidated. Methods We studied the association between PM and ischemia among 57,908 Women’s Health Initiative clinical trial participants from 1999–2003. We used the Minnesota Code criteria to identify ST-segment and T-wave abnormalities, and estimated T amplitude (microvolt) from resting, standard 12-lead electrocardiogram (ECG). We used U.S. Environmental Protection Agency’s monitor data to estimate concentrations of PM < 2.5 μm (PM2.5) at geocoded participant addresses over 6 days before the ECGs (lag0 through lag5). We excluded 2,379 women with ECG QRS duration ≥ 120 msec. Results Overall, 6% of the remaining 55,529 women (52–90 years of age; 83% non-Hispanic white) had ST abnormalities and 16% had T abnormalities. Lead-specific T amplitude was normally distributed (range of means from −14 to 349 μV). PM2.5 (mean ± SD) averaged over lag0–2 was 14 ± 7 μg/m3. In logistic and linear regression models adjusted for demographic, clinical, temporal, and climatic factors, a 10-μg/m3 increase in lag0–2 PM2.5 was associated with a 4% [95% confidence interval (CI), −3%, to 10%] increase in the odds of ST abnormality and a 5% (95% CI, 0% to 9%) increase in the odds of T abnormality. We observed corresponding decreases in T amplitude in all exam sites and leads except lead V1, reaching a minimum of −2 μV (95% CI, −5 to 0 μV) in lead V3. Conclusions Short-term PM2.5 exposure is associated with ECG evidence of myocardial ischemia among postmenopausal women. The principal manifestations include subclinical but potentially arrhythmogenic ST–T abnormalities and decreases in T amplitude. PMID:19479017

  18. Preliminary investigation into the elemental profile of ambient particulate matter in Dar Es Salam, Tanzania as determined by high-energy polarized edxrf

    International Nuclear Information System (INIS)

    The elemental concentration profile of particulate matter in the troposphere from the coast of Dar Es Salaam towards the inland in Tanzania was investigated. Particulates were collected from two sites by using a 0.4 μm Nuclepore membrane filter in a single stage impactor, aligned at intervals of 0 km and 20 km from the coast line, for bulk analysis. The particulates were collected during the dry and rainy season between September 2004 and January 2005. The concentration of 20 elements (Si. K, Ca, Ti, V, Fe, Se, Sr, Cr, Ni, Mn, Cu, Zn, As, Cd, Ph, Sb, Al, S and Ci) from two sites were determined using high-energy polarised Energy Dispersive Χray Fluorescence (EDXRF). Concentrations ranged between 2 ngm-3 and 3640 ngm-3. Possible sources for 20 elements were identified with specific focus on marine originated elements, by comparison of the results obtained with that available in open literature. Away from the coast, a gradual decrease in marine element concentration was observed 3640 ngm-3 to 2237 ngm-3. Weather conditions (micro-climate) information during sampling days were obtained from the Tanzania Meteorological Agency (TMA) and considered as a representatives of required site meteorological parameters. From the results, it was also noted that wind speed and direction influence the elemental particulate concentrations on the various sites.(Author)

  19. An exploratory analysis of the relationship between ambient ozone and particulate matter concentrations during early pregnancy and selected birth defects in Texas

    International Nuclear Information System (INIS)

    We performed an exploratory analysis of ozone (O3) and fine particulate matter (PM2.5) concentrations during early pregnancy and multiple types of birth defects. Data on births were obtained from the Texas Birth Defects Registry (TBDR) and the National Birth Defects Prevention Study (NBDPS) in Texas. Air pollution concentrations were previously determined by combining modeled air pollution concentrations with air monitoring data. The analysis generated hypotheses for future, confirmatory studies; although many of the observed associations were null. The hypotheses are provided by an observed association between O3 and craniosynostosis and inverse associations between PM2.5 and septal and obstructive heart defects in the TBDR. Associations with PM2.5 for septal heart defects and ventricular outflow tract obstructions were null using the NBDPS. Both the TBDR and the NBPDS had inverse associations between O3 and septal heart defects. Further research to confirm the observed associations is warranted. - Highlights: • Air pollution concentrations combined modeled air data and air monitoring data. • No associations were observed between the majority of birth defects and PM2.5 and O3. • Estimated associations between PM2.5 and certain heart defects varied by dataset. • Results were suggestive of an inverse association between O3 and septal heart defects. • Higher O3 concentrations may be associated with increased odds of craniosynostosis. - Although most observed associations between ozone and fine particulate matter concentrations and birth defects were null, some were present and warrant further consideration

  20. Particulate Matter (Environmental Health Student Portal)

    Science.gov (United States)

    ... Air Pollution Home Indoor Air Pollution Outdoor Air Pollution Particulate Matter Ozone Chemicals Chemicals Home Mercury Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate ...

  1. Gaseous pollutants in particulate matter epidemiology: confounders or surrogates?

    OpenAIRE

    Sarnat, J A; Schwartz, J.; Catalano, P J; Suh, H H

    2001-01-01

    Air pollution epidemiologic studies use ambient pollutant concentrations as surrogates of personal exposure. Strong correlations among numerous ambient pollutant concentrations, however, have made it difficult to determine the relative contribution of each pollutant to a given health outcome and have led to criticism that health effect estimates for particulate matter may be biased due to confounding. In the current study we used data collected from a multipollutant exposure study conducted i...

  2. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  3. Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy

    Science.gov (United States)

    Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were...

  4. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  5. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  6. Biomass burning as an important source of reactive oxygen species associated with the atmospheric aerosols in Southeastern United States - Implications for health effects of ambient particulate matter

    Science.gov (United States)

    Verma, V.; Weber, R. J. J.; Fang, T.; Xu, L.; Ng, N. L.; Russell, A. G.

    2014-12-01

    We assessed the potential of water-soluble fraction of atmospheric fine aerosols in the southeastern US to generate reactive oxygen species (ROS). ROS-generation potential of particles was quantified by the dithiothreitol (DTT) assay and involved analysis of fine particulate matter (PM) extracted from high-volume quartz filters (23 h integrated daily samples) collected for one year at various sites in different environmental settings in the southeast, including three urban Atlanta sites, and one rural site in Yorkville. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for the DTT activity. Organic aerosol (OA) composition was measured at selected sites using a High-Resolution Time-of-Flight Aerosol Mass Spectrophotometer (HR-ToF-AMS). The various factors of the organic aerosols, i.e. Isoprene OA (Isop-OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA) were also resolved, and their ability to generate ROS investigated by linear regression techniques. Among all OA factors, BBOA was most consistently associated with ROS, with the highest intrinsic DTT activity of 151±20 pmol/min/μg. The water-soluble bioavailable fraction of BBOA-DTT activity is 2-3 times higher than the reported total-DTT activity of diesel exhaust particles. The total contribution of various aerosol sources to the ROS generating potential was also determined by the positive matrix factorization approach. Interestingly, biomass burning appears as the strongest source of ROS generation, with its annual contribution of 35 % to DTT activity; the contribution was higher in winter (47 %), than summer (24 %) and fall (17 %) seasons. The good agreement between the hydrophobic DTT activity with that estimated from the summed OA components, indicates that humic-like substances (HULIS), which are abundantly emitted

  7. Subchronic effects of inhaled ambient particulate matter on glucose homeostasis and target organ damage in a type 1 diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yuan-Horng [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Charles, Chou C.-K. [Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan (China); Wang, Jyh-Seng [Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Tung, Chun-Liang [Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Li, Ya-Ru; Lo, Kai [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2014-12-01

    Epidemiological studies have reported associations between particulate matter (PM) and cardiovascular effects, and diabetes mellitus (DM) patients might be susceptible to these effects. The chief chronic injuries resulting from DM are small vascular injuries (micro-vascular complications) or large blood vessel injuries (macro-vascular complications). However, toxicological data regarding the effects of PM on DM-related cardiovascular complications is limited. Our objective was to investigate whether subchronic PM exposure alters glucose homeostasis and causes cardiovascular complications in a type 1 DM rat model. We constructed a real world PM{sub 2.5} exposure system, the Taipei Air Pollution Exposure System for Health Effects (TAPES), to continuously deliver non-concentrated PM for subchronic exposure. A type 1 DM rat model was induced using streptozotocin. Between December 22, 2009 and April 9, 2010, DM rats were exposed to PM or to filtered air (FA) using TAPES in Taipei, Taiwan, 24 h/day, 7 days/week, for a total of 16 weeks. The average concentrations (mean [SD]) of PM{sub 2.5} in the exposure and control chambers of the TAPES were 13.30 [8.65] and 0.13 [0.05] μg/m{sup 3}, respectively. Glycated hemoglobin A1c (HbA1c) was significantly elevated after exposure to PM compared with exposure to FA (mean [SD], 7.7% [3.1%] vs. 4.7% [1.0%], P < 0.05). Interleukin 6 and fibrinogen levels were significantly increased after PM exposure. PM caused focal myocarditis, aortic medial thickness, advanced glomerulosclerosis, and accentuation of tubular damage of the kidney (tubular damage index: 1.76 [0.77] vs. 1.15 [0.36], P < 0.001). PM exposure might induce the macro- and micro-vascular complications in DM through chronic hyperglycemia and systemic inflammation. - Highlights: • The study demonstrated cardiovascular and renal effects of PM in a rat model of DM. • TAPES is a continuous, real world, long-term PM exposure system. • HbA1c, a marker of glycemic

  8. Subchronic effects of inhaled ambient particulate matter on glucose homeostasis and target organ damage in a type 1 diabetic rat model

    International Nuclear Information System (INIS)

    Epidemiological studies have reported associations between particulate matter (PM) and cardiovascular effects, and diabetes mellitus (DM) patients might be susceptible to these effects. The chief chronic injuries resulting from DM are small vascular injuries (micro-vascular complications) or large blood vessel injuries (macro-vascular complications). However, toxicological data regarding the effects of PM on DM-related cardiovascular complications is limited. Our objective was to investigate whether subchronic PM exposure alters glucose homeostasis and causes cardiovascular complications in a type 1 DM rat model. We constructed a real world PM2.5 exposure system, the Taipei Air Pollution Exposure System for Health Effects (TAPES), to continuously deliver non-concentrated PM for subchronic exposure. A type 1 DM rat model was induced using streptozotocin. Between December 22, 2009 and April 9, 2010, DM rats were exposed to PM or to filtered air (FA) using TAPES in Taipei, Taiwan, 24 h/day, 7 days/week, for a total of 16 weeks. The average concentrations (mean [SD]) of PM2.5 in the exposure and control chambers of the TAPES were 13.30 [8.65] and 0.13 [0.05] μg/m3, respectively. Glycated hemoglobin A1c (HbA1c) was significantly elevated after exposure to PM compared with exposure to FA (mean [SD], 7.7% [3.1%] vs. 4.7% [1.0%], P < 0.05). Interleukin 6 and fibrinogen levels were significantly increased after PM exposure. PM caused focal myocarditis, aortic medial thickness, advanced glomerulosclerosis, and accentuation of tubular damage of the kidney (tubular damage index: 1.76 [0.77] vs. 1.15 [0.36], P < 0.001). PM exposure might induce the macro- and micro-vascular complications in DM through chronic hyperglycemia and systemic inflammation. - Highlights: • The study demonstrated cardiovascular and renal effects of PM in a rat model of DM. • TAPES is a continuous, real world, long-term PM exposure system. • HbA1c, a marker of glycemic homeostasis, was elevated in

  9. Particulate composition characteristics under different ambient air quality conditions.

    Science.gov (United States)

    Tsai, Jiun-Horng; Chang, Lisa Tzu-Chi; Huang, Yao-Sheng; Chiang, Hung-Lung

    2011-07-01

    Particulate compositions including elemental carbon (EC), organic carbon (OC), water-soluble ionic species, and elemental compositions were investigated during the period from 2004 to 2006 in southern Taiwan. The correlation between the pollutant standard index (PSI) of ambient air quality and the various particle compositions was also addressed in this study. PSI revealed a correlation with fine (r = 0.74) and coarse (r = 0.80) particulate matter (PM). PSI manifested a significant correlation with the amount of analyzed ionic species (r approximately 0.80) in coarse and fine particles and a moderate correlation with carbon content (r = 0.63) in fine particles; however, it showed no correlation with elemental content. Although the ambient air quality ranged from good to moderate, the ionic species including chloride (Cl-), nitrate (NO3-), sulfate (SO4(2-)), sodium (Na+), ammonium (NH4+), magnesium (Mg2+), and calcium (Ca2+) increased significantly (1.5-3.7 times for Daliao and 1.8-6.9 times for Tzouying) in coarse PM. For fine particles, NO3-, SO4(2-), NH4+, and potassium (K+) also increased significantly (1.3-2.4 times for Daliao and 2.8-9.6 times for Tzouying) when the air quality went from good to moderate. For meteorological parameters, temperature evidenced a slightly negative correlation with PM concentration and PSI value, which implied a high PM concentration in the low-temperature condition. This reflects the high frequency of PM episodes in winter and spring in southern Taiwan. In addition, the mixing height increase from 980 to 1450 m corresponds to the air quality condition changing from unhealthy to good. PMID:21850835

  10. 40 CFR 60.422 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per...

  11. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  12. Oxidative Stress, DNA Damage, and Inflammation Induced by Ambient Air and Wood Smoke Particulate Matter in Human A549 and THP-1 Cell Lines

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup;

    2011-01-01

    polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-20-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels...... sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage...

  13. SYSTEMIC VASCULAR DISEASE IN MALE B6C3F1 MICE EXPOSED TO PARTICULATE MATTER BY INHALATION: STUDIES CONDUCTED BY THE NATIONAL TOXICOLOGY PROGRAM

    Science.gov (United States)

    Abstract Epidemiological studies suggest an association between ambient particulate matter and cardiopulmonary diseases in humans. The mechanisms underlying these health effects are poorly understood. To better understand the potential relationship between particulate-ma...

  14. 40 CFR 60.402 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.402... Plants § 60.402 Standard for particulate matter. (a) On and after the date on which the performance test... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed...

  15. 40 CFR 60.92 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  16. 40 CFR 60.162 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  17. 40 CFR 60.182 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.182... Smelters § 60.182 Standard for particulate matter. (a) On and after the date on which the performance test... furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  18. 40 CFR 60.382 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  19. 40 CFR 60.272a - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  20. 40 CFR 60.472 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced...

  1. 40 CFR 60.142a - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  2. 40 CFR 60.342 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.342... Manufacturing Plants § 60.342 Standard for particulate matter. (a) On and after the date on which the... gases which: (1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton)...

  3. 40 CFR 60.532 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected... comply with the following particulate matter emission limits as determined by the test methods...

  4. 40 CFR 60.732 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and...

  5. 40 CFR 60.292 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column...

  6. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  7. 40 CFR 60.272 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  8. 40 CFR 60.302 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  9. 40 CFR 60.172 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  10. 40 CFR 60.142 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  11. 40 CFR 60.52 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  12. 40 CFR 60.682 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.682... Insulation Manufacturing Plants § 60.682 Standard for particulate matter. On and after the date on which the... gases which contain particulate matter in excess of 5.5 kg/Mg (11.0 1b/ton) of glass pulled....

  13. 40 CFR 60.262 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  14. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  15. 40 CFR 60.282 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  16. Thermogravimetric analysis of diesel particulate matter

    Science.gov (United States)

    Lapuerta, M.; Ballesteros, R.; Rodríguez-Fernández, J.

    2007-03-01

    The regulated level of diesel particulate mass for 2008 light-duty diesel on-road engines will be 0.005 g km-1 in Europe. Measurements by weighing and analysis of this low level of particulate mass based on chemical extraction are costly, time consuming and hazardous because of the use of organic solvents, potentially carcinogenic. An alternative to this analysis is proposed here: a thermal mass analyser that measures the volatile fraction (VOF) as well as the soot fraction of the particulate matter (PM) collected on a cleaned fibre glass filter. This paper evaluates this new thermal mass measurement (TGA) as a possible alternative to the conventional chemical extraction method, and presents the results obtained with both methods when testing a diesel engine fuelled with a reference diesel fuel (REF), a pure biodiesel fuel (B100) and two blends with 30% and 70% v/v biodiesel (B30 and B70, respectively).

  17. Toxicity of Ambient Particulate Matter (PM10) I. Acute toxicity study in asthmatic mice following 3-day exposure to ultrafine and fine ammonium bisulfate, a model compound for secondary aerosol fraction of PM10

    NARCIS (Netherlands)

    Cassee FR; Dormans JAMA; Loveren H van; Bree L van; Rombout PJA; LEO; LPI

    1998-01-01

    Presented here is the first in a series of 3-day inhalation studies aimed to generate data on the health effects of inhaled ultrafine and fine ammonium bisulfate aerosols as model compound for the secondary fraction of particulate matter (PM10). Epidemiologic studies identified asthmatics as a risk

  18. Toxicity of Ambient Particulate Matter II. Acute toxicity study in asthmatic mice following 3-day exposure to fine ammonium ferrosulfate, a model compound for secondary aerosol of PM10

    NARCIS (Netherlands)

    Cassee FR; Dormans JAMA; Loveren H van; Bree L van; Rombout PJA; LEO; LPI

    1998-01-01

    In this second report on acute inhalation studies with model compounds for secondary particulate matter, results are presented of a study with fine ammonium ferrosulfate aerosol in asthmatic animals. We hypothesised that an aerosol with a transitional metal could produce enhanced symptoms of asthma.

  19. Characterisation of carbonaceous particulate matter in Edinburgh

    OpenAIRE

    Hammonds, Mark David

    2012-01-01

    Airborne particulate matter (PM) has important harmful effects on human health, as well as a number of other important atmospheric effects. Although progress has been made in understanding the sources and effects of PM, there remains considerable uncertainty on a number of issues, including the nature of a lot of the carbonaceous material, which comprises 30{50% on average of PM mass. This project aims to compare different methods of PM measurement, and contribute understanding...

  20. RECOVERY OF SEMI-VOLATILE ORGANIC COMPOUNDS DURING SAMPLE PREPARATION: IMPLICATIONS FOR CHARACTERIZATION OF AIRBORNE PARTICULATE MATTER

    Science.gov (United States)

    Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide v...

  1. Establishing the origin of particulate matter across Europe

    Science.gov (United States)

    Schaap, Martijn; Kranenburg, Richard; Hendriks, Carlijn; Kuenen, Jeroen

    2016-04-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. In this paper we like to provide an overview of recent source apportionment studies aimed at PM and its precursors carried out at TNO. The source apportionment module that tracks the origin of modelled particulate matter distributions throughout a LOTOS-EUROS simulation will be explained. To optimally apply this technology dedicated emission inventories, e.g. fuel type specific, need to be generated. Applications to Europe shows that in northwestern Europe the contribution of transport and agricultural emissions dominate the PM mass concentrations, especially during episodic events. In eastern Europe, the domestic and energy sector are much more important. In southern Europe the picture is more mixed, although the frequent high levels of desert dust stand out. Evaluation of the source allocation against experimental data and PMF analyses is challenging as there is only a limited availability of source specific tracers or factors that can be used for direct comparison. Nonetheless, for the available tracers such as vanadium for heavy fuel oil combustion an evaluation is very well possible. The source apportionment technique can also be used to interpret particulate matter formation efficiencies. It will be shown that the conversion rates for the secondary inorganic aerosol precursors (NOx, NH3 and SO2) have changed during the last 20 years. A particular problem is related to the fact that CTMs systematically underestimate observed PM levels, which means that the contribution of certain source categories (natural, agriculture, combustion) are underestimated. Future developments needed to improve the source apportionment information concerning process knowledge, data assimilation as well as model implementation will be discussed. Specific challenges concerning the

  2. Monitoring Particulate Matter with Commodity Hardware

    Science.gov (United States)

    Holstius, David

    Health effects attributed to outdoor fine particulate matter (PM 2.5) rank it among the risk factors with the highest health burdens in the world, annually accounting for over 3.2 million premature deaths and over 76 million lost disability-adjusted life years. Existing PM2.5 monitoring infrastructure cannot, however, be used to resolve variations in ambient PM2.5 concentrations with adequate spatial and temporal density, or with adequate coverage of human time-activity patterns, such that the needs of modern exposure science and control can be met. Small, inexpensive, and portable devices, relying on newly available off-the-shelf sensors, may facilitate the creation of PM2.5 datasets with improved resolution and coverage, especially if many such devices can be deployed concurrently with low system cost. Datasets generated with such technology could be used to overcome many important problems associated with exposure misclassification in air pollution epidemiology. Chapter 2 presents an epidemiological study of PM2.5 that used data from ambient monitoring stations in the Los Angeles basin to observe a decrease of 6.1 g (95% CI: 3.5, 8.7) in population mean birthweight following in utero exposure to the Southern California wildfires of 2003, but was otherwise limited by the sparsity of the empirical basis for exposure assessment. Chapter 3 demonstrates technical potential for remedying PM2.5 monitoring deficiencies, beginning with the generation of low-cost yet useful estimates of hourly and daily PM2.5 concentrations at a regulatory monitoring site. The context (an urban neighborhood proximate to a major goods-movement corridor) and the method (an off-the-shelf sensor costing approximately USD $10, combined with other low-cost, open-source, readily available hardware) were selected to have special significance among researchers and practitioners affiliated with contemporary communities of practice in public health and citizen science. As operationalized by

  3. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases.

    OpenAIRE

    Burnett, R.T.; Cakmak, S; Brook, J. R.; Krewski, D

    1997-01-01

    In order to address the role that the ambient air pollution mix, comprised of gaseous pollutants and various physical and chemical measures of particulate matter, plays in exacerbating cardiorespiratory disease, daily measures of fine and coarse particulate mass, aerosol chemistry (sulfates and acidity), and gaseous pollution (ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) were collected in Toronto, Ontario, Canada, in the summers of 1992, 1993, and 1994. These time series were...

  4. Estimating particulate matter health impact related to the combustion of different fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuenen, Jeroen; Kranenburg, Richard; Hendriks, Carlijn; Schaap, Martijn [TNO, Utrecht (Netherlands); Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle [MINES ParisTech, Sophia Antipolis (France); Drebszok, Kamila; Wyrwa, Artur [AGH Univ. of Science and Technology, Krakow (Poland); Stetter, Daniel [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany)

    2013-07-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  5. Estimating particulate matter health impact related to the combustion of different fossil fuels

    International Nuclear Information System (INIS)

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  6. Activation analysis of air particulate matter

    International Nuclear Information System (INIS)

    This review on activation analysis of air particulate matter is an extended and updated version of a review given by the same authors in 1985. The main part is aimed at the analytical scheme and refers to rules and techniques for sampling, sample and standard preparation, irradiation and counting procedures, as well as data processing, - evaluation, and - presentation. Additional chapters deal with relative and monostandard methods, the use of activation analysis for atmosphere samples in various localities, and level of toxic and other elements in the atmosphere. The review contains 190 references. (RB)

  7. 40 CFR 60.62 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.62... Plants § 60.62 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 0.15 kg per metric ton of feed (dry basis) to the kiln (0.30 lb per ton)....

  8. 40 CFR 60.102 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  9. 40 CFR 60.152 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  10. INSTILLATION OF COARSE ASH PARTICULATE MATTER AND LIPOPOLYSACCHARIDE PRODUCES A SYSTEMIC INFLAMMATORY RESPONSE IN MICE

    Science.gov (United States)

    Coronary ischemic events increase significantly floowing a “bad air” day. Ambient particulate matter (PM10) is the pollutant most strongly associated with these events. PM10 causes inflammatory injury to the lower airways. It is not clear, however, if pulmonary inflation transl...

  11. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models.

    OpenAIRE

    Costa, D L; Dreher, K. L.

    1997-01-01

    Many epidemiologic reports associate ambient levels of particulate matter (PM) with human mortality and morbidity, particularly in people with preexisting cardiopulmonary disease (e.g., chronic obstructive pulmonary disease, infection, asthma). Because much ambient PM is derived from combustion sources, we tested the hypothesis that the health effects of PM arise from anthropogenic PM that contains bioavailable transition metals. The PM samples studied derived from three emission sources (two...

  12. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung

    Directory of Open Access Journals (Sweden)

    C.E.L. Pereira

    2007-10-01

    Full Text Available Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b determine if intermittent short-term exposures (every 4 days induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM from vehicles (N = 30 for 6 or 20 continuous hours, or for intermittent (5 h periods during 20 h for 4 consecutive days or to filtered air (PM <10 µm; N = 30. Rats continuously breathing polluted air for 20 h (P-20 showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 ± 0.51;P-20: 5.01 x 105 ± 0.81; P < 0.05 and in lipid peroxidation ([MDA] nmol/mg protein: C-20: 0.148 ± 0.01; P-20: 0.226 ± 0.02; P < 0.05. Shorter exposure (6 h and intermittent 5-h exposures over a period of 4 days did not cause significant changes in leukocytes. Lipid damage resulting from 20-h exposure to particulate air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  13. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  14. 40 CFR 52.1880 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met because...

  15. 40 CFR 52.2526 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) EPA approves West Virginia's November 15, 1991 SIP submittal...

  16. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  17. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  18. 40 CFR 52.1374 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted...

  19. The investigation of atmospheric particulate matter pollution in Suzhou

    International Nuclear Information System (INIS)

    Objective: To investigate the pollution status, vertical distribution and concentration variation within 24 hours of total suspended particles (TSPs), particulate matter ≤10 μm (PM10), particulate matter ≤5 (PM5) and particulate matter ≤2.5 μm (PM2.5) in major functional areas of Suzhou and the protective effect of different type masks on particulate matter. Methods: (1) The concentration of atmospheric TSPs, PM10, PM5 and PM2.5 in seven functional areas in Suzhou was monitored for three consecutive days. (2) A residential building of 25 stories was chosen and the concentration of TSPs, PM10, PM5, PM2.5 was detected at the 1st, 5th, 10th, 15th, 20th and the 25th floor respectively. (3) The concentrations of the four particulate matter were detected every two-hours for three consecutive days to investigate how concentration of particulate matter varies within 24 hours. (4) The concentration of the four kinds of particulate matter was analyzed with the sampling head of monitor wrapped with disposable non-woven medical mask, fashion-type mask, gauze mask or activated carbon anti-dust mask respectively, and the protective effect of the four masks on particulate matter was compared. Results: (1) The concentration of PM2.5 was higher than the national health limit in all seven functional areas in Suzhou. (2) No significant difference in vertical distribution of particulate matter was found among different floors in residential buildings (P>0.05). (3) Two small peaks of particulate matter appeared in the morning and evening respectively while the top appeared at dawn (P< 0.05). (4) Disposable non-woven medical mask showed the best protective effect on particulate matter among the four tested masks. Conclusion: PM2.5 is the main particulate matter in Suzhou area. In addition the 4 kinds of particulate matter: TSP, PM10, PM5 and PM2.5 are of higher concentration in the early morning. No significant difference was detected from an altitude of less than 75 meters

  20. Notes on the Particulate Matter Standards in the European Union and the Netherlands

    Directory of Open Access Journals (Sweden)

    Hugo Priemus

    2009-03-01

    Full Text Available The distribution of Particulate Matter in the atmosphere, resulting from emissions produced by cars, trucks, ships, industrial estates and agricultural complexes, is a topical public health problem that has increased in recent decades due to environmental factors in advanced economies in particular. This contribution relates the health impact caused by concentrations of Particulate Matter (PM in ambient air to the PM standards, the size of the particles and spatial planning. Diverging impacts of PM standards in legal regulation are discussed. The authors present a review of the development of legal PM standards in the European Union, with a specific reference to The Netherlands.

  1. Characterization of Particulate Matter from a Heavily Industrial Environment

    Science.gov (United States)

    Valarini, Simone; Ynoue, Rita Yuri

    2011-01-01

    A characterization of PM aerosols collected in Cubatão, Brazil is presented. Throughout 2009, 5 sampling campaings were carried out at CEPEMA (Centro de Capacitação e Pesquisa em Meio Ambiente da Universidade de São Paulo), in the vicinity of PETROBRAS oil refinery. Mini-vol portable air sampler was deployed to collect coarse and fine particles. Size-fractionated particle samples were collected by a Micro-Orifice Uniform Deposition Impactor (MOUDI) device. Gravimetric analysis showed three peaks for mass size distributions: the After-Filter stage (cut point diameter of less than 0,1μm), stage 7A (d=0,32μm) and stage 3A (d= 3,2μm). Fine particle matter (FPM) concentrations were almost always lower than coarse particle matter (CPM) concentrations. Comparison between the PM2.5 (particulate matter lower than 2.5μg.m-3) measurements by the MOUDI and Mini-Vol sampler reveals good agreement. However, MOUDI underestimates CPM. Reflectance analysis showed that almost all the Black Carbon is found in the Mini-Vol FPM and lower stages of the MOUDI, with higher concentrations at the After-Filter. The atmospheric loading of PM 2.5 was elevated at night, mainly due to more stable atmospheric conditions. Aerosol samples were analyzed for water- soluble ions, black carbon (BC), and trace elements using a number of analytical techniques.

  2. Chemical Speciation of Thorium in Marine Biogenic Particulate Matter

    OpenAIRE

    Katsumi Hirose

    2004-01-01

    Concentrations of particulate thorium in seawater were determined together with the strong organic ligand (SOL) and uranium in particulate matter (PM). The concentrations of particulate Th in surface waters of the western North Pacific and the Sea of Japan ranged from 0.05 to 1.5 pM (1 x 10−12 M), and showed relatively large temporal and spatial variations. In order to chemically characterize the particulate Th in seawater, the relationship between particulate Th and SOL concentrations in sur...

  3. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time.

    Science.gov (United States)

    Przybysz, A; Sæbø, A; Hanslin, H M; Gawroński, S W

    2014-05-15

    Particulate matter is harmful to human health. To reduce its concentration in air, plants could be used as biological filters, accumulating particulate matter on their foliage. In a study carried out at three sites with differing pollution levels and exposure to precipitation, the capacity of evergreen species (Taxus baccata L., Hedera helix L. and Pinus sylvestris L.) to accumulate particulate matter and trace elements from ambient air in urban areas was investigated. The effects of rainfall and the passage of time on particulate matter deposition on foliage were also determined. The results showed that foliage accumulated an increasing quantity of particulate matter in successive months, but the actual amount of particulate matter and trace elements accumulated differed considerably between sites and plant species. The greatest accumulation of air pollutants occurred on the foliage of plants protected from the rain at a site exposed to traffic related pollution and the smallest accumulation at a rural site. Among the species analysed, the deposited mass of particulate matter and trace elements was the greatest on P. sylvestris. In all species, precipitation removed a considerable proportion of particles accumulated on foliage. Most of the removed particulate matter was large size fraction, but little belong to the smallest size fraction. These results showed that both, the dynamics of deposition and leaf washing by rain during the season need to be considered when evaluating the total effect of vegetation in pollutant remediation. PMID:24607629

  4. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    Science.gov (United States)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this

  5. Characterization of functional groups of airborne particulate matter

    International Nuclear Information System (INIS)

    Particulate matter of organic combustibles burning consists of various hydrocarbons and radicals, which may cause harmful impact to human health. In this study solid particulate matter were collected on the filters from burning of various combustibles in a burning chamber and from atmosphere of city of Riga by dichotomous impactor. FTIR spectra were obtained before and after samples' treatment. Absorptions associated with aliphatic and aromatic hydrocarbons and alcohol functional groups were observed in the FTIR spectra. Free radicals of particulate matter were detected by electron paramagnetic resonance (EPR)

  6. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia, pulmonary inflammation in heart failure-prone rats

    Science.gov (United States)

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiologic events precipitating these outcomes remain poorly understood but may involve inflamm...

  7. MEMANFAATKAN TANAMAN UNTUK MENGURANGI POLUSI PARTICULATE MATTER KE DALAM BANGUNAN

    Directory of Open Access Journals (Sweden)

    Christina E. Mediastika

    2002-01-01

    Full Text Available Inhabitants of a building are difficult to escape particulate matter emission. Within this condition, buildings should have vertical element that could block the dispersion of particulate matter to living spaces. Vegetation, a part of vertical elemen for fencing, is considered to do this task. The use of vegetation is chosen with reference to nature and behaviour of particulate matter. Earlier research found that dispersion of particulate matter is mostly at lower atmospheric layer and that particulate matter could be deposited. Therefore, low growing vegetation or climbing plants with particular leaf condition to encourage deposition is predicted suitable. Four vegetation was examined: Duranta repens, Polyscias fruticosa, Stephanotis floribunda and Scindapsus sp. As a preliminary study, there is no valid conclusion could be made from this experiment. However, there are indications that Duranta repens and Stephanotis floribunda block and deposit slightly more particulate matter than the two others. Abstract in Bahasa Indonesia : Polusi particulate matter atau partikel halus tidak hanya terjadi di jalan raya, tetapi juga masuk ke dalam bangunan yang terletak di sepanjang jalan. Oleh karenanya, bangunan seyogyanya memiliki elemen vertikal yang mampu bertugas menghalangi masuknya polusi partikel halus. Salah satu kemungkinan penggunaan elemen vertikal, yaitu tanaman yang ditempatkan pada posisi pagar diteliti dalam studi ini. Mempelajari bahwa partikel halus dengan ukuran tertentu dapat diendapkan dan penyebarannya umumnya terjadi pada lapisan udara rendah, maka studi terhadap tanaman semak atau perdu atau tanaman rambat dengan jenis permukaan daun tertentu lebih diutamakan. Empat jenis tanaman diuji kemampuannya, yaitu: Duranta repens, Polyscias fruticosa, Stephanotis floribunda and Scindapsus sp. Sebagai studi yang sangat awal, masih belum ada hasil valid yang ditawarkan, namun setidaknya ditemukan indikasi bahwa Duranta repens and Stephanotis

  8. CFD Modeling of Particulate Matter Dispersion from Kerman Cement Plant

    Directory of Open Access Journals (Sweden)

    M. Panahandeh

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives: The dispersion of particulate matter has been known as the most serious environmental pollution of cement plants. In the present work, dispersion of the particulate matter from stack of Kerman Cement Plant was investigated using Computational Fluid Dynamics (CFD modeling."nMaterials and Methods: In order to study the dispersion of particulate matter from the stack, a calculation domain with dimensions of 8000m × 800m × 400m was considered. The domain was divided to 936781 tetrahedral control volumes. The mixture two-phase model was employed to model the interaction of the particulate matter (dispersed phase and air (continuous phase. The Large Eddy Simulation (LES method was used for turbulence modeling."nResults: The concentration of particulate matter in the whole calculation domain was computed. The predicted concentrations were compared to the measured values from the literature and a good agreement was observed. The predicted concentration profiles at different cross sections were analyzed."nConclusion:The results of the present work showed that CFD is a useful tool for understanding the dispersion of particulate matter in air. Although the obtained results were promising, more investigations on the properties of the dispersed phase, turbulent parameters and the boundary layer effect is needed to obtain more accurate results.

  9. Estimation of particulate matter from simulation and measurements

    Science.gov (United States)

    Nakata, Makiko; Nakano, Tomio; Okuhara, Takaaki; Sano, Itaru; Mukai, Sonoyo

    2011-11-01

    The particulate matter is a typical indicator of small particles in the atmosphere. In addition to providing impacts on climate and environment, these small particles can bring adverse effects on human health. Then an accurate estimation of particulate matter is an urgent subject. We set up SPM sampler attached to our AERONET (Aerosol Robotics Network) station in urban city of Higashi-Osaka in Japan. The SPM sampler provides particle information about the concentrations of various SPMs (e.g., PM10 and PM2.5) separately. The AEROENT program is world wide ground based sunphotometric observation networks by NASA and provides the spectral information about aerosol optical thickness (AOT) and Angstrom exponent (α). Simultaneous measurements show that a linear correlation definitely exists between AOT and PM2.5. These results indicate that particulate matter can be estimated from AOT. However AOT represents integrated values of column aerosol amount retrieved from optical property, while particulate matter concentration presents in-situ aerosol loading on the surface. Then simple way using linear correlation brings the discrepancy between observed and estimated particulate matter. In this work, we use cluster information about aerosol type to reduce the discrepancy. Our improved method will be useful for retrieving particulate matter from satellite measurements.

  10. Fine airborne particulate matter: secondary production

    International Nuclear Information System (INIS)

    The chemical speciation of over 750 samples of PM2,5 collected in urban area of Milan, provides preliminary information about the role of the sources. In particular the research points out the large importance of the secondary source, i. e. the secondary production in atmosphere from gaseous precursors, that accounts for the 60- 70% of the total particulate. These findings affect the intervention policy, that must be oriented also to control the gaseous precursors of the fine particulate

  11. Data quality in airborne particulate matter measurements

    Science.gov (United States)

    Hyslop, Nicole Marie

    Environmental measurements are complicated by uncontrollable natural variations in the environment, which cannot be reproduced in the laboratory. These variations affect the measurement uncertainty and detection capabilities -- two measures of data quality. Variations in a measurement series that arise from uncertainty in the measurements should not be interpreted as variations in the environment. Accurate estimates of measurement uncertainty are thus important inputs to data analyses. Collocated (duplicate) measurements are the most direct approach to characterizing uncertainty and detection capabilities because the observed differences reflect the actual measurement performance under the natural environmental variability. This dissertation uses collocated measurements of airborne particulate matter chemical speciation collected by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) to explore data quality issues. In addition to the complications introduced by uncontrollable environmental factors, the concepts of measurement precision and detection capabilities are often complicated by incomplete and inconsistent definitions. In this dissertation, collocated IMPROVE data are used to illustrate different formulations for precision and their ability to fit the observed differences. Collocated IMPROVE data are also used to show that measurement precision is typically better at concentrations well above the detection limit, when the analysis is performed on the whole filter instead of just a fraction of the filter, and for species predominantly in the smaller size fractions. For most species, the collocated differences are worse than the differences predicted by the current uncertainty model, suggesting that some sources of uncertainty are not accounted for or have been underestimated in the model. In addition, collocated measurement differences are shown to be correlated among several species. In both IMPROVE and

  12. Chemical characterization of urban air particulate matter of Kuala Lumpur 2002-2004

    International Nuclear Information System (INIS)

    Urban air particulate samples of Kuala Lumpur ambient air have been collected characterize according to fine and coarse airborne particulates. The air filters containing particulate matter were collected using GENT stack filter unit fitted with appropriate polycarbonate filters. The sampling location site (Lat: 03deg 10'30''; Long: 101deg 43'24.2'') is approximately 1 km from the Kuala Lumpur city center. All the sampling conducted from January 2002 until October 2004 was included in the analysis and results were reported. The mass loading for finest air particulate matter (PM 2.5) in Kuala Lumpur are 199±55 μg (2002), 171±53 μg (2003), and 171±61 μg (2004), respectively. The mass loading for coarse air particulate matter (PM 10) in Kuala Lumpur were 125±29 μg (2002), 134±48 μg (2003), and 137 ± 57 μg (2004), respectively. The elemental concentration of the air filters were determined using INAA technique utilizing both short and long irradiation facilities at MINT's TRIGA MKII reactor. Upon irradiation the air filters were counted at suitable counting time using HPGe gamma-ray detectors. The elements reported for this monitoring are Al, As, Br, Co, Cr, K, Lu, Mn, Na, Sb, Sc, Ti, V, and Zn. Certified reference materials were also included in the sample analysis function as quality control materials. (author)

  13. Sources of atmospheric carbonaceous particulate matter in Pittsburgh, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Cabada, J.C.; Pandis, S.N.; Robinson, A.L. [Carnegie Mellon University, Pittsburgh, PA (United States)

    2002-06-01

    The organic carbon (OC)/elemental carbon (EC) tracer method is applied to the Pittsburgh, PA, area to estimate the contribution of secondary organic aerosol (SOA) to the monthly average concentration of organic particulate matter (PM) during 1995. An emissions inventory is constructed for the primary emissions of OC and EC in the area of interest. The ratio of primary emissions of OC to those of EC ranges between 2.4 in the winter months and 1.0 in summer months. A mass balance model and ambient measurements were used to assess the accuracy of the emissions inventory. It is estimated to be accurate to within 50%. The results from this analysis show a strong monthly dependence of the SOA contribution to the total organic PM concentration, varying from near zero during winter months to as much as 50% of the total OC concentration in the summer. Local wood and fugitive sources combustion are major sources of primary OC in western Pennsylvania on an annual basis (33 and 22% respectively), and wood burning is the dominant source during winter months. The coke producing industry and diesel combustion are the dominant sources of the primary EC emissions (21 and 30% respectively). The EC emissions show a weaker monthly dependence compared with that shown by OC sources. 57 refs., 9 figs., 8 tabs.

  14. Skin Damage Mechanisms Related to Airborne Particulate Matter Exposure.

    Science.gov (United States)

    Magnani, Natalia D; Muresan, Ximena M; Belmonte, Giuseppe; Cervellati, Franco; Sticozzi, Claudia; Pecorelli, Alessandra; Miracco, Clelia; Marchini, Timoteo; Evelson, Pablo; Valacchi, Giuseppe

    2016-01-01

    Epidemiological studies suggest a correlation between increased airborne particulate matter (PM) and adverse health effects. The mechanisms of PM-health effects are believed to involve oxidative stress and inflammation. To evaluate the ability of PM promoting skin tissue damage, one of the main organs exposed to outdoor pollutants, we analyzed the effect of concentrated ambient particles (CAPs) in a reconstructed human epidermis (RHE) model. RHE tissues were exposed to 25 or 100 µg/ml CAPs for 24 or 48 h. Data showed that RHE seems to be more susceptible to CAPs-induced toxicity after 48 h exposure than after 24 h. We found a local reactive O(2) species (ROS) production increase generated from metals present on the particle, which contributes to lipids oxidation. Furthermore, as a consequence of altered redox status, NFkB nucleus translocation was increase upon CAPs exposure, as well as cyclooxygenase 2 and cytochrome P450 levels, which may be involved in the inflammatory response initiated by PM. CAPs also triggered an apoptotic process in skin. Surprisingly, by transition electron microscopy analysis we showed that CAPs were able to penetrate skin tissues. These findings contribute to the understanding of the cutaneous pathophysiological mechanisms initiated by CAPs exposure, where oxidative stress and inflammation may play predominant roles. PMID:26507108

  15. Ambient and indoor particulate aerosols generated by dairies in the southern High Plains.

    Science.gov (United States)

    Purdy, C W; Clark, R N; Straus, D C

    2009-12-01

    The objectives were to quantify and size ambient aerosolized dust in and around the facilities of 4 southern High Plains dairies of New Mexico and to determine where health of workers might be vulnerable to particulate aerosols, based on aerosol concentrations that exceed national air quality standards. Ambient dust air samples were collected upwind (background) and downwind of 3 dairy location sites (loafing pen boundary, commodity, and compost field). The indoor milking parlor, a fourth site, was monitored immediately upwind and downwind. Aerosolized particulate samples were collected using high-volume sequential reference air samplers, laser aerosol monitors, and cyclone air samplers. The overall (main effects and estimable interactions) statistical general linear model statement for particulate matter (PM(10); particulate matter with an aerodynamic diameter of up to 10 microm) and PM(2.5) resulted in a greater mean concentration of dust in the winter (PM(10) = 97.4 +/- 4.4 microg/m(3); PM(2.5) = 32.6 +/- 2.6 microg/m(3)) compared with the summer (PM(10) = 71.9 +/- 5.0 microg/m(3); PM(2.5) = 18.1 +/- 1.2 microg/m(3)). The upwind and downwind boundary PM(10) concentrations were significantly higher in the winter (upwind = 64.3 +/- 9.5 microg/m(3); downwind = 119.8 +/- 13.0 microg/m(3)) compared with the summer (upwind = 35.2 +/- 7.5 microg/m(3); downwind = 66.8 +/- 11.8 microg/m(3)). The milking parlor PM(10) and PM(2.5) concentration data were significantly higher in the winter (PM(10) = 119.5 +/- 5.8 microg/m(3); PM(2.5) = 55.3 +/- 5.8microg/m(3)) compared with the summer (PM(10) = 88.6.0 +/- 5.8 microg/m(3); PM(2.5) = 21.0 +/- 2.1 microg/m(3)). Personnel should be protected from high aerosol concentrations found at the commodity barn, compost field, and milking parlor during the winter. PMID:19923606

  16. Biomass burning contribution to ambient air particulate levels at Navrongo in the Savannah zone of Ghana.

    Science.gov (United States)

    Ofosu, Francis G; Hopke, Philip K; Aboh, Innocent J K; Bamford, Samuel A

    2013-09-01

    The concentrations of airborne particulate matter (PM) in Navrongo, a town in the Sahel Savannah Zone of Ghana, have been measured and the major sources have been identified. This area is prone to frequent particulate pollution episodes due to Harmattan dust and biomass burning, mostly from annual bushfires. The contribution of combustion emissions, particularly from biomass and fossil fuel, to ambient air particulate loadings was assessed. Sampling was conducted from February 2009 to February 2010 in Navrongo. Two Gent samplers were equipped to collect PM10 in two size fractions, coarse (PM10-2.5) and fine (PM2.5). Coarse particles are collected on a coated, 8-microm-pore Nuclepore filter. Fine particle samples were sampled with 47-mm-diameter Nuclepore and quartz filters. Elemental carbon (EC) and organic carbon (OC) concentrations were determined from the quartz filters using thermal optical reflectance (IMPROVE/TOR) methods. Elements were measured on the fine-particle Nuclepore filters using energy-dispersive x-ray fluorescence. The average PM2.5 mass concentration obtained at Navrongo was 32.3 microg/m. High carbonaceous concentrations were obtained from November to March, the period of Harmattan dust and severe bush fires. Total carbon was found to contribute approximately 40% of the PM2.5 particulate mass. Positive matrix factorization (PMF) suggested six major sources contributing to the PM2.5 mass. They are two stroke engines, gasoline emissions, soil dust, diesel emissions, biomass burning, and resuspended soil dust. Biomass combustion (16.0%) was identified as second most important source next to soil dust at Navrongo. PMID:24151679

  17. Ecological effect of airborne particulate matter on plants

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Prajapati

    2012-03-01

    Full Text Available Atmospheric particulate matter is a mixture of diverse elements. Deposition of particulate matter to vegetated surfaces depends on the size distribution of these particles and, to a lesser extent, on the chemistry. Effects of particulate matter on vegetation may be associated with the reduction in light required for photosynthesis and an increase in leaf temperature due to changed surface optical properties. Changes in energy exchange are more important than the diffusion of gases into and out of leaves which is influenced by dust load, color and particle size. Alkaline dust materials may cause leaf surface injury while other materials may be taken up across the cuticle. A more probable route for metabolic uptake and impact on vegetation and ecosystems is through the rhizosphere. Interception of dusts by vegetation makes an important contribution to the improvement of air quality in the vicinity of vegetation. Although the effect of particulate matter on ecosystem is linked to climate change, there is little threat due to un-speciated particulate matter on a regional scale.

  18. Evaluation of Exposures to Diesel Particulate Matter Utilizing Ambient Air Monitoring and Urinary Biomarkers Among Pedestrian Commuters who Cross the U.S.-Mexico Border at San Ysidro, CA

    Science.gov (United States)

    Galaviz, Vanessa Eileen

    Background: Walk-in-line pedestrians crossing the U.S.-Mexico border northbound at the San Ysidro, CA Port of Entry ("Border Commuters") may be at an increased risk of experiencing elevated traffic-related air pollution, including diesel exhaust (DE). DE exposure has been associated with numerous adverse health effects, particularly cardiovascular and respiratory problems, including as lung cancer. Pedestrian crossers wait in line for extended periods and stand within 10 feet of highly concentrated traffic, particularly to diesel buses. Understanding the magnitude of traffic-related exposures is important for this vulnerable population. It was hypothesized that subjects who reside in Tijuana, Baja California, Mexico and cross the border as a pedestrian will experience higher exposure to traffic-related pollutants than those who live and work in South San Diego, CA, USA and do not cross the border. Methods: Ninety-one participants were enrolled for this study; 80% were "Border Commuters" and 20% were "Non-Border Commuters". "Non-Border Commuters" served as the comparison group and were defined as residents who lived in or near and worked or went to school in San Ysidro, CA but did not cross the border. Questionnaires, time activity diaries, and urine samples were collected from all participants. Of the "Border Commuters", 56 personal 24-hour PM2.5 and 1-nitropyrene (1-NP) - a marker for diesel exhaust - samples were collected. There were 22 at-home indoor and 14 at-home outdoor 1-NP samples collected. Additionally, area samples collected at the border included 35 days of 1-NP, black carbon (BC), carbon monoxide (CO), fine particulate matter (PM2.5) and ultrafine particulate matter (UFP). Of the "Non-Border Commuters", 15 personal 24-hour PM2.5 and 1-NP samples were collected. Additonally, 3 at-home indoor and outdoor 24-hour 1-NP samples were collected. Results: Personal exposure to PM2.5 was nearly 2-fold higher among "Border Commuters" compared to "Non

  19. Seasonal Contribution of Mineral Dust and Otlher Major Components to Particulate Matter at Two Remote Sites in Central Asia

    Science.gov (United States)

    Dust storms are significant contributors to ambient levels of particulate matter (PM) in many areas of the world. Central Asia, an area that is relatively understudied in this regard, is anticipated to be affected by dust storms due to its proximity to several major deserts that ...

  20. Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation

    NARCIS (Netherlands)

    Ulrich, M.M.W.; Alink, G.M.; Kumarathasan, P.; Vincent, R.; Boere, A.J.F.; Cassee, F.R.

    2002-01-01

    Recent epidemiological studies associate health effects and particulate matter in ambient air. Exacerbation of the particle-induced inflammation can be a mechanism responsible for increased hospitalization and death due to cardiopulmonary events in high-risk groups of the population. Systems regulat

  1. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts

    DEFF Research Database (Denmark)

    Wang, Meng; Beelen, Rob; Stafoggia, Massimo;

    2014-01-01

    Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only....

  2. ARE CARS OR TREES MORE IMPORTANT TO PARTICULATE MATTER AIR POLUTION? WHAT RADIOCARBON MEASUREMENTS HAVE TO SAY

    Science.gov (United States)

    Air pollution in the form of particulate matter (PM) originates from both human activities and "natural" phenomena. Setting and achieving National Ambient Air Quality Standards (NAAQS) for PM has to take into account the latter since they are in general less controllable than th...

  3. Association between maternal exposure to particulate matter and premature birth

    Directory of Open Access Journals (Sweden)

    Thaiza Agostini Córdoba de Lima

    2014-01-01

    Full Text Available The objective of this time-series study carried out in São José dos Campos, a southeastern Brazilian city, between 01.01.2005 and 31.12.2009, was to estimate the role of maternal exposure to air pollutants and preterm births. Preterm newborns of mothers aged between 18 and 34 years, with at least eight years of schooling, singleton pregnancies and whose delivery was vaginal were included in the study. Logistic regression was used to estimate the role of particulate matter, ozone and sulfur dioxide on preterm delivery with lags of zero up to 30 days. Exposure to particulate matter was associated significantly with preterm newborns in lags of 0, 1 and 3 days; but no association was found between cumulative maternal exposure in lags of 7, 15 and 30 days and the outcome. Maternal exposure to particulate matter therefore has an acute effect on preterm births in a medium-sized Brazilian town.

  4. [Determination of particulate matter in small volume antibiotic injections].

    Science.gov (United States)

    Niizeki, M; Tanno, K

    1989-03-01

    Amounts of particulate matter present in 17 small volume antibiotic injections marketed in Japan were determined using light obscuration particle analyzer (HIAC). The vial volume range of each batch of product was 7-20 ml, and each vial contained 1 g as antibiotic potency. In 4 products, contents of particles between 2.5 and 10 microns in diameter were counted 2,000-7,000 per vial, and particles in other products were counted less than 2,000 per vial. Numbers of particles greater than or equal to 10 microns in diameter were much less than the USP XXI criteria for particulate matter in small volume injections. The product of the highest counts for particles between 10 and 25 microns in diameter showed counts amounted to 0.13% of the USP XXI criteria. In the 25-50 microns particulate diameter range, particulate matters were detected only in 2 products, and they were less than 0.2% of the USP XXI criteria. Particles over 50 microns in diameter were not detected in any products. These results showed that 17 small volume antibiotic injections marketed in Japan had good qualities regarding contents of particulate matter. PMID:2746842

  5. Chemical Speciation of Thorium in Marine Biogenic Particulate Matter

    Directory of Open Access Journals (Sweden)

    Katsumi Hirose

    2004-01-01

    Full Text Available Concentrations of particulate thorium in seawater were determined together with the strong organic ligand (SOL and uranium in particulate matter (PM. The concentrations of particulate Th in surface waters of the western North Pacific and the Sea of Japan ranged from 0.05 to 1.5 pM (1 x 10−12 M, and showed relatively large temporal and spatial variations. In order to chemically characterize the particulate Th in seawater, the relationship between particulate Th and SOL concentrations in surface PM was examined. The result reveals that particulate Th in surface PM was well correlated with the SOL concentration in PM. The concentrations of particulate Th in surface water were linearly related to those of particulate U. Mass balance analysis suggests that the dominant chemical form of Th(IV, as well as of U, in surface PM is a surface complex with the SOL in PM. Our findings suggest that the SOL in PM is a nonmetal-specific chelator originating from the cell surface of microorganisms.

  6. Evaluation of Exposures to Diesel Particulate Matter Utilizing Ambient Air Monitoring and Urinary Biomarkers Among Pedestrian Commuters who Cross the U.S.-Mexico Border at San Ysidro, CA

    Science.gov (United States)

    Galaviz, Vanessa Eileen

    Background: Walk-in-line pedestrians crossing the U.S.-Mexico border northbound at the San Ysidro, CA Port of Entry ("Border Commuters") may be at an increased risk of experiencing elevated traffic-related air pollution, including diesel exhaust (DE). DE exposure has been associated with numerous adverse health effects, particularly cardiovascular and respiratory problems, including as lung cancer. Pedestrian crossers wait in line for extended periods and stand within 10 feet of highly concentrated traffic, particularly to diesel buses. Understanding the magnitude of traffic-related exposures is important for this vulnerable population. It was hypothesized that subjects who reside in Tijuana, Baja California, Mexico and cross the border as a pedestrian will experience higher exposure to traffic-related pollutants than those who live and work in South San Diego, CA, USA and do not cross the border. Methods: Ninety-one participants were enrolled for this study; 80% were "Border Commuters" and 20% were "Non-Border Commuters". "Non-Border Commuters" served as the comparison group and were defined as residents who lived in or near and worked or went to school in San Ysidro, CA but did not cross the border. Questionnaires, time activity diaries, and urine samples were collected from all participants. Of the "Border Commuters", 56 personal 24-hour PM2.5 and 1-nitropyrene (1-NP) - a marker for diesel exhaust - samples were collected. There were 22 at-home indoor and 14 at-home outdoor 1-NP samples collected. Additionally, area samples collected at the border included 35 days of 1-NP, black carbon (BC), carbon monoxide (CO), fine particulate matter (PM2.5) and ultrafine particulate matter (UFP). Of the "Non-Border Commuters", 15 personal 24-hour PM2.5 and 1-NP samples were collected. Additonally, 3 at-home indoor and outdoor 24-hour 1-NP samples were collected. Results: Personal exposure to PM2.5 was nearly 2-fold higher among "Border Commuters" compared to "Non

  7. Polycyclic aromatic hydrocarbons and total extractable particulate organic matter in the Arctic aerosol

    International Nuclear Information System (INIS)

    Samples of total suspended particulate matter were collected in March and August 1979 at Barrow, Alaska, a remote site in the Arctic. Ambient concentrations of extractable particulate organic matter (POM), of polycyclic aromatic hydrocarbons (PAH) and of 210Pb were determined. The samples were also examined by optical and scanning electron microscopy. Average concentrations of POM and PAH were similar to those reported for other remote sites in the northern hemisphere, but the concentrations were considerably higher in March than in August. The presence of fly ash in the samples collected during the March sampling period, as well as seasonal differences in the concentrations of the organic species and 210Pb and in meteorology indicate that the principal source of POM and PAH was fossil fuel combustion in the mid-latitudes during the March sampling period. (author)

  8. Recent outcomes in European multicentre projects on ambient particulate air pollution

    International Nuclear Information System (INIS)

    The adverse health effects associated with ambient air pollution have triggered epidemiologists, toxicologists and chemists to combine their experience to investigate the toxicity of ambient PM (particulate matter) from European sites with differing traffic intensity, in order to increase the understanding of the role of fine and coarse PM, the role of chemical characteristics and relate that to health effects. Under the European Union 5th Framework Programme (FP5), the HEPMEAP, RAIAP and PAMCHAR projects have utilised high-volume samplers to collect PM in European locations with contrasting PM sources and performed a range of different laboratory investigations. The PM investigated generally induced significant biological responses, with both coarse (2.5-10 μm) and fine (0.1-2.5 μm) PM being able to induce toxic effects. The chemical composition of the PM (also reflecting the differences in the emission-source contribution) has been suggested to play an important role in these responses. Oxidative and immune effects have been demonstrated in several in vitro and animal models. Investigations have also given support for the assumption that asthmatic and elderly subjects with chronic obstructive pulmonary disease may be more susceptible to PM exposure

  9. Deposition of Suspended Fine Particulate Matter in a Library

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Mašková, Ludmila; Zíková, Naděžda; Ondráčková, Lucie; Ondráček, Jakub

    2013-01-01

    Roč. 1, 3 April (2013). ISSN 2050-7445 R&D Projects: GA MK DF11P01OVV020 Keywords : fine particulate matter * deposition * brownian diffusion Subject RIV: CF - Physical ; Theoretical Chemistry http://www.heritagesciencejournal.com/content/1/1/7

  10. 40 CFR 60.122 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... subpart shall discharge or cause the discharge into the atmosphere from a blast (cupola) or reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf). (2... shall discharge or cause the discharge into the atmosphere from any pot furnace any gases which...

  11. 40 CFR 60.132 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf... subpart shall discharge or cause the discharge into the atmosphere from any blast (cupola) or electric furnace any gases which exhibit 10 percent opacity or greater....

  12. CHARACTERIZATION OF COTTON GIN PARTICULATE MATTER EMISSIONS – FIRST YEAR

    Science.gov (United States)

    Due to EPA’s implementation of more stringent standards for particulate matter with an effective diameter less than 2.5 microns, the cotton ginners’ associations across the cotton belt, including the National, Texas, Southern, Southeastern, and California associations, agreed that there is an urgent...

  13. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  14. The nature of particulate organic matter settled on solid substrata

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, M.O.; Wagh, A.B.

    National Institute of Oceanography, Dona Paula, Goa, 403004, India. Received 25/0 I/90, in revised form 16/02/90, accepted 22/03/90. Particulate material settled on aluminium and glass panels during their immersion in estuarine water was analysed... etre principale ment d'origine hactcrienne. Oceollo!ogica Acta, 1990, 13.4,471-474. INTRODUCTION Solid substrata placed in an aquatic environment adsorb organic molecules from the ambient waters onto their surfaces, making them readily available...

  15. Emissions of particulate matter from animal houses in the Netherlands

    Science.gov (United States)

    Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.

  16. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction

    Science.gov (United States)

    Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease and cardiac dysfunction ha...

  17. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  18. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis

    DEFF Research Database (Denmark)

    Møller, Peter; Mikkelsen, Lone; Vesterdal, Lise Kristine;

    2011-01-01

    inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60......The development and use of nanoparticles have alerted toxicologists and regulators to issues of safety testing. By analogy with ambient air particles, it can be expected that small doses are associated with a small increase in risk of cardiovascular diseases, possibly through oxidative stress and......), single-walled carbon nanotubes, ambient air particles, and diesel exhaust particles. Exposure to ambient air particles is associated with accelerated progression of atherosclerosis and vasomotor dysfunction in both healthy and susceptible animal models and humans at risk of developing cardiovascular...

  19. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  20. Environmental atmosphere suspended particulate matter analysis using PIXE

    International Nuclear Information System (INIS)

    One of the environmental indicators of the atmosphere environment is suspended particulate matter (SPM). Recently, the concentration of particulate matter under 2.5 micro-meters (PM2.5) among SPM is regarded as important, and an environmental standard has been established for PM2.5 concentration. S.H.I. Examination and Inspection (SEI), Ltd. analyzes the components of PM2.5 by particle-induced X-ray emission (PIXE) using a Van de Graaff accelerator. SEI's PIXE analysis system quantifies the components by an external standard method. As a method for validating the reliability, the certified values of standard matter SRM2783 were compared with SEI's analysis values, and it was confirmed that the uncertainty of the analysis values of PM2.5 with this analysis system was within 10%. (author)

  1. Gene-particulate matter-health interactions

    International Nuclear Information System (INIS)

    Inter-individual variation in human responses to air pollutants suggests that some subpopulations are at increased risk to the detrimental effects of pollutant exposure. Extrinsic factors such as previous exposure and nutritional status may influence individual susceptibility. Intrinsic (host) factors that determine susceptibility include age, gender, and pre-existing disease (e.g., asthma), and it is becoming clear that genetic background also contributes to individual susceptibility. Environmental exposures to particulates and genetic factors associated with disease risk likely interact in a complex fashion that varies from one population and one individual to another. The relationships between genetic background and disease risk and severity are often evaluated through traditional family-based linkage studies and positional cloning techniques. However, case-control studies based on association of disease or disease subphenotypes with candidate genes have advantages over family pedigree studies for complex disease phenotypes. This is based in part on continued development of quantitative analysis and the discovery and availability of simple sequence repeats and single nucleotide polymorphisms. Linkage analyses with genetically standardized animal models also provide a useful tool to identify genetic determinants of responses to environmental pollutants. These approaches have identified significant susceptibility quantitative trait loci on mouse chromosomes 1, 6, 11, and 17. Physical mapping and comparative mapping between human and mouse genomes will yield candidate susceptibility genes that may be tested by association studies in human subjects. Human studies and mouse modeling will provide important insight to understanding genetic factors that contribute to differential susceptibility to air pollutants

  2. A Systematic Review of Occupational Exposure to Particulate Matter and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Shona C. Fang

    2010-04-01

    Full Text Available Exposure to ambient particulate air pollution is a recognized risk factor for cardiovascular disease; however the link between occupational particulate exposures and adverse cardiovascular events is less clear. We conducted a systematic review, including meta-analysis where appropriate, of the epidemiologic association between occupational exposure to particulate matter and cardiovascular disease. Out of 697 articles meeting our initial criteria, 37 articles published from January 1990 to April 2009 (12 mortality; 5 morbidity; and 20 intermediate cardiovascular endpoints were included. Results suggest a possible association between occupational particulate exposures and ischemic heart disease (IHD mortality as well as non-fatal myocardial infarction (MI, and stronger evidence of associations with heart rate variability and systemic inflammation, potential intermediates between occupational PM exposure and IHD. In meta-analysis of mortality studies, a significant increase in IHD was observed (meta-IRR = 1.16; 95% CI: 1.06–1.26, however these data were limited by lack of adequate control for smoking and other potential confounders. Further research is needed to better clarify the magnitude of the potential risk of the development and aggravation of IHD associated with short and long-term occupational particulate exposures and to clarify the clinical significance of acute and chronic changes in intermediate cardiovascular outcomes.

  3. A Novel High-Throughput Approach to Measure Hydroxyl Radicals Induced by Airborne Particulate Matter

    OpenAIRE

    Yeongkwon Son; Vladimir Mishin; William Welsh; Shou-En Lu; Laskin, Jeffrey D.; Howard Kipen; Qingyu Meng

    2015-01-01

    Oxidative stress is one of the key mechanisms linking ambient particulate matter (PM) exposure with various adverse health effects. The oxidative potential of PM has been used to characterize the ability of PM induced oxidative stress. Hydroxyl radical (•OH) is the most destructive radical produced by PM. However, there is currently no high-throughput approach which can rapidly measure PM-induced •OH for a large number of samples with an automated system. This study evaluated four existing mo...

  4. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  5. Samplings of urban particulate matter for mutagenicity assays

    International Nuclear Information System (INIS)

    In the frame of a specific program relating to the evaluation of mutagenic activity of urban particulate matter, an experimental arrangement has been developed to sample aerosuspended particles from the external environment carried indoor by means of a fan. Instrumentation was placed directly in the air flow to minimize particle losses, and consisted of total filter, collecting particles without any size separation; cascade impactor, fractioning urban particulate to obtain separate samples for analyses; an optical device, for real time monitoring of aerosol concentration, temperature and relative humidity sensors. Some of the samples obtained were analysed to investigate: particle morphology, aerosol granulometric distributions, effect of relative humidity on collected particulate, amount of ponderal mass compared with real time optical determinations. The results obtained are reported here, together with some considerations about carbonaceous particles, in urban areas mainly originated from diesel exhausts, their degree of agglomeration and role to vehiculate substances into the human respiratory

  6. Polycyclic aromatic hydrocarbon adsorption on selected solid particulate matter fractions

    Science.gov (United States)

    Bozek, Frantisek; Huzlik, Jiri; Pawelczyk, Adam; Hoza, Ignac; Naplavova, Magdalena; Jedlicka, Jiri

    2016-02-01

    This article is directed to evaluating the proportion of polycyclic aromatic hydrocarbons (PAHs) captured on particulate matter (PM) classified as PM2.5-10 and PM2.5, i.e. particulate matter of aerodynamic diameter 2.5-10 μm and 2.5 μm. During three week-long and one 2-day campaigns, 22 paired air samples were taken in parallel of PM10 and PM2.5 fractions inside the Mrázovka tunnel in Prague, Czech Republic. Following sample preparation, concentrations of individual PAHs were determined using gas chromatography combined with mass spectrometry. Concentrations of individual pairs of each PAH were tested by the nonparametric method using Spearman's rank correlation coefficient. At significance level p detection limit, where increased measurement error can be expected.

  7. Particulate matter formation from photochemical degradation of organophosphorus pesticides

    Science.gov (United States)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    Several experiments were performed in the European Photo-reactor - EUPHORE - for studying aerosol formation from organophosphorus pesticides such as diazinon, chlorpyrifos, chlorpyrifos-methyl and pirimiphos-methyl. The mass concentration yields obtained (Y) were in the range 5 - 44% for the photo-oxidation reactions in the presence and the absence of NOx. These results confirm the importance of studying pesticides as significant precursors of atmospheric particulate matter due to the serious risks associated to them. The studies based on the use of EUPHORE photoreactor provide useful data about atmospheric degradation processes of organophosphorus pesticides to the atmosphere. Knowledge of the specific degradation products, including the formation of secondary particulate matter, could complete the assessment of their potential impact, since the formation of those degradation products plays a significant role in the atmospheric chemistry, global climate change, radiative force, and are related to health effects.

  8. Acute effects of particulate matter on respiratory diseases, symptoms and functions:. epidemiological results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP)

    Science.gov (United States)

    Neuberger, Manfred; Schimek, Michael G.; Horak, Friedrich; Moshammer, Hanns; Kundi, Michael; Frischer, Thomas; Gomiscek, Bostjan; Puxbaum, Hans; Hauck, Helger; Auphep-Team

    To examine hypotheses regarding health effects of particulate matter, we conducted time series studies in Austrian urban and rural areas. Of the pollutants measured, ambient PM 2.5 was most consistently associated with parameters of respiratory health. Time series studies applying semiparametric generalized additive models showed significant increases of respiratory hospital admissions (ICD 490-496) at age 65 and older. The early increase of 5.5% in Vienna at a lag of 2 days in males and of 5.6% per 10 μg/m 3 at a lag of 3 days in females was not observed in a nearby rural area. Another increase of respiratory admissions (mainly COPD) was observed after a lag of 10-11 days. A time series on a panel of 56 healthy preschool children showed a significant impact of the carbonaceous fraction of PM 2.5 on tidal breathing pattern assessed by inductive plethysmography. In repeated oscillometric measurements of respiratory resistance in 164 healthy elementary school children not only immediate responses to fine particulates were found but also latent ones, possibly indicating inflammatory changes in airways. It may be speculated that the improvements of urban air quality prevented measurable effects on respiratory mortality. More sensitive indicators, however, still show acute impairments of respiratory function and health in elderly and children which are associated with fine particulates and subfractions related to motor traffic.

  9. Detecting the ambient neutralino dark matter particles at accelerator

    OpenAIRE

    Feng, Tai-Fu; Li, Xue-Qian; Ma, Wen-Gan; Wang, Jian-Xiong; Zhao, Gong-bo

    2006-01-01

    In this work, we present a new strategy to investigate the possibility of direct detection of the ambient neutralino matter at accelerator. We calculate the cross sections for both elastic and inelastic scattering processes of the dark matter particles with the beam particles at $e^+e^-$ and hadron colliders.

  10. Qualitative and quantitative determination of water in airborne particulate matter

    OpenAIRE

    Canepari, S.; C. Farao; E. Marconi; C. Giovannelli; C. Perrino

    2012-01-01

    This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM). The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C).

    The analytical performance...

  11. Qualitative and quantitative determination of water in airborne particulate matter

    OpenAIRE

    Canepari, S.; C. Farao; E. Marconi; C. Giovannelli; C. Perrino

    2013-01-01

    This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM). The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C). The analytical performance of the method was verif...

  12. Electrically heated particulate matter filter soot control system

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  13. Toward the next generation of air quality monitoring: Particulate Matter

    Science.gov (United States)

    Engel-Cox, Jill; Kim Oanh, Nguyen Thi; van Donkelaar, Aaron; Martin, Randall V.; Zell, Erica

    2013-12-01

    Fine particulate matter is one of the key global pollutants affecting human health. Satellite and ground-based monitoring technologies as well as chemical transport models have advanced significantly in the past 50 years, enabling improved understanding of the sources of fine particles, their chemical composition, and their effect on human and environmental health. The ability of air pollution to travel across country and geographic boundaries makes particulate matter a global problem. However, the variability in monitoring technologies and programs and poor data availability make global comparison difficult. This paper summarizes fine particle monitoring, models that integrate ground-based and satellite-based data, and communications, then recommends steps for policymakers and scientists to take to expand and improve local and global indicators of particulate matter air pollution. One of the key set of recommendations to improving global indicators is to improve data collection by basing particulate matter monitoring design and stakeholder communications on the individual country, its priorities, and its level of development, while at the same time creating global data standards for inter-country comparisons. When there are good national networks that produce consistent quality data that is shared openly, they serve as the foundation for better global understanding through data analysis, modeling, health impact studies, and communication. Additionally, new technologies and systems should be developed to expand personal air quality monitoring and participation of non-specialists in crowd-sourced data collections. Finally, support to the development and improvement of global multi-pollutant indicators of the health and economic effects of air pollution is essential to addressing improvement of air quality around the world.

  14. Quality assessment on airborne particulate matter of k0-INAA

    International Nuclear Information System (INIS)

    The analysis of airborne particulate matter (APM) by k0-NAA was assessed using: BCR reference material (RM) simulated air-filters, synthetic air-filters prepared by spiking blank filters with standard solutions, and real APM filters. k0-INAA is a suitable technique for the analysis of APM, delivering accurate and precise results. However, the quality assessment of APM analysis appears to be a difficult task. (author)

  15. Particulate Matter and Ozone: Remote Sensing and Source Attribution

    OpenAIRE

    Kim, Sungshik

    2015-01-01

    Particulate matter (PM) and tropospheric ozone are air pollutants that are harmful to human health and have broad implications for climate. Despite their importance, there remain large uncertainties related to their sources, evolution in the atmosphere, and impact downwind. In this thesis, I work to address some of these uncertainties through integrated analysis of ground, aircraft, and satellite observations and using both forward and inverse modeling approaches. A new, high-resolution d...

  16. PAH Accessibility in Particulate Matter from Road-Impacted Environments.

    Science.gov (United States)

    Allan, Ian J; O'Connell, Steven G; Meland, Sondre; Bæk, Kine; Grung, Merete; Anderson, Kim A; Ranneklev, Sissel B

    2016-08-01

    Snowmelt, surface runoff, or stormwater releases in urban environments can result in significant discharges of particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) into aquatic environments. Recently, more-specific activities such as road-tunnel washing have been identified as contributing to contaminant load to surface waters. However, knowledge of PAH accessibility in particulate matter (PM) of urban origin that may ultimately be released into urban surface waters is limited. In the present study, we evaluated the accessibility of PAHs associated with seven distinct (suspended) particulate matter samples collected from different urban sources. Laboratory-based infinite sink extractions with silicone rubber (SR) as the extractor phase demonstrated a similar pattern of PAH accessibility for most PM samples. Substantially higher accessible fractions were observed for the less-hydrophobic PAHs (between 40 and 80% of total concentrations) compared with those measured for the most-hydrophobic PAHs (wash waters, first-order desorption rates for PAHs with log Kow > 5.5 were found in line with those commonly found for slowly or very slowly desorbing sediment-associated contaminants. PAHs with log Kow wash waters when surfactants are used. The implications of total and accessible PAH concentrations measured in our urban PM samples are discussed in a context of management of PAH and PM emission to the surrounding aquatic environment. Although we only fully assessed PAHs in this work, further study should consider other contaminants such as OPAHs, which were also detected in all PM samples. PMID:27312518

  17. Spatial statistics of atmospheric particulate matter in China

    Science.gov (United States)

    Gao, Shenghui; Wang, Yangjun; Huang, Yongxiang; Zhou, Quan; Lu, Zhiming; Shi, Xiang; Liu, Yulu

    2016-06-01

    In this paper, the spatial dynamics of the atmospheric particulate matters (resp. PM10 and PM2.5) are studied using turbulence methodologies. It is found experimentally that the spatial correlation function ρ(r) shows a log-law on the mesoscale range, i.e., 50 ≤ r ≤ 500 km, with an experimental scaling exponent β = 0.45. The spatial structure function shows a power-law behavior on the mesoscale range 90 ≤ r ≤ 500 km. The experimental scaling exponent ζ(q) is convex, showing that the intermittent correction is relevant in characterizing the spatial dynamic of particulate matter. The measured singularity spectrum f(α) also shows its multifractal nature. Experimentally, the particulate matter is more intermittent than the passive scalar, which could be partially due to the mesoscale movements of the atmosphere, and also due to local sources, such as local industry activities.

  18. Enhancement in secondary particulate matter production due to mountain trapping

    Science.gov (United States)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be

  19. Ambient Air Quality Assessment With Particular Reference to Particulates in Western Part of Jharia Coalfield, India

    Directory of Open Access Journals (Sweden)

    Gurdeep Singh

    2015-08-01

    Full Text Available India is in the list of fastest growing countries of the world. India's energy needs are also increasing due to population and industrial growth for improving quality of living style. In India, coal is major input infrastructure industries for example Power plants, Steel plants and Cement industries. India’s 52% of primary energy is coal dependent1. 66% of India's power generation depends upon coal production1. Jharia Coalfield (JCF is falling in the Lower Gondwana Coalfields of India. The area of the JCF is about 450 km2. It is important for the major supply of precious coking coal required for steel plants in India. It is located in Dhanbad district of Jharkhand state of India, The latitude is 23° 39' to 23° 48' N and longitude is 86° 11' to 86° 27' E for the Jharia coalfield. Based on environmental parameters, all the 103 mines of BCCL have been grouped under 17 Clusters. A cluster consists of a group of mines with mine lease boundary lying in close vicinity and includes-Operating mines, Abandoned/ closed mines and proposed projects.The focused study area is in the western part of the Jharia coalfield is named as Cluster XV group of mines of BCCL consists of four mines, Kharkharee Colliery (UG, Dharmaband Colliery (UG, Madhuband Colliery (UG and Phularitand Colliery (UG .The present study was carried out with the objective to measure the ambient air quality of the study area with reference to particulate matter (SPM, PM10 & PM2.5. Ambient air monitoring results have shown that the observe air quality were found within the limit prescribed by MoEF / CPCB. It may due to Underground mines as there are pollution causing lesser activities involved in the UG mining process compared to opencast mining. Implementation of Master plan for Jharia coalfields for environmental management has also improve the air quality in the area10,11.

  20. Distribution of particulate organic matter in Rajapur and Vagothan estuarines (west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Tulaskar, A.S.; Sawant, S.S.; Wagh, A.B.

    The distribution of particulate organic carbon (POC), particulate carbohydrates (PCHO) and particulate proteins (PP) in the suspended particulate matter was studied. The POC, PCHO and PP concentrations ranged from 176 to 883 mu g.l/1, 115 to 647 mu...

  1. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  2. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sean H Ling

    2009-06-01

    Full Text Available Sean H Ling, Stephan F van EedenJames Hogg iCAPTURE Centre for Pulmonary and Cardiovascular Research and Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Due to the rapid urbanization of the world population, a better understanding of the detrimental effects of exposure to urban air pollution on chronic lung disease is necessary. Strong epidemiological evidence suggests that exposure to particulate matter (PM air pollution causes exacerbations of pre-existing lung conditions, such as, chronic obstructive pulmonary disease (COPD resulting in increased morbidity and mortality. However, little is known whether a chronic, low-grade exposure to ambient PM can cause the development and progression of COPD. The deposition of PM in the respiratory tract depends predominantly on the size of the particles, with larger particles deposited in the upper and larger airways and smaller particles penetrating deep into the alveolar spaces. Ineffective clearance of this PM from the airways could cause particle retention in lung tissues, resulting in a chronic, low-grade inflammatory response that may be pathogenetically important in both the exacerbation, as well as, the progression of lung disease. This review focuses on the adverse effects of exposure to ambient PM air pollution on the exacerbation, progression, and development of COPD.Keywords: chronic obstructive pulmonary disease, particulate matter, air pollution, alveolar macrophage

  3. Tracking Petroleum Refinery Emission Events Using Lanthanum and Lanthanides as Elemental Markers for Fine Particulate Matter

    Science.gov (United States)

    Kulkarni, P.; Chellam, S.; Fraser, M. P.

    2007-12-01

    This presentation reports the development and application of an analytical method to quantify the rare earth elements (REEs) in atmospheric particulate matter and emissions of catalyst material from the petroleum refining industry. Inductively coupled plasma - mass spectrometry following high temperature/high pressure microwave digestion has been used to study the REE composition of several fresh and spent catalysts used in fluidized-bed catalytic cracking (FCC) units in petroleum refineries as well as in ambient atmospheric fine particulate matter collected in Houston, TX. The results show that the routine emissions from local FCC units in Houston contribute a constant and low amount to ambient PM2.5 of ~0.1 micrograms per cubic meter. However, a significant (33 - 106 fold) increase in the contributions of FCC emissions to PM2.5 is quantified during an upset emission event compared with background levels associated with routine operation. The impact of emissions from the local refinery that reported the emission event was tracked to a site approximately 50 km downwind from the source, illustrating the potential exposure of humans over a large geographical area through the long-range transport of atmospheric fine particles as well as the power of elemental signatures to understand the sources of fine particles.

  4. Source apportionment studies on particulate matter in Beijing/China

    Science.gov (United States)

    Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.

    2013-05-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and

  5. Spatial and Seasonal Variations of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Particulate Matter (PM10, PM2.5) in Three Mega-Cities in China and Identification of Major Contributing Source Types.

    Science.gov (United States)

    Zhang, Linlin; Chen, Rui; Lv, Jungang

    2016-06-01

    Beijing, is the political, economic and cultural center of China. Tianjin and Shijiazhuang, located close to Beijing are also two mega-cities with huge population. The rapid economic development in the three cities in the last decades has caused severe air pollution problems, especially airborne PAHs pollution, in both gaseous and particulate phases, which has resulted in considerable harm to the health of local residents. In this study, a total of 671 air samples were collected in the three cities and reference site, and four national air quality background sites. Concentrations and seasonal variations were discussed to describe the pollution status and identify possible sources. The results showed that concentrations of BaP, a PAH that serves as an indicator of PAH pollution, exceeded the Chinese national standard by 4-12 times. PAH concentrations varied significantly in different seasons, with similar trends in the three cities. The toxic equivalents quantity (i.e., quantity of total PAHs with an equivalent toxicity to BaP) ranged from 13.35 to 22.54 ng/m(3) during the central heating period of winter and spring. These concentrations greatly exceeded the Chinese national standards for 24-h average (2.5 ng/m(3)) and annual average (1.0 ng/m(3)) concentrations of BaP. Two ratios that are indicative of PAH source, Pyr/BaP and BaP/BghiP, revealed that high percentages of the PAH pollution were contributed by coal combustion. PMID:27107589

  6. Oxidant production from source-oriented particulate matter – Part 1: Oxidative potential using the dithiothreitol (DTT) assay

    OpenAIRE

    J. G. Charrier; Richards-Henderson, N. K.; K. J. Bein; McFall, A. S.; Wexler, A. S.; Anastasio, C.

    2015-01-01

    Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM) are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these end points are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species in the body, possib...

  7. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    The aim of this project is to search for respiratory system particular aggressors to which workers are submitted in their labouring activity. The work plan under the current IAEA contract comprise a prospective study to identify particulate matter deposited in the human respiratory ducts and lung tissue and workers respiratory health status survey at a steel plant, Siderurgia Nacional (SN). So far, the selection of areas of interest at SN, workers exposed, airborne particulate monitoring sites according to the periodicity of labouring cycles, and the beginning of workers medical survey have been achieved and/or initiated. The SN selected area, where steel is processed and steel casting is achieved, involve approximately 80 workers, most of them working at that location for more than 15 years. Blood elemental content data determined by PIXE and INAA and a preliminary health status evaluation from 32 of the 80 workers included in this survey are presented and discussed. (author)

  8. Simultaneously catalytic removal of NOx and particulate matter on diesel particulate filter

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The simultaneous removal of NOx and particulate matter (PM) exhausted from diesel engine was studied with a diesel particulate filter (DPF) on which a mixed metal oxide catalyst, Cu0.95K0.05Fe2O4 was loaded. The NOx reduction was observed in the same temperature range of the CO2 formation, implying the occurrence of the simultaneous removal of NOx and PM in an oxidizing atmosphere. It was shown that SOF and soot in PM are attributed to the reduction of NOx at lower and higher temperatures, respectively. The oxidation of PM was enhanced by the coexistence of NO and O2. The ignition and exhaustion temperatures of PM decrease as the order NO>O2>NO+O2. This is a combined process of PM trapping as well as the catalytic reactions of soot oxidation and NOx reduction, promising the most desirable after-treatment of diesel exhausts.

  9. A study to reduce DPM(Diesel Particulate Matter) emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research commenced in 1994 for the purpose of providing safety and environmental measures of underground mines where the mobile diesel equipment are operating. In this last research year, research on filtering of DPM(diesel particulate matter) has been carried out. Through the research, it was known that water scrubber is only one practical way to reduce DPM emission as of now. There are several kinds of the sophisticated DPM filters, but it is not practical yet to be used in underground equipment due to the many adverse effects of the devices such as tremendous increase of SOx, NOx and back pressure etc. (author). 1 tab., 3 figs.

  10. Qualitative and quantitative determination of water in airborne particulate matter

    OpenAIRE

    Canepari, S.; C. Farao; E. Marconi; C. Giovannelli; C. Perrino

    2013-01-01

    This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM). The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C).

    The analytical performance of the method was verified ...

  11. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  12. Low exhaust temperature electrically heated particulate matter filter system

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  13. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  14. Size-resolved particulate matter composition in Beijing during pollution and dust events

    OpenAIRE

    Dillner, Ann M.; Schauer, James J; Zhang, Yuanhang; Zeng, Limin; Cass, Glen R.

    2006-01-01

    Each spring, Beijing, China, experiences dust storms which cause high particulate matter concentrations. Beijing also has many anthropogenic sources of particulate matter including the large Capitol Steel Company. On the basis of measured size segregated, speciated particulate matter concentrations, and calculated back trajectories, three types of pollution events occurred in Beijing from 22 March to 1 April 2001: dust storms, urban pollution events, and an industrial pollution event. For eac...

  15. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters

    International Nuclear Information System (INIS)

    Particulate organic matter (POM) is a key organic matter fraction which can influence soil fertility. Its interactions with hydrophobic organic pollutants (HOCs) have not been characterized and the mechanisms of retention of HOCs by POM remain unclear. In the present study, sorption behaviors of polycyclic aromatic hydrocarbons (PAHs) naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by POMs separated from different soils were examined and the POMs were characterized by elemental analysis, solid state 13C NMR, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that POMs were mainly composed of aliphatic components with high polarity. The different original POMs showed similar chemical composition and configuration. Sorption behaviors of PAHs indicated that there was no significant difference in sorption capacity among the POMs. Sorption of NAP and PHE by POMs displayed a nonlinear isotherm, while sorption of PYR yielded a linear isotherm. No significant hysteresis and ionic strength effect were observed for PAH desorption from the POMs.

  16. Photoinduced particulate matter in a parenteral formulation for bisnafide, an experimental antitumor agent.

    Science.gov (United States)

    Rubino, J T; Chan, L L; Walker, J T; Segretario, J; Everlof, J G; Hussain, M A

    1999-08-01

    This paper assesses the cause of particulate formation in vials of the experimental antitumor agent bisnafide and investigates pharmaceutical techniques to reduce the number of particulates in the product. Solution preparation and particulate isolation were performed under Class 100 laminar air flow. Reversed-phase HPLC and infrared microscopy were used to characterize drug and isolated particulate matter, whereas a Hiac particle counter was used to quantify the particulate matter. Particulate matter was observed following agitation of the drug solutions and was found to be associated with specific lots of drug substance. HPLC of the isolated particulate matter indicated that the particulates consisted largely of bisnafide and impurities that were identified as the products of photodegradation, confirmed to be the result of the photolytic cleavage of bisnafide to form a poorly soluble aldehyde. The aldehyde may, in turn, interact with bisnafide molecules to form the particulate matter as suggested by the observed pH-dependent reversibility of the particulate phenomenon. The particulate matter could be reduced by protecting solutions of bisnafide from light during chemical synthesis and production of the dosage form and, alternatively, by reducing the solution pH to 3.0 or less, addition of surfactants below their critical micelle concentration, and removal of impurities by froth flotation of the bisnafide solutions. PMID:10434290

  17. Urban particulate matter pollution: a tale of five cities.

    Science.gov (United States)

    Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A

    2016-07-18

    Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment. PMID:27310460

  18. Particulate matter analysis at elementary schools in Curitiba, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Avigo, Devanir; Godoi, Ana F.L.; Janissek, Paulo R.; Godoi, Ricardo H.M. [Positivo University, Curitiba (Brazil); Makarovska, Yaroslava; Krata, Agnieszka; Grieken, Rene van [University of Antwerp, Department of Chemistry, Antwerp (Belgium); Potgieter-Vermaak, Sanja [University of the Witwatersrand, Molecular Science Institute, School of Chemistry, Wits (South Africa); Alfoldy, Balint [KFKI Atomic Energy Research Institute, Health Physics Department, Budapest (Hungary)

    2008-06-15

    The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels. (orig.)

  19. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Science.gov (United States)

    2010-07-01

    ... 40 CFR Part 53 (Reference and Equivalent Methods). This FRM specifically applies to the analysis of..., Ann Arbor Science Publishers Inc., 1977. 5. Code of Federal Regulations (CFR) 40, Part 136, Appendix B... of Lead in Particulate Matter as PM10 Collected From Ambient Air Q Appendix Q to Part 50...

  20. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2013-02-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST Reference Materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the Reference Material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  1. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2012-10-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST reference materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the reference material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  2. Teale National Ambient Air Quality Standards for particulate matter

    Data.gov (United States)

    California Department of Resources — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state...

  3. Large scale air monitoring: lichen vs. air particulate matter analysis.

    Science.gov (United States)

    Rossbach, M; Jayasekera, R; Kniewald, G; Thang, N H

    1999-07-15

    Biological indicator organisms have been widely used for monitoring and banking purposes for many years. Although the complexity of the interactions between organisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and particular matrix characteristics of air particulate matter as a prerequisite for global monitoring of air pollution is discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300-500 g each) from a number of hotels during a period of 3-4 months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per 3 months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichens such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Hg and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cz, Zn and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). PMID:10474261

  4. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP) that contained commitments, from the Director...

  5. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  6. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a revision to the State Implementation Plan (SIP) that contained commitments for implementing all of...

  7. Development of asthmatic inflammation in mice following early-life exposure to ambient environmental particulates and chronic allergen challenge

    Directory of Open Access Journals (Sweden)

    Cristan Herbert

    2013-03-01

    Childhood exposure to environmental particulates increases the risk of development of asthma. The underlying mechanisms might include oxidant injury to airway epithelial cells (AEC. We investigated the ability of ambient environmental particulates to contribute to sensitization via the airways, and thus to the pathogenesis of childhood asthma. To do so, we devised a novel model in which weanling BALB/c mice were exposed to both ambient particulate pollutants and ovalbumin for sensitization via the respiratory tract, followed by chronic inhalational challenge with a low mass concentration of the antigen. We also examined whether these particulates caused oxidant injury and activation of AEC in vitro. Furthermore, we assessed the potential benefit of minimizing oxidative stress to AEC through the period of sensitization and challenge by dietary intervention. We found that characteristic features of asthmatic inflammation developed only in animals that received particulates at the same time as respiratory sensitization, and were then chronically challenged with allergen. However, these animals did not develop airway hyper-responsiveness. Ambient particulates induced epithelial injury in vitro, with evidence of oxidative stress and production of both pro-inflammatory cytokines and Th2-promoting cytokines such as IL-33. Treatment of AEC with an antioxidant in vitro inhibited the pro-inflammatory cytokine response to these particulates. Ambient particulates also induced pro-inflammatory cytokine expression following administration to weanling mice. However, early-life dietary supplementation with antioxidants did not prevent the development of an asthmatic inflammatory response in animals that were exposed to particulates, sensitized and challenged. We conclude that injury to airway epithelium by ambient environmental particulates in early life is capable of promoting the development of an asthmatic inflammatory response in sensitized and antigen-challenged mice. These

  8. Particulate matter and health - From air to human lungs

    International Nuclear Information System (INIS)

    This work reports on the environmental influence in the respiratory health of workers exposed to metal pollutants in their labour activities (metal processing industry). The clinical, respiratory functional and morphological changes were related with blood elemental concentrations in order to evaluate the influence of exposure to inhaled metal airborne particles. In addition, the deposition of particulate matter in the respiratory system was assessed in humans and in an animal model to infer possible mechanisms of interaction of metals with the respiratory tissue. The respiratory affections encountered for the exposure group through clinical, functional and morphological data are related with the number of years of exposure and with high levels of Zn in blood. Methodologies applied have into account the quality of results produced. Interlaboratory checks were carried out using certified reference materials and standard procedures were initiated to assure traceability in chemical analysis of biological matrices using analytical techniques based on X ray spectrometry. (author)

  9. Characterization of coarse particulate matter in school gyms

    International Nuclear Information System (INIS)

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM10-2.5 and PM2.5-1.0) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM10-2.5 4.1-7.4 μg m-3 and PM2.5-1.0 2.0-3.3 μg m-3) than indoors (average PM10-2.5 13.6-26.7 μg m-3 and PM2.5-1.0 3.7-7.4 μg m-3). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM10-2.5 and 1.4-4.8 for the PM2.5-1.0 values. Under extreme conditions, the I/O ratios reached 180 (PM10-2.5) and 19.1 (PM2.5-1.0). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate

  10. Fine particulate matter in acute exacerbation of COPD.

    Science.gov (United States)

    Ni, Lei; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden. PMID:26557095

  11. Some improvements in air particulate matter analysis by INAA

    Science.gov (United States)

    Farinha, M. M.; Freitas, M. C.; Almeida, S. M.; Reis, M. A.

    2001-06-01

    At ITN, analysis of air particulate matter has been made since 1999, stimulated by a contract for air quality monitoring of an urban waste incinerator. Samples are analysed by Instrumental Neutron Activation Analysis (INAA) and Proton Induced X-ray Emission (PIXE). Heavy metals and other elements are determined. The procedures for filter analysis have recently been changed, leading to the present comparison between the old and the new procedures. For INAA, in this new procedure we look for the 336.2 keV gamma line of 115mIn in addition to the gamma-ray line of 527.9 keV used for the detection of 115Cd. Cd evaluations obtained by both gamma lines are compared and detection limits for Cd are presented. Preliminary results for Cd, As, Ni, and Hg are shown for a region in the north of Lisbon.

  12. Some improvements in air particulate matter analysis by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Farinha, M.M. E-mail: mmanuelf@itn1.itn.pt; Freitas, M.C.; Almeida, S.M.; Reis, M.A

    2001-06-01

    At ITN/ analysis of air particulate matter has been made since 1999/ stimulated by a contract for air quality monitoring of an urban waste incinerator. Samples are analysed by Instrumental Neutron Activation Analysis (INAA) and Proton Induced X-ray Emission (PIXE). Heavy metals and other elements are determined. The procedures for filter analysis have recently been changed/ leading to the present comparison between the old and the new procedures. For INAA/ in this new procedure we look for the 336.2 keV gamma line of {sup 115m}In in addition to the gamma-ray line of 527.9 keV used for the detection of {sup 115}Cd. Cd evaluations obtained by both gamma lines are compared and detection limits for Cd are presented. Preliminary results for Cd/ As/ Ni/ and Hg are shown for a region in the north of Lisbon.

  13. Fine particulate matter in acute exacerbation of COPD

    Directory of Open Access Journals (Sweden)

    Lei eNi

    2015-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress, immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden.

  14. Inhibition of intercellular communication by airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Heussen, G.A.H. (Landbouwhogeschool Wageningen (Netherlands). Dept. of Toxicology)

    1991-04-01

    To investigate the inhibition of gap junction mediated intercellular communication (IC) by extracts of airborne particulate matter (APM), V79 cells were incubated with extracts of APM and subsequently microinjected with the fluorescent dye Lucifer Yellow, after which the number of fluorescent (= communicating) cells was determined. To compare inhibitory effects on IC with mutagenicity, APM was also tested in the Salmonella microsome assay. Six different extracts were tested, two outdoor extracts representing a heavily polluted and a relatively clean sample, and four indoor extracts, taken either in livingrooms with or without wood combustion in an open fire place, or in a room with or without cigarette smoking. Non-cytotoxic doses of outdoor and indoor APM inhibited IC in V79 cells in dose- and time-dependent manner. Mutagenicity data and IC data were correlated. These results suggest that APM has tumor promoter activity in addition to mutagenic activity. (orig.).

  15. Transport of airborne particulate matters originating from Mentougou, Beijing, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study, a coupled regional air quality modeling system is applied to investigate the time spatial variations in airborne particulate matters (PM10), originating from Mentougou to Beijing municipal area in the period of April 1-7, 2004, and the influences of complex terrain and meteorological conditions upon boundary layer structure and PMio concentration distributions. An intercomparison of the performance with CALPUFF against the observed data is presented and an examination of scatter plots is provided. The statistics show that the correlation coefficient and STD between the modeled and observed data are 0.86 and 0.03, respectively. Analysis of model results illustrates that the pollutants emitted from Mentougou can be transported to Beijing municipal area along certain transport pathways, and PMio concentration distributions show heterogeneity characteristics. Contributions of the Mentougou sources to the PMio concentrations in Beijing municipal area are up to 0.1-15 μg/m3.

  16. Simulations of dispersion and deposition of coarse particulate matter

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    In order to study the dispersion and deposition of coarse anthropogenic particulate matter (PMc, aerodynamic diameters> 10 mm), a FORTRAN simulator based on the numerical integrator of Bulirsch and Stoer has been developed. It calculates trajectories of particles of several shapes released into the atmosphere under very general conditions. This first version, fully three-dimensional, models the meteorology under neutral stability conditions. The simulations of such pollutants are also important because the standard software (usually originating in the United States Environmental Protection Agency-EPA-) describe only the behavior of PM10 (diameter less than 10 mm). Bulirsch and Stoer integrator of widespread use in astrophysics, is also very fast and accurate for this type of simulations. We present 2D and 3D trajectories in physical space and discuss the final deposition in function of various parameters. PMc simulations results in the range of 50-100 mm and densities of 5.5 g cm-3 emitted from chimneys, indi...

  17. Interaction between ozone and airborne particulate matter in office air

    DEFF Research Database (Denmark)

    Mølhave, Lars; Kjærgaard, Søren K.; Sigsgaard, Torben;

    2005-01-01

    This study investigated the hypotheses that humans are affected by air pollution caused by ozone and house dust, that the effect of simultaneous exposure to ozone and dust in the air is larger than the effect of these two pollutants individually, and that the effects can be measured as release of...... cytokines and changes of the respiratory function. Experimental exposures of eight atopic but otherwise healthy subjects were performed in a climate chamber under controlled conditions. The three controlled exposures were about 75 microg/m3 total suspended particulate matter, 0.3 p.p.m. ozone, and the...... combination of these. The exposure duration was 3 h. The outcome measures were interleukins and cells in nasal lavages (NAL), respiratory function, bronchial metacholine responsiveness, rhinometry symptoms and general well-being in a questionnaire and time course of general irritation on a visual analogue...

  18. High exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  19. Free amino acids in atmospheric particulate matter of Venice, Italy

    Science.gov (United States)

    Barbaro, Elena; Zangrando, Roberta; Moret, Ivo; Barbante, Carlo; Cescon, Paolo; Gambaro, Andrea

    2011-09-01

    The concentrations of free amino acids were determined in atmospheric particulate matter from the city of Venice (Italy) in order to better understand their origin. The analysis of aerosol samples was carried out via high-performance liquid chromatography coupled to a triple quadrupole tandem mass spectrometric detector (HPLC/ESI-MS/MS). The internal standard method was used and the analytical procedure was validated by evaluating the trueness, the precision, the recovery, the detection and the quantification limits. The particulate matter was collected using quartz fiber filters and extracted in methanol; after filtration the extract was directly analyzed. Forty samples were collected from April to October 2007 and the average concentrations of free amino acids in the aerosol were: alanine 35.6 pmol m -3, aspartic acid 31.1 pmol m -3, glycine 30.1 pmol m -3, glutamic acid 32.5 pmol m -3, isoleucine 2.4 pmol m -3, leucine 2.7 pmol m -3, methionine, cystine and 3-hydroxy-proline below the limit of detection, phenylalanine 2.8 pmol m -3, proline 43.3 pmol m -3, serine 8.6 pmol m -3, threonine 2.8 pmol m -3, tyrosine 1.7 pmolm -3, valine 3.8 pmol m -3, asparagine 70.2 pmol m -3, glutamine 38.0 pmol m -3, 4-hydroxy-proline 2.5 pmol m -3, methionine sulfoxide 1.1 pmol m -3, and methionine sulfone 0.1 pmol m -3. The total average concentration of these free amino acids in aerosol samples of Venice Lagoon was 334 pmol m -3. The temporal evolution and multivariate analysis indicated the photochemical origin of 4-hydroxy-proline and methionine sulfoxide and for other compounds an origin further away from the site of sampling, presumably reflecting transport from terrestrial sources.

  20. Some improvements on air particulate matter analysis by INAA

    International Nuclear Information System (INIS)

    At ITN analysis of air particulate matter is being made since 1994. Use is being made of PM10 Gent samplers with separation in two fractions: E.A.D. (equivalent aerodynamic diameter) < 2.5 μm and 2.5 μm < E.A.D. <10 μm. Costar-Nuclepore polycarbonate filters are used. Filters are routinely analysed by neutron activation analysis (INAA) and proton induced X-ray emission (PIXE). Heavy metals and other elements are determined. The procedure used consists in cutting the filter in three parts: one half for INAA, one quarter for PIXE and one quarter left for other eventual uses. For INAA, the half filter was rolled up, irradiated in pure polyethylene container and gamma measurement made including the irradiated polyethylene container. Blanks consisting of polyethylene container + half filter (clean) were also irradiated for impurity content correction. For some elements correction was quite relevant; therefore decision was taken is irradiating the rolled filter within a tin foil which after irradiation was removed and the half filter put into a polyethylene container not-irradiated. In this work comparison is made between the two situations, showing advantages and disadvantages of both procedures. For INAA, Cd-115 was used for Cd determination and very seldom the 527.9 keV gamma line was visible. Now we also look for the 336.2 keV gamma line of In-115m. In this work Cd results obtained by both gamma lines are shown and compared and detection limits for Cd are presented. Taking into account the EU directive 96/62/CE, which will demand very soon determination of Cd, As, Ni, and Hg, some results on these elements in air particulate matter collected in the neighbourhood of Lisbon are shown. (author)

  1. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark

    DEFF Research Database (Denmark)

    Feilberg, A.; Poulsen, M.W.B.; Nielsen, T.;

    2001-01-01

    The occurrence of selected nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) associated with atmospheric particulate matter has been investigated at an urban site and at a semi-rural site. For this purpose an analysis method based on gas chromatography and tandem ion trap mass spectrometry has...... been developed and applied. The nitro-PAK levels have been compared with levels of other air pollutants including unsubstituted PAHs, inorganic gases and particulate matter, as well as with meteorological parameters. Correlations and concentration ratios suggest that the dominant source of 9...... contribution of the OH initiated formation is estimated to be in the range of 90-100%. However, under wintertime conditions with cloudy weather implying low OH radical production, NO3 radicals may also be important as initiators of nitro-PAH formation. Samples influenced by transport of polluted air masses...

  2. Assessment of Population and Microenvironmental Exposure to Fine Particulate Matter (PM2.5)

    Science.gov (United States)

    Jiao, Wan

    A positive relationship exists between fine particulate matter (PM 2.5) exposure and adverse health effects. PM2.5 concentration-response functions used in the quantitative risk assessment were based on findings from human epidemiological studies that relied on areawide ambient concentrations as surrogate for actual ambient exposure, which cannot capture the spatial and temporal variability in human exposures. The goal of the study is to assess inter-individual, geographic and seasonal variability in population exposures to inform the interpretation of available epidemiological studies, and to improve the understanding of how exposure-related factors in important exposure microenvironments contribute to the variability in individual PM2.5 exposure. Typically, the largest percentage of time in which an individual is exposed to PM2.5 of ambient origin occurs in indoor residence, and the highest ambient PM2.5 concentrations occur in transportation microenvironments because of the proximity to on-road traffic emissions. Therefore, indoor residence and traffic-related transportation microenvironments were selected for further assessment in the study. Population distributions of individual daily PM2.5 exposures were estimated for the selected regions and seasons using the Stochastic Human Exposure and Dose Simulation Model for Particulate Matter (SHEDS-PM). For the indoor residence, the current practice by assuming the entire residence to be one large single zone for calculating the indoor residential PM 2.5 concentration was evaluated by applying an indoor air quality model, RISK, to compare indoor PM2.5 concentrations between single-zone and multi-zone scenarios. For the transportation microenvironments, one field data collection focused on in-vehicle microenvironment and was conducted to quantify the variability in the in-vehicle PM2.5 concentration with respect to the outside vehicle concentration for a wide range of conditions that affect intra-vehicle variability

  3. Development of methods for the speciation of metals in atmospheric particulate matter

    Science.gov (United States)

    Majestic, Brian J.

    2007-12-01

    This study focuses on advancing methods to measure and speciate trace-elements in atmospheric particulate matter (PM) to support human exposure and health studies. Methods were developed to measure Fe(II) and Fe(III) in PM samples using samplers collecting daily average particulate matter samples and personal exposure samples. Low-cost wet-chemical methods were also developed to measure the oxidation state of leachable iron, chromium and manganese present in low-volume PM samples. In addition, a study was conducted to determine if metals collected by different personal exposure samplers currently used in exposure and health studies were comparable. Results from the intercomparison study between co-located personal and fixed-site ambient samplers showed that different personal sampler designs display biases that are largest for metals predominating in the super-micron fraction. Using one consistent personal exposure sampler, a pilot study was conducted to examine trace-metal concentrations in personal exposure samples from individuals residing in an assisted-living home. These results were compared to ambient outdoor and fixed-indoor concentrations, and generally, outdoor > indoor > personal exposure concentrations. The pilot study demonstrated that adequate tools exist to measure trace-element exposures under real-world conditions. Using the methods developed in the study, labile Fe(II) and Fe(III) as well as total soluble manganese and soluble oxidized manganese from atmospheric PM were routinely detected in ambient and personal exposure samples. Samples extracted in a variety of environmentally and biologically relevant fluids showed that leachable iron and manganese strongly depends on the extractant. Atmospheric samples from a residential location in Toronto (which uses the fuel additive, MMT) showed that a significant fraction of oxidized labile manganese is present in the PM2.5 fraction, in contrast to US cities that do not use MMT. Both the wet-chemical and

  4. Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA's Particulate Matter Supersites Program and related studies.

    Science.gov (United States)

    Solomon, Paul A; Sioutas, Constantinos

    2008-02-01

    The U.S. Environmental Protection Agency (EPA) established the Particulate Matter (PM) Supersites Program to provide key stakeholders (government and private sector) with significantly improved information needed to develop effective and efficient strategies for reducing PM on urban and regional scales. All Supersites projects developed and evaluated methods and instruments, and significant advances have been made and applied within these programs to yield new insights to our understanding of PM accumulation in air as well as improved source-receptor relationships. The tested methods include a variety of continuous and semicontinuous instruments typically with a time resolution of an hour or less. These methods often overcome many of the limitations associated with measuring atmospheric PM mass concentrations by daily filter-based methods (e.g., potential positive or negative sampling artifacts). Semicontinuous coarse and ultrafine mass measurement methods also were developed and evaluated. Other semicontinuous monitors tested measured the major components of PM such as nitrate, sulfate, ammonium, organic and elemental carbon, trace elements, and water content of the aerosol as well as methods for other physical properties of PM, such as number concentration, size distribution, and particle density. Particle mass spectrometers, although unlikely to be used in national routine monitoring networks in the foreseeable future because of their complex technical requirements and cost, are mentioned here because of the wealth of new information they provide on the size-resolved chemical composition of atmospheric particles on a near continuous basis. Particle mass spectrometers likely represent the greatest advancement in PM measurement technology during the last decade. The improvements in time resolution achieved by the reported semicontinuous methods have proven to be especially useful in characterizing ambient PM, and are becoming essential in allowing scientists to

  5. 40 CFR Table 2 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits

    Science.gov (United States)

    2010-07-01

    ... emission limit for particulate matter. 2. Fabric filter control a. Install and operate a bag leak detection... Process Heaters With Particulate Matter Emission Limits 2 Table 2 to Subpart DDDDD of Part 63 Protection... Heaters With Particulate Matter Emission Limits As stated in § 63.7500, you must comply with...

  6. Effects of ambient air particulate exposure on blood-gas barrier permeability and lung function

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Mortensen, Jann; Møller, Peter;

    2009-01-01

    Particulate air pollution is associated with increased risk of pulmonary diseases and detrimental outcomes related to the cardiovascular system, including altered vessel functions. This study's objective was too evaluate the effects of ambient particle exposure on the blood-gas permeability, lung...... effect on the concentration of CC16 in plasma and urine or on the static and dynamic volumes or ventilation distribution of the lungs. The study thus demonstrates increased permeability of the alveolar blood-gas barrier following moderate exercise, whereas exposure to ambient levels of urban air.......5-15.8 microg/m(3) PM(10-2.5)) or filtered (91-542 particles/cm(3)) air collected above a busy street. The clearance rate of aerosolized (99m)Tc-labeled diethylenetriamine pentaacetic acid ((99m)Tc-DTPA) was measured as an index for the alveolar epithelial membrane integrity and permeability of the lung blood...

  7. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress

    Directory of Open Access Journals (Sweden)

    Nel Andre E

    2009-09-01

    Full Text Available Abstract Air Pollution has been associated with significant adverse health effects leading to increased morbidity and mortality. Cumulative epidemiological and experimental data have shown that exposure to air pollutants lead to increased cardiovascular ischemic events and enhanced atherosclerosis. It appears that these associations are much stronger with the air particulate matter (PM component and that in urban areas, the smaller particles could be more pathogenic, as a result of their greater propensity to induce systemic prooxidant and proinflammatory effects. Much is still unknown about the toxicology of ambient particulates as well as the pathogenic mechanisms responsible for the induction of adverse cardiovascular health effects. It is expected that better understanding of these effects will have large implications and may lead to the formulation and implementation of new regulatory policies. Indeed, we have found that ultrafine particles ( Extensive epidemiological evidence supports the association of air pollution with adverse health effects 123. It is increasingly being recognized that such effects lead to enhanced morbidity and mortality, mostly due to exacerbation of cardiovascular diseases and predominantly those of ischemic character 4. Indeed, in addition to the classical risk factors such as serum lipids, smoking, hypertension, aging, gender, family history, physical inactivity and diet, recent data have implicated air pollution as an important additional risk factor for atherosclerosis. This has been the subject of extensive reviews 56 and a consensus statement from the American Heart Association 7. This article reviews the supporting epidemiological and animal data, possible pathogenic mechanisms and future perspectives.

  8. Particulate matter concentrations and emissions in rabbit farms

    Directory of Open Access Journals (Sweden)

    Elisa Adell

    2012-04-01

    Full Text Available The extent of the potential health hazards of particulate matter (PM inside rabbit farms and the magnitude of emission levels to the outside environment are still unknown, as data on PM concentrations and emissions in and from such buildings is scarce.  The purpose of this study was to quantify airborne PM10 and PM2.5 concentrations and emissions on two rabbit farms in Mediterranean conditions and identify the main factors related with farm activities influencing PM generation.  Concentrations of PM10 and PM2.5 were determined continuously using a tapered element oscillating microbalance (TEOM in one farm with fattening rabbits and one reproductive doe farm in autumn.  At the same time as PM sampling, the time and type of human farm activity being performed was recorded. Additionally, temperature, relative humidity and ventilation rate were recorded continuously.  Emissions were calculated using a mass balance on each farm.  Results showed PM concentrations in rabbit farms are low compared with poultry and pig farms.  Average PM10 concentrations were 0.082±0.059 mg/m3 (fattening rabbits, and 0.048 ±0.058 mg/m3 (reproductive does. Average PM2.5 concentrations were 0.012±0.016 mg/m3 (fattening rabbits, and 0.012±0.035 mg/m3 (reproductive does. Particulate matter concentrations were significantly influenced by the type of human farm activity carried out in the building rather than by animal activity.  The main PM-generating activity on the fattening rabbit farm was sweeping, and the major PM-generating activity in reproductive does was sweeping and burning hair from the cages.  Average PM10 emissions were 5.987±6.144 mg/place/day (fattening rabbits, and 14.9±31.5 mg/place/day (reproductive does.  Average PM2.5 emissions were 0.20±1.26 mg/place/day (fattening rabbits, and 2.83±19.54 mg/place/day (reproductive does.  Emission results indicate that rabbit farms can be considered relevant point sources of PM emissions, comparable to

  9. Polycyclic aromatic hydrocarbons in the airborne particulate matter at a location 40 km north of Bangkok, Thailand

    Science.gov (United States)

    Kim Oanh, N. T.; Bætz Reutergårdh, L.; Dung, N. Tr.; Yu, M.-H.; Yao, W.-X.; Co, H. X.

    Total suspended particulate matter in ambient air was sampled by high-volume samplers at four sites at the Asian Institute of Technology campus, west of the Phahonyothin Road, Phathumthani Province, 40 km North of Bangkok, Thailand. The concentrations of 18 polycyclic aromatic hydrocarbons (PAH), were measured by gas chromatography with flame ionisation and/or liquid chromatography with fluorescence detection. The PAH profile with relatively high concentrations of benzo(ghi)perylene and coronene, decreasing with the distance from the road, suggested a substantial contribution from the traffic. The concentrations in the core of the campus were in the same range as those reported for residential areas in the Bangkok Metropolitan.

  10. Fine Particulate Matter and Risk of Preterm Birth in Connecticut in 2000–2006: A Longitudinal Study

    OpenAIRE

    Pereira, Gavin; Belanger, Kathleen; Ebisu, Keita; Bell, Michelle L

    2013-01-01

    Several studies have examined associations between particulate matter with aerodynamic diameter of 2.5 µm or less (PM2.5) and preterm birth, but it is uncertain whether results were affected by individual predispositions (e.g., genetic factors, social conditions) that might vary considerably between women. We tested the hypothesis that a woman is at greater risk of preterm delivery when she has had elevated exposure to ambient PM2.5 during a pregnancy than when she has not by comparing pregna...

  11. Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells

    OpenAIRE

    Longfei Guan; Wei Rui; Ru Bai; Wei Zhang; Fang Zhang; Wenjun Ding

    2016-01-01

    The aim of the present study was to investigate the effects of size-fractionated (i.e., <1; 1–2.5, and 2.5–10 µm in an aerodynamic diameter) ambient particulate matter (PM) on reactive oxygen species (ROS) activity and cell viability in human bronchial epithelial cells (BEAS-2B). The PM samples were collected from an urban site (uPM) in Beijing and a steel factory site (sPM) in Anshan, China, from March 2013 to December 2014. Metal elements, organic and elemental carbon, and water-soluble ...

  12. Respiratory diseases in preschool children in the city of Niš exposed to suspended particulates and carbon monoxide from ambient air

    OpenAIRE

    Đorđević Amelija; Ristić Goran; Živković Nenad; Todorović Branimir; Hristov Slađan; Milošević Lidija

    2016-01-01

    Background/Aim. Analysis of air quality in Serbia indicates that the city of Niš belongs to a group of cities characterized by the third category of air quality (excessive air pollution). The aim of the study was to analyze the degree of causality between ambient air quality affected by particulate matter of 10 μm (PM10) and carbon monoxide (CO) and the incidence of respiratory diseases in preschool children in the city of Niš. Methods. We quantified the in...

  13. The particulate matter dispersion studies from a local palm oil mill

    International Nuclear Information System (INIS)

    The appearance of industrial emissions and the degradation of scenic vistas are two characteristics of air pollution that humans object. Reduction in visibility suggests worsening pollution levels. The emissions from mobile source and stationary source are the major source of air pollutions contribution in Malaysia. Suspended particulate matter (SPM). The consequence of increasing the particulate concentrations, the particulate matter dissolves with vapour and grows into droplets when the humidity exceeds approximately 70% and causing opaque situation know as haze. This work focuses on the dispersion particulate matter from palm oil mill. The data obtained serves the purpose of modeling the transport of particulate matter for obtaining permits and prevention of significant deterioration (PSD) to the environment. Gaussian Plume Model from a point source, subject to various atmospheric conditions is used to calculate particulate matter concentration then display the distribution of plume dispersion using geographic information system (GIS). The calculated particulate matter concentration is evaluated using Transilient Matrice function. Atmospheric Stability, mixing height, wind direction, wind speed, natural and artificial features play an important role in dispersion process. High concentration area exhibits immediately under prevailing wind direction. (Author)

  14. Airborne endotoxin in fine particulate matter in Beijing

    Science.gov (United States)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  15. Particulate matter air pollution components and risk for lung cancer

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O; Beelen, R; Wang, M.;

    2016-01-01

    BACKGROUND: Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence. METHODS: We used data from 14 cohort studies in eight European countries. We...... meta-analysis. RESULTS: The 245,782 cohort members contributed 3,229,220person-years at risk. During follow-up (mean, 13.1years), 1878 incident cases of lung cancer were diagnosed. In the meta-analyses, elevated hazard ratios (HRs) for lung cancer were associated with all elements except V; none was.......59; 1.12-2.26 per 2ng/m(3)) and PM10 K (1.17; 1.02-1.33 per 100ng/m(3)). In two-pollutant models, associations between PM10 and PM2.5 and lung cancer were largely explained by PM2.5 S. CONCLUSIONS: This study indicates that the association between PM in air pollution and lung cancer can be attributed to...

  16. Airborne particulate matter collection and analysis by XRF

    International Nuclear Information System (INIS)

    The Philippine Nuclear Research Institute (PNRI) continues to pursue its air pollution research in support of the implementation of the 1999 Clean Air Act. The primary tool for analysis is X-Ray Fluorescence spectrometry (XRF) since the PPP-I is still on extended shut down. Following the workplan approved during the 1991 Workshop on Utilization of Research Reactors, the PNRI collected airborne particulate matter using the Gent sampler. The sampling site selected for the program was Poveda Learning Center, located beside a major highway, the Epifanio delos Santos Avenue (EDSA) where the principal source of pollution is vehicular emissions. Samples collected up to August were analyzed by XRF using three sets of analytical parameters to allow optimized analysis of a wider range of elements including Na and Pb. Although the PNRI has no operating reactor, it has personnel who have trained in NAA but are unable to apply the technique. As mentioned in the 2001 Workshop, the PNRI is considering several options to resume reactor-related activities. Thus, it is necessary to ensure continuing availability of expertise in NAA in the PNRI. It looks forward to collaborating with other Institutes through the FNCA program for the analysis of samples by NAA and using reactor parameters from collaborating Institute, to obtain experience in the use of Ko. This would also allow validation of XRF data obtained for these samples. In return it can analyze samples for collaborating institutions to generate data on Pb and S, which are important for pollutant source apportionment. (author)

  17. Improvements in PIXE analysis of hourly particulate matter samples

    Science.gov (United States)

    Calzolai, G.; Lucarelli, F.; Chiari, M.; Nava, S.; Giannoni, M.; Carraresi, L.; Prati, P.; Vecchi, R.

    2015-11-01

    Most air quality studies on particulate matter (PM) are based on 24-h averaged data; however, many PM emissions as well as their atmospheric dilution processes change within a few hours. Samplings of PM with 1-h resolution can be performed by the streaker sampler (PIXE International Corporation), which is designed to separate the fine (aerodynamic diameter less than 2.5 μm) and the coarse (aerodynamic diameter between 2.5 and 10 μm) fractions of PM. These samples are efficiently analyzed by Particle Induced X-ray Emission (PIXE) at the LABEC laboratory of INFN in Florence (Italy), equipped with a 3 MV Tandetron accelerator, thanks to an optimized external-beam set-up, a convenient choice of the beam energy and suitable collecting substrates. A detailed description of the adopted set-up and results from a methodological study on the detection limits for the selection of the optimal beam energy are shown; the outcomes of the research on alternative collecting substrates, which produce a lower background during the measurements, and with lower contaminations, are also discussed.

  18. Particulate matter in rural and urban nursery schools in Portugal

    International Nuclear Information System (INIS)

    Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM1, PM2.5 and PM10 fractions (measured continuously and in terms of mass). Outdoor PM2.5 and PM10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM2.5 and PM10 were observed mainly in the urban nursery school. - Highlights: • This is the only study comparing urban and rural nurseries considering PM fractions. • A low number of children in classrooms is enough to increase PM concentrations. • Children in urban nurseries are exposed to higher PM concentrations than in rural. • Children were mainly exposed to the finer fractions, which are worse to health. - PM levels were higher in the urban nursery than in the rural ones, which might have been related to traffic emissions. Still concentrations depended more significantly of indoor sources

  19. Particulate matter in rural and urban nursery schools in Portugal.

    Science.gov (United States)

    Nunes, R A O; Branco, P T B S; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2015-07-01

    Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM1, PM2.5 and PM10 fractions (measured continuously and in terms of mass). Outdoor PM2.5 and PM10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM2.5 and PM10 were observed mainly in the urban nursery school. PMID:25795175

  20. Investigation of Fungal Bioaerosols and Particulate Matter in the Teaching-Medical Hospitals of Khorramabad City, Iran During 2015

    Directory of Open Access Journals (Sweden)

    A Sepahvand

    2016-06-01

    Full Text Available Background and Objective: The presence of fungal bioaerosols in hospitals indoor environments have affected the health of patients with the defect in immunity system. Therefore, determination of the rate and species of these agents is essential. This study aimed to investigate association between fungi contamination and particulate matter (PM10, PM2.5 and PM1 concentrations in the main indoor wards and outdoor environment and to determine I/O ratio in two educational-medical hospitals of Khorramabad City. Materials and Methods: In this description-analytical study, the concentration of fungal bioaerosols and particulate matter was measured in 10 indoor parts and 2 outdoor stations over 6 mounts. The sampling was conducted using Quick Take-30 at an airflow rate of 28.3 L/min and sampling period of 2.5 min onto Sabouraud dextrose agar medium containing chloramphenicol. The particulate matters were measured using Monitor Dust-Trak 8520. Moreover, the relative humidity and temperature were recorded using digital TES-1360. Results: Analysis of 288 fungi samples and 864 particulate matter samples showed that the average of fungi accumulation was 59.75 CFU/m3 and the mean concentrations of PM10, PM2.5 and PM1 in the indoor environment was  27.3, 23, and 20.2 µg/m3 respectively. In addition, in ambient air the mean concentration was 135.3 CFU/m3 for fungal bioaerosols and 40.2, 35.7, and 29.8 µg/m3 for PM10, PM2.5 and PM1 respectively. At the total of fungi samples, 12.5% were negative and 87.5% were positive. Having 101.7%, Infection ward was the most contaminated ward. The operation ward in both hospitals showed the minimum fungal contamination. Conclusions: The results of the present study showed that at all of the samplings the ratio of I/O was lower than one. It was noticed the dominancy of fungal bioaerosols and particulate matter of outdoor source on the indoor environment. In addition, a significant correlation (P < 0.001( was found between

  1. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lisa Kish

    Full Text Available BACKGROUND: Particulate matter (PM is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions. METHODS: Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93 for 7-14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10(-/- mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum. RESULTS: Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10(-/- mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10(-/- mice had increased disease as evidenced by enhanced histological damage. CONCLUSIONS: Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine.

  2. QUANTITATION, DETECTION AND MEASUREMENT PRECISION OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    Science.gov (United States)

    This work focuses on analysis of organic molecular markers in airborne particulate matter (PM) by Gas Chromatography/Ion Trap Mass Spectrometry (GC/IT MS). The particulate samples used in the method development were collected as PM10 in metropolitan Philadelphia during...

  3. 40 CFR 52.528 - Control strategy: Sulfur oxides and particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.528 Section 52.528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... and Port Everglades plants of Florida Power and Light Company from the particulate emission limits...

  4. Seasonally varying nitrogen isotope biogeochemistry of particulate organic matter in Lake Kinneret, Israel

    Digital Repository Service at National Institute of Oceanography (India)

    Hadas, O.; Altabet, M.A.; Agnihotri, R.

    Large temporal variations in the nitrogen isotopic composition (delta sup(15) N) of particulate organic matter (POM) and dissolved inorganic nitrogen (DIN) species in Lake Kinneret occurred in response to seasonal phasing of dominant nitrogen cycle...

  5. A possible link between particulate matter air pollution and type 2 diabetes

    OpenAIRE

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  6. Trueness, Precision, and Detectability for Sampling and Analysis of Organic Species in Airborne Particulate Matter

    Science.gov (United States)

    Recovery. precision, limits of detection and quantitation, blank levels, calibration linearity, and agreement with certified reference materials were determined for two classes of organic components of airborne particulate matter, polycyclic aromatic hydrocarbons and hopanes usin...

  7. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  8. Source apportionment of atmospheric fine particulate matter collected at the Seney National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife...

  9. Toxicogenomic analysis of susceptibility to inhaled urban particulate matter in mice with chronic lung inflammation

    OpenAIRE

    Yauk Carole L; Williams Andrew; Thomson Errol M; Vincent Renaud

    2009-01-01

    Abstract Background Individuals with chronic lung disease are at increased risk of adverse health effects from airborne particulate matter. Characterization of underlying pollutant-phenotype interactions may require comprehensive strategies. Here, a toxicogenomic approach was used to investigate how inflammation modifies the pulmonary response to urban particulate matter. Results Transgenic mice with constitutive pulmonary overexpression of tumour necrosis factor (TNF)-α under the control of ...

  10. Chronic exposure to particulate matter and risk of cardiovascular mortality: cohort study from Taiwan

    OpenAIRE

    Tseng, Eva; Ho, Wen-Chao; Lin, Meng-Hung; Cheng, Tsun-Jen; Chen, Pau-Chung; Lin, Hsien-Ho

    2015-01-01

    Background Evidence on the association between long-term exposure to air pollution and cardiovascular mortality is limited in Asian populations. Methods We conducted a cohort study on the association between fine particulate matter (PM2.5) and cardiovascular mortality using 43,227 individuals in a civil servants health service in Taiwan. Each participant was assigned an exposure level of particulate matter based on their district of residence using air pollution data collected by the Taiwan E...

  11. Reduction of fine particulate matter in urban areas through biological fixation processes

    International Nuclear Information System (INIS)

    The article retrieves an experiment carried out in Milan under the tunnel connecting Viale Brianza and Viale Lunigiana that was aimed at assessing the efficacy of the system patented by the company Eurovix for the reduction of particulate matter by means of biological fixation of PM10 to the ground. at the same time we evaluated the reduction, by means of selective enzymatic degradation of IPA concentration absorbed on particulate matter

  12. Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China.

    Science.gov (United States)

    Liang, Linlin; Engling, Guenter; Du, Zhenyu; Cheng, Yuan; Duan, Fengkui; Liu, Xuyan; He, Kebin

    2016-05-01

    Saccharides are important constituents of atmospheric particulate matter (PM). In order to better understand the sources and seasonal variations of saccharides in aerosols in Beijing, China, saccharide composition was measured in ambient PM samples collected at an urban site in Beijing. The highest concentrations of total saccharides in Beijing were observed in autumn, while an episode with abnormal high total saccharide levels was observed from 15 to 23 June, 2011, due to extensive agricultural residue burning in northern China during the wheat harvest season. Compared to the other two categories of saccharides, sugars and sugar alcohols, anhydrosugars were the predominant saccharide group, indicating that biomass burning contributions to Beijing urban aerosol were significant. Ambient sugar and sugar alcohol levels in summer and autumn were higher than those in spring and winter, while they were more abundant in PM2.5 during winter time. Levoglucosan was the most abundant saccharide compound in both PM2.5 and PM10, the annual contributions of which to total measured saccharides in PM2.5 and PM10 were 61.5% and 54.1%, respectively. To further investigate the sources of the saccharides in ambient aerosols in Beijing, the PM10 datasets were subjected to positive matrix factorization (PMF) analysis. Based on the objective function to be minimized and the interpretable factors identified by PMF, six factors appeared to be optimal as to the probable origin of saccharides in the atmosphere in Beijing, including biomass burning, soil or dust, isoprene SOA and the direct release of airborne fungal spores and pollen. PMID:26921589

  13. The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA PM).

    Science.gov (United States)

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2016-08-15

    Ambient particulate matter (PM) containing iron can catalyze Fenton reaction leading to the production of reactive oxygen species in cells. It can also catalyze atmospheric redox reaction. These reactions are governed by the physicochemical characteristics of iron in ambient PM. As a surrogate for ambient PM, we prepared residual oil fly ash PM (ROFA PM) in a practical fire tube boiler firing residual oils with varying sulfur and ash contents. The ROFA particles were resolved into fine PM or PM2.5 (aerodynamic diameter (AD)<2.5μm) and coarse PM or PM2.5+ (AD between 2.5μm and 50μm). The iron speciation in PM2.5+ was ascertained using X-ray absorption spectroscopy and leaching method while that in PM2.5 was reported earlier. The results of both studies are compared to get an insight into the variability in the iron speciation in different size fractions. The results show the predominance of ferric sulfate, with a minor spinal ferrite in both PM (i.e. ZnxNi1-xFe2O4 in PM2.5, ZnFe2O4 in PM2.5+). The iron solubility in ROFA PM depends on its speciation, mode of incorporation of iron into particle's carbonaceous matrix, the grade and composition of oils, and pH of the medium. The soluble fraction of iron in PM is critical in assessing its interaction with the biological systems and its toxic potential. PMID:27125683

  14. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan

    Science.gov (United States)

    Stone, Elizabeth; Schauer, James; Quraishi, Tauseef A.; Mahmood, Abid

    2010-03-01

    Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM 2.5 and PM 10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM 2.5 was 194 ± 94 μg m -3 and PM 10 was 336 ± 135 μg m -3. Coarse aerosol (PM 10-2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM 2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.

  15. Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest

    Science.gov (United States)

    Bateman, Adam P.; Gong, Zhaoheng; Liu, Pengfei; Sato, Bruno; Cirino, Glauber; Zhang, Yue; Artaxo, Paulo; Bertram, Allan K.; Manzi, Antonio O.; Rizzo, Luciana V.; Souza, Rodrigo A. F.; Zaveri, Rahul A.; Martin, Scot T.

    2016-01-01

    Atmospheric particulate matter influences the Earth’s energy balance directly, by altering or absorbing solar radiation, and indirectly by influencing cloud formation. Whether organic particulate matter exists in a liquid, semi-solid, or solid state can affect particle growth and reactivity, and hence particle number, size and composition. The properties and abundance of particles, in turn, influence their direct and indirect effects on energy balance. Non-liquid particulate matter was identified over a boreal forest of Northern Europe, but laboratory studies suggest that, at higher relative humidity levels, particles can be liquid. Here we measure the physical state of particulate matter with diameters smaller than 1 μm over the tropical rainforest of central Amazonia in 2013. A real-time particle rebound technique shows that the particulate matter was liquid for relative humidity greater than 80% for temperatures between 296 and 300 K during both the wet and dry seasons. Combining these findings with the distributions of relative humidity and temperature in Amazonia, we conclude that near-surface sub-micrometre particulate matter in Amazonia is liquid most of the time during both the wet and the dry seasons.

  16. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Biological and environmental monitoring was carried out at a steel processing sector of a steel plant in Portugal. Approximately 70 workers were surveyed for their respiratory function and blood elemental contents as indicators for a long-term exposure. The characterisation of chemical elements in air at the workplace was also evaluated taking in account the separation of particles by their aerodynamic diameter. Two fractions were collected, a coarse fraction for particles below 10 μm and above 2 μm, and a fine fraction for particles below 2 μm. PIXE and INAA analytical techniques were used for the determination of blood and aerosol elemental concentrations. Up to 12 elements (Na, Cl, K, Ca, Fe, Cu, Zn, As, Se, Sb, Hg, and Pb) were determined in blood and so far, up to 18 elements for aerosols (e.g., Na, Al Si, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, As, Se, Cd, Sb, Hg, and Pb). The concentrations of the essential elements in blood (e.g., Fe, Zn and Se) were found to be altered relative to a reference Portuguese group constituted by non-exposed persons. Relative to the blood average elemental contents for As, Sb, Hg and Pb, the levels determined were below maximum permissible concentrations or reference values, except for Pb. Nevertheless, concentrations above maximum limit values were determined for some of the surveyed subjects. There are evidences that the levels of Se, Cu, and Sb in blood are influenced by exposure. Also, living habits (smoking and other activities) and pulmonary affections may modulate As, Pb and Zn concentrations in blood. For all the chemical elements identified in the particulate matter of the working atmosphere the limit values indicated in the Portuguese regulation were not exceeded, except for Fe. (author)

  17. Exposure to airborne particulate matter in the subway system.

    Science.gov (United States)

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system. PMID:25616190

  18. Development of a Low-Cost Particulate Matter Monitor

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

    2008-08-01

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic

  19. The effects of particulate ambient air pollution on the murine umbilical cord and its vessels: a quantitative morphological and immunohistochemical study.

    Science.gov (United States)

    Veras, Mariana Matera; Guimarães-Silva, Rosane Maria; Caldini, Elia Garcia; Saldiva, Paulo H N; Dolhnikoff, Marisa; Mayhew, Terry M

    2012-12-01

    Previous studies have shown that particulate matter (PM) compromise birth weight and placental morphology. We hypothesized that exposing mice to ambient PM would affect umbilical cord (UC) morphology. To test this, mice were kept in paired open-top exposure chambers at the same location and ambient conditions but, in one chamber, the air was filtered (F) and, in the other, it was not (NF). UCs were analysed stereologically and by immunohistochemistry to localize isoprostane and endothelin receptors. The cords of mice from NF chambers were smaller in volume due to loss of mucoid connective tissue and decrease in volume of collagen. These structural changes and in umbilical vessels were associated with greater volumes of regions immunostained for isoprostane, ET(A)R and ET(B)R. Findings indicate that the adverse effects of PM on birth weight may be mediated in part by alterations in UC structure or imbalances in the endogenous regulators of vascular tone and oxidative stress. PMID:22975478

  20. Development and preliminary evaluation of a particulate matter emission factor model for European motor vehicles.

    Science.gov (United States)

    Singh, R B; Colls, J J

    2000-10-01

    Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 microns, either from published data or from user-defined size distributions. A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM2.5, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway). A preliminary evaluation of PMFAC with an available dispersion model to predict

  1. Personal Exposure to Particulate Matter and Endotoxin in California Dairy Workers

    Science.gov (United States)

    Garcia, Johnny

    The average number of cows per dairy has increased over the last thirty years, with little known about how this increase may impact occupational exposure. Thirteen California dairies and 226 workers participated in this study throughout the 2008 summer months. Particulate Matter (PM) and endotoxin concentrations were quantified using ambient area based and personal air samplers. Two size fractions were collected, Total Suspended Particulate matter (TSP) and PM 2.5. Differences across dairies were evaluated by placing area based integrated air samplers in established locations on the dairies, e.g. milking parlor, drylot corral, and freestall barns. The workers occupational exposure was quantified using personal air samplers. We analyzed concentrations along with the time workers spent conducting specific job tasks during their shift to identify high exposure job tasks. Biological and chemical analytical methods were employed to ascertain endotoxin concentrations in personal and area based air samples. Recombinant factor C assays (rFC) were used to analyze biologically active endotoxin and gas chromatography coupled with mass spectrometry in tandem (GC-MS/MS) was used to quantify total endotoxin. The PM2.5 concentrations ranged from 2-116 mug/m3 for ambient area concentration and 7-495 mug/m3 for personal concentrations while TSP concentrations ranged from 74-1690 mug/m3 for area ambient concentrations and 191-4950 mug/m3 for personal concentrations. Biologically active endotoxin concentrations in the TSP size fraction from ambient area based samples ranged from 11-2095 EU/m3 and 45-2061 EU/m3 for personal samples. Total endotoxin in the TSP size fraction ranged from 75-10,166 pmol/m3 for area based samples and 34-11,689 pmol/m3 for personal samples. Drylot corrals were found to have higher sample mean concentrations when compared to other locations on the dairies for PM and endotoxin. Re-bedding, of the freestalls, was found to consistently lead to higher personal

  2. [Testing of Concentration and Characteristics of Particulate Matters Emitted from Stationary Combustion Sources in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Wu, Xiao-dong; Wang, Chen; Liang, Yun-ping; Ma, Zhao-hui

    2016-05-15

    A self-built monitoring sampling system on particulate matters and water soluble ions emitted from stationary combustion sources and a size separated sampling system on particulate matters based on FPS4000 and ELPI + were applied to test particulate matters in fumes of typical stationary combustion sources in Beijing. The results showed that the maximum concentration of total particulate matters in fumes of stationary combustion sources in Beijing was 83.68 mg · m⁻³ in standard smoke oxygen content and the minimum was 0.12 mg · m⁻³. And particle number concentration was in the 10⁴-10⁶ cm⁻³ number of grade. Both mass and number concentration ranking order of particulate matters emitted from stationary combustion sources in Beijing was: heating gas fired boilers power plant coal fired boilers coal fired boilers. And two or three peaks existed under 1 µm of particulate size for both number size distribution and mass size distribution. The number concentration for PM₂.₅ accounted for over 99.8% of that for PM₁₀ and that for PM₀.₁ accounted for over 83% of that for PM₂.₅. But the proportions of PM₀.₁, and PM₂.₅ in PM₁₀ were significantly lower in quality analysis,the proportion of PM₂.₅ in PM₁₀ was about 82%, and that of PM₀.₁ in PM₂.₅ was about 27%-33%. PMID:27506016

  3. Testing of the automatic dust concentration monitor FH62I for continuous monitoring of suspended particulates in ambient air

    International Nuclear Information System (INIS)

    The generation of solid dust aerosol with a simple device and the method of calibration are described. The instrument (using a KR-85 β-source) is suitable for operation in monitoring stations for real-time surveillance of suspended particulates in ambient air. (orig./HP)

  4. Pollutants in particulate and gaseous fractions of ambient air interfere with multiple signaling pathways in vitro.

    Science.gov (United States)

    Novák, Jirí; Jálová, Veronika; Giesy, John P; Hilscherová, Klára

    2009-01-01

    Traditionally, contamination of air has been evaluated primarily by chemical analyses of indicator contaminants and these studies have focused mainly on compounds associated with particulates. Some reports have shown that air contaminants can produce specific biological effects such as toxicity mediated by the aryl hydrocarbon receptor (AhR) or modulation of the endocrine system. This study assessed the dioxin-like toxicity, anti-/estrogenicity, anti-/androgenicity and anti-/retinoic activity of both the particulate and gas phase fractions of air in two regions with different types of pollution sources and a background locality situated in an agricultural area of Central Europe. The first region (A) is known to be significantly contaminated by organochlorine pesticides and chemical industry. The other region (B) has been polluted by historical releases of PCBs, but the major current sources of contamination are probably combustion sources from local traffic and heating. Samples of both particle and gas fractions produced dioxin-like (AhR-mediated) activity, anti-estrogenic and antiandrogenic effects, but none had any effect on retinoid signaling. AhR-mediated activities were observed in all samples and the TEQ values were comparable in both fractions in region A, but significantly greater in the particulate fraction in region B. The greater AhR-mediated activity corresponded to a greater coincident antiestrogenicity of both phases in region B. Our study is the first report of antiestrogenicity and antiandrogenicity in ambient air. Anti-androgenicity was observed in the gas phase of all regions, while in the particulate phase only in one region due to the specific type of pollution in that area. Even though based on concentrations of individual compounds, except for the OCPs, the level of contamination of the two regions was similar, there were strong differences in responses in the bioassays between the two regions. Moreover, AhR-mediated activity and

  5. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    Science.gov (United States)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  6. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    Science.gov (United States)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  7. Study of glyphosate transport through suspended particulate matter

    Science.gov (United States)

    Amiot, Audrey; Landry, David; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Sourice, Stéphane; Ballouche, Aziz

    2014-05-01

    complete (95% in 2 min). (ii) Kd obtained on the erodible fraction are two times higher than on 2 mm sieved soils. (iii) Desorption showed that glyphosate is desorbed from the erodible fraction at 40% after 25 desorptions. The aim of this study was to show the potential transport of glyphosate through suspended particulate matter. The adsorption on the erodible fraction argued to a significant transport potential of glyphosate on this fraction. The desorption of glyphosate from the erodible water fraction have revealed that the adsorption of glyphosate is reversible but it is much slower. These results demonstrate that glyphosate may be stored on the erodible fraction and be transported by these fractions. Keywords: Adsorption, Desorption, Glyphosate, Suspended Solids, Erosion.

  8. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    B. S. Oyama

    2015-12-01

    Full Text Available Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV and Heavy (HDV duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol, hydrated ethanol, and diesel (with 5 % of biodiesel. The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5 in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS, and by Thermal-Optical Transmittance (TOT. The organic aerosol (OA desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF organic aerosol (OA and organic carbon (OC were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the

  9. 40 CFR 60.48b - Emission monitoring for particulate matter and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... matter and nitrogen oxides. 60.48b Section 60.48b Protection of Environment ENVIRONMENTAL PROTECTION... monitoring for particulate matter and nitrogen oxides. (a) Except as provided in paragraph (j) of this... nitrogen content of 0.30 weight percent or less, natural gas, distillate oil, gasified coal, or any...

  10. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards

    Science.gov (United States)

    2010-10-26

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate... have been necessary to attain and maintain the 2006 National Ambient Air Quality Standards for PM...

  11. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. W.

    2014-10-07

    Ambient fine particulate matter (PM2.5) is a leading environmental risk factor for premature mortality. We use aerosol optical depth (AOD) retrieved from two satellite instruments, MISR and SeaWiFS, to produce a unified 15-year global time series (1998-2012) of ground-level PM2.5 concentration at a resolution of 1 degrees x 1 degrees. The GEOS-Chem chemical transport model (CTM) is used to relate each individual AOD retrieval to ground-level PM2.5. Four broad areas showing significant, spatially coherent, annual trends are examined in detail: the Eastern U.S. (-0.39 +/- 0.10 mu g m(-3) yr(-1)), the Arabian Peninsula (0.81 +/- 0.21 mu g m(-3) yr(-1)), South Asia (0.93 +/- 0.22 mu g m(-3) yr(-1)) and East Asia (0.79 +/- 0.27 mu g m(-3) yr(-1)). Over the period of dense in situ observation (1999-2012), the linear tendency for the Eastern U.S. (-0.37 +/- 0.13 mu g m(-3) yr(-1)) agrees well with that from in situ measurements (-0.38 +/- 0.06 mu g m(-3) yr(-1)). A GEOS-Chem simulation reveals that secondary inorganic aerosols largely explain the observed PM2.5 trend over the Eastern U.S., South Asia, and East Asia, while mineral dust largely explains the observed trend over the Arabian Peninsula.

  12. Secondary Particulate Matter Originating from an Industrial Source and Its Impact on Population Health

    Directory of Open Access Journals (Sweden)

    Cristina Mangia

    2015-07-01

    Full Text Available Epidemiological studies have reported adverse associations between long-term exposure to ambient particulate matter (PM2.5 and several health outcomes. One issue in this field is exposure assessment and, in particular, the role of secondary PM2.5, often neglected in environmental and health risk assessment. Thus, the aim of this work was to evaluate the long-term environmental and health impact of primary and secondary PM2.5 concentrations originating from a single industrial source. As a case study, we considered a coal power plant which is a large emitter of both primary PM2.5 and secondary PM2.5 precursors. PM2.5 concentrations were estimated using the Calpuff dispersion model. The health impact was expressed in terms of number of non-accidental deaths potentially attributable to the power plant. Results showed that the estimated secondary PM2.5 extended over a larger area than that related to primary PM2.5 with maximum concentration values of the two components well separated in space. Exposure to secondary PM2.5 increased significantly the estimated number of annual attributable non-accidental deaths. Our study indicates that the impact of secondary PM2.5 may be relevant also at local scale and ought to be considered when estimating the impact of industrial emissions on population health.

  13. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases.

    Science.gov (United States)

    Kim, Kyung Eun; Cho, Daeho; Park, Hyun Jeong

    2016-05-01

    Environmental air pollution encompasses various particulate matters (PMs). The increased ambient PM from industrialization and urbanization is highly associated with morbidity and mortality worldwide, presenting one of the most severe environmental pollution problems. This article focuses on the correlation between PM and skin diseases, along with related immunological mechanisms. Recent epidemiological studies on the cutaneous impacts of PM showed that PM affects the development and exacerbation of skin diseases. PM induces oxidative stress via production of reactive oxygen species and secretion of pro-inflammatory cytokines such as TNF-α, IL-1α, and IL-8. In addition, the increased production of ROS such as superoxide and hydroxyl radical by PM exposure increases MMPs including MMP-1, MMP-2, and MMP-9, resulting in the degradation of collagen. These processes lead to the increased inflammatory skin diseases and skin aging. In addition, environmental cigarette smoke, which is well known as an oxidizing agent, is closely related with androgenetic alopecia (AGA). Also, ultrafine particles (UFPs) including black carbon and polycyclic aromatic hydrocarbons (PAHs) enhance the incidence of skin cancer. Overall, increased PM levels are highly associated with the development of various skin diseases via the regulation of oxidative stress and inflammatory cytokines. Therefore, anti-oxidant and anti-inflammatory drugs may be useful for treating PM-induced skin diseases. PMID:27018067

  14. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ) concentration provide a better estimation of carcinogenicity activities; health risk to adults and children associated with PAHs inhalation was assessed by taking into account the lifetime average daily dose and corresponding incremental lifetime cancer risk (ILCR). The ILCR was within the acceptable range (10-6-10-4), indicating a low health risk to residents in these areas.

  15. Correlation analysis of size-resolved airborne particulate matter with classified meteorological conditions

    Science.gov (United States)

    Nguyen, Minh-Viet; Park, Gee-Hyeong; Lee, Byeong-Kyu

    2016-05-01

    This study analyzed correlations between classified meteorological conditions and size-resolved particulate matter (PM) concentrations over year. Seasonal measurements of airborne PM were conducted on the roof of a university building located in an urban residential area in Ulsan, Korea. A total of 267 daily PM samples were obtained using a nine-stage cascade impactor during the 12-month sampling period (March 2011-March 2012). Among this period, the average PM1.0, PM2.5, PM2.5-10, and PM10 concentrations were the lowest during the summer. The highest and lowest monthly average PM concentrations for all particle size ranges were observed in dry April and humid July, respectively. The PM1.0, PM2.5, PM2.5-10, and PM10 concentrations were negatively correlated (p 80 %) and under moderate humidity conditions (50-80 %) only during the winter season. PM concentrations also negatively correlated with precipitation (p 30 mm) and moderate (10-30 mm) rainfall conditions and only under light rainfall (speed [strong (>7 m/s) and moderate (3-7 m/s) wind]. Most PM concentrations correlated positively with ambient temperature, however, only on days with an average temperature above 20 °C. High and moderate temperatures negatively correlated with high and moderate humid conditions, while low and extra low temperatures in winter period showed positive correlation with high and moderate humidity.

  16. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2016-07-01

    Air pollution is one of the serious problems world is facing in recent Anthropocene era of rapid industrialization and urbanization. Specifically particulate matter (PM) pollution represents a threat to both the environment and human health. The changed ambient environment due to the PM pollutant in urban areas has exerted a profound influence on the morphological, biochemical and physiological status of plants and its responses. Taking into account the characteristics of the vegetation (wide distribution, greater contact area etc.) it turns out to be an effective indicator of the overall impact of PM pollution and harmful effects of PM pollution on vegetation have been reviewed in the present paper, covering an extensive span of 1960 to March 2016. The present review critically describes the impact of PM pollution and its constituents (e.g. heavy metals and poly-aromatic hydrocarbons) on the morphological attributes such as leaf area, leaf number, stomata structure, flowering, growth and reproduction as well as biochemical parameters such as pigment content, enzymes, ascorbic acid, protein, sugar and physiological aspect such as pH and Relative water content. Further, the paper provides a brief overview on the impact of PM on biodiversity and climate change. Moreover, the review emphasizes the genotoxic impacts of PM on plants. Finally, on the basis of such studies tolerant plants as potent biomonitors with high Air Pollution Tolerance Index (APTI) and Air Pollution Index (API) can be screened and may be recommended for green belt development. PMID:27011112

  17. Assessment of heavy metals in suspended particulate matter in Moradabad, India.

    Science.gov (United States)

    Pal, Raina; Mahima; Gupta, A; Tripathi, Anamika

    2014-03-01

    Samples of suspended particulate matter (PM10) were collected from three different sites in Moradabad, India. The sampling was done concurrently twice a week during the period of April 2011-March 2012. Elemental concentration of PM10 was analyzed using an Inductively Coupled Plasma Optical Emission Spectrophotometer (ICP-OES). The monthly mean concentration of PM10 (RSPM) ranged between 63-226 microgm(-3), which was higher than the permissible limit of 100 microgm(-3) of National Ambient Air Quality Standards. The maximum concentration of Zn, Fe, Cu, Cr and Ni found in the Industrial area of the city was 21.24, 18.43, 15.23, 0.41, 0.03 microgm(-3), respectively; whereas the maximum concentration of Pb (2.72 microgm(-3)) and Cd (0.20 microgm(-3)) was found in heavy density traffic area, denoted as commercial area. The study shows that high number of vehicles and the brassware industries are responsible for enhanced concentration of heavy metals in the Brass City. PMID:24665762

  18. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark

    DEFF Research Database (Denmark)

    Feilberg, A.; Poulsen, M.W.B.; Nielsen, T.; Skov, H.

    2001-01-01

    been developed and applied. The nitro-PAK levels have been compared with levels of other air pollutants including unsubstituted PAHs, inorganic gases and particulate matter, as well as with meteorological parameters. Correlations and concentration ratios suggest that the dominant source of 9......-nitroanthracene at the urban site is direct emissions, whereas at the semirural site its dominant source is atmospheric formation. The atmospheric formation of 2-nitrofluoranthene and 2-nitropyrene generally seems to be initiated by OH radicals during the day rather than by NO3 radicals at night. The average...... contribution of the OH initiated formation is estimated to be in the range of 90-100%. However, under wintertime conditions with cloudy weather implying low OH radical production, NO3 radicals may also be important as initiators of nitro-PAH formation. Samples influenced by transport of polluted air masses...

  19. Synopsis of the temporal variation of particulate matter composition and size.

    Science.gov (United States)

    Demerjian, Kenneth L; Mohnen, Volker A

    2008-02-01

    A synopsis of the detailed temporal variation of the size and number distribution of particulate matter (PM) and its chemical composition on the basis of measurements performed by several regional research consortia funded by the U.S. Environmental Protection Agency (EPA) PM Supersite Program is presented. This program deployed and evaluated a variety of research and emerging commercial measurement technologies to investigate the physical and chemical properties of atmospheric aerosols at a level of detail never before achieved. Most notably these studies demonstrated that systematic size-segregated measurements of mass, number, and associated chemical composition of the fine (PM2.5) and ultrafine (PM0.1) fraction of ambient aerosol with a time resolution down to minutes and less is achievable. A wealth of new information on the temporal variation of aerosol has been added to the existing knowledge pool that can be mined to resolve outstanding research and policy-related questions. This paper explores the nature of temporal variations (on time scales from several minutes to hours) in the chemical and physical properties of PM and its implications in the identification of PM formation processes, and source attribution (primary versus secondary), the contribution of local versus transported PM and the development of effective PM control strategies. The PM Supersite results summarized indicate that location, time of day, and season significantly influence not only the mass and chemical composition but also the size-resolved chemical/elemental composition of PM. Ambient measurements also show that ultrafine particles have different compositions and make up only a small portion of the PM mass concentration compared with inhalable coarse and fine particles, but their number concentration is significantly larger than their coarse or fine counterparts. PM size classes show differences in the relative amounts of nitrates, sulfates, crustal materials, and most especially

  20. Effects of particulate matter on the pulmonary and vascular system: time course in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Salonen Raimo O

    2005-03-01

    Full Text Available Abstract Background This study was performed within the scope of two multi-center European Commission-funded projects (HEPMEAP and PAMCHAR concerning source-composition-toxicity relationship for particulate matter (PM sampled in Europe. The present study aimed to optimize the design for PM in vivo toxicity screening studies in terms of dose and time between a single exposure and the determination of the biological responses in a rat model mimicking human disease resulting in susceptibility to ambient PM. Dust in thoracic PM size-range (aerodynamic diameter Results The neutrophil numbers in bronchoalveolar lavage fluid increased tremendously after exposure to the highest RTD doses or EHC-93. Furthermore, PM exposure slightly affected blood coagulation since there was a small but significant increase in the plasma fibrinogen levels (factor 1.2. Pulmonary inflammation and oxidative stress as well as changes in blood coagulation factors and circulating blood cell populations were observed within the range of 3 to 10 mg PM/kg of body weight without significant pulmonary injury. Conclusion The optimal dose for determining the toxicity ranking of ambient derived PM samples in spontaneously hypertensive rats is suggested to be between 3 and 10 mg PM/kg of body weight under the conditions used in the present study. At a lower dose only some inflammatory effects were detected, which will probably be too few to be able to discriminate between PM samples while a completely different response pattern was observed with the highest dose. In addition to the dose, a 24-hr interval from exposure to sacrifice seemed appropriate to assess the relative toxic potency of PM since the majority of the health effects were observed one day after PM exposure compared to the other times examined. The aforementioned considerations provide a good basis for conducting PM toxicity screening studies in spontaneously hypertensive rats.

  1. Contribution of fungal spores to particulate matter in a tropical rainforest

    International Nuclear Information System (INIS)

    The polyols arabitol and mannitol, recently proposed as source tracers for fungal spores, were used in this study to estimate fungal contributions to atmospheric aerosol. Airborne particulate matter (PM2.5 and PM10) was collected at Jianfengling Mountain, a tropical rainforest on Hainan Island situated off the south China coast, during spring and analyzed for arabitol and mannitol by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The average concentrations of arabitol and mannitol exhibited high values with averages of 7.0 and 16.0 ng m-3 respectively in PM2.5 and 44.0 and 71.0 ng m-3 in PM10. The two tracers correlated well with each other, especially in the coarse mode aerosol (PM2.5-10), indicating they were mainly associated with coarse aerosol particles and had common sources. Arabitol and mannitol in PM10 showed significant positive correlations with relative humidity, as well as positive correlations with average temperature, suggesting a wet emissions mechanism of biogenic aerosol in the form of fungal spores. We made estimations of the contribution of fungal spores to ambient PM mass and to organic carbon, based on the observed ambient concentrations of these two tracers. The relative contributions of fungal spores to the PM10 mass were estimated to range from 1.6 to 18.2%, with a rather high mean value of 7.9%, and the contribution of fungal spores to organic carbon in PM10 ranged from 4.64 to 26.1%, with a mean value of 12.1%, implying that biological processes are important sources of atmospheric aerosol.

  2. Contribution of fungal spores to particulate matter in a tropical rainforest

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ting; Chan Chuenyu; Zhang Yinan; Zhang Zhisheng; Lin Mang; Sang Xuefang [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou (China); Engling, Guenter [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Li, Y D [Institute of Subtropical Forestry, Bureau of Forestry, Guangzhou (China); Li, Yok-Sheung, E-mail: guenter@gate.sinica.edu.tw, E-mail: chzy@mail.sysu.edu.cn [Department of Civil and Structural Engineering, Hong Kong Polytechnic University (Hong Kong)

    2010-04-15

    The polyols arabitol and mannitol, recently proposed as source tracers for fungal spores, were used in this study to estimate fungal contributions to atmospheric aerosol. Airborne particulate matter (PM{sub 2.5} and PM{sub 10}) was collected at Jianfengling Mountain, a tropical rainforest on Hainan Island situated off the south China coast, during spring and analyzed for arabitol and mannitol by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The average concentrations of arabitol and mannitol exhibited high values with averages of 7.0 and 16.0 ng m{sup -3} respectively in PM{sub 2.5} and 44.0 and 71.0 ng m{sup -3} in PM{sub 10}. The two tracers correlated well with each other, especially in the coarse mode aerosol (PM{sub 2.5-10}), indicating they were mainly associated with coarse aerosol particles and had common sources. Arabitol and mannitol in PM{sub 10} showed significant positive correlations with relative humidity, as well as positive correlations with average temperature, suggesting a wet emissions mechanism of biogenic aerosol in the form of fungal spores. We made estimations of the contribution of fungal spores to ambient PM mass and to organic carbon, based on the observed ambient concentrations of these two tracers. The relative contributions of fungal spores to the PM{sub 10} mass were estimated to range from 1.6 to 18.2%, with a rather high mean value of 7.9%, and the contribution of fungal spores to organic carbon in PM{sub 10} ranged from 4.64 to 26.1%, with a mean value of 12.1%, implying that biological processes are important sources of atmospheric aerosol.

  3. Current state of particulate matter research and management in Serbia (Introductory paper

    Directory of Open Access Journals (Sweden)

    Milena Jovašević-Stojanović

    2010-09-01

    Full Text Available Particulate matter is the air pollutant that currently receives most attention from the atmospheric research community, the legislative authorities and the general public. Limiting particulate matter in the atmosphere which will result in significant benefits for human health, with associated positive economic consequences. Successful management of particulate matter requires scientific knowledge about particulate matter “from cradle to grave”, covering sources of particles, processes that govern their formation, composition, dispersion and fate in the atmosphere, as well as knowledge about human exposure and associated health and well being. Such knowledge allows to design and perform effective and efficient abatement measures and monitoring. This paper provides an introduction to the research and monitoring regarding particulate matter in Serbia. The contributions were first partly presented at the 2nd international workshop of the WeBIOPATR “Outdoor concentration, size distribution and composition of respirable particles in WB urban area” project in September 2009. This information provides context to the contributions in this number, and was part of the rationale of the project WeBIOPATR.

  4. 40 CFR 52.1081 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52..., in accordance with 40 CFR 52.1004(c), suspend the requirements for this area to submit an attainment... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate...

  5. 40 CFR 52.2059 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c), suspends the... nonattainment areas have clean data for the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate...

  6. Distribution and composition of suspended particulate matter in the Atlantic Ocean: Direct measurements and satellite data

    Science.gov (United States)

    Lisitzin, A. P.; Klyuvitkin, A. A.; Burenkov, V. I.; Kravchishina, M. D.; Politova, N. V.; Novigatsky, A. N.; Shevchenko, V. P.; Klyuvitkina, T. S.

    2016-01-01

    The main purpose of this work is to study the real distribution and spatial-temporal variations of suspended particulate matter and its main components in surface waters of the Atlantic Ocean on the basis of direct and satellite measurements for development of new and perfection of available algorithms for converting satellite data. The distribution fields of suspended particulate matter were calculated and plotted for the entire Atlantic Ocean. It is established that its distribution in the open ocean is subordinate to the latitudinal climatic zonality. The areas with maximum concentrations form latitudinal belts corresponding to high-productivity eutrophic and mesotrophic waters of the northern and southern temperate humid belts and with the equatorial humid zone. Phytoplankton, the productivity of which depends primarily on the climatic zonality, is the main producer of suspended particulate matter in the surface water layer.

  7. Assessment of the natural sources of particulate matter on the opencast mines air quality.

    Science.gov (United States)

    Huertas, J I; Huertas, M E; Cervantes, G; Díaz, J

    2014-09-15

    Particulate matter is the main air pollutant in open pit mining areas. Preferred models that simulate the dispersion of the particles have been used to assess the environmental impact of the mining activities. Results obtained through simulation have been compared with the particle concentration measured in several sites and a coefficient of determination R(2)0.95) between meteorological variables and particulate matter concentration being humidity, humidity of the previous day and temperature, the meteorological variables that contributed most significantly in the variance of the particulate matter concentration measured in the mining area while the contribution of the AERMOD estimations to the short term TSP (Total Suspended Particles) measured concentrations was negligible (<5%). The multiple regression model was used to identify the meteorological condition that leads to pollution episodes. It was found that conditions drier than 54% lead to pollution episodes while humidities greater than 70% maintain safe air quality conditions in the mining region in northern Colombia. PMID:25016110

  8. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles

    International Nuclear Information System (INIS)

    Recently, biomagnetic monitoring of tree leaves has proven to be a good estimator for ambient particulate concentration. This paper investigates the usefulness of biomagnetic leaf monitoring of crown deposited particles to assess the spatial PM distribution inside individual tree crowns and an urban street canyon in Ghent (Belgium). Results demonstrate that biomagnetic monitoring can be used to assess spatial PM variations, even within single tree crowns. SIRM values decrease exponentially with height and azimuthal effects are obtained for wind exposed sides of the street canyon. Edge and canyon trees seem to be exposed differently. As far as we know, this study is the first to present biomagnetic monitoring results of different trees within a single street canyon. The results not only give valuable insights into the spatial distribution of particulate matter inside tree crowns and a street canyon, but also offer a great potential as validation tool for air quality modelling. Highlights: ► Spatial distribution of tree crown deposited PM was evaluated. ► SIRM values decrease exponentially with height. ► Azimuthal effects were observed at wind exposed sides of the street canyon. ► Edge and canyon trees seem to be exposed differently. ► Biomagnetic monitoring offers a great potential as validation of air quality models. -- Biomagnetic leaf monitoring provides useful insights into the spatial distribution of particulates inside individual tree crowns and an urban street canyon in Ghent (Belgium)

  9. Biomonitoring of Toxic Compounds of Airborne Particulate Matter in Urban and Industriel Areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter...... on man and environment. Two widely applied biomonitoring procedures, namely the standardised ryegrass exposure for monitoring of trace metals, and the standardised exposure of curly kale for monitoring of PAH compounds, is presented taking examples from a Europe-wide biomonitoring study conducted in...... these methods in environmental monitoring programmes are made...

  10. Particulate Matter Assessment in the Air Based on the Heavy Metals Presence

    Directory of Open Access Journals (Sweden)

    Jandačka Dušan

    2014-05-01

    Full Text Available Particulate matters are the result of various processes in the atmosphere that are part of everyday life. The chemical composition of these particles is mainly influenced by their origin. Their behavior is also dependent on meteorological conditions and other factors as well. The aim of this paper was to identify sources of particulate matters by means of statistical methods due to the presence of 17 heavy metals. The problem solving assumes the knowledge of multivariate statistical data analysis methods as principal components analysis (PCA, factor analysis (FA and multivariate regression and vector algebra. For the application of methodology suitable software may prove appropriate.

  11. Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn

    International Nuclear Information System (INIS)

    Coarse and fine particulate matter (PM2.5-10 and PM2.5, respectively) are regulated ambient air pollutants thought to have major adverse health effects in exposed humans. The role of endotoxin and other bioaerosol components in the toxicity of PM from ambient air is controversial. This study evaluated the inflammatory lung response in mice instilled intratracheally with PM2.5-10 and PM2.5 emitted from a working dairy barn, a source presumed to have elevated concentrations of endotoxin. PM2.5-10 was more pro-inflammatory on an equal weight basis than was PM2.5; both fractions elicited a predominantly neutrophilic response. The inflammatory response was reversible, with a peak response to PM2.5-10 observed at 24 h after instillation, and a return to control values by 72 h after instillation. The major active pro-inflammatory component in whole PM2.5-10, but not in whole PM2.5, is heat-labile, consistent with it being endotoxin. A heat treatment protocol for the gradual inactivation of biological materials in the PM fractions over a measurable time course was developed and optimized in this study using pure lipopolysaccharide (LPS) as a model system. The time course of heat inactivation of pure LPS and of endotoxin activity in PM2.5-10 as measured by Limulus bioassay is identical. The active material in both PM2.5-10 and PM2.5 remained in the insoluble fraction when the whole PM samples were extracted with physiological saline solution. Histological analysis of lung sections from mice instilled with PM2.5-10 or PM2.5 showed evidence of inflammation consistent with the cellular responses observed in lung lavage fluid. The major pro-inflammatory components present in endotoxin-rich PM were found in the insoluble fraction of PM2.5-10; however, in contrast with PM2.5-10 isolated from ambient air in the Central Valley of California, the active components in the insoluble fraction were heat-labile.

  12. Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy

    Science.gov (United States)

    Daher, Nancy; Ruprecht, Ario; Invernizzi, Giovanni; De Marco, Cinzia; Miller-Schulze, Justin; Heo, Jong Bae; Shafer, Martin M.; Shelton, Brandon R.; Schauer, James J.; Sioutas, Constantinos

    2012-03-01

    The correlation between health effects and exposure to particulate matter (PM) has been of primary concern to public health organizations. An emerging hypothesis is that many of the biological effects derive from the ability of PM to generate reactive oxygen species (ROS) within affected cells. Milan, one of the largest and most polluted urban areas in Europe, is afflicted with high particle levels. To characterize its ambient PM, fine and coarse PM (PM2.5 and PM2.5-10, respectively) samples were collected on a weekly basis for a year-long period. Samples were analyzed for their chemical properties and ROS-activity. A molecular marker chemical mass balance (MM-CMB) model was also applied to apportion primary and secondary sources to fine organic carbon (OC) and PM. Findings revealed that PM2.5 is a major contributor to ambient particle levels in Milan, averaging 34.5 ± 19.4 μg m-3 throughout the year. Specifically, secondary inorganic ions and organic matter were the most dominant fine PM species contributing to 36 ± 7.1% and 34 ± 6.3% of its mass on a yearly-based average, respectively. Highest PM2.5 concentrations occurred during December-February and were mainly attributed to poor atmospheric dispersion. On the other hand, PM2.5-10 exhibited an annual average of 6.79 ± 1.67 μg m-3, with crustal elements prevailing. Source apportionment results showed that wood-smoke and secondary organic aerosol sources contribute to 4.6 ± 2.6% and 9.8 ± 11% of fine OC on a yearly-based average, respectively. The remaining OC is likely associated with petroleum-derived material that is not adequately represented by existing source profiles used in this study. Lastly, ROS-activity measurements indicated that PM2.5-induced redox activity expressed per m3 of air volume is greatest during January (837 μg Zymosan equivalents m-3) and February (920 μg Zymosan equivalents m-3). Conversely, intrinsic (per PM mass) ROS-activity peaked in July (22,587 μg Zymosan equivalents mg

  13. Impact of vehicular strike on particulate matter air quality: results from a natural intervention study in Kathmandu valley.

    Science.gov (United States)

    Fransen, Michelle; Pérodin, Joanne; Hada, Jayjeev; He, Xin; Sapkota, Amir

    2013-04-01

    In this natural intervention study, we evaluated the impact of vehicular shutdown during bandhas (general strikes) and meteorological parameters on ambient PM10 concentrations (particulate matter of aerodynamic diameter 10 μm or less) in the Kathmandu Valley, Nepal. Publicly available PM10 data (January 2003-February 2008) collected at six monitoring stations were combined with meteorological and bandh data. Linear mixed effects regression models were used to examine the effects of bandhas on PM10 concentrations. Lower PM10 concentrations were observed during the monsoon season compared to the winter, across all monitoring stations, with the largest reduction observed for the urban high traffic area (mean ± standard deviation: 290 ± 71 vs 143 ± 36 μg/m(3)). In the high traffic area, there was 36 μg/m(3) decrease in PM10 concentration during the bandh period compared to 2 days preceding the bandh, adjusting for season, rainfall, temperature, and windspeed. The improvements in air quality were short lived: PM10 concentration in the urban high traffic area increased by an average of 26 μg/m(3) within the first 2 days after the bandh. Our results suggest that controlling vehicular traffic can have an immediate impact in improving particulate matter air quality even among the most polluted cities in the world. PMID:23433338

  14. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  15. Suspended particulates and trace metals in ambient air at the road sides of Varanasi City. Paper no. IGEC-1-063

    International Nuclear Information System (INIS)

    An attempt has been made to assess the quantity of Total Suspended Particulate Matter (TSPM) and concentration of trace metals in ambient air at the road sides of Varanasi city. The air quality monitoring was carried out using High Volume Sampler (HVS). The HVS were run for two days with eight hours sampling period. The SPM deposited on EPM 2000 filter paper were analysed for trace metals using Atomic Absorption Spectro photometer (Perkin Elmer, Model 2378). The results indicate that the Varanasi city is in serious grip of air pollution due to poor road conditions and heavy traffic load. The suspended particulate matter are found to exceed the permissible limits at most of the locations. Besides SPM, some toxic metals namely Iron, Copper, Nickel, Chromium, Zinc and Lead were also studied and sampled at four different road sides covering residential (Sigra), commercial (Kutcherry), Industrial (Industrial Estate) and Sensitive (B.H.U. Campus) areas. The concentration of all the six metals were found in the order of Fe > Cu > Pb > Ni > Zn > Cr. Area wise maximum trace metal pollution load was observed at Industrial site as compared to other sites, as this area is surrounded by many industries and situated near dense traffic highway. Some preventive measures have also been suggested to reduce air pollution load. (author)

  16. Establishment of Exposure-response Functions of Air Particulate Matter and Adverse Health Outcomes in China and Worldwide

    Institute of Scientific and Technical Information of China (English)

    HAI-DONG KAN; BING-HENG CHEN; CHANG-HONG CHEN; BING-YAN WANG; QING-YAN FU

    2005-01-01

    Objective To obtain the exposure-response functions that could be used in health-based risk assessment of particulate air pollution in China. Methods Meta analysis was conducted on the literatures on air particulate matter and its adverse health outcomes in China and worldwide. Results For each health outcome from morbidity to mortality changes, the relative risks were estimated when the concentration of air particulate matter increased to some certain units. Conclusion The exposure-response functions recommended here can be further applied to health risk assessment of air particulate matter in China.

  17. 40 CFR Appendix B to Part 50 - Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High-Volume Method) B Appendix B to Part 50... Determination of Suspended Particulate Matter in the Atmosphere (High-Volume Method) 1.0 Applicability. 1.1...

  18. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion

    International Nuclear Information System (INIS)

    The polycyclic aromatic hydrocarbons (PAH) and the organic matter (OM) content associated with particulate matter (PM) emissions from atmospheric fluidized bed coal combustion have been studied. The two main aims of the work have been (a) to study OM and PAH emissions as a function of the coal fluidized bed combustion (FBC) variables in solid phase and (b) to check if there is any correlation between OM and PAH contained in the PM. The combustion was carried out in a laboratory scale plant at different combustion conditions: temperature, percentage of oxygen excess, and total air flow. PAH associated on the particulate matter have been analyzed by fluorescence spectroscopy in the synchronous mode (FS) after PM extraction by sonication with dimethylformamide (DMF). It can be concluded that there is not a direct relationship between the OM content and the PAH supported in the PM emitted. In addition, neither PM or OM show dependence between themselves

  19. Analysis of Parent/Nitrated Polycyclic Aromatic Hydrocarbons in Particulate Matter 2.5 Based on Femtosecond Ionization Mass Spectrometry

    Science.gov (United States)

    Itouyama, Noboru; Matsui, Taiki; Yamamoto, Shigekazu; Imasaka, Tomoko; Imasaka, Totaro

    2016-02-01

    Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m3 for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m3.

  20. Analysis of Parent/Nitrated Polycyclic Aromatic Hydrocarbons in Particulate Matter 2.5 Based on Femtosecond Ionization Mass Spectrometry.

    Science.gov (United States)

    Itouyama, Noboru; Matsui, Taiki; Yamamoto, Shigekazu; Imasaka, Tomoko; Imasaka, Totaro

    2016-02-01

    Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m(3) for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m(3). Graphical Abstract ᅟ. PMID:26419772

  1. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  2. Quantifying short-term and long-term health benefits of attaining ambient fine particulate pollution standards in Guangzhou, China

    Science.gov (United States)

    Lin, Hualiang; Liu, Tao; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Guo, Lingchuan; Xu, Yanjun; Zhang, Yonghui; Vaughn, Michael G.; Nelson, Erik J.; Qian, Zhengmin (Min); Ma, Wenjun

    2016-07-01

    In 2012, Chinese Environmental Bureau modified its National Ambient Air Quality Standards to include fine particulate matter (PM2.5). Recent air pollution monitoring data shows that numerous locations have exceeded this standard, which may have resulted in avoidable adverse health effects. For example, among the 74 Chinese cities with PM2.5 monitoring data in 2013, only three cities attained the annual air quality standard (35 μg/m3). This study aimed to quantify the potential short- and long-term health benefits from achieving the Chinese ambient air quality standard and WHO's air quality objectives. A generalized additive model was used to estimate the short-term association of mortality with changes in daily PM2.5 concentrations, based on which we estimated the potential premature mortality reduction that would have been achieved during the period of 2012-2015 if the daily air quality standard had been met in Guangzhou, China; we also estimated the avoidable deaths if attaining the annual air quality standard using the relative risk obtained from a previous cohort study. During the study period, there were 160 days exceeding the national daily PM2.5 standard (75 μg/m3) in Guangzhou, and the annual average concentration (47.7 μg/m3) was higher than the air quality standard of 35 μg/m3. Significant associations between PM2.5 and mortality were observed. An increase of 10 μg/m3 in PM2.5 was associated with increases in daily death counts of 0.95% (95% CI: 0.56%, 1.34%) in natural mortality, 1.31% (95% CI: 0.75%, 1.87%) in cardiovascular mortality, and 1.06% (95% CI: 0.19%, 1.94%) in respiratory mortality. The health benefits of attaining the national daily air quality standard of PM2.5 (75 μg/m3) would have prevented 143 [95% confidence interval (CI): 84, 203] fewer natural deaths, including 84 (95% CI: 48, 121) fewer cardiovascular deaths and 27 (95% CI: 5, 49) fewer respiratory deaths. Had the annual PM2.5 levels been reduced to 35 μg/m3, an estimated 3875

  3. MERIS imagery of Belgian coastal waters: mapping of suspended particulate matter and chlorophyll-a

    OpenAIRE

    Ruddick, K.; PARK, Y.; B. Nechad

    2003-01-01

    This paper describes a first application-oriented analysis of MERIS products for Suspended Particulate Matter (SPM) and Chlorophyll-a (CHL) concentration in Belgian coastal waters. Regional algorithms designed for Belgian waters have been implemented and compared with the standard MERIS products, termed Total Suspended Matter and Algal2 respectively. The standard and regional SPM products seem robust and give similar data. Notwithstanding a more complete match-up validation analysis, these pr...

  4. Simulation of Height of Stack Pile using SCREEN3 module for Particulate Matter Pollutants

    Directory of Open Access Journals (Sweden)

    Modi Musalaiah

    2014-12-01

    Full Text Available This study is regarding the air pollution in selected areas near to port (beside stack yards of port interested in particulate matter pollution. In this study, the amount of air pollution due to particulates is analyzed. The amount of air pollution is estimated using SCREEN 3 Methodology. In this study, SCREEN 3 methodology is a predefined software tool which can be used to estimate particulate matter pollution levels at different source release heights, terrain heights and at particular receptor height. The results obtained are reported and finally concluded that to avoid the pollution in the selected area, it is better to construct a periphery along the sides of stack yard (source of pollution

  5. Impact of Long-term Exposure to Air Particulate Matter on Life Expectancy and Survival Rate of Shanghai Residents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To evaluate the impact of long-term air particulate matter exposure on the life expectancy and survival rate of Shanghai residents. Methods Epidemiology - based exposureresponse function was used for the calculation of attributable deaths to air particulate matter in Shanghai, and the effect of long-term exposure to particulate matter on life expectancy and survival rate was estimated using the life table of Shanghai residents in 1999. Results It was shown that in 1999, the long-term air particulate matter exposure caused 1.34-1.69 years reduction of life expectancy and a decrease of survival rate for each age group of Shanghai residents. Conclusion The effect of long-term exposure to air particulate matter on life expectancy is substantial in Shanghai.

  6. Embryotoxicity of organic extracts from airborne particulates in ambient air in the chicken embryo

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.; Kashimoto, T.

    1986-07-01

    A fraction containing polycyclic aromatic hydrocarbons (PAHs), prepared from an organic extract of airborne particulate matter, was separated into nine subfractions by high pressure liquid chromatography (HPLC). The embryotoxicity of each of these fractions was investigated and analysis for PAHs by capillary gas chromatography-mass spectrometry (GC-MS) was performed. The ninth subfraction, with coronene as its main component, had the strongest toxic effects on chicken embryos per m/sup 3/ of air. Of the remaining eight subfractions, three had the greatest toxicity: the second fraction with benzofluoranthenes and benzo(e)pyrene as the main components, the fourth fraction having PAH-estimated compounds in small amounts, and the fifth fraction with indeno(1,2,3-cd)pyrene and benzo(ghi)perylene as the main ingredients had the greatest toxicity. These findings indicate PAHs to be responsible for embryotoxicity but the total amounts were not necessarily proportional to it. For further characterization of toxicity, the effects of each PAH and/or quantification of other embryotoxic compounds possibly present in small amounts should be investigated.

  7. The added value of a proposed satellite imager for ground level particulate matter analyses and forecasts

    NARCIS (Netherlands)

    Timmermans, R.M.A.; Segers, A.J.; Builtjes, P.J.H.; Vautard, R.; Siddans, R.; Elbern, H.; Tjemkes, S.A.T.; Schaap, M.

    2009-01-01

    Monitoring aerosols over wide areas is important for the assessment of the population's exposure to health relevant particulate matter (PM). Satellite observations of aerosol optical depth (AOD) can contribute to the improvement of highly needed analyzed and forecasted distributions of PM when combi

  8. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Science.gov (United States)

    2010-07-01

    ... CFR part 51. (e) Definitions of terms used in this section. The following terms that are used in this... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Rule for limiting particulate matter emissions from wood products industry sources. (a) What is...

  9. Behaviour of Particulate Matter in the Indoor Environment of the National Library in Prague

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Ondráčková, Lucie; Mašková, Ludmila; Ondráček, Jakub; Zíková, Naděžda

    -: -, 2012, s. 45. ISBN N. [International Conference Indoor Air Quality in Heritage and Historic Environments "Standards and Guidelines" /10./. London (GB), 17.06.2012-20.06.2012] R&D Projects: GA MK DF11P01OVV020 Keywords : particulate matter * indoor environment * measuring campaigns Subject RIV: AL - Art, Architecture, Cultural Heritage http://www.ucl.ac.uk/iaq2012/index

  10. Detailed Study of Fine Particulate Matter during 2013 New Year’s Celebrations

    Czech Academy of Sciences Publication Activity Database

    Kubelová, Lucie; Vodička, Petr; Schwarz, Jaroslav; Ždímal, Vladimír

    Prague : Czech Aerosol Society, 2013, A115. ISBN N. [European Aerosol Conference (EAC 2013). Prague (CZ), 01.09.2013-06.09.2013] R&D Projects: GA ČR GAP209/11/1342 Institutional support: RVO:67985858 Keywords : fine particulate matter * firrworks * aerosol mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry http://eac2013.cz/index.php

  11. PIXE analysis of suspended particulate matter originally collected for beta-ray absorption mass monitoring

    International Nuclear Information System (INIS)

    A method of transferring suspended particulate matter (SPM) from the used filter of a beta-absorption mass monitor to a polycarbonate filter for subsequent PIXE analysis has been developed. The method allows determination of the relative elemental composition of SPM. It was demonstrated that PIXE analysis can detect S, Cl, Fe and Zn in SPM sampled over a one-hour period. (author)

  12. IMPROVED SOURCE APPORTIONMENT AND SPECIATION OF LOW-VOLUME PARTICULATE MATTER SAMPLES

    Science.gov (United States)

    This research will examine methods with the high sensitivity and low limits of detection needed to analyze a wide range of chemical species in particulate matter collected with personal samplers. Dr. Schauer and colleagues will develop sensitive methods to detect trace meta...

  13. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP... (PM-10) Group II SIP commitments. (a) On December 28, 1988, the Governor's designee for Arizona submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford,...

  14. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan...

  15. Trace elements present in airborne particulate matter-Stressors of plant metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavlík, Milan; Pavlíková, D.; Zemanová, V.; Hnilička, F.; Urbanová, V.; Száková, J.

    2012-01-01

    Roč. 79, May 2012 (2012), s. 101-107. ISSN 0147-6513 Grant ostatní: GA ČR(CZ) GA521/09/1150 Institutional research plan: CEZ:AV0Z50380511 Keywords : Airborne particulate matter * Amino acids * Gas- exchange parameters Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.203, year: 2012

  16. APPLYING DATA ASSIMILATION AND ADJOINT SENSITIVITY TO EPIDEMIOLOGICAL AND POLICY STUDIES OF AIRBORNE PARTICULATE MATTER

    Science.gov (United States)

    Source-resolved fine particulate matter (PM) concentrations are needed at high spatial and temporal resolutions for epidemiological studies aimed at identifying more- and less-harmful types of PM. Building on recent advances in air quality modeling, data assimilation, and s...

  17. Elemental constituents of particulate matter and newborn’s size in eight European cohorts

    NARCIS (Netherlands)

    Pedersen, M.; Gehring, U.; Beelen, R.; Wang, M.; Giorgis-Allemand, L.; Andersen, A.M.N.; Basagaña, X.; Bernard, C.; Cirach, M.; Forastiere, F.; Hoogh, K. de; Gražuleviĉvienė, R.; Gruzieva, O.; Hoek, G.; Jedynska, A.; Klümper, C.; Kooter, I.M.; Krämer, U.; Kukkonen, J.; Porta, D.; Postma, D.S.; Raaschou-Nielsen, O.; Rossem, L. van; Sunyer, J.; Sørensen, M.; Tsai, M.Y.; Vrijkotte, T.G.M.; Wilhelm, M.; Nieuwenhuijsen, M.J.; Pershagen, G.; Brunekreef, B.; Kogevinas, M.; Slama, R.

    2016-01-01

    Background: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn’s size have been little examined. Objective: We aimed to investigate the associations of exposure to elemental

  18. 40 CFR 52.62 - Control strategy: Sulfur oxides and particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.62 Section 52.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Electric Cooperative—Lowman Steam Plant; Alabama Power Company-Gorgas Steam Plant, Gaston Steam...

  19. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  20. 40 CFR 52.2231 - Control strategy: Sulfur oxides and particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and... § 52.2231 Control strategy: Sulfur oxides and particulate matter. (a) Part D conditional approval. The... area are approved on condition that the State submit by December 31, 1987, a definition of the...

  1. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  2. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    International Nuclear Information System (INIS)

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer

  3. Indoor/outdoor Particulate Matter Number and Mass Concentration in Modern Offices

    Czech Academy of Sciences Publication Activity Database

    Chatoutsidou, S.E.; Ondráček, Jakub; Tesař, Ondřej; Tørseth, K.; Ždímal, Vladimír; Lazaridis, M.

    2015-01-01

    Roč. 92, OCT 2015 (2015), s. 462-474. ISSN 0360-1323 EU Projects: European Commission(XE) 315760 Institutional support: RVO:67985858 Keywords : modern offices * particulate matter * mechanical ventilation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.341, year: 2014

  4. Characterization of cotton gin particulate matter emissions - Final year of field work

    Science.gov (United States)

    Due to EPA’s implementation of more stringent standards for particulate matter (PM) with an effective diameter less than 2.5 microns (PM2.5), the cotton ginners’ associations across the cotton belt agreed that there is an urgent need to collect gin emission data. The primary issues surrounding PM re...

  5. Characterization of airborne particulate matter collected at Jakarta roadside of an arterial road

    International Nuclear Information System (INIS)

    A total of 44 pairs of airborne particulate matter samples were collected in the intersection of Simprug, Pondok Indah, South Jakarta. Sampling of airborne particulate matter was conducted in July 2008-July 2009 using a Gent stacked filter unit sampler in two size fractions of <2.5 μm (fine) and 2.5-10 μm (coarse). Mass concentrations, black carbon as well as elemental concentrations were investigated as a pre-study in step to the evaluation of air quality in these roadside areas. Black carbon was determined by reflectance and elemental analysis was performed using proton induced X-ray emission, PIXE. The data set of fine particulate matters obtained from the characterization was then analyzed using receptor modeling EPA PMF3 for source apportionment. Source apportionment identified 5 factors, i.e. soil (9.2 %), construction mixed with road dust (20.9 %), motor vehicles (31.5 %), biomass burning mixed with seasalt (30.9 %), and industry (7.5 %). Motor vehicles is the dominant sources that contributes to the fine particulate matter in Jakarta. (author)

  6. Trends in the elemental composition of fine particulate matter in Santiago, Chile, from 1998 to 2003.

    Science.gov (United States)

    Sax, Sonja N; Koutrakis, Petros; Rudolph, Pablo A Ruiz; Cereceda-Balic, Francisco; Gramsch, Ernesto; Oyola, Pedro

    2007-07-01

    Santiago, Chile, is one of the most polluted cities in South America. As a response, over the past 15 yr, numerous pollution reduction programs have been implemented by the environmental authority, Comisión Nacional del Medio Ambiente. This paper assesses the effectiveness of these interventions by examining the trends of fine particulate matter (PM(2.5)) and its associated elements. Daily fine particle filter samples were collected in Santiago at a downtown location from April 1998 through March 2003. Additionally, meteorological variables were measured continuously. Annual average concentrations of PM(2.5) decreased only marginally, from 41.8 microg/m3 for the 1998-1999 period to 35.4 microg/m3 for the 2002-2003 period. PM(2.5) concentrations exceeded the annual U.S. Environmental Protection Agency standard of 15 microg/m3. Also, approximately 20% of the daily samples exceeded the old standard of 65 microg/m3, whereas approximately half of the samples exceeded the new standard of 35 microg/m3 (effective in 2006). Mean PM(2.5) levels measured during the cold season (April through September) were three times higher than those measured in the warm season (October through March). Particulate mass and elemental concentration trends were investigated using regression models, controlling for year, month, weekday, wind speed, temperature, and relative humidity. The results showed significant decreases for Pb, Br, and S concentrations and minor but still significant decreases for Ni, Al, Si, Ca, and Fe. The larger decreases were associated with specific remediation policies implemented, including the removal of lead from gasoline, the reduction of sulfur levels in diesel fuel, and the introduction of natural gas. These results suggest that the pollution reduction programs, especially the ones related to transport, have been effective in reducing various important components of PM(2.5). However, particle mass and other associated element levels remain high, and it is thus

  7. Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Uski, O., E-mail: oskari.uski@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio (Finland); National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Jalava, P.I., E-mail: pasi.jalava@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio (Finland); Happo, M.S., E-mail: mikko.happo@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio (Finland); Torvela, T., E-mail: tiina.torvela@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio (Finland); Leskinen, J., E-mail: jani.leskinen@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio (Finland); Mäki-Paakkanen, J., E-mail: jorma.maki-paakkanen@thl.fi [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Tissari, J., E-mail: jarkko.tissari@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio (Finland); Sippula, O., E-mail: olli.sippula@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio (Finland); Lamberg, H., E-mail: heikki.lamberg@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio (Finland); Jokiniemi, J., E-mail: jorma.jokiniemi@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio (Finland); VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); and others

    2015-04-01

    Significant amounts of transition metals such as zinc, cadmium and copper can become enriched in the fine particle fraction during biomass combustion with Zn being one of the most abundant transition metals in wood combustion. These metals may have an important role in the toxicological properties of particulate matter (PM). Indeed, many epidemiological studies have found associations between mortality and PM Zn content. The role of Zn toxicity on combustion PM was investigated. Pellets enriched with 170, 480 and 2300 mg Zn/kg of fuel were manufactured. Emission samples were generated using a pellet boiler and the four types of PM samples; native, Zn-low, Zn-medium and Zn-high were collected with an impactor from diluted flue gas. The RAW 264.7 macrophage cell line was exposed for 24 h to different doses (15, 50,150 and 300 μg ml{sup −1}) of the emission samples to investigate their ability to cause cytotoxicity, to generate reactive oxygen species (ROS), to altering the cell cycle and to trigger genotoxicity as well as to promote inflammation. Zn enriched pellets combusted in a pellet boiler produced emission PM containing ZnO. Even the Zn-low sample caused extensive cell cycle arrest and there was massive cell death of RAW 264.7 macrophages at the two highest PM doses. Moreover, only the Zn-enriched emission samples induced a dose dependent ROS response in the exposed cells. Inflammatory responses were at a low level but macrophage inflammatory protein 2 reached a statistically significant level after exposure of RAW 264.7 macrophages to ZnO containing emission particles. ZnO content of the samples was associated with significant toxicity in almost all measured endpoints. Thus, ZnO may be a key component producing toxicological responses in the PM emissions from efficient wood combustion. Zn as well as the other transition metals, may contribute a significant amount to the ROS responses evoked by ambient PM. - Highlights: • Zinc powder was added into the

  8. Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro

    International Nuclear Information System (INIS)

    Significant amounts of transition metals such as zinc, cadmium and copper can become enriched in the fine particle fraction during biomass combustion with Zn being one of the most abundant transition metals in wood combustion. These metals may have an important role in the toxicological properties of particulate matter (PM). Indeed, many epidemiological studies have found associations between mortality and PM Zn content. The role of Zn toxicity on combustion PM was investigated. Pellets enriched with 170, 480 and 2300 mg Zn/kg of fuel were manufactured. Emission samples were generated using a pellet boiler and the four types of PM samples; native, Zn-low, Zn-medium and Zn-high were collected with an impactor from diluted flue gas. The RAW 264.7 macrophage cell line was exposed for 24 h to different doses (15, 50,150 and 300 μg ml−1) of the emission samples to investigate their ability to cause cytotoxicity, to generate reactive oxygen species (ROS), to altering the cell cycle and to trigger genotoxicity as well as to promote inflammation. Zn enriched pellets combusted in a pellet boiler produced emission PM containing ZnO. Even the Zn-low sample caused extensive cell cycle arrest and there was massive cell death of RAW 264.7 macrophages at the two highest PM doses. Moreover, only the Zn-enriched emission samples induced a dose dependent ROS response in the exposed cells. Inflammatory responses were at a low level but macrophage inflammatory protein 2 reached a statistically significant level after exposure of RAW 264.7 macrophages to ZnO containing emission particles. ZnO content of the samples was associated with significant toxicity in almost all measured endpoints. Thus, ZnO may be a key component producing toxicological responses in the PM emissions from efficient wood combustion. Zn as well as the other transition metals, may contribute a significant amount to the ROS responses evoked by ambient PM. - Highlights: • Zinc powder was added into the pure

  9. Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait

    Science.gov (United States)

    Lalande, Catherine; Nöthig, Eva-Maria; Bauerfeind, Eduard; Hardge, Kristin; Beszczynska-Möller, Agnieszka; Fahl, Kirsten

    2016-08-01

    Time-series sediment traps were deployed at 4 depths in the eastern Fram Strait from July 2007 to June 2008 to investigate variations in the magnitude and composition of the sinking particulate matter from upper waters to the seafloor. Sediment traps were deployed at 196 m in the Atlantic Water layer, at 1296 and 2364 m in the intermediate and deep waters, and at 2430 m on a benthic lander in the near-bottom layer. Fluxes of total particulate matter, particulate organic carbon, particulate organic nitrogen, biogenic matter, lithogenic matter, biogenic particulate silica, calcium carbonate, dominant phytoplankton cells, and zooplankton fecal pellets increased with depth, indicating the importance of lateral advection on fluxes in the deep Fram Strait. The lateral supply of particulate matter was further supported by the constant fluxes of biomarkers such as brassicasterol, alkenones, campesterol, β-sitosterol, and IP25 at all depths sampled. However, enhanced fluxes of diatoms and appendicularian fecal pellets from the upper waters to the seafloor in the presence of ice during spring indicated the rapid export (15-35 days) of locally-produced large particles that likely contributed most of the food supply to the benthic communities. These results show that lateral supply and downward fluxes are both important processes influencing the transport of particulate matter to the seafloor in the deep eastern Fram Strait, and that particulate matter size dictates the prevailing sinking process.

  10. Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects.

    Science.gov (United States)

    Bates, Josephine T; Weber, Rodney J; Abrams, Joseph; Verma, Vishal; Fang, Ting; Klein, Mitchel; Strickland, Matthew J; Sarnat, Stefanie Ebelt; Chang, Howard H; Mulholland, James A; Tolbert, Paige E; Russell, Armistead G

    2015-11-17

    Exposure to atmospheric fine particulate matter (PM2.5) is associated with cardiorespiratory morbidity and mortality, but the mechanisms are not well understood. We assess the hypothesis that PM2.5 induces oxidative stress in the body via catalytic generation of reactive oxygen species (ROS). A dithiothreitol (DTT) assay was used to measure the ROS-generation potential of water-soluble PM2.5. Source apportionment on ambient (Atlanta, GA) PM2.5 was performed using the chemical mass balance method with ensemble-averaged source impact profiles. Linear regression analysis was used to relate PM2.5 emission sources to ROS-generation potential and to estimate historical levels of DTT activity for use in an epidemiologic analysis for the period of 1998-2009. Light-duty gasoline vehicles (LDGV) exhibited the highest intrinsic DTT activity, followed by biomass burning (BURN) and heavy-duty diesel vehicles (HDDV) (0.11 ± 0.02, 0.069 ± 0.02, and 0.052 ± 0.01 nmol min(-1) μg(-1)source, respectively). BURN contributed the largest fraction to total DTT activity over the study period, followed by LDGV and HDDV (45, 20, and 14%, respectively). DTT activity was more strongly associated with emergency department visits for asthma/wheezing and congestive heart failure than PM2.5. This work provides further epidemiologic evidence of a biologically plausible mechanism, that of oxidative stress, for associations of adverse health outcomes with PM2.5 mass and supports continued assessment of the utility of the DTT activity assay as a measure of ROS-generating potential of particles. PMID:26457347

  11. Characterization and in vitro biological effects of concentrated particulate matter from Mexico City

    Science.gov (United States)

    De Vizcaya-Ruiz, A.; Gutiérrez-Castillo, M. E.; Uribe-Ramirez, M.; Cebrián, M. E.; Mugica-Alvarez, V.; Sepúlveda, J.; Rosas, I.; Salinas, E.; Garcia-Cuéllar, C.; Martínez, F.; Alfaro-Moreno, E.; Torres-Flores, V.; Osornio-Vargas, A.; Sioutas, C.; Fine, P. M.; Singh, M.; Geller, M. D.; Kuhn, T.; Miguel, A. H.; Eiguren-Fernandez, A.; Schiestl, R. H.; Reliene, R.; Froines, J.

    Coarse and fine particles were collected using an ambient particle concentrator (VACES system) in the north, center and south regions of Mexico City during May and November of 2003 with the aim of collecting enough particulate matter (PM) to examine their chemical and physical characteristics, biological content, and toxicity potential. The chemical, morphological and biological composition of PM was determined, together with the redox activity, induction of apoptosis and DNA damage. Carbonaceous species determined by thermal-optical transmittance (TOT) showed that the highest concentrations were found in PM 2.5 from the north and in PM 10 from the center. When analyzed by inductively coupling plasma (ICP), levels of metals were higher in the coarse fraction, mainly in the north. Morphological analysis by Scanning Electron Microscope & Energy Dispersive X-ray Spectrometer (SEM-EDX) is shown. Bacteria, fungi and endotoxin were present mostly in the coarse samples from the north. Fine PM had higher redox activity, than the coarse PM assessed by the dithiothreitol (DTT) assay. Early apoptotic cell death assessed by annexin V was observed in A549 cells exposed to PM from all regions, particularly with those collected in May. The fine fraction from the south induced higher apoptotic cell death compared to the coarse fraction, in contrast, the coarse fraction from the north induced significantly higher apoptosis than the fine fraction. All PM samples induced DNA damage assessed by the comet assay on THP-1 cells when exposed to a concentration of 10 μg/mL, the highest DNA damage was produced by both particle fractions collected in the north in May and November. In conclusion, PM from the north showed a higher metal and biological content, apoptotic cell death induction and more extensive DNA damage. Also, fine PM fractions from all sampled regions showed more redox activity than the coarse fraction. In summary, location, season and size of PM collection influenced their

  12. A Novel High-Throughput Approach to Measure Hydroxyl Radicals Induced by Airborne Particulate Matter

    Directory of Open Access Journals (Sweden)

    Yeongkwon Son

    2015-10-01

    Full Text Available Oxidative stress is one of the key mechanisms linking ambient particulate matter (PM exposure with various adverse health effects. The oxidative potential of PM has been used to characterize the ability of PM induced oxidative stress. Hydroxyl radical (•OH is the most destructive radical produced by PM. However, there is currently no high-throughput approach which can rapidly measure PM-induced •OH for a large number of samples with an automated system. This study evaluated four existing molecular probes (disodium terephthalate, 3′-p-(aminophenylfluorescein, coumarin-3-carboxylic acid, and sodium benzoate for their applicability to measure •OH induced by PM in a high-throughput cell-free system using fluorescence techniques, based on both our experiments and on an assessment of the physicochemical properties of the probes reported in the literature. Disodium terephthalate (TPT was the most applicable molecular probe to measure •OH induced by PM, due to its high solubility, high stability of the corresponding fluorescent product (i.e., 2-hydroxyterephthalic acid, high yield compared with the other molecular probes, and stable fluorescence intensity in a wide range of pH environments. TPT was applied in a high-throughput format to measure PM (NIST 1648a-induced •OH, in phosphate buffered saline. The formed fluorescent product was measured at designated time points up to 2 h. The fluorescent product of TPT had a detection limit of 17.59 nM. The soluble fraction of PM contributed approximately 76.9% of the •OH induced by total PM, and the soluble metal ions of PM contributed 57.4% of the overall •OH formation. This study provides a promising cost-effective high-throughput method to measure •OH induced by PM on a routine basis.

  13. Fine particulate matter components and emergency department visits among a privately insured population in Greater Houston.

    Science.gov (United States)

    Liu, Suyang; Ganduglia, Cecilia M; Li, Xiao; Delclos, George L; Franzini, Luisa; Zhang, Kai

    2016-10-01

    Although adverse health effects of PM2.5 (particulate matter with aerodynamic diameter less than 2.5μm) mass have been extensively studied, it remains unclear regarding which PM2.5 components are most harmful. No studies have reported the associations between PM2.5 components and adverse health effects among a privately insured population. In our study, we estimated the short-term associations between exposure to PM2.5 components and emergency department (ED) visits for all-cause and cause-specific diseases in Greater Houston, Texas, during 2008-2013 using ED visit data extracted from a private insurance company (Blue Cross Blue Shield Texas [BCBSTX]). A total of 526,453 ED visits were included in our assessment, with an average of 236 (±63) visits per day. We selected 20 PM2.5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network site located in Houston, and then applied Poisson regression models to assess the previously mentioned associations. Interquartile range increases in bromine (0.003μg/m(3)), potassium (0.048μg/m(3)), sodium ion (0.306μg/m(3)), and sulfate (1.648μg/m(3)) were statistically significantly associated with the increased risks in total ED of 0.71% (95% confidence interval (CI): 0.06, 1.37%), 0.71% (95% CI: 0.21, 1.22%), 1.28% (95% CI: 0.34, 2.24%), and 1.22% (95% CI: 0.23, 2.23%), respectively. Seasonal analysis suggested strongest associations occurred during the warm season. Our findings suggest that a privately insured population, presumably healthier than the general population, may be still at risk of adverse health effects due to exposure to ambient PM2.5 components. PMID:27235902

  14. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P agents, (i.e Benzo[a]Pyrene, Indeno[1,2,3-cd]Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene and Benzo[g,h,i]Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ) concentration provide a better estimation of carcinogenicity activities; health risk to adults and children associated with PAHs inhalation was assessed by taking into account the lifetime average daily dose and corresponding incremental lifetime cancer risk (ILCR). The ILCR was within the acceptable range (10-6-10-4), indicating a low health risk to residents in these areas.

  15. Mercury in particulate matter over Polish zone of the southern Baltic Sea

    Science.gov (United States)

    Beldowska, M.; Saniewska, D.; Falkowska, L.; Lewandowska, A.

    2012-01-01

    Important Hg transformations can occur at the air-water interface where polluted terrestrial air masses meet humid, halogen-rich marine air masses over the southern Baltic Sea. These chemical and physical processes include gas-to-particle conversion that led to an increase of Hg associated with coarse particles, which due to higher dry deposition rates, enhanced local scale deposition and limited the transport of this toxic trace metal. Daily (24 h) sampling of size-segregated atmospheric particles revealed the sea to be a sink for Hg during winter months and as a source of Hg during summer months. Poland is one of the major Hg emitters among the Baltic States according to International HELCOM Reports. Thus, important measurements in this region were conducted over a one-year period from December 18, 2007 to December 15, 2008. The range in concentrations of Hg in particulate matter (2-142 pg m -3) at the Polish site are comparable to other measurements at sites along the coastal areas of the Baltic Sea. Annual Hg(p) represents 1% of the total atmospheric Hg (Hg TOT) under unpolluted or background ambient conditions. A major source of atmospheric Hg in this area is the combustion of fossil fuels, especially coal burning used for home heating. This was clearly seen in the statistically higher mean concentration of 24 pg m -3 observed during the heating season compared to the 15 pg m -3 measured during the non-heating season. Construction activities e.g., cement manufacturing, gravel extraction, and waste incineration during the warm season strongly influenced Hg concentrations and led to an increase in Hg(p) on working days compared to weekend days.

  16. Molecular composition of sugars in atmospheric particulate matter from interior Alaska

    Science.gov (United States)

    Haque, Md. Mozammel; Kawamura, Kimitaka; Kim, Yongwon

    2015-04-01

    Sugars can account for 0.5-8% of carbon in atmospheric particulate matter, affecting the earth climate, air quality and public health. Total of 33 total suspended particle (TSP) samples were collected from Fairbanks, Alaska in June 2008 to June 2009 using a low volume air sampler. Here, we report the molecular characteristics of anhydro-sugars (levoglucosan, galactosan and mannosan), primary saccharides (xylose, fructose, glucose, sucrose and trehalose) and sugar alcohols (erythritol, arabitol, mannitol and inositol). The average contribution of sugars to the organic carbon (OC) was also determined to be 0.92%. Sugar compounds were measured using solvent extraction/TMS-derivatization technique followed by gas chromatography-mass spectrometry (GC-MS) determination. The concentrations of total quantified sugar compounds ranged from 2.3 to 453 ng m-3 (average 145 ng m-3). The highest concentration was recorded for levoglucosan in summer, with a maximum concentration of 790 ng m-3 (average 108 ng m-3). Levoglucosan, which is specifically formed by a pyrolysis of cellulose, has been used as an excellent tracer of biomass burning. The highest level of levoglucosan indicates a significant contribution of biomass burning in ambient aerosols. Galactosan (average 20 ng m-3) and mannosan (average 27 ng m-3), which are also formed through the pyrolysis of cellulose/hemicelluloses, were identified in all samples. The average concentrations of arabitol, mannitol, glucose and sucrose were also found 14.7, 14.6, 14.1 and 16.8 ng m-3, respectively. They have been proposed as tracers for resuspension of surface soil and unpaved road dust, which contain biological materials including fungi and bacteria. These results suggest that there is some impact of bioaerosols on climate over Interior Alaska. We will also measure water-soluble organic carbon (WSOC) and inorganic ions for all samples.

  17. Toxicity assessment of atmospheric particulate matter in the Mediterranean and Black Seas open waters.

    Science.gov (United States)

    Mesquita, Sofia R; Dachs, Jordi; van Drooge, Barend L; Castro-Jiménez, Javier; Navarro-Martín, Laia; Barata, Carlos; Vieira, Natividade; Guimarães, Laura; Piña, Benjamin

    2016-03-01

    Atmospheric deposition of particulate matter (PM) is recognized as a relevant input vector for toxic compounds, such as polycyclic aromatic hydrocarbons (PAHs), into the marine environment. In this work we aimed to analyse the biological activity and potential adverse effects of PM constituents to aquatic organisms. Organic extracts of atmospheric PM samples from different sub-basins of the Mediterranean and Black Seas were screened using different toxicological tests. A yeast-based assay (AhR-RYA) revealed that dioxin-like activity correlated with the concentration of total PAHs in the PM samples, as well as with their predicted toxic equivalent values (TEQs). Although the zebrafish embryotoxicity test (the ZET assay) showed no major phenotypical adverse effects, up-regulation of mRNA expression of cyp1a, fos and development-related genes (previously described as related to PM toxicity) was observed in exposed embryos when compared to controls. Results showed that mRNA patterns of the studied genes followed a similar geographic distribution to both PAH content and dioxin-like activity of the corresponding extracts. The analysis also showed a distinct geographical pattern of activation of pancreatic markers previously related to airborne pollution, probably indicating a different subset of uncharacterized particle-bound toxicants. We propose the combination of the bioassays tested in the present study to be applied to future research with autochthonous species to assess exposure and potential toxic effects of ambient PM. The present study emphasizes the need for more in-depth studies into the toxic burden of atmospheric PM on aquatic ecosystems, in order to improve future regulatory guidelines. PMID:26745302

  18. A bacterial bioreporter panel to assay the cytotoxicity of atmospheric particulate matter

    Science.gov (United States)

    Kessler, Nivi; Schauer, James J.; Yagur-Kroll, Sharon; Melamed, Sahar; Tirosh, Ofir; Belkin, Shimshon; Erel, Yigal

    2012-12-01

    Numerous studies have demonstrated that elevated concentrations of suspended atmospheric particulate matter (PM) are associated with adverse health effects. In order to minimize the adverse public health effects of atmospheric PM by exposure management, there is a need for a greater understanding of the toxic mechanisms and the components that are responsible for the toxic effects. The aim of this study was to utilize bioassay techniques to investigate these aspects. For this purpose a reporter panel of 9 genetically engineered bacterial (Escherichia coli) strains was composed. Each panel member was designed to report on a different stress condition with a measurable light signal produced by the luciferase enzyme. Toxic mechanisms and components were studied using six anthropogenic PM source samples, including two vehicle combustion particles, three coal fly ash (CFA) samples and an urban dust sample. The most prominent outcome of the panel exposure results were broad panel responses observed for two of the CFA samples, indicating oxidative stress, respiration inhibition and iron deficiency. These responses were relieved when the samples were treated with EDTA, a non-specific metal chelator, suggesting the involvement of metals in the observed effects. Bioavailability analysis of the samples suggests that chromium was related to the toxic responses induced by two of the CFA samples. Oxidative stress was also observed in several samples of ambient atmospheric aerosols and excess metal toxicity in an urban dust sample collected in a parking lot. The reporter panel approach, as demonstrated in this study, has the potential of providing novel insights as to the mechanisms of atmospheric PM toxicity. Furthermore, combining the panel's results with bioavailability data can enlighten about the role of different PM components in the observed toxicity.

  19. Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran

    Science.gov (United States)

    Alizadeh-Choobari, O.; Bidokhti, A. A.; Ghafarian, P.; Najafi, M. S.

    2016-09-01

    Being hemmed in on two sides by high mountains, the urban area of Tehran is characterized by high levels of particulate matter and gaseous pollutants, which have adverse consequences on human health, ecosystems and environment. Using air quality measurements taken in different regions of Tehran, spatial and temporal variations of particulate matter and gaseous pollutants are analyzed to identify the typical climatological aspects of air pollutants. In terms of particulate matter concentrations, South Tehran is more polluted than Central to North Tehran, while West Tehran is more polluted than the East. Concentrations of particles in North Tehran are lower in the midday compared to the midnight, whereas the opposite is true in South Tehran. The observed annual mean concentrations of PM2.5 and PM10 in North Tehran were 37.5 and 76.3 μg m-3, respectively, which are substantially greater than the national annual mean safety limits of 10 μg m-3 for PM2.5 and 20 μg m-3 for PM10. The observed high levels of particulate matter underline the essential need for a coordinated action to reduce the rapidly increasing air pollution over the growing urban area of Tehran. Noticeable monthly (seasonal) variations are evident in the observed PM10 concentrations, with a minimum of 61.5 μg m-3 in March (spring) and a maximum of 82.9 μg m-3 in July (summer), reflecting contribution of weather conditions. Analyzing daily PM2.5 (PM10) concentrations indicate that mid-week Wednesdays (Mondays) are the most polluted days. The higher mid-week concentrations reflect contribution of heavy vehicular traffic, industrial operation and increased commercial activities. Strong diurnal variations in the concentrations of particulate matter in North Tehran are detected, varying from a peak in late night to a minimum in late afternoon, indicating contribution of deeper daytime convective boundary layer and stronger winds in dispersion of particles.

  20. A comprehensive study of the characterization of particulate matter emissions from a Delmarva broiler poultry operation

    Science.gov (United States)

    Carter, Shannon E.

    Particulate matter (PM) emissions from agricultural practices, including those from animal feeding operations (AFO's) have become an increasingly important topic, and has generated considerable interest from local and state agencies, as well as, the local community over the past decade. Because of growth in population, and an increase in commercial and residential development within close proximity to these operations, which house a large number of animals in confinement, and because of a better understanding of the effects of exposure to airborne contaminants on health, this has lead to an increase in concerns and a demand for more research to be conducted on PM from AFO's. Particulate matter generated within, and emitted from, AFO's can carry with it various components including metals and microorganisms that can negatively affect health. This research was conducted in order to verify if PM from a broiler poultry operation on Delmarva has the potential to become a health concern. The first step was to determine concentrations of two size segregated fractions of PM from indoor and outdoor sampling sites over four seasonal periods, early summer (ES), late summer (LS), Fall (F), and Winter (W). Both PM10 and PM2.5 were collected because of their classification from the Environmental Protection Agency as having the ability to cause significant health effects with short-term exposure. Next, temporal and spatial characteristics were investigated to determine their effects on PM concentrations over the four seasonal periods. Following this, the chemical composition and morphology of PM10 and PM2.5 generated from the broiler poultry operation was investigated. Finally, further detailed information was obtained on arsenic speciation and oxidation state in PM to investigate toxicity. Arsenic use in the poultry industry has been occurring for a number of decades, and is most frequently administered in the organic form. However, studies have shown that these organo

  1. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin

    International Nuclear Information System (INIS)

    Epidemiologic studies have shown associations between ambient particulate matter (PM) and adverse health outcomes including increased mortality, emergency room visits, and time lost from school and work. The mechanisms of PM-related health effects are still incompletely understood, but a hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. While the adverse effects from PM have historically been associated with the airborne concentration of PM and more recently fine-particle PM, we considered it relevant to develop an assay to quantitatively measure the ability of PM to catalyze ROS generation as the initial step in the induction of oxidative stress. This ability of PM could then be related to different sources, chemical composition, and physical and spatial/temporal characteristics in the ambient environment. The measurement of ROS-forming ability in relation to sources and other factors will have potential relevance to control of redox-active PM. If oxidative stress represents a relevant mechanism of toxicity from PM, the measurement of redox activity represents a first step in the elucidation of the subsequent downstream processes. We have developed an assay for PM redox activity, utilizing the reduction of oxygen by dithiothreitol which serves as an electron source. We have found that PM will catalyze the reduction of oxygen and have examined the distribution and chemical characteristics of the redox activity of PM fractions collected in different sites in the Los Angeles Basin. Samples of concentrated coarse, fine, and ultrafine PM, obtained with aerosol concentrators, were studied with regard to their chemical properties and redox activity. Redox activity was highest in the ultrafine fraction, in agreement with results indicating ultrafines were the most potent toward inducing that heme oxygenase expression and depleting

  2. Air Quality System (AQS) ambient observations: 2007 PM2.5

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ambient PM2.5 (particulate matter less than 2.5 microns) concentrations from the national ambient air quality monitoring networks stored in the Air Quality System...

  3. Relating hygroscopicity and composition of organic aerosol particulate matter

    CERN Document Server

    Duplissy, J; Prevot, A S H; Barmpadimos, I; Jimenez, J L; Gysel, M; Worsnop, D R; Aiken, A C; Tritscher, T; Canagaratna, M R; Collins, D R; Alfarra, M R; Metzger, A; Tomlinson, J; DeCarlo, P F; Weingartner, E; Baltensperger, U

    2011-01-01

    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f(44)). m/z 44 is due mostly to the ion fragment CO(2)(+) for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfrau-joch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation b...

  4. Export of particulate matter from Tokyo Bay studied with radiochemical tracers, 210Po and 210Pb

    International Nuclear Information System (INIS)

    Sediment traps were deployed at the mouth of Tokyo Bay in the winter of 1991 and the summer of 1993, each for a few days. The fluxes of total mass, 210Pb (parent) and 210Po (daughter) increased with depth, especially in the near-bottom layer. All the fluxes of total mass, 210Po and 210Pb decreased offshore at the same depth, while they increased offshore at the same distance above the bottom. The observed particulate flux of 210Pb in the water column was one to two orders of magnitude larger than the sedimentation rate at the bottom. The activity ratio of 210Po/210Pb in the near-bottom layer was largest at each station and did not vary from station to station. These findings indicate that enormous amounts of particulate matter are transported fairly quickly offshore through the near-bottom layer at the entrance. The variation in total mass flux was well synchronized with the tidal cycle at a mid-depth of 85 m in the water column of 240 m in winter of 1991, where the fluxes were larger during ebb and smaller during flood tides. The particulate flux of 210Po was also larger by a factor of about 2 during ebb, while the concentration of 210Pb was about 40 % larger during flood than ebb. These findings indicate that the tidal current is a major conveyor of particulate matter at the mid-depths. The tidal variation, however, was weak for the results obtained in the near-bottom layer in 1993, where much particulate matter was transported toward the Kuroshio region along the valley of Tokyo Bay. Our results suggest that even bays having narrow mouths, such as Tokyo Bay, are a large source of particulate material to the open oceans. (author)

  5. Elemental quantification of airborne particulate matter in Bandung and Lembang area

    International Nuclear Information System (INIS)

    ELEMENTAL QUANTIFICATION OF AIRBORNE PARTICULATE MATTER IN BANDUNG AND LEMBANG REGION: The contaminated airborne particulates by toxic gases and elements have a potential affect to the human health. Some toxic elements related to air pollution have carcinogenic affect. The quantification of those elements is important to monitor a level of pollutant contained in the airborne particulate. The aim of this work is to analyze the air particulate sample using instrumental neutron activation analysis and other related technique. Two sampling points of Bandung and Lembang that represent and urban and rural area respectively have been chosen to collect the air particulate sample. The samplings were carried out using Gent Stacked Filter Unit Sampler for 24 hours, and two cellulose filters of 8 μm and 0.45 μm pore size were used. Trace elements in the sample collected were determined using NAA based on a comparative method. Elemental distribution on PM2.5 and PM10 fraction of airborne particulate was analyzed, the enrichment factor was calculated using Al as reference elements, and the black carbons contents were determined using FEL Smoke Stain Reflectometer analyzed. The results are presented and discussed. (author)

  6. Particulate organic matter dynamics in coastal systems of the northern Beibu Gulf

    Science.gov (United States)

    Kaiser, David; Unger, Daniela; Qiu, Guanglong

    2014-07-01

    Estuarine particle fluxes are an integral part of land-ocean-connectivity and influence coastal environmental conditions. In areas with strong anthropogenic impact they may contribute to coastal eutrophication. To investigate the particulate biogeochemistry of a human affected estuary, we sampled suspended, sedimentary and plant particulate matter along the land-ocean continuum from Nanliu River to Lianzhou Bay in southern China. Riverine particle fluxes exceed inputs from land based pond aquaculture. Elemental (C/N) and isotopic composition of particulate organic carbon (δ13C) and total nitrogen (δ15N) showed that suspended and sedimentary organic matter (OM) mainly derive from freshwater and marine phytoplankton, with minor contributions from terrestrial and aquaculture derived particles. Amino acid composition indicates subseasonal variability of production and freshness of phytoplankton OM. Strongest compositional changes of suspended particles are associated with storm-related extreme precipitation events, which introduce soil derived OM. High concentrations of chlorophyll a reflect eutrophic conditions in riverine and coastal waters. Human impact results in high δ15N signals in suspended, sedimentary and plant particulate matter. Using these in a comparison with two little affected sites shows that anthropogenic influence disperses from the Nanliu River to remote estuaries and mangrove areas. Our results suggest that autochthonous production binds anthropogenic nutrients in particles that are transported along the coast.

  7. Particulate matter test in small volume parenterals: critical aspects in sampling methodology.

    Science.gov (United States)

    Pavanetto, F; Conti, B; Genta, I; Ponci, R; Montanari, L; Grassi, M

    1989-06-01

    The following critical steps of the particulate matter test sampling methodology for small volume parenteral products (SVPs), conduct by light blockage method, were considered: 1) reliability of the small volume aspirator sampler for different sample volumes; 2) particulate matter distribution inside each ampoule in liquid products (8 liquid SVPs tested); 3) influence of the sample preparation method on the evaluation of the final contamination of the sample. Nine liquid SVPs were tested by preparing samples following the three U.S.P. XXI methods: 1) unit as it is (direct analysis), II) unit diluted, III) sample obtained by combining several units. Particles counts were performed by a HIAC/ROYCO model 3000 counter fitted with a small volume sampler. The validation of the sampler shows that it should be improved. A more accurate and strict validation than the one stated by U.S.P. XXI is suggested. The particulate matter distribution in liquid products is found to be uniform inside the ampoule in the size range greater than or equal to 2 microns-greater than or equal to 10 microns; the analysis can be performed examining only a portion of the whole content. The three sample preparation methods lead to significantly different contamination results. The particulate control test should be conduct by direct analysis, as it is carried out under the same conditions as for product use. The combining method (III) is suggested for products of less than 2 ml volume that cannot be examined by direct analysis. PMID:2803449

  8. ON LINE MEASUREMENT OF PRIMARY FINE PARTICULATE MATTER; FINAL

    International Nuclear Information System (INIS)

    The measurement of fine particulate in pulverized coal flames has several applications of importance. These include but are not limited to: (1) The detection of fine particulate in the effluent for pollution control; (2) The detection of soot and fuel burnout in real time within a boiler; and (3) The quantification of soot within coal flame for improved understanding of pulverized coal flame heat transfer and soot modeling. A method has been investigated using two-color extinction along a line of sight within the flame which provides a continuous real-time measurement of the soot concentration. The method uses two inexpensive HeNe lasers and simple light detectors. The results of testing the method on a pilot scale 0.2 MW pulverized coal reactor demonstrate the method is working well in a qualitative sense and an error analysis performed on the uncertainty of the assumed values demonstrates the method to be accurate to within(+-) 30%. Additional experiments designed to quantify the measurement more accurately are ongoing. Measurements at the end of the reactor just prior to the exit showed soot could not be detected until the overall equivalence ratio became greater than 1.0. The detection limit for the method was estimated to be 1 x 10(sup -8) soot volume fraction. Peak soot concentration was found to approach a level of 0.88 x 10(sup -6) at the sootiest condition. The method was used to obtain an axial profile of soot concentration aligned with the down-fired pulverized coal flame for three different flame swirls of 0, 0.5 and 1.5 and an overall equivalence ratio of 1.2. The axial measurements showed the soot concentration to increase initially and level off to a constant maximum value. At 0.5 swirl the soot volume fraction increased more rapidly near the burner and both the 0.5 and 1.5 swirl cases showed that soot had reached a maximum by 0.9 m, but the 0 swirl soot concentration was still increasing. Previous measurements of species and velocity in the reactor

  9. Particulate Matter Pollution and Population Exposure Assessment over Mainland China in 2010 with Remote Sensing

    OpenAIRE

    Ling Yao; Ning Lu

    2014-01-01

    The public is increasingly concerned about particulate matter pollution caused by respirable suspended particles (PM10) and fine particles (PM2.5). In this paper, PM10 and PM2.5 concentration are estimated with remote sensing and individual air quality indexes of PM10 and PM2.5 (IPM10 and IPM2.5) over mainland China in 2010 are calculated. We find that China suffered more serious PM2.5 than PM10 pollution in 2010, and they presented a spatial differentiation. Consequently, a particulate-base...

  10. Collaborative monitoring study of airborne particulate matters among seven Asian countries

    International Nuclear Information System (INIS)

    Seven Asian countries have been collaborating in collecting airborne particulate matter (APM) in their individual countries and analyzing them by neutron activation analysis as a common analytical tool. APM samples were collected into two fractions of fine and coarse grains (PM2 and PM2- 10, respectively). Analytical data were compared from several viewpoints such as particulate sizes, locality of sampling sites (either urban or rural) and geographical location of participating countries. Chemical composition and their monthly variations as well as mass concentrations appear to be highly characteristic for individual sampling sites, suggesting that NAA data are suitable for evaluating the air quality in each site. (author)

  11. Relating hygroscopicity and composition of organic aerosol particulate matter

    Directory of Open Access Journals (Sweden)

    J. Duplissy

    2010-08-01

    Full Text Available A hygroscopicity tandem differential mobility analyzer (HTDMA was used to measure the water uptake (hygroscopicity of secondary organic aerosol (SOA formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS, and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44. m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF or "κorg" parameter, and f44 was determined and is given by κorg=2.2×f44−0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass.

  12. [Analyzer Design of Atmospheric Particulate Matter's Concentration and Elemental Composition Based on β and X-Ray's Analysis Techniques].

    Science.gov (United States)

    Ge, Liang-quan; Liu, He-fan; Zeng, Guo-qiang; Zhang, Qing-xian; Ren, Mao-qiang; Li, Dan; Gu, Yi; Luo, Yao-yao; Zhao, Jian-kun

    2016-03-01

    Monitoring atmospheric particulate matter requires real-time analysis, such as particulate matter's concentrations, their element types and contents. An analyzer which is based on β and X rays analysis techniques is designed to meet those demands. Applying β-ray attenuation law and energy dispersive X-ray fluorescence analysis principle, the paper introduces the analyzer's overall design scheme, structure, FPGA circuit hardware and software for the analyzer. And the analyzer can measure atmospheric particulate matters' concentration, elements and their contents by on-line analysis. Pure elemental particle standard samples were prepared by deposition, and those standard samples were used to set the calibration for the analyzer in this paper. The analyzer can monitor atmospheric particulate matters concentration, 30 kinds of elements and content, such as TSP, PM10 and PM2.5. Comparing the measurement results from the analyzer to Chengdu Environmental Protection Agency's monitoring results for monitoring particulate matters, a high consistency is obtained by the application in eastern suburbs of Chengdu. Meanwhile, the analyzer are highly sensitive in monitoring particulate matters which contained heavy metal elements (such as As, Hg, Cd, Cr, Pb and so on). The analyzer has lots of characteristics through technical performance testing, such as continuous measurement, low detection limit, quick analysis, easy to use and so on. In conclusion, the analyzer can meet the demands for analyzing atmospheric particulate matter's concentration, elements and their contents in urban environmental monitoring. PMID:27400540

  13. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Science.gov (United States)

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  14. Deposition measurement of particulate matter in connection with corrosion studies.

    Science.gov (United States)

    Ferm, Martin; Watt, John; O'Hanlon, Samantha; De Santis, Franco; Varotsos, Costas

    2006-03-01

    A new passive particle collector (inert surrogate surface) that collects particles from all directions has been developed. It was used to measure particle deposition at 35 test sites as part of a project that examined corrosion of materials in order that variation in particulate material could be used in development of dose-response functions in a modern multi-pollutant environment. The project, MULTI-ASSESS, was funded by the EU to examine the effects of air pollution on cultural heritage. Passive samplers were mounted rain-protected, and both in wind-protected and wind-exposed positions, to match the exposure of the samples for corrosion studies. The particle mass and its chemical content (nitrate, ammonium, sulfate, calcium, sodium, chloride, magnesium and potassium) were analysed. The loss of light reflectance on the surrogate surface was also measured. Very little ammonium and potassium was found, and one or more anions are missing in the ion balance. There were many strong correlations between the analysed species. The mass of analysed water-soluble ions was fairly constant at 24% of the total mass. The particle mass deposited to the samplers in the wind-protected position was about 25% of the particles deposited to an openly exposed sampler. The Cl-/Na+ ratios indicate a reaction between HNO(3) and NaCl. The deposited nitrate flux corresponds to the missing chloride. The Ca2+ deposition equals the SO4(2-) deposition and the anion deficiency. The SO4(2-) deposition most likely originates from SO2 that has reacted with basic calcium-containing particles either before or after they were deposited. The particle depositions at the urban sites were much higher than in nearby rural sites. The deposited mass correlated surprisingly well with the PM(10) concentration, except at sites very close to traffic. PMID:16518649

  15. Examination of particulate matter and heavy metals and their effects in at-risk wards in Washington, DC

    Science.gov (United States)

    Greene, Natasha Ann

    One of the major contributions to pollution in the Washington, DC urban environment is particulate matter (PM). Quite often, ambient airborne toxics are closely associated with fine PM (PM2.5). We have performed high-resolution aerosol measurements of PM2.5 in four wards (Ward 1, 4, 5, and 7) of Washington, DC during two intensive observational periods (IOP). The first IOP occurred during the summer of 2003 (June 23rd to August 8th). The second IOP transpired during the late fall season of 2003 (October 20th to December 4 th). The measurement platform consisted of a Laser Particle Counter (LPC) and a Quartz Crystal Microbalance Cascade Impactor (QCM) to obtain both in-situ number and mass density distributions across the measurement sites. The data shows spatial distributions of particulate matter characterized as a function of size and mass properties. The QCM analyses show significant levels (> 15 mug/m3) of ward-averaged PM2.5 in Wards 4, 1, and 7 respectively during the summer IOP. However, all wards were less than the EPA National Ambient Air Quality Standard (NAAQS) of 15 mug/m 3 during the fall IOP ward-averaged measurements. Yet, investigations of the site-averaged measurements during the fall revealed some specific locations in Ward 4 that exceeded the NAAQS. Results also show that the aerosol mass density peaked in the 0.3 mum mode during the summer IOP and in the 0.15 mum mode during the fall IOP. The number density peaked in the 0.3--0.5 mum size range. Accordingly, the distributions have also been analyzed as a function of meteorological factors, such as wind speed and direction via NOAA HYSPLIT trajectories. One important attribute to this study is the evaluation of risks amongst IBC subgroups (youth, adults, elderly, black, white, hispanic, male, and female) for bath pediatric asthma rates and the onset of lung cancer over a lifetime (70-year period) when exposed to these levels of particulates. It has been determined that there are individual excess

  16. Bioaccumulation of cadmium bound to ferric hydroxide and particulate organic matter by the bivalve M. meretrix

    International Nuclear Information System (INIS)

    Ferric hydroxide and particulate organic matter are important pools of trace metals in sediments and control their accumulation by benthic animals. We investigated bioaccumulation of cadmium in bivalve Meretrix meretrix by using a simplified system of laboratory synthesized iron oxides and commercially obtained humic acids to represent the inorganic and organic matrix found in nature. The results showed that bioaccumulation characteristics were distinctly different for these two substrates. Bioaccumulation from ferric hydroxide was not observed at 70 and 140 mg/kg, while the clams started to absorb Cd at 140 mg/kg from organic matter and the bioaccumulation rate was faster than that from ferric hydroxide. Within 28 d, accumulation of Cd from organic matter appeared to reach a steady state after rising to a certain level, while absorption from ferric hydroxide appeared to follow a linear profile. The findings have implications about the assimilation of trace metals from sediments by benthic animals. - Highlights: ► Accumulation of Cd adsorbed on ferric hydroxide and particulate organics was studied. ► Bioaccumulation characteristics were distinctly different for the substrates. ► The result was attributed to different properties and bio-responses of the particles. ► Bivalves may not accumulate more metals associated with more bioavailable particles. - Bioaccumulation characteristics of adsorbed Cd on ferric hydroxide and particulate organic matter by bivalve M. meretrix are distinctly different.

  17. Concentrations of particulate matter and humic substances in deep groundwaters and estimated effects on the adsorption and transport of radionuclides

    International Nuclear Information System (INIS)

    The concentration of particulate matter such as colloids and microbes in deep Swedish groundwaters has been measured and has been found to be low in all waters. The results are summarized in this paper. The sorption capacity of relevant radionuclides on the particulate matter has been assessed based on many direct measurements and on comparisons with measurements on similar systems. The maximum transport capacity of nuclides by the particulate matters has been estimated for reversible as well as irreversible sorption of nuclides to particles. (au)

  18. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice. PMID:26681325

  19. Removal efficiency of particulate matters at different underlying surfaces in Beijing.

    Science.gov (United States)

    Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan

    2016-01-01

    Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity. PMID:26308922

  20. Multi-elemental semi-quantitative analyses of suspended particulate matter by glow discharge MS

    International Nuclear Information System (INIS)

    We report the possibilities for multi-elemental analysis of suspended particulate matter (SPM) by glow discharge mass spectrometry (GDMS). To cope with the small sample volume, SPM sample was deposited on the surface of a high purity (7N grade) indium electrode. NIST SRM 1648 Urban Particulate Matter was analyzed to evaluate the method. For 34 elements, GDMS results agreed well with their reference values within a factor of 2 from the major constituents (12.5 wt% of Si) to the trace constituents (down to 0.8 μg/g of Eu), even when using typical relative sensitivity factors (RSF). A total of 53 elements including halogens were analyzed using approximately 10 mg of SPM sample by GDMS with sub-μg/g sensitivity. (author)

  1. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    International Nuclear Information System (INIS)

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)

  2. Application of 2D-GCMS reveals many industrial chemicals in airborne particulate matter

    Science.gov (United States)

    Alam, Mohammed S.; West, Charles E.; Scarlett, Alan G.; Rowland, Steven J.; Harrison, Roy M.

    2013-02-01

    Samples of airborne particulate matter (PM2.5) have been collected in Birmingham, UK and extracted with dichloromethane prior to analysis by two-dimensional GC separation and TOFMS analysis. Identification of compounds using the NIST spectral library has revealed a remarkable diversity of compounds, some of which have not been previously reported in airborne analyses. Groups of compounds identified in this study include a large number of oxygenated VOC including linear and branched compounds, substituted aromatic compounds and alicyclic compounds, oxygenated polycyclic aromatic and alicyclic compounds, organic nitrogen compounds, branched chain VOC and substituted aromatic VOC, phthalates, organo-phosphates and organo-sulphate compounds. Many of the compounds identified are mass production chemicals, which due to their semi-volatility enter the atmosphere and subsequently partition onto pre-existing aerosol. Their contribution to the toxicity of airborne particulate matter is currently unknown but might be significant. The diverse industrial uses and potential sources of the identified compounds are reported.

  3. Evaluation of a portable photometer for estimating diesel particulate matter concentrations in an underground limestone mine.

    Science.gov (United States)

    Watts, Winthrop F; Gladis, David D; Schumacher, Matthew F; Ragatz, Adam C; Kittelson, David B

    2010-07-01

    A low cost, battery-operated, portable, real-time aerosol analyzer is not available for monitoring diesel particulate matter (DPM) concentrations in underground mines. This study summarizes a field evaluation conducted at an underground limestone mine to evaluate the potential of the TSI AM 510 portable photometer (equipped with a Dorr-Oliver cyclone and 1.0-mum impactor) to qualitatively track time-weighted average mass and elemental, organic, and total carbon (TC) measurements associated with diesel emissions. The calibration factor corrected correlation coefficient (R2) between the underground TC and photometer measurements was 0.93. The main issues holding back the use of a photometer for real-time estimation of DPM in an underground mine are the removal of non-DPM-associated particulate matter from the aerosol stream using devices, such as a cyclone and/or impactor and calibration of the photometer to mine-specific aerosol. PMID:20410071

  4. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Fernanda V.F.; Ardisson, Jose Domingos; Rodrigues, Paulo Cesar H.; Brito, Walter de; Macedo, Waldemar Augusto A.; Jacomino, Vanusa Maria F., E-mail: ferufv@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and {sup 57}Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. {sup 57}Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)

  5. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  6. Seasonal and spatial distribution of particulate organic matter in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, L.; Bhosle, N.B.; Matondkar, S.G.P.; Bhushan, R.

    . Mar. Syst.: 77(1-2); 2009; 137-147 Seasonal and spatial distribution of particulate organic matter in the Bay of Bengal Loreta Fernandes a,* , Narayan B. Bhosle a , S. G. Prabhu Matondkar a , Ravi Bhushan b a National Institute... result, low or no nutrients are injected into the surface waters thereby, influencing biological production (Prasanna Kumar et al., 2007). However, it is not known how these physical and chemical parameters influenced the quality and the quantity...

  7. Monitoring Automotive Particulate Matter Emissions with LiDAR: A Review

    OpenAIRE

    Claudio Mazzoleni; Hampden D. Kuhns; Hans Moosmüller

    2010-01-01

    Automotive particulate matter (PM) causes deleterious effects on health and visibility. Physical and chemical properties of PM also influence climate change. Roadside remote sensing of automotive emissions is a valuable option for assessing the contribution of individual vehicles to the total PM burden. LiDAR represents a unique approach that allows measuring PM emissions from in-use vehicles with high sensitivity. This publication reviews vehicle emission remote sensing measurements using ul...

  8. Dehydroepiandrosterone Protects Endothelial Cells against Inflammatory Events Induced by Urban Particulate Matter and Titanium Dioxide Nanoparticles

    OpenAIRE

    Elizabeth Huerta-García; Angélica Montiél-Dávalos; Ernesto Alfaro-Moreno; Gisela Gutiérrez-Iglesias; Rebeca López-Marure

    2013-01-01

    Particulate matter (PM) and nanoparticles (NPs) induce activation and dysfunction of endothelial cells characterized by inhibition of proliferation, increase of adhesion and adhesion molecules expression, increase of ROS production, and death. DHEA has shown anti-inflammatory and antioxidant properties in HUVEC activated with proinflammatory agents. We evaluated if DHEA could protect against some inflammatory events produced by PM10 and TiO2 NPs in HUVEC. Adhesion was evaluated by a coculture...

  9. A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases

    OpenAIRE

    2014-01-01

    Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major cont...

  10. Experimental Measure Of Drh And Crh Of Particulate Matter For Cultural Heritage Applications

    OpenAIRE

    CASATI, M.; Rovelli, G; D'Angelo, L.; Ferrero, L.; Perrone, MG; E. Bolzacchini

    2014-01-01

    Phase transitions and moisture adsorption property of Particulate Matter deposed on surfaces can determine decay process. Number of dissolution-crystallization cycles and time of wetness are very important decay-indicators. Deliquescence and crystallization of complex mixtures show an hysteresis behavior that depends on the chemical composition. In this work DRH and CRH experimental measurement of PM are used to compute decay-indicators for heritage materials. In this way t...

  11. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  12. Development of analytical techniques for the characterization of natural and anthropogenic compounds in fine particulate matter

    OpenAIRE

    Piazzalunga,

    2007-01-01

    Aerosol is of central importance for atmospheric chemistry and physics, for the biosphere, the climate and public health. The primary parameters that determine the environmental and health effects of aerosol particles are their concentration and chemical composition. In this work we have developed the analytical techniques to study particulate matter composition. The knowledge of PM composition can be useful to identify the main PM sources, the health risk and the formation or depositio...

  13. Rancang Bangun Alat Pereduksi Particulate Matter (PM) Gas Buang Mesin Diesel Dengan Metode Cyclone

    OpenAIRE

    Reza Revari; I Made Ariana

    2012-01-01

    Gas buang dari hasil proses pembakaran berpengaruh terhadap pencemaran udara dan lingkungan khususnya motor diesel. Proses pembakaran bahan bakar pada motor bakar menghasilkan gas buang yang mengandung unsur Nitrogen Oksida (NOx), Sulfur Oksida (SOx), Particulate Matter (PM), Karbon Monoksida (CO), dan Hidrokarbon (HC) yang bersifat mencemari udara. Agar motor diesel yang digunakan tidak mengakibatkan pencemaran udara berlebih, perlu dilakukan suatu penelitian menurunkan emisi gas buang motor...

  14. Foam fractionation efficiency of a vacuum airlift—Application to particulate matter removal in recirculating systems

    OpenAIRE

    Barrut, Bertrand; Blancheton, Jean-Paul; Callier, Myriam; Champagne, Jean-yves; Grasmick, Alain

    2013-01-01

    The accumulation of particulate organic matter (POM) in recirculating aquaculture systems (RAS) has become an important issue with the intensification of finfish production. The objective of this study was to assess the foam fractionation efficiency of a vacuum airlift in different conditions (POM concentrations, airflow rates, bubble sizes, water renewal rates and feed addition). In sea water, the vacuum airlift allowed removing 20% of the initial POM concentration per hour (foam fractionati...

  15. Trace elements in suspended particulate matter and liquid fraction of the Arno River waters

    International Nuclear Information System (INIS)

    The concentrations of 46 elements along the course of the Arno River (Tuscany, Italy) have been determined by means of Instrumental Neutron Activation Analysis. Both suspended particulate matter and liquid fraction have been investigated. No chemical treatment has been performed on the samples, either before or after irradiation. Anticoincidence techniques have been employed in the γ spectroscopy. Results are briefly discussed also from a methodological point of view. 4 references, 16 figures, 2 tables

  16. Impact of the 2002 Canadian Forest Fires on Particulate Matter Air Quality in Baltimore City

    OpenAIRE

    Sapkota, A.; Symons, J. M.; J. Kleissl; Wang, L.; Parlange, M. B.; Ondov, J.; Breysse, P. N.; Diette, G B; Eggleston, P.A.; T. J. Buckley, 2005

    2005-01-01

    With increasing evidence of adverse health effects associated with particulate matter (PM), the exposure impact of natural sources, such as forest fires, has substantial public health relevance. In addition to the threat to nearby communities, pollutants released from forest fires can travel thousands of kilometers to heavily populated urban areas. There was a dramatic increase in forest fire activity in the province of Quebec, Canada, during July 2002. The transport of PM released from these...

  17. Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules

    OpenAIRE

    O'Connor, Sean; O'Connor, Paula Fey; Feng, H. Amy; Ashley, Kevin

    2014-01-01

    An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 – 4 mg of National Institute of Standards and Technology Standard Reference Material® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were ...

  18. Chronic Residential Exposure to Particulate Matter Air Pollution and Systemic Inflammatory Markers

    OpenAIRE

    Hoffmann, Barbara; Moebus, Susanne; Dragano, Nico; Stang, Andreas; Möhlenkamp, Stefan; Schmermund, Axel; Memmesheimer, Michael; Bröcker-Preuss, Martina; Mann, Klaus; Erbel, Raimund; Jöckel, Karl-Heinz

    2009-01-01

    Background Long-term exposure to urban air pollution may accelerate atherogenesis, but mechanisms are still unclear. The induction of a low-grade systemic inflammatory state is a plausible mechanistic pathway. Objectives: We analyzed the association of residential long-term exposure to particulate matter (PM) and high traffic with systemic inflammatory markers. Methods We used baseline data from the German Heinz Nixdorf Recall Study, a population-based, prospective cohort study of 4,814 parti...

  19. Personal Exposure to Household Particulate Matter, Household Activities and Heart Rate Variability among Housewives

    OpenAIRE

    Huang, Ya-Li; Chen, Hua-Wei; Han, Bor-Cheng; Liu, Chien-Wei; Chuang, Hsiao-Chi; Lin, Lian-Yu; Chuang, Kai-Jen

    2014-01-01

    Background The association between indoor air pollution and heart rate variability (HRV) has been well-documented. Little is known about effects of household activities on indoor air quality and HRV alteration. To investigate changes in HRV associated with changes in personal exposure to household particulate matter (PM) and household activities. Methods We performed 24-h continuous monitoring of electrocardiography and measured household PM exposure among 50 housewives. The outcome variables...

  20. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis

    OpenAIRE

    Hamra, Ghassan B.; Guha, Neela; Cohen, Aaron; Laden, Francine; Raaschou-Nielsen, Ole; Jonathan M. Samet; Vineis, Paolo; Forastiere, Francesco; Saldiva, Paulo; Yorifuji, Takashi; Loomis, Dana

    2014-01-01

    Background: Particulate matter (PM) in outdoor air pollution was recently designated a Group I carcinogen by the International Agency for Research on Cancer (IARC). This determination was based on the evidence regarding the relationship of PM2.5 and PM10 to lung cancer risk; however, the IARC evaluation did not include a quantitative summary of the evidence. Objective: Our goal was to provide a systematic review and quantitative summary of the evidence regarding the relationship between PM an...

  1. The mass distribution of coarse particulate organic matter exported from an Alpine headwater stream

    OpenAIRE

    J. M. Turowski; A. Badoux; Bunte, K.; Rickli, C.; Federspiel, N.; M. Jochner

    2013-01-01

    Coarse particulate organic matter (CPOM) particles span sizes from 1 mm, with a dry mass less than 1 mg, to large logs and entire trees, which can have a dry mass of several hundred kilograms. Pieces of different size and mass play different roles in stream environments, from being the prime source of energy in stream ecosystems to macroscopically determining channel morphology and local hydraulics. We show that a single scaling exponent can describe the mass distribution of...

  2. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    OpenAIRE

    D.D. Lestiani; M. Santoso

    2011-01-01

    Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem....

  3. Elemental Constituents of Particulate Matter and Newborn's Size in Eight European Cohorts.

    OpenAIRE

    Pedersen, Marie; Basaga??a Flores, Xavier; Cirach, Marta; Sunyer Deu, Jordi; Nieuwenhuijsen, Mark J.; Kogevinas, Manolis; Slama, R??my

    2016-01-01

    BACKGROUND: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn's size have been little examined. OBJECTIVE: We aimed to investigate the associations of exposure to elemental constituents of PM with term low birth weight (LBW; weight < 2,500 g among births after 37 weeks of gestation), mean birth weight, and head circumference, relying on standardized fine-scale exposu...

  4. Genotoxicity and Mutagenicity of Suspended Particulate Matter of River Water and Waste Water Samples

    Directory of Open Access Journals (Sweden)

    Georg Reifferscheid

    2002-01-01

    Full Text Available Suspended particulate matter of samples of river water and waste water treatment plants was tested for genotoxicity and mutagenicity using the standardized umu assay and two versions of the Ames microsuspension assay. The study tries to determine the entire DNA-damaging potential of the water samples and the distribution of DNA-damaging substances among the liquid phase and solid phase. Responsiveness and sensitivity of the bioassays are compared.

  5. Characterisation of atmospheric particulate matter by diffusive gradient in thin film (DGT) technique

    Czech Academy of Sciences Publication Activity Database

    Gregušová, Michaela; Dočekal, Bohumil

    University of Antwerp, 2012. s. 222. [International Symposium on Environmental Analytical Chemistry /37./. 22.05.2012-25.05.2012, Antwerp] R&D Projects: GA ČR GAP503/10/2002; GA ČR(CZ) GAP503/11/2315; GA ČR(CZ) GBP503/12/G147 Institutional research plan: CEZ:AV0Z40310501 Keywords : particulate matter * DGT technique * platinum group metals Subject RIV: CB - Analytical Chemistry, Separation

  6. Low-wind/high particulate matter episodes in the Calexico/Mexicali region.

    Science.gov (United States)

    Kelly, Kerry E; Jaramillo, Isabel C; Quintero-Núñez, Margarito; Wagner, David A; Collins, Kimberly; Meuzelaar, Henk L C; Lighty, JoAnn S

    2010-12-01

    The U.S. Environmental Protection Agency (EPA) currently classifies Imperial County, CA, as a nonattainment area for PM10 (particulate matter [PM] agricultural burning accounted for 6.7% of organic-fraction PM10 for low-wind/high-PM episodes versus 0.25% at other times. This preliminary source attribution also revealed that motor vehicles were the most important relative contributor to organic PM10. PMID:21243902

  7. Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China

    OpenAIRE

    Mo, Li; Ma, Zeyu; Xu, Yansen; Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Chen, Jungang; Yu, Xinxiao

    2015-01-01

    Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus jap...

  8. Interactions between Atmospheric Particulate Matter and Stone Surfaces by Means of Laboratory and Field Studies

    OpenAIRE

    CASATI, M.

    2016-01-01

    The PhD work is focused on the interactions between atmospheric particulate matter (PM) and stone surfaces, particularly with reference to the decay phenomena that can happen as a consequence of PM deposition. Laboratory studies have been focused on the relationship between PM’s chemical composition and the decay hazards to which the stone surfaces subjected to PM deposition are exposed. A new evaluation method has been proposed. The method exploits experimental measurements of deliquescence ...

  9. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    OpenAIRE

    Kalantari, A.; M. Talebi; B BINA

    2001-01-01

    Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales f...

  10. Genotoxicity and Mutagenicity of Suspended Particulate Matter of River Water and Waste Water Samples

    OpenAIRE

    Georg Reifferscheid; Oepen, Britta v.

    2002-01-01

    Suspended particulate matter of samples of river water and waste water treatment plants was tested for genotoxicity and mutagenicity using the standardized umu assay and two versions of the Ames microsuspension assay. The study tries to determine the entire DNA-damaging potential of the water samples and the distribution of DNA-damaging substances among the liquid phase and solid phase. Responsiveness and sensitivity of the bioassays are compared.

  11. NOx and particulate matter (PM) emission reduction potential by biodiesel usage

    OpenAIRE

    Kegl, Breda

    2012-01-01

    The transport in many countries is the most significant source for NOx and particulate matter (PM) emissions. Therefore, the possibility of reducing NOx and PM emissions is experimentally investigated using biodiesel and some of its blends with mineral diesel. Attention is focused on the optimal bus dieselengine adjustments for each tested fuel. The obtained engine characteristics are compared to each other by considering the 13 modes of the European stationary cycle test. The optimal injecti...

  12. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter

    OpenAIRE

    Oyewale Mayowa Morakinyo; Matlou Ingrid Mokgobu; Murembiwa Stanley Mukhola; Raymond Paul Hunter

    2016-01-01

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease...

  13. Chromium speciation in particulate matter samples (Cr(VI)/Cr(III) stability in solutions of leaching agents)

    International Nuclear Information System (INIS)

    Complete text of publication follows. In recent years extensive research was conducted to estimate the bioavailability and toxicity of metals in environmental samples. Substantial health risk could be associated with high particulate matter concentrations in ambient air and with a consumption of contaminated food-stuffs, both accompanied by an occurrence of toxic elements. One of the main causes of exceedance of ambient air quality limit values is traffic, despite emissions reductions. Among other factors, the mobility of an element is usually related to its chemical properties and the toxicity mainly to its oxidation state. Thus, chromium in the hexavalent form, Cr(VI), has long been recognized as a carcinogen and mutagen at low sub-ppm levels. Therefore, in this work, the presence and stability of Cr(VI)/Cr(III) species have been determined in particular matter of urban dust samples (the modified BCR three step sequential extraction procedure). For testing of stability and presence of Cr species a coupled technique connecting on-line HPLC with element-sensitive detector ICP-OES has been used (chromium was detected on line 205,560 nm). The anion exchange column Hamilton PRP-X100 (250 x 4,6 mm, 5 μm, PEEK, (Hamilton, USA)) was used for separation of Cr species. Optimal conditions for the separation were following: mobile phase 50 mmol x l-1 CH3COOH and 10 mmol xl-1 NaClO4 (pH 7.0; flow rate 1.5 ml x min-1), injected 200 μl of the sample, addition of 30 μg x ml-1 CDTA to the sample for a transfer of Cr(III) to anion complex. This combined technique allowed to determine 10 μg of Cr(III) and 13 μg of Cr(VI) in the sample (absolute LOD). It was found out that all three extraction agents used for a fractionation of elements negatively influenced the stability of Cr(VI) species in the solution immediately after their contact with the sample. The quantitatively smallest influence was found for the acetic acid. Probably this is a reason why only species of Cr

  14. Long-Term Exposure to Particulate Matter and Self-Reported Hypertension: A Prospective Analysis in the Nurses’ Health Study

    Science.gov (United States)

    Zhang, Zhenyu; Laden, Francine; Forman, John P.; Hart, Jaime E.

    2016-01-01

    Background: Studies have suggested associations between elevated blood pressure and short-term air pollution exposures, but the evidence is mixed regarding long-term exposures on incidence of hypertension. Objectives: We examined the association of hypertension incidence with long-term residential exposures to ambient particulate matter (PM) and residential distance to roadway. Methods: We estimated 24-month and cumulative average exposures to PM10, PM2.5, and PM2.5–10 and residential distance to road for women participating in the prospective nationwide Nurses’ Health Study. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for incident hypertension from 1988 to 2008 using Cox proportional hazards models adjusted for potential confounders. We considered effect modification by age, diet, diabetes, obesity, region, and latitude. Results: Among 74,880 participants, 36,812 incident cases of hypertension were observed during 960,041 person-years. In multivariable models, 10-μg/m3 increases in 24-month average PM10, PM2.5, and PM2.5–10 were associated with small increases in the incidence of hypertension (HR: 1.02, 95% CI: 1.00, 1.04; HR: 1.04, 95% CI: 1.00, 1.07; and HR: 1.03, 95% CI: 1.00, 1.07, respectively). Associations were stronger among women < 65 years of age (HR: 1.04, 95% CI: 1.01, 1.06; HR: 1.07, 95% CI: 1.02, 1.12; and HR: 1.05, 95% CI: 1.01, 1.09, respectively) and the obese (HR: 1.07, 95% CI: 1.04, 1.12; HR: 1.15, 95% CI: 1.07, 1.23; and HR: 1.13, 95% CI: 1.07, 1.19, respectively), with p-values for interaction < 0.05 for all models except age and PM2.5–10. There was no association with roadway proximity. Conclusions: Long-term exposure to particulate matter was associated with small increases in risk of incident hypertension, particularly among younger women and the obese. Citation: Zhang Z, Laden F, Forman JP, Hart JE. 2016. Long-term exposure to particulate matter and self-reported hypertension: a prospective analysis in

  15. Toxicogenomic analysis of susceptibility to inhaled urban particulate matter in mice with chronic lung inflammation

    Directory of Open Access Journals (Sweden)

    Yauk Carole L

    2009-03-01

    Full Text Available Abstract Background Individuals with chronic lung disease are at increased risk of adverse health effects from airborne particulate matter. Characterization of underlying pollutant-phenotype interactions may require comprehensive strategies. Here, a toxicogenomic approach was used to investigate how inflammation modifies the pulmonary response to urban particulate matter. Results Transgenic mice with constitutive pulmonary overexpression of tumour necrosis factor (TNF-α under the control of the surfactant protein C promoter and wildtype littermates (C57BL/6 background were exposed by inhalation for 4 h to particulate matter (0 or 42 mg/m3 EHC-6802 and euthanized 0 or 24 h post-exposure. The low alveolar dose of particles (16 μg did not provoke an inflammatory response in the lungs of wildtype mice, nor exacerbate the chronic inflammation in TNF animals. Real-time PCR confirmed particle-dependent increases of CYP1A1 (30–100%, endothelin-1 (20–40%, and metallothionein-II (20–40% mRNA in wildtype and TNF mice (p Conclusion Our data support the hypothesis that health effects of acute exposure to urban particles are dominated by activation of specific physiological response cascades rather than widespread changes in gene expression.

  16. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    Directory of Open Access Journals (Sweden)

    Qiulin Xiong

    2015-09-01

    Full Text Available Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  17. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues

    Science.gov (United States)

    Varrica, D.; Bardelli, F.; Dongarrà, G.; Tamburo, E.

    2013-01-01

    Insights into the speciation of Sb in samples of brake linings, brake pad wear residues, road dust, and atmospheric particulate matter PM10 and PM2.5 were obtained combining several well established and advanced characterization techniques, such as scanning electron microscopy - energy dispersive spectrometry (SEM-EDS), inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron radiation X-ray absorption spectroscopy (SR-XAS). The advantage of SR-XAS is that samples do not undergo any chemical treatment prior to measurements, thus excluding possible alterations. These analyses revealed that the samples of wheel rims dust, road dust, and atmospheric particulate matter are composed by an admixture of Sb(III) and Sb(V) in different relative abundances. Brake linings turned out to be composed by Sb(III) oxide (Sb2O3) and stibnite (Sb2S3). Stibnite was also detected in some of the particulate matter samples. The obtained data suggest that Sb2S3 during the brake abrasion process is easily decomposed forming more stable compounds such as antimony mixed oxidic forms. Sb redox speciation, in particular and well studied circumstances, may enhance the potential and selectivity of this element as a tracer of motor vehicle emissions in apportioning studies.

  18. Characterization of particulate matter concentrations and bioaerosol on each floor at a building in Seoul, Korea.

    Science.gov (United States)

    Oh, Hyeon-Ju; Jeong, Na-Na; Chi, Woo-Bae; Seo, Ji-Hoon; Jun, Si-Moon; Sohn, Jong-Ryeul

    2015-10-01

    Particulate matter (PM) in buildings are mostly sourced from the transport of outdoor particles through a heating, ventilation, and air conditioning (HVAC) system and generation of particle within the building itself. We investigated the concentrations and characteristic of indoor and outdoor particles and airborne bacteria concentrations across four floors of a building located in a high-traffic area. In all the floors we studied (first, second, fifth, and eighth), the average concentrations of particles less than 10 μm (PM10) in winter for were higher than those in summer. On average, a seasonal variation in the PM10 level was found for the first, fifth, and eighth floors, such that higher values occurred in the winter season, compared to the summer season. In addition, in winter, the indoor concentrations of PM10 on the first, fifth, and eighth floors were higher than those of the outdoor PM10. The maximum level of airborne bacteria concentration was found in a fifth floor office, which held a private academy school consisting of many students. Results indicated that the airborne bacteria remained at their highest concentration throughout the weekday period and varied by students' activity. The correlation coefficient (R (2)) and slope of linear approximation for the concentrations of particulate matter were used to evaluate the relationship between the indoor and outdoor particulate matter. These results can be used to predict both the indoor particle levels and the risk of personal exposure to airborne bacteria. PMID:26062466

  19. Can particulate organic matter reveal emerging changes in soil organic carbon?

    DEFF Research Database (Denmark)

    Simonsson, Magnus; Kirchmann, Holger; Magid, Jakob;

    2014-01-01

    This study assessed whether particulate organic matter (POM) in sand fractions, isolated by wet sieving after treatment with Na hexametaphosphate, can be a sensitive indicator of incipient changes in the content and composition of soil organic matter. In five long-term field experiments including....... Although organic matter in Fraction B had a higher intrinsic sensitivity to soil management, which was partly able to overcome the larger errors, we concluded that an observer would be more likely to detect changes by measuring total organic C and N, when monitoring decadal changes in C and N pools....... This makes the investigated POM fractions less suitable as indicators for changes in soil C stocks. However, the C/N ratio of Fraction B showed a distinct signature of the history of organic matter input to the soil, which was absent in the C/N ratio of the total fine earth. © Soil Science Society of America...

  20. Characteristics and chemical compositions of particulate matter collected at the selected metro stations of Shanghai, China

    International Nuclear Information System (INIS)

    A campaign was conducted to assess and compare the air quality at the different metro platforms at Shanghai City, focusing on particulate matter (PM) levels, chemical compositions, morphology and mineralogy, as well as species of iron. Our results indicated that the average PM2.5 concentrations for the three metro lines were 177.7 μg/m3, 105.7 μg/m3 and 82.5 μg/m3, respectively, and the average PM1 concentrations for the three lines were 122.3 μg/m3, 84.1 μg/m3 and 59.6 μg/m3, respectively. Fe, Mn, Cr, Cu, Sr, Ba and Pb concentrations in all of the sampling sites were significantly higher than that in the urban ambient air, implicating that these trace metals may be associated with the metro systems working. Individual airborne dusts were studied for morphology and mineralogy characteristics. The results revealed that the presence of most individual particles were with no definite shape and most of them were with a large metal content. Furthermore, Fe-rich particles had significantly higher abundance in the metro systems, which were more frequently encountered in the underground lines than the aboveground line. The 2D distribution map of an interested Fe-rich particle showed an uneven Fe distribution, implying that a hollow or core of other substance exists in the particle center during the formation process. Cluster analysis revealed that Fe-rich particles were possibly a mixture of Fe species. Fitting of X-ray absorption near-edge fine structure spectra (XANES) showed the main iron species within the particles collected from the three contrasting metro lines of Shanghai to be hematite, magnetite, iron-metal and mineral Fe. Hematite and mineral Fe were all found in three lines, while magnetite only existed in aboveground metro line. Iron-metal was determined in both the older and younger underground lines, based on the X-ray diffraction (XRD) analysis. As diverse Fe species have different physical–chemical characteristics and toxicity, the speciation of Fe

  1. Source apportionment of particulate matter in a South Asian Mega City: A case study of Karachi

    Science.gov (United States)

    Shahid, imran

    2016-04-01

    Pakistan is facing unabated air pollution as a major issue and its cities are more vulnerable as compared to urban centers in the developed world. During the last few decades, there has been a rapid increase in population, urbanization, industrialization, transportation and other human activities. In year June 2015 heat wave in largest South Asian mega city Karachi more than 1500 people died in one week. Unfortunately no air quality monitoring system is operation in any city of Pakistan. There is a sharp increase in both the variety and quantity of air pollutants and their corresponding sources. In this study contributions of different sources to particulate matter concentration has estimated in urban area of Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl-, NO3-, SO4--), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were measured in atmospheric fine (PM2.5) and coarse (PM10) particles collected under pre-monsoon conditions (March - April 2009) at an urban site in Karachi (Pakistan). Average concentrations of PM2.5 were 75μg/m3 and of PM10 437μg/m3. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. "Calcareous dust" and „siliceous dust" were the overall dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10-2.5. 20 Combustion particles and secondary organics (EC+OM) comprised 23% of PM2.5 and 6% of PM10-2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10-2.5 than in 22 PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of "EC+OM" in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10-2.5 size fractions. Of secondary inorganic constituents (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity to PM10-2.5. The sea salt contribution is about 2% both to

  2. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung

    International Nuclear Information System (INIS)

    Our previous work has shown that coarse particulate matter (PM10-2.5) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after giving

  3. Natural contributions to particulate matter and ozone concentrations in the Northern Hemisphere

    Science.gov (United States)

    Zare, A.; Christensen, J. H.; Gross, A.; Irannejad, P.; Glasius, M.; Brandt, J.

    2013-12-01

    Natural emissions play an important role in determining ambient levels of harmful atmospheric pollutants, especially tropospheric ozone and particulate matter (PM). Natural sources have also become more important with the ongoing reductions of anthropogenic emissions and will be even more significant in the future in connection with planning of abatement strategies. Although efforts have been carried out to investigate and quantify natural emissions, the uncertainties and gaps with regard to these emissions are still quite large. Therefore, improvement of our understanding of natural emissions and quantifying their contribution to present and future air pollution levels have been defined as an important field of research in air pollution modeling. In this study, the large-scale atmospheric chemistry transport model, DEHM (the Danish Eulerian Hemispheric Model) is further developed, evaluated and applied to study and quantify the contributions of natural emissions of VOCs, NOx, NH3, SO2, CH4, PM, CO and sea salt to the concentration of ozone and formation of PM for the year 2006. Natural source categories adopted in the recent model are vegetation, lightning, soils, wild animals and oceans. The relative contributions are calculated for the domain covering more than the Northern Hemisphere (the DEHM mother domain) as well as for the six continental regions: North America, Northern part of South America, Asia, Europe, Middle East and northern and central part of Africa. Our simulations indicate that at the Northern Hemisphere the contribution from natural emissions to the average annual ozone concentrations over land is between 4-30 ppbV. Among the natural emissions, biogenic VOCs are found to be the most significant contributors to ozone formation. Our results show that biogenic VOCs enhance the average ozone concentration with around 11% over land areas of the Northern Hemisphere. The relative contribution of all the natural emissions to ozone is found to be highest

  4. Policy research programme on particulate matter. Main results and policy consequences; Beleidsgericht onderzoeksprogramma fijn stof. Resultaten op hoofdlijnen en beleidsconsequenties

    Energy Technology Data Exchange (ETDEWEB)

    Matthijsen, J.; Koelemeijer, R.B.A.

    2010-06-15

    The Policy-Oriented Research on Particulate Matter (BOP) programme aimed at increasing knowledge on particulate matter so that future policy can be supported adequately. The main research objectives of BOP were to improve knowledge of the PM10 and PM2,5 concentrations, composition and sources of particulate matter; Increasing the understanding of the behavior of particulate matter in the urban area; Determining the trends in concentrations of particulate matter and its components; and Clarify the impact of policies in the past and the future of PM10 and PM2,5 concentrations. The first part of this study presents the main findings of the study, discussing the (chemical) composition of particulate matter, concentration trends, expected developments, health impacts, policy implications, and how to proceed with the particulate matter dossier. In the second part of the study the underlying analysis are elaborated. [Dutch] Het Beleidsgericht Onderzoeksprogramma Particulate Matter (BOP) had als doel om de kennis over fijn stof te vergroten, zodat beleidsvorming in de toekomst adequater ondersteund kan worden. De belangrijkste onderzoeksdoelstellingen van BOP waren: Verbeteren van de kennis over de PM10- en PM2,5-concentraties, de samenstelling en de bronnen van fijn stof; Vergroten van het inzicht in het gedrag van fijn stof in het stedelijke gebied; Bepalen van de trends in fijnstofconcentraties en de bestanddelen ervan; Verduidelijken van de invloed van beleidsmaatregelen in het verleden en de toekomst op de PM10- en PM2,5-concentraties. Het eerste deel van deze studie, de Bevindingen, presenteert de belangrijkste uitkomsten van het onderzoek. Hierbij komen achtereenvolgens aan de orde: de (chemische) samenstelling van fijn stof, trends in concentraties, verwachte ontwikkelingen, gezondheidseffecten, beleidsconsequenties en hoe nu verder te gaan met het dossier fijn stof. In het tweede deel van de studie, de Verdieping, staat de verantwoording en worden de

  5. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    International Nuclear Information System (INIS)

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban–rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003–2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3–4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter ≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  6. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  7. Exposure to daily ambient particulate polycyclic aromatic hydrocarbons and cough occurrence in adult chronic cough patients: A longitudinal study

    Science.gov (United States)

    Anyenda, Enoch Olando; Higashi, Tomomi; Kambayashi, Yasuhiro; Thao, Nguyen Thi Thu; Michigami, Yoshimasa; Fujimura, Masaki; Hara, Johsuke; Tsujiguchi, Hiromasa; Kitaoka, Masami; Asakura, Hiroki; Hori, Daisuke; Yamada, Yohei; Hayashi, Koichiro; Hayakawa, Kazuichi; Nakamura, Hiroyuki

    2016-09-01

    The specific components of airborne particulates responsible for adverse health effects have not been conclusively identified. We conducted a longitudinal study on 88 adult patients with chronic cough to evaluate whether exposure to daily ambient levels of particulate polycyclic aromatic hydrocarbons (PAH) has relationship with cough occurrence. Study participants were recruited at Kanazawa University Hospital, Japan and were physician-diagnosed to at least have asthma, cough variant asthma and/or atopic cough during 4th January to 30th June 2011. Daily cough symptoms were collected by use of cough diaries and simultaneously, particulate PAH content in daily total suspended particles collected on glass fiber filters were determined by high performance liquid chromatography coupled with fluorescence detector. Population averaged estimates of association between PAH exposure and cough occurrence for entire patients and subgroups according to doctor's diagnosis were performed using generalized estimating equations. Selected adjusted odds ratios for cough occurrence were 1.088 (95% confidence interval (CI): 1.031, 1.147); 1.209 (95% CI: 1.060, 1.379) per 1 ng/m3 increase for 2-day lag and 6-day moving average PAH exposure respectively. Likewise, 5 ring PAH had higher odds in comparison to 4 ring PAH. On the basis of doctor's diagnosis, non-asthma group had slightly higher odds ratio 1.127 (95% CI: 1.033, 1.228) per 1 ng/m3 increase in 2-day lag PAH exposure. Our findings suggest that ambient PAH exposure is associated with cough occurrence in adult chronic cough patients. The association may be stronger in non-asthma patients and even at low levels although there is need for further study with a larger sample size of respective diagnosis and inclusion of co-pollutants.

  8. Sampling and analytical methodologies for instrumental neutron activation analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    The IAEA supports a number of projects having to do with the analysis of airborne particulate matter by nuclear techniques. Most of this work involves the use of activation analysis in its various forms, particularly instrumental neutron activation analysis (INAA). This technique has been widely used in many different countries for the analysis of airborne particulate matter, and there are already many publications in scientific journals, books and reports describing such work. The present document represents an attempt to summarize the most important features of INAA as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of INAA to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability, although they are presented here in a way that takes account of the particular requirements arising from the use of INAA as the analytical technique. The analytical part of the document, however, is presented in a form that is applicable only to INAA. (Subsequent publications in this series are expected to deal specifically with other nuclear related techniques such as energy dispersive X ray fluorescence (ED-XRF) and particle induced X ray emission (PIXE) analysis). Although the methods and procedures described here have been found through experience to yield acceptable results, they should not be considered mandatory. Any other procedure used should, however, be chosen to be capable of yielding results at least of equal quality to those described

  9. Respiratory diseases in preschool children in the city of Niš exposed to suspended particulates and carbon monoxide from ambient air

    Directory of Open Access Journals (Sweden)

    Đorđević Amelija

    2016-01-01

    Full Text Available Background/Aim. Analysis of air quality in Serbia indicates that the city of Niš belongs to a group of cities characterized by the third category of air quality (excessive air pollution. The aim of the study was to analyze the degree of causality between ambient air quality affected by particulate matter of 10 μm (PM10 and carbon monoxide (CO and the incidence of respiratory diseases in preschool children in the city of Niš. Methods. We quantified the influence of higher PM10 concentrations and carbon monoxide comprising motor vehicle exhausts in the city of Niš on the occurrence of unwanted health effects in preschool children by means of the hazard quotient (HQ, individual health risk (Ri, and the probability of cancer (ICR. The methodology used was according to the US Environmental Protection Agency (EPA, and it included basic scientific statistical methods, compilation methods, and the relevant mathematical methods for assessing air pollution health risk, based on the use of attribute equations. Results. Measurement of ambient air pollutant concentrations in the analyzed territory for the entire monitoring duration revealed that PM10 concentrations were significantly above the allowed limits during 80% of the days. The maximum measured PM10 concentration was 191.6 μg/m3, and carbon monoxide 5.415 mg/m3. The incidence of respiratory diseases in the experimental group, with a prominent impact of polluted air was 57.17%, whereas the incidence in the control group was considerably lower, 41.10 %. There were also significant differences in the distribution of certain respiratory diseases. Conclusion. In order to perform good causal analysis of air quality and health risk, it is very important to establish and develop a system for long-term monitoring, control, assessment, and prediction of air pollution. We identified the suspended PM10 and CO as ambient air pollutants causing negative health effects in the exposed preschool children

  10. Atmospheric mercury and fine particulate matter in coastal New England: implications for mercury and trace element sources in the northeastern United States

    Science.gov (United States)

    Kolker, Allan; Engle, Mark A.; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas J.; Krabbenhotft, David P. Krabbenhoft; Bothner, Michael H. Bothner; Tate, Michael T.

    2013-01-01

    Intensive sampling of ambient atmospheric fine particulate matter was conducted at Woods Hole, Massachusetts over a four-month period from 3 April to 29 July, 2008, in conjunction with year-long deployment of the USGS Mobile Mercury Lab. Results were obtained for trace elements in fine particulate matter concurrently with determination of ambient atmospheric mercury speciation and concentrations of ancillary gasses (SO2, NOx, and O3). For particulate matter, trace element enrichment factors greater than 10 relative to crustal background values were found for As, Bi, Cd, Cu, Hg, Pb, Sb, V, and Zn, indicating contribution of these elements by anthropogenic sources. For other elements, enrichments are consistent with natural marine (Na, Ca, Mg, Sr) or crustal (Ba, Ce, Co, Cs, Fe, Ga, La, Rb, Sc, Th, Ti, U, Y) sources, respectively. Positive matrix factorization was used together with concentration weighted air-mass back trajectories to better define element sources and their locations. Our analysis, based on events exhibiting the 10% highest PM2.5 contributions for each source category, identifies coal-fired power stations concentrated in the U.S. Ohio Valley, metal smelting in eastern Canada, and marine and crustal sources showing surprisingly similar back trajectories, at times each sampling Atlantic coastal airsheds. This pattern is consistent with contribution of Saharan dust by a summer maximum at the latitude of Florida and northward transport up the Atlantic Coast by clockwise circulation of the summer Bermuda High. Results for mercury speciation show diurnal production of RGM by photochemical oxidation of Hg° in a marine environment, and periodic traverse of the study area by correlated RGM-SO2(NOx) plumes, indicative of coal combustion sources.

  11. Sampling and analytical methodologies for energy dispersive X-ray fluorescence analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    The present document represents an attempt to summarize the most important features of the different forms of ED-XFR as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of ED-XRF to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability. Emphasis is also placed on the sources of errors affecting the sampling of airborne particulate matter. The analytical part of the document describes the different forms of ED-XRF and their potential applications. Spectrum evaluation, a key step in X-ray spectrometry, is covered in depth, including discussion on several calibration and peak fitting techniques and computer programs especially designed for this purpose. 148 refs, 25 figs, 13 tabs

  12. PM2.5 and ultrafine particulate matter emissions from natural gas-fired turbine for power generation

    Science.gov (United States)

    Brewer, Eli; Li, Yang; Finken, Bob; Quartucy, Greg; Muzio, Lawrence; Baez, Al; Garibay, Mike; Jung, Heejung S.

    2016-04-01

    The generation of electricity from natural gas-fired turbines has increased more than 200% since 2003. In 2007 the South Coast Air Quality Management District (SCAQMD) funded a project to identify control strategies and technologies for PM2.5 and ultrafine emissions from natural gas-fired turbine power plants and test at pilot scale advanced PM2.5 technologies to reduce emissions from these gas turbine-based power plants. This prompted a study of the exhaust from new facilities to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine located at the Walnut Creek Energy Park in August 2013. These tests included particulate matter less than 2.5 μm in diameter (PM2.5) and wet chemical tests for SO2/SO3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. After turbine exhaust was diluted sevenfold with filtered air, particle concentrations in the 10-300 nm size range were approximately two orders of magnitude higher than those in the ambient air and those in the 2-3 nm size range were up to four orders of magnitude higher. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. While some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings of 3.63E-04 lb/MMBtu based on Methods 5.1/201A and 1.07E-04 lb/MMBtu based on SMPS method, which are similar to those previously measured from turbines in the SCAQMD area (FERCo et al., 2014), however, the turbine

  13. Changes to the structure of blood clots formed in the presence of fine particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Metassan, Sofian; Routledge, Michael N [Molecular Epidemiology Unit, Leeds Institute for Health, Genetics and Therapeutics, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT (United Kingdom); Ariens, Robert A S; Scott, D Julian, E-mail: umphsp@leeds.ac.u [Cardiovascular and Diabetes Research Division, Leeds Institute for Health, Genetics and Therapeutics, The LIGHT Laboratories, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-02-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  14. Analisis Kadar Nitrogen Dioksida (NO2) Dan Particulate Matter 10 (PM10) Udara Ambien Dan Keluhan Kesehatan Pada Pedagang Kaki Lima Di Sepanjang Jalan Raya Kelurahan Lalang Kecamatan Medan Sunggal Tahun 2014

    OpenAIRE

    Tarigan, Henny Pradipta Br.

    2015-01-01

    Main road is the road that connecting one region with another. Kelurahan Lalang Kecamatan Medan Sunggal highway was the gateway for transportation that derived from Deli Serdang, Binjai, Langkat, and other cities to Medan. Transportation activities will generate positive impacts and negative impact. One of the negative impact is in form of air pollution. The research is aimed to know that levels of nitrogen dioxide ( NO2 ) and particulate matter ( PM10 ) air ambient and cadger health com...

  15. Theoretical analysis and experimental evaluation of small cyclone separator to remove fine particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Han Gyul; Kim, Hong Seok [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2013-01-15

    A cyclone separator has been widely used in various industrial processes for removing fine particulate matter because it is easy to fabricate, cost effective, and adaptable to extremely harsh conditions. However, owing to the complex flow field in cyclones, a complete understanding of the detailed mechanisms of particulate removal has not yet been gained. In this study, a theoretical analysis was performed for calculating the collection efficiency and cut off size in cyclones by taking into account the effects of geometrical and flow parameters. The collection efficiency and cut off size values predicted by the theoretical model showed good agreement with experimental measurements for particles with a diameter of 0.5-30{mu}m. It was also revealed that the surface friction, along with the flow and geometrical parameters, has a significant effect on the cyclone performance.

  16. Theoretical analysis and experimental evaluation of small cyclone separator to remove fine particulate matter

    International Nuclear Information System (INIS)

    A cyclone separator has been widely used in various industrial processes for removing fine particulate matter because it is easy to fabricate, cost effective, and adaptable to extremely harsh conditions. However, owing to the complex flow field in cyclones, a complete understanding of the detailed mechanisms of particulate removal has not yet been gained. In this study, a theoretical analysis was performed for calculating the collection efficiency and cut off size in cyclones by taking into account the effects of geometrical and flow parameters. The collection efficiency and cut off size values predicted by the theoretical model showed good agreement with experimental measurements for particles with a diameter of 0.5-30μm. It was also revealed that the surface friction, along with the flow and geometrical parameters, has a significant effect on the cyclone performance

  17. Fluxes, dynamics and chemistry of suspended particulate matter in a southeast Alaskan fjord

    International Nuclear Information System (INIS)

    The weighted mean fluxes over the June 1982-October 1983 were 290, 519, 812, 1124 g m-2 yr-1, respectively, determined using sediment traps deployed at 40, 120, 300 and 375 m depth in the 380 m water column. The long-term sedimentation rate was estimated at average 589 g m-2 yr-1 from sediment 210Pb profiles. Substantial SPM input to mid-depths (below 100 m) from the side arms was noted. Thus, the flux measured at 120 m depth was designated as the primary flux of the SPM to the basin. The sediment focusing resulting from the V shaped basin does not appear to be important. Using particulate Al as a tracer, resuspension rate was estimated at some 30-80% of the vertical flux below 280 m depth. Based on the SPM dynamics, the non-conservative behavior of particulate biogenic matter, Mn and Fe was investigated using a primary-resuspended-altered flux model

  18. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  19. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    Le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea andplay a major role in the processing of organic matter. We investigated the biogeochemical consequencesof these transports on particulate organic matter at the molecular level in the southern North

  20. Capture of air particulate matter and gaseous Hg0 by ionic liquids analyzed by PIXE

    International Nuclear Information System (INIS)

    Particle induced X-ray emission (PIXE) has been extensively employed to study the elements associated to air particulate matter (Pm). However, the atmosphere is a very complex system and inorganic pollutants may be also in gaseous phases. Aerosol monitoring does not allow the determination of all the volatile inorganic compounds, since they are not retained in the filters, or if they are trapped, the analysis under vacuum results in a partial or total loss of them. In order to extend the applications of PIXE there is a need to develop new methods to simultaneously capture particulate matter and volatile substances. Ionic liquids (Il) result from combinations of organic cations and anions that may be liquid at room temperature. The physicochemical characteristics of Il s allow them to absorb atmospheric trace metals present in solid and gaseous phases, a task normally performed with independent sampling methods. In this work we explored this capability of Il s as monitors of chemical species which can be found in the gas phase and as particulate matter. The tested Il s included 1-Butyl-3-Methyl-Imidazolium-Hexafluorophosphate (BMIM) (PF6) for Pm and Hg capture; and 1-Butyl-3-methylimidazolium thiocyanate (BMIM) (Scn) only for Hg capture. Elemental analysis of both experiments was performed by particle induced X-ray emission (PIXE). Changes in the molecular structure on BMIM PF6 due to the Hg binding were followed by infrared spectroscopy. (BMIM( (PF6) proved to be successful as passive collector of Pm. However when both were used for Hg capture, (BMIM) (Scn) showed better selectivity. These preliminary results showed the potential of Il s for simultaneous uptake of Pm and volatile inorganic compounds. (Author)

  1. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  2. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    Science.gov (United States)

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources. PMID:22797225

  3. Composition of particulate organic matter sampled in the troposphere over Siberia

    Science.gov (United States)

    Belan, Boris D.; Voronetskaya, Natalya G.; Pevneva, Galina S.; Golovko, Anatoly K.; Kozlov, Alexander S.; Simonenkov, Denis V.; Tolmachev, Gennadii N.

    2015-04-01

    In this paper we present some results of the analysis of organic compounds contained in the particulate matter sampled in the Siberian air shed during monthly research flights in 2012-2013. Aerosol sampling was performed in the tropospheric layer from 500 to 7000 m over the Karakan pine forest located on the east bank of the Novosibirsk Reservoir (River Ob). The Optik TU-134 aircraft laboratory was used as a research platform for in-situ measurements of atmospheric trace gas species and aerosols, as well as a particulate matter collection on PTFE filters. Analysis of the particulate organic matter sampled in the Siberian air shed in 2012-2013 allowed us to draw the following conclusions: the total content of n-alkanes increases in the spring and decreases in the winter. the length of the n-alkane homologous series had no seasonal dependence. maximum in the molecular weight distribution of n-alkanes varies depending on the season; compounds with C17, C22 and C25 chains dominated in winter and spring 2012, whereas in summer - C17 ones; in 2013 compounds with C17 chains dominated in winter, C18-C20 - in spring, and C21 and C23 - in summer. Carbon preference index (CPI) value for a given chain length of the homologous series (on the average from C12 to C28) did not reflect the contribution of sources of n-alkanes in the atmosphere. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); State contracts of the Ministry of Education and Science of Russia No. 14.604.21.0100, (RFMTFIBBB210290) and No. 14.613.21.0013 (RFMEFI61314X0013); and Russian Foundation for Basic Research (grants No. 14-05-00526 and 14-05-00590).

  4. Particulate-matter content of 11 cephalosporin injections: conformance with USP limits.

    Science.gov (United States)

    Parkins, D A; Taylor, A J

    1987-05-01

    The particulate-matter content of 11 dry-powder cephalosporin injections was determined using a modified version of the official United States Pharmacopeial Convention (USP) method for particulate matter in small-volume injections (SVIs). Ten vials of each cephalosporin product were each constituted with 10 mL of Water for Injections BP that had been filtered through a 0.22-micron membrane. The pooled contents of the 10 vials for each product were allowed to stand under reduced pressure to ensure removal of gas bubbles. Particulate-matter content was determined using a HIAC/Royco particle counter on six 10-mL samples obtained from the pooled solutions for each product. All solution preparation and particle counting was performed in a horizontal-laminar-airflow hood. Modifications of the USP method used in this study included the use of six rather than two samples from each pooled solution, the addition of diluent to the injections through the rubber closure with a needle instead of into the open container, and changes in the degassing method. Particle counts for all products examined were lower than USP limits for SVIs. All but two products contained less than 15% of USP limits for particles greater than or equal to 10 microns in effective diameter and particles greater than or equal to 25 microns in effective diameter. The standard USP method for degassing (standing for two minutes) was inadequate. Application of reduced pressure for up to 10 minutes was necessary for thorough degassing of products.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3605122

  5. Heterogeneous Reactions of Particulate Matter-Bound PAHs and NPAHs with NO3/N2O5, OH Radicals, and O3 under Simulated Long-Range Atmospheric Transport Conditions: Reactivity and Mutagenicity

    OpenAIRE

    JARIYASOPIT, NARUMOL; Zimmermann, Kathryn; Schrlau, Jill; AREY, JANET; Atkinson, Roger; Yu, Tian-Wei; Dashwood, Roderick H.; Tao, Shu; Simonich, Staci L. Massey

    2014-01-01

    The heterogeneous reactions of ambient particulate matter (PM)-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) with NO3/N2O5, OH radicals, and O3 were studied in a laboratory photochemical chamber. Ambient PM2.5 and PM10 samples were collected from Beijing, China, and Riverside, California, and exposed under simulated atmospheric long-range transport conditions for O3 and OH and NO3 radicals. Changes in the masses of 23 PAHs and 20 NPAHs, as well as the direct and indirec...

  6. Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals

    DEFF Research Database (Denmark)

    Bräuner, E. V.; Møller, P.; Barregård, L.;

    2008-01-01

    semialdehyde in plasma. Results: No statistically significant differences were observed on microvascular function or the biomarkers after exposure to particle rich or particle filtered air. Conclusion: This study indicates that exposure to air pollution particles at outdoor concentrations is not associated......Background: Particulate air pollution is associated with increased risk of cardiovascular events although the involved mechanisms are poorly understood. The objective of the present study was to investigate the effects of controlled exposure to ambient air fine and ultrafine particles on......: 11600 +/- 5600 per cm(3), mass concentrations: 13.8 +/- 7.4 mu g/m(3) and 10.5 +/- 4.8 mu g/m(3) for PM10-2.5 and PM2.5, respectively) or particle filtered (NC: 555 +/- 1053 per cm(3)) air collected above a busy street. Microvascular function was assessed non-invasively by measuring digital peripheral...

  7. Monitoring Automotive Particulate Matter Emissions with LiDAR: A Review

    Directory of Open Access Journals (Sweden)

    Claudio Mazzoleni

    2010-04-01

    Full Text Available Automotive particulate matter (PM causes deleterious effects on health and visibility. Physical and chemical properties of PM also influence climate change. Roadside remote sensing of automotive emissions is a valuable option for assessing the contribution of individual vehicles to the total PM burden. LiDAR represents a unique approach that allows measuring PM emissions from in-use vehicles with high sensitivity. This publication reviews vehicle emission remote sensing measurements using ultraviolet LiDAR and transmissometer systems. The paper discusses the measurement theory and documents examples of how these techniques provide a unique perspective for exhaust emissions of individual and groups of vehicles.

  8. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater tratment - A review

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Kommedal, Roald; Harremoës, Poul

    2002-01-01

    substrates and mixed populations. Most mathematical models use a simple one-step process to describe hydrolysis. In this article, mechanisms of hydrolysis and mathematical models to describe these processes in wastewater treatment processes are reviewed. Experimental techniques to determine mechanisms......Carbon cycling and the availability of organic carbon for nutrient removal processes are in most wastewater treatment systems restricted by the rate of hydrolysis of slowly biodegradable (particulate) organic matter. To date, the mechanisms of hydrolysis are not well understood for complex...

  9. Saharan Dust and Associations between Particulate Matter and Daily Mortality in Rome, Italy

    OpenAIRE

    Mallone, Sandra; Stafoggia, Massimo; Faustini, Annunziata; Gobbi, Gian Paolo; Marconi, Achille; Forastiere, Francesco

    2011-01-01

    Background: Outbreaks of Saharan-Sahel dust over Euro-Mediterranean areas frequently induce exceedances of the Europen Union's 24-hr standard of 50 μg/m3 for particulate matter (PM) with aerodynamic diameter ≤ than 10 μm (PM10). Objectives: We evaluated the effect of Saharan dust on the association between different PM fractions and daily mortality in Rome, Italy. Methods: In a study of 80,423 adult residents who died in Rome between 2001 and 2004, we performed a time-series analysis to explo...

  10. Validation of the determination of Pb, Cd, As, and Ni in particulate matter

    International Nuclear Information System (INIS)

    Full text: Determination of metals in atmospheric aerosols is important because of their toxic effects on human health. Analysis of Pb, Cd, As, and Ni in the PM10 fraction of suspended particulate matter was carried out by ICPMS. Digestion of samples was performed in a closed vessel microwave digestion system at 220 oC using nitric acid and hydrogen peroxide. Accurate results can be obtained only by application of a validated method. In this contribution, results of several validation performance characteristic (e.g. method detection limit, recovery rate, repeatability, reproducibility, linearity, homogeneity) will be presented. (author)

  11. Analysis of aliphatic and aromatic hydrocarbons in particulate matter in Madrid urban area

    International Nuclear Information System (INIS)

    Levels of n-alkanes and polycyclic aromatic hydrocarbons have been measured in the air particulate matter during six months, from January to June of 1987, in an urban area of Madrid. The hydrocarbons were collected on glass fiber filters by high volumen sampling. The extraction was carried out by Sohxlet and ultrasonic techniques. The extracts were clean-up on silicagel fractionation and the chromatographic analysis was performed by capillary column gas chromatographic. Final results are discussed as well as the immission values related to the possible emission sources. (Author)

  12. Exposures to Particulate Matter and Polycyclic Aromatic Hydrocarbons and Oxidative Stress in Schoolchildren

    OpenAIRE

    Bae, Sanghyuk; Pan, Xiao-Chuan; Kim, Su-Young; Park, Kwangsik; Kim, Yoon-Hee; Kim, Ho; Hong, Yun-Chul

    2009-01-01

    Background Air pollution is known to contribute to respiratory and cardiovascular mortality and morbidity. Oxidative stress has been suggested as one of the main mechanisms for these effects on health. Objective The aim of this study was to analyze the effects of exposure to particulate matter (PM) with aerodynamic diameters ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) on urinary malondialdehyde (MDA) levels in schoolchildren. Methods The study population co...

  13. Particulate matter in the indoor environment of museums in the megacity of São Paulo

    Directory of Open Access Journals (Sweden)

    Andrea Cavicchioli

    2014-01-01

    Full Text Available Atmospheric pollutants can have serious impacts on the preservation of São Paulo's tangible cultural heritage. The purpose of this paper is to report the results of a monitoring campaign focussed on particulate matter (PM that was conducted in three of the most important museums of the São Paulo megacity (Brazil: the Museu de Arqueologia e Etnologia (MAE-USP, the Museu Paulista (MP-USP, and the Pinacoteca do Estado de São Paulo (PE. These museums exhibit indoor PM and black carbon (BC concentrations consistent with their urban locations and their specific methods for managing the indoor environment.

  14. Cholesterol Lowering Effect of Subchronic Inhalation Particulate Matter 10 Coal Dust on Rats

    OpenAIRE

    Setiawan, Bambang; Darsuni, Asnawati; Muttaqien, Fauzan; Widodo, M. Aris

    2013-01-01

    Aim of this study was have to known an effect of inhaled particulate matter 10 (PM10) of coal dust on lipid profile, hematopoetic stem cells (HSC) and circulating endothelial cells (CECs) in rats. A total of 32 Wistar male rats, were randomly divided into four groups of 8 rats each, including one control group and three groups for inhaled coal dust (concentration 6.25 mg/m3; 12.5 mg/m3; and 25 mg/m3). The exposure to coal dust exposure was conducted using equipment that was designed by and av...

  15. Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model

    OpenAIRE

    Wan, Guohui; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2010-01-01

    Epidemiological studies have shown a strong link between air pollution and the increase of cardio-pulmonary mortality and morbidity. In particular, inhaled airborne particulate matter (PM) exposure is closely associated with the pathogenesis of air pollution-induced systemic diseases. In this study, we exposed C57BIV6 mice to environmentally relevant PM in fine and ultra fine ranges (diameter < 2.5 μm, PM2.5) using a “real-world” airborne PM exposure system. We investigated the pathophysiolog...

  16. Formation of particulate matter monitoring during combustion of wood pellete with additives

    Science.gov (United States)

    Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef

    2016-06-01

    Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.

  17. Seasonal variation of the metal composition in particulate matter (PM) in Graz determined with ICPMS

    International Nuclear Information System (INIS)

    Full text: Graz, the 2nd biggest city of Austria, is not only famous for its cultural heritage but is also well known as one of the most heavily air-polluted cities of Austria. Samples of particulate matter (PM1.0, PM2.5, and PM10), collected in Graz over a one year period, were analyzed for 36 metals by ICPMS following microwave-assisted acid digestion. Accumulation of PM in the city (Graz is located in a basin) and additional emissions (e.g. domestic combustion) during winter caused not only higher PM concentrations but also marked changes in the PM metal composition. (author)

  18. Workbook on reactor neutron activation analysis (NAA) of airborne particulate matter (APM)

    International Nuclear Information System (INIS)

    This publication presents general aspects of reactor neutron activation analysis (NAA) applied to measurement of elemental composition of airborne particulate matter. It presents an introduction to the NAA, its' basic principles and brief history of the method and discusses its' advantages and disadvantages. This publication also presents experimental procedures of NAA including sampling and sample preparation; preparation of calibration standard samples; reactor neutron irradiation; gamma-spectroscopy of the irradiated samples; quantification and presentation of analytical results. The publication pays attention to the quality assurance and quality control procedures including internal quality control, analysis of certified reference materials, and interlaboratory and multi-method comparison studies, control charts

  19. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    OpenAIRE

    Qiulin Xiong; Wenji Zhao; Zhaoning Gong; Wenhui Zhao; Tao Tang

    2015-01-01

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spat...

  20. Evaluation of total suspended particulate matter in some urban and industrial cities of Pakistan

    International Nuclear Information System (INIS)

    Environmental studies are very important as the living beings depend greatly on the conditions of the environment. Air is an important component of the environment, which greatly affects the health of humans, animals and plants. Environmental problems in Pakistan are growing with the rise in total sectorial growth in population, economy and industrialization. In connection with atmospheric pollution, measurement of the total suspended particulate matter (TSP) in the urban atmosphere of Lahore, Faisalabad, Rawalpindi, Islamabad, Wah Cantt. and Khanispur (background area) has been carried out and compared to that of U.S. Environmental Protection Agency Standards. (author)

  1. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    OpenAIRE

    Pavla Dagsson-Waldhauserova; Agnes Ösp Magnusdottir; Haraldur Olafsson; Olafur Arnalds

    2016-01-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from ...

  2. Composition of airborne particulate matter in the industrial area versus mountain area

    Directory of Open Access Journals (Sweden)

    Barbora Sýkorová

    2016-03-01

    Full Text Available The paper deals with research of air pollution in two different locations on the Moravian-Silesian Region, Czech Republic. These are the sites Ostrava-Radvanice, which is located in the area affected by the industry and Ostravice in the mountains (without significant effect of the industry. The dust particles collected at these locations were subjected to a wide range of analyses. The mass concentration, the mass-size distribution, mineralogical composition, the concentration of PAHs (polycyclic aromatic hydrocarbons, and the concentrations of selected metals (Cd, Pb, Zn, Fe, Mn, As, Ni, Co, and Cr were observed at the particulate matter.

  3. Applicability and limitations of instruments for particle sizing and real time evaluation of airbone particulate matter; Applicabilita` e limiti di strumenti per la separazione granulometrica e per la valutazione in tempo reale del particolato in sospensione

    Energy Technology Data Exchange (ETDEWEB)

    De Zaiacomo, T. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dip. Ambiente

    1998-12-31

    After a brief of difficulties in characterizing airbone particulates by means of particle sizing instruments, the accumulation mode of the atmospheric aerosol is highlighted as carrier of many noxious substances. Two different types of impactors are described in detail, and examples of particle size distributions obtainable by means of these instruments are shown; a miniaturized real-time aerosol monitor is briefly described too. Results of some tests are shown, carried on by sampling both a laboratory produced aerosol and ambient airbone particulate, by means of two identical impactors, with the aim of verifying their responses in term of collected ponderal mass; examples of the aerosol size distributions obtained are reported, together with some comments about problems arising when sampling morphologically complex (agglomerates) and hygroscopic urban particulate matter in different meteorological conditions. Then aerosol size distribution data are presented, obtained by simultaneously sampling airbone particulate matter both in an urban and extra-urban area, by means of the two cited impactors. Some proposals are finally made, in order to use a portable system, equipped with two optical monitors and a miniaturized personal-type impactor, to evaluate both fine and coarse mode of urban particulate matter, with the aim of better estimate the contribution of these two aerosol fractions both in personal exposures and in environmental monitoring data.

  4. Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells

    Directory of Open Access Journals (Sweden)

    Longfei Guan

    2016-05-01

    Full Text Available The aim of the present study was to investigate the effects of size-fractionated (i.e., <1; 1–2.5, and 2.5–10 µm in an aerodynamic diameter ambient particulate matter (PM on reactive oxygen species (ROS activity and cell viability in human bronchial epithelial cells (BEAS-2B. The PM samples were collected from an urban site (uPM in Beijing and a steel factory site (sPM in Anshan, China, from March 2013 to December 2014. Metal elements, organic and elemental carbon, and water-soluble inorganic ions in the uPM and sPM were analyzed. The cell viability and ROS generation in PM-exposed BEAS-2B cells were measured by MTS and DCFH-DA. The results showed that both uPM and sPM caused a decrease in the cell viability and an increase in ROS generation. The level of ROS measured in sPM1.0 was approximately triple that in uPM1.0. The results of correlation analysis showed that the ROS activity and cytotoxicity were related to different PM composition. Moreover, deferoxamine (DFO significantly prevented the increase of ROS generation and the decrease of cell viability. Taken together, our results suggest that the metals absorbed on PM induced oxidant radical generation in BEAS-2B cells that could lead to impairment of pulmonary function.

  5. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials.

    Science.gov (United States)

    Møller, Peter; Christophersen, Daniel Vest; Jacobsen, Nicklas Raun; Skovmand, Astrid; Gouveia, Ana Cecília Damião; Andersen, Maria Helena Guerra; Kermanizadeh, Ali; Jensen, Ditte Marie; Danielsen, Pernille Høgh; Roursgaard, Martin; Jantzen, Kim; Loft, Steffen

    2016-05-01

    Exposure to particulate matter (PM) from traffic vehicles is hazardous to the vascular system, leading to clinical manifestations and mortality due to ischemic heart disease. By analogy, nanomaterials may also be associated with the same outcomes. Here, the effects of exposure to PM from ambient air, diesel exhaust and certain nanomaterials on atherosclerosis and vasomotor function in animals have been assessed. The majority of studies have used pulmonary exposure by inhalation or instillation, although there are some studies on non-pulmonary routes such as the gastrointestinal tract. Airway exposure to air pollution particles and nanomaterials is associated with similar effects on atherosclerosis progression, augmented vasoconstriction and blunted vasorelaxation responses in arteries, whereas exposure to diesel exhaust is associated with lower responses. At present, there is no convincing evidence of dose-dependent effects across studies. Oxidative stress and inflammation have been observed in the arterial wall of PM-exposed animals with vasomotor dysfunction or plaque progression. From the data, it is evident that pulmonary and systemic inflammation does not seem to be necessary for these vascular effects to occur. Furthermore, there is inconsistent evidence with regard to altered plasma lipid profile and systemic inflammation as a key step in vasomotor dysfunction and progression of atherosclerosis in PM-exposed animals. In summary, the results show that certain nanomaterials, including TiO2, carbon black and carbon nanotubes, have similar hazards to the vascular system as combustion-derived PM. PMID:27028752

  6. A new technique for online measurement of total and water-soluble copper (Cu) in coarse particulate matter (PM)

    International Nuclear Information System (INIS)

    This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5–10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2–4 h) without obvious shortcomings. - Highlights: • A novel only PM sampling and Cu measuring technology is developed. • Very good particle collection efficiency for coarse PM is observed. • Excellent agreement is obtained between Cu ISE and offline ICP-MS measurements. • The new system can be continuously operated for at least 6 consecutive days. - A new technique for online measurements of Cu in coarse PM is described

  7. Impacts of roadway emissions on urban particulate matter concentrations in sub-Saharan Africa: new evidence from Nairobi, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Vliet, E D S van; Kinney, P L [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 60 Haven Avenue, B-1, New York, NY 10032 (United States)

    2007-10-15

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA). However, the lack of ambient monitoring data, and particularly urban roadside concentrations for particulate matter in SSA cities severely hinders our ability to describe temporal and spatial patterns of concentrations, characterize exposure-response relationships for key health outcomes, estimate disease burdens, and promote policy initiatives to address air quality. As part of a collaborative transportation planning exercise between Columbia University and University of Nairobi, air monitoring was carried out in February 2006 in Nairobi, Kenya. The objective of the monitoring was to collect pilot data on air concentrations (PM{sub 2.5} and black carbon) encountered while driving in the Nairobi metropolitan area, and to compare those data to simultaneous 'urban background' concentrations measured in Nairobi but away from roadways. For both the background and roadway monitoring, we used portable air sampling systems that collect integrated filter samples. Results from this pilot study found that roadway concentrations of PM{sub 2.5} were approximately 20-fold higher than those from the urban background site, whereas black carbon concentrations differed by 10-fold. If confirmed by more extensive sampling, these data would underscore the need for air quality and transportation planning and management directed at mitigating roadway pollution.

  8. Oxidant production from source-oriented particulate matter - Part 1: Oxidative potential using the dithiothreitol (DTT) assay

    Science.gov (United States)

    Charrier, J. G.; Richards-Henderson, N. K.; Bein, K. J.; McFall, A. S.; Wexler, A. S.; Anastasio, C.

    2015-03-01

    Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM) are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these end points are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species in the body, possibly due to the transition metal content of the PM. Our goal is to quantify the oxidative potential of ambient particle sources collected during two seasons in Fresno, CA, using the dithiothreitol (DTT) assay. We collected PM from different sources or source combinations into different ChemVol (CV) samplers in real time using a novel source-oriented sampling technique based on single-particle mass spectrometry. We segregated the particles from each source-oriented mixture into two size fractions - ultrafine Dp ≤ 0.17 μm) and submicron fine (0.17 μm ≤ Dp ≤ 1.0 μm) - and measured metals and the rate of DTT loss in each PM extract. We find that the mass-normalized oxidative potential of different sources varies by up to a factor of 8 and that submicron fine PM typically has a larger mass-normalized oxidative potential than ultrafine PM from the same source. Vehicular emissions, regional source mix, commute hours, daytime mixed layer, and nighttime inversion sources exhibit the highest mass-normalized oxidative potential. When we apportion DTT activity for total PM sampled to specific chemical compounds, soluble copper accounts for roughly 50% of total air-volume-normalized oxidative potential, soluble manganese accounts for 20%, and other unknown species, likely including quinones and other organics, account for 30%. During nighttime, soluble copper and manganese largely explain the oxidative potential of PM, while daytime has a larger contribution from unknown (likely organic) species.

  9. Mutagenic and genotoxic activity of particulate matter MP2,5, in Pamplona, North Santander, Colombia

    Directory of Open Access Journals (Sweden)

    Martínez Montañez, Mónica Liseth

    2012-10-01

    Full Text Available Objective: To study the mutagenic and genotoxic activities of particulate material (MP2,5 collected in Pamplona, Norte de Santander, Colombia.Materials and methods: MP2,5 was monitored by means of a Partisol 2025 sequential air sampler with Plus Palmflex quartz filters. The latter were subjected to two extraction procedures: Soxhlet extraction using dichloromethane-acetone; and ultrasonic extraction using dichloromethane, acetone and dichloromethane/ acetone mix. The mutagenic and genotoxic activities were determined for each extract.Results: This is the first study conducted in Colombia that reports the mutagenic and genotoxic activities associated with particulate matter (MP2,5 taken from vehicular emissions in Pamplona, Norte de Santander. The mutagenic assay determined by the Ames test using Salmonella typhimurium strains TA98 and TA100 showed a high direct mutagenic activity in the analyzed extracts. On the other hand, the genotoxic activity, determined by means of the comet assay, was high too.Conclusion: Particulate material (MP2,5 present in air samples in Pamplona (northeastern Colombia is a risk factor for the exposed population because it can directly induce mutations and also cause genotoxic damage.

  10. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  11. Radionuclides in water and suspended particulate matter from the North Sea

    International Nuclear Information System (INIS)

    The reprocessing plants at Sellafield and La Hague are primarily the sources of artificial radionuclides in the North Sea. Due the prevailing transport of water masses, the contamination of water and suspended particulate matter (SPM) with Cs-137, Cs-134, Co-60, Sb-125, and Ru-106 constitutes a characteristic pattern depending on the source of contamination. Th-234 gives the highest activity of natural radionuclides in suspended matter. Its activity depends mainly on the suspension load. Resuspension processes and biological activity are responsible for the specific activities in SPM of the North Sea. SPM was collected from several cubic meters of seawater by means of a continuous flow centrifuge. Results from several cruises to the North Sea are presented. (Author)

  12. Deposition of heavy metals from particulate settleable matter in soils of an industrialized area

    Science.gov (United States)

    Sanfeliu, Teófilo

    2010-05-01

    Particulate air pollutants from industrial emissions and natural resource exploitation represent an important contribution to soil contamination. These atmospheric particles, usually settleable particulate matter form (which settle by gravity) are deposited on soil through both dry and wet. The most direct consequences on soil of air pollutants are acidification and salinization, not to mention the pollution that can cause heavy metals as components of suspended particulate matter. The main objective of this study was to evaluate the influence of air pollution in soil composition. For this purpose, has been conducted a study of the composition of heavy metals in the settleable particulate matter in two locations (Almazora and Vila-real) with high industrial density (mainly ceramic companies) located in the ceramic cluster of Castellón (Spain). Settleable air particles samples were collected with a PS Standard Britannic captor (MCV-PS2) for monthly periods between January 2007 and December 2009. We analyzed the following elements: Cd, Pb, Cu, Ni, Sb and Bi which are highly toxic and have the property of accumulating in living organisms. It has been determined the concentration of heavy metals in the soluble fraction of settleable air particles by ICP-MS. The annual variation of the results obtained in both populations shows a decline over the study period the concentrations of heavy metals analyzed. This fact is associated with the steady implementation of corrective measures in the main industrial sector in the area based on the treatment of mineral raw materials. Moreover, this decline is, in turn, a lower intake of heavy metals to the soil. REFERENCES Gómez E.T.; Sanfeliu T.; Rius J.; Jordán M.M. (2005) "Evolution, sources and distribution of mineral particles and amorphous phase of atmospheric aerosol in an industrial and Mediterranean coastal area" Water, air and Soil Pollution 167:311-330 Moral R., Gilkes R.J.; Jordán M.M. (2005) "Distribution of heavy

  13. Study of particulate matter in Limeira (Brazil) using SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Canteras, Felippe B.; Moreira, Silvana, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil) Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2011-07-01

    Air pollution is a growing problem mainly in metropolitan areas in the world. The atmospheric pollutants are responsible for various environmental problems including the human health. Among the pollutants, the particulate matter is important, since it has a heterogeneous composition. The goal of this work was to analyze quantitatively the particulate matter in Limeira city, Sao Paulo State, Brazil. The sampling was made using a sequential filtering system, containing two filters putted in series, to collect fine and coarse fractions. After a removal in an acid medium, with ultrasound bath, the samples were analyzed by Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF). The results obtained for PM10 were in agreement with the standards defined by the Brazilian legislation and also with the standards established by USEPA. In all analyzed samples S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb were quantified. Employing multivariate statistical analysis (principal component and cluster analysis) was possible to identify the emission sources. For coarse fraction the main emission source was soil dusty responsible for 57% of the total in the coarse fraction, followed by vehicular emission with 30% and industrial 13%. In the fine fraction soil dusty was the mainly emission source contributing with 79% of the total, followed by vehicular emission with 13% and finally the industrial emission responsible just for 8%. (author)

  14. Relationship between redox activity and chemical speciation of size-fractionated particulate matter

    Directory of Open Access Journals (Sweden)

    Cho Arthur K

    2007-06-01

    Full Text Available Abstract Background Although the mechanisms of airborne particulate matter (PM related health effects remain incompletely understood, one emerging hypothesis is that these adverse effects derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS within affected cells. Typically, ROS are formed in cells through the reduction of oxygen by biological reducing agents, with the catalytic assistance of electron transfer enzymes and redox active chemical species such as redox active organic chemicals and metals. The purpose of this study was to relate the electron transfer ability, or redox activity, of the PM samples to their content in polycyclic aromatic hydrocarbons and various inorganic species. The redox activity of the samples has been shown to correlate with the induction of the stress protein, hemeoxygenase-1. Results Size-fractionated (i.e. Conclusion The results of this work demonstrate the utility of the dithiothreitol assay for quantitatively assessing the redox potential of airborne particulate matter from a wide range of sources. Studies to characterize the redox activity of PM from various sources throughout the Los Angeles basin are currently underway.

  15. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy

    International Nuclear Information System (INIS)

    A number of studies have focused on urban trees to understand their mitigation capacity of air pollution. In this study particulate matter (PM) deposition on Quercus ilex leaves was quantitatively analyzed in four districts of the City of Terni (Italy) for three periods of the year. Fine (between 0.2 and 2.5 μm) and Large (between 2.5 and 10 μm) PM fractions were analyzed. Mean PM deposition value on Quercus ilex leaves was 20.6 μg cm−2. Variations in PM deposition correlated with distance to main roads and downwind position relatively to industrial area. Epicuticular waxes were measured and related to accumulated PM. For Fine PM deposited in waxes we observed a higher value (40% of total Fine PM) than Large PM (4% of total Large PM). Results from this study allow to increase our understanding about air pollution interactions with urban vegetation and could be hopefully taken into account when guidelines for local urban green management are realized. - Highlights: • A quantitative analysis of Particulate Matter deposition on urban Quercus ilex leaves was implemented. • Deposition data were correlated with pollutants sources such as roads and local steel factory, and with epicuticular waxes. • Results provide new insight about the capacity of trees in removing pollutants in urban environment. - This paper is providing useful information on PM deposition on urban vegetation

  16. Characterisation of air particulate matter in Klang Valley by neutron activation analysis technique

    International Nuclear Information System (INIS)

    Air particulate matter is known to affect human health, impairs visibility and can cause climate change. Study on air particulate matter in term of particle size and chemical contents is very important to indicate the quality of air in a sampling area. Information on concentration of important constituents in air particles can be used to identify some of emission sources which contribute to the pollution problem. The data collected may also be, used as a basis to design a strategy in order to overcome the air pollution problem in the area. The study involved sampling of air dust at two stations, one in Bangi and the other in Kuala Lumpur using Gent Stack Sampler units. Each sampler capable of collecting air particle sizes smaller than 2.5 micron (PM 2.5) and between 2.5 - O micron on two different filters simultaneously. The filters were measured for their mass, elemental carbon and elemental concentrations using analytical equipment or techniques including reflectometer and Neutron Activation Analysis. The results of analysis on samples collected in 1997-1998 are discussed. (author)

  17. Spatial Interpolation of Fine Particulate Matter Concentrations Using the Shortest Wind-Field Path Distance

    Science.gov (United States)

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  18. Collection of airborne particulate matter for a subsequent analysis by total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Klockenkaemper, R.; Bayer, H.; Bohlen, A. von; Schmeling, M.; Klockow, D. [Institut fuer Spektrochemie und Angewandte Spektroskopie, Dortmund (Germany)

    1995-06-01

    The collection of airborne particulate matter by filtration and impaction was adapted to total reflection X-ray fluorescence analysis (TXRF). Cellulose nitrate filters were used for collecting in a Berner impactor. Single filter spots were punched out, placed on quartz-glass carriers, dissolved by tetrahydrofuran and re-precipitated prior to element determinations by TXRF. In a Battelle-type impactor, airborne dust was collected on Plexiglass carriers coated with medical Vaseline. The loaded carriers were directly analyzed by TXRF. In both cases, quantification was simply performed by the addition of an internal standard after sampling. Impactors were made of a suitable material in order to investigate high blank values, collection losses and memory effects. It could be shown that stainless steel, even coated with TiN, is less suitable and should be avoided as an impactor material. Although aluminum is partly recommendable, titanium and the polymer Makrolon are quite appropriate. By using an impactor made of these materials, a reliable multielement determination in airborne dust is made possible with low detection limits as low as 1 ng/m{sup 3} and a satisfactory repeatability of a few %. Short sampling times of only 1 h or less can be realized. The total procedure is simple and time-saving, and can be recommended for routine investigations of airborne particulate matter. (author).

  19. Genotoxicity of organic extracts of urban airborne particulate matter: an assessment within a personal exposure study.

    Science.gov (United States)

    Abou Chakra, Oussama R; Joyeux, Michel; Nerrière, Eléna; Strub, Marie-Pierre; Zmirou-Navier, Denis

    2007-01-01

    Airborne particulate matter, PM(10) and PM(2.5), are associated with a range of health effects including lung cancer. Their complex organic fraction contains genotoxic and carcinogenic compounds such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives. This study evaluates the genotoxicity of the PM(10) and PM(2.5) organic extracts that were sampled in the framework of a personal exposure study in three French metropolitan areas (Paris, Rouen and Strasbourg), using the comet assay, performed on HeLa S3 cells. In each city, 60-90 non-smoking volunteers composed of two groups of equal size (adults and children) carried the personal Harvard Chempass multi-pollutant sampler during 48h along two different seasons ('hot' and 'cold'). Volunteers were selected so as to live (home and work/school) in 3 different urban sectors contrasted in terms of air pollution within each city (one highly exposed to traffic emissions, one influenced by local industrial sources, and a background urban environment). Genotoxic effects are stronger for PM(2.5) extracts than for PM(10), and greater in winter than in summer. Fine particles collected by subjects living within the traffic proximity sector present the strongest genotoxic responses, especially in the Paris metropolitan area. This work confirms the genotoxic potency of particulate matter (PM(10) and PM(2.5)) organic extracts to which urban populations are exposed. PMID:16901531

  20. Atmospheric lead pollution in fine particulate matter in Shanghai,China

    Institute of Scientific and Technical Information of China (English)

    LI Xiaolin; ZHANG Yuanxun; TAN Mingguang; LIU Jiangfeng; BAO Liangman; ZHANG Guilin; LI Yan; IIDA Atsuo

    2009-01-01

    The Pb-monitoring program was extended for 6 years from 2002 to 2007 at 17 representative urban sites (6 traffic, 5 industrial, and 6 residential sites), and 3 suburban sites to assess the lead pollution in fine particulate matter (PM2.5) after phasing out leaded gasoline in Shanghai. Compared with Pb levels reported in other places, the Pb pollution in Shanghai still serious after phasing out leaded gasoline, which remains at high concentration range (213--176 ng/m3) in PM2.5 in winter. Significant spatial variation of Pb concentrations and strong seasonal variation of higher Pb concentration in winter than that in summer were detected. The size distribution of Pb in particulate matter has a unimodal mode that peaks at approximately 0.154--1.59 mm particle diameter, indicating that Pb is mainly concentrated in fine fraction. Lead in the fine fraction is enriched by a factor of 103--104 relative to Pb abundance in crust. Eight categories of Pb pollution sources were identified in the PM2.5 in the winter of 2007 in Shanghai. The important emission sources among them are vehicle exhaust derived from combustion of unleaded gasoline, metallurgic industry emission, and coal combustion emission.

  1. Results of measurements of particulate matter concentrations inside a pig fattening facility

    Directory of Open Access Journals (Sweden)

    Ulens, T.

    2016-01-01

    Full Text Available Description of the subject. This research note discusses the results of measurements of particulate matter concentrations inside a pig fattening facility. Objectives. The objectives of the present study were to investigate the correlations between the different size fractions of indoor particulate matter (PM inside a pig fattening facility and to investigate the evolution of particle size distribution (PSD through a fattening period and between two housing systems and two cleaning protocols. Method. Data from two consecutive fattening periods in a commercial pig barn were used. Results. Very high correlations were found between PM10 and PM2.5 indoor concentrations. Depending on the measuring instrument, high or low correlations were found between PM1 and PM10 or PM2.5 indoor concentrations. No differences in PSD could be found between the two housing systems or the two cleaning protocols. Conclusions. The results from the present study showed high correlations between the indoor concentrations of PM10 and PM2.5. In the present study, no differences in PSD were found.

  2. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Science.gov (United States)

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  3. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Directory of Open Access Journals (Sweden)

    Longxiang Li

    Full Text Available Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  4. Particulate matter and hospital admissions due to ischemic heart disease in Sorocaba, SP

    Directory of Open Access Journals (Sweden)

    Samara da Silva Gavinier

    2013-12-01

    Full Text Available There is evidence that air pollution is a risk factor for ischemic heart diseases (IHD. The objective of this study was to estimate the association between exposure to particulate matter (PM10 and hospital admissions due to ischemic heart diseases. It was a time-series ecological study with individuals of both genders, 50 or more years old, and residents of Sorocaba, São Paulo. The admission data was obtained from the DATASUS site according to ICD-10 (I20 to I22 and I24 to I25.0, for the period from January 1st 2007 to December 31st 2010. The concentrations of air pollutants (particulate matter, ozone, nitrogen dioxide, nitrogen oxide and oxides of nitrogen, temperature and mean relative humidity were provided by the São Paulo State Environmental Agency. The generalized additive model Poisson regression with lags of up to four days was used. There were 1804 admissions during the period. Exposure to PM10 was significantly associated with hospitalization for IHD two and four days after exposure with RR = 1.006, 95% CI 1.001-1.012 and an increment of 21 μg m-³ was associated with an increase of 13% in risk of hospitalization two days after exposure and 14% after four days. It was therefore possible to identify an association with exposure to PM10 in hospitalizations due to ischemic heart diseases in individuals from a medium-sized city of Sao Paulo.

  5. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    Science.gov (United States)

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-01

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. PMID:23550802

  6. Comparison of discriminant analysis methods: Application to occupational exposure to particulate matter

    Science.gov (United States)

    Ramos, M. Rosário; Carolino, E.; Viegas, Carla; Viegas, Sandra

    2016-06-01

    Health effects associated with occupational exposure to particulate matter have been studied by several authors. In this study were selected six industries of five different areas: Cork company 1, Cork company 2, poultry, slaughterhouse for cattle, riding arena and production of animal feed. The measurements tool was a portable device for direct reading. This tool provides information on the particle number concentration for six different diameters, namely 0.3 µm, 0.5 µm, 1 µm, 2.5 µm, 5 µm and 10 µm. The focus on these features is because they might be more closely related with adverse health effects. The aim is to identify the particles that better discriminate the industries, with the ultimate goal of classifying industries regarding potential negative effects on workers' health. Several methods of discriminant analysis were applied to data of occupational exposure to particulate matter and compared with respect to classification accuracy. The selected methods were linear discriminant analyses (LDA); linear quadratic discriminant analysis (QDA), robust linear discriminant analysis with selected estimators (MLE (Maximum Likelihood Estimators), MVE (Minimum Volume Elipsoid), "t", MCD (Minimum Covariance Determinant), MCD-A, MCD-B), multinomial logistic regression and artificial neural networks (ANN). The predictive accuracy of the methods was accessed through a simulation study. ANN yielded the highest rate of classification accuracy in the data set under study. Results indicate that the particle number concentration of diameter size 0.5 µm is the parameter that better discriminates industries.

  7. Elemental composition of airborne particulate matter from Santiago City, Chile, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Prendez, M.; Ortiz, J.L.; Cortes, E.; Cassorla, V.

    1984-01-01

    In Chile, the State Public Health Office (Ministerio de Salud Publica) is responsible for pollution control and for air quality. This office has been monitoring only toxic gases and total suspended particulate matter. The present work is the first study in Chile designed to determine trace elements and their concentrations in particulate matter in the air. By use of enrichment factors, 25 trace elements were classified according to natural or anthropogenic origin. There were two sampling periods: July (winter) and September (spring) 1976. Four sites were studied, located about 6 km north, south, west and east of downtown Santiago. The south, north and west sites are urban and 55 m above sea level. The east site is suburban and approximately 270 m higher than the others. Twenty-four-hour samples were collected on Whatman-41 cellulose filter paper, in a modified stainless steel Buchner funnel. Approximately 10 m/sup 3/ were used at the urban sites and 200 m/sup 3/ at the suburban site. Instrumental neutron activation analysis (INAA) was used as the analytical technique.

  8. PIXE analysis of airborne particulate matter from Monterrey, Mexico. A first survey

    International Nuclear Information System (INIS)

    A first survey of elemental contents in airborne particulate matter from Monterrey, Nuevo Leon, Mexico, was performed using PIXE. This second largest industrial city is located 715 km north of Mexico City, and counts with a population of nearly three million inhabitants in its conurbation. Air pollution in the place comes from a great variety of industries ranging from iron smelters to furniture manufacturing, as well as from fuel combustion in vehicles and industries. This study presents results of elemental contents in airborne particulate matter in two particle size fractions: PM2.5 and PM15. The samples were collected during five weeks on working days, Monday-Friday, from 9 December 1996 to 14 January 1997. Two samples a day were collected, 12 h each, night-time and day-time. These first results show local pollution as typical from a large urban area in conjunction with an active industry. Thirteen elements were consistently detected in most of the samples and some episodes due to both industrial and human activities were identified. A general discussion about the results obtained is presented

  9. New insight into particulate mineral and organic matter in coastal ocean waters through optical inversion

    Science.gov (United States)

    Zhang, Xiaodong; Stavn, Robert H.; Falster, Alexander U.; Gray, Deric; Gould, Richard W.

    2014-08-01

    Suspended particulate inorganic matter (PIM) and particulate organic matter (POM) often exhibit significant variation both spatially and temporally in coastal oceans. The size distributions and optical properties of these particles are poorly known. Utilizing a newly developed inversion technique from the measured angular scattering pattern, we were able to examine POM and PIM in terms of detailed particle size distributions (PSD) and optical volume scattering functions (VSF), gaining further insights and knowledge of particles that will greatly improve biogeochemical investigations and remote-sensing algorithms. We report the results on two extremes or end-members of possible coastal environments, sediment-laden, turbid Mobile Bay, Alabama, USA and biologically productive, clear water Monterey Bay, California, USA. The optically inferred mass concentrations of PIM and POM, when accounting for the fractal nature of suspended particles, agreed well with the respective gravimetric determinations within the analysis and inversion uncertainty. Despite intra- and inter-site variability, the inferred PSDs in both coastal regions commonly showed an apparent background population of PIM at radii 50 μm. The clearly distinctive PSDs between PIM and POM provide evidence to support the Risović two-component model for suspended particulates. The shape of the VSFs, i.e., the scattering phase functions, for POM are similar between the two sites (backscattering ratio ≈ 0.0015), but the PIM in Monterey Bay exhibited a higher backscattering ratio than in Mobile Bay (backscattering ratios 0.012 vs. 0.008, respectively). At both sites, the mass-specific scattering cross section values for PIM (σ[PIM]) are about 70-80% lower than σ[POM], while the mass-specific backscattering cross section values for PIM (σb[PIM]) are 10-25% greater than σb[POM].

  10. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    International Nuclear Information System (INIS)

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro

  11. Honey Bees (Apis mellifera, L. as Active Samplers of Airborne Particulate Matter.

    Directory of Open Access Journals (Sweden)

    Ilaria Negri

    Full Text Available Honey bees (Apis mellifera L. are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX. The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs. The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  12. Consumption-based Total Suspended Particulate Matter Emissions in Jing-Jin-Ji Area of China

    Science.gov (United States)

    Yang, S.; Chen, S.; Chen, B.

    2014-12-01

    The highly-industrialized regions in China have been facing a serious problem of haze mainly consisted of total suspended particulate matter (TSPM), which has attracted great attention from the public since it directly impairs human health and clinically increases the risks of various respiratory and pulmonary diseases. In this paper, we set up a multi-regional input-output (MRIO) model to analyze the transferring routes of TSPM emissions between regions through trades. TSPM emission from particulate source regions and sectors are identified by analyzing the embodied TSPM flows through monetary flow and carbon footprint. The track of TSPM from origin to end via consumption activities are also revealed by tracing the product supply chain associated with the TSPM emissions. Beijing-Tianjin-Hebei (Jing-Jin-Ji) as the most industrialized area of China is selected for a case study. The result shows that over 70% of TSPM emissions associated with goods consumed in Beijing and Tianjin occurred outside of their own administrative boundaries, implying that Beijing and Tianjin are net embodied TSPM importers. Meanwhile, 63% of the total TSPM emissions in Hebei Province are resulted from the outside demand, indicating Hebei is a net exporter. In addition, nearly half of TSPM emissions are the by-products related to electricity and heating supply and non-metal mineral products in Jing-Jin-Ji Area. Based on the model results, we provided new insights into establishing systemic strategies and identifying mitigation priorities to stem TSPM emissions in China. Keywords: total suspended particulate matter (TSPM); urban ecosystem modeling; multi-regional input-output (MRIO); China

  13. Mutagenic activity of airborne particulate matter from the urban area of Porto Alegre, Brazil

    Directory of Open Access Journals (Sweden)

    Vera Maria Ferrão Vargas

    1998-06-01

    Full Text Available The mutagenic activity of airborne particulate matter collected from three different sites within the urban area of Porto Alegre, Brazil, was investigated using a Salmonella/microsome assay. Samples were extracted by sonication, sequentially, with cyclohexane (CX, and dichloromethane (DCM, for a rough fractionation by polarity. The different fractions were tested for mutagenicity using Salmonella typhimurium strains TA98, with and without metabolic activation (S9 mix fraction, and TA98NR and TA98/1,8-DNP6, without metabolic activation. Mutagenic response was observed for frameshift strain TA98 in assays with and without metabolization for two sites (sites 2 and 3, which had considerable risk of environmental contamination by nonpolar (CX and/or moderately polar (DCM compounds. However, the values of revertants/m3 (rev/m3 were highest on the site subject to automobile exhaust (site 3 in assays without (9.56 rev/m3 and with metabolization (5.08 rev/m3. Maximum mutagenic activity was detected in the moderately polar fraction, decreasing after metabolization. Nevertheless, the nonpolar fractions (CX gave higher mutagenic activity in the presence of metabolization than in the absence of the S9 mix fraction. The responses observed for TA98NR and TA98/1,8-DNP6 strains suggest the activity of nitrocompounds.Foi investigada a atividade mutagênica de material particulado de amostras de ar coletadas em três diferentes locais dentro da área urbana da cidade de Porto Alegre, Brasil, através do ensaio Salmonella/microssoma. As amostras foram extraídas, em ultra-som, por fracionamento seqüencial de acordo com a polaridade, utilizando os solventes ciclohexano (CX e diclorometano (DCM. As diferentes frações foram testadas para mutagenicidade com as linhagens de Salmonella typhimurium TA98, em presença e ausência de ativação metabólica, e TA98NR e TA98/1,8-DNP6 em ausência de metabolização. Observou-se resposta mutagênica positiva, do tipo erro

  14. Sources and Transport of Particulate Matter on an Hourly Time-Scale

    Science.gov (United States)

    Ancelet, T.; Davy, P.; Trompetter, B.; Markwitz, A.; Weatherburn, D.

    2012-12-01

    Particulate matter (PM) concentrations in New Zealand urban environments have been shown to have distinct diurnal cycles, independent of community size or population (Trompetter et al., 2010). Peak PM concentrations occur during the winter, when residential wood combustion for domestic heating is common. Little is known about PM sources and their contributions on an hourly timescale (Ancelet et al. 2012), creating a significant gap in current knowledge. As such, we have completed intensive ambient air monitoring campaigns in three locations across New Zealand during the winter (2010 and 2011) with the goal of identifying, using positive matrix factorization, the sources that contribute to measured PM10 concentrations on an hourly timescale. Size-segregated (PM10-2.5 and PM2.5) samples were collected on an hourly basis using Streaker samplers (Annegarn et al., 1988) at four sites within the airsheds of Masterton, Nelson and Alexandra, New Zealand. Three sites were located at ground level; upwind, central and downwind of the general nocturnal (katabatic) drainage flow. The fourth site was located centrally, but at a height of 26 m. Since Streaker filters cannot be used to obtain a gravimetric mass, continuous E-BAMs (MetOne Inc.) PM10 monitors were co-located at each sampling site as was meteorological equipment (Vaisala WXT520 sonic anemometers for wind speed, wind direction, temperature, relative humidity, barometric pressure). The hourly PM10-2.5 and PM2.5 samples were analyzed using ion beam analysis techniques (PIXE, PIGE and RBS) and black carbon was quantified using light reflection. PM10 concentrations at each site varied, but showed distinct diurnal patterns. Black carbon was highly correlated with PM10 concentrations, indicating that combustion sources were dominant at each site. The use of positive matrix factorization (PMF) revealed that biomass burning was the dominant source of PM10 at each site, with varying contributions from sources such as motor

  15. MOLAR RATIOS OF C,N,P OF PARTICULATE MATTER AND THEIR VERTICAL FLUXES IN THE YELLOW SEA

    Institute of Scientific and Technical Information of China (English)

    王保栋; 战闰; 徐明德

    2002-01-01

    The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter, sediments and sinking particles obtained by use of moored sediment traps. The POC:PON ratios indicate that most of the particulate organic matter in the Yellow Sea water column comes from marine life rather than the continent. The vertical fluxes of SPM, POC, PON and POP in the Yellow Sea are much higher than those in other seas over the world, and present a typical pattern in shallow epicontinental seas. The estimated residence time of the bioactive elements showed that the speed of the biogeochemical process of materials in the Yellow Sea is much shorter than that in the open ocean as there was high primary productivity in this region.

  16. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM10)

    International Nuclear Information System (INIS)

    Exposure to ambient air particulate matter (particles less than 10 μm or PM10) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM10. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM10/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM10 exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM10 impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM10 increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM10. Taken together, statins protect against PM10-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM10) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and intimal area.

  17. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM{sub 10})

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Bai, Ni [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver (Canada); Vincent, Renaud [Environmental Health Sciences and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa (Canada); Francis, Gordon A.; Sin, Don D. [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Van Eeden, Stephan F., E-mail: Stephan.vanEeden@hli.ubc.ca [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada)

    2013-10-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{sub 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal

  18. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  19. Long-term exposure to fine particulate matter and incidence of diabetes in the Danish Nurse Cohort

    DEFF Research Database (Denmark)

    Hansen, Anne Busch; Ravnskjær, Line; Loft, Steffen;

    2016-01-01

    Cohort with 28,731 female nurses who at recruitment in 1993 or 1999 reported information on diabetes prevalence and risk factors, and obtained data on incidence of diabetes from National Diabetes Register until 2013. We estimated annual mean concentrations of PM2.5, particulate matter with diameter <10μm......AIMS/HYPOTHESIS: It has been suggested that air pollution may increase the risk of type 2 diabetes but data on particulate matter with diameter <2.5μm (PM2.5) are inconsistent. We examined the association between long-term exposure to PM2.5 and diabetes incidence. METHODS: We used the Danish Nurse...

  20. Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy

    Directory of Open Access Journals (Sweden)

    Canepari S.

    2013-04-01

    Full Text Available Atmospheric particulate matter is characterized by a variety of chemical components, generally produced by different sources. Chemical fractionation of elements, namely the determination of their extractable and residual fractions, may reliably increase the selectivity of some elements as tracers of specific PM sources. Seasonal variations of atmospheric particulate matter concentration in PM10 and PM2.5, of elemental concentration in PM10 and PM2.5, of the extractable and residual fraction of elements in different size fractions in the range 0.18 – 18 μm are reported in this paper. The effect of the ageing of the air masses is discussed.