WorldWideScience

Sample records for ambient fine aerosols

  1. Inorganic ions in ambient fine particles over a National Park in central India: Seasonality, dependencies between SO42-, NO3-, and NH4+, and neutralization of aerosol acidity

    Science.gov (United States)

    Kumar, Samresh; Sunder Raman, Ramya

    2016-10-01

    Twelve hour integrated ambient fine particles (PM2.5) were collected over an Van Vihar National Park (VVNP), in Bhopal, Central India. Samples were collected on filter substrates every-other-day for two years (2012 and 2013). In addition to PM2.5 mass concentration, water soluble inorganic ions (WSIIs) were also measured. Further, on-site meteorological parameters including temperature, wind speed, wind direction, relative humidity, rainfall and atmospheric pressure were recorded. During 2012, the average PM2.5 concentration was 40 ± 31 μgm-3 while during 2013 it was 48 ± 50 μgm-3. Further, in about 20% of the samples the 12 h integrated fine PM mass exceeded the daily (24 h) average standards (60 μgm-3). This observation suggests that the PM2.5 mass concentration at the study site is likely to be in violation of the National Ambient Air Quality Standard (NAAQS), India. During the study period the sum of three major ions (SO42-, NO3-, and NH4+) accounted for 19.4% of PM2.5 mass on average. Air parcel back trajectory ensembles revealed that emissions from thermal power plants were likely to be the main regional source of particulate SO42- and NO3- measured over VVNP. Further, local traffic activities appeared to have no significant impact on the concentrations of PM2.5 and its WSIIs constituents, as revealed by a day-of-the-week analysis. PM2.5 mass, SO42-, NO3-, and NH4+ showed a pronounced seasonal trend with winter (Jan, Feb) and post-monsoon (Oct, Nov, Dec) highs and pre-monsoon (Mar, Apr, May) and monsoon (Jun, Jul, Aug, Sep) lows, during both 2012 and 2013. Further, when the sum of SO42- and NO3- constituted greater than 90% of water soluble inorganic anions by mass, they were linearly dependent on one another and moderately anti-correlated (r2 = 0.60). The molar ratios of NH4+ and non-sea salt SO42- were examined to understand the aerosol neutralization mechanisms and particulate NO3- formation. An assessment of these ratios and subsequent analyses

  2. CCN activation of ambient and "synthetic ambient" urban aerosol

    Science.gov (United States)

    Burkart, Julia; Reischl, Georg; Steiner, Gerhard; Bauer, Heidi; Leder, Klaus; Kistler, Magda; Puxbaum, Hans; Hitzenberger, R.

    2013-05-01

    In this study, the Cloud Condensation Nuclei (CCN) activation properties of the urban aerosol in Vienna, Austria, were investigated in a long term (11 month) field study. Filter samples of the aerosol below 100 nm were taken in parallel to these measurements, and later used to generate "synthetic ambient" aerosols. Activation parameters of this "synthetic ambient" aerosol were also obtained. Hygroscopicity parameters κ [1] were calculated both for the urban and the "synthetic ambient" aerosol and also from the chemical composition. Average κ for the "synthetic ambient" aerosol ranged from 0.20 to 0.30 with an average value of 0.24, while the κ from the chemical composition of this "synthetic ambient" aerosol was significantly higher (average 0.43). The full results of the study are given elsewhere [2,3].

  3. The international fine aerosol networks

    Science.gov (United States)

    Cahill, Thomas A.

    1993-04-01

    The adoption by the United States of a PIXE-based protocol for its fine aerosol network, after open competitions involving numerous laboratories and methods, has encouraged cooperation with other countries possessing similar capabilities and similar needs. These informal cooperative programs, involving about a dozen countries at the end of 1991, almost all use PIXE as a major component of the analytical protocols. The University of California, Davis, Air Quality Group assisted such programs through indefinite loans of a quality assurance sampler, the IMPROVE Channel A, and analyses at no cost of a small fraction of the samples taken in a side-by-side configuration. In December 1991, the World Meteorological Organization chose a protocol essentially identical to IMPROVE for the Global Atmospheric Watch (GAW) network and began deploying units, the IMPROVE Channel A, to sites around the world. Preferred analyses include fine (less than about 2.5 μm) mass, ions by ion chromatography and elements by PIXE + PESA (or, lacking that, XRF). This paper will describe progress in both programs, giving examples of the utility of the data and projecting the future expansion of the network to about 20 GAW sites by 1994.

  4. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    Science.gov (United States)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  5. Toxicity of Ambient Particulate Matter II. Acute toxicity study in asthmatic mice following 3-day exposure to fine ammonium ferrosulfate, a model compound for secondary aerosol of PM10

    NARCIS (Netherlands)

    Cassee FR; Dormans JAMA; Loveren H van; Bree L van; Rombout PJA; LEO; LPI

    1998-01-01

    In this second report on acute inhalation studies with model compounds for secondary particulate matter, results are presented of a study with fine ammonium ferrosulfate aerosol in asthmatic animals. We hypothesised that an aerosol with a transitional metal could produce enhanced symptoms of asthma.

  6. Toxicity of Ambient Particulate Matter (PM10) I. Acute toxicity study in asthmatic mice following 3-day exposure to ultrafine and fine ammonium bisulfate, a model compound for secondary aerosol fraction of PM10

    NARCIS (Netherlands)

    Cassee FR; Dormans JAMA; Loveren H van; Bree L van; Rombout PJA; LEO; LPI

    1998-01-01

    Presented here is the first in a series of 3-day inhalation studies aimed to generate data on the health effects of inhaled ultrafine and fine ammonium bisulfate aerosols as model compound for the secondary fraction of particulate matter (PM10). Epidemiologic studies identified asthmatics as a risk

  7. Quantitative assessment of organosulfates in size-segregated rural fine aerosol

    Directory of Open Access Journals (Sweden)

    H. Lukács

    2008-04-01

    Full Text Available Organosulfates have recently come into the focus of organic aerosol research as potentially important components of water-soluble secondary organic aerosol (SOA which now dominate tropospheric fine aerosol. Their presence has been confirmed by the identification of sulfate esters of abundant biogenic carbonyl compounds in both smog chamber and continental aerosol. However, none of the studies have been able to determine the mass contribution of organosulfates to SOA.

    In this paper, as possibly the very first attempt to quantify organosulfates in ambient aerosol, we inferred the mass concentrations of organosulfates by concurrently determining mass concentrations of total sulfur, sulfate and methanesulfonate in rural fine aerosol using two highly sensitive analytical techniques. Although uncertainties were relatively large, we found that mass concentrations of organosulfates in water-soluble fine aerosol ranged from 0.02 μgS m−3 to 0.09 μgS m−3 yielding a mass contribution of 6–12% to bulk sulfur concentrations (or 6–14% to sulfate concentrations. The inferred size distribution of organosulfates suggested that they possibly form in heterogeneous reactions from semi-volatile carbonyl compounds with subsequent or concurrent condensation of gaseous sulfuric acid producing a refractory organic film on particle surfaces.

  8. Artificial ultra-fine aerosol tracers for highway transect studies

    Science.gov (United States)

    Cahill, Thomas A.; Barnes, David E.; Wuest, Leann; Gribble, David; Buscho, David; Miller, Roger S.; De la Croix, Camille

    2016-07-01

    The persistent evidence of health impacts of roadway aerosols requires extensive information for urban planning to avoid putting populations at risk, especially in-fill projects. The required information must cover both highway aerosol sources as well as transport into residential areas under a variety of roadway configurations, traffic conditions, downwind vegetation, and meteorology. Such studies are difficult and expensive to do, but were easier in the past when there was a robust fine aerosol tracer uniquely tied to traffic - lead. In this report we propose and test a modern alternative, highway safety flare aerosols. Roadway safety flares on vehicles in traffic can provide very fine and ultra-fine aerosols of unique composition that can be detected quantitatively far downwind of roadways due to a lack of upwind interferences. The collection method uses inexpensive portable aerosol collection hardware and x-ray analysis protocols. The time required for each transect is typically 1 h. Side by side tests showed precision at ± 4%. We have evaluated this technique both by aerosol removal in vegetation in a wind tunnel and by tracking aerosols downwind of freeways as a function of season, highway configuration and vegetation coverage. The results show that sound walls for at-grade freeways cause freeway pollution to extend much farther downwind than standard models predict. The elevated or fill section freeway on a berm projected essentially undiluted roadway aerosols at distances well beyond 325 m, deep into residential neighborhoods. Canopy vegetation with roughly 70% cover reduced very fine and ultra-fine aerosols by up to a factor of 2 at distances up to 200 m downwind.

  9. Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the southeastern United States

    Directory of Open Access Journals (Sweden)

    N. F. Taylor

    2011-12-01

    Full Text Available We present results from two field deployments of a unique tandem differential mobility analyzer (TDMA configuration with two primary capabilities: identifying alternative stable or meta-stable ambient aerosol hydration states associated with hysteresis in aerosol hydration behavior and determining the actual Ambient hydration State (AS-TDMA. This data set is the first to fully classify the ambient hydration state of aerosols despite recognition that hydration state significantly impacts the roles of aerosols in climate, visibility and heterogeneous chemistry. The AS-TDMA was installed at a site in eastern Tennessee on the border of Great Smoky Mountains National Park for projects during the summer of 2006 and winter of 2007–2008. During the summer, 12% of the aerosols sampled in continuous AS-TDMA measurements were found to posses two possible hydration states under ambient conditions. In every case, the more hydrated of the possible states was occupied. The remaining 88% did not posses multiple possible states. In continuous measurements during the winter, 49% of the aerosols sampled possessed two possible ambient hydration states; the remainder possessed only one. Of those aerosols with multiple possible ambient hydration states, 65% occupied the more hydrated state; 35% occupied the less hydrated state. This seasonal contrast is supported by differences in the fine particulate (PM2.5 composition and ambient RH as measured during the two study periods. In addition to seasonal summaries, this work includes case studies depicting the variation of hydration state with changing atmospheric conditions.

  10. Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the Southeastern United States

    Directory of Open Access Journals (Sweden)

    N. F. Taylor

    2011-08-01

    Full Text Available We present results from two field deployments of a unique tandem differential mobility analyzer (TDMA configuration with two primary capabilities: identifying alternative stable or meta-stable ambient aerosol hydration states associated with hysteresis in aerosol hydration behavior and determining the actual Ambient hydration State (AS-TDMA. This data set is the first to fully classify the ambient hydration state of aerosols despite recognition that hydration state significantly impacts the roles of aerosols in climate, visibility and heterogeneous chemistry. The AS-TDMA was installed at a site in eastern Tennessee on the border of Great Smoky Mountains National Park for projects during the summer of 2006 and winter of 2007–2008. During the summer, 12 % of the aerosols sampled in continuous AS-TDMA measurements were found to posses two possible hydration states under ambient conditions. In every case, the more hydrated of the possible states was occupied. The remaining 88 % did not posses multiple possible states. In continuous measurements during the winter, 49 % of the aerosols sampled possessed two possible ambient hydration states; the remainder possessed only one. Of those aerosols with multiple possible ambient hydration states, 65 % occupied the more hydrated state; 35 % occupied the less hydrated state. This seasonal contrast is supported by differences in the fine particulate (PM2.5 composition and ambient RH as measured during the two study periods. In addition to seasonal summaries, this work includes case studies depicting the variation of hydration state with changing atmospheric conditions.

  11. Characterization of selenium in ambient aerosols and primary emission sources.

    Science.gov (United States)

    De Santiago, Arlette; Longo, Amelia F; Ingall, Ellery D; Diaz, Julia M; King, Laura E; Lai, Barry; Weber, Rodney J; Russell, Armistead G; Oakes, Michelle

    2014-08-19

    Atmospheric selenium (Se) in aerosols was investigated using X-ray absorption near-edge structure (XANES) spectroscopy and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the oxidation state and elemental associations of Se in common primary emission sources and ambient aerosols collected from the greater Atlanta area. In the majority of ambient aerosol and primary emission source samples, the spectroscopic patterns as well as the absence of elemental correlations suggest Se is in an elemental, organic, or oxide form. XRF microscopy revealed numerous Se-rich particles, or hotspots, accounting on average for ∼16% of the total Se in ambient aerosols. Hotspots contained primarily Se(0)/Se(-II). However, larger, bulk spectroscopic characterizations revealed Se(IV) as the dominant oxidation state in ambient aerosol, followed by Se(0)/Se(-II) and Se(VI). Se(IV) was the only observed oxidation state in gasoline, diesel, and coal fly ash, while biomass burning contained a combination of Se(0)/Se(-II) and Se(IV). Although the majority of Se in aerosols was in the most toxic form, the Se concentration is well below the California Environmental Protection Agency chronic exposure limit (∼20000 ng/m(3)). PMID:25075640

  12. Spectro-microscopy of Ambient Aerosol Particles: Observational Constraints on Mixing State Parameterization

    Science.gov (United States)

    OBrien, R. E.; Wang, B.; Laskin, A.; West, M.; Riemer, N. S.; Gilles, M. K.; Moffet, R.

    2014-12-01

    Individual aerosol particles are often mixtures of multiple components such as inorganic salts, soot or elemental carbon, and organic molecules. The amounts of the different components in each particle and the particle morphologies will impact the CCN activity and the radiative properties of the aerosol population. A recent parameterization of the mixing state developed by Nicole Riemer and Matthew West provides a clear transition between ambient measurements of aerosol components and particle mixing states employed in climate models. Single particle spectro-microscopy techniques including scanning transmission x-ray microscopy/near-edge x-ray absorption fine structure spectroscopy (STXM/NEXAFS) and computer controlled scanning electron microscopy/energy dispersive x-ray spectroscopy (CCSEM/EDX) are used to measure the composition of aerosol particles from the CARES campaign at both T0 and T1. Here, we present results from the application of the per particle composition to a parameterization of the mixing state and provide constraints on the mixing state of ambient aerosol particles. The two microscopy techniques yield complementary information on the mixing state of the aerosol populations; STXM/NEXAFS provides information on the mixing state of the organic fraction while CCSEM/EDX provides information on the inorganic fraction.

  13. Secondary organic aerosols: Formation potential and ambient data

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1997-01-01

    Organic aerosols comprise a significant fraction of the total atmospheric particle loading and are associated with radiative forcing and health impacts. Ambient organic aerosol concentrations contain both a primary and secondary component. Herein, fractional aerosol coefficients (FAC) are used...... seasonal variability in SOA potential. Particulate carbon contributes only approx. 3% of total carbon concentrations in the LFV, and it is shown that variability in total carbon concentrations is significantly larger than variability in gas/particle partitioning. (C) 1997 Elsevier Science B.V....

  14. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    Science.gov (United States)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra-fine

  15. Toxicity of Ambient Particulate Matter. III. Acute toxicity study in asthmatic mice following 3-day exposure to ultrafine and fine ammonium nitrate, a model compound for secondary aerosol fraction of PM10

    NARCIS (Netherlands)

    Cassee FR; Dormans JAMA; Loveren H van; Bree L van; Rombout PJA; LEO; LPI

    1998-01-01

    Ammonium nitrate is the most prominent component of secondary PM10 in the Netherlands. In our study, healthy and asthmatic mice were exposed to fine (CMD = 0.3 mum; 4 x 10 exp. 3 particles per cm3) and ultrafine (CMD = 0.03 mum; 2 x 10. exp. 5 particles per cm3) ammonium nitrate. The mean mass conc

  16. Anomalous telephotometer results for the ambient atmospheric aerosol

    Science.gov (United States)

    Harrison, A. W.; Coombes, C. A.

    Simultaneous measurements of the ambient atmospheric aerosol scattering coefficient using a telephotometer δa( λ) and an integrating nephelometer δn( λ) have revealed a seasonal variation in the difference δn( λ) - δa( λ). This variation can be explained by the presence of terpene oil droplets in the boundary layer in the telephotometer line of sight but beyond the telephotometer target. The droplets are due to extensive fir and pine in that far region. A satisfactory modification of the original Koschmeider contrast theory to take account of this effect is outlined.

  17. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    Science.gov (United States)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute

  18. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate.

    OpenAIRE

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second is indirect. Due to the scattering of solar light on aerosol particles the Earth surface receives less radiation and thus cools, which is called the direct aerosol effect.The indirect effect includes proces...

  19. Aerosol dynamics and the synthesis of fine solid particles

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyaya, R.; Lall, A.A.; Friedlander, S.K. [University of California in Los Angeles, Los Angeles, CA (USA). Dept. of Chemical Engineering

    2004-01-26

    Aerosol dynamics (AD) is the discipline that deals with changes in particle size distributions in space and time. AD is based on (1) certain fundamental principles embodied in a set of equations, (2) experimental methods and instrumentation and (3) numerical and computational methods. Over the last few decades, AD has emerged as an enabling discipline in the design of aerosol reactors employed in the gas phase synthesis of fine powders, the characterization of particle emissions from sources such as coal-fired power plants and the atmospheric aerosol. The development of basic AD concepts since early in the 20th century is traced to the present. Major gaps that remain in the field and likely advances over the next few years are discussed. Although accurate predictions of particle size from first principles are difficult to make in practical applications, AD principles can be used to explain trends in product properties for flame and laser ablation reactors that operate under very different temperatures and quench rates.

  20. Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing

    Science.gov (United States)

    Cheng, T.; Gu, X.; Xie, D.; Li, Z.; Yu, T.; Chen, H.

    2012-03-01

    A new aerosol retrieval algorithm using multi-angular total and polarized measurements is presented. The algorithm retrieves aerosol optical depth (AOD), fine-mode fraction (FMF) for studying the impact of aerosol on climate change. The retrieval algorithm is based on a lookup table (LUT) method, which assumes that one fine and one coarse lognormal aerosol modes can be combined with proper weightings to represent the ambient aerosol properties. To reduce the ambiguity in retrieval algorithm, the key characteristics of aerosol model over East Asia are constrained using the cluster analysis technique based on the AERONET sun-photometer observation over East Asia, and the fine and coarse modes are not fixed but can vary. A mixing model of bare soil and green vegetation spectra and the Nadal and Breon model for the bidirectional polarized reflectance factor (BPDF) were used to simulate total and polarized surface reflectance of East Asia. By applying the present algorithm to POLDER measurements, three different aerosol cases of clear, polluted and dust are analyzed to test the algorithm. The comparison of retrieved aerosol optical depth (AOD) and fine-mode fraction (FMF) with those of AERONET sun-photometer observations show reliable results. Preliminary validation is encouraging. Using the new aerosol retrieval algorithm for multi-angular total and polarized measurements, the spatial and temporal variability of anthropogenic aerosol optical properties over East Asia, which were observed during a heavy polluted event, were analyzed. Exceptionally high values of aerosol optical depth contributed by fine mode of up to 0.5 (at 0.865 μm), and high values of fine-mode fraction of up to 0.9, were observed in this case study.

  1. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate.

    NARCIS (Netherlands)

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second is indire

  2. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-01-01

    Full Text Available Measurements of the sensitivity of organic aerosol (OA, and its components mass to changes in temperature were recently reported by Huffman et al. (2009 using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets" are determined using several assumptions as to the enthalpy of vaporization (ΔHvap. We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions, on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol and lowest for the high (ΔHvap = 150 kJ/mol assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009 has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our

  3. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-06-01

    Full Text Available Measurements of the sensitivity of organic aerosol (OA, and its components mass to changes in temperature were recently reported by Huffman et al.~(2009 using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets" are determined using several assumptions as to the enthalpy of vaporization (ΔHvap. We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol and lowest for the high (ΔHvap = 150 kJ/mol assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009 has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the

  4. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    Science.gov (United States)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  5. Chemical Imaging of Ambient Aerosol Particles: Observational Constraints on Mixing State Parameterization

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Laskin, Alexander; Riemer, Nicole; West, Matthew; Zhang, Qi; Sun, Yele; Yu, Xiao-Ying; Alpert, Peter A.; Knopf, Daniel A.; Gilles, Mary K.; Moffet, Ryan

    2015-09-28

    A new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission x-ray microscopy/near edge x-ray absorption fine structure (STXM/NEXAFS) and computer controlled scanning electron microscopy/energy dispersive x-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on June 27th and 28th during the 2010 Carbonaceous Aerosols and Radiative Effects (CARES) study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near the Sierra Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. Both microscopy imaging techniques showed more changes over these two days in the mixing state at the T0 site than at the T1 site. The STXM data showed evidence of changes in the mixing state associated with a build-up of organic matter confirmed by collocated measurements and the largest impact on the mixing state was due to an increase in soot dominant particles during this build-up. The CCSEM/EDX analysis showed the presence of two types of particle populations; the first was dominated by aged sea salt particles and had a higher mixing state index (indicating a more homogeneous population), the second was dominated by carbonaceous particles and had a lower mixing state index.

  6. Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization

    Science.gov (United States)

    O'Brien, Rachel E.; Wang, Bingbing; Laskin, Alexander; Riemer, Nicole; West, Matthew; Zhang, Qi; Sun, Yele; Yu, Xiao-Ying; Alpert, Peter; Knopf, Daniel A.; Gilles, Mary K.; Moffet, Ryan C.

    2015-09-01

    A new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission X-ray microscopy/near edge X-ray absorption fine structure (STXM/NEXAFS) and computer-controlled scanning electron microscopy/energy dispersive X-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on 27 and 28 June during the 2010 Carbonaceous Aerosols and Radiative Effects study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near the Sierra Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. The STXM data showed evidence of changes in the mixing state associated with a buildup of organic matter confirmed by collocated measurements, and the largest impact on the mixing state was due to an increase in soot dominant particles during this buildup. The mixing state from STXM was similar between T0 and T1, indicating that the increased organic fraction at T1 had a small effect on the mixing state of the population. The CCSEM/EDX analysis showed the presence of two types of particle populations: the first was dominated by aged sea-salt particles and had a higher mixing state index (indicating a more homogeneous population); the second was dominated by carbonaceous particles and had a lower mixing state index.

  7. Impact of fine particles in ambient air on lung cancer

    Institute of Scientific and Technical Information of China (English)

    Gerard Hoek; Ole Raaschou-Nielsen

    2014-01-01

    Recently, the International Agency for Research on Cancer (IARC) has classified outdoor air pol ution and the particulate matter component of outdoor air pollution as class I carcinogen. Air pollution is consistently associated with lung cancer in epidemiologic and experimental studies. The IARC assessment is specifical y designed as hazard identification, and it does not quantify the magnitude of the cancer risk. This article addresses the magnitude of the lung cancer risk in the population due to ambient air pol ution exposure.

  8. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008

    Directory of Open Access Journals (Sweden)

    B. H. Lee

    2010-07-01

    Full Text Available A variable residence time thermodenuder (TD was combined with an Aerodyne Aerosol Mass Spectrometer (AMS and a Scanning Mobility Particle Sizer (SMPS to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008. A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model.

    Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements.

    The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 orders of magnitude less volatile than fresh laboratory-generated biogenic secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species.

  9. Application of the VH-TDMA technique to coastal ambient aerosols

    Science.gov (United States)

    Johnson, G.; Ristovski, Z.; Morawska, L.

    2004-08-01

    A newly developed VH-TDMA has been used for the first time to measure the volatile fractions and post volatilization hygroscopic growth factors of ambient aerosols in the coastal marine and urban environments. The results are compared with comparable data for laboratory generated aerosols of known composition. Measurements conducted on coastal Aitken mode particles showed volatilization behavior similar to laboratory generated aerosols composed of methane sulfonic acid and ammonium sulfate. Measurements conducted on 60 nm particles during nucleation events contained a greater fraction of material with similar volatility to ammonium sulfate than was found at other times. These particles were hygroscopic but less so than pure ammonium sulfate. Measurements conducted in the Brisbane central business district during sea breeze conditions show similar behavior to the coastal aerosol, but with additional low volatility species. This aerosol may originate from urban sources or from marine particles acquiring additional secondary aerosol species during transport.

  10. Aerodynamic size associations of natural radioactivity with ambient aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bondietti, E.A.; Papastefanou, C.; Rangarajan, C.

    1986-04-01

    The aerodynamic size of /sup 214/Pb, /sup 212/Pb, /sup 210/Pb, /sup 7/Be, /sup 32/P, /sup 35/S (as SO/sub 4//sup 2 -/), and stable SO/sub 4//sup 2 -/ was measured using cascade impactors. The activity distribution of /sup 212/Pb and /sup 214/Pb, measured by alpha spectroscopy, was largely associated with aerosols smaller than 0.52 ..mu..m. Based on 46 measurements, the activity median aerodynamic diameter of /sup 212/Pb averaged 0.13 ..mu..m (sigma/sub g/ = 2.97), while /sup 214/Pb averaged 0.16 ..mu..m (sigma/sub g/ = 2.86). The larger median size of /sup 214/Pb was attributed to ..cap alpha..-recoil depletion of smaller aerosols following decay of aerosol-associated /sup 218/Po. Subsequent /sup 214/Pb condensation on all aerosols effectively enriches larger aerosols. /sup 212/Pb does not undergo this recoil-driven redistribution. Low-pressure impactor measurements indicated that the mass median aerodynamic diameter of SO/sub 4//sup 2 -/ was about three times larger than the activity median diameter /sup 212/Pb, reflecting differences in atmospheric residence times as well as the differences in surface area and volume distributions of the atmospheric aerosol. Cosmogenic radionuclides, especially /sup 7/Be, were associated with smaller aerosols than SO/sub 4//sup 2 -/ regardless of season, while /sup 210/Pb distributions in summer measurements were similar to sulfate but smaller in winter measurements. Even considering recoil following /sup 214/Po ..cap alpha..-decay, the avervage /sup 210/Pb labeled aerosol grows by about a factor of two during its atmospheric lifetime. The presence of 5 to 10% of the /sup 7/Be on aerosols greater than 1 ..mu..m was indicative of post-condensation growth, probably either in the upper atmosphere or after mixing into the boundary layer.

  11. Activation of "synthetic ambient" aerosols - Relation to chemical composition of particles <100 nm

    Science.gov (United States)

    Burkart, J.; Hitzenberger, R.; Reischl, G.; Bauer, H.; Leder, K.; Puxbaum, H.

    2012-07-01

    Cloud condensation nuclei (CCN) are an important fraction of atmospheric aerosols because of their role in cloud formation. Experimental studies focus either on direct field measurements of complex ambient aerosols or laboratory investigations on well defined aerosols produced from single substances or substance mixtures. In this study, we focussed on the ultrafine aerosol because in terms of number concentration, the majority of the CCN are expected to have sizes in this range. A field study was performed from July 2007 to October 2008 to investigate the activation behaviour of the atmospheric aerosol in Vienna (Burkart et al., 2011). Filter samples of the aerosol aerosol in a nebulizer. Chemical analyses of the ultrafine water soluble material were also performed. The CCN properties of the "synthetic ambient" aerosol were obtained using the University of Vienna CCN counter (Giebl et al., 2002; Dusek et al., 2006b) at a nominal supersaturation (SS) of 0.5%. Activation diameters dact ranged from 54.5 nm to 66 nm, were larger than dact of typical single inorganic salts and showed no seasonal pattern in contrast to the fraction of water soluble organic carbon (WSOC), which ranged from 44% in spring to 15% in winter. The average hygroscopicity parameter κ (Petters and Kreidenweis, 2007) obtained from the activation curves ranged from 0.20 to 0.30 (average 0.24), which was significantly lower than κchem calculated from the chemical composition (0.43 ± 0.07).

  12. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    Science.gov (United States)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  13. Source apportionment of fine organic aerosol in Mexico City during the MILAGRO Experiment 2006

    Directory of Open Access Journals (Sweden)

    E. A. Stone

    2007-07-01

    Full Text Available Organic carbon (OC comprises a large fraction of fine particulate matter (PM2.5 in Mexico City. Daily and select 12-h PM2.5 samples were collected in urban and peripheral sites in Mexico City from 17–30 March 2006. Samples were analyzed for OC and elemental carbon (EC using thermal-optical filter-based methods. Real-time water-soluble organic carbon (WSOC was collected at the peripheral site. Organic compounds, particularly molecular markers, were quantified by soxhlet extraction with methanol and dichloromethane, derivitization, and gas chromatography with mass spectrometric detection (GCMS. A chemical mass balance model (CMB based on molecular marker species was used to determine the relative contribution of major sources to ambient OC. Motor vehicles, including diesel and gasoline, consistently accounted for 47% of OC in the urban area and 31% on the periphery. The daily contribution of biomass burning to OC was highly variable, and ranged from 5–30% at the urban site and 11–50% at the peripheral site. The remaining OC unapportioned to primary sources showed a strong correlation with WSOC and was considered to be secondary in nature. Comparison of temporally resolved OC showed that contributions from primary aerosol sources during daylight hours were not significantly different from nighttime. This study provides quantitative understanding of the important sources of OC during the MILAGRO 2006 field campaign.

  14. Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006

    Directory of Open Access Journals (Sweden)

    E. A. Stone

    2008-03-01

    Full Text Available Organic carbon (OC comprises a large fraction of fine particulate matter (PM2.5 in Mexico City. Daily and select 12-h PM2.5 samples were collected in urban and peripheral sites in Mexico City from 17–30 March 2006. Samples were analyzed for OC and elemental carbon (EC using thermal-optical filter-based methods. Real-time water-soluble organic carbon (WSOC was collected at the peripheral site. Organic compounds, particularly molecular markers, were quantified by soxhlet extraction with methanol and dichloromethane, derivitization, and gas chromatography with mass spectrometric detection (GCMS. A chemical mass balance model (CMB based on molecular marker species was used to determine the relative contribution of major sources to ambient OC. Motor vehicles, including diesel and gasoline, consistently accounted for 49% of OC in the urban area and 32% on the periphery. The daily contribution of biomass burning to OC was highly variable, and ranged from 5–26% at the urban site and 7–39% at the peripheral site. The remaining OC unapportioned to primary sources showed a strong correlation with WSOC and was considered to be secondary in nature. Comparison of temporally resolved OC showed that contributions from primary aerosol sources during daylight hours were not significantly different from nighttime. This study provides quantitative understanding of the important sources of OC during the MILAGRO 2006 field campaign.

  15. An algorithm for retrieving fine and coarse aerosol microphysical properties from AERONET-type photopolarimetric measurements

    Science.gov (United States)

    Xu, X.; Wang, J.; Zeng, J.; Spurr, R. J. D.; Liu, X.; Dubovik, O.; Li, Z.; Li, L.; Holben, B. N.; Mishchenko, M. I.

    2014-12-01

    A new retrieval algorithm has been developed to retrieve both fine and coarse modal aerosol properties from multi-spectral and multi-angular solar polarimetric radiation fields such as those measured by the AErosol RObotic NETwork (AERONET) but with additional channels of polarization observations (hereafter AEROENT-type measurements). Most AERONET sites lack the capability to measure light polarization, though a few measure polarization only at 870 nm. From both theory and real cases, we show that adding multi-spectral polarization data can allow a mode-resolved inversion of aerosol microphysical parameters. In brief, the retrieval algorithm incorporates AERONET-type measurements in conjunction with advanced vector radiative transfer model specifically designed for studying the inversion problems in aerosol remote sensing. It retrieves aerosol parameters associated to a bi-lognormal particle size distribution (PSD) including aerosol volume concentrations, effective radius and variance, and complex indices of aerosol refraction. Our algorithm differs from the current AERONET inversion algorithm in two major aspects. First, it retrieves effective radius and variance and total volume by assuming a bi-modal lognormal PSD, while AERONET one retrieves aerosol volumes of 22 size bins. Second, our algorithm retrieves spectral refractive indices for both fine and coarse modes. Mode-resolved refractive indices can improve the estimate of single scattering albedo (SSA) for each mode, which also benefits the evaluation for satellite products and chemistry transport models. While bi-lognormal PSD can well represent aerosol size spectrum in most cases, future research efforts will include implementation for tri-modal aerosol mixtures in situations of cloud-formation or volcanic aerosols. Applying the algorithm to a suite of real cases over Beijing_RADI site, we found that our retrievals are overall consistent with AERONET inversion products, but can offer mode

  16. 77 FR 65310 - Additional Air Quality Designations for the 2006 24-Hour Fine Particle National Ambient Air...

    Science.gov (United States)

    2012-10-26

    ... the 2006 24-hour Fine Particle (PM 2.5 ) National Ambient Air Quality Standards,'' 74 FR 58688... AGENCY 40 CFR Part 81 Additional Air Quality Designations for the 2006 24-Hour Fine Particle National Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION:...

  17. Speciation of Fe in ambient aerosol and cloudwater

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, L. [California Institute of Technology, Pasadena, CA (United States)

    1996-08-15

    Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the worlds oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry.

  18. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008

    Directory of Open Access Journals (Sweden)

    B. H. Lee

    2010-12-01

    Full Text Available A variable residence time thermodenuder (TD was combined with an Aerodyne Aerosol Mass Spectrometer (AMS and a Scanning Mobility Particle Sizer (SMPS to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008. A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model.

    Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements.

    The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  19. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    Science.gov (United States)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-12-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions) secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  20. Separating Hazardous Aerosols from Ambient Aerosols: Role of Fluorescence-Spectral Determination, Aerodynamic Deflector and Pulse Aerodynamic Localizer (PAL)

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yong-Le; Cobler, Patrick J.; Rhodes, Scott A.; Halverson, Justin; Chang, Richard K.

    2005-08-22

    An aerosol deflection technique based on the single-shot UV-laser-induced fluorescence spectrum from a flowing particle is presented as a possible front-end bio-aerosol/hazardous-aerosol sensor/identifier. Cued by the fluorescence spectra, individual flowing bio-aerosol particles (1-10 {micro}m in diameter) have been successfully deflected from a stream of ambient aerosols. The electronics needed to compare the fluorescence spectrum of a particular particle with that of a pre-determined fluorescence spectrum are presented in some detail. The deflected particles, with and without going through a funnel for pulse aerodynamic localization (PAL), were collected onto a substrate for further analyses. To demonstrate how hazardous materials can be deflected, TbCl{sub 3} {center_dot} 6H{sub 2}O (a simulant material for some chemical forms of Uranium Oxide) aerosol particles (2 {micro}m in diameter) mixed with Arizona road dust was separated and deflected with our system.

  1. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw

    NARCIS (Netherlands)

    Zieger, P.; Weingartner, E.; Henzing, J.; Moerman, M.; Leeuw, G. de; Mikkilä, J.; Ehn, M.; Petäjä, T.; Clémer, K.; Roozendael, M. van; Yilmaz, S.; Frieß, U.; Irie, H.; Wagner, T.; Shaiganfar, R.; Beirle, S.; Apituley, A.; Wilson, K.; Baltensperger, U.

    2011-01-01

    In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30-40%). Since ambient aerosol particles experience hygroscopic growth at enhanced RH, their microphysical and optical properties especially the aerosol light scattering are also strongly depend

  2. Electron microprobe identification of fibrous aerosols in ambient air

    International Nuclear Information System (INIS)

    Nuclepore filters were used for sampling fibrous particles in ambient air. The fiber counting and fiber size measurements were done by means of SEM-methods. The number of fibers, distribution of fiber lengths, and diameters were plotted. The specific identification of asbestos fibers was made by electron microprobe analysis. Certain elements such as Si, Fe, Mg, Al, Mn, Ca, and Na as well as ratios such as Fe/Si and Mg/Si proved to be approximative identification factors for ambient asbestos. Not only asbestos and glass, also many other inorganic fibrous particles were found in the urban atmosphere as well as in the atmosphere of remote regions. Fibrous gypsum, fibrous ammonium sulfates, fibrous silicates, fibrous mica, and quartz were identified among these particles. Even in remote ambient air, relatively high concentrations of fibrous particles (103-104 m-3) could be measured, although the concentration of asbestos fibers were usually smaller than 102 m-3

  3. Triggering of Transmural Infarctions, but Not Nontransmural Infarctions, by Ambient Fine Particles

    OpenAIRE

    Rich, David Q.; Kipen, Howard M.; Zhang, Junfeng; Kamat, Leena; Wilson, Alan C.; Kostis, John B; ,

    2010-01-01

    Background Previous studies have reported increased risk of myocardial infarction (MI) after increases in ambient particulate matter (PM) air pollution concentrations in the hours and days before MI onset. Objectives We hypothesized that acute increases in fine PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) may be associated with increased risk of MI and that chronic obstructive pulmonary disease (COPD) and diabetes may increase susceptibility to PM2.5. We also explored whether both transmural...

  4. Characteristics of fine and coarse particles of natural and urban aerosols of Brazil

    International Nuclear Information System (INIS)

    Fine and coarse particles have been sampled from 1982 to 1985 in one natural forest seacoast site (Jureia) and five urban-industrial cities (Vitoria, Salvador, Porto Alegre, Sao Paulo, and Belo Horizonte). The time variations of concentrations in air and the relative elemental compositions of fine and coarse particle fractions, sampled by Nuclepore stacked filter units (SFU), have been determined gravimetrically and by PIXE analysis, respectively. Enrichment factors and correlation coefficients of the trace elements measured lead to unambiguous characterization of soil dust and sea salt, both major aerosol sources that emit coarse particles, and soil dust is also a significant source of fine particles. (Author)

  5. Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

    2014-06-17

    The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

  6. Ion composition of coarse and fine particles in Iasi, north-eastern Romania: Implications for aerosols chemistry in the area

    Science.gov (United States)

    Arsene, Cecilia; Olariu, Romeo Iulian; Zarmpas, Pavlos; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2011-02-01

    Atmospheric loadings of the aerosols coarse (particles of AED > 1.5 μm) and fine fractions (particles of AED water soluble ions (SO 42-, NO 3-, Cl -, C 2O 42-, NH 4+, K +, Na +, Ca 2+ and Mg 2+) were measured using ion chromatography (IC). In the coarse particles, calcium and carbonate are the main ionic constituents (˜65%), whereas in the fine particles SO 42-, NO 3-, Cl - and NH 4+ are the most abundant. Temperature and relative humidity (RH) associated with increased concentrations of specific ions might be the main factors controlling the aerosol chemistry at the investigated site. From August 2007 to March 2008 high RH (as high as 80% for about 82% of the investigated period) was prevailing in Iasi and the collected particles were expected to have deliquesced and form an internal mixture. We found that in fine particles ammonium nitrate (NH 4NO 3) is important especially under conditions of NH 4+/SO 42- ratio higher than 1.5 and high RH (RH above deliquescence of NH 4Cl, NH 4NO 3 and (NH 4) 2SO 4). At the investigated site large ammonium artifacts may occur due to inter-particle interaction especially under favorable meteorological conditions. A methodology for estimating the artifact free ambient ammonium concentration is proposed for filter pack sampling data of deliquesced particles. Nitrate and sulfate ions in coarse particles are probably formed via reactions of nitric and sulfuric acid with calcium carbonate and sodium chloride which during specific seasons are abundant at the investigated site. In the fine mode sulfate concentration maximized during summer (due to enhanced photochemistry) and winter (due to high concentration of SO 2 emitted from coal burning). Natural contributions, dust or sea-salt related, prevail mainly in the coarse particles. From May 2007 to August 2007, when air masses originated mainly from Black Sea, in the coarse particles an nss-Cl/Na ratio of 1.11 was measured. Elevated levels of chloride in fine particles have been

  7. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    Science.gov (United States)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  8. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    Science.gov (United States)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  9. Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol.

    Science.gov (United States)

    Iinuma, Yoshiteru; Müller, Conny; Berndt, Torsten; Böge, Olaf; Claeys, Magda; Herrmann, Hartmut

    2007-10-01

    The formation of organosulfates from the gas-phase ozonolysis of beta-pinene in the presence of neutral or acidic sulfate particles was investigated in a series of indoor aerosol chamber experiments. The organosulfates were analyzed using high-performance liquid chromatography (LC) coupled to electrospray ionization-time-of-flight mass spectrometry (MS) in parallel to ion trap MS. Organosulfates were only found in secondary organic aerosol from beta-pinene ozonolysis in the presence of acidic sulfate seed particles. One of the detected organosulfates also occurred in ambient aerosol samples that were collected at a forest site in northeastern Bavaria, Germany. beta-Pinene oxide, an oxidation product in beta-pinene/O3 and beta-pinene/NO3 reactions, is identified as a possible precursor for the beta-pinene-derived organosulfate. Furthermore, several nitroxy-organosulfates originating from monoterpenes were found in the ambient samples. These nitroxy-organosulfates were only detected in the nighttime samples, suggesting a role for nighttime chemistry in their formation. Their LC/MS chromatographic peak intensities suggest that they represent an important fraction of the organic mass in ambient aerosols, especially at night.

  10. Reproducing the optical properties of fine desert dust aerosols using ensembles of simple model particles

    International Nuclear Information System (INIS)

    Single scattering optical properties are calculated for a proxy of fine dust aerosols at a wavelength of 0.55 μm. Spherical and spheroidal model particles are employed to fit the aerosol optical properties and to retrieve information about the physical parameters characterising the aerosols. It is found that spherical particles are capable of reproducing the scalar optical properties and the forward peak of the phase function of the dust aerosols. The effective size parameter of the aerosol ensemble is retrieved with high accuracy by using spherical model particles. Significant improvements are achieved by using spheroidal model particles. The aerosol phase function and the other diagonal elements of the Stokes scattering matrix can be fitted with high accuracy, whereas the off-diagonal elements are poorly reproduced. More elongated prolate and more flattened oblate spheroids contribute disproportionately strongly to the optimised shape distribution of the model particles and appear to be particularly useful for achieving a good fit of the scattering matrix. However, the clear discrepancies between the shape distribution of the aerosols and the shape distribution of the spheroidal model particles suggest that the possibilities of extracting shape information from optical observations are rather limited

  11. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    Science.gov (United States)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2015-07-01

    Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey Metropolitan Area (MMA) during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs) and hopanes were less abundant. The carbon preference index (0.7-2.6) for n-alkanes indicate a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAH showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAH and elemental carbon (EC) were correlated (r2 = 0.39-0.70) across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAH. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning events. Finally

  12. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    Science.gov (United States)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2016-01-01

    Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey metropolitan area (MMA) during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs) and hopanes were less abundant. The carbon preference index (0.7-2.6) for n-alkanes indicates a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAHs showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAHs and elemental carbon were correlated (r2 = 0.39-0.70) across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAHs. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat-cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning events. Finally, source

  13. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    Directory of Open Access Journals (Sweden)

    Y. Mancilla

    2015-07-01

    Full Text Available Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey Metropolitan Area (MMA during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs and hopanes were less abundant. The carbon preference index (0.7–2.6 for n-alkanes indicate a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAH showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAH and elemental carbon (EC were correlated (r2 = 0.39–0.70 across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAH. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning

  14. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    Science.gov (United States)

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data.

  15. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    Science.gov (United States)

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data. PMID:22617941

  16. Impact of meteorology on fine aerosols at Lucas Heights, Australia

    Science.gov (United States)

    Crawford, Jagoda; Chambers, Scott; Cohen, David D.; Williams, Alastair; Griffiths, Alan; Stelcer, Eduard; Dyer, Leisa

    2016-11-01

    Ion Beam Analysis (IBA) techniques were used to assign nine years of PM2.5 observations to seven source types, at Lucas Heights, a topographically complex urban fringe site of Sydney. The highest contributions to total PM2.5 were from motor vehicles (Autos, 26.3%), secondary sulfur (2ndryS, 23.7%), a mixture of industry and aged sea air (IndSaged, 20.6%), and smoke (Smoke, 13.7%). The Autos contribution was highest in winter, whereas 2ndryS was highest in summer, indicating that mitigation measures targeting SO2 release in summer and vehicle exhaust in winter would be most effective in reducing the PM2.5 concentrations at this site. Since concentrations of particulate matter can be significantly affected by local meteorology, generalised additive model (GAM) techniques were employed to investigate relationships between PM2.5 source types and meteorological conditions. The GAM predictors used included: time (seasonal to inter-annual variations), mixing layer depth, temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Meteorological influences on PM2.5 variability were found to be 58% for soil dust, 46% for Autos, 41% for total PM2.5, and 35% for 2ndryS. Effects were much smaller for other source types. Temperature was found to be an important variable for the determination of total PM2.5, 2ndryS, IndSaged, Soil and Smoke, indicating that future changes in temperature are likely to have an associated change in aerosol concentrations. However, the impact on different source types varied. Temperature had the highest impact on 2ndryS (sometimes more than a factor of 4 increase for temperatures above 25 °C compared to temperatures under 10 °C) and IndSaged, being predominantly secondary aerosols formed in the atmosphere from precursors, whereas wind speed and wind direction were more important for the determination of vehicle exhaust and fresh sea salt concentrations. The marginal effect of relative humidity on 2ndryS increased up to

  17. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Steele, P T; McJimpsey, E L; Coffee, K R; Fergenson, D P; Riot, V J; Tobias, H J; Woods, B W; Gard, E E; Frank, M

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.

  18. Radioactivity size distributions of ambient aerosols in Helsinki, Finland during May 1986 after Chernobyl accident

    International Nuclear Information System (INIS)

    Ambient aerosol size distributions oof 131I, 103Ru, 132Te and 137Cs radionuclides were measured in Helsinki, Finland during May 7 - 14, 1986. Radioactivity size distributions were unimodal. Geometric mean diameter of 131I was in the size range 0.33 - 0.57 μm a.e.d.. Other isotopes had geometric mean diameters in the size range 0.65 - 0.93 μm a.e.d.. (author)

  19. Source apportionment of ambient aerosol applying PMF on AMS mobile and stationary data

    Science.gov (United States)

    Mohr, C.; Weimer, S.; Richter, R.; Decarlo, P. F.; Chirico, R.; Heringa, M. F.; Prévôt, A. S. H.; Baltensperger, U.

    2009-04-01

    Ambient aerosols are divided into the categories "primary" and "secondary", referring to particles directly emitted into the air, or formed out of precursor species such as volatile organic compounds, respectively. Main sources for primary urban aerosol and precursor species are traffic emissions, but also wood burning for domestic heating purposes especially in winter time (Alfarra et al., 2007). The quantification of various types of aerosol components is important for source identification which in turn is the basis of all mitigation activities. Positive Matrix Factorization (PMF) is a statistical based source apportionment tool that uses constrained, weighted least squares estimation to determine source profiles and strengths. PMF has been applied recently for the first time on highly time resolved organic mass spectra (Lanz et al., 2007) measured by an Aerodyne aerosol mass spectrometer (AMS) (Canagaratna et al., 2007). For the data presented here, two AMS were deployed together with additional instrumentation in the metropolitan area of Zurich in winter 2007/2008. The high-resolution time-of-flight AMS was stationed at an urban background site in the center, 30 meters from and shielded against direct traffic emissions. The quadrupole-based AMS was deployed in a mobile van allowing for on-road submicron aerosol composition measurements, and investigations into the spatial variability of aerosol concentration and composition. Results indicate that traffic emissions are the main contributor to submicron aerosol concentrations measured on-road. Hydrocarbon-like organic aerosol (HOA), a marker for traffic emissions (Lanz et al. 2007), dominates the primary aerosol mass, together with black carbon (BC). BC was monitored with the MAAP (multi angle absorption photometer). Another significant contributor to primary organic aerosol mass in downtown Zurich is domestic wood burning for heating purposes. Traffic and wood burning emissions make up roughly 50% of the total

  20. Role of coarse and fine mode aerosols in MODIS AOD retrieval: a case study

    OpenAIRE

    M. N. Sai Suman; H. Gadhavi; Ravi Kiran, V.; Jayaraman, A.; S. V. B. Rao

    2013-01-01

    In the present study we have compared the MODIS (Moderate Resolution Imaging Spectroradiometer) derived aerosol optical depth (AOD) data with that obtained from operating sky-radiometer at a remote rural location in South India (Gadanki, 13.45° N, 79.18° E). While the comparison between total (coarse mode + fine mode) AOD shows R2 value of about 0.71 with a negligible bias of 0.01, if one separates the AOD into fine and coarse mode, the comparison becomes very poor, particularly for fi...

  1. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    Science.gov (United States)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  2. NUMBER CONCENTRATION, SIZE DISTRIBUTION AND FINE PARTICLE FRACTION OF TROPOSPHERIC AND STRATOSPHERIC AEROSOLS

    Institute of Scientific and Technical Information of China (English)

    Li Xu; Guangyu Shi; Li Zhang; Jun Zhou; Yasunobu Iwasaka

    2003-01-01

    Aerosol observations were carried out at Xianghe Scientific Balloon Base (39.45°N, 117°E) using a stratospheric balloon. The particle number concentrations of the tropospheric and stratospheric aerosols were directly explored.The vertical distributions of the number concentration, number-size (that is, particle number versus particle size)distribution, and the fraction of fine particles (0.5 μm>r>0.15 μm/r>0.15 μm) are reported in this paper. The profiles of particle concentration present multi-peak phenomenon. The pattern of size distribution for atmospheric aerosol indicates a tri-modal (r=~0.2 μm, ~0.88 μm and ~7.0 μm) and a bi-modal (r=~0.13 μm and 2.0 μm). The number-size distribution almost fits the Junge distribution for particles with r<0.5 μm in the stratosphere of 1993 and the troposphere of 1994. But the distributions of coarse particles (r>0.5 μm) are not uniform. The number-size distribution exhibits also a wide size range in the troposphere of 1993. The results demonstrate that fine particles represent the major portion in the troposphere during the measurement period, reaching as high as 95% in 1994. Certain coarse particle peaks in the troposphere were attributed to clouds and other causes, and in the stratosphere to volcanic eruption. The stratospheric aerosol layer consists of unique fractions of fine or coarse particles depending on their sources. In summary, the process of gas-to-particles conversion was active and the coarse particles were rich over the Xianghe area. The measurements also demonstrate that the spatial and temporal atmospheric aerosol distributions are nonuniform and changeful.

  3. Applications of particle induced X-ray emission analysis to ambient aerosol studies

    International Nuclear Information System (INIS)

    The characteristics of Particle Induced X-ray Emission (PIXE) analysis in conjunction with different ambient aerosol samplers have been studied. Correction factors have been calculated for homogeneous and inhomogeneous rural and urban aerosol samples. The Nuclepore two stage filter sampler provided the most useful combination of the resolution and particle size fractionation in urban, rural and remote environments. The PIXE-analysis technique in combination with different samplers was employed in aerosol composition studies in rural and remote environments. Particular emphasis was laid on studies of aerosol long range transport. Based on air mass trajectory analysis and aerosol composition measurements the foreign contribution in southern Sweden was estimated to be 70 - 80% for S and Pb but only 30 - 50% for V and Ni. The spatial and temporal extension of a long range transport episode was studied using high time resolution continuous filter samplers in a network in southern Sweden. The variation in the concentration levels of sulphur agreed well with changes in the air mass history. Arctic summer elemental concentration levels as measured during the Swedish YMER-80 icebreaker expedition were typically one order of magnitude lower than Arctic winter levels. The combination of chemical information, optical properties and size distribution data supports the hypothesis of long range transport of air pollution into the Arctic especially during the winter. This takes place during the winter season because the Polar front is further south making conditions for long range transport up to the Arctic more favourable. (Auth.)

  4. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    Science.gov (United States)

    Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2015-01-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the

  5. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    Science.gov (United States)

    Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2014-07-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of

  6. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2014-07-01

    Full Text Available The monosaccharide anhydrides (MAs levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC, four used High-Performance Liquid Chromatography (HPLC or Ultra-Performance Liquid Chromatography (UPLC, and six resorted to Gas Chromatography (GC. The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE for each participating laboratory, varied from −63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was −60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i

  7. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-04-01

    Full Text Available The functional group composition of various organic aerosols (OA is being investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of the three functional groups' contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups and precursor ion (nitro groups scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photo-oxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounted for 1.7% (vehicular to 13.5% (o-xylene photo-oxidation of the organic carbon. The diagnostic functional group ratios are then used to tentatively differentiate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to distinguish the sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assesses a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  8. Biogenic contribution to PM-2.5 ambient aerosol from radiocarbon measurements

    Science.gov (United States)

    Lewis, C.; Klouda, G.; Ellenson, W.

    2003-04-01

    Knowledge of the relative contributions of biogenic versus anthropogenic sources to ambient aerosol is of great interest in the formulation of strategies to achieve nationally mandated air quality standards. Radiocarbon (14C) measurements provide a means to quantify the biogenic fraction of any carbon-containing sample of ambient aerosol. In the absence of an impact from biomass burning (e.g., during summertime) such measurements can provide an estimate of the contribution of biogenic secondary organic aerosol, from biogenic volatile organic compound precursors. Radiocarbon results for 11.5-h PM-2.5 samples collected near Nashville, Tennessee, USA, during summer 1999 will be presented. On average the measured biogenic fraction was surprisingly large (more than half), with the average biogenic fraction for night samples being only slightly smaller than for day samples. Discussion will include (a) description of the radiocarbon methodology, (b) use of radiocarbon measurements on local vegetation and fuel samples as calibration data, (c) concurrent measurements of organic carbon and elemental carbon ambient concentrations, (d) assessment of organic aerosol sampling artifact through use of organic vapor denuders, variable face velocities, and filter extraction, and (e) comparison with published radiocarbon results obtained in Houston, Texas in a similar study. Disclaimer: This work has been funded wholly or in part by the United States Environmental Protection Agency under Interagency Agreement No. 13937923 to the National Institute of Standards and Technology, and Contract No. 68-D5-0049 to ManTech Environmental Tecnology, Inc. It has been subjected to Agency review and approved for publication.

  9. The application of an improved gas and aerosol collector for ambient air pollutants in China

    Science.gov (United States)

    Dong, Huabin; Zeng, Limin; Zhang, Yuanhang; Hu, Min; Wu, Yusheng

    2016-04-01

    An improved Gas and Aerosol Collector (GAC) equipped with a newly designed aerosol collector and a set of dull-polished wet annular denuder (WAD) was developed by Peking University based on a Steam Jet Aerosol Collector (SJAC) sampler. Combined with Ion Chromatography (IC) the new sampler performed well in laboratory tests with high collection efficiencies for SO2 (above 98 %) and particulate sulfate (as high as 99.5 %). An inter-comparison between the GAC-IC system and the filter-pack method was performed and the results indicated that the GAC-IC system could supply reliable particulate sulfate, nitrate, chloride, and ammonium data in field measurement with a much wider range of ambient concentrations. From 2008 to 2015, dozens of big field campaigns (rural and coastal sites) were executed in different parts of China, the GAC-IC system took the chance having its field measurement performance checked repeatedly and provided high quality data in ambient conditions either under high loadings of pollutants or background area. Its measurements were highly correlated with data by other commercial instruments such as the SO2 analyzer, the HONO analyzer, a filter sampler, Aerosol Mass Spectrometer (AMS), etc. over a wide range of concentrations and proved particularly useful in future intensive campaigns or long-term monitoring stations to study various environmental issues such as secondary aerosol and haze formation. During these years of applications of GAC-IC in those field campaigns, we found some problems of several instruments running under field environment and some interesting results could also be drew from the large amount of data measured in near 20 provinces of China. Detail results will be demonstrated on the poster afterwards.

  10. Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US

    Science.gov (United States)

    Pajunoja, Aki; Hu, Weiwei; Leong, Yu J.; Taylor, Nathan F.; Miettinen, Pasi; Palm, Brett B.; Mikkonen, Santtu; Collins, Don R.; Jimenez, Jose L.; Virtanen, Annele

    2016-09-01

    During the summer 2013 Southern Aerosol and Oxidant Study (SOAS) field campaign in a rural site in the southeastern United States, the effect of hygroscopicity and composition on the phase state of atmospheric aerosol particles dominated by the organic fraction was studied. The analysis is based on hygroscopicity measurements by a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA), physical phase state investigations by an Aerosol Bounce Instrument (ABI) and composition measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). To study the effect of atmospheric aging on these properties, an OH-radical oxidation flow reactor (OFR) was used to simulate longer atmospheric aging times of up to 3 weeks. Hygroscopicity and bounce behavior of the particles had a clear relationship showing higher bounce at elevated relative humidity (RH) values for less hygroscopic particles, which agrees well with earlier laboratory studies. Additional OH oxidation of the aerosol particles in the OFR increased the O : C and the hygroscopicity resulting in liquefying of the particles at lower RH values. At the highest OH exposures, the inorganic fraction starts to dominate the bounce process due to production of inorganics and concurrent loss of organics in the OFR. Our results indicate that at typical ambient RH and temperature, organic-dominated particles stay mostly liquid in the atmospheric conditions in the southeastern US, but they often turn semisolid when dried below ˜ 50 % RH in the sampling inlets. While the liquid phase state suggests solution behavior and equilibrium partitioning for the SOA particles in ambient air, the possible phase change in the drying process highlights the importance of thoroughly considered sampling techniques of SOA particles.

  11. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion

    Science.gov (United States)

    Lu, Senlin; Hao, Xiaojie; Liu, Dingyu; Wang, Qiangxiang; Zhang, Wenchao; Liu, Pinwei; Zhang, Rongci; Yu, Shang; Pan, Ruiqi; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2016-03-01

    Nano-quartz in Xuanwei coal, the uppermost Permian (C1) coal deposited in the northwest of Yuanan, China, has been regarded as one of factors which caused high lung cancer incidence in the local residents. However, mineralogical characterization of the fine/ultrafine particles emitted from Xuanwei coal combustion has not previously been studied. In this study, PM1 and ultrafine particles emitted from Xuanwei coal combustion were sampled. Chemical elements in the ambient particles were analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and mineralogical characterization of these ambient particles was investigated using scanning electronic microscopy (SEM/EDX) and transmission electronic microscopy, coupled with energy-dispersive spectroscopy (TEM/EDX). Our results showed that the size distribution of mineral particles from the coal combustion emissions ranged from 20 to 200 nm. Si-containing particles and Fe-containing particles accounted for 50.7% of the 150 individual particles measured, suggesting that these two types of particles were major minerals in the ambient particles generally. The nano-mineral particles were identified as quartz (SiO2) and gypsum (CaSO4) based on their crystal parameters and chemical elements. Additionally, there also existed unidentified nano-minerals. Armed with these data, toxicity assessments of the nano-minerals will be carried out in a future study.

  12. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions

    Science.gov (United States)

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January–March and October–December 2011–2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m−3, which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m−3, respectively. In the warm season (April–September 2011–2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  13. The ambient aerosol characterization during the prescribed bushfire season in Brisbane 2013.

    Science.gov (United States)

    Milic, A; Miljevic, B; Alroe, J; Mallet, M; Canonaco, F; Prevot, A S H; Ristovski, Z D

    2016-08-01

    Prescribed burnings are conducted in Queensland each year from August until November aiming to decrease the impact of bushfire hazards and maintain the health of vegetation. This study reports chemical characteristics of the ambient aerosol, with a focus on source apportionment of the organic aerosol (OA) fraction, during the prescribed biomass burning (BB) season in Brisbane 2013. All measurements were conducted within the International Laboratory for Air Quality and Health (ILAQH) located in Brisbane's Central Business District. Chemical composition, degree of ageing and the influence of BB emission on the air quality of central Brisbane were characterized using a compact Time of Flight Aerosol Mass Spectrometer (cToF-AMS). AMS loadings were dominated by OA (64%), followed by, sulfate (17%), ammonium (14%) and nitrates (5%). Source apportionment was applied on the AMS OA mass spectra via the multilinear engine solver (ME-2) implementation within the recently developed Source Finder (SoFi) interface. Six factors were extracted including hydrocarbon-like OA (HOA), cooking-related OA (COA), biomass burning OA (BBOA), low-volatility oxygenated OA (LV-OOA), semivolatile oxygenated OA (SV-OOA), and nitrogen-enriched OA (NOA). The aerosol fraction that was attributed to BB factor was 9%, on average over the sampling period. The high proportion of oxygenated OA (72%), typically representing aged emissions, could possess a fraction of oxygenated species transfored from BB components on their way to the sampling site. PMID:27101459

  14. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    Directory of Open Access Journals (Sweden)

    M. Gyawali

    2012-03-01

    Full Text Available We present the laboratory and ambient photoacoustic (PA measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols and relatively clean (aged aerosols conditions. Particulate matter (PM concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively and gaseous pollutants: carbon monoxide (CO, nitric oxide (NO, and nitrogen dioxide (NO2. The diurnal change of absorption and scattering coefficients during the polluted (inversion days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA, Ångström exponent of absorption (AEA, and Ångström exponent of scattering (AES for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy

  15. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.; Song, Chen; Moosmuller, H.; Liu, Li; Mishchenko, M.; Chen, L-W A.; Green, M.; Watson, J. G.; Chow, J. C.

    2012-03-08

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  16. Ambient Carbon Monoxide and Fine Particulate Matter in Relation to Preeclampsia and Preterm Delivery in Western Washington State

    OpenAIRE

    Rudra, Carole B.; Williams, Michelle A.; Sheppard, Lianne; Koenig, Jane Q.; Schiff, Melissa A.

    2011-01-01

    Background Preterm delivery and preeclampsia are common adverse pregnancy outcomes that have been inconsistently associated with ambient air pollutant exposures. Objectives We aimed to prospectively examine relations between exposures to ambient carbon monoxide (CO) and fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] and risks of preeclampsia and preterm delivery. Methods We used data from 3,509 western Washington women who delivered infants between 1996 and 2006. We predic...

  17. Ambient and indoor particulate aerosols generated by dairies in the southern High Plains.

    Science.gov (United States)

    Purdy, C W; Clark, R N; Straus, D C

    2009-12-01

    The objectives were to quantify and size ambient aerosolized dust in and around the facilities of 4 southern High Plains dairies of New Mexico and to determine where health of workers might be vulnerable to particulate aerosols, based on aerosol concentrations that exceed national air quality standards. Ambient dust air samples were collected upwind (background) and downwind of 3 dairy location sites (loafing pen boundary, commodity, and compost field). The indoor milking parlor, a fourth site, was monitored immediately upwind and downwind. Aerosolized particulate samples were collected using high-volume sequential reference air samplers, laser aerosol monitors, and cyclone air samplers. The overall (main effects and estimable interactions) statistical general linear model statement for particulate matter (PM(10); particulate matter with an aerodynamic diameter of up to 10 microm) and PM(2.5) resulted in a greater mean concentration of dust in the winter (PM(10) = 97.4 +/- 4.4 microg/m(3); PM(2.5) = 32.6 +/- 2.6 microg/m(3)) compared with the summer (PM(10) = 71.9 +/- 5.0 microg/m(3); PM(2.5) = 18.1 +/- 1.2 microg/m(3)). The upwind and downwind boundary PM(10) concentrations were significantly higher in the winter (upwind = 64.3 +/- 9.5 microg/m(3); downwind = 119.8 +/- 13.0 microg/m(3)) compared with the summer (upwind = 35.2 +/- 7.5 microg/m(3); downwind = 66.8 +/- 11.8 microg/m(3)). The milking parlor PM(10) and PM(2.5) concentration data were significantly higher in the winter (PM(10) = 119.5 +/- 5.8 microg/m(3); PM(2.5) = 55.3 +/- 5.8microg/m(3)) compared with the summer (PM(10) = 88.6.0 +/- 5.8 microg/m(3); PM(2.5) = 21.0 +/- 2.1 microg/m(3)). Personnel should be protected from high aerosol concentrations found at the commodity barn, compost field, and milking parlor during the winter. PMID:19923606

  18. Variability of marine aerosol fine-mode fraction and estimates of anthropogenic aerosol component over cloud-free oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    OpenAIRE

    Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas

    2009-01-01

    In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction ( fm) and its impacts on deriving the anthropogenic component of aerosol optical depth (ta) and direct radiative forcing from multispectral satellite measurements. A proxy of fm, empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aero...

  19. Environmental pollution: influence on the operation of a sensor of radioactive aerosols; Contaminacion ambiental: influencia en el funcionamiento de un captador de aerosoles radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Duarte Rodriguez, X.; Hernandez Armas, J.; Martin Delgado, J.; Rodriguez Perestelo, N.; Perez Lopez, M.; Catalan Acosta, A.; Fernandez de Aldecoa, J. c.

    2013-07-01

    The content of radioactive aerosols in the air is an important component to estimate the ambient radiation dose. In the laboratories of environmental radioactivity, measurements of radionuclides in air they are performed using sensors. The flow picked up by the equipment can be changed if the degree of air pollution changes for some reason. It handles this study and the population doses are estimated due to inhalation of ambient air. (Author)

  20. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Wortham, H.; Marchand, N. [Univ Aix Marseille, CNRS, Lab Chim Provence, Equipe Instrumentat and React Atmospher, UMR 6264, F-13331 Marseille 3 (France); Jaffrezo, J.L. [Univ Grenoble 1, CNRS, UMR 5183, Lab Glaciol and Geophys Environm, F-38402 St Martin Dheres (France)

    2010-07-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO{sub 2}) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional

  1. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-08-01

    Full Text Available The functional group composition of various organic aerosols (OA is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R´ respectively and precursor ion (nitro groups, R-NO2 scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular to 13.5% (o-xylene photooxidation of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60

  2. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    International Nuclear Information System (INIS)

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO2) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  3. Measurement of overall uptake coefficients for HO2 radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang (China)

    OpenAIRE

    Taketani, F.; Y. Kanaya; P. Pochanart; Liu, Y; Li, J.; K. Okuzawa; K. Kawamura; Z. Wang; H. Akimoto

    2012-01-01

    HO2 uptake coefficients for ambient aerosol particles, collected on quartz fiber filter using a high-volume air sampler in China, were measured using an aerosol flow tube coupled with a chemical conversion/laser-induced fluorescence technique at 760 Torr and 298 K, with a relative humidity of 75%. Aerosol particles were regenerated with an atomizer using the water extracts from the aerosol particles. Over 10 samples, the measured HO2 uptake coefficients for the aerosol parti...

  4. Measurement of overall uptake coefficients for HO2 radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang, China

    OpenAIRE

    H. Akimoto; Z. Wang; K. Okuzawa; K. Kawamura; Li, J.; Liu, Y; P. Pochanart; Taketani, F.; Y. Kanaya

    2012-01-01

    HO2 uptake coefficients for ambient aerosol particles, collected on quartz filter using a high-volume air sampler in China, were measured using an aerosol flow tube coupled with a chemical conversion/laser-induced fluorescence technique at 760 Torr and 298 K, with a relative humidity of 75%. Aerosol particles were regenerated with an atomizer using the water extracts from the aerosol particles. Over 10 samples, the measured HO2 uptake coefficients for the aerosol particles at the Mt. ...

  5. Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Directory of Open Access Journals (Sweden)

    D. R. Worton

    2011-06-01

    Full Text Available In this paper we report chemically resolved measurements of organic aerosol (OA and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX at the Blodgett Forest Research Station, California. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA. The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and could be categorized into three factors or sources: (1 aged biomass burning emissions and oxidized urban emissions, (2 oxidation products of temperature-driven local biogenic emissions and (3 local light-driven emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g., temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher due to more substantial emissions of isoprene and enhanced photochemistry. Methyl chavicol oxidation contributed similarly to OA during both identified meteorological periods. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during cooler conditions, even though emissions of the precursors were lower. Following the first precipitation event of the fall the abundances of the monoterpene oxidation products increased dramatically, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO, consistent with previous observations, while being comprised of mostly non-fossil carbon (>75 %. The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a

  6. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    A. Laaksonen

    2004-11-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulfur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  7. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2007-08-01

    Full Text Available Sugars and sugar-alcohols are demonstrated to be important constituents of the ambient aerosol water-soluble organic carbon fraction, and to be tracers for primary biological aerosol particles (PBAP. In the present study, levels of four sugars (fructose, glucose, sucrose, trehalose and three sugar-alcohols (arabitol, inositol, mannitol in ambient aerosols have been quantified using a novel HPLC/HRMS-TOF (High Performance Liquid Chromatography in combination with High Resolution Mass Spectrometry – Time of Flight method to assess the contribution of PBAP to PM>sub>10 and PM2.5. Samples were collected at four sites in Norway at different times of the year in order to reflect the various contributing sources and the spatial and seasonal variation of the selected compounds.

    Sugars and sugar-alcohols were present at all sites investigated, underlining the ubiquity of these highly polar organic compounds. The highest concentrations were reported for sucrose, reaching a maximum concentration of 320 ng m−3 in PM10 and 55 ng m−3 in PM2.5. The mean concentration of sucrose was up to 10 times higher than fructose, glucose and the dimeric sugar trehalose. The mean concentrations of the sugar-alcohols were typically lower, or equal, to that of the monomeric sugars and trehalose. Peak concentrations of arabitol and mannitol did not exceed 30 ng m−3 in PM10, and for PM2.5 all concentrations were below 6 ng m−3.

    Sugars and sugar-alcohols were associated primarily with coarse aerosols except during wintertime at the suburban site in Elverum, where a shift towards sub micron aerosols was observed. It is proposed that this shift was due to the intensive use of wood burning for residential heating at this site during winter, confirmed by high concurrent concentrations of levoglucosan. Elevated concentrations of sugars in PM2

  8. Combustion characteristics of water-insoluble elemental and organic carbon in size selected ambient aerosol particles

    Directory of Open Access Journals (Sweden)

    K. Wittmaack

    2005-04-01

    Full Text Available Combustion of elemental carbon (EC and organic carbon (OC contained in ambient aerosol matter was explored using scanning electron microscopy (SEM in combination with energy dispersive X-ray analysis (EDX. To ease identification of the particles of interest and to avoid or at least reduce interaction with simultaneously sampled inorganic oxides and salts, the approach used in this work differed in two ways from commonly applied procedures. First, rather than using a mixture of particles of vastly different sizes, as in PM10 or PM2.5, aerosol matter was collected in a 5-stage impactor. Second, the water soluble fraction of the collected matter was removed prior to analysis. Diesel soot particles, which appeared in the well-known form of chain-type aggregates, constituted the major fraction of EC. In contrast, OC containing particles were observed in a variety of shapes, including a sizable amount of bioaerosol matter appearing mostly in the size range above about 1 µm. During heating in ambient air for 1 h, diesel soot particles were found to be stable up to 480°C, but complete combustion occurred in a narrow temperature interval between about 490 and 510°C. After diesel soot combustion, minute quantities of ''ash'' were observed in the form of aggregated tiny particles with sizes less than 10 nm. These particles could be due to elemental or oxidic contaminants of diesel soot. Combustion of OC was observed over a wide range of temperatures, from well below 200°C to at least 500°C. Incompletely burnt bioaerosol matter was still found after heating to 600°C. The results imply that the EC fraction in aerosol matter can be overestimated significantly if the contribution of OC to a thermogram is not well separated.

  9. Combustion characteristics of water-insoluble elemental and organic carbon in size selected ambient aerosol particles

    Directory of Open Access Journals (Sweden)

    K. Wittmaack

    2005-01-01

    Full Text Available Combustion of elemental carbon (EC and organic carbon (OC contained in ambient aerosol matter was explored using scanning electron microscopy (SEM in combination with energy dispersive X-ray analysis (EDX. To ease identification of the particles of interest and to avoid or at least reduce interaction with simultaneously sampled inorganic oxides and salts, the approach used in this work differed in two ways from commonly applied procedures. First, rather than using a mixture of particles of vastly different sizes, as in PM10 or PM2.5, aerosol matter was collected in a 5-stage impactor. Second, the water soluble fraction of the collected matter was removed prior to analysis. Diesel soot particles, which appeared in the well-known form of chain-type aggregates, constituted the major fraction of EC. In contrast, OC containing particles were observed in a variety of shapes, including a sizable amount of bioaerosol matter appearing mostly in the size range above about 1 µm. During heating in ambient air for 1h, diesel soot particles were found to be stable up to 470°C, but complete combustion occurred in a narrow temperature interval between about 480 and 510°C. After diesel soot combustion, minute quantities of 'ash' were observed in the form of aggregated tiny particles with sizes less than 10 nm. These particles could be due to elemental or oxidic contaminants of diesel soot. Combustion of OC was observed over a wide range of temperatures, from well below 200°C to at least 500°C. Incompletely burnt bioaerosol matter was still found after heating to 600°C. The results imply that the EC fraction in aerosol matter can be overestimated significantly if the contribution of OC to a thermogram is not well separated.

  10. Seasonal variations of biogenic secondary organic aerosol tracers in ambient aerosols from Alaska

    Science.gov (United States)

    Haque, Md. Mozammel; Kawamura, Kimitaka; Kim, Yongwon

    2016-04-01

    We investigated total suspended particles (TSP) collected from central Alaska, USA for molecular compositions of secondary organic aerosol (SOA) derived from the oxidation of biogenic volatile organic compounds (BVOCs). Isoprene-, α-/β-pinene- and β-caryophyllene-SOA tracers were determined using gas chromatography-mass spectrometry. The concentration ranges of isoprene, α-/β-pinene and β-caryophyllene oxidation products were 0.02-18.6 ng m-3 (ave. 4.14 ng m-3), 0.42-8.24 ng m-3 (2.01 ng m-3) and 0.10-9 ng m-3 (1.53 ng m-3), respectively. Isoprene-SOA tracers showed higher concentrations in summer (ave. 8.77 ng m-3), whereas α-/β-pinene- and β-caryophyllene-SOA tracers exhibited highest levels in spring (3.55 ng m-3) and winter (4.04 ng m-3), respectively. β-Caryophyllinic acid and levoglucosan showed a positive correlation, indicating that biomass burning may be a major source for β-caryophyllene. We found that mean contributions of isoprene oxidation products to organic carbon (OC) and water-soluble organic (WSOC) (0.56% and 1.2%, respectively) were higher than those of α-/β-pinene (0.31% and 0.55%) and β-caryophyllene (0.08% and 0.13%). Using a tracer-based method, we estimated the concentrations of secondary organic carbon (SOC) produced from isoprene, α-/β-pinene and β-caryophyllene to be 0.66-718 ngC m-3 (ave. 159 ngC m-3), 7.4-143 ngC m-3 (35 ngC m-3) and 4.5-391 ngC m-3 (66.3 ngC m-3), respectively. Based on SOA tracers, this study suggests that isoprene is a more important precursor for the production of biogenic SOA than α-/β-pinene and β-caryophyllene in subarctic Alaska.

  11. Ambient Fine Particulate Matter and Mortality among Survivors of Myocardial Infarction: Population-Based Cohort Study

    Science.gov (United States)

    Chen, Hong; Burnett, Richard T.; Copes, Ray; Kwong, Jeffrey C.; Villeneuve, Paul J.; Goldberg, Mark S.; Brook, Robert D.; van Donkelaar, Aaron; Jerrett, Michael; Martin, Randall V.; Brook, Jeffrey R.; Kopp, Alexander; Tu, Jack V.

    2016-01-01

    Background: Survivors of acute myocardial infarction (AMI) are at increased risk of dying within several hours to days following exposure to elevated levels of ambient air pollution. Little is known, however, about the influence of long-term (months to years) air pollution exposure on survival after AMI. Objective: We conducted a population-based cohort study to determine the impact of long-term exposure to fine particulate matter ≤ 2.5 μm in diameter (PM2.5) on post-AMI survival. Methods: We assembled a cohort of 8,873 AMI patients who were admitted to 1 of 86 hospital corporations across Ontario, Canada in 1999–2001. Mortality follow-up for this cohort extended through 2011. Cumulative time-weighted exposures to PM2.5 were derived from satellite observations based on participants’ annual residences during follow-up. We used standard and multilevel spatial random-effects Cox proportional hazards models and adjusted for potential confounders. Results: Between 1999 and 2011, we identified 4,016 nonaccidental deaths, of which 2,147 were from any cardiovascular disease, 1,650 from ischemic heart disease, and 675 from AMI. For each 10-μg/m3 increase in PM2.5, the adjusted hazard ratio (HR10) of nonaccidental mortality was 1.22 [95% confidence interval (CI): 1.03, 1.45]. The association with PM2.5 was robust to sensitivity analyses and appeared stronger for cardiovascular-related mortality: ischemic heart (HR10 = 1.43; 95% CI: 1.12, 1.83) and AMI (HR10 = 1.64; 95% CI: 1.13, 2.40). We estimated that 12.4% of nonaccidental deaths (or 497 deaths) could have been averted if the lowest measured concentration in an urban area (4 μg/m3) had been achieved at all locations over the course of the study. Conclusions: Long-term air pollution exposure adversely affects the survival of AMI patients. Citation: Chen H, Burnett RT, Copes R, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, van Donkelaar A, Jerrett M, Martin RV, Brook JR, Kopp A, Tu JV. 2016. Ambient fine

  12. Online measurements of ambient fluorescent aerosol particles by WIBS at a polluted regional site in the North China Plain: potential impact of burning activities

    Science.gov (United States)

    Su, H.; Wang, Z.; Cheng, Y.; Xie, Z.; Kecorius, S.; McMeeking, G. R.; Yu, X.; Pöhlker, C.; Zhang, M.; Wiedensohler, A.; Kuhn, U.; Poeschl, U.; Huffman, J. A.

    2015-12-01

    Online measurements of ambient fluorescent aerosol particles by WIBS at a polluted regional site in the North China Plain: potential impact of burning activities Zhibin Wang1, Xiawei Yu1,3, Simonas Kecorius2, Zhouqing Xie3, Gavin McMeeking4, Christopher Pöhlker1, Minghui, Zhang1, Alfred Wiedensohler2, Uwe Kuhn1, Yafang Cheng1, Ulrich Pöschl1, Hang Su1,*1Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz 55128, Germany2Leibniz-Institute for Tropospheric Research, Leipzig 04318, Germany3School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China4Droplet Measurement Technologies, Boulder 80301, USA ABSTRACTBioaerosols are the main subset of super-micron particles, and significantly influence the evolution of cloud and precipitation, as well as the public health. Currently, the detection of ambient biological materials in real-time is mainly based on the presence of fluorophores in the particles. In this study, we present the wideband integrated bioaerosol spectrometer (WIBS) measurement results to characterize the fluorescent aerosol particles (FAP) at a polluted regional site (Xianghe, 39.80 °N, 116.96 °E) in the North China Plain. We observed substantially much higher number concentration of FAP as compared with those of previous studies in clean environments. We found the good agreement between the FAP number fraction in coarse mode particles (> 1 mm) and BC mass fraction in fine particles (polluted area, where the certain non-biological compounds (such as SOA, PAH and soot) may significantly lead to a positive fluorescence measurement artifacts and an overestimation of actual fluorescent biological aerosol particles. We also suggested to introduce the classification analysis of fluorescence spectral patterns from single FAP into the data analysis, which aims to reduce the potential misattribution and provide extra dimensions in the differentiation and identification of

  13. Evidence and quantitation of aromatic organosulfates in ambient aerosols in Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    S. Kundu

    2012-12-01

    Full Text Available Organosulfates are important components of atmospheric organic aerosols, yet their structures, abundances, sources and formation processes are not adequately understood. This study presents the identification and quantitation of benzyl sulfate in atmospheric aerosols, which is the first reported atmospheric organosulfate with aromatic carbon backbone. Benzyl sulfate was identified and quantified in fine particulate matter (PM2.5 collected in Lahore, Pakistan during 2007–2008. An authentic standard of benzyl sulfate was synthesized, standardized, and identified in atmospheric aerosols using ultra-performance liquid chromatography (UPLC coupled with quadrupole time-of-flight (Q-ToF mass spectrometry (MS. Benzyl sulfate was quantified in aerosol samples using UPLC coupled to negative electrospray ionization triple quadrupole (TQ MS. The highest benzyl sulfate concentrations were recorded in November and January 2007 (0.50 ± 0.11 ng m−3 whereas the lowest concentration was observed in July (0.05 ± 0.02 ng m−3. To evaluate matrix effects, benzyl sulfate concentrations were determined using external calibration and the method of standard addition; comparable concentrations were detected by the two methods, which ruled out significant matrix effects in benzyl sulfate quantitation. Three additional organosulfates with m/z 187, 201 and 215 were qualitatively identified as aromatic organosulfates with additional methyl substituents by high-resolution mass measurements and tandem MS. The observed aromatic organosulfates form a homologous series analogous to toluene, xylene, and trimethylbenzene, which are abundant anthropogenic volatile organic compounds (VOC, suggesting that aromatic organosulfates may be formed by secondary reactions. Further studies are needed to elucidate the sources and formation pathways of aromatic organosulfates in the atmosphere.

  14. Ambient exposure to coarse and fine particle emissions from building demolition

    Science.gov (United States)

    Azarmi, Farhad; Kumar, Prashant

    2016-07-01

    Demolition of buildings produce large quantities of particulate matter (PM) that could be inhaled by on-site workers and people living in the neighbourhood, but studies assessing ambient exposure at the real-world demolition sites are limited. We measured concentrations of PM10 (≤10 μm), PM2.5 (≤2.5 μm) and PM1 (≤1 μm) along with local meteorology for 54 working hours over the demolition period. The measurements were carried out at (i) a fixed-site in the downwind of demolished building, (ii) around the site during demolition operation through mobile monitoring, (iii) different distances away from the demolition site through sequential monitoring, and (iv) inside an excavator vehicle cabin and on-site temporary office for engineers. Position of the PM instrument was continuously recorded using a Global Positioning System on a second basis during mobile measurements. Fraction of coarse particles (PM2.5-10) contributed 89 (with mean particle mass concentration, PMC ≈ 133 ± 17 μg m-3), 83 (100 ± 29 μg m-3), and 70% (59 ± 12 μg m-3) of total PMC during the fixed-site, mobile monitoring and sequential measurements, respectively, compared with only 50% (mean 12 ± 6 μg m-3) during the background measurements. The corresponding values for fine particles (PM2.5) were 11, 17 and 30% compared with 50% during background, showing a much greater release of coarse particles during demolition. The openair package in R and map source software (ArcGIS) were used to assess spatial variation of PMCs in downwind and upwind of the demolition site. A modified box model was developed to determine the emission factors, which were 210, 73 and 24 μg m-2 s-1 for PM10, PM2.5 and PM1, respectively. The average respiratory deposited doses to coarse (and fine) particles inside the excavator cabin and on-site temporary office increased by 57- (and 5-) and 13- (and 2-) times compared with the local background level, respectively. The monitoring stations in downwind direction

  15. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Science.gov (United States)

    2010-07-01

    ... Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution F Table F-6 to Subpart F of Part 53... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-6 Table F-6 to Subpart F of Part 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic...

  16. Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-11-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  17. Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Science.gov (United States)

    Worton, D. R.; Goldstein, A. H.; Farmer, D. K.; Docherty, K. S.; Jimenez, J. L.; Gilman, J. B.; Kuster, W. C.; de Gouw, J.; Williams, B. J.; Kreisberg, N. M.; Hering, S. V.; Bench, G.; McKay, M.; Kristensen, K.; Glasius, M.; Surratt, J. D.; Seinfeld, J. H.

    2011-10-01

    In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August-10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August-12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September-10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The

  18. Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Directory of Open Access Journals (Sweden)

    D. R. Worton

    2011-10-01

    Full Text Available In this paper we report chemically resolved measurements of organic aerosol (OA and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA. The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1 aged biomass burning emissions and oxidized urban emissions, (2 oxidized urban emissions (3 oxidation products of monoterpene emissions, (4 monoterpene emissions, (5 anthropogenic emissions and (6 local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October, even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO, consistent with previous observations, while being comprised of mostly non-fossil carbon

  19. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, Edward L.; Ziemba, L. D.

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  20. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2007-05-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were carried out in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area – 2006 campaign (MCMA-2006 between 7–27 March, 2006. Biomass and organic carbon (OC particle types were found to dominate the accumulation mode both day and night. The concentrations of both organic carbon and biomass particles were roughly equal early in the morning, but biomass became the largest contributor to the accumulation mode mass from the late morning until early evening. The diurnal pattern can be attributed to aging and/or a change in meteorology. Fresh elemental carbon (EC particles were observed during rush hour. The majority of the EC particles were mixed with nitrate, sulfate, organic carbon and potassium. Submicron particles from industrial sources in the northeast were composed of an internal mixture of Pb, Zn, EC and Cl and peaked early in the morning. A unique nitrogen-containing organic (NOC particle type was observed, and is hypothesized to be from industrial emissions based on the temporal profile and back trajectory analysis. This study provides unique insights into the real-time changes in single particle mixing state as a function of size and time for aerosols in Mexico City. These new findings indicate that biomass burning and industrial operations make significant contributions to particles in Mexico City. These sources have received relatively little attention in previous intensive field campaigns.

  1. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  2. Technical Note: Fast two-dimensional GC-MS with thermal extraction for anhydro-sugars in fine aerosols

    Science.gov (United States)

    A fast two-dimensional gas chromatography (GC-MS) method that uses heart-cutting and thermal extraction (TE) and requires no chemical derivatization is developed for the determination of anhydro-sugars in fine aerosols. Evaluation of the TE-GC-GC-MS method shows high average rela...

  3. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    Directory of Open Access Journals (Sweden)

    M. Gyawali

    2011-09-01

    Full Text Available We present the first laboratory and ambient photoacoustic (PA measurement of aerosol light absorption coefficients at ultraviolet (UV wavelength (i.e. 355 nm and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Exact T-matrix method calculations were used to model the absorption and scattering characteristics of fractal-like agglomerates of different compactness and varying number of monomers. With these calculations, we attempted to estimate the number of monomers and fractal dimension of laboratory generated kerosene soot. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009, and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols and relatively clean (aged aerosols conditions. Particulate matter (PM concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively and gaseous pollutants: carbon monoxide (CO, nitric oxide (NO, and nitrogen dioxide (NO2. The diurnal change of absorption and scattering coefficients during the polluted (inversion days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from

  4. Diffusion Coefficient when fine Aerosol Media Propagate in a Confined Volume

    OpenAIRE

    Korovina N.V.; Zharova I.K.; Kudryashova O.B.; Titov S.S.

    2016-01-01

    An experimental estimation is reported of the value of the effective diffusion coefficient during aerosol deposition in a confined volume. Aerosol propagation regularities have experimentally been studied in a chamber of a complex configuration with different placement of aerosol generators.

  5. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  6. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2015-11-01

    Full Text Available Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq. atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 μg m-3 when LVOC fate corrected compared to daytime (average 1 μg m-3 when LVOC fate corrected, with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254, similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH

  7. ON THE PROPORTIONALITY OF FINE MASS CONCENTRATION AND EXTINCTION COEFFICIENT FOR BIMODAL SIZE DISTRIBUTIONS

    Science.gov (United States)

    For a bimodal size distribution of ambient aerosol, an upper limit in particle size can be chosen for the fine aerosol fraction so that the extinction coefficient for light scattering and absorption is directly proportional to the fine mass concentration, with no dependence on th...

  8. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Fine Particle Composition and Organic Source Apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, Allison; Salcedo, D.; Cubison, Michael J.; Huffman, J.; DeCarlo, Peter; Ulbrich, Ingrid M.; Docherty, Kenneth S.; Sueper, D. T.; Kimmel, Joel; Worsnop, Douglas R.; Trimborn, Achim; Northway, Megan; Stone, Elizabeth A.; Schauer, James J.; Volkamer, Rainer M.; Fortner, Edward; de Foy, B.; Wang, Jian; Laskin, Alexander; Shutthanandan, V.; Zheng, Junsheng; Zhang, Renyi; Gaffney, Jeffrey S.; Marley, Nancy A.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luisa T.; Sosa, G.; Jimenez, Jose L.

    2009-09-11

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identifies three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning.

  9. Fine Crustal Structure in the Northwestern Iranian Plateau Revealed by Ambient Noise Tomography

    Science.gov (United States)

    Jiang, Mingming; Chen, Ling; Talebian, Morteza; Ghods, Abdolreza; Ai, Yinshuang; Sobouti, Farhad; He, Yumei; Motaghi, Khalil; Chen, Qi-Fu; Lyv, Yan; Xiao, Wenjiao

    2016-04-01

    Detailed information about the crustal and lithospheric structures is crucial for understanding the geodynamics processes of continental collision and subsequent mountain building. Being at the initial stage of continental collision, the Iranian Plateau has not been well studied due to the lack of high-resolution, robust images of the crustal and lithospheric structures. Along the Zagros Orogen in the NW part of the Iranian Plateau the Arabian Plate has collided with the Eurasian Plate since about 30 Ma ago, whereas in the Makran region to the southeast oceanic subduction underneath the Eurasian Plate is still an ongoing process. For better understanding the geodynamic processes from subduction to collision, we planned to deploy multiple dense seismic arrays sampling regions at different tectonic stages in the Iranian Plateau. Up to now, we have finished the first seismic array observation in NW Iran. Based on the high quality data recorded, we conduct ambient noise tomography to investigate the fine crustal structure of the area from the south of the Zagros to the coast of the Southern Caspian Sea. Our results revel a salient decoupling between the upper crust and lower crust in the Zagros. The upper crust is slow, likely due to the effects of thick sediments, and displays a consistent anisotropy pattern with a NW-SE fast shear-wave direction, which is proximately parallel to the strike of the Zagros Orogen. The middle to lower crust, on the other hand, shows low-to-high velocity variations with depth and anisotropic fabrics trending to NE-SW, which is perpendicular to the strike of the orogen. Combined with the imaging results from receiver functions, we suggest that the collision between the Arabian and Eurasian Plates has caused strong crustal deformation and localized thickening of the lower crust beneath the Zagros. We also find a high velocity anomaly in the lower crust beneath the Alborz Mountain, isolated from the low velocities beneath the central Iran

  10. Fast two-dimensional GC-MS with thermal extraction for anhydro-sugars in fine aerosols

    Directory of Open Access Journals (Sweden)

    Y. Ma

    2010-01-01

    Full Text Available A fast two-dimensional gas chromatography (GC-MS method that uses heart-cutting and thermal extraction (TE and requires no chemical derivatization was developed for the determination of anhydro-sugars in fine aerosols. Evaluation of the TE-GC-GC-MS method shows high average relative accuracy (≥90%, reproducibility (≤10% relative standard deviation, detection limits of less than 3 ng/μL, and negligible carryover for levoglucosan, mannosan, and galactosan markers. TE-GC-GC-MS- and solvent extraction (SE-GC-MS-measured levoglucosan concentrations correlate across several diverse types of biomass burning aerosols. Because the SE-GC-MS measurements were taken 8 years prior to the TE-GC-GC-MS ones, the stability of levoglucosan is established for quartz filter-collected biomass burning aerosol samples stored at ultra-low temperature (–45°C. Levoglucosan concentrations (w/w in aerosols collected following atmospheric dilution near open fires of varying intensity are similar to those in biomass burning aerosols produced in a laboratory enclosure. An average levoglucosan-mannosan-galactosan ratio of 15:2:1 is observed for these two aerosol sets. TE-GC-GC-MS analysis of atmospheric aerosols from the US and Africa produced levoglucosan concentrations (0.01–1.6 μg/m3 well within those reported for aerosols collected globally and examined using different analytical techniques (0.004–7.6 μg/m3. Further comparisons among techniques suggest that fast TE-GC-GC-MS is among the most sensitive, accurate, and precise methods for compound-specific quantification of anhydro-sugars. In addition, an approximately twofold increase in aerosol sample throughput may be realized when combining TE with fast chromatography for anhydro-sugar determination.

  11. Variability of Marine Aerosol Fine-Mode Fraction and Estimates of Anthropogenic Aerosol Component Over Cloud-Free Oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    Science.gov (United States)

    Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas

    2009-01-01

    In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.

  12. Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties

    Directory of Open Access Journals (Sweden)

    D. B. Atkinson

    2009-08-01

    Full Text Available During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006, the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σep were performed by two multi-wavelength cavity ring-down (CRD instruments, one located on board the NOAA R/V Ronald H. Brown (RHB and the other located at the University of Houston, Moody Tower (UHMT. An AERONET sunphotometer was also located at the UHMT to measure the columnar aerosol optical depth (AOD. The σep data were used to extract the extinction Ångström exponent (åep, a measure of the wavelength dependence of σep. There was general agreement between the åep (and to a lesser degree σep measurements by the two spatially separated CRD instruments during multi-day periods, suggesting a regional scale consistency of the sampled aerosols. Two spectral models are applied to the σep and AOD data to extract the fine mode fraction of extinction (η and the fine mode effective radius (Reff f. These two parameters are robust measures of the fine mode contribution to total extinction and the fine mode size distribution respectively. The results of the analysis are compared to Reff f values extracted using AERONET V2 retrievals and calculated from in situ particle size measurements on the RHB and at UHMT. During a time period when fine mode aerosols dominated the extinction over a large area extending from Houston/Galveston Bay and out into the Gulf of Mexico, the various methods for obtaining Reff f agree qualitatively (showing the same temporal trend and quantitatively (pooled standard deviation

  13. Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties

    Directory of Open Access Journals (Sweden)

    D. B. Atkinson

    2010-01-01

    Full Text Available During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006, the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σep were performed by two multi-wavelength cavity ring-down (CRD instruments, one located on board the NOAA R/V Ronald H. Brown (RHB and the other located at the University of Houston, Moody Tower (UHMT. An AERONET sunphotometer was also located at the UHMT to measure the columnar aerosol optical depth (AOD. The σep data were used to extract the extinction Ångström exponent (åep, a measure of the wavelength dependence of σep. There was general agreement between the åep (and to a lesser degree σep measurements by the two spatially separated CRD instruments during multi-day periods, suggesting a regional scale consistency of the sampled aerosols. Two spectral models are applied to the σep and AOD data to extract the fine mode fraction of extinction (η and the fine mode effective radius (Reff,f. These two parameters are robust measures of the fine mode contribution to total extinction and the fine mode size distribution, respectively. The results of the analysis are compared to Reff,f values extracted using AERONET V2 retrievals and calculated from in situ particle size measurements on the RHB and at UHMT. During a time period when fine mode aerosols dominated the extinction over a large area extending from Houston/Galveston Bay and out into the Gulf of Mexico, the various methods for obtaining Reff,f agree qualitatively (showing the same temporal trend and quantitatively (pooled standard deviation = 28 nm.

  14. Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia

    Science.gov (United States)

    Ivošević, Tatjana; Orlić, Ivica; Radović, Iva Bogdanović

    2015-11-01

    The results of a long term, multi elemental XRF and PIXE analysis of fine aerosol pollution in the city of Rijeka, Croatia, are reported for the first time. The samples were collected during a seven months period (6th Aug 2013-28th Feb 2014) on thin stretched Teflon filters and analyzed by energy dispersive X-ray fluorescence (EDXRF) at the Laboratory for Elemental Micro-Analysis (LEMA), University of Rijeka and by Particle Induced X-ray Emission (PIXE) using 1.6 MeV protons at the Laboratory for Ion Beam Interactions (LIBI), Ruđer Bošković Institute, Zagreb. The newly developed micro-XRF system at LEMA provided results for 19 elements in the range from Si to Pb. The PIXE at the LIBI provided information for the same elements as well for the light elements such as Na, Mg and Al. Black carbon was determined with the Laser Integrated Plate Method (LIPM). The results were statistically evaluated by means of the positive matrix factorization (PMF). The seven major pollution sources were identified together with their relative contributions, these are: secondary sulfates, road traffic, smoke, road dust, sea spray, ship emissions and soil dust.

  15. The rural carbonaceous aerosols in coarse, fine, and ultrafine particles during haze pollution in northwestern China.

    Science.gov (United States)

    Zhu, Chong-Shu; Cao, Jun-Ji; Tsai, Chuen-Jinn; Shen, Zhen-Xing; Liu, Sui-Xin; Huang, Ru-Jin; Zhang, Ning-ning; Wang, Ping

    2016-03-01

    The carbonaceous aerosol concentrations in coarse particle (PM10: Dp ≤ 10 μm, particulate matter with an aerodynamic diameter less than 10 μm), fine particle (PM2.5: Dp ≤ 2.5 μm), and ultrafine particle (PM0.133: Dp ≤ 0.133 μm) carbon fractions in a rural area were investigated during haze events in northwestern China. The results indicated that PM2.5 contributed a large fraction in PM10. OC (organic carbon) accounted for 33, 41, and 62 % of PM10, PM2.5, and PM0.133, and those were 2, 2.4, and 0.4 % for EC (elemental carbon) in a rural area, respectively. OC3 was more abundant than other organic carbon fractions in three PMs, and char dominated EC in PM10 and PM2.5 while soot dominated EC in PM0.133. The present study inferred that K(+), OP, and OC3 are good biomass burning tracers for rural PM10 and PM2.5, but not for PM0.133 during haze pollution. Our results suggest that biomass burning is likely to be an important contributor to rural PMs in northwestern China. It is necessary to establish biomass burning control policies for the mitigation of severe haze pollution in a rural area.

  16. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany)

    Science.gov (United States)

    Weckwerth, Gerd

    Emission of heavy metals, besides ozone and diesel-soot, is one of the most significant environmental problems caused by the existing transport systems. Emission arises from different parts of vehicles (tyres, brakes, exhausts) or running trains (rails, wheels, overhead cables, etc.). Various types of emission with their insufficiently known ways of spreading makes it difficult to estimate the risk and to realise effective counter-measures. Size-dependent sampling of aerosols with the virtual impactor technique of a dichotomous sampler (material together with ˜0.3% from rubbed off brake-linings in the coarse fraction. The assumption of 0.3% for brake-linings is based on the relative abundances of Cu and Sb which besides Cd are the most highly enriched. Since most brake-linings used in cars contain these elements in an unusually high quantity (5-20% Cu and 1-5% Sb) and are in very similar ratios as measured in the coarse fraction, Cu and Sb may be taken as quantitative tracers for the brake-lining component in the immission. The environmental interest in Sb arises mainly from the toxicological potential of the compounds Sb 2S 3 and Sb 2O 3. Other traffic related components could only be identified very close to the sources of emissions. Besides Pt from cars with catalysators and Cu emitted from overhead cables of trams, an As-enrichment from rusting rails, which segregates into fine particles because of shaking due to passing trains, was discovered.

  17. Technical Note: Fast two-dimensional GC-MS with thermal extraction for anhydro-sugars in fine aerosols

    Directory of Open Access Journals (Sweden)

    Y. Ma

    2010-05-01

    Full Text Available A fast two-dimensional gas chromatography (GC-MS method that uses heart-cutting and thermal extraction (TE and requires no chemical derivatization was developed for the determination of anhydro-sugars in fine aerosols. Evaluation of the TE-GC-GC-MS method shows high average relative accuracy (≥90%, reproducibility (≤10% relative standard deviation, detection limits of less than 3 ng/μL, and negligible carryover for levoglucosan, mannosan, and galactosan markers. TE-GC-GC-MS- and solvent extraction (SE-GC-MS-measured levoglucosan concentrations correlate across several diverse types of biomass burning aerosols. Because the SE-GC-MS measurements were taken 8 years prior to the TE-GC-GC-MS ones, the stability of levoglucosan is established for quartz filter-collected biomass burning aerosol samples stored at ultra-low temperature (−50 °C. Levoglucosan concentrations (w/w in aerosols collected following atmospheric dilution near open fires of varying intensity are similar to those in biomass burning aerosols produced in a laboratory enclosure. An average levoglucosan-mannosan-galactosan ratio of 15:2:1 is observed for these two aerosol sets. TE-GC-GC-MS analysis of atmospheric aerosols from the US and Africa produced levoglucosan concentrations (0.01–1.6 μg/m3 well within those reported for aerosols collected globally and examined using different analytical techniques (0.004–7.6 μg/m3. Further comparisons among techniques suggest that fast TE-GC-GC-MS is among the most sensitive, accurate, and precise methods for compound-specific quantification of anhydro-sugars. In addition, an approximately twofold increase in anhydro-sugar determination may be realized when combining TE with fast chromatography.

  18. The AIRPARIF-AEROSOL project: A comprehensive source apportionment study of fine aerosols (PM2.5) in the region of Paris (France)

    Science.gov (United States)

    Sciare, Jean; Ghersi, Veronique; Bressi, Michael; Lameloise, Philippe; Bonnaire, Nicolas; Rosso, Amandine; Nicolas, Jose; Moukhtar, Sophie; Ferron, Anais; Baumier, Dominique

    2010-05-01

    With a population of about 12 millions inhabitants (20% of the French population), Greater Paris (France) is one of the most populated megacity in Europe and among the few located in developed countries. Due to its favorable geographical situation (far from other big European cities and influenced very often by clean oceanic air masses), it may be considered as a good candidate for investigating the build-up of urban air pollution from temperate industrialized countries. Particulate mass of fine aerosols with aerodynamic diameter below 2.5μm (PM2.5) is continuously monitored at several stations from great Paris for almost 8 years by the local air quality network (AIRPARIF), using a conventional on-line automatic system (R&P TEOM; see Patashnik and Rupprecht, 1991). During the period 2000-2006, levels of PM2.5 in the region of Paris have shown rather stable yearly mean values ranging 13 to 16?g/m3 whereas most of the other pollutants monitored by AIRPARIF have shown a net decrease during this period (http:\\www.airparif.asso.fr). Since the year 2007, this situation has becoming worse for particulate pollution with a net increase of the yearly mean concentration of PM2.5 (up to 21?g/m3), which increase is partly due to the use of a new PM2.5 measurement technique (R&P TEOM-FDMS instrument) enabling a proper determination of the semi-volatile fraction of fine aerosols. Although this new method greatly improves the determination of PM2.5, it has also brought PM2.5 levels in the region of Paris closer to the 25?g/m3 yearly mean targeted value recommended by Europe for 2010 (limit value for 2015). Efficient abatement policies aiming at reducing levels of PM2.5 in the region of Paris will have to be fed by preliminary PM2.5 source apportionment studies and exhaustive aerosol chemistry studies (chemical mass balance) allowing a better separation between regional to continental aerosol sources. The objective of the AIRPARIF-AEROSOL project aims to perform a spatially- and

  19. Retrieval of Aerosol Fine-Mode Fraction from Intensity and Polarization Measurements by PARASOL over East Asia

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2016-05-01

    Full Text Available The fine-mode fraction (FMF of aerosol optical depth (AOD is a key optical parameter that represents the proportion of fine particles relative to total aerosols in the atmosphere. However, in comparison to ground-based measurements, the FMF is still difficult to retrieve from satellite observations, as attempted by a Moderate-resolution Imaging Spectroradiometer (MODIS algorithm. In this paper, we introduce the retrieval of FMF based on Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar (PARASOL data. This method takes advantage of the coincident multi-angle intensity and polarization measurements from a single satellite platform. In our method, we use intensity measurements to retrieve the total AOD and polarization measurements to retrieve the fine-mode AOD. The FMF is then calculated as the ratio of the retrieved fine-mode AOD to the total AOD. The important processes in our method include the estimation of the surface intensity and polarized reflectance by using two semi-empirical models, and the building of two sets of aerosol retrieval lookup tables for the intensity and polarized measurements via the 6SV radiative transfer code. We apply this method to East Asia, and comparisons of the retrieved FMFs for the Beijing, Xianghe and Seoul_SNU sites with those of the Aerosol Robotic Network (AERONET ground-based observations produce correlation coefficients (R2 of 0.838, 0.818, and 0.877, respectively. However, the comparison results are relatively poor (R2 = 0.537 in low-AOD areas, such as the Osaka site, due to the low signal-to-noise ratio of the satellite observations.

  20. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  1. ENHANCED CHARACTERIZATION OF AMBIENT FINE PARTICULATE MATTER THROUGH COMPLEMENTARY DATA INTEGRATION AND IMPROVED MEASUREMENT INSTRUMENTATION

    Science.gov (United States)

    Improvements in fine particle characterization will allow for a more complete understanding of the processes particle in the atmosphere undergo. The integration of complementary measurements into a compact mathematical form, allows for ease of transfer from particle measureme...

  2. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Science.gov (United States)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  3. Differences in Fine- Coarse Aerosol Ratios in Convective and Non-Convective Dust Events in a Desert City

    Science.gov (United States)

    Gill, T. E.; Rivera Rivera, N. I.; Novlan, D. J.

    2014-12-01

    El Paso, Texas (USA) and Ciudad Juarez, Chihuahua (Mexico) form the Paso del Norte, the largest metropolitan area in North America's Chihuahuan Desert. The cities are subject to frequent dust storms presenting a hazard to local infrastructure and health, including synoptic-scale dust events during winter and spring, and dusty outflows from convective storms (haboobs) primarily during the summer. We evaluate particulate matter (PM2.5 and PM10) concentrations over a decade of convective and non-convective dust events, based on hourly aerosol data collected by Texas Commission on Environmental Quality (TCEQ) continuous air monitors in El Paso cross-referenced to weather observations from the USA National Weather Service. A total of 219 dust events (95 convective and 124 non-convective) events occurred between 2001 and 2010. The PM2.5/PM10 ratio was significantly higher (proportionally greater concentration of fine aerosols) in convective episodes and during summertime events than during non-convective dust events and dust episodes in other seasons, although overall concentrations of both PM2.5 and PM10 were higher in the non-convective events, which were also longer-lasting. These differences in fine/coarse aerosol ratios are likely related to different atmospheric stability conditions, and/or different mechanisms of dust particle entrainment and transport in haboobs versus non-convective dust events. Since visibility degradation and adverse human health effects are known to be exacerbated by to fine aerosol concentrations, thunderstorm-related dust events may present a proportionally greater hazard.

  4. ambiental

    Directory of Open Access Journals (Sweden)

    Roque Leal Salcedo

    2008-01-01

    Full Text Available El derecho internacional ambiental es un conocimiento de carácter transversal, que entre otras consideraciones refleja las preocupaciones de la sociedad por la implementación de un modelo de desarrollo sustentable para el respeto a las reglas del medio natural que garantizan la integridad y renovación de los sistemas naturales. El presente artículo enfoca esta visión a través del análisis de material documental revisado, entre ellos tratados internacionales que permiten distinguir el desarrollo del derecho internacional ambiental y el papel de Organización de las Naciones Unidas (ONU, en el propósito común del derecho individual y colectivo de disfrutar de una vida, un ambiente seguro, sano y ecológicamente equilibrado. En función a estas disertaciones las consideraciones finales exponen parte de la visión que ha estructurado la ONU y que representan un aporte considerable en el fomento de la conciencia mundial sobre la necesidad de establecer vínculos entre las naciones para el continuo desarrollo de esta rama del derecho.

  5. THE EFFECTS OF FINE LACTOSE AS A THIRD COMPONENT ON AEROSOLIZATION OF CEFOTAXIME SODIUM FROM DRY POWDER FORMULATIONS

    Directory of Open Access Journals (Sweden)

    ABDOLHOSEIN ROUHOLAMINI NAJAFABADI

    2006-06-01

    Full Text Available Dry powder inhaler (DPI formulations usually contain micronized drug particles and lactose as a carrier. Fine lactose could be used as a ternary component to improve drug delivery from DPIs. The aim of this study was to investigate the deposition profile of a model drug, cefotaxime sodium (CS, using coarse and fine carriers after aerosolization at 60 l/min via a spinhaler® into a twin stage liquid impinger (TSI. Two micronization methods. jet milling and spray drying were used to micronize the active drug and carrier. The particle size of CS and lactose were characterized by laser diffraction, and the morphology of formulations was examined by scanning electron microscopy. X-ray diffraction of jet milled lactose showed crystalline nature, but spray dried lactose exhibited an amorphous state. The results showed the existence of fine lactose in formulations significantly (p0.05 difference was observed between the effect of jet milled and spray dried lactose. On the other hand selection of micronization technique to reduce particle size of CS, was very effective on deposition profile. The highest influence of fine lactose was obtained by formulation containing jet milled CS in ratio of drug/carrier 1/1 and 10% of fine lactose as third component.

  6. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA: a semi-continuous method for soluble compounds

    Directory of Open Access Journals (Sweden)

    I. C. Rumsey

    2013-09-01

    Full Text Available Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's Clean Air Status and Trends Network (CASTNet currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA measures water-soluble gases and aerosols at hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV program. The assessment was conducted in Research Triangle Park, North Carolina from 8 September–8 October 2010 and focused on gaseous SO2, HNO3 and NH3 and aerosol SO4−, NO3− and NH4+. Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD between paired hourly results from duplicate MARGA units (MUs, with a performance goal of 2, SO42− and NH4+, with all three compounds passing the accuracy and precision goals by a significant margin. The performance of the MARGA in measuring NO3− could not be evaluated due to the different sampling efficiency of coarse NO3− by the MUs and the filter pack. Estimates of "fine" NO3− were calculated for the MUs and the filter pack. Using this and results from a previous study, it is concluded that if the MUs and the filter pack were sampling the same particle size, the MUs would have good agreement in terms of precision and accuracy. The MARGA performed moderately well in measuring HNO3 and NH3, though neither met the linear regression slope goals. However, recommendations for improving the measurement of HNO3 and NH3 are discussed. It is concluded that SO42−, SO2, NO3−, HNO3, NH4+ and NH3 concentrations can be measured with acceptable accuracy and precision when the MARGA is

  7. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    Science.gov (United States)

    Rumsey, I. C.; Cowen, K. A.; Walker, J. T.; Kelly, T. J.; Hanft, E. A.; Mishoe, K.; Rogers, C.; Proost, R.; Beachley, G. M.; Lear, G.; Frelink, T.; Otjes, R. P.

    2014-06-01

    Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at an hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, North Carolina, from 8 September to 8 October 2010 and focused on gaseous SO2, HNO3, and NH3 and aerosol SO42-, NO3-, and NH4+. Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD) between paired hourly results from duplicate MARGA units (MUs), with a performance goal of ≤ 25%. The accuracy of the MARGA was evaluated by calculating the MARPD for each MU relative to the average of the duplicate denuder/filter pack concentrations, with a performance goal of ≤ 40%. Accuracy was also evaluated by using linear regression, where MU concentrations were plotted against the average of the duplicate denuder/filter pack concentrations. From this, a linear least squares line of best fit was applied. The goal was for the slope of the line of best fit to be between 0.8 and 1.2. The MARGA performed well in comparison to the denuder/filter pack for SO2, SO42-, and NH4+, with all three compounds passing the accuracy and precision goals by a significant margin. The performance of the MARGA in measuring NO3- could not be evaluated due to the different sampling efficiency of coarse NO3- by the MUs and the filter pack. Estimates of "fine" NO3- were calculated for the MUs and the filter pack

  8. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also

  9. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw

    Directory of Open Access Journals (Sweden)

    P. Zieger

    2011-03-01

    Full Text Available In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30–40%. Since ambient aerosol particles experience hygroscopic growth at enhanced RH, their microphysical and optical properties – especially the aerosol light scattering – are also strongly dependent on RH. The knowledge of this RH effect is of crucial importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. Here, we will present results from a four-month campaign which took place in summer 2009 in Cabauw, The Netherlands. The aerosol scattering coefficient σsp(λ was measured dry and at various, predefined RH conditions between 20 and 95% with a humidified nephelometer. The scattering enhancement factor f(RH,λ is the key parameter to describe the effect of RH on σsp(λ and is defined as σsp(RH,λ measured at a certain RH divided by the dry σsp(dry,λ. The measurement of f(RH,λ together with the dry absorption measurement (assumed not to change with RH allows the determination of the actual extinction coefficient σep(RH,λ at ambient RH. In addition, a wide range of other aerosol properties were measured in parallel. The measurements were used to characterize the effects of RH on the aerosol optical properties. A closure study showed the consistency of the aerosol in-situ measurements. Due to the large variability of air mass origin (and thus aerosol composition a simple parameterization of f(RH,λ could not be established. If f(RH,λ needs to be predicted, the chemical composition and size distribution need to be known. Measurements of four MAX-DOAS (multi-axis differential optical absorption spectroscopy instruments were used to retrieve vertical profiles of σep(λ. The values of the lowest layer were compared to the in-situ values after conversion of the latter ones to ambient

  10. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw

    Directory of Open Access Journals (Sweden)

    P. Zieger

    2010-12-01

    Full Text Available In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30–40%. Since ambient aerosol particles experience hygroscopic growth at enhanced RH, also their microphysical and optical properties – especially the aerosol light scattering – are strongly dependent on RH. The knowledge of this RH effect is of crucial importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. Here, we will present results from a four-month campaign which took place in summer 2009 in Cabauw, The Netherlands. The aerosol scattering coefficient σsp(λ was measured dry and at various, predefined RH conditions between 20 and 95% with a humidified nephelometer. The scattering enhancement factor f(RH,λ is the key parameter to describe the effect of RH on σsp(λ and is defined as σsp(RH,λ measured at a certain RH divided by the dry σsp(dry,λ. The measurement of f(RH,λ together with the dry absorption measurement (assumed not to change with RH allows the determination of the actual extinction coefficient σep(RH,λ at ambient RH. In addition, a wide range of other aerosol properties were measured in parallel. The measurements were used to characterize the effects of RH on the aerosol optical properties. A closure study showed the consistency of the aerosol in-situ measurements. Due to the large variability of air mass origin (and thus aerosol composition a simple parameterization of f(RH,λ could not be established. If f(RH,λ needs to be predicted, the chemical composition and size distribution needs to be known. Measurements of four MAX-DOAS (multi-axis differential optical absorption spectroscopy instruments were used to retrieve vertical profiles of σep(λ. The values of the lowest layer were compared to the in-situ values after conversion of the latter to ambient RH

  11. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2008-08-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006. Results are presented for the period of 15–27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC mixed with nitrate and sulfate, elemental carbon (EC, nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42% which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2–6 a.m. showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2–3μm size range. A unique nitrogen-containing organic carbon (NOC particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30–10 a.m. showed the greatest contributions from industrial emissions. During mid to late mornings (7–11 a.m., weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m., resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh

  12. Investigation of fine and coarse aerosol contributions to the total aerosol light scattering: Shape effects and concentration profiling by Raman lidar measurements

    International Nuclear Information System (INIS)

    Remote sensing techniques, such as sun-photometry (columnar integrated aerosol parameters) and Raman lidar (profile aerosol parameters), are used in inversion models to yield information about particle size distribution (PSD), concentration, and average refractive index (RI). Ground-based AERONET network uses sun-photometric measurements to retrieve columnar effective particle size distribution and refractive index values, as well as other radiative properties such as absorption optical depth, albedo, and asymmetry parameter, which do not have a strong dependence on particle shape. Raman lidar measurements, on the other hand, yield shape-dependent quantities like particle depolarization, backscattering and lidar ratio at several wavelengths. In order to evaluate what light scattering parameters can be used to infer information regarding particle shape and concentration, a set of computer simulations was carried out. AERONET-inverted particle data (PSD, RI, concentration) have been used as input. Simulated data are obtained from ALFA, a light-scattering database, using the kernel approximation scheme. As expected, the effect of fine mode particle shape on near-infrared (1064 nm) was found to be negligible; on the other hand, even a small amount of nonsphericity in small particles has a marked effect on depolarization ratio values. Data from a 2007 lidar campaign were then used to evaluate the validity of our approach on a real measurement campaign. Results show that our method can yield some information about layer profiling, such as the concentration of fine mode particles. Such information comes not as a best-fit solution but in the form of a compatible set of possible solutions, which could be narrowed by the use of closure relations. -- Highlights: ► We simulate bimodal particle size distribution in atmospheric aerosols. ► Lidar data are used from a campaign to test our approach. ► Backscattering can be used to obtain particle concentration by layer.

  13. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    Science.gov (United States)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE

  14. Characterization of ambient fine particles in the northwestern area and Anchorage, Alaska.

    Science.gov (United States)

    Kim, Eugene; Hopke, Philip K

    2008-10-01

    Ambient PM2.5 (particulate matter less than 2.5 microm in aerodynamic diameter) in the northwestern United States and Alaska is dominated by carbonaceous compounds associated with wood burning and transportation sources. PM2.5 source characterization studies analyzing recent PM2.5 speciation data have not been previously reported for these areas. In this study, ambient PM2.5 speciation samples collected at two monitoring sites located in the northwestern area, Olympic Peninsula, WA, and Portland, OR, and one monitoring site located in Anchorage, AK, were characterized through source apportionments. Gasoline vehicle, secondary sulfate, and wood smoke were the largest sources of PM2.5 collected at the Anchorage, Olympic, and Portland monitoring sites, respectively. Secondary sulfates showed an April peak at Anchorage and a November peak at Portland that are likely related to the increased photochemical reaction and long-range transport in Anchorage and meteorological stagnation in Portland. Secondary nitrate at the Olympic site showed a weak summer high peak that could be caused by seasonal tourism in the national park. Backward trajectories suggested that the elevated aged sea salt concentrations at the Portland monitoring site could be regional transport of sea salt that passed through other contaminated air sheds along the coast. Oil combustion emissions that might originate from ships and ferries were observed at the Olympic monitoring site. PMID:18939780

  15. Ambient Observations of Organic Nitrogen Compounds in Submicrometer Aerosols in New York Using High Resolution Aerosol Mass Spectrometry

    Science.gov (United States)

    Zhou, S.; Ge, X.; Xu, J.; Sun, Y.; Zhang, Q.

    2015-12-01

    Organic nitrogen (ON) compounds, which include amines, nitriles, organic nitrates, amides, and N-containing aromatic heterocycles, are an important class of compounds ubiquitously detected in atmospheric particles and fog and cloud droplets. Previous studies indicate that these compounds can make up a significant fraction (20-80%) of the total nitrogen (N) content in atmospheric condensed phases and play important roles in new particle formation and growth and affecting the optical and hygroscopicity of aerosols. In this study, we report the observation of ON compounds in submicrometer particles (PM1) at two locations in New York based on measurements using Aerodyne high-resolution time-of-flight mass spectrometer (HR-ToF-AMS). One study was conducted as part of the US Department of Energy funded Aerosol Lifecyle - Intensive Operation Period (ALC-IOP) campaign at Brookhaven National Lab (BNL, 40.871˚N, 72.89˚W) in summer, 2011 and the other was conducted at the Queen's College (QC) in New York City (NYC) in summer, 2009. We observed a notable amount of N-containing organic fragment ions, CxHyNp+ and CxHyOzNp+, in the AMS spectra of organic aerosols at both locations and found that they were mainly associated with amino functional groups. Compared with results from lab experiments, the C3H8N+ at m/z = 58 was primarily attributed to trimethylamine. In addition, a significant amount of organonitrates was observed at BNL. Positive matrix factorization (PMF) analysis of the high resolution mass spectra (HRMS) of organic aerosols identified a unique nitrogen-enriched OA (NOA) factor with elevated nitrogen-to-carbon (N/C) at both BNL and QC. Analysis of the size distributions, volatility profiles, and correlations with external tracer indicates that acid-base reactions of amino compounds with sulfate and acidic gas were mainly responsible for the formation of amine salts. Photochemical production was also observed to play a role in the formation of NOA. Bivariate polar

  16. An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies

    Science.gov (United States)

    Wragg, Francis P. H.; Fuller, Stephen J.; Freshwater, Ray; Green, David C.; Kelly, Frank J.; Kalberer, Markus

    2016-10-01

    The adverse health effects associated with ambient aerosol particles have been well documented, but it is still unclear which aerosol properties are most important for their negative health impact. Some studies suggest the oxidative effects of particle-bound reactive oxygen species (ROS) are potential major contributors to the toxicity of particles. Traditional ROS measurement techniques are labour-intensive, give poor temporal resolution and generally have significant delays between aerosol sampling and ROS analysis. However, many oxidising particle components are reactive and thus potentially short-lived. Thus, a technique to quantify particle-bound ROS online would be beneficial to quantify also the short-lived ROS components. We introduce a new portable instrument to allow online, continuous measurement of particle-bound ROS using a chemical assay of 2'7'-dichlorofluorescein (DCFH) with horseradish peroxidase (HRP), via fluorescence spectroscopy. All components of the new instrument are attached to a containing shell, resulting in a compact system capable of automated continuous field deployment over many hours or days. From laboratory measurements, the instrument was found to have a detection limit of ˜ 4 nmol [H2O2] equivalents per cubic metre (m3) air, a dynamic range up to at least ˜ 2000 nmol [H2O2] equivalents per m3 air and a time resolution of ≤ 12 min. The instrument allows for ˜ 16 h automated measurement if unattended and shows a fast response to changes in concentrations of laboratory-generated oxidised organic aerosol. The instrument was deployed at an urban site in London, and particulate ROS levels of up to 24 nmol [H2O2] equivalents per m3 air were detected with PM2.5 concentrations up to 28 µg m-3. The new and portable Online Particle-bound ROS Instrument (OPROSI) allows fast-response quantification; this is important due to the potentially short-lived nature of particle-bound ROS as well as fast-changing atmospheric conditions

  17. Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves

    Science.gov (United States)

    Nalin, Federica; Golly, Benjamin; Besombes, Jean-Luc; Pelletier, Charles; Aujay-Plouzeau, Robin; Verlhac, Stéphane; Dermigny, Adrien; Fievet, Amandine; Karoski, Nicolas; Dubois, Pascal; Collet, Serge; Favez, Olivier; Albinet, Alexandre

    2016-10-01

    Little is known about the impact of post-combustion processes, condensation and dilution, on the aerosol concentration and chemical composition from residential wood combustion. The evolution of aerosol emitted by two different residential log wood stoves (old and modern technologies) from emission until it is introduced into ambient air was studied under controlled "real" conditions. The first objective of this research was to evaluate the emission factors (EF) of polycyclic aromatic hydrocarbons (PAH) and their nitrated and oxygenated derivatives from wood combustion. These toxic substances are poorly documented in the literature. A second objective was to evaluate the oxidation state of the wood combustion effluent by studying these primary/secondary compounds. EFs of Σ37PAHs and Σ27Oxy-PAHs were in the same range and similar to those reported in literature (4-240 mg kg-1). Σ31Nitro-PAH EFs were 2-4 orders of magnitude lower (3.10-2-8.10-2 mg kg-1) due to the low temperature and low emission of NO2 from wood combustion processes. An increase of equivalent EF of PAH derivatives was observed suggesting that the oxidation state of the wood combustion effluent from the emission point until its introduction in ambient air changed in a few seconds. These results were confirmed by the study of both, typical compounds of SOA formation from PAH oxidation and, PAH ratio-ratio plots commonly used for source evaluation.

  18. A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London

    Directory of Open Access Journals (Sweden)

    S. Rodríguez

    2007-01-01

    Full Text Available A physicochemical characterization of the urban fine aerosol (aerosol number size distribution, chemical composition and mass concentrations in Milan, Barcelona and London is presented in this article. The objective is to obtain a comprehensive picture on the involvement of the microphysical processes of the aerosol dynamic in the: 1 regular evolution of the urban aerosol (daily, weekly and seasonal basis and in the day-to-day variations (from clean-air to pollution-events, and 2 link between "aerosol chemistry and mass concentrations" with the "number size distribution".

    The mass concentrations of the fine PM2.5 aerosol exhibit a high correlation with the number concentration of particles >100 nm (which only accounts for <20% of the total number concentration N of fine aerosols and do not correlate with the number of particles <100 nm ("ultrafine particles", which accounts for >80% of fine particles. Organic matter (OM and black-carbon (BC are the only aerosol components showing a significant correlation with ultrafine particles (attributed to vehicles emissions, whereas ammonium-nitrate, ammonium-sulphate and also OM and BC correlate with N>100(nm (attributed to gas-to-particle transformation mechanisms and some primary emissions. Time series of the aerosol DpN diameter (dN/dlogD mode, mass PM2.5 concentrations and number N>100(nm concentrations, exhibit correlated day-to-day variations which point to a significant involvement of condensation of semi-volatile compounds during urban pollution events. This agrees with the fact that ammonium-nitrate is the component exhibiting the highest increases from mid-to-high pollution episodes, when the highest DpN increases are observed. The results indicates that "fine PM2.5 particles urban pollution events" tend to occur when condensation processes have made particles grow enough to produce significant concentrations of N>100(nm. In contrast, because the low contribution of ultrafine particles

  19. A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London

    Directory of Open Access Journals (Sweden)

    S. Rodríguez

    2007-01-01

    Full Text Available A physicochemical characterization, including aerosol number size distribution, chemical composition and mass concentrations, of the urban fine aerosol captured in MILAN, BARCELONA and LONDON is presented in this article. The objective is to obtain a comprehensive picture of the microphysical processes involved in aerosol dynamics during the: 1 regular evolution of the urban aerosol (daily, weekly and seasonal basis and in the day-to-day variations (from clean-air to pollution-events, and 2 the link between "aerosol chemistry and mass concentrations" with the "number size distribution". The mass concentrations of the fine PM2.5 aerosol exhibit a high correlation with the number concentration of >100 nm particles N>100 (nm ("accumulation mode particles" which only account for <20% of the total number concentration N of fine aerosols; but do not correlate with the number of <100 nm particles ("ultrafine particles", which accounts for >80% of fine particles number concentration. Organic matter and black-carbon are the only aerosol components showing a significant correlation with the ultrafine particles, attributed to vehicles exhausts emissions; whereas ammonium-nitrate, ammonium-sulphate and also organic matter and black-carbon correlate with N>100 (nm and attributed to condensation mechanisms, other particle growth processes and some primary emissions. Time series of the aerosol DpN diameter (dN/dlogD mode, mass PM2.5 concentrations and number N>100 (nm concentrations exhibit correlated day-to-day variations, which point to a significant involvement of condensation of semi-volatile compounds during urban pollution events. This agrees with the observation that ammonium-nitrate is the component exhibiting the highest increases from mid-to-high pollution episodes, when the highest DpN increases are observed. The results indicates that "fine PM2.5 particles urban pollution events" tend to occur when condensation processes have made particles grow

  20. Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E.

    2016-04-01

    The oxidative potential of various secondary organic aerosols (SOA) was measured using dithiothreitol (DTT) assay to understand how organic aerosols react with cellular materials. SOA was produced via the photooxidation of four different hydrocarbons (toluene, 1,3,5-trimethylbenzene, isoprene and α-pinene) in the presence of NOx using a large outdoor photochemical smog chamber. The DTT consumption rate was normalized by the aerosol mass, which is expressed as DTTmass. Toluene SOA and isoprene SOA yielded higher DTTmass than 1,3,5-trimethylbenzene SOA or α-pinene SOA. In order to discover the correlation between the molecular structure and oxidative potential, the DTT responses of selected model compounds were also measured. Among them, conjugated aldehydes, quinones, and H2O2 showed considerable DTT response. To investigate the correlation between DTT response and cell responses in vitro, the expression of biological markers, i.e. IL-6, IL-8, and HMOX-1 were studied using small airway epithelial cells. Higher cellular expression of IL-8 was observed with toluene SOA exposure compared to 1,3,5-trimethylbenzene SOA exposure, which aligned with the results from DTT assay. Our study also suggests that within the urban atmosphere, the contribution of toluene SOA and isoprene SOA to the oxidative potential of ambient SOA will be more significant than that of α-pinene SOA.

  1. Sources of ambient fine particulate matter at two community sites in Detroit, Michigan

    Science.gov (United States)

    Hammond, Davyda M.; Dvonch, J. Timothy; Keeler, Gerald J.; Parker, Edith A.; Kamal, Ali S.; Barres, James A.; Yip, Fuyuen Y.; Brakefield-Caldwell, Wilma

    Detroit, Michigan is a non-attainment area of the annual PM 2.5 (particles ⩽2.5 μm in diameter) National Ambient Air Quality Standard (NAAQS), and contains a host of local pollution contributors including high diesel traffic from a nearby international border crossing. A source apportionment analysis was conducted using PM 2.5 data collected from 1999 to 2002 by the Community Action Against Asthma (CAAA) project in Detroit, Michigan. CAAA used a community-based participatory research approach to identify and address the environmental triggers for asthma among children residing in southwest and east Detroit. The data used for the study included 24-h measurements of PM 2.5 mass, elemental and organic carbon, and a suite of trace element species, along with hourly measurements of PM 2.5 mass and black carbon. Positive matrix factorization (PMF2) was used to quantitatively apportion the sources of ambient PM 2.5 at each of two Detroit community sites. Results showed that southwest Detroit PM 2.5 levels can be apportioned to seven source categories: secondary sulfate/coal combustion, gasoline vehicles, diesel vehicles, refinery/oil combustion, iron-steel manufacturing/waste incineration, automotive electroplating, and sewage sludge incineration that includes crustal material from runoff. The PMF2 model apportioned the east Detroit PM 2.5 data into five source categories: secondary sulfate/coal combustion, motor vehicles/combustion, refinery/oil combustion, iron-steel manufacturing/waste incineration, and automotive electroplating. For both locations, approximately over 60% of the PM 2.5 mass was attributed to secondary sulfate/coal combustion sources, approximately 30% to vehicular sources, and 1-5% to local industrial sources. The unexplained mass accounted for <2% of the measured PM 2.5 mass. This study illustrates that regional secondary sulfate/coal combustion and local motor vehicle emissions alone are enough for this mid-western US city to be in non

  2. Impact of aerosol-meteorology interactions on fine particle pollution during China’s severe haze episode in January 2013

    Science.gov (United States)

    Wang, Jiandong; Wang, Shuxiao; Jiang, Jingkun; Ding, Aijun; Zheng, Mei; Zhao, Bin; Wong, David C.; Zhou, Wei; Zheng, Guangjie; Wang, Long; Pleim, Jonathan E.; Hao, Jiming

    2014-09-01

    In January 2013, a severe regional haze occurred over the North China Plain. An online-coupled meteorology-chemistry model was employed to simulate the impacts of aerosol-meteorology interactions on fine particles (PM2.5) pollution during this haze episode. The response of PM2.5 to meteorology change constituted a feedback loop whereby planetary boundary layer (PBL) dynamics amplified the initial perturbation of PM2.5. High PM2.5 concentrations caused a decrease of surface solar radiation. The maximal decrease in daily average solar radiation reached 53% in Beijing, thereby leading to a more stable PBL. The peak PBL height in Beijing decreased from 690 m to 590 m when the aerosol extinction was considered. Enhanced PBL stability suppressed the dispersion of air pollutants, and resulted in higher PM2.5 concentrations. The maximal increase of PM2.5 concentrations reached 140 μg m-3 in Beijing. During most PM2.5 episodes, primary and secondary particles increased simultaneously. These results imply that the aerosol-radiation interactions played an important role in the haze episode in January 2013.

  3. Ambient fine particles modify heart rate variability in young healthy adults.

    Science.gov (United States)

    Vallejo, Maite; Ruiz, Silvia; Hermosillo, Antonio G; Borja-Aburto, Víctor H; Cárdenas, Manuel

    2006-03-01

    Particulate air pollution has been related with cardiopulmonary morbidity and mortality. Recent studies have shown that an increase in particulate matter (PM)(2.5) ambient concentrations was associated with a decrease in heart rate variability (HRV) in the elderly with cardiovascular conditions, which could increase the risk of death. In order to assess if this association could also be observed in young adults, we studied 40 young healthy residents of the Mexico City Metropolitan Area (MCMA) who underwent 13 h Holter electrocardiographic and PM(2.5) personal monitoring. HRV was evaluated in time domain: the standard deviation of normal RR intervals (SDNN) and the percentage of differences between adjacent normal RR intervals larger than 50 ms (pNN50). In multivariate analysis with mixed effects models, a significant negative association of pNN50 with PM(2.5) accumulative exposure was found. An increase in 30 microg/m(3) of the average PM(2.5) personal exposure in the previous 2 h decreased the pNN50 in 0.08% (P=0.01). This observation revealed an acute effect related to environmental exposure to PM(2.5) with regard to HRV in normal youngsters. The long-term health consequences of this association in young healthy adults remain to be clarified. PMID:16151470

  4. Secondary Organic Aerosol Formation from Ambient Air in an Oxidation Flow Reactor at GoAmazon2014/5

    Science.gov (United States)

    Palm, Brett B.; de Sa, Suzane S.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Seco, Roger; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Yee, Lindsay; Isaacman-VanWertz, Gabrial; Goldstein, Allen; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    During GoAmazon2014/5, ambient air was exposed to controlled concentrations of OH or O3 in situ using an oxidation flow reactor (OFR). Oxidation ranged from hours-several weeks of aging. Oxidized air was sampled by several instruments (e.g., HR-AMS, ACSM, PTR-TOF-MS, SMPS, CCN) at both the T3 site (IOP1: Feb 1-Mar 31, 2014, and IOP2: Aug 15-Oct 15, 2014) and T2 site (between IOPs and into 2nd IOP). The oxidation of ambient air in the OFR led to substantial and variable secondary organic aerosol (SOA) formation from any SOA-precursor gases, known and unknown, that entered the OFR. In general, more SOA was produced during the nighttime than daytime, suggesting that SOA-precursor gases were found in relatively higher concentrations at night. Similarly, more SOA was formed in the dry season (IOP2) than wet season (IOP1). The maximum amount of SOA produced during nighttime from OH oxidation ranged from less than 1 μg/m3 on some nights to greater than 10 μg/m3 on other nights. O3 oxidation of ambient air also led to SOA formation, although several times less than from OH oxidation. The amount of SOA formation sometimes, but not always, correlated with measured gas-phase biogenic and/or anthropogenic SOA precursors (e.g., SV-TAG sesquiterpenes, PTR-TOFMS aromatics, isoprene, and monoterpenes). The SOA mass formed in the OFR from OH oxidation was up to an order of magnitude larger than could be explained from aerosol yields of measured primary VOCs. This along with measurements from previous campaigns suggests that most SOA was formed from intermediate S/IVOC sources (e.g., VOC oxidation products, evaporated POA, or direct emissions). To verify the SOA yields of VOCs under OFR experimental conditions, atmospherically-relevant concentrations of several VOCs were added individually into ambient air in the OFR and oxidized by OH or O3. SOA yields in the OFR were similar to published chamber yields. Preliminary PMF factor analysis showed production of secondary factors in

  5. Direct and rapid determination of elements in the ambient air and in human expiration using the electrostatic precipitation of aerosols in the graphite atomizer of a Zeeman spectrometer

    International Nuclear Information System (INIS)

    The use of a new Zeeman spectrometer with the electrostatic precipitation of aerosols in the graphite furnace of the atomizer for the direct and rapid determination of aerosols in the ambient air and in the air expired by human beings is presented. The results are given for the comparative determination of elements (Cd, Mn, Cr, Pb, Cu, Se, Fe) in the laboratory air by the electrostatic precipitation and with the filter accumulation of aerosols. A correlation is found between the concentration of Se in the expiratory air and its concentration in the examinee's blood

  6. Nighttime aqueous-phase secondary organic aerosols in Los Angeles and its implication for fine particulate matter composition and oxidative potential

    Science.gov (United States)

    Saffari, Arian; Hasheminassab, Sina; Shafer, Martin M.; Schauer, James J.; Chatila, Talal A.; Sioutas, Constantinos

    2016-05-01

    Recent investigations suggest that aqueous phase oxidation of hydrophilic organic compounds can be a significant source of secondary organic aerosols (SOA) in the atmosphere. Here we investigate the possibility of nighttime aqueous phase formation of SOA in Los Angeles during winter, through examination of trends in fine particulate matter (PM2.5) carbonaceous content during two contrasting seasons. Distinctive winter and summer trends were observed for the diurnal variation of organic carbon (OC) and secondary organic carbon (SOC), with elevated levels during the nighttime in winter, suggesting an enhanced formation of SOA during that period. The nighttime ratio of SOC to OC was positively associated with the relative humidity (RH) at high RH levels (above 70%), which is when the liquid water content of the ambient aerosol would be high and could facilitate dissolution of hydrophilic primary organic compounds into the aqueous phase. Time-integrated collection and analysis of wintertime particles at three time periods of the day (morning, 6:00 a.m.-9:00 a.m.; afternoon, 11:00 a.m.-3:00 p.m.; night, 8:00 p.m.-4:00 a.m.) revealed higher levels of water soluble organic carbon (WSOC) and organic acids during the night and afternoon periods compared to the morning period, indicating that the SOA formation in winter continues throughout the nighttime. Furthermore, diurnal trends in concentrations of semi-volatile organic compounds (SVOCs) from primary emissions showed that partitioning of SVOCs from the gas to the particle phase due to the decreased nighttime temperatures cannot explain the substantial OC and SOC increase at night. The oxidative potential of the collected particles (quantified using a biological macrophage-based reactive oxygen species assay, in addition to the dithiothreitol assay) was comparable during afternoon and nighttime periods, but higher (by at least ∼30%) compared to the morning period, suggesting that SOA formation processes possibly

  7. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 1: Fine particle composition and organic source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, A.C.; Wang, J.; Salcedo, D.; Cubison, M. J.; Huffman, J. A.; DeCarlo, P. F.; Ulbrich, I. M.; Docherty, K. S.; Sueper, D.; Kimmel, J. R.; Worsnop, D. R.; Trimborn, A.; Northway, M.; Stone, E. A.; Schauer, J. J.; Volkamer, R. M.; Fortner, E.; de Foy, B.; Laskin, A.; Shutthanandan, V.; Zheng, J.; Zhang, R.; Gaffney, J.; Marley, N. A.; Paredes-Miranda, G.; Arnott, W. P.; Molina, L. T.; Sosa, G.; Jimenez, J. L.

    2009-09-01

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identified three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning. A fourth OA component is a small local nitrogen-containing reduced OA component (LOA) which accounts for 9% of the OA mass but one third of the organic nitrogen, likely as amines. OOA accounts for almost half of the OA on average, consistent with previous observations. OA apportionment results from PMF-AMS are compared to the PM{sub 2.5} chemical mass balance of organic molecular markers (CMB-OMM, from GC/MS analysis of filters). Results from both methods are overall consistent. Both assign the major components of OA to primary urban, biomass burning/woodsmoke, and secondary sources at similar magnitudes. The 2006 Mexico City emissions inventory underestimates the urban primary PM{sub 2.5} emissions by a factor of {approx}4, and it is {approx}16 times lower than afternoon concentrations when secondary species are included. Additionally, the forest fire contribution is at least an order-of-magnitude larger than in the inventory.

  8. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    OpenAIRE

    I. C. Rumsey; K. A. Cowen; Walker, J. T.; Kelly, T J; E. A. Hanft; K. Mishoe; Rogers, C.; R. Proost; G. M. Beachley; Lear, G.; T. Frelink; R. P. Otjes

    2013-01-01

    Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (M...

  9. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    Directory of Open Access Journals (Sweden)

    Q. Q. Wu

    2015-02-01

    Full Text Available Hydrogen peroxide (H2O2 and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations suggest that peroxyacetic acid (PAA, CH3C(OOOH is one of the most important organic peroxides in the atmosphere, whose budget is potentially related to the aerosols. Here we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto the ambient fine particulate matter (PM2.5 as a function of relative humidity (RH at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ of 10−4, and both γPAA and γH2O2 increase with increasing RH. However, γPAA is more sensitive to the RH variation than is γH2O2, which indicates that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust Storm (ADS and Arizona Test Dust (ATD particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that in addition to the mineral dust in PM2.5, other components (e.g., inorganic soluble salts are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.3 h on haze days and 7.6 h on non-haze days, values which agree well with the field observed result.

  10. A Voxel-Based Morphometry Study Reveals Local Brain Structural Alterations Associated with Ambient Fine Particles in Older Women

    Science.gov (United States)

    Casanova, Ramon; Wang, Xinhui; Reyes, Jeanette; Akita, Yasuyuki; Serre, Marc L.; Vizuete, William; Chui, Helena C.; Driscoll, Ira; Resnick, Susan M.; Espeland, Mark A.; Chen, Jiu-Chiuan; Wassertheil-Smoller, Sylvia; Goodwin, Mimi; DeNise, Richard; Lipton, Michael; Hannigan, James; Carpini, Anthony; Noble, David; Guzman, Wilton; Kotchen, Jane Morley; Goveas, Joseph; Kerwin, Diana; Ulmer, John; Censky, Steve; Flinton, Troy; Matusewic, Tracy; Prost, Robert; Stefanick, Marcia L.; Swope, Sue; Sawyer-Glover, Anne Marie; Hartley, Susan; Jackson, Rebecca; Hallarn, Rose; Kennedy, Bonnie; Bolognone, Jill; Casimir, Lindsay; Kochis, Amanda; Robbins, John; Zaragoza, Sophia; Carter, Cameron; Ryan, John; Macias, Denise; Sonico, Jerry; Nathan, Lauren; Voigt, Barbara; Villablanca, Pablo; Nyborg, Glen; Godinez, Sergio; Perrymann, Adele; Limacher, Marian; Anderson, Sheila; Toombs, Mary Ellen; Bennett, Jeffrey; Jones, Kevin; Brum, Sandy; Chatfield, Shane; Vantrees, Kevin; Robinson, Jennifer; Wilson, Candy; Koch, Kevin; Hart, Suzette; Carroll, Jennifer; Cherrico, Mary; Ockene, Judith; Churchill, Linda; Fellows, Douglas; Serio, Anthony; Jackson, Sharon; Spavich, Deidre; Margolis, Karen; Bjerk, Cindy; Truwitt, Chip; Peitso, Margaret; Camcrena, Alexa; Grim, Richard; Levin, Julie; Perron, Mary; Brunner, Robert; Golding, Ross; Pansky, Leslie; Arguello, Sandie; Hammons, Jane; Peterson, Nikki; Murphy, Carol; Morgan, Maggie; Castillo, Mauricio; Beckman, Thomas; Huang, Benjamin; Kuller, Lewis; McHugh, Pat; Meltzer, Carolyn; Davis, Denise; Davis, Joyce; Kost, Piera; Lucas, Kim; Potter, Tom; Tarr, Lee; Shumaker, Sally; Espeland, Mark; Coker, Laura; Williamson, Jeff; Felton, Debbie; Gleiser, LeeAnn; Rapp, Steve; Legault, Claudine; Dailey, Maggie; Casanova, Ramon; Robertson, Julia; Hogan, Patricia; Gaussoin, Sarah; Nance, Pam; Summerville, Cheryl; Peral, Ricardo; Tan, Josh; Bryan, Nick; Davatzikos, Christos; Desiderio, Lisa; Buckholtz, Neil; Molchan, Susan; Resnick, Susan; Rossouw, Jacques; Pottern, Linda

    2016-01-01

    Objective: Exposure to ambient fine particulate matter (PM2.5: PM with aerodynamic diameters voxel-wise analyses, we examined whether PM2.5 exposure also affects brain structure. Methods: Brain MRI data were obtained from 1365 women (aged 71–89) in the Women's Health Initiative Memory Study and local brain volumes were estimated using RAVENS (regional analysis of volumes in normalized space). Based on geocoded residential locations and air monitoring data from the U.S. Environmental Protection Agency, we employed a spatiotemporal model to estimate long-term (3-year average) exposure to ambient PM2.5 preceding MRI scans. Voxel-wise linear regression models were fit separately to gray matter (GM) and white matter (WM) maps to analyze associations between brain structure and PM2.5 exposure, with adjustment for potential confounders. Results: Increased PM2.5 exposure was associated with smaller volumes in both cortical GM and subcortical WM areas. For GM, associations were clustered in the bilateral superior, middle, and medial frontal gyri. For WM, the largest clusters were in the frontal lobe, with smaller clusters in the temporal, parietal, and occipital lobes. No statistically significant associations were observed between PM2.5 exposure and hippocampal volumes. Conclusions: Long-term PM2.5 exposures may accelerate loss of both GM and WM in older women. While our previous work linked smaller WM volumes to PM2.5, this is the first neuroimaging study reporting associations between air pollution exposure and smaller volumes of cortical GM. Our data support the hypothesized synaptic neurotoxicity of airborne particles.

  11. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6

    Directory of Open Access Journals (Sweden)

    M. Kamphus

    2009-07-01

    Full Text Available Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l. during the Cloud and Aerosol Characterization Experiment (CLACE 6 in February and March 2007. During mixed phase cloud events ice crystals from 5 μm up to 20 μm were separated from large ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI. During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The resulting ice and droplet residues (IR and DR were analyzed for size and composition by two single particle mass spectrometers: a custom-built Single Particle Laser-Ablation Time-of-Flight Mass Spectrometer (SPLAT and a commercial Aerosol Time of Flight Mass Spectrometer (ATOFMS, TSI Model 3800. During CLACE 6 the SPLAT instrument characterized 355 individual ice residues that produced a mass spectrum for at least one polarity and the ATOFMS measured 152 particles. The mass spectra were binned in classes, based on the combination of dominating substances, such as mineral dust, sulfate, potassium and elemental carbon or organic material. The derived chemical information from the ice residues is compared to the JFJ ambient aerosol that was sampled while the measurement station was out of clouds (several thousand particles analyzed by SPLAT and ATOFMS and to the composition of the residues of supercooled cloud droplets (SPLAT: 162 cloud droplet residues analyzed, ATOFMS: 1094. The measurements showed that mineral dust particles were strongly enhanced in the ice particle residues. 57% of the SPLAT spectra from ice residues were dominated by signatures from mineral compounds, and 78% of the ATOFMS spectra. Sulfate and nitrate containing particles were strongly

  12. Fine ash morphology and aerosol formation: A comparison of coal and biomass fuels

    Science.gov (United States)

    Chenevert, Blake Charles

    1998-12-01

    Modeling and experimental methods were used to investigate ash formation mechanisms of four industrially significant high-alkali biomass (sawdust/sanderdust) fuels. Alkali minerals tend to vaporize and recondense to form sub-micron aerosol, which poses health risks and causes special operational problems for industrial combustors. Sawdust/sanderdust was burned in a 15 kW natural gas-fired tunnel furnace. The resulting ash was collected by a water-cooled probe, and size sorted by cascade impaction and Electrical Aerosol Size Analysis. Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy techniques were used to determine morphology and composition by size cut. Three ash modes were present: (1) A residual mode composed primarily of porous calcium structures with a scale length of 8 microns and larger. This mode was likely the result of direct oxide and carbonate formation. (2) A secondary residual mode near 2 microns composed of fluxed and fragmented calcium, but also containing significant amounts of Si, Fe, Mn and Al. This mode appeared to be composed of eutectic melts separated from the parent ash particle. (3) An aerosol mode composed of Na and K with Cl anion, or sulfate anion when Cl was not present. The aerosol mode diameter was found to be a function of initial nucleate number density and coagulation time. Long coagulation time or high initial number density resulted in an aerosol mode diameter near 0.1 micron. Modeling was composed of three elements: (1) Equilibrium modeling---These calculations validated experimental evidence for alkali vaporization and condensation, predicting all alkali to enter the vapor phase as NaCl or KCl when Cl is available, or NaOH and KOH otherwise. (2) Condensation modeling---This model was used to determine the partitioning of alkali metal between homogeneous particulate matter formation (self-nucleation) and deposition on existing residual particles. It was shown that vaporized alkali can be collected on the

  13. Element determination of fine particles in environmental aerosols using PIXE; Determinacion elemental de paticulas finas en aerosoles ambientales usando PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Garcia O, B. [ITT, 50000 Toluca (Mexico); Aldape U, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: gaolivab@gmail.com

    2007-07-01

    The Mexico city is classified as one of the more populated cities of the world which presents a decrease in the air quality and that gives place to a severe problematic in atmospheric pollution. To cooperate in the solution of this problem it is necessary to carry out studies that allow a better knowledge of the atmosphere of the city. This study presents the results of a monitoring campaign of fine particle carried out from September 21 to December 12, 2001 in three sites of the Mexico City center area. The samples were collected every third day with a collector type unit of heaped filters (Gent). The analysis of these samples was carried out in the 2 MV accelerator of the National Institute of Nuclear Research (ININ) applying the PIXE technique and with this analysis its were identified in the samples approximately 15 elements in each one of the 3 sites and was calculated the concentration in that its were present. With these results a database was created and by means of it mathematical treatment the Enrichment factor (FE), the time series of each element and the multiple correlation matrix were evaluated. The obtained results showed that the Civil Registration site (Salto del Agua) it was the more polluted coinciding that to a bigger concentration of activities a bigger increase in the pollution is generated. (Author)

  14. Experimental and Theoretical Characterization on the Sublimation (Evaporation) Kinetics of Fine Aerosol Particles (Droplets)

    OpenAIRE

    Ding, Haomin

    2008-01-01

    Sublimation (Evaporation) is widely used in different industrial applications. The important applications are the sublimation (evaporation) of small particles (solid and liquid), e.g., spray drying and fuel droplet evaporation. Since a few decades, sublimation technology has been used widely together with aerosol technology. This combination is aiming to get various products with desired compositions and morphologies. It can be used in the fields of nanoparticles generation, particle coating ...

  15. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol

    OpenAIRE

    Vaden, Timothy D.; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2011-01-01

    Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species du...

  16. Molecular markers in ambient aerosol in the Mahanadi Riverside Basin of eastern central India during winter.

    Science.gov (United States)

    Nirmalkar, Jayant; Deb, Manas K; Deshmukh, Dhananjay K; Tsai, Ying I; Verma, Santosh K

    2015-01-01

    Organic molecular markers are important atmospheric constituents. Their formation and sources are important aspects of the study of urban and rural air quality. We collected PM10 aerosol samples from the Mahanadi Riverside Basin (MRB), a rural part of eastern central India, during the winter of 2011. PM10 aerosols were characterized for molecular markers using ion chromatography. The concentration of PM10 ranged from 208.8 to 588.3 μg m(-3) with a mean concentration of 388.9 μg m(-3). Total concentration of anhydrosugars, sugar alcohols, primary sugars, and oxalate were found to be 3.25, 5.60, 10.52, and 0.37 μg m(-3), respectively, during the study period. Glucose was the most abundant species followed by levoglucosan and mannitol. Significant positive correlation between the molecular markers, anhydrosugars, sugar alcohols, primary sugars, and oxalic acid confirmed that biomass burning, biogenic activity, and re-suspension of soil particles were the main sources of aerosol in the eastern central India study area. PMID:25131681

  17. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    Science.gov (United States)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  18. Airborne observation of aerosol optical depth during ARCTAS: vertical profiles, inter-comparison and fine-mode fraction

    Directory of Open Access Journals (Sweden)

    Y. Shinozuka

    2011-04-01

    Full Text Available We describe aerosol optical depth (AOD measured during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS experiment, focusing on vertical profiles, inter-comparison with correlative observations and fine-mode fraction. Arctic haze observed in <2 km and 2–4 km over Alaska in April 2008 originated mainly from anthropogenic emission and biomass burning, respectively, according to aerosol mass spectrometry and black carbon incandescence measurements. The Ångström exponent for these air masses is 1.4 ± 0.3 and 1.7 ± 0.1, respectively, when derived at 499 nm from a second-order polynomial fit to the AOD spectra measured with the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14 over 354–2139 nm. We examine 55 vertical profiles selected from all phases of the experiment. For two thirds of them, the AOD spectra are within 3% + 0.02 of the vertical integral of local visible-light scattering and absorption. The horizontal structure of smoke plumes from local biomass burning observed in central Canada in June and July 2008 explains most outliers. The differences in mid-visible Ångström exponent are <0.10 for 63% of the profiles with 499-nm AOD > 0.1. The retrieved fine-mode fraction of AOD is mostly between 0.7 and 1.0, and its root mean square difference (in both directions from column-integral submicron fraction (measured with nephelometers, absorption photometers and an impactor is 0.12. These AOD measurements from the NASA P-3 aircraft, after compensation for below-aircraft light attenuation by vertical extrapolation, mostly fall within ±0.02 of AERONET ground-based measurements between 340–1640 nm for five overpass events.

  19. Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor.

    Science.gov (United States)

    Grover, Brett D; Kleinman, Michael; Eatough, Norman L; Eatough, Delbert J; Cary, Robert A; Hopke, Philip K; Wilson, William E

    2008-01-01

    Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).

  20. Quantifying short-term and long-term health benefits of attaining ambient fine particulate pollution standards in Guangzhou, China

    Science.gov (United States)

    Lin, Hualiang; Liu, Tao; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Guo, Lingchuan; Xu, Yanjun; Zhang, Yonghui; Vaughn, Michael G.; Nelson, Erik J.; Qian, Zhengmin (Min); Ma, Wenjun

    2016-07-01

    In 2012, Chinese Environmental Bureau modified its National Ambient Air Quality Standards to include fine particulate matter (PM2.5). Recent air pollution monitoring data shows that numerous locations have exceeded this standard, which may have resulted in avoidable adverse health effects. For example, among the 74 Chinese cities with PM2.5 monitoring data in 2013, only three cities attained the annual air quality standard (35 μg/m3). This study aimed to quantify the potential short- and long-term health benefits from achieving the Chinese ambient air quality standard and WHO's air quality objectives. A generalized additive model was used to estimate the short-term association of mortality with changes in daily PM2.5 concentrations, based on which we estimated the potential premature mortality reduction that would have been achieved during the period of 2012-2015 if the daily air quality standard had been met in Guangzhou, China; we also estimated the avoidable deaths if attaining the annual air quality standard using the relative risk obtained from a previous cohort study. During the study period, there were 160 days exceeding the national daily PM2.5 standard (75 μg/m3) in Guangzhou, and the annual average concentration (47.7 μg/m3) was higher than the air quality standard of 35 μg/m3. Significant associations between PM2.5 and mortality were observed. An increase of 10 μg/m3 in PM2.5 was associated with increases in daily death counts of 0.95% (95% CI: 0.56%, 1.34%) in natural mortality, 1.31% (95% CI: 0.75%, 1.87%) in cardiovascular mortality, and 1.06% (95% CI: 0.19%, 1.94%) in respiratory mortality. The health benefits of attaining the national daily air quality standard of PM2.5 (75 μg/m3) would have prevented 143 [95% confidence interval (CI): 84, 203] fewer natural deaths, including 84 (95% CI: 48, 121) fewer cardiovascular deaths and 27 (95% CI: 5, 49) fewer respiratory deaths. Had the annual PM2.5 levels been reduced to 35 μg/m3, an estimated 3875

  1. Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Richard E.; Laskina, Olga; Jayarathne, Thilina; Laskin, Alexander; Laskin, Julia; Lin, Peng; Sultana, Camile M.; Lee, Christopher; Moore, Kathryn A.; Cappa, Christopher; Bertram, Timothy; Prather, Kimberly; Grassian, Vicki H.; Stone, Elizabeth

    2016-02-01

    The inclusion of organic compounds in freshly emitted sea spray aerosol (SSA) has been shown to be size-dependent, with an increasing organic fraction in smaller particles. Defining the molecular composition of sea spray aerosol has proven challenging, due to the mix of continental and background particles even in remote marine environments. Here we have used electrospray ionization-high resolution mass spectrometry in negative ion mode to identify organic compounds in nascent sea spray collected throughout a 25-day mesocosm experiment. Over 280 organic compounds from ten major homologous series were identified. These compounds were operationally defined as molecules containing a hydrophobic alkyl chain with a hydrophilic head group making them surface active. The most abundant class of molecules detected were saturated (C8–C24) and unsaturated (C12–C22) fatty acids. Fatty acid derivatives (including saturated oxo-fatty acids (C5–C18) and saturated hydroxy-fatty acids (C5–C18) were also identified. Interestingly, anthropogenic influences on SSA from the seawater were observed in the form of sulfate (C2–C7, C12–C17) and sulfonate (C16–C22) species. During the mesocosm, the distributions of molecules within each homologous series were observed to respond to variations among the levels of phytoplankton and bacteria in the seawater, indicating an important role of biological processes in determining the composition of SSA.

  2. Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States – results from NEAQS

    Directory of Open Access Journals (Sweden)

    C. Warneke

    2007-02-01

    Full Text Available During the New England Air Quality Study (NEAQS in the summer of 2004, airborne measurements were made of the major inorganic ions and the water-soluble organic carbon (WSOC of the submicron (PM1.0 aerosol. These and ancillary data are used to describe the overall aerosol chemical characteristics encountered during the study. Fine particle mass was estimated from particle volume and a calculated density based on measured particle composition. Fine particle organic matter (OM was estimated from WSOC and a mass balance analysis. The aerosol over the northeastern United States (U.S. and Canada was predominately sulfate and associated ammonium, and organic components, although in unique plumes additional ionic components were also periodically above detection limits. In power generation regions, and especially in the Ohio River Valley region, the aerosol tended to be predominantly sulfate (~60% μg μg−1 and apparently acidic, based on an excess of measured anions compared to cations. In all other regions where sulfate concentrations were lower and a smaller fraction of overall mass, the cations and anions were balanced suggesting a more neutral aerosol. In contrast, the WSOC and estimated OM were more spatially uniform and the fraction of OM relative to PM mass largely influenced by sources of sulfate. The study median OM mass fraction was 40%. Throughout the study region, sulfate and organic aerosol mass were highest near the surface and decreased rapidly with increasing altitude. The relative fraction of organic mass to sulfate was similar within the boundary layer (altitude less than ~2.5 km, but was significantly higher in the free troposphere (above ~2.5 km. A number of distinct biomass burning plumes from fires in Alaska and the Yukon were periodically intercepted, mostly at altitudes between 3 and 4 km. These plumes were associated with highest aerosol concentrations of the study and were largely comprised of organic aerosol components

  3. Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC over the Southeastern United States: implications for secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    X. Zhang

    2012-04-01

    Full Text Available Secondary organic aerosol (SOA in the Southeastern US is investigated by analyzing the spatial-temporal distribution of water-soluble organic carbon (WSOC and other PM2.5 components from 900 archived 24 h Teflon filters collected at 15 urban or rural EPA Federal Reference Method (FRM network sites throughout 2007. Online measurements of WSOC at an urban/rural-paired site in Georgia in the summer of 2008 are contrasted to the filter data. Based on FRM filters, excluding biomass-burning events (levoglucosan < 50 ng m−3, WSOC and sulfate were highly correlated with PM2.5 mass and both comprised a large mass fraction of PM2.5 (13% and 35%, respectively. Sulfate and WSOC both tracked ambient temperature throughout the year, suggesting the temperature effects were mainly on the photochemical processes that lead to secondary formation. FRM WSOC, and to a lesser extent sulfate, were spatially homogeneous throughout the region, yet WSOC was moderately enhanced (27% in locations of greater predicted isoprene emissions in summer. A Positive Matrix Factorization (PMF analysis identified two major source types for the summer WSOC; 22% of the WSOC were associated with ammonium sulfate, and 56% of the WSOC was associated with brown carbon and oxalate. A small urban excess of FRM WSOC (10% was observed in the summer of 2007, however, comparisons of online WSOC measurements at one urban/rural pair (Atlanta/Yorkville in August 2008 showed substantially greater difference in WSOC (31% relative to the FRM data, suggesting a low bias for urban filters. The measured Atlanta urban excess, combined with the estimated boundary layer heights, gave an estimated Atlanta daily WSOC production rate in August of 0.55 mg C m−2 h−1 between mid-morning and mid-afternoon. This study characterizes the regional nature of fine particles in the Southeastern US, confirming the importance of secondary organic

  4. Behaviour of various industrial aerosols on separation with fine atomising nozzles; Verhalten von verschiedenen technischen Aerosolen bei der Abscheidung mit fein zerstaeubenden Duesen

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, A. [Inst. fuer Technische Thermodynamik und Kaeltetechnik, Karlsruhe (Germany); Koch, A. [GEA Wiegand GmbH, Karlsruhe (Germany)

    1995-08-01

    This article is intended to show how aerosols of different compositions behave when passing through wet separators, with fine atomising nozzles and a saturation stage before them. Salt and acid aerosols can occur due to steam condensation in wet separation, in contrast to non-hygroscopic dust particles. The collection of particles can therefore be greater when leaving the separator than when entering it. After the description of the build-up of the experiment and the measurement technique, the generation of various industrial aerosols is to be explained here. Then there is a section with theoretical and experimental investigations of the growth of hygroscopic aerosol particles in damp air. The last part is intended to show how such growth has a favourable effect on aerosol separation. (orig./SR) [Deutsch] In diesem Beitrag soll gezeigt werden, wie sich Aerosole unterschiedlicher Zusammensetzung beim Durchgang durch Nassabscheider mit feinzerstaeubenden Duesen und vorgeschalteter Saettigungsstufe verhalten. Salz- und Saeureaerosole koennen bei der Nassabscheidung durch Wasserdampfkondensation anwachsen - im Gegensatz zu nicht hygroskopischen Staubpartikeln. Das Teilchenkollektiv kann also u.U. beim Verlassen des Abscheiders groesser sein als im Eintritt. Im folgenden soll nach der Beschreibung des Versuchsaufbaus und der Messtechnik zuerst die Generierung verschiedener technischer Aerosole erlaeutert werden. Danach folgt ein Abschnitt mit theoretischen und experimentellen Untersuchungen des Wachstums von hygroskopischen Aerosolpartikeln in feuchter Luft. Im letzten Teil soll gezeigt werden, wie sich ein derartiges Wachstum guenstig auf die Aerosolabscheidung auswirkt. (orig./SR)

  5. Measurement of overall uptake coefficients for HO2 radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang, China

    Directory of Open Access Journals (Sweden)

    H. Akimoto

    2012-06-01

    Full Text Available HO2 uptake coefficients for ambient aerosol particles, collected on quartz filter using a high-volume air sampler in China, were measured using an aerosol flow tube coupled with a chemical conversion/laser-induced fluorescence technique at 760 Torr and 298 K, with a relative humidity of 75%. Aerosol particles were regenerated with an atomizer using the water extracts from the aerosol particles. Over 10 samples, the measured HO2 uptake coefficients for the aerosol particles at the Mt. Tai site were ranged from 0.13 to 0.34, while those at the Mt. Mang site were in the range of 0.09–0.40. These values are generally larger than those previously reported for single-component particles, suggesting that the minor components such as metal ions and organics in the particle could contribute to the HO2 uptake. A box model calculation suggested that the heterogeneous loss of HO2 by ambient particles could significantly affect the HOx concentrations and chemistry.

  6. Measurement of overall uptake coefficients for HO2 radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang (China

    Directory of Open Access Journals (Sweden)

    H. Akimoto

    2012-12-01

    Full Text Available HO2 uptake coefficients for ambient aerosol particles, collected on quartz fiber filter using a high-volume air sampler in China, were measured using an aerosol flow tube coupled with a chemical conversion/laser-induced fluorescence technique at 760 Torr and 298 K, with a relative humidity of 75%. Aerosol particles were regenerated with an atomizer using the water extracts from the aerosol particles. Over 10 samples, the measured HO2 uptake coefficients for the aerosol particles at the Mt. Tai site were ranged from 0.13 to 0.34, while those at the Mt. Mang site were in the range of 0.09–0.40. These values are generally larger than those previously reported for single-component particles, suggesting that reactions with the minor components such as metal ions and organics in the particle could contribute to the HO2 uptake. A box model calculation suggested that the heterogeneous loss of HO2 by ambient particles could significantly affect atmospheric HOx concentrations and chemistry.

  7. X-Ray Fluorescence Analysis of Fine Atmospheric Aerosols from a Site in Mexico City

    Directory of Open Access Journals (Sweden)

    A. E. Hernández-López

    2016-08-01

    Full Text Available A study was performed in the Winter of the year 2015 in a Southwestern site in the MAMC (Ciudad Universitaria, collecting PM2.5 samples with a MiniVol. As a part of wider study focused to fully characterize aerosols at this site, an X-ray Fluorescence (XRF spectrometer (based on an Rh X-ray tube built to analyze environmental samples, was used to characterize the sample set. A total of 16 elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb were detected in most samples and mean concentrations were calculated. Cluster analysis was also applied to the elemental concentrations to find possible correlations among the elements.

  8. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, W.A.; Mroz, E.J.; Heiken, G.

    1981-07-01

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background.

  9. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    Directory of Open Access Journals (Sweden)

    A. Polidori

    2007-12-01

    Full Text Available A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH content, and the physical/chemical characteristics of aerosols collected a in Wilmington (CA near the Los Angeles port and close to 2 major freeways, and b at a dynamometer testing facility in downtown Los Angeles (CA, where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4–8 times higher at 09:00–11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converted were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (μg/m3 and the measured photo-electric aerosol sensor signal (fA was also established. Estimated ambient p-PAH concentrations (Average = 0.64 ng/m3; Standard deviation = 0.46 ng/m3 were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a

  10. Airborne observation of aerosol optical depth during ARCTAS: vertical profiles, inter-comparison, fine-mode fraction and horizontal variability

    Directory of Open Access Journals (Sweden)

    Y. Shinozuka

    2010-08-01

    Full Text Available We describe aerosol optical depth (AOD measured during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS experiment, conducted in North America in April and June–July 2008, focusing on vertical profiles, inter-comparison with correlative observations, fine-mode fraction and horizontal variability. The AOD spectra spanning 354–2139 nm measured with the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14 are generally less wavelength-dependent below 2 km (499-nm Angstrom exponent 1.4 ± 0.3 than in 2–4 km (1.6–1.8 for Alaska in April 2008. Together with concurrent aerosol mass spectrometry and black carbon incandescence measurements, this corroborates the hypothesis that Arctic haze in these layers originates mainly from anthropogenic emission and biomass burning, respectively. The spectra are within 3%+0.02 of the vertical integral of local visible-light scattering and absorption for two thirds of the 55 vertical profiles examined. The horizontal structure of smoke plumes in central Canada in June and July 2008 explains most outliers. The differences in mid-visible Angstrom exponent are <0.10 for 63% of the profiles with 499-nm AOD>0.1. The retrieved fine-mode fraction of AOD is mostly between 0.7 and 1.0, and its root mean square difference from column-integral submicron fraction (measured with nephelometers, absorption photometers and an impactor is 0.12. These AOD measurements from the NASA P-3 aircraft, after compensation for below-aircraft light attenuation by vertical extrapolation, mostly fall within 0.02 of AERONET ground-based measurements for five overpass events. Evidently, the fresh local emission in Canada in June and July makes the horizontal distribution of AOD highly heterogeneous (standard deviation ~19% of the mean over 20 km and random (autocorrelation r=0.37 across 20 km, in contrast to long-range transport to Alaska in April (std~2%, r=0.95. The

  11. A molecular-level approach for characterizing water-insoluble components of ambient organic aerosol particulates using ultra-high resolution mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. S. Willoughby

    2014-04-01

    Full Text Available The chemical composition of organic aerosols in the atmosphere is strongly influenced by human emissions, and the effect these have on the environment, human health, and climate change is determined by the molecular nature of these chemical species. The complexity of organic aerosol samples limits the ability to study the chemical composition, and, therefore, the associated properties and the impacts they have. Many studies address the water-soluble fraction of organic aerosols, and have had much success in identifying specific molecular formulas for thousands of compounds present. However, little attention is given to the water-insoluble portion, which can contain most of the fossil material that is emitted through human activity. Here we compare the organic aerosols present in water extracts and organic solvent extracts (pyridine and acetonitrile of an ambient aerosol sample collected in a rural location that is impacted by natural and anthropogenic emission sources. A semi-quantitative method was developed using proton nuclear magnetic resonance spectroscopy to determine that the amount of organic matter extracted by pyridine is comparable to that of water. Electrospray ionization Fourier transform ion cyclotron resonance mass spectra show that pyridine extracts a molecularly unique fraction of organic matter compared to water or acetonitrile, which extract chemically similar organic matter components. The molecular formulas unique to pyridine were less polar, more aliphatic, and reveal formulas containing sulfur to be an important component of insoluble aerosol organic matter.

  12. Combining AOT, Angstrom Exponent and PM concentration data, with PSCF model, to distinguish fine and coarse aerosol intrusions in Southern France

    Science.gov (United States)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2016-05-01

    In this paper, a cluster analysis of backward air mass trajectories, arriving in Avignon (Southern France), was combined with a Potential Source Contribution Function (PSCF) model on a 0.5° × 0.5° resolution grid, in order to indicate possible aerosol intrusions. A strict triple criterion was constructed from Aerosol Optical Thickness (AOT), Angstrom Exponent (AE), and PM (PM10 and PM2.5) concentration measurements, aiming to distinguish more effectively Episodes of Fine, Coarse and Overall Aerosols (FAE, CAE and OAE respectively). Large fractions of FAE (60.0%) and CAE (40.6%) were strongly attributed to the prevalence of Eastern and South-Southwest (S-SW) airflows respectively, whereas these distinct trajectory clusters also gathered large fractions of OAE (90.2% cumulatively). According to PSCF results, FAE events were strongly associated with the influence of air masses traveling over North Italy and Southern Germany, hence the impact of urban and industrial combustion was emerged. Main sources of coarse aerosols were principally isolated over the Mediterranean, thus the import of sea spray and dust from the Sahara desert is presumed. Satellite AOT observations were used for a more detailed identification of an intense 5-day intrusion of coarse aerosols. Short range slow moving air mass trajectories, were proven to be a clear marker of atmospheric stagnation, based on a wind speed analysis, triggering the accumulation of locally emitted anthropogenic aerosols (mainly PM2.5) and lack of city ventilation.

  13. Atmospheric fine and coarse mode aerosols at different environments of India and the Bay of Bengal during winter-2014: Implications of a coordinated campaign

    Digital Repository Service at National Institute of Oceanography (India)

    Sen, A.; Ahammed, Y.N.; Arya, B.C.; Banerjee, T.; Begam, R.G.; Baruah, B.P.; Chatterjee, A.; Choudhuri, A.K.; Dhir, A.; Das, T.; Dhyani, P.P.; Deb, N.C.; Gadi, R.; Gauns, M.; Ghosh, S.K.; Gupta, A.; Sharma, K.C.; Khan, A.H.; Kumari, K.M.; Kumar, M.; Kumar, A.; Kuniyal, J.C.; Lakhani, A.; Meena, R.K.; Mahapatra, P.S.; Naqvi, S.W.A.; Singh, D.P.; Pal, S.; Panda, S.; Rohtash; Saikia, J.; Saikia, P.; Sharma, A.; Sharma, P.; Saxena, M.; Shenoy, D.M.; Vachaspati, C.V.; Sharma, S.K.; Mandal, T.K.

    Division, CSIR-National Physical Laboratory, Dr. K S Krishnan Road, New Delhi 110012, India 2Department of Physics, Yogi Vemana University, Kadapa 516003, India 3Institute of Environment and Sustainable Development, Banaras Hindu University, Banaras, UP... in the PM2.5 and PM10 size fractions (http://www.envirotechindia.com). The impactors are designed as per United States Environmental Protection Agency (USEPA) standards. Ambient air enters the sampler through an omni-directional air inlet. PM10 aerosols...

  14. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    OpenAIRE

    I. C. Rumsey; K. A. Cowen; Walker, J. T.; Kelly, T J; E. A. Hanft; K. Mishoe; Rogers, C.; R. Proost; G. M. Beachley; Lear, G.; T. Frelink; R. P. Otjes

    2014-01-01

    Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses...

  15. Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2009-03-01

    Full Text Available Submicron atmospheric aerosol particles were collected during the Megacity Initiative: Local and Global Research Observation (MILAGRO in March 2006 at three platforms located in the Mexico City urban area (at the Mexico City Atmospheric Monitoring System building – SIMAT, at about 60 km south-west of the metropolitan area (Altzomoni in the Cortes Pass, and on board the NSF/NCAR aircraft C130. Organic functional group and elemental composition were measured by FTIR and XRF. The average organic mass (OM concentration, calculated as the sum of organic functional group concentrations, was 9.9 μg m−3 at SIMAT, 6.6 μg m−3 at Altzomoni, and 5.7 μg m−3 on the C130. Aliphatic saturated C-C-H and carboxylic acid COOH groups dominated OM (more than 60% at the ground sites. On the C130, a non-acid carbonyl C=O, and amine NH2 groups were observed in concentrations above detection limit only outside the Mexico City basin. From the elemental composition of SIMAT samples, we estimated the upper bound of average contribution of biomass burning to the organic carbon (OC as 33–39%. The average OM/OC ratio was 1.8 at SIMAT, 2.0 at Altzomoni, and 1.6–1.8 on the C130. On the aircraft, higher OM/OC ratios were measured outside of the Mexico City basin, north of the urban area, along the city outflow direction. The average carboxylic acid plus non-acid carbonyl to aliphatic saturated ratio was higher at Altzomoni relative to SIMAT, reflecting a larger average contribution of carbonyl functional groups (largely in carboxylic acids at the mountain site.

  16. Comparison between XRF and IBA techniques in analysis of fine aerosols collected in Rijeka, Croatia

    Science.gov (United States)

    Ivošević, Tatjana; Mandić, Luka; Orlić, Ivica; Stelcer, Eduard; Cohen, David D.

    2014-10-01

    The new system for energy dispersive X-ray fluorescence (EDXRF) analysis has been installed at the Laboratory for Elemental Micro-Analysis (LEMA) at the University of Rijeka. Currently the key application of this new XRF system is in the field of environmental science, i.e. in the analysis of fine airborne particles. In this work, results of initial multi-elemental analysis of PM2.5 fraction is reported for the first time in the region of Rijeka, Croatia. Sampling was performed at the Rijeka City center, during a continuous 9-day period in February/March 2012. All samples were collected on stretched Teflon filters in 12 h periods. To check the reliability of the new XRF system, results of XRF analysis are compared with the results obtained by the well-established Ion Beam Analysis (IBA) laboratory at Australian Nuclear Science and Technology Organisation (ANSTO). The concentrations of H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb were determined. In addition, black carbon was determined by Laser Integrating Plate Method (LIPM). Very good agreement between XRF and IBA techniques is obtained for all elements detected by both techniques. Elemental concentrations were correlated with the traffic volume and wind speed and direction. The summary of our findings is presented and discussed in this paper.

  17. Comparison between XRF and IBA techniques in analysis of fine aerosols collected in Rijeka, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Ivošević, Tatjana [Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia); Mandić, Luka, E-mail: lukam@phy.uniri.hr [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Orlić, Ivica [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Stelcer, Eduard; Cohen, David D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232 (Australia)

    2014-10-15

    The new system for energy dispersive X-ray fluorescence (EDXRF) analysis has been installed at the Laboratory for Elemental Micro-Analysis (LEMA) at the University of Rijeka. Currently the key application of this new XRF system is in the field of environmental science, i.e. in the analysis of fine airborne particles. In this work, results of initial multi-elemental analysis of PM{sub 2.5} fraction is reported for the first time in the region of Rijeka, Croatia. Sampling was performed at the Rijeka City center, during a continuous 9-day period in February/March 2012. All samples were collected on stretched Teflon filters in 12 h periods. To check the reliability of the new XRF system, results of XRF analysis are compared with the results obtained by the well-established Ion Beam Analysis (IBA) laboratory at Australian Nuclear Science and Technology Organisation (ANSTO). The concentrations of H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb were determined. In addition, black carbon was determined by Laser Integrating Plate Method (LIPM). Very good agreement between XRF and IBA techniques is obtained for all elements detected by both techniques. Elemental concentrations were correlated with the traffic volume and wind speed and direction. The summary of our findings is presented and discussed in this paper.

  18. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    calibration is linear. Using samples in the calibration set that have a different OM / OC or ammonium / OC distributions than the test set leads to only a modest increase in bias and normalized error in the predicted samples. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR OC in IMPROVE network samples; providing complementary information to the organic functional group composition and organic aerosol mass estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  19. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    Science.gov (United States)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-09-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all with substantial secondary formation from the photooxidation of aromatic volatile organic compounds (VOCs), was conducted in the gas phase and particulate matter (PM) together and in PM alone. Their concentrations in the atmosphere are in the low ng m-3 range and, consequently, a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33 ‰, which is well within the range predicted by mass balance. However, the observed carbon isotope ratios cover a range of nearly 9 ‰ and approximately 20 % of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban center with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in summer, a substantial difference is observed. This

  20. Aerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts

    Science.gov (United States)

    Saide, P. E.; Carmichael, G. R.; Liu, Z.; Schwartz, C. S.; Lin, H. C.; da Silva, A. M.; Hyer, E.

    2013-10-01

    An aerosol optical depth (AOD) three-dimensional variational data assimilation technique is developed for the Gridpoint Statistical Interpolation (GSI) system for which WRF-Chem forecasts are performed with a detailed sectional model, the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). Within GSI, forward AOD and adjoint sensitivities are performed using Mie computations from the WRF-Chem optical properties module, providing consistency with the forecast. GSI tools such as recursive filters and weak constraints are used to provide correlation within aerosol size bins and upper and lower bounds for the optimization. The system is used to perform assimilation experiments with fine vertical structure and no data thinning or re-gridding on a 12 km horizontal grid over the region of California, USA, where improvements on analyses and forecasts is demonstrated. A first set of simulations was performed, comparing the assimilation impacts of using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) dark target retrievals to those using observationally constrained ones, i.e., calibrated with AERONET (Aerosol RObotic NETwork) data. It was found that using the observationally constrained retrievals produced the best results when evaluated against ground based monitors, with the error in PM2.5 predictions reduced at over 90% of the stations and AOD errors reduced at 100% of the monitors, along with larger overall error reductions when grouping all sites. A second set of experiments reveals that the use of fine mode fraction AOD and ocean multi-wavelength retrievals can improve the representation of the aerosol size distribution, while assimilating only 550 nm AOD retrievals produces no or at times degraded impact. While assimilation of multi-wavelength AOD shows positive impacts on all analyses performed, future work is needed to generate observationally constrained multi-wavelength retrievals, which when assimilated will generate size

  1. Investigation of the relative fine and coarse mode aerosol loadings and properties in the Southern Arabian Gulf region

    Science.gov (United States)

    Kaku, Kathleen C.; Reid, Jeffrey S.; Reid, Elizabeth A.; Ross-Langerman, Kristy; Piketh, Stuart; Cliff, Steven; Al Mandoos, Abdulla; Broccardo, Stephen; Zhao, Yongjing; Zhang, Jianglong; Perry, Kevin D.

    2016-03-01

    The aerosol chemistry environment of the Arabian Gulf region is extraordinarily complex, with high concentrations of dust aerosols from surrounding deserts mixed with anthropogenic aerosols originating from a large petrochemical industry and pockets of highly urbanized areas. Despite the high levels of aerosols experienced by this region, little research has been done to explore the chemical composition of both the anthropogenic and mineral dust portion of the aerosol burden. The intensive portion of the United Arab Emirates Unified Aerosol Experiment (UAE2), conducted during August and September 2004 was designed in part to resolve the aerosol chemistry through the use of multiple size-segregated aerosol samplers. The coarse mode mass (derived by subtracting the PM2.5 aerosol mass from the PM10 mass) is largely dust at 76% ± 7% of the total coarse mode mass, but is significantly impacted by anthropogenic pollution, primarily sulfate and nitrate. The PM2.5 aerosol mass also contains a large dust burden, at 38% ± 26%, but the anthropogenic component dominates. The total aerosol burden has significant impact not only on the atmosphere, but also the local population, as the air quality levels for both the PM10 and PM2.5 aerosol masses reached unhealthy levels for 24% of the days sampled.

  2. Changes in the Community of Ectomycorrhizal Fungi and Increased Fine Root Number Under Adult Beech Trees Chronically Fumigated with Double Ambient Ozone Concentration

    OpenAIRE

    Grebenc, Tine; Kraigher, Hojka

    2007-01-01

    Forest soils are an important but under-studied part of forest ecosystems. The effects of O3 on below-ground processes in a mature forest have only received limited attention so far. In our study, we have analysed the community of ectomycorrhizal fungi and beech fine root dynamics over two growing seasons (2003–2004) in a 70-year old mixed spruce-beech forest stand, in which two groups of five adult beech trees were either fumigated by 2 × ambient ozone concentration or used as control. The m...

  3. Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010

    Science.gov (United States)

    Itahashi, S.; Uno, I.; Yumimoto, K.; Irie, H.; Osada, K.; Ogata, K.; Fukushima, H.; Wang, Z.; Ohara, T.

    2012-03-01

    Anthropogenic SO2 emissions increased alongside economic development in China at a rate of 12.7% yr-1 from 2000 to 2005. However, under new Chinese government policy, SO2 emissions declined by 3.9% yr-1 between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron) aerosol optical depth (AOD) over the oceans adjacent to East Asia increased by 3-8% yr-1 to a peak around 2005-2006 and subsequently decreased by 2-7% yr-1, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO2 emission intensity and fine-mode AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD) devices in power plants in China, because aerosol sulfate is a major determinant of the fine-mode AOD in East Asia. Using a chemical transport model, we confirmed that the contribution of particulate sulfate to the fine-mode AOD is more than 70% of the annual mean and that the abovementioned fluctuation in fine-mode AOD is caused mainly by changes in SO2 emission rather than by other factors such as varying meteorological conditions in East Asia. A strong correlation was also found between satellite-retrieved SO2 vertical column density and bottom-up SO2 emissions, both of which were also consistent with observed fine-mode AOD trends. We propose a simplified approach for evaluating changes in SO2 emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of fine-mode AOD with changes in SO2 emissions and satellite retrieval. Satellite measurements of fine-mode AOD above the Sea of Japan marked a 4.1% yr-1 decline between 2007 and 2010, which corresponded to the 9% yr-1 decline in SO2 emissions from China during the same

  4. Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010

    Directory of Open Access Journals (Sweden)

    S. Itahashi

    2012-03-01

    Full Text Available Anthropogenic SO2 emissions increased alongside economic development in China at a rate of 12.7% yr−1 from 2000 to 2005. However, under new Chinese government policy, SO2 emissions declined by 3.9% yr−1 between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron aerosol optical depth (AOD over the oceans adjacent to East Asia increased by 3–8% yr−1 to a peak around 2005–2006 and subsequently decreased by 2–7% yr−1, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO2 emission intensity and fine-mode AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD devices in power plants in China, because aerosol sulfate is a major determinant of the fine-mode AOD in East Asia. Using a chemical transport model, we confirmed that the contribution of particulate sulfate to the fine-mode AOD is more than 70% of the annual mean and that the abovementioned fluctuation in fine-mode AOD is caused mainly by changes in SO2 emission rather than by other factors such as varying meteorological conditions in East Asia. A strong correlation was also found between satellite-retrieved SO2 vertical column density and bottom-up SO2 emissions, both of which were also consistent with observed fine-mode AOD trends. We propose a simplified approach for evaluating changes in SO2 emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of fine-mode AOD with changes in SO2 emissions and satellite retrieval. Satellite measurements of fine-mode AOD

  5. Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties

    OpenAIRE

    D. B. Atkinson; P. Massoli; N. T. O'Neill; P. K. Quinn; S. D. Brooks; Lefer, B.

    2009-01-01

    During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006), the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σep) were performed by two multi-wavelength cavity ring-down (CRD) instruments, one located on board the NO...

  6. a Study of the Origin of Atmospheric Organic Aerosols

    Science.gov (United States)

    Hildemann, Lynn Mary

    1990-01-01

    The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds. The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other. A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites studied. Emissions from vehicles and fireplaces are identified as significant sources of solvent-extractable organic aerosol. Differences between the model

  7. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    Directory of Open Access Journals (Sweden)

    D. A. Healy

    2014-02-01

    Full Text Available Primary biological aerosol particles (PBAP can contribute significantly to the coarse particle burden in many environments, may thus influence climate and precipitation systems as cloud nuclei, and can spread disease to humans, animals, and plants. Measurements of PBAP in natural environments taken at high time- and size- resolution are, however, sparse and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in south western Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of the waveband integrated bioaerosol sensor (WIBS-4 with the ultraviolet aerodynamic particle sizer (UV-APS and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behaviour, with increased fluorescent bioparticle concentrations at night when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each were correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.. The WIBS FL1 channel exhibited variable multi-modal distributions turning into a broad featureless single mode after averaging and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent

  8. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    Science.gov (United States)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-08-01

    Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent

  9. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Directory of Open Access Journals (Sweden)

    A. M. Ortega

    2015-08-01

    Full Text Available Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An Oxidation Flow Reactor (OFR was deployed to study SOA formation in real-time during the CalNex campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent atmospheric aging from hours up to several weeks in 3 min of processing. OH radical concentration was continuously stepped, obtaining measurements of real-time SOA formation and oxidation at multiple equivalent ages from 0.8 days–6.4 weeks. Enhancement of OA from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry, and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived VOC correlation, indicates the importance of relatively reactive (τOH ∼ 0.3 day SOA precursors in the LA-Basin. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ∼ -0.65. Oxidation state of carbon (OSC in reactor SOA increased steeply with age and remained elevated (OSC ∼ 2 at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background vs. photochemical age is similar to previous studies at low to moderate ages and also extends to higher ages where OA loss dominates. The mass added at low

  10. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Exposure to ambient fine particular matter (PM2.5) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m−3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  11. Biological aerosol background characterization

    Science.gov (United States)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  12. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption

    Science.gov (United States)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-12-01

    Light absorbing organic carbon, often called brown carbon, has the potential to significantly contribute to the visible light-absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon, are poorly understood. With this in mind size-resolved direct measurements of brown carbon were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a representative urban site and a road-side site adjacent to a main highway. Fine particle absorption was measured with a multi-angle absorption photometer (MAAP) and seven-wavelength Aethalometer, and brown carbon absorption was estimated based on Mie calculations using direct size-resolved measurements of chromophores in solvents. Size-resolved samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light-absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Mie-predicted brown carbon absorption at 350 nm contributed a significant fraction (20 to 40%) relative to total light absorption, with the highest contributions at the rural site where organic to elemental carbon ratios were

  13. A new algorithm for brown and black carbon identification and organic carbon detection in fine atmospheric aerosols by a multi-wavelength Aethalometer

    Directory of Open Access Journals (Sweden)

    F. Esposito

    2012-02-01

    Full Text Available A novel approach for the analysis of aerosol absorption coefficient measurements is presented. A 7-wavelenghts aethalometer has been employed to identify brown carbon (BrC and black carbon (BC and to detect organic carbon (OC in fine atmospheric aerosols (PM2.5. The Magee Aethalometer estimates the BC content in atmospheric particulate by measuring the light attenuation in the aerosols accumulated on a quartz filter, at the standard wavelength λ = 0.88 μm. The known Magee algorithm is based on the hypothesis of a mass absorption coefficient inversely proportional to the wavelength. The new algorithm has been developed and applied to the whole spectral range; it verifies the spectral absorption behavior and, thus, it distinguishes between black and brown carbon. Moreover, it allows also to correct the absorption estimation at the UV wavelength commonly used to qualitatively detect the presence of mixed hydrocarbons. The algorithm has been applied to data collected in Agri Valley, located in Southern Italy, where torched crude oil undergoes a pre-treatment process.

    The Magee Aethalometer has been set to measure Aerosol absorption coefficients τaer (λ, t every 5 min. Wavelength dependence of τaer (λ, t has been analyzed by a best-fit technique and, excluding UV-wavelengths, both the absorption Angstrom coefficient α and the BC (or BrC concentration have been determined. Finally, daily histograms of α provide information on optical properties of carbonaceous aerosol, while the extrapolation at UV-wavelengths gives information on the presence of semivolatile organic carbon (OC particles.

  14. A brief overview of the first twenty years (1970-1989) of aerosol analysis by PIXE and ten-year study (1995-2004) of fine aerosol at Sde Boker, Israel, using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Maenhaut, W. [Ghent University, Dept. Analytical Chemistry, Gent (Belgium); Dept. Pharm. Sci., University of Antwerp, Antwerp (Belgium); Karnieli, A. [Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev (Israel); Andreae, M.O. [Biogeochemistry Dept., Max Planck Institute for Chemistry, Mainz (Germany)

    2013-07-01

    Full text: First, a brief overview is provided of the first twenty years (1970-1989) of aerosol analysis by PIXE. PIXE and also its application to aerosol samples started with the seminal paper of Johansson et aI. [1]. The potential of PIXE for aerosol analysis was soon recognized by Tom Cahill from UC Davis and Jack Winchester from Florida State University (FSU) and accelerators that were previously dedicated to nuclear physics research were from the early 1970s on also used for this new type of application. The enthusiasm of Tom and Jack stimulated many others and researchers from several other countries, including Denmark, Sweden, Finland, Belgium, Italy, Brazil, and South Africa, started with applying PIXE to aerosol analysis. Spectrum acquisition was done with energy-dispersive Si(Li) detectors, which were introduced in the second half of the 1960s, and the spectrum analysis profited from the increasing use of minicomputers and the publication of the very timely book by Bevington [2] with ready-to-use Fortran routines. Aerosol samplers with high time and/or size resolution, such as the Nelson streaker, the PIXE Int. cascade impactor, and the Davis DRUM impactor, were developed and intensively employed. The number of papers on aerosol analysis by PIXE increased steadily over the 1970-1989 period. Moreover, PIXE became the preferred aerosol analysis technique. Over the above 20-year period, its share in the total number of publications on the elemental analysis of aerosols grew from 9% in the first 5 years to as large as 65% in the last 5 years. Secondly, results are presented from a 1 O-year study of fine aerosol at Sde Boker, Israel. From January 1995 through December 2004 aerosol samples were collected at this site with a Gent stacked filter unit sampler. The collections were done according to a 2-2-3 day schedule, which resulted in about 150 samples per year. The samples were analyzed for the particulate mass (PM) by weighing, for black carbon (BC) by a

  15. A brief overview of the first twenty years (1970-1989) of aerosol analysis by PIXE and ten-year study (1995-2004) of fine aerosol at Sde Boker, Israel, using PIXE

    International Nuclear Information System (INIS)

    Full text: First, a brief overview is provided of the first twenty years (1970-1989) of aerosol analysis by PIXE. PIXE and also its application to aerosol samples started with the seminal paper of Johansson et aI. [1]. The potential of PIXE for aerosol analysis was soon recognized by Tom Cahill from UC Davis and Jack Winchester from Florida State University (FSU) and accelerators that were previously dedicated to nuclear physics research were from the early 1970s on also used for this new type of application. The enthusiasm of Tom and Jack stimulated many others and researchers from several other countries, including Denmark, Sweden, Finland, Belgium, Italy, Brazil, and South Africa, started with applying PIXE to aerosol analysis. Spectrum acquisition was done with energy-dispersive Si(Li) detectors, which were introduced in the second half of the 1960s, and the spectrum analysis profited from the increasing use of minicomputers and the publication of the very timely book by Bevington [2] with ready-to-use Fortran routines. Aerosol samplers with high time and/or size resolution, such as the Nelson streaker, the PIXE Int. cascade impactor, and the Davis DRUM impactor, were developed and intensively employed. The number of papers on aerosol analysis by PIXE increased steadily over the 1970-1989 period. Moreover, PIXE became the preferred aerosol analysis technique. Over the above 20-year period, its share in the total number of publications on the elemental analysis of aerosols grew from 9% in the first 5 years to as large as 65% in the last 5 years. Secondly, results are presented from a 1 O-year study of fine aerosol at Sde Boker, Israel. From January 1995 through December 2004 aerosol samples were collected at this site with a Gent stacked filter unit sampler. The collections were done according to a 2-2-3 day schedule, which resulted in about 150 samples per year. The samples were analyzed for the particulate mass (PM) by weighing, for black carbon (BC) by a

  16. Size-resolved measurements of brown carbon and estimates of their contribution to ambient fine particle light absorption based on water and methanol extracts

    Science.gov (United States)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-07-01

    Light absorbing organic carbon, often termed brown carbon, has the potential to significantly contribute to the visible light absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon are poorly understood. With this in mind field measurements were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a central site and a road side site adjacent to a main highway near the city center. Fine particle brown carbon optical absorption is estimated based on Mie calculations using direct size resolved measurements of chromophores in filter extracts. Size-resolved atmospheric aerosol samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Fine particle absorption was also measured with a Multi-Angle Absorption Photometer (MAAP) and seven-wavelength Aethalometer. Scattering-corrected aethalometer and MAAP absorption were in good agreement at 670 nm and Mie-estimated absorption based on size-resolved EC data were within 30% of these optical instruments. When applied

  17. Size-resolved measurements of brown carbon and estimates of their contribution to ambient fine particle light absorption based on water and methanol extracts

    Directory of Open Access Journals (Sweden)

    J. Liu

    2013-07-01

    Full Text Available Light absorbing organic carbon, often termed brown carbon, has the potential to significantly contribute to the visible light absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon are poorly understood. With this in mind field measurements were made at both urban (Atlanta, and rural (Yorkville sites in Georgia. Measurements in Atlanta were made at both a central site and a road side site adjacent to a main highway near the city center. Fine particle brown carbon optical absorption is estimated based on Mie calculations using direct size resolved measurements of chromophores in filter extracts. Size-resolved atmospheric aerosol samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC, organic and elemental carbon (OC and EC, and solution light absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Fine particle absorption was also measured with a Multi-Angle Absorption Photometer (MAAP and seven-wavelength Aethalometer. Scattering-corrected aethalometer and MAAP absorption were in good agreement at 670 nm and Mie-estimated absorption based on size-resolved EC data were within 30% of these optical instruments

  18. Particle deposition in a child respiratory tract model: in vivo regional deposition of fine and ultrafine aerosols in baboons.

    Directory of Open Access Journals (Sweden)

    Iolanda Albuquerque-Silva

    Full Text Available To relate exposure to adverse health effects, it is necessary to know where particles in the submicron range deposit in the respiratory tract. The possibly higher vulnerability of children requires specific inhalation studies. However, radio-aerosol deposition experiments involving children are rare because of ethical restrictions related to radiation exposure. Thus, an in vivo study was conducted using three baboons as a child respiratory tract model to assess regional deposition patterns (thoracic region vs. extrathoracic region of radioactive polydisperse aerosols ([d16-d84], equal to [0.15 µm-0.5 µm], [0.25 µm-1 µm], or [1 µm-9 µm]. Results clearly demonstrated that aerosol deposition within the thoracic region and the extrathoraic region varied substantially according to particle size. High deposition in the extrathoracic region was observed for the [1 µm-9 µm] aerosol (72% ± 17%. The [0.15 µm-0.5 µm] aerosol was associated almost exclusively with thoracic region deposition (84% ± 4%. Airborne particles in the range of [0.25 µm-1 µm] showed an intermediate deposition pattern, with 49% ± 8% in the extrathoracic region and 51% ± 8% in the thoracic region. Finally, comparison of baboon and human inhalation experiments for the [1 µm-9 µm] aerosol showed similar regional deposition, leading to the conclusion that regional deposition is species-independent for this airborne particle sizes.

  19. Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet

    Science.gov (United States)

    Huang, Jie; Kang, Shichang; Shen, Chengde; Cong, Zhiyuan; Liu, Kexin; Wang, Wei; Liu, Lichao

    2010-06-01

    A total of 30 samples of total suspended particles were collected at an urban site in Lhasa, Tibet from August 2006 to July 2007 for investigating carbonaceous aerosol features. The fractions of contemporary carbon ( fc) in total carbon (TC) of ambient aerosols are presented using radiocarbon ( 14C) measurements. The value of fc represents the biogenic contribution to TC, as the biosphere releases organic compounds with the present 14C/ 12C level ( fc = 1), whereas 14C has become extinct in anthropogenic emissions of fossil carbon ( fc = 0). The fc values in Lhasa ranging from 0.357 to 0.702, are higher than Beijing and Tokyo, but clearly lower than the rural region of Launceston, which indicates a major biogenic influence in Lhasa. Seasonal variations of fc values corresponded well with variations of pollutants concentrations (e.g. NO 2). Higher fc values appeared in winter indicating carbonaceous aerosol is more dominated by wood burning and incineration of agricultural wastes within this season. The lower fc values in summer and autumn may be caused by increased diesel and petroleum emissions related to tourism in Lhasa. δ13C values ranged from - 26.40‰ to - 25.10‰, with relative higher values in spring and summer, reflecting the increment of fossil carbon emissions.

  20. Mixing state, composition, and sources of fine aerosol particles in the Qinghai-Tibetan Plateau and the influence of agricultural biomass burning

    Science.gov (United States)

    Li, W. J.; Chen, S. R.; Xu, Y. S.; Guo, X. C.; Sun, Y. L.; Yang, X. Y.; Wang, Z. F.; Zhao, X. D.; Chen, J. M.; Wang, W. X.

    2015-09-01

    Transmission electron microscopy (TEM) was employed to obtain morphology, size, composition, and mixing state of background fine particles with diameter less than 1 μm in the Qinghai-Tibetan Plateau (QTP) during 15 September to 15 October 2013. Individual aerosol particles mainly contained secondary inorganic aerosols (SIA-sulfate and nitrate) and organics during clean periods (PM2.5: particles less than 2.5 μg m-3). The presence of KCl-NaCl associated with organics and an increase of soot particles suggest that an intense biomass burning event caused the highest PM2.5 concentrations (> 30 μg m-3) during the study. A large number fraction of the fly ash-containing particles (21.73 %) suggests that coal combustion emissions in the QTP significantly contributed to air pollutants at the median pollution level (PM2.5: 10-30 μg m-3). We concluded that emissions from biomass burning and from coal combustion both constantly contribute to anthropogenic particles in the QTP atmosphere. Based on size distributions of individual particles in different pollution levels, we found that gas condensation on existing particles is an important chemical process for the formation of SIA with organic coating. TEM observations show that refractory aerosols (e.g., soot, fly ash, and visible organic particles) likely adhere to the surface of SIA particles larger than 200 nm due to coagulation. Organic coating and soot on surface of the aged particles likely influence their hygroscopic and optical properties in the QTP, respectively. To our knowledge, this study reports the first microscopic analysis of fine particles in the background QTP air.

  1. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Science.gov (United States)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2016-06-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days-6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ˜ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ˜ -0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ˜ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to

  2. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite

    Directory of Open Access Journals (Sweden)

    D. Salcedo

    2006-01-01

    Full Text Available An Aerodyne Aerosol Mass Spectrometer (AMS was deployed at the CENICA Supersite, during the Mexico City Metropolitan Area field study (MCMA-2003 from 31 March-4 May 2003 to investigate particle concentrations, sources, and processes. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1 with high time and size-resolution. In order to account for the refractory material in the aerosol, we also present estimates of Black Carbon (BC using an aethalometer and an estimate of the aerosol soil component obtained from Proton-Induced X-ray Emission Spectrometry (PIXE analysis of impactor substrates. Comparisons of AMS + BC + soil mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a PM2.5 Tapered Element Oscillating Microbalance (TEOM, and a PM2.5 DustTrak Aerosol Monitor show that the AMS + BC + soil mass concentration is consistent with the total PM2.5 mass concentration during MCMA-2003 within the combined uncertainties. In Mexico City, the organic fraction of the estimated PM2.5 at CENICA represents, on average, 54.6% (standard deviation σ=10% of the mass, with the rest consisting of inorganic compounds (mainly ammonium nitrate and sulfate/ammonium salts, BC, and soil. Inorganic compounds represent 27.5% of PM2.5 (σ=10%; BC mass concentration is about 11% (σ=4%; while soil represents about 6.9% (σ=4%. Size distributions are presented for the AMS species; they show an accumulation mode that contains mainly oxygenated organic and secondary inorganic compounds. The organic size distributions also contain a small organic particle mode that is likely indicative of fresh traffic emissions; small particle modes exist for the inorganic species as well. Evidence suggests that the organic and inorganic species are not always internally mixed, especially in the small modes. The aerosol seems to be neutralized most

  3. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: first results from the short-term winter campaign

    Science.gov (United States)

    Majewski, Grzegorz; Rogula-Kozłowska, Wioletta

    2016-07-01

    Diurnal (24-h) samples of fine particulate matter (PM2.5, ambient particles with an aerodynamic diameter not greater than 2.5 μm) and soil samples were collected in an urban area in Warsaw, in winter. The samples were analysed for 24 elements with an Epsilon 5 spectrometer (PANalytical). The results were then arranged and compared with the results of research conducted earlier in Poland and other parts of the world. Afterwards, sources of ambient PM2.5 were identified and the share of each in the concentration of PM2.5 was evaluated by means of enrichment factor (EF) analysis, principal component analysis (PCA) and multi-linear regression analysis (MLRA). The results were interpreted using a detailed analysis of correlations between diurnal concentrations of PM2.5, PM2.5-elements, and of changes in meteorological conditions. The winter average ambient concentration of PM2.5 in Warsaw, was 10.7 ± 7.5 μg/m3 and was much lower than in the other sites in Poland. In Warsaw, regardless of the concentration of PM2.5, the concentrations of certain PM2.5-bound elements, mainly toxic, were high, e.g. the average ambient concentrations of PM2.5-bound Se, As, Co, V, Cd and Ni were 12.7 ± 30.5, 10.6 ± 34.4, 9.4 ± 13.7, 15.1 ± 32.7, 9.6 ± 22.2 and 3.5 ± 5.0 ng/m3, respectively. The elemental composition and concentrations of PM2.5 appeared to be influenced mainly by the anthropogenic emissions (energy production based on coal and biomass combustion, whose mean contribution to the concentration of PM2.5 was 18.4 %, and energy production based on oil combustion with a contribution of 9.9 % in PM2.5). A mixture of soil matter and road dust was also identified in PM2.5 (8 %). The mean contribution of traffic (exhaust) emissions to the concentration of PM2.5 in an urban area, selected as representative of the Warsaw conurbation, was assessed at 15.4 %.

  4. STROBE-Long-Term Exposure to Ambient Fine Particulate Air Pollution and Hospitalization Due to Peptic Ulcers.

    Science.gov (United States)

    Wong, Chit-Ming; Tsang, Hilda; Lai, Hak-Kan; Thach, Thuan-Quoc; Thomas, G Neil; Chan, King-Pan; Lee, Siu-Yin; Ayres, Jon G; Lam, Tai-Hing; Leung, Wai K

    2016-05-01

    Little is known about the effect of air pollution on the gastrointestinal (GI) system. We investigated the association between long-term exposures to outdoor fine particles (PM2.5) and hospitalization for peptic ulcer diseases (PUDs) in a large cohort of Hong Kong Chinese elderly.A total of 66,820 subjects aged ≥65 years who were enrolled in all 18 Government Elderly Health Service centers of Hong Kong participated in the study voluntarily between 1998 and 2001. They were prospectively followed up for more than 10 years. Annual mean exposures to PM2.5 at residence of individuals were estimated by satellite data through linkage with address details including floor level. All hospital admission records of the subjects up to December 31, 2010 were retrieved from the central database of Hospital Authority. We used Cox regression to estimate the hazard ratio (HR) for PUD hospitalization associated with PM2.5 exposure after adjustment for individual and ecological covariates.A total of 60,273 subjects had completed baseline information including medical, socio-demographic, lifestyle, and anthropometric data at recruitment. During the follow-up period, 1991 (3.3%) subjects had been hospitalized for PUD. The adjusted HR for PUD hospitalization per 10 μg/m of PM2.5 was 1.18 (95% confidence interval: 1.02-1.36, P = 0.02). Further analysis showed that the associations with PM2.5 were significant for gastric ulcers (HR 1.29; 1.09-1.53, P = 0.003) but not for duodenal ulcers (HR 0.98; 0.78 to 1.22, P = 0.81).Long-term exposures to PM2.5 were associated with PUD hospitalization in elder population. The mechanism underlying the PM2.5 in the development of gastric ulcers warrants further research. PMID:27149464

  5. Characterization of PM2.5 particles originating from a modern waste incineration plant by factor analysis of chemical data, mass and black carbon in ambient aerosol

    DEFF Research Database (Denmark)

    Aboh, Innocent Joy Kwame; Henrikson, Dag; Laursen, Jens;

    In the city of Borås, which is a medium sized city in the south-western part of Sweden, a new modern plant for electricity and heat generation has recently been installed and optimised with respect to internal parameters of efficiency and economy. The direct emissions of gaseous pollutants which...... are subject to restrictions are well below the allowed limits as stated by Swedish and European standards. The aim of the present work is to study the particle pollutants with emphasis on PM2.5 in the ambient air and to identify the specific contribution from the new incineration plant. Many different sources...... contribute to PM2.5 in urban air. Thus, the general problem is to characterise and identify the particle pollution, which can be attributed to gases and/or particles emitted by the waste incineration plant. For this reason aerosol samples, PM2.5, were collected and analyzed for concentrations of twenty...

  6. Uptake of NO3 and N2O5 to Saharan dust, ambient urban aerosol and soot: a relative rate study

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-03-01

    Full Text Available The uptake of NO3 and N2O5 to Saharan dust, ambient aerosols and soot was investigated using a novel and simple relative rate method with simultaneous detection of both NO3 and N2O5. The use of cavity ring down spectroscopy to detect both trace gases enabled the measurements to be carried out at low mixing ratios (<500 pptv or 1×1010 molecule cm−3. The uptake coefficient ratio, γ(NO3/γ(N2O5, was determined to be 0.9±0.4 for Saharan dust, independent of relative humidity, NO3 or N2O5 mixing ratio and exposure time. Ambient (urban aerosols showed a very limited capacity to take up N2O5 but were reactive towards NO3 with γ(NO3/γ(N2O5>15. A value of γ(NO3/γ(N2O5~1.5–3 was obtained when using candle generated soot. The relative rate obtained for Saharan dust can be placed on an absolute basis using our recently determined value of γ(N2O5=1×10−2 to give γ(NO3=9×10−3, which is significantly smaller than the single previous value. With the present uptake coefficient, reaction of NO3 with mineral dust will generally not contribute significantly to its NO3 loss in the boundary atmosphere or to the nitration of mineral dust.

  7. Uptake of NO3 and N2O5 to Saharan dust, ambient urban aerosol and soot: a relative rate study

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-01-01

    Full Text Available The uptake of NO3 and N2O5 to Saharan dust, ambient aerosols and soot was investigated using a novel and simple relative rate method with simultaneous detection of both NO3 and N2O5. The use of cavity ring down spectroscopy to detect both trace gases enabled the measurements to be carried out at low mixing ratios (<500 pptv or 1×1010 molecule cm-3. The uptake coefficient ratio, γ(3/γ(N2O5, was determined to be 0.9±0.4 for Saharan dust, independent of relative humidity, NO3 or N2O5 mixing ratio and exposure time. Ambient (urban aerosols showed a very limited capacity to take up N2O5 but were reactive towards 3 with γ(NO3/γ(N2O5>15. A value of γ(NO3/γ(N2O5≈1.5–3 was obtained when using candle generated soot. The relative rate obtained for Saharan dust can be placed on an absolute basis using our recently determined value of γ(N2O5=1×10−2 to give γ(NO3=9×10-3, which is significantly smaller than the single previous value. With the present uptake coefficient, reaction of NO3 with mineral dust will generally not contribute significantly to its NO3 loss in the boundary atmosphere or to the nitration of mineral dust.

  8. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days

    Science.gov (United States)

    See, S. W.; Balasubramanian, R.; Wang, W.

    2006-05-01

    Many Southeast Asian countries have been constantly plagued by recurring smoke haze episodes as a result of traditional slash-and-burn practices in agricultural areas to clear crop lands or uncontrolled forest fires. However, our current knowledge on the physiochemical and optical properties of ambient aerosols associated with regional haze phenomenon is still fairly limited. Therefore a comprehensive field study was carried out in Singapore from March 2001 to March 2002 under varying weather conditions to gain a better understanding of the characteristics. The physical (size distribution of mass and number concentrations), chemical (mass concentrations of chemical components: 14 ions, 24 metals, elemental carbon (EC) and organic carbon (OC)), and optical (light absorption (bap) and scattering (bsp) by particles) characteristics of ambient aerosol particles were investigated. The results are reported separately for clear and hazy days by categorizing the days as clear or hazy on the basis of visibility data. It was observed that the average concentrations of PM2.5 and most chemical components increased approximately by a factor of 2 on hazy days. Backward air trajectories together with the hot spot distributions in the region indicated that the degradation in Singapore's air quality on hazy days was attributable to large-scale forest fires in Sumatra. This visibility degradation was quantitatively measured on the basis of the light absorption and scattering by particles. As expected, scattering rather than absorption controlled atmospheric visibility, and PM2.5 particles present on hazy days were more efficient at scattering light than those found on clear days.

  9. Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa

    Science.gov (United States)

    Zhu, C.; Kawamura, K.; Kunwar, B.

    2015-02-01

    Biomass burning (BB) largely modifies the chemical composition of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, on subtropical Okinawa Island, from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of levoglucosan and mannosan with winter maxima and summer minima. Positive correlation was found between levoglucosan and nss-K+ (r = 0.38, p levoglucosan / mannosan ratios were lower (2.1-4.8) in May-June and higher (13.3-13.9) in November-December. The lower values may be associated with softwood burning in northern China, Korea and southwestern Japan whereas the higher values are probably caused by agricultural waste burning of maize straw in the North China Plain. Anhydrosugars comprised 0.22% of water-soluble organic carbon (WSOC) and 0.13% of organic carbon (OC). The highest values to WSOC (0.37%) and OC (0.25%) were found in winter, again indicating an important BB contribution to Okinawa aerosols in winter. This study provides useful information to better understand the effect of East Asian biomass burning on the air quality in the western North Pacific Rim.

  10. Aerosol composition and source apportionment in Santiago de Chile

    Energy Technology Data Exchange (ETDEWEB)

    Artaxo, Paulo E-mail: artaxo@if.usp.br; Oyola, Pedro; Martinez, Roberto

    1999-04-02

    Santiago de Chile, Sao Paulo and Mexico City are Latin American urban areas that suffer from heavy air pollution. In order to study air pollution in Santiago area, an aerosol source apportionment study was designed to measure ambient aerosol composition and size distribution for two downtown sampling sites in Santiago. The aerosol monitoring stations were operated in Gotuzo and Las Condes during July and August 1996. The study employed stacked filter units (SFU) for aerosol sampling, collecting fine mode aerosol (dp<2 {mu}m) and coarse mode aerosol (2Aerosol mass (PM{sub 10} mass of particles smaller than 10 {mu}m) and black carbon concentration were also measured. Particle-Induced X-ray Emission (PIXE) was used to measure the concentration of 22 trace elements at levels below 0.5 ng m{sup -3}. Quantitative aerosol source apportionment was performed using Absolute Principal Factor Analysis (APFA). Very high aerosol concentrations were observed (up to 400 {mu}g/m{sup 3} PM{sub 10}). The main aerosol particle sources in Santiago are resuspended soil dust and traffic emissions. Coarse particles account for 63% of PM{sub 10} aerosol in Gotuzo and 53% in Las Condes. A major part of this component is resuspended soil dust. In the fine fraction, resuspended soil dust accounts for 15% of fine mass, and the aerosols associated with transportation activities account for a high 64% of the fine particle mass. Sulfate particle is an important component of the aerosol in Santiago, mainly originating from gas-to-particle conversion from SO{sub 2}. In the Gotuzo site, sulfates are the highest aerosol component, accounting for 64.5% of fine mass. Direct traffic emissions are generally mixed with resuspended soil dust. It is difficult to separate the two components, because the soil dust in downtown Santiago is contaminated with Pb, Br, Cl, and other heavy metals that are also tracers for traffic emissions. Residual oil combustion is observed

  11. Benchmark study on fine-mode aerosol in a big urban area and relevant doses deposited in the human respiratory tract.

    Science.gov (United States)

    Avino, Pasquale; Protano, Carmela; Vitali, Matteo; Manigrasso, Maurizio

    2016-09-01

    It is well-known that the health effects of PM increase as particle size decreases: particularly, great concern has risen on the role of UltraFine Particles (UFPs). Starting from the knowledge that the main fraction of atmospheric aerosol in Rome is characterized by significant levels of PM2.5 (almost 75% of PM10 fraction is PM2.5), the paper is focused on submicron particles in such great urban area. The daytime/nighttime, work-/weekdays and cold/hot seasonal trends of submicron particles will be investigated and discussed along with NOx and total PAH drifts demonstrating the primary origin of UFPs from combustion processes. Furthermore, moving from these data, the total dose of submicron particles deposited in the respiratory system (i.e., head, tracheobronchial and alveolar regions in different lung lobes) has been estimated. Dosimeter estimates were performed with the Multiple-Path Particle Dosimetry model (MPPD v.2.1). The paper discusses the aerosol doses deposited in the respiratory system of individuals exposed in proximity of traffic. During traffic peak hours, about 6.6 × 10(10) particles are deposited into the respiratory system. Such dose is almost entirely made of UFPs. According to the greater dose estimated, right lung lobes are expected to be more susceptible to respiratory pathologies than left lobes. PMID:27325547

  12. Chemical composition and source of fine and nanoparticles from recent direct injection gasoline passenger cars: Effects of fuel and ambient temperature

    Science.gov (United States)

    Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi

    2016-01-01

    Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.

  13. Aerosol scattering coefficients and major chemical compositions of fine particles observed at a rural site in the central Pearl River Delta, South China

    Institute of Scientific and Technical Information of China (English)

    Xinming Wang; Xiang Ding; Xiaoxin Fu; Quanfu He; Shaoyi Wang; Franc(o)is Bernard; Xiuying Zhao; Dui Wu

    2012-01-01

    During November-December 2010 aerosol scattering coefficients were monitored using a single-waved (525 nm) Nephelometer at a regional monitoring station in the central Pearl River Delta region and 24-hr fine particle (PM2.5) samples were also collected during the period using quartz filters for the analysis of major chemical components including organic carbon (OC),elemental carbon (EC),sulfate,nitrate and ammonium.In average,these five components accounted for about 85% of PM2.5 mass and contributed 42% (OC),19% (SO42-),12% (NO3-),8.4% (NH4+ ) and 3.7% (EC),to PM2.5 mass.A relatively higher mass scattering efficiency of 5.3 m2/g was obtained for fine particles based on the linear regression between scattering coefficients and PM2.5 mass concentrations.Chemical extinction budget based on IMPROVE approach revealed that ammonium sulfate,particulate organic matter,ammonium nitrate and EC in average contributed about 32%,28%,20% and 6% to the light extinction coefficients,respectively.

  14. Situación actual en España de los aerosoles insecticidas registrados en sanidad ambiental para uso doméstico

    Directory of Open Access Journals (Sweden)

    Josefa Moreno Marí

    2003-01-01

    Full Text Available Biocidas a través del Real Decreto 1.054/2002 conllevará un cambio sustancial en distintos aspectos de la Sanidad Ambiental. Para evaluar la incidencia de estos cambios se presenta un análisis de la situación actual, a partir del cual se podrán valorar adecuadamente las consecuencias de la implantación de la Directiva en España, así como establecer los aspectos básicos que se deben analizar con vistas al establecimiento de un Registro de Biocidas acorde con dicho Real Decreto. Métodos: El análisis se ha efectuado a partir de los datos que figuran en la base de datos del Ministerio de Sanidad y Consumo sobre los insecticidas registrados para Uso Doméstico presentados como aerosol. La elección de los aerosoles se ha realizado por tratarse del tipo de formulación más numerosa y utilizada para uso doméstico. Resultados: En la formulación de estos aerosoles intervienen 25 insecticidas, 1 desinfectante y 2 sinergizantes. La mayoría de los 298 aerosoles insecticidas presentan algún piretroide en su composición, sólo o en combinación con algún otro compuesto insecticida, desinfectante y/o sinergizante. La mayoría de estos biocidas son mezcla de sustancias activas. Conclusiones: Del análisis realizado se deduce la necesidad de definir nuevos procedimientos de evaluación de la eficacia de los formulados preparados para el uso (diseño de protocolos de ensayo estandarizados, evaluación de la eficacia sobre las distintas especies plaga, efecto de la mezcla de materias activas, plazos de seguridad,..., además de los aspectos referentes a la toxicología, ecotoxicología o características físico-químicas.

  15. Situación actual en España de los aerosoles insecticidas registrados en sanidad ambiental para uso doméstico

    Directory of Open Access Journals (Sweden)

    Moreno Marí Josefa

    2003-01-01

    Full Text Available Fundamentos: La reciente transposición de la Directiva de Biocidas a través del Real Decreto 1.054/2002 conllevará un cambio sustancial en distintos aspectos de la Sanidad Ambiental. Para evaluar la incidencia de estos cambios se presenta un análisis de la situación actual, a partir del cual se podrán valorar adecuadamente las consecuencias de la implantación de la Directiva en España, así como establecer los aspectos básicos que se deben analizar con vistas al establecimiento de un Registro de Biocidas acorde con dicho Real Decreto. Métodos: El análisis se ha efectuado a partir de los datos que figuran en la base de datos del Ministerio de Sanidad y Consumo sobre los insecticidas registrados para Uso Doméstico presentados como aerosol. La elección de los aerosoles se ha realizado por tratarse del tipo de formulación más numerosa y utilizada para uso doméstico. Resultados: En la formulación de estos aerosoles intervienen 25 insecticidas, 1 desinfectante y 2 sinergizantes. La mayoría de los 298 aerosoles insecticidas presentan algún piretroide en su composición, sólo o en combinación con algún otro compuesto insecticida, desinfectante y/o sinergizante. La mayoría de estos biocidas son mezcla de sustancias activas. Conclusiones: Del análisis realizado se deduce la necesidad de definir nuevos procedimientos de evaluación de la eficacia de los formulados preparados para el uso (diseño de protocolos de ensayo estandarizados, evaluación de la eficacia sobre las distintas especies plaga, efecto de la mezcla de materias activas, plazos de seguridad,..., además de los aspectos referentes a la toxicología, ecotoxicología o características físico-químicas.

  16. Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS and high time-resolved GC-MS measurements in Augsburg, Germany

    Directory of Open Access Journals (Sweden)

    M. Elsasser

    2012-02-01

    Full Text Available The impact of wood combustion on ambient aerosols was investigated in Augsburg, Germany during a winter measurement campaign of a six-week period. Special attention was paid to the high time resolution observations of wood combustion with different mass spectrometric methods. Here we present and compare the results from an Aerodyne aerosol mass spectrometer (AMS and gas chromatographic – mass spectrometric (GC-MS analysed PM1 filters on an hourly basis. This includes source apportionment of the AMS derived organic mass by using positive matrix factorisation (PMF and analysis of levoglucosan as wood combustion marker, respectively. In the measurement period nitrate and organics are the main contributors to the defined submicron particle mass with 28% and 35%, respectively. To the latter wood combustion organic aerosol (WCOA contributes 23% on average and 27% in the evening and night-time. Conclusively, wood combustion has a strong influence on the organics and overall aerosol composition. Levoglucosan accounts for 14% of WCOA mass with a higher percentage in comparison to other studies. The ratio between the mass of levoglucosan and organic carbon amounts to 0.06. This study is unique in the one-hour time resolution comparison between the wood combustion results of the AMS and the GC-MS analysed filter method at a PM1 particle size range. This comparison of the concentration courses of the PMF WCOA factor, levoglucosan estimated by the AMS data and the levoglucosan measured by GC-MS is highly correlated, and a detailed discussion on the contributors to the wood combustion marker ion at mass-to-charge ratio 60 will be given. This offers a suitable application possibility for the description of the wood combustion course by the WCOA factor and the levoglucosan concentration estimated by AMS data. However, quantitative description of the levoglucosan concentration estimated by the AMS data is difficult due to the offset of

  17. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013.

    Science.gov (United States)

    Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong

    2016-04-01

    Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54%) and combustion aerosol (27%) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33%) and accumulation mode aerosol (37%) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49% during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45%) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing.

  18. Influence of mineral dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    Directory of Open Access Journals (Sweden)

    H. M. Allen

    2015-05-01

    Full Text Available The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS campaign. Measurements using a Monitor for AeRosols and GAses (MARGA, an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3− concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  19. A one-year comprehensive chemical characterisation of fine aerosol (PM2.5) at urban, suburban and rural background sites in the region of Paris (France)

    Science.gov (United States)

    Bressi, M.; Sciare, J.; Ghersi, V.; Bonnaire, N.; Nicolas, J. B.; Petit, J.-E.; Moukhtar, S.; Rosso, A.; Mihalopoulos, N.; Féron, A.

    2013-08-01

    Studies describing the chemical composition of fine aerosol (PM2.5) in urban areas are often conducted for a few weeks only and at one sole site, giving thus a narrow view of their temporal and spatial characteristics. This paper presents a one-year (11 September 2009-10 September 2010) survey of the daily chemical composition of PM2.5 in the region of Paris, which is the second most populated "Larger Urban Zone" in Europe. Five sampling sites representative of suburban (SUB), urban (URB), northeast (NER), northwest (NWR) and south (SOR) rural backgrounds were implemented. The major chemical components of PM2.5 were determined including elemental carbon (EC), organic carbon (OC), and the major ions. OC was converted to organic matter (OM) using the chemical mass closure methodology, which leads to conversion factors of 1.95 for the SUB and URB sites, and 2.05 for the three rural ones. On average, gravimetrically determined PM2.5 annual mass concentrations are 15.2, 14.8, 12.6, 11.7 and 10.8 μg m-3 for SUB, URB, NER, NWR and SOR sites, respectively. The chemical composition of fine aerosol is very homogeneous at the five sites and is composed of OM (38-47%), nitrate (17-22%), non-sea-salt sulfate (13-16%), ammonium (10-12%), EC (4-10%), mineral dust (2-5%) and sea salt (3-4%). This chemical composition is in agreement with those reported in the literature for most European environments. On an annual scale, Paris (URB and SUB sites) exhibits its highest PM2.5 concentrations during late autumn, winter and early spring (higher than 15 μg m-3 on average, from December to April), intermediates during late spring and early autumn (between 10 and 15 μg m-3 during May, June, September, October, and November) and the lowest during summer (below 10 μg m-3 during July and August). PM levels are mostly homogeneous on a regional scale, during the whole project (e.g. for URB plotted against NER sites: slope = 1.06, r2=0.84, n=330), suggesting the importance of mid- or long

  20. Online determination of levoglucosan in ambient aerosols with Particle-into-Liquid Sampler – High-Performance Anion-Exchange Chromatography – Mass Spectrometry (PILS–HPAEC–MS

    Directory of Open Access Journals (Sweden)

    K. Saarnio

    2013-06-01

    Full Text Available Biomass burning, such as domestic heating, agricultural, and wild open-land fires, has a significant influence on the atmosphere at the global and, especially, at the local scale. Levoglucosan has been shown to be a good tracer for biomass burning emissions in atmospheric particulate matter and several analytical techniques have been presented for the determination of levoglucosan from filter samples. In this paper, a novel combination of a Particle-into-Liquid Sampler (PILS to a high-performance anion-exchange chromatograph (HPAEC with the detection by a mass spectrometer (MS is presented for the online analysis of levoglucosan in ambient particles. The PILS–HPAEC–MS technique enables a fast online analysis of levoglucosan from the particulate samples. The method was tested at an urban background station in Helsinki, Finland, in winter 2011. A comparison with simultaneous levoglucosan measurements from filter samples by the HPAEC–MS was performed and it showed a good agreement between the online and offline methods. Additionally, the online levoglucosan data were compared with the biomass burning tracer fragments measured by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS. As there were no local biomass burning sources close to the measurement station, online levoglucosan measurements revealed that most of the particles from biomass burning were either regionally distributed or long-range transported in the urban background of Helsinki. The average levoglucosan concentrations were relatively low (average 0.083 μg m−3 during the measurement campaign. The highest concentration peak measured for levoglucosan (1.4 μg m−3 seemed to originate from biomass burning in Eastern Europe, likely in Estonia, that was transported to Helsinki.

  1. Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler – high-performance anion-exchange chromatography – mass spectrometry (PILS–HPAEC–MS

    Directory of Open Access Journals (Sweden)

    K. Saarnio

    2013-10-01

    Full Text Available Biomass burning, such as domestic heating, agricultural, and wild open-land fires, has a significant influence on the atmosphere at the global and, especially, at the local scale. Levoglucosan has been shown to be a good tracer for biomass burning emissions in atmospheric particulate matter, and several analytical techniques have been presented for the determination of levoglucosan from filter samples. In this paper, a novel combination of a particle-into-liquid sampler (PILS to a high-performance anion-exchange chromatograph (HPAEC with the detection by a mass spectrometer (MS is presented for the online analysis of levoglucosan in ambient particles. The PILS–HPAEC–MS technique enables a fast online analysis of levoglucosan from the particulate samples. The method was tested at an urban background station in Helsinki, Finland, in winter 2011. A comparison with simultaneous levoglucosan measurements from filter samples by the HPAEC–MS was performed and it showed a good agreement between the online and offline methods. Additionally, the online levoglucosan data were compared with the biomass burning tracer fragments measured by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS. As there were no local biomass burning sources close to the measurement station, online levoglucosan measurements revealed that most of the particles from biomass burning were either regionally distributed or long-range transported in the urban background of Helsinki. The average levoglucosan concentrations were relatively low (average 0.083 μg m−3 during the measurement campaign. The highest concentration peak measured for levoglucosan (1.4 μg m−3 seemed to originate from biomass burning in the Baltic countries, likely in Estonia, that was transported to Helsinki.

  2. Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler - high-performance anion-exchange chromatography - mass spectrometry (PILS-HPAEC-MS)

    Science.gov (United States)

    Saarnio, K.; Teinilä, K.; Saarikoski, S.; Carbone, S.; Gilardoni, S.; Timonen, H.; Aurela, M.; Hillamo, R.

    2013-10-01

    Biomass burning, such as domestic heating, agricultural, and wild open-land fires, has a significant influence on the atmosphere at the global and, especially, at the local scale. Levoglucosan has been shown to be a good tracer for biomass burning emissions in atmospheric particulate matter, and several analytical techniques have been presented for the determination of levoglucosan from filter samples. In this paper, a novel combination of a particle-into-liquid sampler (PILS) to a high-performance anion-exchange chromatograph (HPAEC) with the detection by a mass spectrometer (MS) is presented for the online analysis of levoglucosan in ambient particles. The PILS-HPAEC-MS technique enables a fast online analysis of levoglucosan from the particulate samples. The method was tested at an urban background station in Helsinki, Finland, in winter 2011. A comparison with simultaneous levoglucosan measurements from filter samples by the HPAEC-MS was performed and it showed a good agreement between the online and offline methods. Additionally, the online levoglucosan data were compared with the biomass burning tracer fragments measured by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). As there were no local biomass burning sources close to the measurement station, online levoglucosan measurements revealed that most of the particles from biomass burning were either regionally distributed or long-range transported in the urban background of Helsinki. The average levoglucosan concentrations were relatively low (average 0.083 μg m-3) during the measurement campaign. The highest concentration peak measured for levoglucosan (1.4 μg m-3) seemed to originate from biomass burning in the Baltic countries, likely in Estonia, that was transported to Helsinki.

  3. Ten-year study of fine aerosol at Sde Boker, Israel, using PIXE: Time trends, seasonal variation, correlations, and source areas for anthropogenic elements

    Energy Technology Data Exchange (ETDEWEB)

    Maenhaut, Willy, E-mail: Willy.Maenhaut@UGent.be [Ghent University, Department of Analytical Chemistry, Krijgslaan 281, S12, BE-9000 Gent (Belgium); Department of Pharmaceutical Sciences, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1, BE-2610 Antwerp (Belgium); Karnieli, Arnon [Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus 84990 (Israel); Andreae, Meinrat O. [Biogeochemistry Department, Max Planck Institute for Chemistry, P.O. Box 3060, D-55020 Mainz (Germany)

    2014-01-01

    From January 1995 through December 2004 aerosol samples were collected at Sde Boker, Israel, with a Gent stacked filter unit sampler. The collections were done according to a 2–2–3 day schedule, which resulted in about 150 samples per year. The samples were analysed for the particulate mass (PM) by weighing, for black carbon (BC) by a light reflectance technique, and for up to 46 elements by a combination of PIXE and instrumental neutron activation analysis. Here, we report on the fine (PM2) size fraction data for the PM, BC, and the following nine anthropogenic elements S, V, Ni, Cu, Zn, As, Se, Sb, and Pb, and discuss their time trends, seasonal variation, correlations, and source areas. The largest changes in the annual medians over the 10-year period were found for S, Ni, Se, Sb, and Pb, i.e., of −34%, −25%, −47%, +26%, and −40%, respectively. The seasonal variation was largest for S, with 1.6 times higher concentrations in summer than in the other three seasons. Vanadium and Ni were very highly correlated with each other (r = 0.95), pointing to a dominant common source, which is undoubtedly oil burning. Trajectory statistics, using 10-day back trajectories with arrival at 300 m above ground, were applied to assess the source areas. Sulphur originated mostly from south-eastern Europe (i.e., Turkey, Bulgaria, Romania, Ukraine, and southern Russia) and As from the south-eastern part of European Russia, whilst the source picture for Zn was rather unclear. The other six anthropogenic elements and BC seemed to originate mainly from regional sources.

  4. Ten-year study of fine aerosol at Sde Boker, Israel, using PIXE: Time trends, seasonal variation, correlations, and source areas for anthropogenic elements

    International Nuclear Information System (INIS)

    From January 1995 through December 2004 aerosol samples were collected at Sde Boker, Israel, with a Gent stacked filter unit sampler. The collections were done according to a 2–2–3 day schedule, which resulted in about 150 samples per year. The samples were analysed for the particulate mass (PM) by weighing, for black carbon (BC) by a light reflectance technique, and for up to 46 elements by a combination of PIXE and instrumental neutron activation analysis. Here, we report on the fine (PM2) size fraction data for the PM, BC, and the following nine anthropogenic elements S, V, Ni, Cu, Zn, As, Se, Sb, and Pb, and discuss their time trends, seasonal variation, correlations, and source areas. The largest changes in the annual medians over the 10-year period were found for S, Ni, Se, Sb, and Pb, i.e., of −34%, −25%, −47%, +26%, and −40%, respectively. The seasonal variation was largest for S, with 1.6 times higher concentrations in summer than in the other three seasons. Vanadium and Ni were very highly correlated with each other (r = 0.95), pointing to a dominant common source, which is undoubtedly oil burning. Trajectory statistics, using 10-day back trajectories with arrival at 300 m above ground, were applied to assess the source areas. Sulphur originated mostly from south-eastern Europe (i.e., Turkey, Bulgaria, Romania, Ukraine, and southern Russia) and As from the south-eastern part of European Russia, whilst the source picture for Zn was rather unclear. The other six anthropogenic elements and BC seemed to originate mainly from regional sources

  5. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    Science.gov (United States)

    We show in the present study that the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal are biogenic volatile organic compound (BVOC) precursors for polar organosulfates with molecular weights (MWs) 230 and 214, which are also present in ambient fine aerosol from a...

  6. Aerosol from Organic Nitrogen in the Southeast United States

    Science.gov (United States)

    Biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosol in the southeastern United States. During the Southern Oxidant and Aerosol Study (SOAS), a portion of ambient organic aerosol was attributed to isoprene oxidation and organic nitrogen from BVO...

  7. Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study

    Science.gov (United States)

    Malm, William C.; Day, Derek E.; Carrico, Christian; Kreidenweis, Sonia M.; Collett, Jeffrey L.; McMeeking, Gavin; Lee, Taehyoung; Carrillo, Jacqueline; Schichtel, Bret

    2005-07-01

    Physical and optical properties of inorganic aerosols have been extensively studied, but less is known about carbonaceous aerosols, especially as they relate to the non-urban settings such as our nation's national parks and wilderness areas. Therefore an aerosol characterization study was conceived and implemented at one national park that is highly impacted by carbonaceous aerosols, Yosemite. The primary objective of the study was to characterize the physical, chemical, and optical properties of a carbon-dominated aerosol, including the ratio of total organic matter weight to organic carbon, organic mass scattering efficiencies, and the hygroscopic characteristics of a carbon-laden ambient aerosol, while a secondary objective was to evaluate a variety of semi-continuous monitoring systems. Inorganic ions were characterized using 24-hour samples that were collected using the URG and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring systems, the micro-orifice uniform deposit impactor (MOUDI) cascade impactor, as well as the semi-continuous particle-into-liquid sampler (PILS) technology. Likewise, carbonaceous material was collected over 24-hour periods using IMPROVE technology along with the thermal optical reflectance (TOR) analysis, while semi-continuous total carbon concentrations were measured using the Rupprecht and Patashnick (R&P) instrument. Dry aerosol number size distributions were measured using a differential mobility analyzer (DMA) and optical particle counter, scattering coefficients at near-ambient conditions were measured with nephelometers fitted with PM10 and PM2.5 inlets, and "dry" PM2.5 scattering was measured after passing ambient air through Perma Pure Nafion® dryers. In general, the 24-hour "bulk" measurements of various aerosol species compared more favorably with each other than with the semi-continuous data. Semi-continuous sulfate measurements correlated well with the 24-hour measurements, but were biased low by

  8. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles

    OpenAIRE

    Arangio, Andrea M.; Tong, Haijie; Socorro, Joanna; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Fine particulate matter plays a central role in adverse health effects of air pollution. Inhalation and deposition of aerosol particles in the respiratory tract can lead to the release of reactive oxygen species (ROS), which may cause oxidative stress. In this study, we have detected and quantified a wide range of particle-associated radicals using electron paramagnetic resonance (EPR) spectroscopy. Ambient particle samples were collected using a cascade impactor at a semi-urban site in centr...

  9. Determination of OM/OC ratios and specific attenuation coefficients (SAC in ambient fine PM at a rural site in southern Ontario: implications for emission sources, particle aging, and radiative forcing

    Directory of Open Access Journals (Sweden)

    T. W. Chan

    2009-07-01

    Full Text Available Ambient particulate matter (PM samples were collected on quartz filters at a rural site in southern Ontario during intensive studies in 2005 and 2007. The concentrations of organic carbon (OC, pyrolysis organic carbon (POC, and elemental carbon (EC were determined by thermal analysis. These results were compared to the organic aerosol mass concentration (OM measured by an Aerodyne Aerosol Mass Spectrometer (AMS and to the particle absorption coefficient (b_asp obtained from a Radiance Research Particle Soot Absorption Photometer (PSAP. The total organic mass to organic carbon ratios (OM/OC and specific attenuation coefficients (SAC were also derived. According to the results, the POC mass is proportional to the approximated oxygen mass in the aerosols and OM/OC ratios can be estimated directly from thermal measurements. The study also suggests that the air masses from the south, with relatively low OC/EC ratios, high EC, sulphate contents and OM/OC ratios, were originated from urban and industrial emissions and subsequently experienced photo-oxidations in the atmosphere, implying that the oxygenated organics could come from both primary and secondary sources. Whereas the air masses from the north, with relatively high OC/EC ratios, low EC, sulphate contents and OM/OC ratios, were dominant by the background clean air with relatively larger contributions from biogenic emissions.

    The mean SAC derived from the 2005 and 2007 studies are 4.9 m2 g−1 and 3.8 m2 g−1, respectively. When POC mass approaching zero (i.e. the impact of atmospheric aging is minimized, the SAC for primary emitted soot is estimated to be 5.8 m2 g−1 and 6.3 m2 g−1 for the northern and southern air masses, respectively, supported by the corresponding values when particulate sulphate concentration approaches zero. A decreasing trend in the SAC value with atmospheric aging

  10. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases.

    OpenAIRE

    Burnett, R.T.; Cakmak, S; Brook, J. R.; Krewski, D

    1997-01-01

    In order to address the role that the ambient air pollution mix, comprised of gaseous pollutants and various physical and chemical measures of particulate matter, plays in exacerbating cardiorespiratory disease, daily measures of fine and coarse particulate mass, aerosol chemistry (sulfates and acidity), and gaseous pollution (ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) were collected in Toronto, Ontario, Canada, in the summers of 1992, 1993, and 1994. These time series were...

  11. X-Ray Microspectroscopic Investigations of Remote Aerosol Composition and Changes in Aerosol Microstructure and Phase State upon Hydration

    Science.gov (United States)

    Andreae, M. O.; Artaxo, P.; Bechtel, M.; Förster, J. D.; Kilcoyne, A. L. D.; Krüger, M. L.; Pöhlker, C.; Saturno, J.; Weigand, M.; Wiedemann, K. T.

    2014-12-01

    Atmospheric aerosols play a crucial role in the Earth's climate system and hydrological cycle by scattering and absorbing sunlight and affecting the formation and development of clouds and precipitation. Our research focuses on aerosols in remote regions, in order to characterize the properties and sources of natural aerosol particles and the extent of human perturbations of the aerosol burden. The phase and mixing state of atmospheric aerosols, and particularly their hygroscopic response to relative humidity (RH) variations, is a central determinant of their atmospheric life cycle and impacts. We present an investigation using X-ray microspectroscopy on submicrometer aerosols under variable RH conditions, showing in situ changes in morphology, microstructure, and phase state upon humidity cycling. We applied Scanning Transmission X-ray Microscopy with Near-Edge X-ray Absorption Fine Structure spectroscopy (STXM-NEXAFS) under variable RH conditions to standard aerosols for a validation of the experimental approach and to internally mixed aerosol particles from the Amazonian rain forest collected during periods with anthropogenic pollution. The measurements were conducted at X-ray microscopes at the synchrotron facilities Advanced Light Source (ALS) in Berkeley, USA, and BESSY II in Berlin, Germany. Upon hydration, we observed substantial and reproducible changes in microstructure of the Amazonian particles (internal mixture of secondary organic material, ammoniated sulfate, and soot), which appear as mainly driven by efflorescence and recrystallization of sulfate salts. Multiple solid and liquid phases were found to coexist, especially in intermediate humidity regimes (60-80% RH). This shows that X-ray microspectroscopy under variable RH is a valuable technique to analyze the hygroscopic response of individual ambient aerosol particles. Our initial results underline that RH changes can trigger strong particle restructuring, in agreement with previous studies on

  12. Contrasting online MSn spectra of organic acids in ambient aerosol from the boreal forest at Hyytiälä, Finland and from the mixed forest at the Taunus observatory, Germany

    Science.gov (United States)

    Vogel, Alexander L.; Äijälä, Mikko; Ehn, Mikael; Junninen, Heikki; Petäjä, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Williams, Jonathan; Schneider, Johannes; Hoffmann, Thorsten

    2013-04-01

    Emission of biogenic volatile organic compounds (BVOCs) by the vegetation and subsequent atmospheric oxidation leads to the formation of secondary organic aerosol (SOA). Therefore, forests are a main source of aerosols which have significant impact on the earth's climate.[1] The oxidation of BVOCs results in a variety of mostly unidentified organic species in trace level concentrations, which partition between gas- and particle-phase. Organic acids are of particular importance for the particle-phase fraction, since the higher oxidation state and molecular mass, compared to the corresponding precursors, is accompanied by a much lower volatility. Until now, only limited instrumentation exists for the simultaneous online analysis of organic acids in gas- and particle-phase. Here we show the first field application of an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI-IT-MS) in combination with a miniature Versatile Aerosol Concentration Enrichment System (mVACES) for measuring organic acids in gas- and particle-phase[2]. The benefits of the online APCI-IT-MS are soft ionization with low fragmentation, high time resolution and less sampling artifacts than in the common procedure of taking filter samples, extraction and subsequent detection with LC-MS. Furthermore, the capability to perform online MSn of isolated m/z ratios from ambient and laboratory generated aerosol leads to an improved understanding of the composition of secondary organic aerosol. The here described measurements were conducted during the HUMPPA-COPEC 2010 campaign at Hyytiälä, Finland and during the INUIT campaign 2012 on Mt. Kleiner Feldberg, Germany. By merging APCI-IT-MS data with data from the Aerodyné C-ToF-AMS, it can be observed that the gas- to particle-partitioning of organic acids strongly depends on the fraction of aerosol which is organic matter, as it is predicted by a partitioning model[3]. High observed gas-phase concentrations of organic acids at Hyyti

  13. Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants

    Science.gov (United States)

    Kunwar, Bhagawati; Kawamura, Kimitaka; Zhu, Chunmao

    2016-04-01

    Stable carbon (δ13C) and nitrogen (δ15N) isotope ratios were measured for total carbon (TC) and nitrogen (TN), respectively, in aerosol (TSP) samples collected at Cape Hedo, Okinawa, an outflow region of Asian pollutants, during 2009-2010. The averaged δ13C and δ15N ratios are -22.2‰ and +12.5‰, respectively. The δ13C values are similar in both spring (-22.5‰) and winter (-22.5‰), suggesting the similar sources and/or source regions. We found that δ13C from Okinawa aerosols are ca. 2‰ higher than those reported from Chinese megacities probably due to photochemical aging of organic aerosols. A strong correlation (r = 0.81) was found between nss-Ca and TSP, suggesting that springtime aerosols are influenced from Asian dusts. However, carbonates in the Asian dusts were titrated with acidic species such as sulfuric acid and oxalic acid during atmospheric transport although two samples suggested the presence of remaining carbonate. No correlations were found between δ13C and tracer compounds (levoglucosan, elemental carbon, oxalic acid, and Na+). During winter and spring, coal burning is significant source in China. Based on isotopic mass balance, contribution of coal burning origin particles to total aerosol carbon was estimated as ca. 97% in winter, which is probably associated with the high emissions in China. Contribution of NO3- to TN was on average 45% whereas that of NH4+ was 18%. These results suggest that vehicular exhaust is an important source of TN in Okinawa aerosols. Concentration of water-soluble organic nitrogen (WSON) is higher in summer, suggesting that WSON is more emitted from the ocean in warmer season whereas inorganic nitrogen is more emitted in winter and spring from pollution sources in the Asian continent.

  14. Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: A panel study among young adults in Beijing, China.

    Science.gov (United States)

    Wu, Shaowei; Yang, Di; Wei, Hongying; Wang, Bin; Huang, Jing; Li, Hongyu; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2015-09-01

    Ambient particulate air pollution has been associated with increased oxidative stress and atherosclerosis, but the chemical constituents and pollution sources behind the association are unclear. We investigated the associations of various chemical constituents and pollution sources of ambient fine particles (PM2.5) with biomarkers of oxidative stress in a panel of 40 healthy university students. Study participants underwent repeated blood collections for 12 times before and after relocating from a suburban campus to an urban campus with high air pollution levels in Beijing, China. Air pollution data were obtained from central air-monitoring stations, and plasma levels of oxidized low-density lipoprotein (Ox-LDL) and soluble CD36 (sCD36) were determined in the laboratory (n=464). Linear mixed-effects models were used to estimate the changes in biomarkers in association with exposure variables. PM2.5 iron and nickel were positively associated with Ox-LDL (ppollution sources, PM2.5 from traffic emissions and coal combustion were suggestively and positively associated with Ox-LDL. Our findings suggest that a subset of metals in airborne particles may be the major air pollution components that contribute to the increased oxidative stress associated with atherosclerosis.

  15. Chemical composition and sources of ambient aerosol in an urban environment over Athens, Greece: Case study on the role of wintertime biomass burning

    Science.gov (United States)

    Theodosi, Christina

    2016-04-01

    This study examines the chemical composition of aerosols over the Greater Athens Area (GAA). To achieve this, particulate matter sampling has been conducted on a 6h-24h basis and more than 700 aerosol samples were collected at downtown Athens, in Thissio from January 2013 to December 2015. All samples, after mass quantification, were analyzed for major anions (Cl^-, Br^-, NO{_3^-}, SO{_4-2}, PO{_4-3}, C_2O{_4-2}), cations (NH{_4^+}, K^+, Na^+, Mg+2, Ca+2), trace elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, V, Zn, Mn, Ni, Pb, P, S, Sb), organic carbon (OC) and elemental carbon (EC). Aerosol chemical mass closure calculations indicated that carbonaceous aerosol constitutes a major component, along with nitrate and sulfate anions, dust, cations and EC. Moreover, during the winter periods of December 2012-January 2013 and December 2013-January 2014, air pollution due to excessive use of biomass for domestic heating has been reported as a major environmental problem in the area. To assess the importance of biomass burning as a source of air pollution over the GAA three main sugars specific biomass burning tracers (levoglucosan, mannosan and galactosan) and Polycyclic aromatic hydrocarbons (PAHs) were also analyzed during the winter period. Acknowledgments This work was supported by the State Scholarship Foundation ("IKY Fellowships of Excellence for Postgraduate Studies in Greece - Siemens Programme") in the framework of the Hellenic Republic-Siemens Settlement Agreement.

  16. Relationship between Ambient Fine Particles and Ventricular Repolarization Changes and Heart Rate Variability of Elderly People with Heart Disease in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    XU Mei Mei; JIA Yu Ping; LI Guo Xing; LIU Li Qun; MO Yun Zheng; JIN Xiao Bin; PAN Xiao Chuan

    2013-01-01

    Objective To explore the effects of particulate matters less than 2.5 μm in aerodynamic diameter (PM2.5) on heart repolarization/depolarization and heart rate variability (HRV). Methods We conducted a panel study for elderly subjects with heart disease in Beijing from 2007 to 2008. PM2.5 was measured at a fixed station for 20 h continuously each day while electrocardiogram (ECG) indexes of 42 subjects were also recorded repeatedly. Meteorological data was obtained from the China Meteorological Data Sharing Service System. A mixed linear regression model was used to estimate the associations between PM2.5 and the ECG indexes. The model was adjusted for age, body mass index, sex, day of the week and meteorology. Results Significant adverse effects of PM2.5 on ECG indexes reflecting HRV were observed statistically and the strongest effect of PM2.5 on HRV was on lag 1 day in our study. However, there were no associations between PM2.5 and ECG indexes reflecting heart repolarization/depolarization. Additionally, the effects of PM2.5 on subjects with hypertension were larger than on the subjects without hypertension. Conclusion This study showed ambient PM2.5 could affect cardiac autonomic function of the elderly people with heart disease, and subjects with hypertension appeared to be more susceptive to the autonomic dysfunction induced by PM2.5.

  17. Study of columnar aerosol size distribution in Hong Kong

    Directory of Open Access Journals (Sweden)

    X. Yang

    2009-08-01

    Full Text Available This paper presents studies on columnar aerosol optical properties in Hong Kong with focus on aerosol volume size distribution, which helps understand local aerosol properties, variation, hygroscopic growth and coagulation. Long-term ground measurements in the wet season in the years of 2002, 2003, 2004 and 2008 have been performed using a sun-sky radiometer. Data validation made using MODIS and local AERONET shows agreement. A bimodal size distribution is found with the fine mode centering at ~0.2 μm and coarse mode centering at ~3 μm respectively. The fine and coarse mode have close volume concentrations of nearly 50% fraction in composing local aerosols. Intercomparison of different years shows similar aerosol properties while a small increase of fine mode aerosol could be observed. A systematic shift of size distribution parameters is observed with different atmospheric conditions, where higher aerosol loadings and Angstrom exponent correspond to more fine mode aerosols. The fine mode is found to be more closely correlated with this shift than the coarse mode. A higher fine mode volume fraction and smaller median fine radius correspond to a larger Angstrom exponent. The fine mode aerosol hygroscopic growth is one of the main mechanisms for such systematic shifting. A third mode centering at ~1–2 μm could be discovered under high aerosol loading and high fine mode aerosol conditions. It becomes more pronounced with high aerosol optical depth and larger Angstrom exponent. Investigation of its variation with corresponding optical parameters and correlation with atmospheric conditions appears to support the hypothesis that it is mainly due to the fine mode aerosol hygroscopic growth and coagulation rather than the contribution from the coarse mode. While the very humid environment facilitates the aerosol hygroscopic growth, aerosol coagulation might further produce larger aerosols under high fine aerosol conditions. The continental outflow

  18. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells.

    Science.gov (United States)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-14

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  19. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells.

    Science.gov (United States)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-01-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5. PMID:27624276

  20. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    Science.gov (United States)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  1. First measurements of ambient aerosol over an ecologically sensitive zone in Central India: Relationships between PM2.5 mass, its optical properties, and meteorology.

    Science.gov (United States)

    Sunder Raman, Ramya; Kumar, Samresh

    2016-04-15

    PM2.5 mass and its optical properties were measured over an ecologically sensitive zone in Central India between January and December, 2012. Meteorological parameters including temperature, relative humidity, wind speed, wind direction, and barometric pressure were also monitored. During the study period, the PM2.5 (fine PM) concentration ranged between 3.2μgm(-3) and 193.9μgm(-3) with a median concentration of 31.4μgm(-3). The attenuation coefficients, βATN at 370nm, 550nm, and 880nm had median values of 104.5Mm(-1), 79.2Mm(-1), and 59.8Mm(-1), respectively. Further, the dry scattering coefficient, βSCAT at 550nm had a median value of 17.1Mm(-1) while the absorption coefficient βABS at 550nm had a median value of 61.2Mm(-1). The relationship between fine PM mass and attenuation coefficients showed pronounced seasonality. Scattering, absorption, and attenuation coefficient at different wavelengths were all well correlated with fine PM mass only during the post-monsoon season (October, November, and December). The highest correlation (r(2)=0.81) was between fine PM mass and βSCAT at 550nm during post-monsoon season. During this season, the mass scattering efficiency (σSCAT) was 1.44m(2)g(-1). Thus, monitoring optical properties all year round, as a surrogate for fine PM mass was found unsuitable for the study location. In order to assess the relationships between fine PM mass and its optical properties and meteorological parameters, multiple linear regression (MLR) models were fitted for each season, with fine PM mass as the dependent variable. Such a model fitted for the post-monsoon season explained over 88% of the variability in fine PM mass. However, the MLR models were able to explain only 31 and 32% of the variability in fine PM during pre-monsoon (March, April, and May) and monsoon (June, July, August, and September) seasons, respectively. During the winter (January and February) season, the MLR model explained 54% of the PM2.5 variability. PMID

  2. First measurements of ambient aerosol over an ecologically sensitive zone in Central India: Relationships between PM2.5 mass, its optical properties, and meteorology.

    Science.gov (United States)

    Sunder Raman, Ramya; Kumar, Samresh

    2016-04-15

    PM2.5 mass and its optical properties were measured over an ecologically sensitive zone in Central India between January and December, 2012. Meteorological parameters including temperature, relative humidity, wind speed, wind direction, and barometric pressure were also monitored. During the study period, the PM2.5 (fine PM) concentration ranged between 3.2μgm(-3) and 193.9μgm(-3) with a median concentration of 31.4μgm(-3). The attenuation coefficients, βATN at 370nm, 550nm, and 880nm had median values of 104.5Mm(-1), 79.2Mm(-1), and 59.8Mm(-1), respectively. Further, the dry scattering coefficient, βSCAT at 550nm had a median value of 17.1Mm(-1) while the absorption coefficient βABS at 550nm had a median value of 61.2Mm(-1). The relationship between fine PM mass and attenuation coefficients showed pronounced seasonality. Scattering, absorption, and attenuation coefficient at different wavelengths were all well correlated with fine PM mass only during the post-monsoon season (October, November, and December). The highest correlation (r(2)=0.81) was between fine PM mass and βSCAT at 550nm during post-monsoon season. During this season, the mass scattering efficiency (σSCAT) was 1.44m(2)g(-1). Thus, monitoring optical properties all year round, as a surrogate for fine PM mass was found unsuitable for the study location. In order to assess the relationships between fine PM mass and its optical properties and meteorological parameters, multiple linear regression (MLR) models were fitted for each season, with fine PM mass as the dependent variable. Such a model fitted for the post-monsoon season explained over 88% of the variability in fine PM mass. However, the MLR models were able to explain only 31 and 32% of the variability in fine PM during pre-monsoon (March, April, and May) and monsoon (June, July, August, and September) seasons, respectively. During the winter (January and February) season, the MLR model explained 54% of the PM2.5 variability.

  3. Identification of source contributions to visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park. Interim final report

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A.; Hallock, K.A.; Leach, M. [Brookhaven National Lab., Upton, NY (United States); Mason-Jones, M.; Mason-Jones, H.; Salmon, L.G.; Winner, D.A.; Cass, G.R. [California Inst. of Tech., Pasadena, CA (United States). Dept. of Environmental Engineering Science

    1993-06-01

    Sulfates and carbonaceous aerosols are the largest contributors to the fine particle burden in the atmosphere near Grand Canyon National Park. While the effects of sulfate particles on visibility at the Grand Canyon has been extensively studied, much less is known about the nature and origin of the carbonaceous aerosols that are present. This disparity in understanding arises from at least two causes: aerosol carbon data for the region are less plentiful and many of the sources that could contribute to that organic aerosol are both diverse and not well characterized. The objective of this present study is to examine the origin of the carbonaceous aerosol at Grand Canyon National Park during the summer season based on molecular tracer techniques applied to source and ambient samples collected specifically for this purpose.

  4. Molecular Characterization of S- and N-containing Organic Constituents in Ambient Aerosols by negative ion mode High-Resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-27

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using Nanospray Desorption Electrospray Ionization High Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day were collected in Bakersfield, CA on June 20-24 with a collection time of 6 hours per sample. Four characteristic groups of organic constituents were identified in the samples: compounds containing carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen-(CHON), and both nitrogen- and sulfur-containing organics (CHONS). Within the groups, organonitrates, organosulfates, and nitroxy organosulfates were assigned based on accurate mass measurements and elemental ratio comparisons. Changes in the chemical composition of the aerosol samples were observed throughout the day. The number of observed CHO compounds increased in the afternoon samples, suggesting regional photochemical processing as a source. The average number of CHOS compounds had the smallest changes throughout the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHON and CHONS) had greater numbers of compounds in the night and morning samples, indicating that nitrate radical chemistry was likely a source for those compounds. Most of the compounds were found in submicron particles. The size distribution of CHON compounds was bimodal. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources.

  5. Study of columnar aerosol size distribution in Hong Kong

    Directory of Open Access Journals (Sweden)

    X. Yang

    2009-03-01

    Full Text Available This paper presents studies on columnar aerosol optical properties in Hong Kong with focus on aerosol volume size distribution. Long-term ground measurements in the wet season in the years of 2002, 2003, 2004 and 2008 have been performed using a sun-sky radiometer. A bimodal size distribution is found with the fine mode centering at ~0.2 μm and coarse mode centering at ~6 μm, respectively. The fine and coarse mode have close volume concentrations of nearly 50% fraction in composing local aerosols. Intercomparison of different years shows similar aerosol properties while a small increase of fine mode aerosol could be observed. A systematic shift of size distribution parameters is observed with different atmospheric conditions, where higher aerosol loadings and Angstrom exponent correspond to more fine aerosols. The fine mode is found to be more closely correlated with this shift than the coarse mode. A higher fine mode volume fraction and smaller median fine radius correspond to a larger Angstrom exponent. The fine aerosol hygroscopic growth is one of the main mechanisms for such systematic shifting. A third mode centering at ~1–2 μm could be discovered under high aerosol loading and high fine aerosol conditions. It becomes more pronounced with high aerosol optical depth and larger Angstrom exponent. Investigation of its variation with corresponding optical parameters and correlation with atmospheric conditions indicates that it is mainly due to the fine aerosol hygroscopic growth and coagulation rather than the contribution from the coarse mode. While the very humid environment facilitates the aerosol hygroscopic growth, aerosol coagulation might further produce more large aerosols under high fine aerosol conditions. The continental outflow with transported ageing aerosols and biomass burning might have also contributed to this additional mode.

  6. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    Science.gov (United States)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  7. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry – Part I: quantification, shape-related collection efficiency, and comparison with collocated instruments

    Directory of Open Access Journals (Sweden)

    D. Salcedo

    2005-06-01

    Full Text Available An Aerodyne Aerosol Mass Spectrometer (AMS was deployed at the CENICA Supersite, while another was deployed in the Aerodyne Mobile Laboratory (AML during the Mexico City Metropolitan Area field study (MCMA-2003 from 31 March–4 May 2003 to investigate particle concentrations, sources, and processes. This is the first of a series of papers reporting the AMS results from this campaign. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1 with high time and size-resolution. For the first time, we report field results from a beam width probe, which was used to study the shape and mixing state of the particles and to quantify potential losses of irregular particles due to beam broadening inside the AMS. Data from this probe show that no significant amount of irregular particles was lost due to excessive beam broadening. A comparison of the CENICA and AML AMSs measurements is presented, being the first published intercomparison between two quadrupole AMSs. The speciation, and mass concentrations reported by the two AMSs compared relatively well. The differences found are likely due to the different inlets used in both instruments. In order to account for the refractory material in the aerosol, we also present measurements of Black Carbon (BC using an aethalometer and an estimate of the aerosol soil component obtained from Proton-Induced X-ray Emission Spectrometry (PIXE analysis of impactor substrates. Comparisons of AMS + BC + soil mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a Tapered Element Oscillating Microbalance (TEOM and a DustTrak Aerosol Monitor are also presented. The comparisons show that the AMS + BC + soil mass concentration during MCMA-2003 is a good approximation to the total PM2.5 mass concentration.

  8. Aerosol filtration

    International Nuclear Information System (INIS)

    This report summarizes the work on the development of fibre metallic prefilters to be placed upstream of HEPA filters for the exhaust gases of nuclear process plants. Investigations at ambient and high temperature were carried out. Measurements of the filtration performance of Bekipor porous webs and sintered mats were performed in the AFLT (aerosol filtration at low temperature) unit with a throughput of 15 m3/h. A parametric study on the influence of particle size, fibre diameter, number of layers and superficial velocity led to the optimum choice of the working parameters. Three selected filter types were then tested with polydisperse aerosols using a candle-type filter configuration or a flat-type filter configuration. The small-diameter candle type is not well suited for a spraying nozzles regeneration system so that only the flat-type filter was retained for high-temperature tests. A high-temperature test unit (AFHT) with a throughput of 8 to 10 m3/h at 4000C was used to test the three filter types with an aerosol generated by high-temperature calcination of a simulated nitric acid waste solution traced with 134Cs. The regeneration of the filter by spray washing and the effect of the regeneration on the filter performance was studied for the three filter types. The porous mats have a higher dust loading capacity than the sintered web which means that their regeneration frequency can be kept lower

  9. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols

    Science.gov (United States)

    Smith, J. D.; Kroll, J. H.; Cappa, C. D.; Che, D. L.; Liu, C. L.; Ahmed, M.; Leone, S. R.; Worsnop, D. R.; Wilson, K. R.

    2009-05-01

    The heterogeneous reaction of OH radicals with sub-micron squalane particles, in the presence of O2, is used as a model system to explore the fundamental chemical mechanisms that control the oxidative aging of organic aerosols in the atmosphere. Detailed kinetic measurements combined with elemental mass spectrometric analysis reveal that the reaction proceeds sequentially by adding an average of one oxygenated functional group per reactive loss of squalane. The reactive uptake coefficient of OH with squalane particles is determined to be 0.3±0.07 at an average OH concentration of ~1×1010 molecules cm-3. Based on a comparison between the measured particle mass and model predictions it appears that significant volatilization of a reduced organic particle would be extremely slow in the real atmosphere. However, as the aerosols become more oxygenated, volatilization becomes a significant loss channel for organic material in the particle-phase. Together these results provide a chemical framework in which to understand how heterogeneous chemistry transforms the physiochemical properties of particle-phase organic matter in the troposphere.

  10. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols

    Directory of Open Access Journals (Sweden)

    J. D. Smith

    2009-02-01

    Full Text Available The heterogeneous reaction of OH radicals with sub-micron squalane particles, in the presence of O2, is used as a model system to explore the fundamental chemical mechanisms that control the oxidative aging of organic aerosols in the atmosphere. Detailed kinetic measurements combined with elemental mass spectrometric analysis reveal that the reaction proceeds sequentially by adding an average of one oxygenated functional group per reactive loss of squalane. The reactive uptake coefficient of OH with squalane particles is determined to be 0.3±0.07 at an average OH concentration of ~1×1010 molecules·cm−3. Based on a comparison between the measured particle mass and model predictions it appears that significant volatilization of a reduced organic particle would be extremely slow in the real atmosphere. However, as the aerosols become more oxygenated, volatilization becomes a significant loss channel for organic material in the particle phase. Together these results provide a chemical framework in which to understand how heterogeneous chemistry transforms the physiochemical properties of particle phase organic matter in the troposphere.

  11. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols

    Directory of Open Access Journals (Sweden)

    J. D. Smith

    2009-05-01

    Full Text Available The heterogeneous reaction of OH radicals with sub-micron squalane particles, in the presence of O2, is used as a model system to explore the fundamental chemical mechanisms that control the oxidative aging of organic aerosols in the atmosphere. Detailed kinetic measurements combined with elemental mass spectrometric analysis reveal that the reaction proceeds sequentially by adding an average of one oxygenated functional group per reactive loss of squalane. The reactive uptake coefficient of OH with squalane particles is determined to be 0.3±0.07 at an average OH concentration of ~1×1010 molecules cm−3. Based on a comparison between the measured particle mass and model predictions it appears that significant volatilization of a reduced organic particle would be extremely slow in the real atmosphere. However, as the aerosols become more oxygenated, volatilization becomes a significant loss channel for organic material in the particle-phase. Together these results provide a chemical framework in which to understand how heterogeneous chemistry transforms the physiochemical properties of particle-phase organic matter in the troposphere.

  12. Sources and source processes of organic nitrogen aerosols in the atmosphere

    Science.gov (United States)

    Erupe, Mark E.

    The research in this dissertation explored the sources and chemistry of organic nitrogen aerosols in the atmosphere. Two approaches were employed: field measurements and laboratory experiments. In order to characterize atmospheric aerosol, two ambient studies were conducted in Cache Valley in Northern Utah during strong winter inversions of 2004 and 2005. The economy of this region is heavily dependent on agriculture. There is also a fast growing urban population. Urban and agricultural emissions, aided by the valley geography and meteorology, led to high concentrations of fine particles that often exceeded the national ambient air quality standards. Aerosol composition was dominated by ammonium nitrate and organic species. Mass spectra from an aerosol mass spectrometer revealed that the organic ion peaks were consistent with reduced organic nitrogen compounds, typically associated with animal husbandry practices. Although no direct source characterization studies have been undertaken in Cache Valley with an aerosol mass spectrometer, spectra from a study at a swine facility in Ames, Iowa, did not show any evidence of reduced organic nitrogen species. This, combined with temporal and diurnal characteristics of organic aerosol peaks, was a pointer that the organic nitrogen species in Cache Valley likely formed from secondary chemistry. Application of multivariate statistical analyses to the organic aerosol spectra further supported this hypothesis. To quantify organic nitrogen signals observed in ambient studies as well as understand formation chemistry, three categories of laboratory experiments were performed. These were calibration experiments, smog chamber studies, and an analytical method development. Laboratory calibration experiments using standard calibrants indicated that quantifying the signals from organic nitrogen species was dependent on whether they formed through acid-base chemistry or via secondary organic aerosol pathway. Results from smog chamber

  13. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode in 2013

    Directory of Open Access Journals (Sweden)

    Y.-L. Zhang

    2014-10-01

    Full Text Available During winter 2013, extremely high concentrations (i.e. 4–20 times higher than the World Health Organization guideline of PM2.5 (particulate matter with an aerodynamic diameter 14C and biomass-burning marker measurements using Latin-hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. We found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% at all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan and water-soluble potassium (K+. With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5% and decreased from Shanghai (49 ± 2% to Xian (38 ± 3% and Guangzhou (35 ± 7%. Generally, a larger fraction of fossil OC was rather from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10% and 48 ± 9% of OC and TC, respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8%, 48 ± 18%, 53 ± 4% and 65 ± 26% of non-fossil OC for Xian, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass-burning were mainly attributed to formation of secondary organic carbon (SOC from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately with heavily polluted days according to particulate matter mass. Despite a significant increase of absolute mass concentrations of primary emissions from both, fossil and non-fossil sources, during the heavily polluted events

  14. Measurements of Natural Radioactivity in Submicron Aerosols in Mexico City.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Sterling, K.; Sturchio, N. C.

    2003-12-01

    Natural radionuclides can be useful in evaluating the transport of ozone and aerosols in the troposphere. Beryllium-7, which is produced by cosmic ray interactions in the upper troposphere and lower stratosphere and becomes adsorbed on fine aerosols, can be a useful indicator of upper air transport into a region. Lead-210 is produced by the decay of radon-222 out-gassed into the lower atmosphere from ground-based uranium deposits. Potassium-40, found in soils, can act as a measure of wind-blown dust and also comes from burning of wood and other biomass that is enriched in this natural radioisotope. Thus, both lead-210 and potassium-40 can aid in identification of aerosols sourced in the lower atmosphere. As part of our continuing interest in the lifetimes and sources of aerosols and their radiative effects, we report here measurements of fine aerosol radioactivity in Mexico City, one of the largest megacities in the world. Samples were collected on quartz fiber filters by using cascade impactors (Sierra type, Anderson Instruments) and high-volume air samplers from the rooftop of the main laboratory of El Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA). By using stage 4 of the impactor and timers, we were able to collect integrated samples of sizes > 1 micrometer and < 1 micrometer over 12-hr time periods daily for approximately one month in April 2003. Samples were counted at the University of Illinois at Chicago by using state-of-the-art gamma counting (beryllium-7, 477.6 keV; potassium-40, 1460.8 keV; lead-210, 46.5 keV). The beryllium-7 data indicate one possible upper-air transport event during April 2003. As expected, the lead-210 data indicate very little soil contribution to the fine aerosol. The potassium-40 data showed an increase in fine aerosol potassium during Holy Week that might be attributed to local combustion of biomass fuels. The data will be presented and discussed in light of future data analysis and comparison with other

  15. Aerosols and their sources at Summit Greenland - First results of continuous size- and time-resolved sampling

    Science.gov (United States)

    VanCuren, Richard A.; Cahill, Thomas; Burkhart, John; Barnes, David; Zhao, Yongjing; Perry, Kevin; Cliff, Steven; McConnell, Joe

    2012-06-01

    An ongoing program to continuously collect time- and size-resolved aerosol samples from ambient air at Summit Station, Greenland (72.6 N, 38.5 W) is building a long-term data base to both record individual transport events and provide long-term temporal context for past and future intensive studies at the site. As a "first look" at this data set, analysis of samples collected from summer 2005 to spring 2006 demonstrates the utility of continuous sampling to characterize air masses over the ice pack, document individual aerosol transport events, and develop a long-term record. Seven source-related aerosol types were identified in this analysis: Asian dust, Saharan dust, industrial combustion, marine with combustion tracers, fresh coarse volcanic tephra, and aged volcanic plume with fine tephra and sulfate, and the well-mixed background "Arctic haze". The Saharan dust is a new discovery; the other types are consistent with those reported from previous work using snow pits and intermittent ambient air sampling during intensive study campaigns. Continuous sampling complements the fundamental characterization of Greenland aerosols developed in intensive field programs by providing a year-round record of aerosol size and composition at all temporal scales relevant to ice core analysis, ranging from individual deposition events and seasonal cycles, to a record of inter-annual variability of aerosols from both natural and anthropogenic sources.

  16. Molecular characterization of S- and N-containing organic constituents in ambient aerosols by negative ion mode high-resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    Science.gov (United States)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-01

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using negative ion mode Nanospray Desorption Electrospray Ionization High-Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day (6 h each) were collected in Bakersfield, CA on 20-24 June. Four characteristic groups were identified: molecules composed of carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen- (CHON), and both nitrogen- and sulfur-containing organics (CHONS). The chemical formula and elemental ratios were consistent with the presence of organonitrates, organosulfate, and nitroxy organosulfates in the negative ion mode mass spectra. The number of observed CHO compounds increased in the afternoon samples, suggesting photochemical processing as a source. The average number of CHOS compounds had the smallest changes during the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHONS and CHON) had greater numbers of compounds in the early morning (midnight to 6 A.M.) and night (6 P.M. to midnight) samples, respectively, consistent with nitrate radical chemistry as a likely source for those compounds. Most of the compounds were found in submicron particles. The size distribution of the number of CHON compounds was bimodal, potentially indicating two types of sources. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources. These data are complementary to previous results from positive ion mode nano-DESI/MS analysis of a subset of the same samples providing a more complete view of aerosol chemical composition at Bakersfield.

  17. The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in Southwestern Ontario during BAQS-Met

    Directory of Open Access Journals (Sweden)

    M. Z. Markovic

    2010-10-01

    Full Text Available The Border Air Quality and Meteorology Study (BAQS-Met was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on regional air quality in Southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM1, with a specific emphasis on nitrate. We evaluate the ability of AURAMS, the Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS onboard the National Research Council (NRC of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO3 at the ground site (observed mean (M_obs = 0.50 μg m−3; modelled mean (M_mod = 0.58 μg m−3; root mean square error (RSME = 1.27 μg m−3 was better than aloft (M_obs = 0.32 μg m−3; M_mod = 0.09 μg m−3; RSME = 0.48 μg m−3. Possible reasons for discrepancies include errors in (i emission inventories, (ii atmospheric chemistry, (iii predicted meteorological parameters, or (iv gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM1 nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH3(g + NH4+ − SO42− are responsible for the poor agreement between modelled and measured values.

  18. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013

    Science.gov (United States)

    Zhang, Y.-L.; Huang, R.-J.; El Haddad, I.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Zotter, P.; Bozzetti, C.; Daellenbach, K. R.; Canonaco, F.; Slowik, J. G.; Salazar, G.; Schwikowski, M.; Schnelle-Kreis, J.; Abbaszade, G.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.; Szidat, S.

    2015-02-01

    During winter 2013, extremely high concentrations (i.e., 4-20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction

  19. The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in southwestern Ontario during BAQS-Met

    Directory of Open Access Journals (Sweden)

    M. Z. Markovic

    2011-04-01

    Full Text Available The Border Air Quality and Meteorology Study (BAQS-Met was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on air quality in southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM1, with a specific emphasis on nitrate. We evaluate the ability of AURAMS, Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS onboard the National Research Council (NRC of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO3 at the ground site (observed mean (Mobs = 0.50 μg m−3; modelled mean (Mmod = 0.58 μg m−3; root mean square error (RSME = 1.27 μg m−3 was better than aloft (Mobs = 0.32 μg m−3; Mmod = 0.09 μg m−3; RSME = 0.48 μg m−3. Possible reasons for discrepancies include errors in (i emission inventories, (ii atmospheric chemistry, (iii predicted meteorological parameters, or (iv gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM1 nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH3(g + pNH4+ − 2 · pSO42- are responsible for

  20. Chemical Characterization of Secondary Organic Aerosol from Oxidation of Isoprene Hydroxyhydroperoxides.

    Science.gov (United States)

    Riva, Matthieu; Budisulistiorini, Sri H; Chen, Yuzhi; Zhang, Zhenfa; D'Ambro, Emma L; Zhang, Xuan; Gold, Avram; Turpin, Barbara J; Thornton, Joel A; Canagaratna, Manjula R; Surratt, Jason D

    2016-09-20

    Atmospheric oxidation of isoprene under low-NOx conditions leads to the formation of isoprene hydroxyhydroperoxides (ISOPOOH). Subsequent oxidation of ISOPOOH largely produces isoprene epoxydiols (IEPOX), which are known secondary organic aerosol (SOA) precursors. Although SOA from IEPOX has been previously examined, systematic studies of SOA characterization through a non-IEPOX route from 1,2-ISOPOOH oxidation are lacking. In the present work, SOA formation from the oxidation of authentic 1,2-ISOPOOH under low-NOx conditions was systematically examined with varying aerosol compositions and relative humidity. High yields of highly oxidized compounds, including multifunctional organosulfates (OSs) and hydroperoxides, were chemically characterized in both laboratory-generated SOA and fine aerosol samples collected from the southeastern U.S. IEPOX-derived SOA constituents were observed in all experiments, but their concentrations were only enhanced in the presence of acidified sulfate aerosol, consistent with prior work. High-resolution aerosol mass spectrometry (HR-AMS) reveals that 1,2-ISOPOOH-derived SOA formed through non-IEPOX routes exhibits a notable mass spectrum with a characteristic fragment ion at m/z 91. This laboratory-generated mass spectrum is strongly correlated with a factor recently resolved by positive matrix factorization (PMF) of aerosol mass spectrometer data collected in areas dominated by isoprene emissions, suggesting that the non-IEPOX pathway could contribute to ambient SOA measured in the Southeastern United States. PMID:27466979

  1. Apportionment of urban aerosol sources in Chongqing (China) using synergistic on-line techniques

    Science.gov (United States)

    Chen, Yang; Yang, Fumo

    2016-04-01

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Chongqing (southwestern China) have been determined. Aerosol chemical composition analyses were performed using multiple on-line techniques, such as single particle aerosol mass spectrometer (SPAMS) for single particle chemical composition, on-line elemental carbon-organic carbon analyzer (on-line OC-EC), on-line X-ray fluorescence (XRF) for elements, and in-situ Gas and Aerosol Compositions monitor (IGAC) for water-soluble ions in PM2.5. All the datasets from these techniques have been adjusted to a 1-h time resolution for receptor model input. Positive matrix factorization (PMF) has been used for resolving aerosol sources. At least six sources, including domestic coal burning, biomass burning, dust, traffic, industrial and secondary/aged factors have been resolved and interpreted. The synergistic on-line techniques were helpful for identifying aerosol sources more clearly than when only employing the results from the individual techniques. This results are useful for better understanding of aerosol sources and atmospheric processes.

  2. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...... aspect of the aesthetization of modern culture in general, from architecture, transport and urbanized lifeforms to film, sound art, installation art and digital environments. This presentation will discuss the key aspects of ambient aesthetization, including issues such as objectlessness...

  3. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry – Part II: overview of the results at the CENICA supersite and comparison to previous studies

    Directory of Open Access Journals (Sweden)

    D. Salcedo

    2005-06-01

    Full Text Available An Aerodyne Aerosol Mass Spectrometer (AMS was deployed at the CENICA Supersite during the Mexico City Metropolitan Area field study from 31 March–4 May 2003. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1 with high time and size-resolution. Measurements of Black Carbon (BC using an aethalometer, and estimated soil concentrations from Proton-Induced X-Ray Emission (PIXE analysis of impactor substrates are also presented and combined with the AMS in order to include refractory material and estimate the total PM2.5 mass concentration at CENICA during this campaign. In Mexico City, the organic fraction of the estimated PM2.5 at CENICA represents 54.6% of the mass, with the rest consisting of inorganic compounds (mainly ammonium nitrate and sulfate/ammonium salts, BC, and soil. Inorganic compounds represent 27.5% of PM2.5; BC mass concentration is about 11%; while soil represents about 6.9%. The NR species and BC have diurnal cycles that can be qualitatively interpreted as the interplay of direct emissions, photochemical production in the atmosphere followed by condensation and gas-to-particle partitioning, boundary layer dynamics, and/or advection. Bi- and trimodal size distributions are observed for the AMS species, with a small combustion (likely traffic organic particle mode and an accumulation mode that contains mainly organic and secondary inorganic compounds. The AMS and BC mass concentrations, size distributions, and diurnal cycles are found to be qualitatively similar to those from most previous field measurements in Mexico City.

  4. Comparison of physical and chemical properties of ambient aerosols during the 2009 haze and non-haze periods in Southeast Asia.

    Science.gov (United States)

    Xu, Jingsha; Tai, Xuhong; Betha, Raghu; He, Jun; Balasubramanian, Rajasekhar

    2015-10-01

    Recurrent smoke-haze episodes that occur in Southeast Asia (SEA) are of much concern because of their environmental and health impacts. These haze episodes are mainly caused by uncontrolled biomass and peat burning in Indonesia. Airborne particulate matter (PM) samples were collected in the southwest coast of Singapore from 16 August to 9 November in 2009 to assess the impact of smoke-haze episodes on the air quality due to the long-range transport of biomass and peat burning emissions. The physical and chemical characteristics of PM were investigated during pre-haze, smoke-haze, and post-haze periods. Days with PM2.5 mass concentrations of ≥35 μg m(-3) were considered as smoke-haze events. Using this criterion, out of the total 82 sampling days, nine smoke-haze events were identified. The origin of air masses during smoke-haze episodes was studied on the basis of HYSPLIT backward air trajectory analysis for 4 days. In terms of the physical properties of PM, higher particle surface area concentrations and particle gravimetric mass concentrations were observed during the smoke-haze period, but there was no consistent pattern for particle number concentrations during the haze period as compared to the non-haze period except that there was a significant increase at about 08:00, which could be attributed to the entrainment of PM from aloft after the breakdown of the nocturnal inversion layer. As for the chemical characteristics of PM, among the six key inorganic water-soluble ions (Cl(-), NO3(-), nss-SO4(2-), Na(+), NH4(+), and nss-K(+)) measured in this study, NO3(-), nss-SO4(2-), and NH4(+) showed a significant increase in their concentrations during the smoke-haze period together with nss-K(+). These observations suggest that the increased atmospheric loading of PM with higher surface area and increased concentrations of optically active secondary inorganic aerosols [(NH4)2SO4 or NH4HSO4 and NH4NO3] resulted in the atmospheric visibility reduction in SEA due to

  5. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites

    Science.gov (United States)

    Reggente, Matteo; Dillner, Ann M.; Takahama, Satoshi

    2016-02-01

    Organic carbon (OC) and elemental carbon (EC) are major components of atmospheric particulate matter (PM), which has been associated with increased morbidity and mortality, climate change, and reduced visibility. Typically OC and EC concentrations are measured using thermal-optical methods such as thermal-optical reflectance (TOR) from samples collected on quartz filters. In this work, we estimate TOR OC and EC using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE Teflon) filters using partial least square regression (PLSR) calibrated to TOR OC and EC measurements for a wide range of samples. The proposed method can be integrated with analysis of routinely collected PTFE filter samples that, in addition to OC and EC concentrations, can concurrently provide information regarding the functional group composition of the organic aerosol. We have used the FT-IR absorbance spectra and TOR OC and EC concentrations collected in the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network (USA). We used 526 samples collected in 2011 at seven sites to calibrate the models, and more than 2000 samples collected in 2013 at 17 sites to test the models. Samples from six sites are present both in the calibration and test sets. The calibrations produce accurate predictions both for samples collected at the same six sites present in the calibration set (R2 = 0.97 and R2 = 0.95 for OC and EC respectively), and for samples from 9 of the 11 sites not included in the calibration set (R2 = 0.96 and R2 = 0.91 for OC and EC respectively). Samples collected at the other two sites require a different calibration model to achieve accurate predictions. We also propose a method to anticipate the prediction error; we calculate the squared Mahalanobis distance in the feature space (scores determined by PLSR) between new spectra and spectra in the calibration set. The squared Mahalanobis distance provides a crude method for assessing the

  6. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  7. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D.E.; Hopkins, A.R.; Paladino, J.D.; Whitefield, P.D. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1997-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  8. Spectral dependence of aerosol light absorption over the Amazon Basin

    Science.gov (United States)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-09-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Ångström exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70 % of the absorption Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Ångström exponents (90 % of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Ångström exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Ångström exponents on 24-h aerosol forcings, at least in the spectral

  9. Sugars in Antarctic aerosol

    Science.gov (United States)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  10. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under th

  11. Det ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Om begrebet "det ambiente", der beskriver, hvad der sker, når vi fornemmer baggrundsmusikkens diskrete beats, betragter udsigten gennem panoramavinduet eller tager 3D-brillerne på og læner os tilbage i biografsædet. Bogen analyserer, hvorfan ambiente oplevelser skabes, og hvilke konsekvenser det...

  12. Target and Measures to Prevent and Control Ambient Fine Particle Pollution in China%我国大气细颗粒物污染防治目标和控制措施研究

    Institute of Scientific and Technical Information of China (English)

    王书肖; 赵斌; 吴烨; 郝吉明

    2015-01-01

    我国面临着严重的细颗粒物(PM2.5)污染问题,PM2.5对人体健康、能见度、气候变化、生态系统等均产生了不良影响。本文旨在提出我国PM2.5污染防治目标和控制措施,为从根本上改善空气质量提供科学依据。首先,本文提出了2020年和2030年我国PM2.5污染防治目标。其次,采用能源和污染排放技术模型,分情景预测了我国未来一次大气污染物排放量的变化趋势。基于情景预测结果和此前研究建立的一次污染物排放与PM2.5浓度间的非线性关系,确定了2020年—2030年与PM2.5浓度改善相适应的全国和重点区域大气污染物减排目标。最后,利用能源和污染排放技术模型,提出了实现大气污染物减排的技术措施和对策建议。研究表明,2030年全国二氧化硫、氮氧化物、一次PM2.5和挥发性有机物的排放量应分别比2012年至少削减51%、64%、53%和36%,氨排放量也要略有下降。对于污染严重的重点区域,必须采取更严格的控制力度。要实现上述减排,应加快能源结构调整,推进煤炭清洁高效集中可持续利用,建立“车-油-路”一体的移动源控制体系,并强化多源多污染物的末端控制。%China is facing with severe fine particle (PM2.5) pollution, which has adverse effect on human health, visibility, climate change, and ecological system. This study aims to propose the target and measures to prevent and control ambient PM2.5pollution in China. Firstly, we proposed China’s PM2.5 pollution control targets for 2020 and 2030. Then, we projected the future emissions of primary air pollutants in China for six control scenarios with an energy utilization and pollution control technology model. Based on the projection results and the non-linear relationship between emissions of primary air pollutants and ambient PM2.5 concentrations established in previous studies, we determined the emission

  13. Det Ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Det ambiente er iscenesættelsen af en karakteristisk sanseoplevelse, der er kendetegnet ved fornemmelsen af at være omgivet. I dag bliver begrebet om det ambiente mest anvendt i forbindelse med musikgenren ’ambient musik’. Det ambiente er dog ikke essentielt knyttet til det musikalske, men må...... forstås som et betydeligt bredere fænomen i den moderne æstetiske kultur, der spiller en væsentlig rolle i oplevelsen af moderne transportformer, arkitektur, film, lydkunst, installationskunst og digitale multimedieiscenesættelser. En forståelse af det ambiente er derfor centralt for forståelsen af en...... moderne æstetiseret oplevelseskultur i almindelighed. Da det ambiente ikke hidtil har været gjort til genstand for en mere indgående teoretisk behandling, er der dog stor usikkerhed omkring, hvad fænomenet overhovedet indebærer. Hovedformålet med Det ambiente – Sansning, medialisering, omgivelse er derfor...

  14. Typical household vacuum cleaners: the collection efficiency and emissions characteristics for fine particles.

    Science.gov (United States)

    Lioy, P J; Wainman, T; Zhang, J; Goldsmith, S

    1999-02-01

    The issue of fine particle (PM2.5) exposures and their potential health effects is a focus of scientific research because of the recently promulgated National Ambient Air Quality Standard for PM2.5. Before final implementation, the health and exposure basis for the standard will be reviewed by the U.S. Environmental Protection Agency within the next five years. As part of this process, it is necessary to understand total particle exposure issues and to determine the relative importance of the origin of PM2.5 exposure in various micro-environments. The results presented in this study examine emissions of fine particles from a previously uncharacterized indoor source: the residential vacuum cleaner. Eleven standard vacuum cleaners were tested for the emission rate of fine particles by their individual motors and for their efficiency in collecting laboratory-generated fine particles. An aerosol generator was used to introduce fine potassium chloride (KCl) particles into the vacuum cleaner inlet for the collection efficiency tests. Measurements of the motor emissions, which include carbon, and the KCl aerosol were made using a continuous HIAC/Royco 5130 A light-scattering particle detector. All tests were conducted in a metal chamber specifically designed to completely contain the vacuum cleaner and operate it in a stationary position. For the tested vacuum cleaners, fine particle motor emissions ranged from 9.6 x 10(4) to 3.34 x 10(8) particles/min, which were estimated to be 0.028 to 176 micrograms/min for mass emissions, respectively. The vast majority of particles released were in the range of 0.3-0.5 micron in diameter. The lowest particle emission rate was obtained for a vacuum cleaner that had a high efficiency (HEPA) filter placed after the vacuum cleaner bag and the motor within a sealed exhaust system. This vacuum cleaner removed the KCl particles that escaped the vacuum cleaner bag and the particles emitted by the motor. Results obtained for the KCl

  15. Size-partitioning of an urban aerosol to identify particle determinants involved in the proinflammatory response induced in airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Martinon Laurent

    2009-03-01

    Full Text Available Abstract Background The contribution of air particles in human cardio-respiratory diseases has been enlightened by several epidemiological studies. However the respective involvement of coarse, fine and ultrafine particles in health effects is still unclear. The aim of the present study is to determine which size fraction from a chemically characterized background aerosol has the most important short term biological effect and to decipher the determinants of such a behaviour. Results Ambient aerosols were collected at an urban background site in Paris using four 13-stage low pressure cascade impactors running in parallel (winter and summer 2005 in order to separate four size-classes (PM0.03–0.17 (defined here as ultrafine particles, PM0.17–1 (fine, PM1–2.5(intermediate and PM2.5–10 (coarse. Accordingly, their chemical composition and their pro-inflammatory potential on human airway epithelial cells were investigated. Considering isomass exposures (same particle concentrations for each size fractions the pro-inflammatory response characterized by Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF release was found to decrease with aerosol size with no seasonal dependency. When cells were exposed to isovolume of particle suspensions in order to respect the particle proportions observed in ambient air, the GM-CSF release was maximal with the fine fraction. In presence of a recombinant endotoxin neutralizing protein, the GM-CSF release induced by particles is reduced for all size-fractions, with exception of the ultra-fine fraction which response is not modified. The different aerosol size-fractions were found to display important chemical differences related to the various contributing primary and secondary sources and aerosol age. The GM-CSF release was correlated to the organic component of the aerosols and especially its water soluble fraction. Finally, Cytochrome P450 1A1 activity that reflects PAH bioavailability varied as a

  16. Ambient Gestures

    OpenAIRE

    Karam, Maria; Hare, Jonathon; Lewis, Paul; schraefel, m.c.

    2006-01-01

    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be p...

  17. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  18. La intervención del derecho penal en materia de bioseguridad: la criminalización de la actividad empresarial biotecnológica de liberación intencional en el ambiente con fines comerciales y de comercialización de productos biotech

    OpenAIRE

    Tanus Job e Meira, Bruno

    2009-01-01

    [ES] El objetivo general del presente trabajo reside en analizar el sistema de control del riesgo biotecnológico relativo a las principales actividades por las cuales se utilizan las empresas biotech en el ámbito agroalimentario, es decir, las conductas de liberación en el ambiente con fines comerciales, así como la comercialización de “organismos modificados genéticamente” (OMGs) y sus derivados. Tales actividades son consideradas como las más importantes en el ámbito mercantil y, efectivame...

  19. Los Angeles Summer Midday Particulate Carbon: Primary and Secondary Aerosol

    OpenAIRE

    Turpin, Barbara J.; Huntzicker, James J.; Larson, Susan M; Cass, Glen R.

    1991-01-01

    Aerosol sampling during photochemically active times across the Los Angeles Basin has provided evidence of secondary formation of organic aerosol from gas-phase precursors at midday. Ambient organic carbon/elemental carbon ratios exceeded the estimated ratio of organic carbon/elemental carbon in primary source emissions on most sampling days at all sites. The concentration of secondary organic aerosol was calculated by using ambient data and estimates of the organic ca...

  20. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China.

    Science.gov (United States)

    Tang, Yong; Huang, Yuanlong; Li, Ling; Chen, Hong; Chen, Jianmin; Yang, Xin; Gao, Song; Gross, Deborah S

    2014-12-01

    Physical and chemical properties of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28, 2009. A Cavity-Ring-Down Aerosol Extinction Spectrometer (CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties, respectively. An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to detect single particle sizes and chemical composition. Seven particle types were detected. Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25, when they started to originate from North China. The aerosol extinction, scattering, and absorption coefficients all dropped sharply when this cold, clean air arrived. Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards. The aerosol optical properties were dependent on the wind direction. Aerosols with high extinction coefficient and scattering Ångström exponent (SAE) were observed when the wind blew from the west and northwest, indicating that they were predominantly fine particles. Nitrate and ammonium correlated most strongly with the change in aerosol optical properties. In the elemental carbon/organic carbon (ECOC) particle type, the diurnal trends of single scattering albedo (SSA) and elemental carbon (EC) signal intensity had a negative correlation. We also found a negative correlation (r=-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period, suggesting that particulate aromatic components might play an important role in light absorption in urban areas. PMID:25499489

  1. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China

    Institute of Scientific and Technical Information of China (English)

    Yong Tang; Yuanlong Huang; Ling Li; Hong Chen; Jianmin Chen; Xin Yang; Song Gao

    2014-01-01

    Physical and chemical properdes of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28,2009.A Cavity-Ring-Down Aerosol Extinction Spectrometer (CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties,respectively.An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS)was used to detect single particle sizes and chemical composition.Seven particle types were detected.Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25,when they started to originate from North China.The aerosol extinction,scattering,and absorption coefficients all dropped sharply when this cold,clean air arrived.Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards.The aerosol optical properties were dependent on the wind direction.Aerosols with high extinction coefficient and scattering Angstr(o)m exponent (SAE) were observed when the wind blew from the west and northwest,indicating that they were predominantly fine particles.Nitrate and ammonium correlated most strongly with the change in aerosol optical properties.In the elemental carbon/organic carbon (ECOC) particle type,the diurnal trends of single scattering albedo (SSA) and elemental carbon (EC) signal intensity had a negative correlation.We also found a negative correlation (r =-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period,suggesting that particulate aromatic components might play an important role in light absorption in urban areas.

  2. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    Science.gov (United States)

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic

  3. DIAGNOSTICO AMBIENTAL Y VALORACIÓN DE LOS RECURSOS PARA FINES TURÍSTICOS DE LOS ECOSISTEMAS DE MANGLAR EN LA BAHÍA DE BANDERAS, MÉXICO.

    OpenAIRE

    Cruz Romero Bartolo; Luis Fernando González Guevara; Carmen Navarro Rodríguez

    2013-01-01

    Mediante una “Lista de chequeo” se establece el diagnóstico ambiental de los sistemas estuarinos de la Bahía de Banderas: El Salado, Boca Negra – Boca de Tomates y El Quelele; y se identifican los principales factores de presión ambiental en cada sistema. Los elementos ambientales considerados fueron el suelo, agua, aire, flora, fauna y paisaje. Los resultados indican que el paisaje de estos sistemas, ha perdido su calidad original y las principales causas han sido el cambio de uso de suelo y...

  4. Determination of 40K, 232Th and 238U activity concentrations in ambient PM2.5 aerosols and the associated inhalation effective dose to the public in Jeddah City, Saudi Arabia

    International Nuclear Information System (INIS)

    Natural radioactivity of soil samples has been studied in many countries of the Arabian Peninsula, including Saudi Arabia. Radiological indices based on soil radioactivity have been widely used in these studies. However, there are no available data about natural radioactivity of fine aerosol particles in such countries. The objective of this study is to determine the activity concentrations of 40K, 232Th and 238U in airborne PM2.5 and the associated internal inhalation radiation dose to the public in Jeddah City, Saudi Arabia. Twenty-four air samples in four locations throughout Jeddah were collected and analyzed for PM2.5 and the associated K, Th and U. The activity concentrations of the isotopes 40K, 232Th and 238U were calculated. High atmospheric PM2.5 concentrations (mean: 50.81 ± 34.02 μg/m3) were found. The natural radioactivity associated with PM2.5 due to the isotopes 40K, 232Th and 238U were 301.8 ± 76.1, 11.8 ± 4.2 and 10.8 ± 3.4 Bq/kg, respectively, and the Raeq was calculated as 44.9 ± 14.0 Bq/kg. The inhalation annual effective radiation dose to the public due to natural isotopes of the airborne PM2.5 was in the range 15.03–58.87 nSv/year, depending on the age group. Although these dose values were associated with the PM2.5 fraction only, they were higher than the world references values in air reported in the UNSCEAR, 2000 report. - Highlights: • High airborne PM2.5 concentrations over 4 months (24 samples) were found in Jeddah. • The mean activity concentrations of 40K, 232Th and 238U were assessed in PM2.5. • Effective inhalation dose due to 40K, 232Th and 238U was 59 nSv/year for adults. • Effective inhalation dose was higher than the world reference values in air. • Studying the inhalation dose due to other radioisotopes in PM2.5 is recommended

  5. Organic aerosols

    International Nuclear Information System (INIS)

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  6. Retrieving global aerosol sources from satellites using inverse modeling

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2008-01-01

    Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.

    The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.

    Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful

  7. Atmospheric aerosols parameters behavior and its association with meteorological activities variables over western Indian tropical semi-urban site i.e., Udaipur

    Science.gov (United States)

    Vyas, B. M.; Saxenna, Abhishek; Panwar, Chhagan

    2016-05-01

    The present study has been focused to the identify the role of meteorological processes on changing the monthly variation of AOD at 550nm, Angstrom Exponent Coefficient (AEC, 440/670nm) and Cloud Effective Radius (CER, μm) measured during January, 2005 to December 2013 over western Indian location i.e., Udaipur (24.6° N, 73.7° E, 560 m amsl). The monthly variation of AOD 550nm, AEC and during entire study period have shown the strong combined influence of different local surface meteorological parameters in varying amplitude with different nature. The higher values of wind speed, ambient surface temperature, planetary boundary layer, and favorable wind direction coming from desert and oceanic region (W and SW) may be recognize as some of possible factor to exhibit the higher aerosols loading of bigger aerosol size particles in pre-monsoon. These meteorological factors seem also to be plausible responsible factors for drastically reducing the cloud effective radius in pre-monsoon season. In contrary to this, in winter, lower atmospheric aerosols burden and more abundance of fine size particles along with increasing the CER sizes also seem to be influenced and governed by the adverse nature of meteorological conditions such lowering the PBL, T, WS as well as with air pollutants transportation by wind from the N and NE region, of high aerosols loading of fine size particles as anthropogenic aerosols located far away to the observing site.

  8. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered

  9. Comparison of the aerosol optical properties and size distribution retrieved by sun photometer with in situ measurements at midlatitude

    Science.gov (United States)

    Chauvigné, Aurélien; Sellegri, Karine; Hervo, Maxime; Montoux, Nadège; Freville, Patrick; Goloub, Philippe

    2016-09-01

    observations are then compared to the near-surface in situ measurements, at dry and at ambient relative humidities. When in situ measurements are considered at dry state, the in situ fine mode diameters are 44 % higher than the sun-photometer-retrieved diameters and in situ volume concentrations are 20 % lower than those of the sun-photometer-retrieved fine mode concentration. Using a parameterised hygroscopic growth factor applied to aerosol diameters, the difference between in situ and retrieved diameters grows larger. Coarse mode in situ diameters and concentrations show a good correlation with retrieved PSDs from remote sensing.

  10. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material.Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005.Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  11. The effects of aerosols on climate

    International Nuclear Information System (INIS)

    Atmospheric aerosols (fine particles suspended in the atmosphere) can play two roles in the Earth’s radiation budget. In cloud-free air, aerosols scatter sunlight, some of which is reflected back to space (direct effect). Aerosols also determine the microphysical and optical properties of clouds (indirect effect). Whereas changes in natural aerosols are probably small during the last 100 years, there has been a large increase in the concentration of anthropogenic aerosols. The magnitude of their radiative effects is still very uncertain but seems to be sufficient to mask part of the global warming expected to stem from anthropogenic greenhouse gases. This paper presents the physical mechanisms of aerosol influence on climate. We then estimate the anthropogenic aerosol radiative effects and assess the climate response to these perturbations. (author)

  12. The fifth Finnish national aerosol symposium

    International Nuclear Information System (INIS)

    The Fifth Finnish Aerosol Symposium was held June 1-3, 1993. Symposium is jointly organized by FAAR, Aerosol Technology Group of Technical Research Centre of Finland and Helsinki University, Department of Physics. Aerosols, the suspensions of solid and liquid particles and gases, are receiving increasing importance in many areas of science and technology. These include industrial hygiene, ambient and indoor air pollution, pollution control technologies, cloud physics, nuclear safety engineering, combustion science and engineering, clean manufacturing technologies and material processing. The importance of aerosol issues during the development of advanced fuel conversion and material processing technologies can be realized when looking at the numerous papers presented on these topics at the Symposium

  13. Toxicity of Ambient Particulate Matter IV: Acute toxicity study in pulmonary hypertensive rats after exposure to model compounds for the secondary aerosol fraction of PM10 - ammonium bisulfate, ferrosulfate and nitrate

    NARCIS (Netherlands)

    Cassee FR; Boere AJF; Fokkens PHB; Dormans JAMA; Bree L van; Rombout PJA; LEO; LPI

    1999-01-01

    This (4th) report on the toxicity of ambient particulate matter (PM) presents effects of the model compounds for PM in ambient air - ammonium bisulfate, ammonium ferrosulfate and ammonium nitrate - on healthy rats and rats with monocrotaline-induced pulmonary hypertension (PH). The objective was bas

  14. Characterization of aerosol particles at the forested site in Lithuania

    Science.gov (United States)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  15. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    International Nuclear Information System (INIS)

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  16. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    OpenAIRE

    Jiang, Q; Sun, Y L; Z. Wang; Y. Yin

    2014-01-01

    Aerosol particles were characterized by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) along with various collocated instruments in Beijing, China to investigate the aerosol composition and sources during the Chinese Spring Festival, 2013. Three fireworks (FW) events exerting significant and short-term impacts on fine particles (PM2.5) were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW showed major impacts on non-refractory pot...

  17. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    OpenAIRE

    Jiang, Q; Sun, Y L; Wang, Z.(Institute of High Energy Physics, Beijing, China); Y. Yin

    2015-01-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have...

  18. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  19. Classification of aerosol properties derived from AERONET direct sun data

    Directory of Open Access Journals (Sweden)

    G. P. Gobbi

    2007-01-01

    Full Text Available Aerosol spectral measurements by sunphotometers can be characterized by three independent pieces of information: 1 the optical thickness (AOT, a measure of the column aerosol concentration, 2 the optical thickness average spectral dependence, given by the Angstrom exponent (α, and 3 the spectral curvature of α (δα. We propose a simple graphical method to visually convert (α, δα to the contribution of fine aerosol to the AOT and the size of the fine aerosols. This information can be used to track mixtures of pollution aerosol with dust, to distinguish aerosol growth from cloud contamination and to observe aerosol humidification. The graphical method is applied to the analysis of yearly records at 8 sites in 3 continents, characterized by different levels of pollution, biomass burning and mineral dust concentrations. Results depict the dominance of fine mode aerosols in driving the AOT at polluted sites. In stable meteorological conditions, we see an increase in the size of the fine aerosol as the pollution stagnates and increases in optical thickness. Coexistence of coarse and fine particles is evidenced at the polluted sites downwind of arid regions.

  20. Chemical characterisation of fine particles from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Saarnio, K.

    2013-10-15

    Biomass burning has lately started to attract attention because there is a need to decrease the carbon dioxide (CO{sub 2}) emissions from the combustion of fossil fuels. Biomass is considered as CO{sub 2} neutral fuel. However, the burning of biomass is one of the major sources of fine particles both at the local and global scale. In addition to the use of biomass as a fuel for heat energy production, biomass burning emissions can be caused, e.g. by slash-and-burn agriculture and wild open-land fires. Indeed, the emissions from biomass burning are crucially important for the assessment of the potential impacts on global climate and local air quality and hence on human health. The chemical composition of fine particles has a notable influence on these impacts. The overall object of this thesis was to gain knowledge on the chemistry of fine particles that originate from biomass burning as well as on the contribution of biomass burning emissions to the ambient fine particle concentrations. For this purpose novel analytical methods were developed and tested in this thesis. Moreover, the thesis is based on ambient aerosol measurements that were carried out in six European countries at 12 measurement sites during 2002-2011. Additionally, wood combustion experiments were conducted in a laboratory. The measurements included a wide range of techniques: filter and impactor samplings, offline chemical analyses (chromatographic and mass spectrometric techniques, thermal-optical method), and online measurements of particles' physical properties and chemical composition (incl. particle number and mass concentrations and size distributions, concentrations of carbonaceous components, water-soluble ions, and tracer compounds). This thesis presents main results of different studies aimed towards chemical characterisation of fine particle emissions from biomass burning. It was found that wood combustion had a significant influence on atmospheric fine particle concentrations in

  1. The Finokalia Aerosol Measurement Experiment – 2008 (FAME-08): an overview

    OpenAIRE

    M. Pikridas; Bougiatioti, A.; Hildebrandt, L.; G. J. Engelhart; E. Kostenidou; Mohr, C.; A. S. H. Prévôt; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; M. Psichoudaki; Mihalopoulos, N.; Pilinis, C.; A. Stohl

    2010-01-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and partic...

  2. Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong

    Science.gov (United States)

    Li, Y. J.; Lee, B. P.; Su, L.; Fung, J. C. H.; Chan, C. K.

    2015-01-01

    Atmospheric particulate matter (PM) remains poorly understood due to the lack of comprehensive measurements at high time resolution for tracking its dynamic features and the lack of long-term observation for tracking its seasonal variability. Here, we present highly time-resolved and seasonal compositions and characteristics of non-refractory components in PM with a diameter less than 1 μm (NR-PM1) at a suburban site in Hong Kong. The measurements were made with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at the Hong Kong University of Science and Technology (HKUST) Air Quality Research Supersite for 4 months, with one in each season of the year. The average NR-PM1 concentration of ~ 15 μg m-3 is higher than those AMS measurements made in South Korea and Japan, but lower than those in North China, the Yangtze River Delta and the nearby Pearl River Delta. The seasonal dependence of the total NR-PM1 monthly averaged concentrations was small, but that of the fractions of the species in NR-PM1 was significant. Site characteristic plays an important role in the relative fractions of species in NR-PM1 and our results are generally consistent with measurements at other non-urban sites in this regard. Detailed analyses were conducted on the AMS data in the aspects of (1) species concentrations, (2) size distributions, (3) degree of oxygenation of organics, and (4) positive matrix factorization (PMF)-resolved organic factors in a seasonal context, as well as with air mass origin from back-trajectory analysis. Sulfate had the highest fraction in NR-PM1 (> 40%), and the surrogates of secondary organic species - semi-volatile oxygenated organic aerosol (SVOOA) and low-volatility oxygenated organic aerosol (LVOOA) - prevailed (~ 80%) in the organic portion of NR-PM1. Local contributions to the organic portion of NR-PM1 at this suburban site was strongly dependent on season. The hydrocarbon-like organic aerosol (HOA) factor related to

  3. Seasonal characteristics of fine particulate matter (PM) based on high resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong

    Science.gov (United States)

    Li, Y. J.; Lee, B. P.; Su, L.; Fung, J. C. H.; Chan, C. K.

    2014-08-01

    Atmospheric particulate matter (PM) remains poorly understood due to the lack of comprehensive measurements at high time resolution for tracking its dynamic features and the lack of long-term observation for tracking its seasonal variability. Here, we present highly time-resolved and seasonal compositions and characteristics of non-refractory components in PM with diameter less than 1 μm (NR-PM1) at a suburban site in Hong Kong. The measurements were made with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at the Hong Kong University of Science and Technology (HKUST) Air Quality Research Supersite for four months, with one in each season of the year. The average NR-PM1 concentration of ~15 μg m-3 is higher than those AMS measurements made in South Korea and Japan, but lower than those in North China, the Yangtze River Delta and the nearby Pearl River Delta. The seasonal dependence of the total NR-PM1 monthly averaged concentrations was small but that of the fractions of the species in NR-PM1 was significant. Site characteristic plays an important role in the relative fractions of species in NR-PM1 and our results are generally consistent with measurements at other non-urban sites in this regard. Detailed analyses were conducted on the AMS data in the aspects of (1) species concentrations, (2) size distributions, (3) degree of oxygenation of organics, and (4) positive matrix factorization (PMF)-resolved organic factors in a seasonal context, as well as with air mass origin from back-trajectory analysis. Sulfate had the highest fraction in NR-PM1 (> 40%) and the surrogates of secondary organic species, semi-volatile oxygenated organic aerosol (SVOOA) and low-volatility oxygenated organic aerosol (LVOOA), prevailed (~80%) in the organic portion of NR-PM1. Local contributions to the organic portion of NR-PM1 at this suburban site was strongly dependent on season. The hydrocarbon-like organic aerosol (HOA) factor related to local

  4. Sources of Size Segregated Sulfate Aerosols in the Arctic Summer

    Science.gov (United States)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Abbatt, J.; Levasseur, M.

    2015-12-01

    Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (<0.49 μm) and 86% of SO2 were from biogenic sources. Concentrations of biogenic sulfate for fine

  5. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    Science.gov (United States)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  6. Aerosol Chemistry of Furfural and Sugars

    Science.gov (United States)

    Srithawirat, T.; Brimblecombe, P.

    2008-12-01

    Furfural and sugars (as levoglucosan equivalent) are derived from biomass burning and contribute to aerosol composition. This study examined the potential of furfural and levoglucosan to be tracers of biomass burning. Furfural is likely to be oxidized quickly so comparison with levoglucosan may give a sense of the age of the aerosols in forest fire smoke. However, few furfural emissions are available for biomass combustion. Furfural and sugars were determined in coarse aerosols (>2.4μm aerodynamic diameter) and fine aerosols (Furfural and sugars dominated in fine fractions, especially in the UK autumn. Sugars were found at 5.96-18.37 nmol m-3 in fine mode and 1.36-5.75 nmol m-3 in coarse mode aerosols in the UK. Furfural was found at 0.18-0.91 nmol m-3 and 0.05-0.51 nmol m-3 respectively in the same aerosols. Sugars were a dominant contributor to aerosol derived from biomass burning. Sugars and furfural were about 10 and 20 times higher during haze episodes in Malaysia. Laboratory experimental simulation suggested furfural is more rapid destroyed by UV and sunlight than levoglucosan.

  7. DIAGNOSTICO AMBIENTAL Y VALORACIÓN DE LOS RECURSOS PARA FINES TURÍSTICOS DE LOS ECOSISTEMAS DE MANGLAR EN LA BAHÍA DE BANDERAS, MÉXICO.

    Directory of Open Access Journals (Sweden)

    Cruz Romero Bartolo

    2013-06-01

    Full Text Available Mediante una “Lista de chequeo” se establece el diagnóstico ambiental de los sistemas estuarinos de la Bahía de Banderas: El Salado, Boca Negra – Boca de Tomates y El Quelele; y se identifican los principales factores de presión ambiental en cada sistema. Los elementos ambientales considerados fueron el suelo, agua, aire, flora, fauna y paisaje. Los resultados indican que el paisaje de estos sistemas, ha perdido su calidad original y las principales causas han sido el cambio de uso de suelo y el desarrollo urbano y turístico mal planeado. Respecto a la valoración de los recursos (naturales y artificiales, con potencial turístico para cada sistema, se determinó bajo la metodología de “Inventario de recursos”; propuesta por Leno (1993. La valoración de recursos en los tres sistemas estuarinos El Salado, Boca Negra – Boca de Tomates y El Quelele; nos muestra que todos los recursos potenciales se encuentran en conjunto lo cual les otorga un valor más elevado respecto a la metodología utilizada, esto no limita las áreas solo al avistamiento y visita de los recursos con mayor jerarquía como las aves, cangrejos, flora, canales navegables, torres de observación y senderos elevados. Al contrario, se considera que el conjunto de todos los recursos con potencial turístico son susceptibles de aprovechamiento bajo esquemas de sustentabilidad mediante programas de turismo asociado a la naturaleza.

  8. Burning of olive tree branches: a major organic aerosol source in the Mediterranean

    Directory of Open Access Journals (Sweden)

    E. Kostenidou

    2013-03-01

    Full Text Available Aerosol produced during the burning of olive tree branches was characterized with both direct source-sampling (using a mobile smog chamber and with ambient measurements during the burning season. The fresh particles were composed of 80% organic matter, 8–10% black carbon (BC, 5% potassium, 3–4% sulfate, 2–3% nitrate and 0.8% chloride. Almost half of the fresh olive tree branches burning organic aerosol (otBB-OA consisted of alkane groups. Their mode diameter was close to 70 nm. The oxygen to carbon (O:C ratio of the fresh otBB-OA was 0.29 ± 0.04. The mass fraction of levoglucosan in PM1 was 0.034–0.043, relatively low in comparison with most fuel types. This may lead to an underestimation of the otBB-OA contribution if levoglucosan is being used as a wood burning tracer. Chemical aging was observed during smog chamber experiments, as f44 and O:C ratio increased, due to reactions with OH radicals and O3. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra, with a main difference at m/z 60, used as levoglucosan tracer. In addition to particles, volatile organic compounds (VOCs such as methanol, acetonitrile, acrolein, benzene, toluene and xylenes are also emitted. Positive matrix factorization (PMF was applied to the ambient organic aerosol data and 3 factors could be identified: OOA (oxygenated organic aerosol, 55%, HOA (hydrocarbon-like organic aerosol, 11.3% and otBB-OA 33.7%. The fresh chamber otBB-OA AMS spectrum is close to the PMF otBB-OA spectrum and resembles the ambient mass spectrum during olive tree branches burning periods. We estimated an otBB-OA emission factor of 3.5 ± 0.2 g kg−1. Assuming that half of the olive tree branches pruned is burned in Greece 2280 ± 140 tons of otBB-OA are emitted every year. This activity is one of the most important fine aerosol sources during the winter months in the Mediterranean countries.

  9. A new source of oxygenated organic aerosol and oligomers

    Directory of Open Access Journals (Sweden)

    J. Liggio

    2013-03-01

    Full Text Available A large oxygenated organic uptake to aerosols was observed when exposing ambient urban air to inorganic acidic and non-acidic sulfate seed aerosol. For non-acidic seed aerosol the uptake was attributed to the direct dissolution of primary vehicle exhaust gases into the aqueous aerosol fraction, and was correlated to the initial seed sulphate mass. The uptake of primary oxygenated organic gases to aerosols in this study represents a significant amount of organic aerosol (OA that may be considered primary when compared to that reported for primary organic aerosol (POA, but is considerably more oxygenated (O : C ~ 0.3 than traditional POA. Consequently, a fraction of measured ambient oxygenated OA, which correlates with secondary sulphate, may in fact be of a primary, rather than secondary source. These results represent a new source of oxygenated OA on neutral aerosol and imply that the uptake of primary organic gases will occur in the ambient atmosphere, under dilute conditions, and in the presence of pre-existing SO4 aerosols which contain water. Conversely, under acidic seed aerosol conditions, oligomer formation was observed with the uptake of organics being enhanced by a factor of three or more compared to neutral aerosols, and in less than 2 min, representing an additional source of SOA to the atmosphere. This resulted in a trajectory in Van Krevelen space towards higher O : C (slope ~ −1.5, despite a lack of continual gas-phase oxidation in this closed system. The results demonstrate that high molecular weight species will form on acidic aerosols at the ambient level and mixture of organic gases, but are otherwise unaffected by subsequent aerosol neutralization, and that aerosol acidity will affect the organic O : C via aerosol-phase reactions. These two processes, forming oxygenated POA under neutral conditions and SOA under acidic conditions can contribute to the total ambient OA mass and the evolution of ambient aerosol O : C ratios

  10. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    Science.gov (United States)

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.

    2016-07-01

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the

  11. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG; ManSing; NICHOL; Janet; LEE; Kwon; Ho

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolution images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the determination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflectance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r = 0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  12. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG ManSing; NICHOL Janet; LEE Kwon Ho; LI ZhanQing

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolu-tion images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta re-gion. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the deter-mination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflec-tance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r=0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  13. Aerosol mass closure and reconstruction of the light scattering coefficient over the Eastern Mediterranean Sea during the MINOS campaign

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2005-01-01

    Full Text Available As part of the Mediterranean Intensive Oxidant Study (MINOS performed during August 2001 in the Eastern Mediterranean Region, intensive measurements of chemical and radiative properties of atmospheric aerosols were performed at two remote sites on Crete Island, located in the marine boundary layer (MBL, and in the lower free troposphere (FT, respectively. Gravimetric particulate mass, as well as chemically-derived masses of water soluble ions, organic and elemental carbon, and tracer elements for dust aerosols were measured for fine (1.2 µm particles at the two sampling sites. Although strongly bound water, mainly associated with inorganic species, could have slightly altered our results (10% of the reconstructed mass, chemical mass closure was achieved most of the time for the fine and coarse size fractions and at both sites. Our conversion factor of 2.1 for organic carbon (OC to particulate organic matter (POM is at the upper end of those reported in the literature, but fits with the aged smoke particles collected during the campaign. The results indicate that this conversion factor changed during the campaign along with the BC/TC ratio. The particulate mass (PM concentration for fine aerosols at the MBL and FT sites averaged 17.4±4.7 µg/m3 and 11.2±3.2 µg/m3, respectively, and is among the highest reported in the literature for remote sites; more than 90% of this PM was composed equally of ammonium sulfate and carbonaceous aerosols. Comparison between the MBL and FT sites showed a slight vertical gradient for PM that was not observed for dust aerosols, which averaged 10.5±4.8 and 11.7±5.0 µg/m3 for the MBL and FT sites, respectively. The results were used to reconstruct the ambient light scattering coefficient (σsp that was measured at ambient Relative Humidity (RH for fine particles at the MBL site. Reconstruction of σsp was achieved using ratios of wet to dry scattering, f(RH, that depend on RH for ammonium sulfate, but are kept

  14. Aerosol mass closure and reconstruction of the light scattering coefficient over the Eastern Mediterranean Sea during the MINOS campaign

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2005-04-01

    Full Text Available As part of the Mediterranean Intensive Oxidant Study (MINOS performed during August 2001 in the Eastern Mediterranean Region, intensive measurements of chemical and radiative properties of atmospheric aerosols were performed at two remote sites on Crete Island, located in the marine boundary layer (MBL, and in the lower free troposphere (FT, respectively. Gravimetric particulate mass, as well as chemically-derived masses of water soluble ions, organic and elemental carbon, and tracer elements for dust aerosols were measured for fine (<1.2 µm and coarse (>1.2 µm particles at the two sampling sites. Although strongly bound water, mainly associated with inorganic species, could have slightly altered our results (10% of the reconstructed mass, chemical mass closure was achieved most of the time for the fine and coarse size fractions and at both sites. Our conversion factor of 2.1 for organic carbon (OC to particulate organic matter (POM is at the upper end of those reported in the literature, but fits with the aged smoke particles collected during the campaign. The results indicate that this conversion factor changed during the campaign along with the BC/TC ratio.

    The particulate mass (PM concentration for fine aerosols at the MBL and FT sites averaged 17.4±4.7 µg/m3 and 11.2±3.2 µg/m3, respectively, and is among the highest reported in the literature for remote sites; more than 90% of this PM was composed equally of ammonium sulfate and carbonaceous aerosols. Comparison between the MBL and FT sites showed a slight vertical gradient for PM that was not observed for dust aerosols, which averaged 10.5±4.8 and 11.7±5.0 µg/m3 for the MBL and FT sites, respectively.

    The results were used to reconstruct the ambient light scattering coefficient (σsp that was measured at ambient Relative Humidity (RH for fine particles at the MBL site. Reconstruction of

  15. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    -road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a

  16. Secondary organic aerosol formation of primary, secondary and tertiary Amines

    Science.gov (United States)

    Amines have been widely identified in ambient aerosol in both urban and rural environments and they are potential precursors for formation of nitrogen-containing secondary organic aerosols (SOA). However, the role of amines in SOA formation has not been well studied. In this wrok, we use UC-Riversid...

  17. Aerosolized Antibiotics.

    Science.gov (United States)

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  18. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    International Nuclear Information System (INIS)

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm−1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol

  19. Simplified aerosol modeling for variational data assimilation

    Directory of Open Access Journals (Sweden)

    F. Chevallier

    2009-06-01

    Full Text Available We have developed a simplified aerosol model together with its tangent linear and adjoint versions for variational assimilation of aerosol optical depth with the aim to optimize aerosol emissions over the globe. The model was derived from the general circulation model LMDz; it groups together the 24 aerosol species simulated in LMDz into 4 species, namely gaseous precursors, fine mode aerosols, coarse mode desert dust and coarse mode sea salt. The emissions have been kept as in the original model. Modifications, however, were introduced in the computation of aerosol optical depth and in the processes of sedimentation, dry and wet deposition and sulfur chemistry to ensure consistency with the new set of species and their composition.

    The simplified model successfully manages to reproduce the main features of the aerosol distribution in LMDz. Differences between the original and simplified models are mainly associated to the new deposition and sedimentation velocities consistent with the definition of species in the simplified model and the simplification of the sulfur chemistry. Furthermore, simulated aerosol optical depth remains within the variability of AERONET observations for all aerosol types and all sites throughout most of the year.

    Sensitivity analyses with the tangent linear version show that the simplified sulfur chemistry is the dominant process responsible for the strong non-linearity of the model.

  20. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Charles E. Kolb

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  1. Aerosol Transport Over Equatorial Africa

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  2. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    Science.gov (United States)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  3. Saltation Sandblasting behavior during mineral dust aerosol production

    OpenAIRE

    Grini, Alf; Zender, C. S.; P. Colarco

    2002-01-01

    The dominant process in producing fine dust aerosols during saltation is thought to be sandblasting. Recent studies claim that due to competing physical processes, emission efficiencies of dust aerosols oscillate with increasing wind friction speed. These oscillations can result in order of magnitude changes in dust mass emissions. Our work shows that emission efficiencies, and hence emissions of dust aerosols are smooth functions of the wind friction speed for natural soil size distributions...

  4. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  5. Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Agnihotri, R.; Mandal, T.K.; Karapurkar, S.; Naja, M.; Gadi, R.; Ahammed, Y.N.; Kumar, A.; Saud, T.; Saxena, M.

    occurring in fine mode fraction of aerosols. As continental polluted air is diluted, NH 4 NO 3 can be disassociated and reformed HNO 3 can react with aerosol carbonate or sea salt in marine realm (Widory et al., 2007). Thus N incorporation in aerosols...

  6. Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance.

    Science.gov (United States)

    Jiang, Bin; Liang, Yongmei; Xu, Chunming; Zhang, Jingyi; Hu, Miao; Shi, Quan

    2014-05-01

    Aromatic fractions derived from aerosol samples were characterized by gas chromatography and mass spectrometry (GC-MS), high temperature simulated distillation (SIMDIS), and positive-ion atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. It was found that about 27 wt % compounds in aromatic fractions could not be eluted from a GC column and some large molecule PAHs were neglected in GC-MS analysis. APPI FT-ICR MS was proven to be a powerful approach for characterizing the molecular composition of aromatics, especially for the large molecular species. An aromatic sample from Beijing urban aerosol was successfully characterized by APPI FT-ICR MS. Results showed that most abundant aromatic compounds in PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) were highly condensed hydrocarbons with 4-8 aromatic rings and their homologues with very short alkyl chains. Furthermore, heteroatom-containing hydrocarbons were found as the significant components of the aromatic fractions: O1, O2, N1, and S1 class species with 10-28 DBEs (double bond equivalents) and 14-38 carbon numbers were identified by APPI FT-ICR MS. The heteroatom PAHs had similar DBEs and carbon number distribution as regular PAHs. PMID:24702199

  7. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    Science.gov (United States)

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-01

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/μg, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction. PMID:25748105

  8. Development and evaluation of a novel monitor for online measurement of iron, manganese, and chromium in ambient particulate matter (PM).

    Science.gov (United States)

    Wang, Dongbin; Sowlat, Mohammad H; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos

    2016-09-15

    A prototype atmospheric aerosol monitor was developed for online measurement of three toxicologically relevant redox-active metals (Fe, Mn, and Cr) in ambient fine particulate matter (PM2.5). The monitor has the unique ability to quantify these metals in specific chemical oxidation states in addition to both their total and water-soluble fractions in the ambient PM2.5. This information is critical for advancing our understanding of mechanisms of PM-induced toxicity as well as chemical processing of aerosol in the atmosphere. The metal monitor utilizes a high flow rate aerosol-into-liquid collector to collect ambient PM2.5 directly as concentrated aqueous slurry samples. The concentrations of target metals in the collected slurries are subsequently measured in a aerosol-into-liquid collector, micro volume flow cell (MVFC) using spectrophotometry to quantify the light absorption of colored complexes resulting from the reaction between the target metals and added analytical reagents. Our experimental evaluation indicated that, overall, this novel monitor can achieve accurate and reliable measurements over long sampling periods (i.e. at least several weeks). The online measurements for all three target elements were in good agreement (i.e., with slopes of the linear regression lines ranging between 0.90 and 1.07, and R(2) values between 0.76 and 0.95) with time-integrated filter samples collected in parallel and analyzed by magnetic sector inductively coupled plasma mass spectrometry (SF-ICPMS). Moreover, this metal monitor can provide semi-continuous measurements (i.e., every 2h) for at least 5 consecutive days without obvious shortcomings in its field operation. The online monitor measured total concentrations of Fe that ranged between 4.8 and 65.6ng/m(3), for Mn from below detection limit to 10.0ng/m(3), and for Cr from below detection limit to 6.6ng/m(3), respectively. Our results indicate that the developed metal monitor is a promising technology for online

  9. 上海市两社区大气细颗粒物的污染状况%Status of Ambient Air Pollution of Fine Particle Matters at Two Communities in Shanghai

    Institute of Scientific and Technical Information of China (English)

    张莉君; 东春阳; 许慧慧; 施烨闻; 金奇昂; 刘立平; 沈先标

    2011-01-01

    [目的]了解上海市社区大气细颗粒物(PM2.5)的污染状况.[方法]于2008年1月至2009年12月在上海市大气污染程度不同的2个社区(A社区为中心城区、B社区位于郊区)设置监测点,每月10~16日连续监测PM2.5浓度,数据采集后采用Wilcoxon秩和检验进行统计分析.[结果]B社区的PM2.5浓度在4、6月份均高于A社区,差异有统计学意义(P第一阶段目标相比,除A社区2009年未超标外,两社区其余年份均超标.[结论]两社区PM2.5污染呈冬季严重,夏秋季减轻的特点,B社区PM2.5的污染问题较A社区严重,两社区的PM2.5的污染水平与美国EPA标准和WHO第一阶段目标相比均存在超标问题.%[Objective]To understand the situation of fine air particle matters (PM2.5) pollution at two communities in Shanghai.[Methods]From 2008 to 2009, air samples were collected at fixed sites in two communities (A district was a resident area and B district adjacent the industry area) for monitoring the PM2.5 concentration with membrane gravimetric method every month.Air samples were continuously collected for 7 d each time in order to calculating daily average concentration.Data were analyzed with Wilcoxon rank sum test in SPSS 11.5 software, and adopted median (M) and central quadruplets (P25 to P75) in presence.[Results]The monthly PM2.5 level in site B was higher than that in site A, the differences were significant in April and June (P < 0.05).The pollution was most serious in winter but least in summer and autumn.The quaternary level of PM2.5 in site B was higher significantly than that in site A in summer (P<0.01).In 2009, the PM2.5 level in site B was higher significantly than that in site A (P<0.001).The concentration values of PM2.5 in two sites were all beyo nd the Air Quality Planning and Standard of U.S Environmental Protection Agency (U.S.EPA) from 2008 to 2009.The exceeded proportions of PM2.5 concentration in site A were 54.76% and 35.71%, and the

  10. Heterogeneous formation of HONO on carbonaceous aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ammann, M.; Kalberer, M.; Tabor, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)] [and others

    1997-09-01

    Based on an on-line and in situ experimental approach, for the first time heterogeneous production of nitrous acid (HONO) on carbon aerosol at ambient pressure and low NO{sub 2} concentration has been quantified by use of a {sup 13}N tracer technique. (author) 1 fig., 4 refs.

  11. Attachment of radon progeny to cigarette-smoke aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, {approximately}10{sup {minus}6} cm{sup 3}/s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols.

  12. Phase transformation and growth of hygroscopic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  13. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. W.

    2014-10-07

    Ambient fine particulate matter (PM2.5) is a leading environmental risk factor for premature mortality. We use aerosol optical depth (AOD) retrieved from two satellite instruments, MISR and SeaWiFS, to produce a unified 15-year global time series (1998-2012) of ground-level PM2.5 concentration at a resolution of 1 degrees x 1 degrees. The GEOS-Chem chemical transport model (CTM) is used to relate each individual AOD retrieval to ground-level PM2.5. Four broad areas showing significant, spatially coherent, annual trends are examined in detail: the Eastern U.S. (-0.39 +/- 0.10 mu g m(-3) yr(-1)), the Arabian Peninsula (0.81 +/- 0.21 mu g m(-3) yr(-1)), South Asia (0.93 +/- 0.22 mu g m(-3) yr(-1)) and East Asia (0.79 +/- 0.27 mu g m(-3) yr(-1)). Over the period of dense in situ observation (1999-2012), the linear tendency for the Eastern U.S. (-0.37 +/- 0.13 mu g m(-3) yr(-1)) agrees well with that from in situ measurements (-0.38 +/- 0.06 mu g m(-3) yr(-1)). A GEOS-Chem simulation reveals that secondary inorganic aerosols largely explain the observed PM2.5 trend over the Eastern U.S., South Asia, and East Asia, while mineral dust largely explains the observed trend over the Arabian Peninsula.

  14. Organosulfate formation in biogenic secondary organic aerosol.

    Science.gov (United States)

    Surratt, Jason D; Gómez-González, Yadian; Chan, Arthur W H; Vermeylen, Reinhilde; Shahgholi, Mona; Kleindienst, Tadeusz E; Edney, Edward O; Offenberg, John H; Lewandowski, Michael; Jaoui, Mohammed; Maenhaut, Willy; Claeys, Magda; Flagan, Richard C; Seinfeld, John H

    2008-09-11

    Organosulfates of isoprene, alpha-pinene, and beta-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive series of laboratory photooxidation (i.e., OH-initiated oxidation) and nighttime oxidation (i.e., NO3-initiated oxidation under dark conditions) experiments using nine monoterpenes (alpha-pinene, beta-pinene, d-limonene, l-limonene, alpha-terpinene, gamma-terpinene, terpinolene, Delta(3)-carene, and beta-phellandrene) and three monoterpenes (alpha-pinene, d-limonene, and l-limonene), respectively. Organosulfates were characterized using liquid chromatographic techniques coupled to electrospray ionization combined with both linear ion trap and high-resolution time-of-flight mass spectrometry. Organosulfates are formed only when monoterpenes are oxidized in the presence of acidified sulfate seed aerosol, a result consistent with prior work. Archived laboratory-generated isoprene SOA and ambient filter samples collected from the southeastern U.S. were reexamined for organosulfates. By comparing the tandem mass spectrometric and accurate mass measurements collected for both the laboratory-generated and ambient aerosol, previously uncharacterized ambient organic aerosol components are found to be organosulfates of isoprene, alpha-pinene, beta-pinene, and limonene-like monoterpenes (e.g., myrcene), demonstrating the ubiquity of organosulfate formation in ambient SOA. Several of the organosulfates of isoprene and of the monoterpenes characterized in this study are ambient tracer compounds for the occurrence of biogenic SOA formation under acidic conditions. Furthermore, the nighttime oxidation experiments conducted under highly acidic conditions reveal a viable mechanism for the formation of previously identified nitrooxy organosulfates found in ambient nighttime aerosol samples. We estimate

  15. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  16. Identification of columnar aerosol types under high aerosol optical depth conditions for a single AERONET site in Korea

    Science.gov (United States)

    Choi, Yongjoo; Ghim, Young Sung; Holben, B. N.

    2016-02-01

    Dominant aerosol types were classified using level 2 inversion products for the Anmyon Aerosol Robotic Network (AERONET) site in Korea for the period 1999-2007. The aerosol types were mineral dust (MD), MD mixed with carbon, and black carbon mixed coarse particles (BCCP) for coarse mode aerosols, black carbon (BC), organic carbon (OC), and secondary inorganic ions (SII) for fine mode aerosols, and mixed particles between. The classification was carried out using a clustering method based on parameters, including single scattering albedo (SSA), absorption Angstrom exponent (AAE), and fine mode volume fraction (FMVF). Among the seven aerosol types, MD was distinct, with the highest AAE and a very low FMVF and SII with the highest SSA and FMVF. BCCP was introduced to designate coarse particles mixed with BC, of which the AAE was lower than 1, despite a low FMVF. In addition to a large difference in AAE between BC and OC, the SSA of OC was larger than that of BC, indicating the effects of the white smoke produced from the smoldering phase of biomass burning. Monthly variations of the aerosol types were well interpreted by meteorology and emissions and coincided with those in the previous studies. Applying our results to well-characterized global AERONET sites, we confirmed that the aerosol types at Anmyon were valid at other sites. However, the results also showed that the mean properties for aerosol types were influenced by the specific aerosols prevalent at the study sites.

  17. Los estudios sobre el ambiente y la ciencia ambiental

    Directory of Open Access Journals (Sweden)

    Amelia Nancy Giannuzzo

    2010-03-01

    Full Text Available La existencia de la ciencia ambiental es reconocida en libros, revistas de publicación científica y carreras de grado y posgrado. Sin embargo, se desconoce su existencia en forma literal o indirecta, al no ser considerado su aporte, por ejemplo, en los planteos referidos sobre la ciencia y la tecnología de la sustentabilidad. En este trabajo se presentan estos antecedentes, relacionándolos con el objetivo del mismo, que es el de aportar a la dilucidación de la existencia y conformación de la ciencia ambiental. Para esto, se analiza la relación de las disciplinas con la dimensión compleja del ambiente como objeto de estudio y aspectos metodológicos derivados. A los fines de aportar al esclarecimiento conceptual, se identifican las distintas acepciones de ambiente comúnmente referidas en la bibliografía. Además, se discuten aspectos relacionados de multidisciplinariedad, interdisciplinariedad y transdisciplinariedad, y sobre el status epistémico de la ciencia ambiental. Se concluye que una mayor precisión conceptual embasada en un marco compartido por las disciplinas que estudian el ambiente, incluida la ciencia ambiental, y los distintos actores involucrados en las problemáticas ambientales, favorecerá el refinamiento de las metodologías tendientes a disminuir la fragmentación de las investigaciones concernientes y las aplicaciones para su resolución.The existence of an environmental science is recognized in books, journals of science as well as in undergraduate and graduate studies. Its existence, however, is unknown either literally or indirectly when, for instance, its contribution to topics connected to the science and technology of sustainability is not considered. This background is presented in this paper and connected to its objective, which is to elucidate the existence and structure of the environmental science. To this goal, I analyse the relationship of the disciplines with the complex dimension of the environment

  18. Source apportionment of atmospheric fine particulate matter collected at the Seney National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife...

  19. Characterization of urban aerosol in Cork City (Ireland using aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2012-11-01

    Full Text Available Ambient wintertime background urban aerosol in Cork City, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the 1 200 000 single particles characterized by an Aerosol Time-Of-Flight Mass Spectrometer (TSI ATOFMS were classified into five organic-rich particle types, internally-mixed to different proportions with Elemental Carbon (EC, sulphate and nitrate while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was also characterized using a High Resolution Time-Of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS and was also found to comprise organic matter as the most abundant species (62%, followed by nitrate (15%, sulphate (9% and ammonium (9%, and then chloride (5%.

    Positive matrix factorization (PMF was applied to the HR-ToF-AMS organic matrix and a five-factor solution was found to describe the variance in the data well. Specifically, "Hydrocarbon-like" Organic Aerosol (HOA comprised 19% of the mass, "Oxygenated low volatility" Organic Aerosols (LV-OOA comprised 19%, "Biomass wood Burning" Organic Aerosol (BBOA comprised 23%, non-wood solid-fuel combustion "Peat and Coal" Organic Aerosol (PCOA comprised 21%, and finally, a species type characterized by primary m/z peaks at 41 and 55, similar to previously-reported "Cooking" Organic Aerosol (COA but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Despite wood, cool and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosols mass and non refractory PM1, respectively.

  20. Long term aerosol and trace gas measurements in Central Amazonia

    Science.gov (United States)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  1. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  2. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    Science.gov (United States)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  3. Fine motor control

    Science.gov (United States)

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  4. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  5. Psicologia do Ambiente

    OpenAIRE

    Antunes, Dalila; Bernardo, Fátima; Palma-Oliveira, José-Manuel

    2011-01-01

    Na aplicação da Psicologia à área do AMBIENTE importa em primeiro lugar definir o que se entende, neste contexto, por ambiente. O conceito é entendido como toda a envolvente que rodeia o ser humano. Referimo-nos pois ao espaço físico e aos estímulos que nele existem (som, ar, paisagem…), dirigindo-se a Psicologia do Ambiente ao estudo e intervenção sobre a forma como o ambiente influencia o indivíduo ou grupos, e sobre o modo como o comportamento dos indivíduos e grupos influenciam o ambiente...

  6. Aerosol Observation System

    Data.gov (United States)

    Oak Ridge National Laboratory — The aerosol observation system (AOS) is the primary Atmospheric Radiation Measurement (ARM) platform for in situ aerosol measurements at the surface. The principal...

  7. Aerosol Climate Time Series in ESA Aerosol_cci

    Science.gov (United States)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  8. Quarry fines and waste

    OpenAIRE

    Mitchell, Clive

    2009-01-01

    Quarry fines and waste are an innevitable consequence of the extraction, processing and transportation of construction aggregate. This article summarises the production of quarry fines, detailing where and how much is produced and how the industry is tackling quarry fines minimisation.

  9. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  10. Chemical composition of aerosols in winter/spring in Beijing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In 1999 aerosol samples were collected by cascade at Meteorological Tower in Beijing. The 12 group aerosol samples obtained were analyzed using PIXE method, which resulted in 20 elemental concentrations and size distribution of elemental concentrations. From the observation, the elemental concentrations,size distribution of elemental concentrations and their variations are analyzed. It shows that concentrations of the most elements in aerosols increase greatly compared with those in the past except that the concentrations of V, K, Sr, and the source of aerosols has changed greatly in the past decade. Fine mode aerosols increase more rapidly in the past decade, which may be due to the contribution of coal combustion and automobile exhaust. Pb content in aerosol is much higher than that at the beginning of 1980s, and has a decreasing trend in recent years because of using non-leaded gasoline.

  11. Information Content of Aerosol Retrievals in the Sunglint Region

    Science.gov (United States)

    Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.

    2013-01-01

    We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type.

  12. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    Science.gov (United States)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  13. The Angstrom Exponent and Bimodal Aerosol Size Distributions

    Science.gov (United States)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent H.

    2005-01-01

    Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

  14. Analysis of atmospheric aerosols using the Lisbon Nuclear Microprobe

    International Nuclear Information System (INIS)

    The nuclear microprobe installed at Instituto Tecnologico e Nuclear in Lisbon, was used in the analysis of aerosol collected at the Azores islands. Samples from different aerosol groups were analysed. One referred to aerosols that were carried from North America and the other one contained aerosols that were carried from the Sahara desert and crossed over Europe. Coarse and fine fractions were analysed for each aerosol group and two-dimensional elemental maps were constructed, which allowed the identification of several individual particles. For particles of interest, elemental spatial correlations and dimensions were determined and point analysis was also carried out (depth information was achieved by fitting Rutherford backscattering spectra). Some of these particles are quite interesting. For instance, in the fine fraction of the aerosols that were carried from North America particles were found with Cu and Cl in the atomic proportion 1:2 and with dimensions 15x15x15 μm3, and in the corresponding coarse fraction a particle with K and S was identified, with dimensions 28x35x30 μm3. Some differences were found between aerosol groups. One example of these Ti particles (fine fraction) and Rb (coarse fraction) that were identified in one group (Sahara desert and Europe), but not in the other. (author)

  15. Modelling and numerical simulation of the General Dynamic Equation of aerosols; Modelisation et simulation des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Debry, E.

    2005-01-15

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as fine suspended particles, called aerosols, which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelling and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelling. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelling issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author)

  16. Retrieval of aerosol composition using ground-based remote sensing measurements

    Science.gov (United States)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  17. Development of a cavity enhanced aerosol albedometer

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2014-03-01

    Full Text Available We report on the development of a cavity enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS approach and an integrating sphere (IS for simultaneous in situ measurements of aerosol scattering and extinction coefficients in the exact same sample volume. The cavity enhanced albedometer employed a blue light-emitting diode (LED based IBBCEAS approach for the measurement of wavelength-resolved aerosol optical extinction over the spectral range of 445–480 nm. An integrating sphere nephelometer coupled to the IBBCEAS setup was used for the measurement of aerosol scattering. The scattering signal was measured with a single channel photomultiplier tube (PMT, providing an integrated value over a narrow bandwidth (FWHM ~ 9 nm in the spectral region of 465–474 nm. A scattering coefficient at a wavelength of 470 nm was deduced as an averaged scattering value and used for data analysis and instrumental performance comparison. Performance evaluation of the albedometer was carried out using laboratory-generated particles and ambient aerosol. The scattering and extinction measurements of monodisperse polystyrene latex (PSL spheres generated in laboratory proved excellent correlation between two channels of the albedometer. The retrieved refractive index (RI from the measured scattering and extinction efficiencies agreed well with the values reported in previously published papers. Aerosol light scattering and extinction coefficients, single scattering albedo (SSA and NO2 concentrations in an ambient sample were directly and simultaneously measured using the developed albedometer. The developed instrument was validated via an intercomparison of the measured aerosol scattering coefficient and NO2 trace concentration against a TSI 3563 integrating nephelometer and a chemiluminescence detector, respectively.

  18. Aerosol Optical Properties and Determination of Aerosol Size Distribution in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2014-01-01

    Full Text Available Columnar aerosol volume size distributions from March 2012 to February 2013 in Wuhan, China, were investigated with a focus on monthly and seasonal variations in the aerosol optical depths (AODs and Ångström exponents. AOD is wavelength dependent, and for AOD at, for example, 500 nm, the seasonal averaged AOD value decreased in the order of winter (~0.84, spring (~0.83, summer (~0.76 and autumn (~0.55. The Ångström exponent suggested that the aerosol sizes in summer (~1.22, winter (~1.14, autumn (~1.06 and spring (~0.99 varied from fine to coarse particles. The Ångström exponent and AOD could provide a qualitative evaluation of ASD. Moreover, aerosol size distribution (ASD was larger in winter than the other three seasons, especially from 1.0 µm to 15 µm due to heavy anthropogenic aerosol and damp climate. The ASD spectral shape showed a bimodal distribution in autumn, winter, and spring, with one peak (<0.1 in the fine mode range and the other (>0.14 in the coarse mode range. However, there appeared to be a trimodal distribution during summer, with two peaks in the coarse mode, which might be due to the hygroscopic growth of the local particles and the generation of aerosol precursor resulting from the extreme-high temperature and relative humidity.

  19. Fine particle water and pH in the Eastern Mediterranean: Sources, variability and implications for nutrients availability

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nikolaou, Panayiota; Stavroulas, Iasonas; Kouvarakis, Giorgos; Nenes, Athanasios; Weber, Rodney; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2016-04-01

    Atmospheric particles have the ability to absorb significant amounts of water, which greatly impacts on their physical and chemical properties. Direclty linked to aerosol pH and LWC is the bioavailability of nutrients contained within mineral dust, involving pH-dependent catalyzed redox-reaction pathways. Liquid water content (LWC) and pH, even though are important constituents of the aerosol phase, are rarely monitored. Direct measurements of aerosol pH "in situ" are scarce and require considerations owing to the non-conserved nature of the hydronium ion and partial dissociation of inorganic and organic electrolytes in the aerosol. To overcome these challenges, indirect alternatives such as measuring the semi-volatile partitioning of key species sensitive to pH, combined with comprehensive models are used to provide a reasonably accurate estimate of pH that can be carried out with routine measurements. Using concurrent measurements of aerosol chemical composition, tandem light scattering coefficients and the thermodynamic model ISORROPIA-II, LWC mass concentrations associated with the aerosol inorganic and organic components are determined for the remote background site of Finokalia, Crete. The predicted water was subsequently compared to the one measured by the ambient versus dry light scattering coefficients. The sum of Winorg and Worg was highly correlated and in close agreement with the measured LWC (on average within 10%), with slope 0.92 (R2=0.8) for the whole measurement period between August and November 2012 (n=5201 points). As expected, the highest fine aerosol water values are observed during night-time, when RH is at its maximum, resulting in important water uptake. The average concentration of total aerosol water was found to be 2.19±1.75 μg m-3, which according to the dry mass measurements, can contribute on average up to 33% to the total aerosol submicron mass. The average Worg was found to be 0.56±0.37 μg m-3, which constitutes about 28% of the

  20. Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data

    Directory of Open Access Journals (Sweden)

    A. Fotiadi

    2006-01-01

    Full Text Available In this study, we investigate the aerosol optical properties, namely aerosol extinction optical thickness (AOT, Angström parameter and size distribution over the Eastern Mediterranean Basin, using spectral measurements from the recently established FORTH (Foundation for Research and Technology-Hellas AERONET station in Crete, for the two-year period 2003–2004. The location of the FORTH-AERONET station offers a unique opportunity to monitor aerosols from different sources. Maximum values of AOT are found primarily in spring, which together with small values of the Angström parameter indicate dust transported from African deserts, whereas the minimum values of AOT occur in winter. In autumn, large AOT values observed at near-infrared wavelengths arise also from dust transport. In summer, large AOT values at ultraviolet (340 nm and visible wavelengths (500 nm, together with large values of the Angström parameter, are associated with transport of fine aerosols of urban/industrial and biomass burning origin. The Angström parameter values vary on a daily basis within the range 0.05–2.20, and on a monthly basis within the range 0.68–1.9. This behaviour, together with broad frequency distributions and back-trajectory analyses, indicates a great variety of aerosol types over the study region including dust, urban-industrial and biomass-burning pollution, and maritime, as well as mixed aerosol types. Large temporal variability is observed in AOT, Angström parameter, aerosol content and size. The fine and coarse aerosol modes persist throughout the year, with the coarse mode dominant except in summer. The highest values of AOT are related primarily to southeasterly winds, associated with coarse aerosols, and to a less extent to northwesterly winds associated with fine aerosols. The results of this study show that the FORTH AERONET station in Crete is well suited for studying the transport and mixing of different types of aerosols from a variety

  1. Identification of column-integrated dominant aerosols using the archive of AERONET data set

    Directory of Open Access Journals (Sweden)

    Y. Choi

    2013-10-01

    Full Text Available Dominant aerosols were distinguished from level 2 inversion products for the Anmyon Aerosol Robotic Network (AERONET site between 1999 and 2007. Secondary inorganic ions, black carbon (BC and organic carbon (OC were separated from fine mode aerosols, and mineral dust (MD, MD mixed with carbon, mixed coarse particles were separated from coarse mode aerosols. Four parameters (aerosol optical depth, single scattering albedo, absorption Angstrom exponent, and fine mode fraction were used for this classification. Monthly variation of the occurrence rate of each aerosol type reveals that MD and MD mixed with carbon are frequent in spring. Although the fraction among dominant aerosols and occurrence rates of BC and OC tend to be high in cold season for heating, their contributions are variable but consistent due to various combustion sources. Secondary inorganic ions are most prevalent from June to August; the effective radius of these fine mode aerosols increases with water vapor content because of hygroscopic growth. To evaluate the validity of aerosol types identified, dominant aerosols at worldwide AERONET sites (Beijing, Mexico City, Goddard Space Flight Center, Mongu, Alta Floresta, Cape Verde, which have distinct source characteristics, were classified into the same aerosol types. The occurrence rate and fraction of the aerosol types at the selected sites confirm that the classification in this study is reasonable. However, mean optical properties of the aerosol types are generally influenced by the aerosol types with large fractions. The present work shows that the identification of dominant aerosols is effective even at a single site, provided that the archive of the data set is properly available.

  2. Atmospheric Aerosol Chemistry Analyzer: Demonstration of feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Mroz, E.J.; Olivares, J.; Kok, G.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to demonstrate the technical feasibility of an Atmospheric Aerosol Chemistry Analyzer (AACA) that will provide a continuous, real-time analysis of the elemental (major, minor and trace) composition of atmospheric aerosols. The AACA concept is based on sampling the atmospheric aerosol through a wet cyclone scrubber that produces an aqueous suspension of the particles. This suspension can then be analyzed for elemental composition by ICP/MS or collected for subsequent analysis by other methods. The key technical challenge was to develop a wet cyclone aerosol sampler suitable for respirable particles found in ambient aerosols. We adapted an ultrasonic nebulizer to a conventional, commercially available, cyclone aerosol sampler and completed collection efficiency tests for the unit, which was shown to efficiently collect particles as small as 0.2 microns. We have completed the necessary basic research and have demonstrated the feasibility of the AACA concept.

  3. The contribution of aerosol hygroscopic growth to the modeled aerosol radiative effect

    Science.gov (United States)

    Kokkola, Harri; Kühn, Thomas; Kirkevåg, Alf; Romakkaniemi, Sami; Arola, Antti

    2016-04-01

    The hygroscopic growth of atmospheric aerosols can have a significant effect on the direct radiative effect of atmospheric aerosol. However, there are significant uncertainties concerning how much of the radiative forcing is due to different chemical compounds, especially water. For example, modeled optical depth of water in global aerosol-climate models varies by more than a factor of two. These differences can be attributed to differences in modeled 1) hygroscopicity, 2) ambient relative humidity, and/or 3) aerosol size distribution. In this study, we investigate which of these above-mentioned factors cause the largest variability in the modeled optical depth of water. In order to do this, we have developed a tool that calculates aerosol extinction using interchangeable global 3D data of aerosol composition, relative humidity, and aerosol size distribution fields. This data is obtained from models that have taken part in the open international initiative AeroCom (Aerosol Comparisons between Observations and Models). In addition, we use global 3D data for relative humidity from the Atmospheric Infrared Sounder (AIRS) flying on board NASA's Aqua satellite and the National Centers for Environmental Prediction (NCEP) reanalysis data. These observations are used to evaluate the modeled relative humidity fields. In the first stage of the study, we made a detailed investigation using the aerosol-chemistry-climate model ECHAM-HAMMOZ in which most of the aerosol optical depth is caused by water. Our results show that the model significantly overestimates the relative humidity over the oceans while over land, the overestimation is lower or it is underestimated. Since this overestimation occurs over the oceans, the water optical depth is amplified as the hygroscopic growth is very sensitive to changes in high relative humidities. Over land, error in modeled relative humidity is unlikely to cause significant errors in water optical depth as relative humidities are generally

  4. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  5. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Science.gov (United States)

    Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-08-01

    observations for the different versions of each algorithm globally (land and coastal) and for three regions with different aerosol regimes. The analysis allowed for an assessment of sensitivities of all algorithms, which helped define the best algorithm versions for the subsequent round robin exercise; all algorithms (except for MERIS) showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol-type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage) for the MERIS standard product, but not for the algorithms using AATSR. It is noted that all these observations are mostly consistent for all five analyses (global land, global coastal, three regional), which can be understood well, since the set of aerosol components defined in Sect. 3.1 was explicitly designed to cover different global aerosol regimes (with low and high absorption fine mode, sea salt and dust).

  6. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Directory of Open Access Journals (Sweden)

    T. Holzer-Popp

    2013-08-01

    photometer observations for the different versions of each algorithm globally (land and coastal and for three regions with different aerosol regimes. The analysis allowed for an assessment of sensitivities of all algorithms, which helped define the best algorithm versions for the subsequent round robin exercise; all algorithms (except for MERIS showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol-type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage for the MERIS standard product, but not for the algorithms using AATSR. It is noted that all these observations are mostly consistent for all five analyses (global land, global coastal, three regional, which can be understood well, since the set of aerosol components defined in Sect. 3.1 was explicitly designed to cover different global aerosol regimes (with low and high absorption fine mode, sea salt and dust.

  7. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    Science.gov (United States)

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  8. Analysis and quantification of the diversities of aerosol life cycles within AeroCom

    Directory of Open Access Journals (Sweden)

    C. Textor

    2006-01-01

    Full Text Available Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The differences among the results (model diversities for sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. Processes and parameters are identified which deserve further research. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS, followed by dust (DU, sulfate (SO4, particulate organic matter (POM, and finally black carbon (BC. Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO4, POM, and BC. The all-models-average residence time is shortest for SS with about half a day, followed by SO4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO4 and SS. It is the dominant sink for SO4, BC, and POM, and contributes about one third to the total removal

  9. Atmospheric Aerosols: Air Quality and Climate Change Perspectives

    Directory of Open Access Journals (Sweden)

    Shabana Manzoor

    2015-12-01

    Full Text Available Recently, air quality has become a matter of concern of everyone. According to the reports, atmospheric aerosols play very crucial role in air quality. PM10 and PM2.5 aerosols are integral parts of total suspended particulate matter which affect our health. Often air quality has been reported very poor due to violation of National Ambient Air Quality Standard (NAAQS limits. PM10 and PM2.5 limits are crossed for both residential as well as sensitive sites. This is one of the major reasons of increasing cases of respiratory diseases in urban areas. However, aerosol loadings alone are not the factor for deciding or predicting toxic and harmful effects of aerosols. Chemical composition and size ranges do matter. Aerosol loadings can be due to three major source categories viz. marine, crustal and anthropogenic. Since, marine and crustal content of aerosols are generally non-toxic and hence, degree of toxicity of air needs to be decided on the basis of anthropogenic fraction having metals, PAHs and other harmful content. Apart from air quality and health, atmospheric aerosols play vital role in other atmospheric processes such as cloud formation, radiative transfer and monsoon etc. Though there are several studies reported on different aspects of atmospheric aerosols, but most of the findings are sort of data reporting based on short term observations. Hence, there is need to investigate the atmospheric aerosols in order to demonstrate local and regional phenomenon on the basis of long term datasets.

  10. Weekly patterns of aerosol in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2008-01-01

    Full Text Available Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network of aerosol samplers and NOAA monitoring sites are examined for weekly cycles. Fine particle elemental carbon, crustal elements, and coarse particle mass had pronounced (up to 20% weekly cycles with minima on Sunday or Monday. Fine particle organic carbon and mass had smaller amplitude cycles, also with Sunday or Monday minima. There was no statistically significant weekly cycle in fine particle sulfate despite a 10 to 15% weekly cycle in power plant SO2 emissions. Although results for nitrate must be treated with caution, it showed a pronounced weekly cycle with an amplitude similar to elemental carbon. The only species found with a weekend maximum was Pb, probably from general aviation on weekends. Aerosol optical properties at NOAA monitoring sites were consistent with the IMPROVE chemical data, with significant weekly cycles in aerosol light absorption but not light scattering. These results support a large role of diesel emissions in elemental carbon aerosol over the entire United States and suggest that a large fraction of the airborne soil dust is anthropogenic. They also suggest that studies of weekly cycles in temperature, cloudiness, or precipitation should look for causes more in light-absorbing particles and dust rather than sulfate or total aerosol. There are also implications for personal exposure and epidemiological studies of aerosol health effects.

  11. Weekly patterns of aerosol in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2008-05-01

    Full Text Available Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network of aerosol samplers and NOAA monitoring sites are examined for weekly cycles. At remote and rural sites, fine particle elemental carbon, crustal elements, and coarse particle mass had pronounced (up to 20% weekly cycles with minima on Sunday or Monday. Fine particle organic carbon and mass had smaller amplitude cycles, also with Sunday or Monday minima. There was no statistically significant weekly cycle in fine particle sulfate despite a 5 to 15% weekly cycle in power plant SO2 emissions. Although results for nitrate may be more susceptible to sampling artifacts, nitrate also showed a pronounced weekly cycle with an amplitude similar to elemental carbon. The only species found with a weekend maximum was Pb, probably from general aviation on weekends. Aerosol optical properties at NOAA monitoring sites were consistent with the IMPROVE chemical data, with significant weekly cycles in aerosol light absorption but not light scattering. These results support a large role of diesel emissions in elemental carbon aerosol over the entire United States and suggest that a large fraction of the airborne soil dust is anthropogenic. They also suggest that studies of weekly cycles in temperature, cloudiness, precipitation, or other meteorological variables should look for causes more in light-absorbing particles and possible ice nucleation by dust rather than sulfate or total aerosol. There are also implications for personal exposure and epidemiological studies of aerosol health effects.

  12. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  13. The Seasonal Variations of Aerosols over East Asia as Jointly Inferred from MODIS and OMI

    Institute of Scientific and Technical Information of China (English)

    LIU Qi; DING Wei-Dong; FU Yun-Fei

    2011-01-01

    Data on aerosol optical thickness (AOT) and single scattering albedo (SSA) derived from Moderate Resolution Imaging Spectrometer (MODIS) and Ozone Monitoring Instrument (OMI) measurements, respectively, are used jointly to examine the seasonal variations of aerosols over East Asia. The seasonal signals of the total AOT are well defined and nearly similar over the land and over the ocean. These findings indicate a natural cycle of aerosols that originate primarily from natural emissions. In contrast, the small-sized aerosols represented by the fine-mode AOT, which are primarily generated over the land by human activities, do not have evident seasonalscale fluctuations. A persistent maximum of aerosol load- ings centered over the Sichuan basin is associated with considerable amounts of fine-mode aerosols throughout the year. Most regions exhibit a general spring maximum. During the summer, however, the aerosol loadings are the most marked over north central China. This occurrence may result from anthropogenic fine particles, such as sulfate and nitrate. Four typical regions were selected to perform a covariation analysis of the monthly gridded AOT and SSA. Over southwestern and southeastern China, if the aerosol loadings are small to moderate they are composed primarily of the highly absorptive aerosols. However, more substantial aerosol loadings probably represent less-absorptive aerosols. The opposite covaria- tion pattern occurring over the coastal-adjacent oceans suggests that the polluted oceanic atmosphere is closely correlated with the windward terrestrial aerosols. North central China is strongly affected by dust aerosols that show moderate absorption. This finding may explain the lower variability in the SSA that accompanies increasing aerosol loadings in this region.

  14. 78 FR 63933 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air...

    Science.gov (United States)

    2013-10-25

    .... Environmental Protection Agency, Region III, 1650 Arch Street, Philadelphia, Pennsylvania 19103. D. Hand... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION... Ambient Air Quality Standards for Fine Particulate Matter AGENCY: Environmental Protection Agency...

  15. Investigation of indoor aerosols at educational institutions in Debrecen, Hungary

    International Nuclear Information System (INIS)

    concentrations. Based on the mass size distribution values significant differences were found between the salt and the gymnastic room. In the salt room, where children were allowed only to sit, lower concentration values and smaller particle sizes were detected than in the other room where children did exercises and gymnastics. In the light of these results further aerosol characterization studies is needed to provide more accurate information about the sources and the possible health effects of ambient aerosol in educational environments. Acknowledgements. This work was supported by the Hungarian Research Fund OTKA and the EGT Norwegian Financial Mechanism Programme (contract no. NNF78829) and the Janos Bolyai Research Scholarship of the HAS.

  16. Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α and β-pinene

    Directory of Open Access Journals (Sweden)

    O. Böge

    2010-04-01

    Full Text Available In the present study, we have characterized the structure of a higher-molecular weight (MW 358 α- and β-pinene dimeric secondary organic aerosol (SOA product that received ample attention in previous molecular characterization studies. Based on mass spectrometric evidence for deprotonated molecules formed by electrospray ionization in the negative ion mode, we propose that diaterpenylic acid is a key monomeric unit for dimers of the ester type. It is shown that cis-pinic acid is esterified with the hydroxyl-containing diaterpenylic acid which can be explained through acid-catalyzed hydrolysis of the recently elucidated lactone-containing terpenylic acid and/or diaterpenylic acid acetate, both first-generation oxidation products. To a minor extent, higher-MW 358 and 344 diester products are formed containing other terpenoic acids as monomeric units, i.e., diaterpenylic acid instead of cis-pinic acid, and diaterebic acid instead of diaterpenylic acid. It is shown that the MW 358 diester and related MW 344 compounds, which can be regarded as processed SOA products, also occur in ambient fine (PM2.5 rural aerosol collected at night during the warm period of the 2006 summer field campaign conducted at K-puszta, Hungary, a rural site with coniferous vegetation. This indicates that, under ambient conditions, the higher-MW diesters are formed in the particle phase over a longer time-scale than that required for gas-to-particle partitioning of their monomeric precursors.

  17. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  18. CHARACTERIZATION OF URBAN AEROSOL SOURCES IN DEBRECEN, HUNGARY

    Directory of Open Access Journals (Sweden)

    ZSÓFIA KERTÉSZ

    2008-12-01

    Full Text Available Debrecen is an average middle European city from the point of view of aerosol pollution. Its location makes the city an ideal place for observing aerosol transport processes. Systematic investigation ofatmospheric aerosol of the east-Hungarian region has been performed in the Institute of Nuclear Research of the Hungarian Academy of Sciences for 20 years by accelerator based elemental analytical technique. As a complementation of this research we observed the size distribution andshort-term time variation of the elemental component of fine (PM2.5 and coarse (PM10-PM2.5 urban aerosol in the frame of sampling campaigns during 2007 and 2008 in a downtown site of Debrecen.Meteorological parameters were also recorded parallel to the aerosol sampling. Elemental concentrations (Z ≥ 12 were determined by particle induced X-ray emission (PIXE analytical technique at the Laboratory of Ion Beam Applications (IBA of the ATOMKI. On the obtained database six sources of the urban aerosol were identified: 2 types of soil, domestic heating, sulphate originating from long range transport processes, an unidentified source enriched with chlorine andtraffic. Emission episodes were also observed. The short-time variation of urban aerosol combined with meteorological data and with mass size distribution serves as a basis to reach a better understanding of the aerosol sources in receptor areas, to select local emission and long range transport episodes, to follow the evolution of aerosol, and to make a better estimate on the health impact.

  19. Aerosol light scattering measurements as a function of relative humidity.

    Science.gov (United States)

    Day, D E; Malm, W C; Kreidenweis, S M

    2000-05-01

    The hygroscopic nature of atmospheric fine aerosol was investigated at a rural site in the Great Smoky Mountains National Park during July and August 1995. Passing the sample aerosol through an inlet, which housed an array of Perma Pure diffusion dryers, controlled the sample aerosol's relative humidity (RH). After conditioning the aerosol sample in the inlet, the light scattering coefficient and the aerosol size distribution were simultaneously measured. During this study, the conditioned aerosol's humidity ranged between 5% < RH < 95%. Aerosol response curves were produced using the ratio bspw/bspd; where bspw is the scattering coefficient measured at some RH greater than 20% and bspd is the scattering coefficient of the "dry" aerosol. For this work, any sample RH values below 15% were considered dry. Results of this investigation showed that the light scattering ratio increased continuously and smoothly over the entire range of relative humidity. The magnitude of the ratio at a particular RH value, however, varied considerably in time, particularly for RH values greater than approximately 60%. Curves of the scattering coefficient ratios as a function of RH were generated for each day and compared to the average 12-hour chemical composition of the aerosol. This comparison showed that for any particular RH value the ratio was highest during time periods of high sulfate concentrations and lowest during time periods of high soil or high organic carbon concentrations.

  20. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  1. Is Distant Pollution Contaminating Local Air? Analyzing the Origins of Atmospheric Aerosols

    OpenAIRE

    David Geng

    2012-01-01

    Understanding the origin of aerosols in the atmosphere is important because of visual pollution, climate impacts, and deleterious health effects due to the inhalation of fine particles. This research analyzed aerosols characterized by their chloride, sulfate, and nitrate content as a function of size over a 3-month period. Due to wind patterns over coal-burning power plants, a higher concentration of local sulfate pollution was expected. Aerosols were harvested on the Purdue University campus...

  2. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  3. FINE PARTICLE EXPOSURE IS ASSOCIATED WITH ALTERED VENTRICULAR REPOLARIZATION

    Science.gov (United States)

    Exposure to fine airborne particulate matter (PM2.5) has previously been associated with cardiac events, especially in older people with cardiovascular disease and in diabetics. This study examined the cardiac effects of short-term exposures to ambient PM2.5 in a prospective pane...

  4. Comparison of physicochemical properties between fine (PM2.5) and coarse airborne particles at cold season in Korea.

    Science.gov (United States)

    Choung, Sungwook; Oh, Jungsun; Han, Weon Shik; Chon, Chul-Min; Kwon, Youngsang; Kim, Do Yeon; Shin, Woosik

    2016-01-15

    Although it has been well-known that atmospheric aerosols affect negatively the local air quality, human health, and climate changes, the chemical and physical properties of atmospheric aerosols are not fully understood yet. This study experimentally measured the physiochemical characteristics of fine and coarse aerosol particles at the suburban area to evaluate relative contribution to environmental pollution in consecutive seasons of autumn and winter, 2014-2015, using XRD, SEM-EDX, XNI, ICP-MS, and TOF-SIMS. For these experimental works, the fine and coarse aerosols were collected by the high volume air sampler for 7 days each season. The fine particles contain approximately 10 μg m(-3) of carbonaceous aerosols consisting of 90% organic and 10% elemental carbon. The spherical-shape carbonaceous particles were observed for the coarse samples as well. Interestingly, the coarse particles in winter showed the increased frequency of carbon-rich particles with high contents of heavy metals. These results suggest that, for the cold season, the coarse particles could contribute relatively more to the conveyance of toxic contaminants compared to the fine particles in the study area. However, the fine particles showed acidic properties so that their deposition to surface may cause facilitate the increase of mobility for toxic heavy metals in soil and groundwater environments. The fine and coarse particulate matters, therefore, should be monitored separately with temporal variation to evaluate the impact of atmospheric aerosols to environmental pollution and human health. PMID:26476059

  5. Monitoring biological aerosols using UV fluorescence

    Science.gov (United States)

    Eversole, Jay D.; Roselle, Dominick; Seaver, Mark E.

    1999-01-01

    An apparatus has been designed and constructed to continuously monitor the number density, size, and fluorescent emission of ambient aerosol particles. The application of fluorescence to biological particles suspended in the atmosphere requires laser excitation in the UV spectral region. In this study, a Nd:YAG laser is quadrupled to provide a 266 nm wavelength to excite emission from single micrometer-sized particles in air. Fluorescent emission is used to continuously identify aerosol particles of biological origin. For calibration, biological samples of Bacillus subtilis spores and vegetative cells, Esherichia coli, Bacillus thuringiensis and Erwinia herbicola vegetative cells were prepared as suspensions in water and nebulized to produce aerosols. Detection of single aerosol particles, provides elastic scattering response as well as fluorescent emission in two spectral bands simultaneously. Our efforts have focuses on empirical characterization of the emission and scattering characteristics of various bacterial samples to determine the feasibility of optical discrimination between different cell types. Preliminary spectroscopic evidence suggest that different samples can be distinguished as separate bio-aerosol groups. In addition to controlled sample results, we will also discuss the most recent result on the effectiveness of detection outdoor releases and variations in environmental backgrounds.

  6. 78 FR 63878 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air...

    Science.gov (United States)

    2013-10-25

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air Quality Standards for Fine Particulate Matter AGENCY: Environmental Protection Agency (EPA... Commonwealth of Virginia State Implementation Plan (SIP). The revisions add ambient air quality standards...

  7. Analysis and Quantification of the Diversities of Aerosol Life Cycles within AeroCom

    Energy Technology Data Exchange (ETDEWEB)

    Textor, C.; Schulz, M.; Guibert, S.; Kinne, Stefan; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, Olivier; Chin, M.; Dentener, F.; Diehl, T.; Easter, Richard C.; Feichter, H.; Fillmore, D.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Grini, A.; Hendricks, J.; Horrowitz, L.; Huang, P.; Isaksen, I.; Iversen, T.; Kloster, S.; Koch, D.; Kirkevag, A.; Kristjansson, J. E.; Krol, M.; Lauer, A.; Lamarque, J. F.; Liu, Xiaohong; Montanaro, V.; Myhre, G.; Penner, Joyce E.; Pitari, G.; Reddy, S.; Seland, O.; Stier, P.; Takemura, T.; Tie, X.

    2006-05-29

    Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The diversities among the models for the sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol, which they dominate in mass. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry mass decrease along DU, SS, SO4, POM, and BC. The all-models-average residence time was the shortest for sea salt with about half a day, followed by SO4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO4 and SS. It is the dominant sink for SO4, BC, and POM, and contributes about one third to the total removal rate coefficients of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor

  8. Identification of sources of Phoenix aerosol by positive matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Z.; Song, X.-H.; Hopke, P.K. [Clarkson University, Potsdam, NY (USA). Depts. of Chemical Engineering and Chemistry

    2000-08-01

    Chemical composition data for fine and coarse particles collected in Phoenix, AZ were analyzed using positive matrix factorization (PMF). The objective was to identify the possible aerosol sources at the sampling site. Two sets of fine particle samples were collected by different samplers. Each of the resulting fine particle data sets was analyzed separately. For each fine particle data set, eight factors were obtained, identified as (1) biomass burning characterized by high concentrations of organic carbon (OC) elemental carbon (EC), and K; (2) wood burning with high concentrations of Na, K, OC and EC; (3) motor vehicles with high concentrations of OC and EC; (4) nonferrous smelting process characterized by Cu, Zn, As and Pb; (5) heavy-duty diesel characterized by high EC, OC, and Mn; (6) sea-salt factor dominated by Na and Cl; (7) soil with high values for Al, Si, Ca, Ti and Fe; and (8) secondary aerosol with SO{sub 4}{sup -2} and OC that may represent coal-fired power plant emissions. The major sources for the fine particles were motor vehicles, vegetation burning factors (biomass and wood burning), and coal-fired power plants. These sources contributed most of the fine aerosol mass by emitting carbonaceous particles, and they have higher contributions in winter. For the coarse particles, the major source contributions were soil and construction (high Ca). These sources also peaked in winter. 20 refs., 14 figs., 3 tabs.

  9. Aerosol satellite remote sensing

    NARCIS (Netherlands)

    Veefkind, Joris Pepijn

    2001-01-01

    Aerosols are inportant for many processes in the atmosphere. Aerosols are a leading uncertainty in predicting global climate change, To a large extent this uncertainty is caused by a lack of knowledge on the occurrence and concentration of aerosols. On global scale, this information can only be o

  10. Fine Arts Database (FAD)

    Data.gov (United States)

    General Services Administration — The Fine Arts Database records information on federally owned art in the control of the GSA; this includes the location, current condition and information on artists.

  11. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  12. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  13. Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data

    Energy Technology Data Exchange (ETDEWEB)

    Kinne, S.; Lohmann, U; Feichter, J; Schulz, M.; Timmreck, C.; Ghan, Steven J.; Easter, Richard C.; Chin, M; Ginoux, P.; Takemura, T.; Tegen, I.; Koch, D; Herzog, M.; Penner, J.; Pitari, G.; Holben, B. N.; Eck, T.; Smirnov, A.; Dubovik, O.; Slutsker, I.; Tanre, D.; Torres, O.; Mishchenko, M.; Geogdzhayev, I.; Chu, D. A.; Kaufman, Yoram J.

    2003-10-21

    Aerosol introduces the largest uncertainties in model-based estimates of anthropogenic sources on the Earth's climate. A better representation of aerosol in climate models can be expected from an individual processing of aerosol type and new aerosol modules have been developed, that distinguish among at least five aerosol types: sulfate, organic carbon, black carbon, sea-salt and dust. In this study intermediate results of aerosol mass and aerosol optical depth of new aerosol modules from seven global models are evaluated. Among models, differences in predicted mass-fields are expected with differences to initialization and processing. Nonetheless, unusual discrepancies in source strength and in removal rates for particular aerosol types were identified. With simultaneous data for mass and optical depth, type conversion factors were compared. Differences among the tested models cover a factor of 2 for each, even hydrophobic, aerosol type. This is alarming and suggests that efforts of good mass-simulations could be wasted or that conversions are misused to cover for poor mass-simulations. An individual assessment, however, is difficult, as only part of the conversion determining factors (size assumption, permitted humidification and prescribed ambient relative humidity) were revealed. These differences need to be understood and minimized, if conclusions on aerosol processing in models can be drawn from comparisons to aerosol optical depth measurements.

  14. Perturbation of the aerosol layer by aviation-produced aerosols: a parametrization of plume processes

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Meilinger, S. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1998-11-01

    The perturbation of the sulfate surface area density (SAD) in the tropopause region and the lower stratosphere by subsonic and supersonic aircraft fleets is examined. The background aerosol surface area, the conversion of fuel sulfur into new sulfate particles in aircraft plumes, and the plume mixing with ambient air control this perturbation. The background aerosol surface area is enhanced by the addition of ultrafine aerosol particles at cruise altitudes. The study includes recent findings concerning the formation and development of these particles in aircraft plumes. Large-scale SAD enhancements become relevant for background SAD levels below about 10 {mu}m{sup 2}/cm{sup 3}, even for moderate sulfate conversion fractions of 5%. Results from an analytic expression for the surface area changes are presented which contains the dependences on these parameters and can be employed in large-scale atmospheric models. (orig.) 11 refs.

  15. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  16. African aerosol and large-scale precipitation variability over West Africa

    International Nuclear Information System (INIS)

    We investigated the large-scale connection between African aerosol and precipitation in the West African Monsoon (WAM) region using 8-year (2000-2007) monthly and daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products (aerosol optical depth, fine mode fraction) and Tropical Rainfall Measuring Mission (TRMM) precipitation and rain type. These high-quality data further confirmed our previous results that the large-scale link between aerosol and precipitation in this region undergoes distinct seasonal and spatial variability. Previously detected suppression of precipitation during months of high aerosol concentration occurs in both convective and stratiform rain, but not systematically in shallow rain. This suggests the suppression of deep convection due to the aerosol. Based on the seasonal cycle of dust and smoke and their geographical distribution, our data suggest that both dust (coarse mode aerosol) and smoke (fine mode aerosol) contribute to the precipitation suppression. However, the dust effect is evident over the Gulf of Guinea while the smoke effect is evident over both land and ocean. A back trajectory analysis further demonstrates that the precipitation reduction is statistically linked to the upwind aerosol concentration. This study suggests that African aerosol outbreaks in the WAM region can influence precipitation in the local monsoon system which has direct societal impact on the local community. It calls for more systematic investigations to determine the modulating mechanisms using both observational and modeling approaches.

  17. Aerosol characteristics at a rural station in southern peninsular India during CAIPEEX-IGOC: physical and chemical properties.

    Science.gov (United States)

    Bisht, D S; Srivastava, A K; Pipal, A S; Srivastava, M K; Pandey, A K; Tiwari, S; Pandithurai, G

    2015-04-01

    To understand the boundary layer characteristics and pathways of aerosol-cloud interaction, an Integrated Ground Observational Campaign, concurrent with Cloud Aerosol Interaction and Precipitation Enhancement Experiment, was conducted by the Indian Institute of Tropical Meteorology, Pune, under Ministry of Earth Sciences at Mahabubnagar (a rural environment, which is ~100 km away from an urban city Hyderabad in Andhra Pradesh), during the period of July-November 2011. Collected samples of PM2.5 and PM10 were analyzed for water-soluble ionic species along with organic carbon (OC) and elemental carbon (EC). During study period, the average mass concentrations of PM2.5 and PM10 were about 50(±10) and 69(±14) μg m(-3), respectively, which are significantly higher than the prescribed Indian National Ambient Air Quality Standards values. The chemical species such as sum of anions and cations from measured chemical constituents were contributed to be 31.27 and 38.49% in PM2.5 and 6.35 and 5.65% to the PM10, whereas carbonaceous species contributed ~17.3 and 20.47% for OC and ~3.0 and 3.10% for EC, respectively. The average ratio of PM2.5/PM10 during study period was ~0.73(±0.2), indicating that the dominance of fine size particles. Carbonaceous analysis results showed that the average concentration of OC was 14 and 8.7 μg m(-3), while EC was 2.1 and 1.5 μg m(-3) for PM10 and PM2.5, respectively. The ratios between OC and EC were estimated, which were 6.6 and 5.7 for PM10 and PM2.5, suggesting the presence of secondary organic aerosol. Total carbonaceous aerosol accounts 23% of PM10 in which the contribution of OC is 20% and EC is 3%, while 20% of PM2.5 mass in which the contribution of OC is 17% and EC is 3%. Out of the total aerosols mass, water-soluble constituents contributed an average of 45% in PM10 and 38% in PM2.5 including about 39% anions and 6% cations in PM10, while 31% anions and 7% cations in PM2.5 aerosol mass collectively at study site. PMID

  18. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    Energy Technology Data Exchange (ETDEWEB)

    Hallock, K.A.; Mazurek, M.A. (Brookhaven National Lab., Upton, NY (United States)); Cass, G.R. (California Inst. of Tech., Pasadena, CA (United States). Dept. of Environmental Engineering Science)

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  19. Present role of PIXE in atmospheric aerosol research

    Science.gov (United States)

    Maenhaut, Willy

    2015-11-01

    In the 1980s and 1990s nearly half of the elemental analyses of atmospheric aerosol samples were performed by PIXE. Since then, other techniques for elemental analysis became available and there has been a steady increase in studies on organic aerosol constituents and other aspects of aerosols, especially in the areas of nucleation (new particle formation), optical properties, and the role of aerosol particles in cloud formation and properties. First, a brief overview and discussion is given of the developments and trends in atmospheric aerosol analysis and research of the past three decades. Subsequently, it is indicated that there is still invaluable work to be done by PIXE in atmospheric aerosol research, especially if one teams up with other aerosol researchers and performs complementary measurements, e.g., on small aerosol samples that are taken with high-time resolution. Fine examples of such research are the work done by the Lund group in the CARIBIC aircraft studies and the analysis of circular streaker samples by the Florence PIXE group. These and other examples are presented and other possibilities of PIXE are indicated.

  20. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    International Nuclear Information System (INIS)

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon

  1. Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity

    Science.gov (United States)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Fountoukis, Christos; Nenes, Athanasios; Zavala, Miguel; Lei, Wenfang; Molina, Luisa T.; Pandis, Spyros N.

    2010-02-01

    A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM 1 (fine) and PM 1-10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) "Supersite" shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m -3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m -3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m -3 (a factor of 10), 0.4 μg m -3, and 0.6 μg m -3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.

  2. Study on Aerosol Model and Sources at Zhoushan, China Using Sun-sky Photometer Observation

    International Nuclear Information System (INIS)

    Aerosol models are widely used in satellite remote sensing to derived aerosol mode from aerosol optical and microphysical properties. One year of ground-based aerosol remote sensing observations were carried out using sun-sky radiometer measurements in Zhoushan (122.1897E, 29.9944N), Zhejiang Province, Eastern China. At the same time column Aerosol Optical Depth (AOD), Ångström exponent (AE), Single Scattering Albedo (SSA), asymmetry factor (g), complex refractive index and column aerosol volume spectral distribution were retrieved by mature code as well as some procedures, such as radiometer calibration, cloud screening and data selection strategies. Aerosol size parameters were separated as fine effective radius (rvf) and coarse effective radius (rvc) due to the column aerosol size distribution is generally bimodal lognormal distribution. The relationship between these parameters and effective radius was shown and analyzed. It is shown that aerosol in Zhoushan is urban-industrial type dominate, mixed with marine aerosol and mineral dust aerosol. As a result, this study showed a part of aerosol comes from mainland industrial areas by using the backward trajectory model

  3. Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra

    Directory of Open Access Journals (Sweden)

    V. A. Lanz

    2006-11-01

    Full Text Available Submicron ambient aerosol was characterized in summer 2005 at an urban background site in Zurich, Switzerland, during a three-week measurement campaign. Highly time-resolved samples of non-refractory aerosol components were analyzed with an Aerodyne aerosol mass spectrometer (AMS. Positive matrix factorization (PMF was used for the first time for AMS data to identify the main components of the total organic aerosol and their sources. The PMF retrieved factors were compared to measured reference mass spectra and were correlated with tracer species of the aerosol and gas phase measurements from collocated instruments. Six factors were found to explain virtually all variance in the data and could be assigned either to sources or to aerosol components such as oxygenated organic aerosol (OOA. Our analysis suggests that at the measurement site only a small (<10% fraction of organic PM1 originates from freshly emitted fossil fuel combustion. Other primary sources identified to be of similar or even higher importance are charbroiling (10–15% and wood burning (~10%, along with a minor source interpreted to be influenced by food cooking (6%. The fraction of all identified primary sources is considered as primary organic aerosol (POA. This interpretation is supported by calculated ratios of the modelled POA and measured primary pollutants such as elemental carbon (EC, NOx, and CO, which are in good agreement to literature values. A high fraction (60–69% of the measured organic aerosol mass is OOA which is interpreted mostly as secondary organic aerosol (SOA. This oxygenated organic aerosol can be separated into a highly aged fraction, OOA I, (40–50% with low volatility and a mass spectrum similar to fulvic acid, and a more volatile and probably less processed fraction, OOA II (on average 20%. This is the first publication of a multiple component analysis technique to AMS organic spectral data and also the first report of the

  4. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  5. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  6. Mujer y medio ambiente

    OpenAIRE

    Zuluaga Sánchez, Gloria Patricia

    1998-01-01

    El debate sobre mujer y medio ambiente es bastante nuevo y, por lo tanto, aun no hay consenso sobre como abordarlo, ni análisis muy profundos sobre la interacción de estas dos problemáticas tan complejas y que además atraviesan las demás temáticas. Con ello no se quiere negar el importante aporte que se ha hecho en tal sentido, por parte de colectividades y de algunas personas. Selene Herculano y Jacqueline Pitanguy (1993), mencionan que el medio ambiente no es una categoría específica y que ...

  7. Single-parameter estimates of aerosol water content

    International Nuclear Information System (INIS)

    Water can represent a substantial fraction of the mass of tropospheric non-cloud particulate matter, and can also serve as a medium for aqueous-phase reactions in such particles. Aerosol water contents are highly dependent upon aerosol hygroscopicity and ambient relative humidities (RH). In this work we evaluate a recently proposed parameterization of composition-dependent aerosol hygroscopicity that predicts the volume of liquid water associated with a unit volume of dry aerosol. The predictions over the range 10%85%) expected to have the most significant effects on tropospheric chemistry and radiation balance. Water contents for most of the compounds studied are generally represented within experimental uncertainties over the entire range of relative humidity examined, with the exception of marine-type particles dominated by sodium chloride and sodium sulfate

  8. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    -road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a

  9. Complex measurements of aerosol and ion characteristics in the atmospheric boundary layer

    Science.gov (United States)

    Kikas, Iu. E.; Kolomiets, S. M.; Kornienko, V. I.; Mirme, A. A.; Sal'm, Ia. I.; Sergeev, I. Ia.; Tammet, Kh. F.

    Results of a comprehensive study of the characteristics of atmospheric ions and aerosols in the boundary layer during the summer season are reported. A study is also made of the kinetics of aerosol formation under conditions of high artificial ionization of the air by alpha and UV radiation. A high degree of correlation is shown to exist between atmospheric concentrations of medium ions and fine (less than 0.01 micron) aerosol. The results obtained support the radiation-chemical mechanism of aerosol formation.

  10. Simulation of the influence of aerosol particles on Stokes parameters of polarized skylight

    International Nuclear Information System (INIS)

    Microphysical properties and chemical compositions of aerosol particles determine polarized radiance distribution in the atmosphere. In this paper, the influences of different aerosol properties (particle size, shape, real and imaginary parts of refractive index) on Stokes parameters of polarized skylight in the solar principal and almucantar planes are studied by using vector radiative transfer simulations. The results show high sensitivity of the normalized Stokes parameters due to fine particle size, shape and real part of refractive index of aerosols. It is possible to utilize the strength variations at the peak positions of the normalized Stokes parameters in the principal and almucantar planes to identify aerosol types

  11. Which fine-tuning arguments are fine?

    CERN Document Server

    Grinbaum, Alexei

    2009-01-01

    The argument from naturalness is widely employed in contemporary quantum field theory. Essentially a formalized aesthetic criterion, it received a meaning in the debate on the Higgs mechanism, which goes beyond aesthetics. We follow the history of technical definitions of fine tuning at the scale of electroweak symmetry breaking. It is argued that they give rise to a special interpretation of probability, which we call Gedankenfrequency. By extension of its original meaning, the argument from naturalness is used to compare different models beyond the Standard Model. We show that in this case naturalness cannot be defined objectively. Rather, it functions as socio-historical heuristics in particle physics and it contributes to the advent of a probabilistic version of Popper's falsificationism.

  12. Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion electrospray mass spectrometry.

    Science.gov (United States)

    Wan, Eric C H; Yu, Jian Zhen

    2007-04-01

    Sugars and sugar polyols are relatively abundant groups of water-soluble constituents in atmospheric aerosols. This paper describes a method that uses liquid chromatography-mass spectrometry (LC-MS) to analyze sugars and sugar polyols in atmospheric aerosols, ranging from C3 sugar alcohols to trisaccharides. Postcolumn addition of chloroform in acetonitrile was found to greatly enhance ionization of these compounds by forming chloride adduct ions in the negative-ion mode using electrospray ionization. A gradient elution program starting at 5%:95% H20/acetonitrile and ending at 30%:70% H2O/acetonitrile provides baseline separations of the sugars and sugar polyols on an amino-based carbohydrate column. The detection limits based on quantification of [M + 35Cl]- adduct ions were in the order of 0.1 microM. By eliminating the need for derivatization, this LC-MS based method provides a simpler alternative method to the commonly used and more laborious gas-chromatography based methods. It also has an additional advantage of being able to quantify trisaccharide sugars. The method was applied to analyze 30 ambient samples of fine particulate matter collected at a site away from urban centers in Hong Kong. The sugar compounds positively identified and detected in the ambient samples included four sugar alcohols (glycerol, erythritol, xylitol, and mannitol), three monosacchride sugars (xylose, fructose, and glucose), two disaccharides (sucrose, trehalose), two trisaccharides (melezitose, raffinose), and one anhydrosugar (levoglucosan). The sum of these sugar and sugar polyol compounds ranged from 38 to 1316 ng m(-3), accounting for an average of 1.3% organic carbon mass. Through the use of a principal component analysis of the ambient measurements, the mono- to trisactharide sugars and C3-C5 sugar polyols were identified to be mainly associated with soil/soil microbiota while the anhydrosugar (levoglucosan) was associated with biomass burning. PMID:17438800

  13. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yuan, E-mail: ycheng@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); He, Ke-bin, E-mail: hekb@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing (China); Duan, Feng-kui; Du, Zhen-yu [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); Zheng, Mei [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Ma, Yong-liang [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China)

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC{sub IMPROVE-A} (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC{sub NIOSH} ratio and the EC{sub IMPROVE-A} to EC{sub EUSAAR} ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation

  14. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    International Nuclear Information System (INIS)

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The ECIMPROVE-A (EC measured by the IMPROVE-A protocol; similar hereinafter) to ECNIOSH ratio and the ECIMPROVE-A to ECEUSAAR ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation of SOC by the EC

  15. Observations of the Interaction and/or Transport of Aerosols with Cloud or Fog during DRAGON Campaigns from AERONET Ground-Based Remote Sensing

    Science.gov (United States)

    Eck, Thomas; Holben, Brent; Schafer, Joel; Giles, David; Kim, Jhoon; Kim, Young; Sano, Itaru; Reid, Jeffrey; Pickering, Kenneth; Crawford, James; Sinyuk, Alexander; Trevino, Nathan

    2014-05-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. AERONET has established Distributed Regional Aerosol Gridded Observation Networks (DRAGON) during field campaigns that are short-term (~2-3 months) relatively dense spatial networks of ~15 to 45 sun and sky scanning photometers. Recent major DRAGON field campaigns in Japan and South Korea (Spring 2012) and California (Winter 2013) have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth signal for these cases of persistent and extensive cloud cover. Additionally, extensive fog that was coincident with aerosol layer height on some days in both Korea and California resulted in large increases in fine mode aerosol radius, with a mode of cloud-processed or residual aerosol of radius ~0.4-0.5 micron sometimes observed. Cloud processed aerosol may occur much more frequently than AERONET data suggest due to inherent difficulty in observing aerosol properties near clouds from remote sensing observations. These biases of aerosols associated with clouds would likely be even greater for satellite remote sensing retrievals of aerosol properties near clouds due to 3-D effects and sub-pixel cloud contamination issues.

  16. Intra and inter-continental aerosol transport and local and regional impacts

    Science.gov (United States)

    Charles, Leona Ann Marie

    vertical layering of aerosols in the troposphere from passive remote sensing measurements. Therefore, the connection with air pollution is very poor. Furthermore, the vertical structure of the aerosol is very important in assessing transport events and how they mix with the Planetary Boundary Layer (PBL). The need to fill this data gap and supply vertical information on plume detection has led to the launch of the Cloud Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) space borne lidar system, which can in principle provide vertical profiles of aerosol backscatter that can be used in the assimilation schemes. One particular problem which needs to be addressed, is the fact that the relationship between the optical scattering coefficients (or AOD) and the PM2.5 mass is not simple. Finally, regarding non-attainment of National Ambient Air Quality Standards (NAAQS), it has also been shown that a significant portion of the PM2.5 aerosol mass can be due to non-local sources. This fact is critical in assessing the appropriate strategy in emission controls, as part of the state implementation plan (SIP) to come into compliance. However, these studies are usually based on statistical analysis tools such as Positive Factor Analysis (PFA), and are not applicable to any single measurement. In addition, little is known about the impact of episodic long range transport as a possible mechanism for affecting local pollution. Such a mechanism cannot be investigated by statistical means or by any existing air transport models which do not consider high altitude plumes (aerosol layers), and must be studied solely with an appropriate suite of measurements including the simultaneous use of sky radiometers, lidars and satellites. Furthermore, since fine particulate matter is so crucial to identify, multi-wavelength determination of aerosol properties such as angstrom coefficient are necessary. It is our purpose to investigate the possibility that such long range transport events can

  17. La radioactividad ambiental

    Directory of Open Access Journals (Sweden)

    Rafael Núñez-Lagos Roglá

    2011-01-01

    Full Text Available Se explican los conceptos fundamentales relacionados con la radiactividad y se utilizan para describir la radiactividad ambiental. Se explican también los isótopos de largo periodo y las principales familias radioactivas junto con la radiación cósmica y los radionucleidos cosmogénicos.

  18. Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements

    Science.gov (United States)

    Zieger, Paul; Clemer, Katrijn; Yilmaz, Selami; Frieß, Udo; Irie, Hitoshi; Henzing, Bas; Fierz-Schmidhauser, Rahel; de Leeuw, Gerrit; Baltensperger, Urs; Weingartner, Ernest

    2010-05-01

    In the field, in-situ measurements of aerosol light scattering are often performed under dry conditions (relative humidity RH MAAP). This combination of measurements allows the determination of the aerosol extinction coefficient at ambient RH. Three MAX-DOAS (multi-axis differential optical absorption spectroscopy) instruments retrieved vertical profiles of the aerosol extinction coefficient during CINDI. The retrieved aerosol extinction corresponding to the lowest profile layer can now be directly compared to the in-situ value, which is now re-calculated to ambient RH.

  19. The colors of biomass burning aerosols in the atmosphere

    Science.gov (United States)

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  20. Aerosol MTF revisited

    Science.gov (United States)

    Kopeika, Norman S.; Zilberman, Arkadi; Yitzhaky, Yitzhak

    2014-05-01

    Different views of the significance of aerosol MTF have been reported. For example, one recent paper [OE, 52(4)/2013, pp. 046201] claims that the aerosol MTF "contrast reduction is approximately independent of spatial frequency, and image blur is practically negligible". On the other hand, another recent paper [JOSA A, 11/2013, pp. 2244-2252] claims that aerosols "can have a non-negligible effect on the atmospheric point spread function". We present clear experimental evidence of common significant aerosol blur and evidence that aerosol contrast reduction can be extremely significant. In the IR, it is more appropriate to refer to such phenomena as aerosol-absorption MTF. The role of imaging system instrumentation on such MTF is addressed too.

  1. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog in East Asia from AERONET and Satellite Remote Sensing: 2012 DRAGON Campaigns and Climatological Data

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Lynch, P.; Schafer, J.; Giles, D. M.; Kim, J.; Kim, Y. J.; Sano, I.; Arola, A. T.; Munchak, L. A.; O'Neill, N. T.; Lyapustin, A.; Sayer, A. M.; Hsu, N. Y. C.; Randles, C. A.; da Silva, A. M., Jr.; Govindaraju, R.; Hyer, E. J.; Pickering, K. E.; Crawford, J. H.; Sinyuk, A.; Smirnov, A.

    2015-12-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. Major Distributed Regional Aerosol Gridded Observation Networks (DRAGON) field campaigns involving multiple AERONET sites in Japan and South Korea during Spring of 2012 have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth (AODf) signal from AERONET data for these cases of persistent and extensive cloud cover. Satellite retrievals of AOD from MODIS sensors (from Dark Target, Deep Blue and MAIAC algorithms) were also investigated to assess the issue of detectability of high AOD events associated with high cloud fraction. Underestimation of fine mode AOD by the Navy Aerosol Analysis and Prediction System (NAAPS) and by the NASA Modern-Era Retrospective Analysis For Research And Applications Aerosol Re-analysis (MERRAaero) models at very high AOD at sites in China and Korea was observed, especially for observations that are cloud screened by AERONET (Level 2 data). Additionally, multi-year monitoring at several AERONET sites are examined for climatological statistics of cloud screening of fine mode aerosol events. Aerosol that has been affected by clouds or the near-cloud environment may be more prevalent than AERONET data suggest due to inherent difficulty in

  2. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    Science.gov (United States)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed-layer aerosol extinction. Aerosol loading (dry extinction) was found to be the predominant source, accounting for 88 % on average of the measured spatial variability in ambient extinction, with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite-modeling assimilation products that are able to capture these components of the aerosol optical depth (AOD)-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day to day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015), who determined that the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

  3. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral ...

  4. Fine 5 lavastab Venemaal

    Index Scriptorium Estoniae

    2013-01-01

    Tantsuteatru Fine 5 koreograafid Tiina Ollesk ja Rene Nõmmik toovad Jekaterinburgis välja lavastuse "... and Red", esitajaks Venemaa nimekas nüüdistantsutrupp Provintsialnõje Tantsõ. Lavastuses kõlab Taavo Remmeli kontrabassiimprovisatsioon "12.12.2006"

  5. Sensitivity of aerosol direct radiative forcing to aerosol vertical profile

    OpenAIRE

    Chung, Chul E.; Choi, Jung-Ok

    2014-01-01

    Aerosol vertical profile significantly affects the aerosol direct radiative forcing at the TOA level. The degree to which the aerosol profile impacts the aerosol forcing depends on many factors such as presence of cloud, surface albedo and aerosol single scattering albedo (SSA). Using a radiation model, we show that for absorbing aerosols (with an SSA of 0.7–0.8) whether aerosols are located above cloud or below induces at least one order of magnitude larger changes of the aerosol forcing tha...

  6. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    Science.gov (United States)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  7. Aerosols Science and Technology

    CERN Document Server

    Agranovski, Igor

    2011-01-01

    This self-contained handbook and ready reference examines aerosol science and technology in depth, providing a detailed insight into this progressive field. As such, it covers fundamental concepts, experimental methods, and a wide variety of applications, ranging from aerosol filtration to biological aerosols, and from the synthesis of carbon nanotubes to aerosol reactors.Written by a host of internationally renowned experts in the field, this is an essential resource for chemists and engineers in the chemical and materials disciplines across multiple industries, as well as ideal supplementary

  8. Optical and Chemical Properties of Atmospheric Aerosols at Amami Oshima and Fukue Islands in Japan in Spring, 2001

    OpenAIRE

    Ohta,Sachio; Murao, Naoto; Yamagata,Sadamu

    2013-01-01

    The optical and chemical properties of atmospheric aerosols were determined from the ground-based measurements at Amami Oshima in April 2001 during the Asian Atmospheric Particle Environmental Change Studies (APEX) campaign and at Fukue Island in March 2001. At Amami Oshima from April 10 to 16, an aerosol event was observed in which the volume scattering coefficient and sulfate concentration of fine particles increased conspicuously. At the former term of the aerosol event, the single scatter...

  9. TIGERZ I: Aerosols, Monsoon and Synergism

    Science.gov (United States)

    Holben, B. N.; Tripathi, S. N.; Schafer, J. S.; Giles, D. M.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Krishnmoorthy, K.; Sorokin, M. G.; Newcomb, W. W.; Tran, A. K.; Sikka, D. R.; Goloub, P.; O'Neill, N. T.; Abboud, I.; Randles, C.; Niranjan, K.; Dumka, U. C.; Tiwari, S.; Devara, P. C.; Kumar, S.; Remer, L. A.; Kleidman, R.; Martins, J. V.; Kahn, R.

    2008-12-01

    The Indo-Gangetic Plain of northern India encompasses a vast complex of urban and rural landscapes, cultures that serve as anthropogenic sources of fine mode aerosols mixed with coarse mode particles transported from SW Asia. The summer monsoon and fall Himalayan snowmelt provide the agricultural productivity to sustain an extremely high population density whose affluence is increasing. Variations in the annual monsoon precipitation of 10% define drought, normal and a wet season; the net effects on the ecosystems and quality of life can be dramatic. Clearly investigation of anthropogenic and natural aerosol impacts on the monsoon, either through the onset, monsoon breaks or end points are a great concern to understand and ultimately mitigate. Many national and international field campaigns are being planned and conducted to study various aspects of the Asian monsoon and some coordinated under the Asian Monsoon Years (AMY) umbrella. A small program called TIGERZ conducted during the pre-monsoon of 2008 in North Central India can serve as a model for contributing significant resources to existing field programs while meeting immediate project goals. This poster will discuss preliminary results of the TIGERZ effort including ground-based measurements of aerosol properties in the I-G from AERONET and synergism with various Indian programs, satellite observations and aerosol modeling efforts.

  10. Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2015-05-01

    Full Text Available High concentrations of fine particles (PM2.5 are frequently observed during all seasons in Beijing, China, leading to severe air pollution and human health problems in this megacity. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1 species (sulfate, nitrate, ammonium, chloride, and organics in Beijing using an Aerodyne Aerosol Chemical Speciation Monitor for 1 year, from July 2011 to June 2012. This is the first long-term, highly time-resolved (~ 15 min measurement of fine particle composition in China. The seasonal average (± 1σ mass concentration of NR-PM1 ranged from 52 (± 49 μg m−3 in the spring season to 62 (± 49 μg m−3 in the summer season, with organics being the major fraction (40–51%, followed by nitrate (17–25% and sulfate (12–17%. Organics and chloride showed pronounced seasonal variations, with much higher concentrations in winter than in the other seasons, due to enhanced coal combustion emissions. Although the seasonal variations of secondary inorganic aerosol (SIA = sulfate + nitrate + ammonium concentrations were not significant, higher contributions of SIA were observed in summer (57–61% than in winter (43–46%, indicating that secondary aerosol production is a more important process than primary emissions in summer. Organics presented pronounced diurnal cycles that were similar among all seasons, whereas the diurnal variations of nitrate were mainly due to the competition between photochemical production and gas–particle partitioning. Our data also indicate that high concentrations of NR-PM1 (> 60 μg m−3 are usually associated with high ambient relative humidity (RH (> 50% and that severe particulate pollution is characterized by different aerosol composition in different seasons. All NR-PM1 species showed evident concentration gradients as a function of wind direction, generally with higher values associated with wind from the south, southeast or east. This

  11. Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis

    Science.gov (United States)

    Sun, Y. L.; Wang, Z. F.; Du, W.; Zhang, Q.; Wang, Q. Q.; Fu, P. Q.; Pan, X. L.; Li, J.; Jayne, J.; Worsnop, D. R.

    2015-09-01

    High concentrations of fine particles (PM2.5) are frequently observed during all seasons in Beijing, China, leading to severe air pollution and human health problems in this megacity. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1) species (sulfate, nitrate, ammonium, chloride, and organics) in Beijing using an Aerodyne Aerosol Chemical Speciation Monitor for 1 year, from July 2011 to June 2012. This is the first long-term, highly time-resolved (~ 15 min) measurement of fine particle composition in China. The seasonal average (±1σ) mass concentration of NR-PM1 ranged from 52 (±49) μg m-3 in the spring season to 62 (±49) μg m-3 in the summer season, with organics being the major fraction (40-51 %), followed by nitrate (17-25 %) and sulfate (12-17 %). Organics and chloride showed pronounced seasonal variations, with much higher concentrations in winter than in the other seasons, due to enhanced coal combustion emissions. Although the seasonal variations of secondary inorganic aerosol (SIA, i.e., sulfate + nitrate + ammonium) concentrations were not significant, higher contributions of SIA were observed in summer (57-61 %) than in winter (43-46 %), indicating that secondary aerosol production is a more important process than primary emissions in summer. Organics presented pronounced diurnal cycles that were similar among all seasons, whereas the diurnal variations of nitrate were mainly due to the competition between photochemical production and gas-particle partitioning. Our data also indicate that high concentrations of NR-PM1 (> 60 μg m-3) are usually associated with high ambient relative humidity (RH) (> 50 %) and that severe particulate pollution is characterized by different aerosol composition in different seasons. All NR-PM1 species showed evident concentration gradients as a function of wind direction, generally with higher values associated with wind from the south, southeast or east. This was consistent

  12. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    Science.gov (United States)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  13. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    Science.gov (United States)

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care. PMID:27136117

  14. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    Science.gov (United States)

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care.

  15. Hygroscopicity of Black-Carbon-Containing Aerosol in Wildfire Plumes

    Science.gov (United States)

    Perring, A. E.; Schwarz, J. P.; Markovic, M. Z.; Fahey, D. W.; Yokelson, R. J.; Jimenez, J. L.; Campuzano Jost, P.; Day, D. A.; Palm, B. B.; Wisthaler, A.; Ziemba, L. D.; Anderson, B. E.; Diskin, G. S.; Huey, L. G.; Gao, R. S.

    2015-12-01

    Water uptake by black carbon (BC) containing aerosol has been quantified in wildfire plumes of varying age (from 1 to ~40 hr old) sampled in North America during the NASA SEAC4RS mission of 2013. Measurements were made in flight using parallel single-particle soot photometers (SP2) that simultaneously detected the BC component of the ambient aerosol ensemble under contrasting humidity conditions. The hygroscopicity parameter, κ, of material internally mixed with BC derived from this data set is consistent with previous estimates of bulk aerosol hygroscopicity from biomass burning sources. We explore the temporal evolution of κ during aging of the Yosemite Rim Fire plume to constrain the rate of conversion of BC-containing aerosol from hydrophobic to hydrophilic modes in these emissions. We also investigate the relationship between κ values for BC-containing particles and the oxidation state and hygroscopicity of the bulk aerosol. These observations have implications for BC transport and removal in biomass burning plumes and provide important constraints on model treatment of BC optical and microphysical properties from wildfire sources in ambient conditions.

  16. Assimilation of POLDER aerosol optical thickness into the LMDz-INCA model: Implications for the Arctic aerosol burden

    International Nuclear Information System (INIS)

    The large spatial and temporal variability of atmospheric aerosol load makes it a challenge to quantify aerosol effect on climate. This study is one of the first attempts to apply data assimilation for the analysis of global aerosol distribution. Aerosol optical thickness (AOT) observed from the Polarization and Directionality of the Earth Reflectances (POLDER) space-borne instrument are assimilated into a three-dimensional chemistry model. POLDER capabilities to distinguish between fine and coarse AOT are used to constrain them separately in the model. Observation and model errors are a key component of such a system and are carefully estimated on a regional basis using some of the high-quality surface observations from the Aerosol Robotic Network (AERONET). Other AERONET data provide an independent evaluation of the a posteriori fields. Results for the fine mode show improvements, in terms of reduction of root-mean-square errors, in most regions with the largest improvements found in the Mediterranean Sea and Eurasia. We emphasize the results for the Arctic, where there is growing evidence of a strong aerosol impact on climate, but a lack of regional and continuous aerosol monitoring. The a posteriori fields noticeably well reproduce the winter-spring 'Arctic Haze' peak measured in Longyearbyen (15 degrees E, 78 degrees N) and typical seasonal variations in the Arctic region, where AOT increase by up to a factor of three between a posteriori and a priori. Enhanced AOT are found over a longer period in spring 2003 than in 1997, suggesting that the large Russian fires in 2003 have influenced the Arctic aerosol load. (authors)

  17. A hazard to health? Fine particles arouse worldwide interest

    Energy Technology Data Exchange (ETDEWEB)

    Karas, J.; Oesch, P.

    1998-07-01

    The most recent studies show that particles contained in the air that we breathe may have harmful effects on the health of asthmatics, children and old people in particular. Particle material found in ambient air is formed by emissions resulting from traffic, industry and other use of fuels. Nature`s own sources also have a significant effect on particle concentrations. The mechanisms by which fine particles may produce negative health effects are so far unknown. At present it is therefore impossible to assess the effects of emissions of fine particles resulting, for instance, from the use of fossil fuels

  18. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  19. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation??s (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  20. Sources of anions in aerosols in northeast Greenland during late winter

    DEFF Research Database (Denmark)

    Lauridsen, Marlene Fenger; Sørensen, Lise Lotte; Kristensen, Kasper;

    2013-01-01

    The knowledge of climate effects of atmospheric aerosols is associated with large uncertainty, and a better understanding of their physical and chemical properties is needed, especially in the Arctic environment. The objective of the present study is to improve our understanding of the processes...... affecting the composition of aerosols in the high Arctic. Therefore size-segregated aerosols were sampled at a high Arctic site, Station Nord (Northeast Greenland), in March 2009 using a Micro Orifice Uniform Deposit Impactor. The aerosol samples were extracted in order to analyse three water-soluble anions...... ), respectively. The aerosols in late winter/early spring, after polar sunrise, are found to be a mixture of long-range transported and regional to local originating aerosols. Fine particles, smaller than 1 μm, containing SO2−4 , Cl− and NO− 3 , are hypothesized to originate from long-range transport, where SO2...

  1. NIF Ambient Vibration Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  2. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B