WorldWideScience

Sample records for ambient fine aerosols

  1. The chemical composition of fine ambient aerosol particles in the Beijing area

    Science.gov (United States)

    Nekat, Bettina; van Pinxteren, Dominik; Iinuma, Yoshiteru; Gnauk, Thomas; Müller, Konrad; Herrmann, Hartmut

    2010-05-01

    The strong economical growth in China during the last few decades led to heavy air pollution caused by significantly increased particle emissions. The aerosol particles affect not only the regional air quality and visibility, but can also influence cloud formation processes and the radiative balance of the atmosphere by their optical and microphysical properties. The ability to act as Cloud Condensation Nuclei (CCN) is related to microphysical properties like the hygroscopic growth or the cloud droplet activation. The chemical composition of CCN plays an important role on these properties and varies strongly with the particle size and the time of day. Hygroscopic or surface active substances can increase the hygroscopicity and lower the surface tension of the particle liquid phase, respectively. The presence of such compounds may result in faster cloud droplet activation by faster water uptake. The DFG project HaChi (Haze in China) aimed at studying physical and chemical parameters of urban aerosol particles in the Beijing area in order to associate the chemical composition of aerosol particles with their ability to act as CCN. To this end, two measurement campaigns were performed at the Wuqing National Ordinary Meteorological Observing Station, which is a background site near Beijing. The winter campaign was realized in March 2009 and the summer campaign took place from mid July 2009 to mid August 2009. Fine particles with an aerodynamic diameter smaller than or equal 1 μm were continuously sampled for 24h over the two campaigns using a DIGITEL high volume sampler (DHA-80). The present contribution presents and discusses the results of the chemical characterization of the DIGITEL filters samples. The filters were analyzed for the mass concentration, inorganic ions and carbon sum parameters like elemental (EC), organic (OC) and water soluble organic carbon (WSOC). The WSOC fraction was further characterized for hygroscopic substances like low molecular

  2. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    Science.gov (United States)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  3. Toxicity of Ambient Particulate Matter II. Acute toxicity study in asthmatic mice following 3-day exposure to fine ammonium ferrosulfate, a model compound for secondary aerosol of PM10

    NARCIS (Netherlands)

    Cassee FR; Dormans JAMA; Loveren H van; Bree L van; Rombout PJA; LEO; LPI

    1998-01-01

    In this second report on acute inhalation studies with model compounds for secondary particulate matter, results are presented of a study with fine ammonium ferrosulfate aerosol in asthmatic animals. We hypothesised that an aerosol with a transitional metal could produce enhanced symptoms of asthma.

  4. Secondary organic aerosols: Formation potential and ambient data

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1997-01-01

    Organic aerosols comprise a significant fraction of the total atmospheric particle loading and are associated with radiative forcing and health impacts. Ambient organic aerosol concentrations contain both a primary and secondary component. Herein, fractional aerosol coefficients (FAC) are used in...... conjunction with measurements of volatile organic compounds (VOC) to predict the formation potential of secondary organic aerosols (SOA) in the Lower Fraser Valley (LEV) of British Columbia. The predicted concentrations of SOA show reasonable accord with ambient aerosol measurements and indicate considerable...

  5. Toxicity of Ambient Particulate Matter (PM10) I. Acute toxicity study in asthmatic mice following 3-day exposure to ultrafine and fine ammonium bisulfate, a model compound for secondary aerosol fraction of PM10

    NARCIS (Netherlands)

    Cassee FR; Dormans JAMA; Loveren H van; Bree L van; Rombout PJA; LEO; LPI

    1998-01-01

    Presented here is the first in a series of 3-day inhalation studies aimed to generate data on the health effects of inhaled ultrafine and fine ammonium bisulfate aerosols as model compound for the secondary fraction of particulate matter (PM10). Epidemiologic studies identified asthmatics as a risk

  6. The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition

    OpenAIRE

    K. S. Docherty; A. C. Aiken; Huffman, J. A.; Ulbrich, I.M.; Decarlo, P. F.; D. Sueper; Worsnop, D. R.; Snyder, D. C.; Grover, B. D.; Eatough, D. J.; A. H. Goldstein; P. J. Ziemann; Jimenez, J. L.

    2011-01-01

    Multiple state-of-the-art instruments sampled ambient aerosol in Riverside, California during the 2005 Study of Organic Aerosols at Riverside (SOAR) to investigate sources and chemical composition of fine particles (PMf) in the inland region of Southern California. This paper briefly summarizes the spatial, meteorological and gas-phase conditions during SOAR-1 (15 July–15 August) and provides detailed intercomparisons of complementary measurements and average PM

  7. Quantitative assessment of organosulfates in size-segregated rural fine aerosol

    Directory of Open Access Journals (Sweden)

    H. Lukács

    2008-04-01

    Full Text Available Organosulfates have recently come into the focus of organic aerosol research as potentially important components of water-soluble secondary organic aerosol (SOA which now dominate tropospheric fine aerosol. Their presence has been confirmed by the identification of sulfate esters of abundant biogenic carbonyl compounds in both smog chamber and continental aerosol. However, none of the studies have been able to determine the mass contribution of organosulfates to SOA.

    In this paper, as possibly the very first attempt to quantify organosulfates in ambient aerosol, we inferred the mass concentrations of organosulfates by concurrently determining mass concentrations of total sulfur, sulfate and methanesulfonate in rural fine aerosol using two highly sensitive analytical techniques. Although uncertainties were relatively large, we found that mass concentrations of organosulfates in water-soluble fine aerosol ranged from 0.02 μgS m−3 to 0.09 μgS m−3 yielding a mass contribution of 6–12% to bulk sulfur concentrations (or 6–14% to sulfate concentrations. The inferred size distribution of organosulfates suggested that they possibly form in heterogeneous reactions from semi-volatile carbonyl compounds with subsequent or concurrent condensation of gaseous sulfuric acid producing a refractory organic film on particle surfaces.

  8. Artificial ultra-fine aerosol tracers for highway transect studies

    Science.gov (United States)

    Cahill, Thomas A.; Barnes, David E.; Wuest, Leann; Gribble, David; Buscho, David; Miller, Roger S.; De la Croix, Camille

    2016-07-01

    The persistent evidence of health impacts of roadway aerosols requires extensive information for urban planning to avoid putting populations at risk, especially in-fill projects. The required information must cover both highway aerosol sources as well as transport into residential areas under a variety of roadway configurations, traffic conditions, downwind vegetation, and meteorology. Such studies are difficult and expensive to do, but were easier in the past when there was a robust fine aerosol tracer uniquely tied to traffic - lead. In this report we propose and test a modern alternative, highway safety flare aerosols. Roadway safety flares on vehicles in traffic can provide very fine and ultra-fine aerosols of unique composition that can be detected quantitatively far downwind of roadways due to a lack of upwind interferences. The collection method uses inexpensive portable aerosol collection hardware and x-ray analysis protocols. The time required for each transect is typically 1 h. Side by side tests showed precision at ± 4%. We have evaluated this technique both by aerosol removal in vegetation in a wind tunnel and by tracking aerosols downwind of freeways as a function of season, highway configuration and vegetation coverage. The results show that sound walls for at-grade freeways cause freeway pollution to extend much farther downwind than standard models predict. The elevated or fill section freeway on a berm projected essentially undiluted roadway aerosols at distances well beyond 325 m, deep into residential neighborhoods. Canopy vegetation with roughly 70% cover reduced very fine and ultra-fine aerosols by up to a factor of 2 at distances up to 200 m downwind.

  9. Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the Southeastern United States

    Directory of Open Access Journals (Sweden)

    N. F. Taylor

    2011-08-01

    Full Text Available We present results from two field deployments of a unique tandem differential mobility analyzer (TDMA configuration with two primary capabilities: identifying alternative stable or meta-stable ambient aerosol hydration states associated with hysteresis in aerosol hydration behavior and determining the actual Ambient hydration State (AS-TDMA. This data set is the first to fully classify the ambient hydration state of aerosols despite recognition that hydration state significantly impacts the roles of aerosols in climate, visibility and heterogeneous chemistry. The AS-TDMA was installed at a site in eastern Tennessee on the border of Great Smoky Mountains National Park for projects during the summer of 2006 and winter of 2007–2008. During the summer, 12 % of the aerosols sampled in continuous AS-TDMA measurements were found to posses two possible hydration states under ambient conditions. In every case, the more hydrated of the possible states was occupied. The remaining 88 % did not posses multiple possible states. In continuous measurements during the winter, 49 % of the aerosols sampled possessed two possible ambient hydration states; the remainder possessed only one. Of those aerosols with multiple possible ambient hydration states, 65 % occupied the more hydrated state; 35 % occupied the less hydrated state. This seasonal contrast is supported by differences in the fine particulate (PM2.5 composition and ambient RH as measured during the two study periods. In addition to seasonal summaries, this work includes case studies depicting the variation of hydration state with changing atmospheric conditions.

  10. Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the southeastern United States

    Directory of Open Access Journals (Sweden)

    N. F. Taylor

    2011-12-01

    Full Text Available We present results from two field deployments of a unique tandem differential mobility analyzer (TDMA configuration with two primary capabilities: identifying alternative stable or meta-stable ambient aerosol hydration states associated with hysteresis in aerosol hydration behavior and determining the actual Ambient hydration State (AS-TDMA. This data set is the first to fully classify the ambient hydration state of aerosols despite recognition that hydration state significantly impacts the roles of aerosols in climate, visibility and heterogeneous chemistry. The AS-TDMA was installed at a site in eastern Tennessee on the border of Great Smoky Mountains National Park for projects during the summer of 2006 and winter of 2007–2008. During the summer, 12% of the aerosols sampled in continuous AS-TDMA measurements were found to posses two possible hydration states under ambient conditions. In every case, the more hydrated of the possible states was occupied. The remaining 88% did not posses multiple possible states. In continuous measurements during the winter, 49% of the aerosols sampled possessed two possible ambient hydration states; the remainder possessed only one. Of those aerosols with multiple possible ambient hydration states, 65% occupied the more hydrated state; 35% occupied the less hydrated state. This seasonal contrast is supported by differences in the fine particulate (PM2.5 composition and ambient RH as measured during the two study periods. In addition to seasonal summaries, this work includes case studies depicting the variation of hydration state with changing atmospheric conditions.

  11. Contribution of woodsmoke and motor vehicle emissions to ambient aerosol mutagenicity

    International Nuclear Information System (INIS)

    A multiple linear regression form of receptor modeling has been used to determine the sources of the mutagenicity of fine-particle ambient aerosol samples collected during the winter in a residential area of Albuquerque, NM. Virtually all the mutagenicity (Salmonella typhimurium TA98 + S9) could be accounted for by woodsmoke and motor vehicle emissions. Woodsmoke was found to be the greater contributor to the average ambient concentrations of both extractable organ is and mutagenicity. The mutagenic potency (revertants per microgram) of extractable organics traced to motor vehicles, however, was 3 times greater than that with a woodsmoke origin. The results were confirmed by 14C measurements

  12. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    Science.gov (United States)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  13. Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol

    OpenAIRE

    Gysel, M.; Weingartner, E.; S. Nyeki; D. Paulsen; U. Baltensperger; Galambos, I.; G. Kiss

    2003-01-01

    Ambient continental-rural fine aerosol (K-puszta, Hungary, PM1.5) was sampled on quartz fibre filters in winter and summer 2001. Water-soluble matter (WSM) was extracted in MilliQ-water, and, in a second step, solid phase extraction was used to isolate the less hydrophilic fraction (ISOM) of the water-soluble organic matter (WSOM) from inorganic salts and remaining most hydrophilic organic matter (MHOM). This approach allowed to investigate a major fraction of WSOM...

  14. Speciation of Arsenic in Ambient Aerosols Collected in Los Angeles

    OpenAIRE

    Rabano, Erlinda S.; Castillo, Norma T.; Torre, Kahirup J.; Paul A. Solomon

    1989-01-01

    First-time measurements of the potentially toxic inorganic species of arsenic (arsenite arid arsenate) have been obtained in fine (2.5 µm AD) atmospheric particles in the Los Angeles area. A recently developed method that includes procedures for sample collection, preparation, and analysis was used in this study. Size-fractlonated aerosol samples were collected with a high-volume dichotomous virtual impactor that employed polytetrafluoroethylene filters. Results were obtained for the recovery...

  15. Toxicity of Ambient Particulate Matter. III. Acute toxicity study in asthmatic mice following 3-day exposure to ultrafine and fine ammonium nitrate, a model compound for secondary aerosol fraction of PM10

    NARCIS (Netherlands)

    Cassee FR; Dormans JAMA; Loveren H van; Bree L van; Rombout PJA; LEO; LPI

    1998-01-01

    Ammonium nitrate is the most prominent component of secondary PM10 in the Netherlands. In our study, healthy and asthmatic mice were exposed to fine (CMD = 0.3 mum; 4 x 10 exp. 3 particles per cm3) and ultrafine (CMD = 0.03 mum; 2 x 10. exp. 5 particles per cm3) ammonium nitrate. The mean mass conc

  16. Transport and characterization of ambient biological aerosol near Laurel, MD

    Directory of Open Access Journals (Sweden)

    J. L. Santarpia

    2010-09-01

    Full Text Available Bacterial aerosol have been observed and studied in the ambient environment since the mid nineteenth century. These studies have sought to provide a better understanding of the diversity, variability and factors that control the biological aerosol population. In this study, we show comparisons between diversity of culturable bacteria and fungi, using culture and clinical biochemical tests, and 16S rRNA diversity using Affymetrix PhyloChips. Comparing the culturable fraction and surveying the total 16S rRNA of each sample provides a comprehensive look at the bacterial population studied and allows comparison with previous studies. Thirty-six hour back-trajectories of the air parcels sampled, over the two day period beginning 4 November 2008, provide information on the sources of aerosol sampled on the campus of Johns Hopkins University Applied Physics Laboratory in Laurel, MD. This study indicates that back-trajectory modeling of air parcels may provide insights into the observed diversity of biological aerosol.

  17. Anomalous telephotometer results for the ambient atmospheric aerosol

    Science.gov (United States)

    Harrison, A. W.; Coombes, C. A.

    Simultaneous measurements of the ambient atmospheric aerosol scattering coefficient using a telephotometer δa( λ) and an integrating nephelometer δn( λ) have revealed a seasonal variation in the difference δn( λ) - δa( λ). This variation can be explained by the presence of terpene oil droplets in the boundary layer in the telephotometer line of sight but beyond the telephotometer target. The droplets are due to extensive fir and pine in that far region. A satisfactory modification of the original Koschmeider contrast theory to take account of this effect is outlined.

  18. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    Science.gov (United States)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute

  19. Aerosol dynamics and the synthesis of fine solid particles

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyaya, R.; Lall, A.A.; Friedlander, S.K. [University of California in Los Angeles, Los Angeles, CA (USA). Dept. of Chemical Engineering

    2004-01-26

    Aerosol dynamics (AD) is the discipline that deals with changes in particle size distributions in space and time. AD is based on (1) certain fundamental principles embodied in a set of equations, (2) experimental methods and instrumentation and (3) numerical and computational methods. Over the last few decades, AD has emerged as an enabling discipline in the design of aerosol reactors employed in the gas phase synthesis of fine powders, the characterization of particle emissions from sources such as coal-fired power plants and the atmospheric aerosol. The development of basic AD concepts since early in the 20th century is traced to the present. Major gaps that remain in the field and likely advances over the next few years are discussed. Although accurate predictions of particle size from first principles are difficult to make in practical applications, AD principles can be used to explain trends in product properties for flame and laser ablation reactors that operate under very different temperatures and quench rates.

  20. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate.

    OpenAIRE

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second is indirect. Due to the scattering of solar light on aerosol particles the Earth surface receives less radiation and thus cools, which is called the direct aerosol effect.The indirect effect includes proces...

  1. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate.

    NARCIS (Netherlands)

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second is indire

  2. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-06-01

    Full Text Available Measurements of the sensitivity of organic aerosol (OA, and its components mass to changes in temperature were recently reported by Huffman et al.~(2009 using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets" are determined using several assumptions as to the enthalpy of vaporization (ΔHvap. We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol and lowest for the high (ΔHvap = 150 kJ/mol assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009 has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the

  3. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-01-01

    Full Text Available Measurements of the sensitivity of organic aerosol (OA, and its components mass to changes in temperature were recently reported by Huffman et al. (2009 using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets" are determined using several assumptions as to the enthalpy of vaporization (ΔHvap. We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions, on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol and lowest for the high (ΔHvap = 150 kJ/mol assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009 has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our

  4. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    Science.gov (United States)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  5. Anthropogenic and biogenic organic compounds in summertime fine aerosols (PM2.5) in Beijing, China

    Science.gov (United States)

    Yang, Fan; Kawamura, Kimitaka; Chen, Jing; Ho, Kinfai; Lee, Shuncheng; Gao, Yuan; Cui, Long; Wang, Tieguan; Fu, Pingqing

    2016-01-01

    Ambient fine aerosol samples (PM2.5) were collected at an urban site (PKU) in Beijing and its upwind suburban site (Yufa) during the CAREBEIJING-2007 field campaign. Organic molecular compositions of the PM2.5 samples were studied for seven organic compound classes (sugars, lignin/resin acids, hydroxy-/polyacids, aromatic acids, biogenic SOA tracers, fatty acids and phthalates) using capillary GC/MS to better understand the characteristics and sources of organic aerosol pollution in Beijing. More than 60 individual organic species were detected in PM2.5 and were grouped into different compound classes based on their functional groups. Concentrations of total quantified organics at Yufa (469-1410 ng m-3, average 1050 ng m-3) were slightly higher than those at PKU (523-1390 ng m-3, 900 ng m-3). At both sites, phthalates were found as the most abundant compound class. Using a tracer-based method, the contributions of the biogenic secondary organic carbon (SOC) to organic carbon (OC) were 3.1% at PKU and 5.5% at Yufa, among which isoprene-SOC was the dominant contributor. In addition, most of the measured organic compounds were higher at Yufa than those at PKU, indicating a more serious pollution in its upwind region than in urban Beijing.

  6. Molecular marker analysis as a guide to the sources of fine organic aerosols

    International Nuclear Information System (INIS)

    The molecular composition of fine particulate (Dp ≥ 2 μm) organic aerosol emissions from the most important sources in the Los Angeles area has been determined. Likewise, ambient concentration patterns for more than 80 single organic compounds have been measured at four urban sites (West Los Angeles, Downtown Los Angeles, Pasadena, and Rubidoux) and at one remote offshore site (San Nicolas Island). It has been found that cholesterol serves as a marker compound for emissions from charbroilers and other meat cooking operations. Vehicular exhaust being emitted from diesel and gasoline powered engines can be traced in the Los Angeles atmosphere using fossil petroleum marker compounds such as steranes and pentacyclic triterpanes (e.g., hopanes). Biogenic fine particle emission sources such as plant fragments abraded from leaf surfaces by wind and weather can be traced in the urban atmosphere. Using distinct and specific source organic tracers or assemblages of organic compounds characteristic for the sources considered it is possible to estimate the influence of different source types at any urban site where atmospheric data are available

  7. Molecular marker analysis as a guide to the sources of fine organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, W.F.; Cass, G.R. [California Inst. of Tech., Pasadena, CA (United States); Hildemann, L.M. [Stanford Univ., CA (United States). Dept. of Civil Engineering; Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Simoneit, B.R.T. [College of Oceanography, Oregon State Univ., Corvallis, OR (United States) Environmental Geochemistry Group

    1992-07-01

    The molecular composition of fine particulate (D{sub p} {ge} 2 {mu}m) organic aerosol emissions from the most important sources in the Los Angeles area has been determined. Likewise, ambient concentration patterns for more than 80 single organic compounds have been measured at four urban sites (West Los Angeles, Downtown Los Angeles, Pasadena, and Rubidoux) and at one remote offshore site (San Nicolas Island). It has been found that cholesterol serves as a marker compound for emissions from charbroilers and other meat cooking operations. Vehicular exhaust being emitted from diesel and gasoline powered engines can be traced in the Los Angeles atmosphere using fossil petroleum marker compounds such as steranes and pentacyclic triterpanes (e.g., hopanes). Biogenic fine particle emission sources such as plant fragments abraded from leaf surfaces by wind and weather can be traced in the urban atmosphere. Using distinct and specific source organic tracers or assemblages of organic compounds characteristic for the sources considered it is possible to estimate the influence of different source types at any urban site where atmospheric data are available.

  8. Molecular marker analysis as a guide to the sources of fine organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, W.F.; Cass, G.R. (California Inst. of Tech., Pasadena, CA (United States)); Hildemann, L.M. (Stanford Univ., CA (United States). Dept. of Civil Engineering); Mazurek, M.A. (Brookhaven National Lab., Upton, NY (United States)); Simoneit, B.R.T. (College of Oceanography, Oregon State Univ., Corvallis, OR (United States) Environmental Geochemistry Group)

    1992-07-01

    The molecular composition of fine particulate (D[sub p] [ge] 2 [mu]m) organic aerosol emissions from the most important sources in the Los Angeles area has been determined. Likewise, ambient concentration patterns for more than 80 single organic compounds have been measured at four urban sites (West Los Angeles, Downtown Los Angeles, Pasadena, and Rubidoux) and at one remote offshore site (San Nicolas Island). It has been found that cholesterol serves as a marker compound for emissions from charbroilers and other meat cooking operations. Vehicular exhaust being emitted from diesel and gasoline powered engines can be traced in the Los Angeles atmosphere using fossil petroleum marker compounds such as steranes and pentacyclic triterpanes (e.g., hopanes). Biogenic fine particle emission sources such as plant fragments abraded from leaf surfaces by wind and weather can be traced in the urban atmosphere. Using distinct and specific source organic tracers or assemblages of organic compounds characteristic for the sources considered it is possible to estimate the influence of different source types at any urban site where atmospheric data are available.

  9. Separating Hazardous Aerosols from Ambient Aerosols: Role of Fluorescence-Spectral Determination, Aerodynamic Deflector and Pulse Aerodynamic Localizer (PAL)

    International Nuclear Information System (INIS)

    An aerosol deflection technique based on the single-shot UV-laser-induced fluorescence spectrum from a flowing particle is presented as a possible front-end bio-aerosol/hazardous-aerosol sensor/identifier. Cued by the fluorescence spectra, individual flowing bio-aerosol particles (1-10 (micro)m in diameter) have been successfully deflected from a stream of ambient aerosols. The electronics needed to compare the fluorescence spectrum of a particular particle with that of a pre-determined fluorescence spectrum are presented in some detail. The deflected particles, with and without going through a funnel for pulse aerodynamic localization (PAL), were collected onto a substrate for further analyses. To demonstrate how hazardous materials can be deflected, TbCl3 · 6H2O (a simulant material for some chemical forms of Uranium Oxide) aerosol particles (2 (micro)m in diameter) mixed with Arizona road dust was separated and deflected with our system

  10. Dry Deposition of Fine Aerosol Nitrogen to an Agricultural Field Measured by Eddy-Correlation Mass Spectrometry

    Science.gov (United States)

    Gonzales, D. A.; Allen, J. O.

    2005-12-01

    In urban areas high emissions of reactive nitrogen species cause an increase in atmospheric aerosol nitrogen formation and deposition. This nitrogen is eventually removed from the atmosphere by wet or dry deposition, with dry deposition often accounting for more than half of the total deposition of particulate nitrate. Total N deposition is not adequately characterized, in part because dry deposition is difficult to measure or model. For example measured fine particle deposition to a forest canopy differs from predicted values by an order of magnitude. The eddy-correlation technique is a micrometeorological method used to directly measure fluxes from measurements made above the surface. Eddy-correlation mass spectrometry (ECMS) has been developed to directly measure aerosol particle deposition velocities from fast response aerosol concentration and wind velocity measurements. Using an Aerodyne Aerosol Mass Spectrometer (AMS), the size and composition of ambient aerosols were measured at 10~Hz. The AMS signal is proportional to non-refractory PM1.0 mass. Aerosol deposition fluxes for a given averaging period are then calculated directly as the covariance of the vertical wind velocity with the AMS signal (F = -\\overline{w'S'}). A field study was conducted to measure aerosol nitrogen dry deposition to an agricultural field immediately downwind of the Phoenix metropolitan area using eddy-correlation mass spectrometry. The study was supplemented with aerosol composition measurements including bulk deposition collectors and filter bank samplers. Here we compare the results of the flux estimates from bulk collection with inferential measurements (filter samples and modeled deposition velocities) and direct micrometeorological measurements (ECMS) in order to improve nitrogen deposition estimates.

  11. Impact of fine particles in ambient air on lung cancer

    Institute of Scientific and Technical Information of China (English)

    Gerard Hoek; Ole Raaschou-Nielsen

    2014-01-01

    Recently, the International Agency for Research on Cancer (IARC) has classified outdoor air pol ution and the particulate matter component of outdoor air pollution as class I carcinogen. Air pollution is consistently associated with lung cancer in epidemiologic and experimental studies. The IARC assessment is specifical y designed as hazard identification, and it does not quantify the magnitude of the cancer risk. This article addresses the magnitude of the lung cancer risk in the population due to ambient air pol ution exposure.

  12. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008

    Directory of Open Access Journals (Sweden)

    B. H. Lee

    2010-07-01

    Full Text Available A variable residence time thermodenuder (TD was combined with an Aerodyne Aerosol Mass Spectrometer (AMS and a Scanning Mobility Particle Sizer (SMPS to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008. A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model.

    Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements.

    The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 orders of magnitude less volatile than fresh laboratory-generated biogenic secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species.

  13. Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2003-10-01

    Full Text Available Ambient continental-rural fine aerosol (K-puszta, Hungary, PM1.5 was sampled on quartz fibre filters in winter and summer 2001. Water-soluble matter (WSM was extracted in MilliQ-water, and, in a second step, solid phase extraction was used to isolate the less hydrophilic fraction (ISOM of the water-soluble organic matter (WSOM from inorganic salts and remaining most hydrophilic organic matter (MHOM. This approach allowed to investigate a major fraction of WSOM isolated in pure form from ambient aerosols. Hygroscopic properties of both WSM and ISOM extracts as well as of aquatic reference fulvic and humic acids were investigated using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA. ISOM deliquesced between 40–60% and 30–55% relative humidity (RH, in winter and summer, respectively, and hygroscopic growth factors at 90% RH were 1.08–1.11 and 1.16–1.17. The hygroscopicity of ISOM is comparable to secondary organic aerosols obtained in smog chamber experiments, but lower than the hygroscopicity of highly soluble organic acids. Hygroscopic behaviour of investigated fulvic and humic acids had similarities to ISOM, but hygroscopic growth factors were slightly smaller and deliquescence was observed at higher RH (75–85% and 85–95% RH for fulvic acid and humic acid, respectively. These differences probably originate from larger average molecular weight and lower solubility of fulvic and humic acids.

    Inorganic composition data, measured ISOM hygroscopicity, and a presumable value for the hygroscopicity of the small remaining MHOM fraction were used to predict hygroscopic growth of WSM extracts. Good agreement between model prediction and measured water uptake was observed with differences (by volume of +1% and −5% in winter, and −18% and −12% in summer. While deliquescence properties of WSM extracts were mainly determined by the inorganic salts (42–53 wt \\% of WSM, the WSOM accounted for a

  14. Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2004-01-01

    Full Text Available Ambient continental-rural fine aerosol (K-puszta, Hungary, PM1.5 was sampled on quartz fibre filters in winter and summer 2001. Water-soluble matter (WSM was extracted in MilliQ-water, and, in a second step, solid phase extraction was used to isolate the less hydrophilic fraction (ISOM of the water-soluble organic matter (WSOM from remaining inorganic salts and "most" hydrophilic organic matter (MHOM. This approach allowed ISOM, which constitutes the major fraction of WSOM, to be isolated from ambient aerosols and investigated in pure form. Hygroscopic properties of both WSM and ISOM extracts as well as of aquatic reference fulvic and humic acids were investigated using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA. ISOM deliquesced between 30% and 60% relative humidity (RH, and hygroscopic growth factors at 90% RH ranged from 1.08 to 1.17. The hygroscopicity of ISOM is comparable to secondary organic aerosols obtained in smog chamber experiments, but lower than the hygroscopicity of highly soluble organic acids. The hygroscopic behaviour of investigated fulvic and humic acids had similarities to ISOM, but hygroscopic growth factors were slightly smaller and deliquescence was observed at higher RH (75-85% and 85-95% RH for fulvic acid and humic acid, respectively. These differences probably originate from larger average molecular mass and lower solubility of fulvic and humic acids. Inorganic composition data, measured ISOM hygroscopicity, and a presumed value for the hygroscopicity of the small remaining MHOM fraction were used to predict hygroscopic growth of WSM extracts. Good agreement between model prediction and measured water uptake was observed with differences (by volume ranging from +1% to -18%. While deliquescence properties of WSM extracts were mainly determined by the inorganic salts (42-53 wt % of WSM, the WSOM accounted for a significant fraction of particulate water. At 90% RH, according to model predictions and

  15. The 2005 Study of Organic Aerosols at Riverside (SOAR-1: instrumental intercomparisons and fine particle composition

    Directory of Open Access Journals (Sweden)

    K. S. Docherty

    2011-02-01

    Full Text Available Multiple state-of-the-art instruments sampled ambient aerosol in Riverside, California during the 2005 Study of Organic Aerosols at Riverside (SOAR to investigate sources and chemical composition of fine particles (PMf in the inland region of Southern California. This paper briefly summarizes the spatial, meteorological and gas-phase conditions during SOAR-1 (15 July–15 August and provides detailed intercomparisons of complementary measurements and average PMf composition during this period. Daily meteorology and gas-phase species concentrations were highly repetitive with meteorological and gas-phase species concentrations displaying clear diurnal cycles and weekday/weekend contrast, with organic aerosol (OA being the single largest component contributing approximately one-third of PMf mass. In contrast with historical characterizations of OA in the region, several independent source apportionment efforts attributed the vast majority (~80% of OA mass during SOAR-1 to secondary organic aerosol (SOA. Given the collocation of complementary aerosol measurements combined with a dominance of SOA during SOAR-1, this paper presents new results on intercomparisons among several complementary measurements and on PMf composition during this period. Total non-refractory submicron (NR-PM1 measurements from a high-resolution aerosol mass spectrometer (HR-AMS are compared with measurements by tapered element oscillating microbalances (TEOM including a filter dynamics measurement system (TEOMFDMS. NR-PM1 is highly correlated with PM2.5 TEOMFDMS measurements and accounts for the bulk of PM2.5 mass with the remainder contributed primarily by refractory material. In contrast, measurements from a heated TEOM show substantial losses of semi-volatile material, including ammonium nitrate and semi-volatile organic material. Speciated HR-AMS measurements are

  16. Identification of potential sources and source regions of fine ambient particles measured at Gosan background site in Korea using advanced hybrid receptor model combined with positive matrix factorization

    Science.gov (United States)

    Han, J. S.; Moon, K. J.; Kim, Y. J.

    2006-11-01

    The size- and time-resolved measurement of particulate trace elements was made using an eight-stage Davis Rotating Unit for Monitoring sampler and synchrotron X-ray fluorescence system from 29 March to 29 May in 2002 at Gosan, Korea, which is one of the representative background sites in east Asia. As a result, continuous 3-hour average concentrations were obtained for 19 elements including S, Si, Al, Fe, Ca, Cl, Cu, Zn, Ti, K, Mn, Pb, Ni, V, Se, As, Rb, Cr, and Br. Positive matrix factorization (PMF) method was applied to the size-resolved aerosol data sets in order to identify the possible sources and to estimate their contribution to particulate matter mass in each size range. Twelve sources were then resolved in the fine size range (0.07 ˜ 1.15 μm), including continental aerosol, biomass burning, coal combustion, oil heating furnace, residual oil fired boiler, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, copper smelter, and volcanic emission. A newly developed hybrid receptor model, concentration, retention time, and source emission weighted trajectory (CRSWT), was then applied to the source intensities derived from the PMF analysis by incorporating meteorological and source inventory information of the study region in order to suggest the regional information of long-range transported fine aerosol sources. The CRSWT model was able to resolve highly potential source areas and pathways for the fine ambient aerosol at the Gosan background site.

  17. Source apportionment of fine organic aerosol in Mexico City during the MILAGRO Experiment 2006

    Directory of Open Access Journals (Sweden)

    E. A. Stone

    2007-07-01

    Full Text Available Organic carbon (OC comprises a large fraction of fine particulate matter (PM2.5 in Mexico City. Daily and select 12-h PM2.5 samples were collected in urban and peripheral sites in Mexico City from 17–30 March 2006. Samples were analyzed for OC and elemental carbon (EC using thermal-optical filter-based methods. Real-time water-soluble organic carbon (WSOC was collected at the peripheral site. Organic compounds, particularly molecular markers, were quantified by soxhlet extraction with methanol and dichloromethane, derivitization, and gas chromatography with mass spectrometric detection (GCMS. A chemical mass balance model (CMB based on molecular marker species was used to determine the relative contribution of major sources to ambient OC. Motor vehicles, including diesel and gasoline, consistently accounted for 47% of OC in the urban area and 31% on the periphery. The daily contribution of biomass burning to OC was highly variable, and ranged from 5–30% at the urban site and 11–50% at the peripheral site. The remaining OC unapportioned to primary sources showed a strong correlation with WSOC and was considered to be secondary in nature. Comparison of temporally resolved OC showed that contributions from primary aerosol sources during daylight hours were not significantly different from nighttime. This study provides quantitative understanding of the important sources of OC during the MILAGRO 2006 field campaign.

  18. Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006

    Directory of Open Access Journals (Sweden)

    E. A. Stone

    2008-03-01

    Full Text Available Organic carbon (OC comprises a large fraction of fine particulate matter (PM2.5 in Mexico City. Daily and select 12-h PM2.5 samples were collected in urban and peripheral sites in Mexico City from 17–30 March 2006. Samples were analyzed for OC and elemental carbon (EC using thermal-optical filter-based methods. Real-time water-soluble organic carbon (WSOC was collected at the peripheral site. Organic compounds, particularly molecular markers, were quantified by soxhlet extraction with methanol and dichloromethane, derivitization, and gas chromatography with mass spectrometric detection (GCMS. A chemical mass balance model (CMB based on molecular marker species was used to determine the relative contribution of major sources to ambient OC. Motor vehicles, including diesel and gasoline, consistently accounted for 49% of OC in the urban area and 32% on the periphery. The daily contribution of biomass burning to OC was highly variable, and ranged from 5–26% at the urban site and 7–39% at the peripheral site. The remaining OC unapportioned to primary sources showed a strong correlation with WSOC and was considered to be secondary in nature. Comparison of temporally resolved OC showed that contributions from primary aerosol sources during daylight hours were not significantly different from nighttime. This study provides quantitative understanding of the important sources of OC during the MILAGRO 2006 field campaign.

  19. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    Science.gov (United States)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  20. Size distributions of the ambient and radon daughter aerosols in southern England and implications for dose

    International Nuclear Information System (INIS)

    The size distribution of ambient aerosols indoors and outside have been measured at several urban, suburban and rural locations in southern England, using an eleven stage, wire screen diffusion battery. At four indoor locations with relatively high radon daughter concentrations, the size distributions of the radon daughter aerosol were also measured, using the diffusion battery in conjunction with Cr-39 etched track detectors of alpha-activity. The transformation from size distribution of the ambient aerosol to the radon daughter activity-size distribution was examined, using various models of radon daughter attachment rates. The implications of the radon daughter aerosol size distributions estimated for the different indoor and outdoor locations are discussed in terms of variation in the conversion between exposure and effective dose equivalent

  1. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008

    Directory of Open Access Journals (Sweden)

    B. H. Lee

    2010-12-01

    Full Text Available A variable residence time thermodenuder (TD was combined with an Aerodyne Aerosol Mass Spectrometer (AMS and a Scanning Mobility Particle Sizer (SMPS to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008. A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model.

    Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements.

    The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  2. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    Science.gov (United States)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-12-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions) secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  3. Indoor exposures to fine aerosols and acid gases.

    OpenAIRE

    Koutrakis, P; Brauer, M.; Briggs, S. L.; Leaderer, B P

    1991-01-01

    Indoor exposures to aerosols and gases are associated with both indoor and outdoor air pollution sources. The identification of sources and the assessment of their relative contribution can be a complicated process due to a) the presence of numerous indoor sources, which can vary from building to building; b) the uncertainties associated with the estimation of the impact of outdoor sources on indoor air quality; c) the interactions between pollutants; and d) the importance of reactions betwee...

  4. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw

    NARCIS (Netherlands)

    Zieger, P.; Weingartner, E.; Henzing, J.; Moerman, M.; Leeuw, G. de; Mikkilä, J.; Ehn, M.; Petäjä, T.; Clémer, K.; Roozendael, M. van; Yilmaz, S.; Frieß, U.; Irie, H.; Wagner, T.; Shaiganfar, R.; Beirle, S.; Apituley, A.; Wilson, K.; Baltensperger, U.

    2011-01-01

    In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30-40%). Since ambient aerosol particles experience hygroscopic growth at enhanced RH, their microphysical and optical properties especially the aerosol light scattering are also strongly depend

  5. Triggering of Transmural Infarctions, but Not Nontransmural Infarctions, by Ambient Fine Particles

    OpenAIRE

    Rich, David Q.; Kipen, Howard M.; Zhang, Junfeng; Kamat, Leena; Wilson, Alan C.; Kostis, John B; ,

    2010-01-01

    Background Previous studies have reported increased risk of myocardial infarction (MI) after increases in ambient particulate matter (PM) air pollution concentrations in the hours and days before MI onset. Objectives We hypothesized that acute increases in fine PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) may be associated with increased risk of MI and that chronic obstructive pulmonary disease (COPD) and diabetes may increase susceptibility to PM2.5. We also explored whether both transmural...

  6. Characteristics of fine and coarse particles of natural and urban aerosols of Brazil

    International Nuclear Information System (INIS)

    Fine and coarse particles have been sampled from 1982 to 1985 in one natural forest seacoast site (Jureia) and five urban-industrial cities (Vitoria, Salvador, Porto Alegre, Sao Paulo, and Belo Horizonte). The time variations of concentrations in air and the relative elemental compositions of fine and coarse particle fractions, sampled by Nuclepore stacked filter units (SFU), have been determined gravimetrically and by PIXE analysis, respectively. Enrichment factors and correlation coefficients of the trace elements measured lead to unambiguous characterization of soil dust and sea salt, both major aerosol sources that emit coarse particles, and soil dust is also a significant source of fine particles. (Author)

  7. Electron microprobe identification of fibrous aerosols in ambient air

    International Nuclear Information System (INIS)

    Nuclepore filters were used for sampling fibrous particles in ambient air. The fiber counting and fiber size measurements were done by means of SEM-methods. The number of fibers, distribution of fiber lengths, and diameters were plotted. The specific identification of asbestos fibers was made by electron microprobe analysis. Certain elements such as Si, Fe, Mg, Al, Mn, Ca, and Na as well as ratios such as Fe/Si and Mg/Si proved to be approximative identification factors for ambient asbestos. Not only asbestos and glass, also many other inorganic fibrous particles were found in the urban atmosphere as well as in the atmosphere of remote regions. Fibrous gypsum, fibrous ammonium sulfates, fibrous silicates, fibrous mica, and quartz were identified among these particles. Even in remote ambient air, relatively high concentrations of fibrous particles (103-104 m-3) could be measured, although the concentration of asbestos fibers were usually smaller than 102 m-3

  8. AEROSOL CHARACTERIZATION OF AMBIENT AIR NEAR A COMMERCIAL LURGI COAL GASIFICATION PLANT, KOSOVO REGION, YUGOSLAVIA

    Science.gov (United States)

    Ambient air samples were collected continuously from May 14-29, 1980 to determine if the emissions from a commercial Lurgi coal gasification plant could be identified downwind of the facility. Physical, inorganic, and organic analyses were carried out on the collected aerosol sam...

  9. Reproducing the optical properties of fine desert dust aerosols using ensembles of simple model particles

    International Nuclear Information System (INIS)

    Single scattering optical properties are calculated for a proxy of fine dust aerosols at a wavelength of 0.55 μm. Spherical and spheroidal model particles are employed to fit the aerosol optical properties and to retrieve information about the physical parameters characterising the aerosols. It is found that spherical particles are capable of reproducing the scalar optical properties and the forward peak of the phase function of the dust aerosols. The effective size parameter of the aerosol ensemble is retrieved with high accuracy by using spherical model particles. Significant improvements are achieved by using spheroidal model particles. The aerosol phase function and the other diagonal elements of the Stokes scattering matrix can be fitted with high accuracy, whereas the off-diagonal elements are poorly reproduced. More elongated prolate and more flattened oblate spheroids contribute disproportionately strongly to the optimised shape distribution of the model particles and appear to be particularly useful for achieving a good fit of the scattering matrix. However, the clear discrepancies between the shape distribution of the aerosols and the shape distribution of the spheroidal model particles suggest that the possibilities of extracting shape information from optical observations are rather limited

  10. The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition

    Science.gov (United States)

    Docherty, K. S.; Aiken, A. C.; Huffman, J. A.; Ulbrich, I. M.; Decarlo, P. F.; Sueper, D.; Worsnop, D. R.; Snyder, D. C.; Peltier, R. E.; Weber, R. J.; Grover, B. D.; Eatough, D. J.; Williams, B. J.; Goldstein, A. H.; Ziemann, P. J.; Jimenez, J. L.

    2011-12-01

    Multiple state-of-the-art instruments sampled ambient aerosol in Riverside, California during the 2005 Study of Organic Aerosols at Riverside (SOAR) to investigate the chemical composition and potential sources of fine particles (PMf) in the inland region of Southern California. In this paper, we briefly summarize the spatial, meteorological and gas-phase conditions during SOAR-1 (15 July-15 August), provide detailed intercomparisons of high-resolution aerosol mass spectrometer (HR-AMS) measurements against complementary measurements, and report the average composition of PMf including the composition of the organic fraction measured by the HR-AMS. Daily meteorology and gas-phase species concentrations were highly consistent, displaying clear diurnal cycles and weekday/weekend contrast. HR-AMS measurements of non-refractory submicron (NR-PM1) mass are consistent and highly correlated with those from a filter dynamics measurement system tapered-element oscillating microbalance (TEOM), while the correlation between HR-AMS and heated TEOM measurements is lower due to loss of high volatility species including ammonium nitrate from the heated TEOM. Speciated HR-AMS measurements are also consistent with complementary measurements as well as with measurements from a collocated compact AMS while HR-AMS OC is similar to standard semi-continuous Sunset measurements within the combined uncertainties of both instruments. A correction intended to account for the loss of semi-volatile OC from the Sunset, however, yields measurements ~30% higher than either HR-AMS or standard Sunset measurements. On average, organic aerosol (OA) was the single largest component of PMf. OA composition was investigated using both elemental analysis and positive matrix factorization (PMF) of HR-AMS OA spectra. Oxygen is the main heteroatom during SOAR-1, with O/C exhibiting a diurnal minimum of 0.28 during the morning rush hour and maximum of 0.42 during the afternoon. O/C is broadly anti

  11. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    Science.gov (United States)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  12. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    Science.gov (United States)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2016-01-01

    Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey metropolitan area (MMA) during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs) and hopanes were less abundant. The carbon preference index (0.7-2.6) for n-alkanes indicates a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAHs showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAHs and elemental carbon were correlated (r2 = 0.39-0.70) across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAHs. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat-cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning events. Finally, source

  13. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    Science.gov (United States)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2015-07-01

    Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey Metropolitan Area (MMA) during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs) and hopanes were less abundant. The carbon preference index (0.7-2.6) for n-alkanes indicate a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAH showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAH and elemental carbon (EC) were correlated (r2 = 0.39-0.70) across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAH. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning events. Finally

  14. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    Directory of Open Access Journals (Sweden)

    Y. Mancilla

    2015-07-01

    Full Text Available Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey Metropolitan Area (MMA during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs and hopanes were less abundant. The carbon preference index (0.7–2.6 for n-alkanes indicate a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAH showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAH and elemental carbon (EC were correlated (r2 = 0.39–0.70 across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAH. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning

  15. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    Science.gov (United States)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  16. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    Science.gov (United States)

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data. PMID:22617941

  17. Element determination of fine particles in environmental aerosols using PIXE

    International Nuclear Information System (INIS)

    The Mexico city is classified as one of the more populated cities of the world which presents a decrease in the air quality and that gives place to a severe problematic in atmospheric pollution. To cooperate in the solution of this problem it is necessary to carry out studies that allow a better knowledge of the atmosphere of the city. This study presents the results of a monitoring campaign of fine particle carried out from September 21 to December 12, 2001 in three sites of the Mexico City center area. The samples were collected every third day with a collector type unit of heaped filters (Gent). The analysis of these samples was carried out in the 2 MV accelerator of the National Institute of Nuclear Research (ININ) applying the PIXE technique and with this analysis its were identified in the samples approximately 15 elements in each one of the 3 sites and was calculated the concentration in that its were present. With these results a database was created and by means of it mathematical treatment the Enrichment factor (FE), the time series of each element and the multiple correlation matrix were evaluated. The obtained results showed that the Civil Registration site (Salto del Agua) it was the more polluted coinciding that to a bigger concentration of activities a bigger increase in the pollution is generated. (Author)

  18. Role of coarse and fine mode aerosols in MODIS AOD retrieval: a case study

    OpenAIRE

    M. N. Sai Suman; H. Gadhavi; Ravi Kiran, V.; Jayaraman, A.; S. V. B. Rao

    2013-01-01

    In the present study we have compared the MODIS (Moderate Resolution Imaging Spectroradiometer) derived aerosol optical depth (AOD) data with that obtained from operating sky-radiometer at a remote rural location in South India (Gadanki, 13.45° N, 79.18° E). While the comparison between total (coarse mode + fine mode) AOD shows R2 value of about 0.71 with a negligible bias of 0.01, if one separates the AOD into fine and coarse mode, the comparison becomes very poor, particularly for fi...

  19. NUMBER CONCENTRATION, SIZE DISTRIBUTION AND FINE PARTICLE FRACTION OF TROPOSPHERIC AND STRATOSPHERIC AEROSOLS

    Institute of Scientific and Technical Information of China (English)

    Li Xu; Guangyu Shi; Li Zhang; Jun Zhou; Yasunobu Iwasaka

    2003-01-01

    Aerosol observations were carried out at Xianghe Scientific Balloon Base (39.45°N, 117°E) using a stratospheric balloon. The particle number concentrations of the tropospheric and stratospheric aerosols were directly explored.The vertical distributions of the number concentration, number-size (that is, particle number versus particle size)distribution, and the fraction of fine particles (0.5 μm>r>0.15 μm/r>0.15 μm) are reported in this paper. The profiles of particle concentration present multi-peak phenomenon. The pattern of size distribution for atmospheric aerosol indicates a tri-modal (r=~0.2 μm, ~0.88 μm and ~7.0 μm) and a bi-modal (r=~0.13 μm and 2.0 μm). The number-size distribution almost fits the Junge distribution for particles with r<0.5 μm in the stratosphere of 1993 and the troposphere of 1994. But the distributions of coarse particles (r>0.5 μm) are not uniform. The number-size distribution exhibits also a wide size range in the troposphere of 1993. The results demonstrate that fine particles represent the major portion in the troposphere during the measurement period, reaching as high as 95% in 1994. Certain coarse particle peaks in the troposphere were attributed to clouds and other causes, and in the stratosphere to volcanic eruption. The stratospheric aerosol layer consists of unique fractions of fine or coarse particles depending on their sources. In summary, the process of gas-to-particles conversion was active and the coarse particles were rich over the Xianghe area. The measurements also demonstrate that the spatial and temporal atmospheric aerosol distributions are nonuniform and changeful.

  20. On the dynamics of fine aerosols artificially produced. Application to the atmosphere

    International Nuclear Information System (INIS)

    We take advantage of the developments of a new method of measurement, using a diffusion battery, to analyse the evolution of ultra-fine particles generated as a result of gas-phase reactions (radiolysis and photolysis). The evolution of aerosols instantaneously produced by radiolysis of gaseous impurities is studied and a theoretical model from the coagulation equation's resolution is shown to well describe the phenomena. Experiments with aerosols continuously produced by photo-oxidation of SO2 show the effect of the condensable molecules production rate and the preexisting aerosol, on the subsequent growth of the primary embryos. Different theoretical models are qualitatively and quantitatively verified. Our experiments are then extended to 'in situ' measurements in urban and marine atmospheres, and in every case, we quantitatively determine the importance of each intervening process, namely nucleation, coagulation and condensation. (author)

  1. Combustion characteristics of water-insoluble elemental and organic carbon in size selected ambient aerosol particles

    OpenAIRE

    Wittmaack, K.

    2005-01-01

    Combustion of elemental carbon (EC) and organic carbon (OC) contained in ambient aerosol matter was explored using scanning electron microscopy (SEM) in combination with energy dispersive X-ray analysis (EDX). To ease identification of the particles of interest and to avoid or at least reduce interaction with simultaneously sampled inorganic oxides and salts, the approach used in this work differed in two ways from commonly applied procedures. First, rather than using a mixture of particles o...

  2. Radioactivity size distributions of ambient aerosols in Helsinki, Finland during May 1986 after Chernobyl accident

    International Nuclear Information System (INIS)

    Ambient aerosol size distributions oof 131I, 103Ru, 132Te and 137Cs radionuclides were measured in Helsinki, Finland during May 7 - 14, 1986. Radioactivity size distributions were unimodal. Geometric mean diameter of 131I was in the size range 0.33 - 0.57 μm a.e.d.. Other isotopes had geometric mean diameters in the size range 0.65 - 0.93 μm a.e.d.. (author)

  3. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Steele, P T; McJimpsey, E L; Coffee, K R; Fergenson, D P; Riot, V J; Tobias, H J; Woods, B W; Gard, E E; Frank, M

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.

  4. Experimental verification of the attachment theory of radon progeny onto ambient aerosols

    International Nuclear Information System (INIS)

    The attachment theory of radon progeny onto ambient aerosols was experimentally verified with a cascade impactor and a graded screen array at the EML environmental chamber. Monodisperse aerosols in the size range of 70 to 500 nm were generated with Carnauba wax by means of the evaporation-condensation method. The temperature and the relative humidity in the chamber were set at 20 C and 20%, respectively, throughout the entire experiment. When the aerosols were being injected into the chamber, both the number size distribution and the activity-weighted size distribution of attached radon progeny were stable. The activity-weighted size distribution was compared with the attachment rate distribution obtained by measuring the number size distribution with the SMPS and multiplying the size-dependent attachment coefficient. There was a relatively good agreement between the two distributions

  5. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    Science.gov (United States)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  6. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion

    Science.gov (United States)

    Lu, Senlin; Hao, Xiaojie; Liu, Dingyu; Wang, Qiangxiang; Zhang, Wenchao; Liu, Pinwei; Zhang, Rongci; Yu, Shang; Pan, Ruiqi; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2016-03-01

    Nano-quartz in Xuanwei coal, the uppermost Permian (C1) coal deposited in the northwest of Yuanan, China, has been regarded as one of factors which caused high lung cancer incidence in the local residents. However, mineralogical characterization of the fine/ultrafine particles emitted from Xuanwei coal combustion has not previously been studied. In this study, PM1 and ultrafine particles emitted from Xuanwei coal combustion were sampled. Chemical elements in the ambient particles were analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and mineralogical characterization of these ambient particles was investigated using scanning electronic microscopy (SEM/EDX) and transmission electronic microscopy, coupled with energy-dispersive spectroscopy (TEM/EDX). Our results showed that the size distribution of mineral particles from the coal combustion emissions ranged from 20 to 200 nm. Si-containing particles and Fe-containing particles accounted for 50.7% of the 150 individual particles measured, suggesting that these two types of particles were major minerals in the ambient particles generally. The nano-mineral particles were identified as quartz (SiO2) and gypsum (CaSO4) based on their crystal parameters and chemical elements. Additionally, there also existed unidentified nano-minerals. Armed with these data, toxicity assessments of the nano-minerals will be carried out in a future study.

  7. Applications of particle induced X-ray emission analysis to ambient aerosol studies

    International Nuclear Information System (INIS)

    The characteristics of Particle Induced X-ray Emission (PIXE) analysis in conjunction with different ambient aerosol samplers have been studied. Correction factors have been calculated for homogeneous and inhomogeneous rural and urban aerosol samples. The Nuclepore two stage filter sampler provided the most useful combination of the resolution and particle size fractionation in urban, rural and remote environments. The PIXE-analysis technique in combination with different samplers was employed in aerosol composition studies in rural and remote environments. Particular emphasis was laid on studies of aerosol long range transport. Based on air mass trajectory analysis and aerosol composition measurements the foreign contribution in southern Sweden was estimated to be 70 - 80% for S and Pb but only 30 - 50% for V and Ni. The spatial and temporal extension of a long range transport episode was studied using high time resolution continuous filter samplers in a network in southern Sweden. The variation in the concentration levels of sulphur agreed well with changes in the air mass history. Arctic summer elemental concentration levels as measured during the Swedish YMER-80 icebreaker expedition were typically one order of magnitude lower than Arctic winter levels. The combination of chemical information, optical properties and size distribution data supports the hypothesis of long range transport of air pollution into the Arctic especially during the winter. This takes place during the winter season because the Polar front is further south making conditions for long range transport up to the Arctic more favourable. (Auth.)

  8. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2014-07-01

    Full Text Available The monosaccharide anhydrides (MAs levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC, four used High-Performance Liquid Chromatography (HPLC or Ultra-Performance Liquid Chromatography (UPLC, and six resorted to Gas Chromatography (GC. The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE for each participating laboratory, varied from −63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was −60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i

  9. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    Science.gov (United States)

    Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2014-07-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of

  10. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-04-01

    Full Text Available The functional group composition of various organic aerosols (OA is being investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of the three functional groups' contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups and precursor ion (nitro groups scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photo-oxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounted for 1.7% (vehicular to 13.5% (o-xylene photo-oxidation of the organic carbon. The diagnostic functional group ratios are then used to tentatively differentiate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to distinguish the sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assesses a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  11. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions

    Science.gov (United States)

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January–March and October–December 2011–2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m−3, which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m−3, respectively. In the warm season (April–September 2011–2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  12. Biogenic contribution to PM-2.5 ambient aerosol from radiocarbon measurements

    Science.gov (United States)

    Lewis, C.; Klouda, G.; Ellenson, W.

    2003-04-01

    Knowledge of the relative contributions of biogenic versus anthropogenic sources to ambient aerosol is of great interest in the formulation of strategies to achieve nationally mandated air quality standards. Radiocarbon (14C) measurements provide a means to quantify the biogenic fraction of any carbon-containing sample of ambient aerosol. In the absence of an impact from biomass burning (e.g., during summertime) such measurements can provide an estimate of the contribution of biogenic secondary organic aerosol, from biogenic volatile organic compound precursors. Radiocarbon results for 11.5-h PM-2.5 samples collected near Nashville, Tennessee, USA, during summer 1999 will be presented. On average the measured biogenic fraction was surprisingly large (more than half), with the average biogenic fraction for night samples being only slightly smaller than for day samples. Discussion will include (a) description of the radiocarbon methodology, (b) use of radiocarbon measurements on local vegetation and fuel samples as calibration data, (c) concurrent measurements of organic carbon and elemental carbon ambient concentrations, (d) assessment of organic aerosol sampling artifact through use of organic vapor denuders, variable face velocities, and filter extraction, and (e) comparison with published radiocarbon results obtained in Houston, Texas in a similar study. Disclaimer: This work has been funded wholly or in part by the United States Environmental Protection Agency under Interagency Agreement No. 13937923 to the National Institute of Standards and Technology, and Contract No. 68-D5-0049 to ManTech Environmental Tecnology, Inc. It has been subjected to Agency review and approved for publication.

  13. The application of an improved gas and aerosol collector for ambient air pollutants in China

    Science.gov (United States)

    Dong, Huabin; Zeng, Limin; Zhang, Yuanhang; Hu, Min; Wu, Yusheng

    2016-04-01

    An improved Gas and Aerosol Collector (GAC) equipped with a newly designed aerosol collector and a set of dull-polished wet annular denuder (WAD) was developed by Peking University based on a Steam Jet Aerosol Collector (SJAC) sampler. Combined with Ion Chromatography (IC) the new sampler performed well in laboratory tests with high collection efficiencies for SO2 (above 98 %) and particulate sulfate (as high as 99.5 %). An inter-comparison between the GAC-IC system and the filter-pack method was performed and the results indicated that the GAC-IC system could supply reliable particulate sulfate, nitrate, chloride, and ammonium data in field measurement with a much wider range of ambient concentrations. From 2008 to 2015, dozens of big field campaigns (rural and coastal sites) were executed in different parts of China, the GAC-IC system took the chance having its field measurement performance checked repeatedly and provided high quality data in ambient conditions either under high loadings of pollutants or background area. Its measurements were highly correlated with data by other commercial instruments such as the SO2 analyzer, the HONO analyzer, a filter sampler, Aerosol Mass Spectrometer (AMS), etc. over a wide range of concentrations and proved particularly useful in future intensive campaigns or long-term monitoring stations to study various environmental issues such as secondary aerosol and haze formation. During these years of applications of GAC-IC in those field campaigns, we found some problems of several instruments running under field environment and some interesting results could also be drew from the large amount of data measured in near 20 provinces of China. Detail results will be demonstrated on the poster afterwards.

  14. Ambient Carbon Monoxide and Fine Particulate Matter in Relation to Preeclampsia and Preterm Delivery in Western Washington State

    OpenAIRE

    Rudra, Carole B.; Williams, Michelle A.; Sheppard, Lianne; Koenig, Jane Q.; Schiff, Melissa A.

    2011-01-01

    Background Preterm delivery and preeclampsia are common adverse pregnancy outcomes that have been inconsistently associated with ambient air pollutant exposures. Objectives We aimed to prospectively examine relations between exposures to ambient carbon monoxide (CO) and fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] and risks of preeclampsia and preterm delivery. Methods We used data from 3,509 western Washington women who delivered infants between 1996 and 2006. We predic...

  15. The ambient aerosol characterization during the prescribed bushfire season in Brisbane 2013.

    Science.gov (United States)

    Milic, A; Miljevic, B; Alroe, J; Mallet, M; Canonaco, F; Prevot, A S H; Ristovski, Z D

    2016-08-01

    Prescribed burnings are conducted in Queensland each year from August until November aiming to decrease the impact of bushfire hazards and maintain the health of vegetation. This study reports chemical characteristics of the ambient aerosol, with a focus on source apportionment of the organic aerosol (OA) fraction, during the prescribed biomass burning (BB) season in Brisbane 2013. All measurements were conducted within the International Laboratory for Air Quality and Health (ILAQH) located in Brisbane's Central Business District. Chemical composition, degree of ageing and the influence of BB emission on the air quality of central Brisbane were characterized using a compact Time of Flight Aerosol Mass Spectrometer (cToF-AMS). AMS loadings were dominated by OA (64%), followed by, sulfate (17%), ammonium (14%) and nitrates (5%). Source apportionment was applied on the AMS OA mass spectra via the multilinear engine solver (ME-2) implementation within the recently developed Source Finder (SoFi) interface. Six factors were extracted including hydrocarbon-like OA (HOA), cooking-related OA (COA), biomass burning OA (BBOA), low-volatility oxygenated OA (LV-OOA), semivolatile oxygenated OA (SV-OOA), and nitrogen-enriched OA (NOA). The aerosol fraction that was attributed to BB factor was 9%, on average over the sampling period. The high proportion of oxygenated OA (72%), typically representing aged emissions, could possess a fraction of oxygenated species transfored from BB components on their way to the sampling site. PMID:27101459

  16. Variability of marine aerosol fine-mode fraction and estimates of anthropogenic aerosol component over cloud-free oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    OpenAIRE

    Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas

    2009-01-01

    In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction ( fm) and its impacts on deriving the anthropogenic component of aerosol optical depth (ta) and direct radiative forcing from multispectral satellite measurements. A proxy of fm, empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aero...

  17. Ambient and indoor particulate aerosols generated by dairies in the southern High Plains.

    Science.gov (United States)

    Purdy, C W; Clark, R N; Straus, D C

    2009-12-01

    The objectives were to quantify and size ambient aerosolized dust in and around the facilities of 4 southern High Plains dairies of New Mexico and to determine where health of workers might be vulnerable to particulate aerosols, based on aerosol concentrations that exceed national air quality standards. Ambient dust air samples were collected upwind (background) and downwind of 3 dairy location sites (loafing pen boundary, commodity, and compost field). The indoor milking parlor, a fourth site, was monitored immediately upwind and downwind. Aerosolized particulate samples were collected using high-volume sequential reference air samplers, laser aerosol monitors, and cyclone air samplers. The overall (main effects and estimable interactions) statistical general linear model statement for particulate matter (PM(10); particulate matter with an aerodynamic diameter of up to 10 microm) and PM(2.5) resulted in a greater mean concentration of dust in the winter (PM(10) = 97.4 +/- 4.4 microg/m(3); PM(2.5) = 32.6 +/- 2.6 microg/m(3)) compared with the summer (PM(10) = 71.9 +/- 5.0 microg/m(3); PM(2.5) = 18.1 +/- 1.2 microg/m(3)). The upwind and downwind boundary PM(10) concentrations were significantly higher in the winter (upwind = 64.3 +/- 9.5 microg/m(3); downwind = 119.8 +/- 13.0 microg/m(3)) compared with the summer (upwind = 35.2 +/- 7.5 microg/m(3); downwind = 66.8 +/- 11.8 microg/m(3)). The milking parlor PM(10) and PM(2.5) concentration data were significantly higher in the winter (PM(10) = 119.5 +/- 5.8 microg/m(3); PM(2.5) = 55.3 +/- 5.8microg/m(3)) compared with the summer (PM(10) = 88.6.0 +/- 5.8 microg/m(3); PM(2.5) = 21.0 +/- 2.1 microg/m(3)). Personnel should be protected from high aerosol concentrations found at the commodity barn, compost field, and milking parlor during the winter. PMID:19923606

  18. Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Directory of Open Access Journals (Sweden)

    D. R. Worton

    2011-06-01

    Full Text Available In this paper we report chemically resolved measurements of organic aerosol (OA and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX at the Blodgett Forest Research Station, California. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA. The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and could be categorized into three factors or sources: (1 aged biomass burning emissions and oxidized urban emissions, (2 oxidation products of temperature-driven local biogenic emissions and (3 local light-driven emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g., temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher due to more substantial emissions of isoprene and enhanced photochemistry. Methyl chavicol oxidation contributed similarly to OA during both identified meteorological periods. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during cooler conditions, even though emissions of the precursors were lower. Following the first precipitation event of the fall the abundances of the monoterpene oxidation products increased dramatically, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO, consistent with previous observations, while being comprised of mostly non-fossil carbon (>75 %. The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a

  19. Environmental pollution: influence on the operation of a sensor of radioactive aerosols; Contaminacion ambiental: influencia en el funcionamiento de un captador de aerosoles radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Duarte Rodriguez, X.; Hernandez Armas, J.; Martin Delgado, J.; Rodriguez Perestelo, N.; Perez Lopez, M.; Catalan Acosta, A.; Fernandez de Aldecoa, J. c.

    2013-07-01

    The content of radioactive aerosols in the air is an important component to estimate the ambient radiation dose. In the laboratories of environmental radioactivity, measurements of radionuclides in air they are performed using sensors. The flow picked up by the equipment can be changed if the degree of air pollution changes for some reason. It handles this study and the population doses are estimated due to inhalation of ambient air. (Author)

  20. 77 FR 65310 - Additional Air Quality Designations for the 2006 24-Hour Fine Particle National Ambient Air...

    Science.gov (United States)

    2012-10-26

    ... the 2006 24-hour Fine Particle (PM 2.5 ) National Ambient Air Quality Standards,'' 74 FR 58688... Federal Regulations DC District of Columbia EO Executive Order EPA Environmental Protection Agency FR... EPA finalized designations for the 2006 24-hour PM 2.5 NAAQS (74 FR 58688, November 13, 2009), the...

  1. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    International Nuclear Information System (INIS)

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO2) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  2. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-08-01

    Full Text Available The functional group composition of various organic aerosols (OA is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R´ respectively and precursor ion (nitro groups, R-NO2 scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular to 13.5% (o-xylene photooxidation of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60

  3. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Wortham, H.; Marchand, N. [Univ Aix Marseille, CNRS, Lab Chim Provence, Equipe Instrumentat and React Atmospher, UMR 6264, F-13331 Marseille 3 (France); Jaffrezo, J.L. [Univ Grenoble 1, CNRS, UMR 5183, Lab Glaciol and Geophys Environm, F-38402 St Martin Dheres (France)

    2010-07-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO{sub 2}) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional

  4. Ambient Fine Particulate Matter and Mortality among Survivors of Myocardial Infarction: Population-Based Cohort Study

    Science.gov (United States)

    Chen, Hong; Burnett, Richard T.; Copes, Ray; Kwong, Jeffrey C.; Villeneuve, Paul J.; Goldberg, Mark S.; Brook, Robert D.; van Donkelaar, Aaron; Jerrett, Michael; Martin, Randall V.; Brook, Jeffrey R.; Kopp, Alexander; Tu, Jack V.

    2016-01-01

    Background: Survivors of acute myocardial infarction (AMI) are at increased risk of dying within several hours to days following exposure to elevated levels of ambient air pollution. Little is known, however, about the influence of long-term (months to years) air pollution exposure on survival after AMI. Objective: We conducted a population-based cohort study to determine the impact of long-term exposure to fine particulate matter ≤ 2.5 μm in diameter (PM2.5) on post-AMI survival. Methods: We assembled a cohort of 8,873 AMI patients who were admitted to 1 of 86 hospital corporations across Ontario, Canada in 1999–2001. Mortality follow-up for this cohort extended through 2011. Cumulative time-weighted exposures to PM2.5 were derived from satellite observations based on participants’ annual residences during follow-up. We used standard and multilevel spatial random-effects Cox proportional hazards models and adjusted for potential confounders. Results: Between 1999 and 2011, we identified 4,016 nonaccidental deaths, of which 2,147 were from any cardiovascular disease, 1,650 from ischemic heart disease, and 675 from AMI. For each 10-μg/m3 increase in PM2.5, the adjusted hazard ratio (HR10) of nonaccidental mortality was 1.22 [95% confidence interval (CI): 1.03, 1.45]. The association with PM2.5 was robust to sensitivity analyses and appeared stronger for cardiovascular-related mortality: ischemic heart (HR10 = 1.43; 95% CI: 1.12, 1.83) and AMI (HR10 = 1.64; 95% CI: 1.13, 2.40). We estimated that 12.4% of nonaccidental deaths (or 497 deaths) could have been averted if the lowest measured concentration in an urban area (4 μg/m3) had been achieved at all locations over the course of the study. Conclusions: Long-term air pollution exposure adversely affects the survival of AMI patients. Citation: Chen H, Burnett RT, Copes R, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, van Donkelaar A, Jerrett M, Martin RV, Brook JR, Kopp A, Tu JV. 2016. Ambient fine

  5. Measurement of overall uptake coefficients for HO2 radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang (China)

    OpenAIRE

    Taketani, F.; Y. Kanaya; P. Pochanart; Liu, Y; Li, J.; K. Okuzawa; K. Kawamura; Z. Wang; H. Akimoto

    2012-01-01

    HO2 uptake coefficients for ambient aerosol particles, collected on quartz fiber filter using a high-volume air sampler in China, were measured using an aerosol flow tube coupled with a chemical conversion/laser-induced fluorescence technique at 760 Torr and 298 K, with a relative humidity of 75%. Aerosol particles were regenerated with an atomizer using the water extracts from the aerosol particles. Over 10 samples, the measured HO2 uptake coefficients for the aerosol parti...

  6. Measurement of overall uptake coefficients for HO2 radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang, China

    OpenAIRE

    H. Akimoto; Z. Wang; K. Okuzawa; K. Kawamura; Li, J.; Liu, Y; P. Pochanart; Taketani, F.; Y. Kanaya

    2012-01-01

    HO2 uptake coefficients for ambient aerosol particles, collected on quartz filter using a high-volume air sampler in China, were measured using an aerosol flow tube coupled with a chemical conversion/laser-induced fluorescence technique at 760 Torr and 298 K, with a relative humidity of 75%. Aerosol particles were regenerated with an atomizer using the water extracts from the aerosol particles. Over 10 samples, the measured HO2 uptake coefficients for the aerosol particles at the Mt. ...

  7. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    A. Laaksonen

    2004-11-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulfur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  8. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2007-08-01

    Full Text Available Sugars and sugar-alcohols are demonstrated to be important constituents of the ambient aerosol water-soluble organic carbon fraction, and to be tracers for primary biological aerosol particles (PBAP. In the present study, levels of four sugars (fructose, glucose, sucrose, trehalose and three sugar-alcohols (arabitol, inositol, mannitol in ambient aerosols have been quantified using a novel HPLC/HRMS-TOF (High Performance Liquid Chromatography in combination with High Resolution Mass Spectrometry – Time of Flight method to assess the contribution of PBAP to PM>sub>10 and PM2.5. Samples were collected at four sites in Norway at different times of the year in order to reflect the various contributing sources and the spatial and seasonal variation of the selected compounds.

    Sugars and sugar-alcohols were present at all sites investigated, underlining the ubiquity of these highly polar organic compounds. The highest concentrations were reported for sucrose, reaching a maximum concentration of 320 ng m−3 in PM10 and 55 ng m−3 in PM2.5. The mean concentration of sucrose was up to 10 times higher than fructose, glucose and the dimeric sugar trehalose. The mean concentrations of the sugar-alcohols were typically lower, or equal, to that of the monomeric sugars and trehalose. Peak concentrations of arabitol and mannitol did not exceed 30 ng m−3 in PM10, and for PM2.5 all concentrations were below 6 ng m−3.

    Sugars and sugar-alcohols were associated primarily with coarse aerosols except during wintertime at the suburban site in Elverum, where a shift towards sub micron aerosols was observed. It is proposed that this shift was due to the intensive use of wood burning for residential heating at this site during winter, confirmed by high concurrent concentrations of levoglucosan. Elevated concentrations of sugars in PM2

  9. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    International Nuclear Information System (INIS)

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background

  10. Combustion characteristics of water-insoluble elemental and organic carbon in size selected ambient aerosol particles

    Directory of Open Access Journals (Sweden)

    K. Wittmaack

    2005-04-01

    Full Text Available Combustion of elemental carbon (EC and organic carbon (OC contained in ambient aerosol matter was explored using scanning electron microscopy (SEM in combination with energy dispersive X-ray analysis (EDX. To ease identification of the particles of interest and to avoid or at least reduce interaction with simultaneously sampled inorganic oxides and salts, the approach used in this work differed in two ways from commonly applied procedures. First, rather than using a mixture of particles of vastly different sizes, as in PM10 or PM2.5, aerosol matter was collected in a 5-stage impactor. Second, the water soluble fraction of the collected matter was removed prior to analysis. Diesel soot particles, which appeared in the well-known form of chain-type aggregates, constituted the major fraction of EC. In contrast, OC containing particles were observed in a variety of shapes, including a sizable amount of bioaerosol matter appearing mostly in the size range above about 1 µm. During heating in ambient air for 1 h, diesel soot particles were found to be stable up to 480°C, but complete combustion occurred in a narrow temperature interval between about 490 and 510°C. After diesel soot combustion, minute quantities of ''ash'' were observed in the form of aggregated tiny particles with sizes less than 10 nm. These particles could be due to elemental or oxidic contaminants of diesel soot. Combustion of OC was observed over a wide range of temperatures, from well below 200°C to at least 500°C. Incompletely burnt bioaerosol matter was still found after heating to 600°C. The results imply that the EC fraction in aerosol matter can be overestimated significantly if the contribution of OC to a thermogram is not well separated.

  11. Combustion characteristics of water-insoluble elemental and organic carbon in size selected ambient aerosol particles

    Directory of Open Access Journals (Sweden)

    K. Wittmaack

    2005-01-01

    Full Text Available Combustion of elemental carbon (EC and organic carbon (OC contained in ambient aerosol matter was explored using scanning electron microscopy (SEM in combination with energy dispersive X-ray analysis (EDX. To ease identification of the particles of interest and to avoid or at least reduce interaction with simultaneously sampled inorganic oxides and salts, the approach used in this work differed in two ways from commonly applied procedures. First, rather than using a mixture of particles of vastly different sizes, as in PM10 or PM2.5, aerosol matter was collected in a 5-stage impactor. Second, the water soluble fraction of the collected matter was removed prior to analysis. Diesel soot particles, which appeared in the well-known form of chain-type aggregates, constituted the major fraction of EC. In contrast, OC containing particles were observed in a variety of shapes, including a sizable amount of bioaerosol matter appearing mostly in the size range above about 1 µm. During heating in ambient air for 1h, diesel soot particles were found to be stable up to 470°C, but complete combustion occurred in a narrow temperature interval between about 480 and 510°C. After diesel soot combustion, minute quantities of 'ash' were observed in the form of aggregated tiny particles with sizes less than 10 nm. These particles could be due to elemental or oxidic contaminants of diesel soot. Combustion of OC was observed over a wide range of temperatures, from well below 200°C to at least 500°C. Incompletely burnt bioaerosol matter was still found after heating to 600°C. The results imply that the EC fraction in aerosol matter can be overestimated significantly if the contribution of OC to a thermogram is not well separated.

  12. Ambient exposure to coarse and fine particle emissions from building demolition

    Science.gov (United States)

    Azarmi, Farhad; Kumar, Prashant

    2016-07-01

    Demolition of buildings produce large quantities of particulate matter (PM) that could be inhaled by on-site workers and people living in the neighbourhood, but studies assessing ambient exposure at the real-world demolition sites are limited. We measured concentrations of PM10 (≤10 μm), PM2.5 (≤2.5 μm) and PM1 (≤1 μm) along with local meteorology for 54 working hours over the demolition period. The measurements were carried out at (i) a fixed-site in the downwind of demolished building, (ii) around the site during demolition operation through mobile monitoring, (iii) different distances away from the demolition site through sequential monitoring, and (iv) inside an excavator vehicle cabin and on-site temporary office for engineers. Position of the PM instrument was continuously recorded using a Global Positioning System on a second basis during mobile measurements. Fraction of coarse particles (PM2.5-10) contributed 89 (with mean particle mass concentration, PMC ≈ 133 ± 17 μg m-3), 83 (100 ± 29 μg m-3), and 70% (59 ± 12 μg m-3) of total PMC during the fixed-site, mobile monitoring and sequential measurements, respectively, compared with only 50% (mean 12 ± 6 μg m-3) during the background measurements. The corresponding values for fine particles (PM2.5) were 11, 17 and 30% compared with 50% during background, showing a much greater release of coarse particles during demolition. The openair package in R and map source software (ArcGIS) were used to assess spatial variation of PMCs in downwind and upwind of the demolition site. A modified box model was developed to determine the emission factors, which were 210, 73 and 24 μg m-2 s-1 for PM10, PM2.5 and PM1, respectively. The average respiratory deposited doses to coarse (and fine) particles inside the excavator cabin and on-site temporary office increased by 57- (and 5-) and 13- (and 2-) times compared with the local background level, respectively. The monitoring stations in downwind direction

  13. Seasonal variations of biogenic secondary organic aerosol tracers in ambient aerosols from Alaska

    Science.gov (United States)

    Haque, Md. Mozammel; Kawamura, Kimitaka; Kim, Yongwon

    2016-04-01

    We investigated total suspended particles (TSP) collected from central Alaska, USA for molecular compositions of secondary organic aerosol (SOA) derived from the oxidation of biogenic volatile organic compounds (BVOCs). Isoprene-, α-/β-pinene- and β-caryophyllene-SOA tracers were determined using gas chromatography-mass spectrometry. The concentration ranges of isoprene, α-/β-pinene and β-caryophyllene oxidation products were 0.02-18.6 ng m-3 (ave. 4.14 ng m-3), 0.42-8.24 ng m-3 (2.01 ng m-3) and 0.10-9 ng m-3 (1.53 ng m-3), respectively. Isoprene-SOA tracers showed higher concentrations in summer (ave. 8.77 ng m-3), whereas α-/β-pinene- and β-caryophyllene-SOA tracers exhibited highest levels in spring (3.55 ng m-3) and winter (4.04 ng m-3), respectively. β-Caryophyllinic acid and levoglucosan showed a positive correlation, indicating that biomass burning may be a major source for β-caryophyllene. We found that mean contributions of isoprene oxidation products to organic carbon (OC) and water-soluble organic (WSOC) (0.56% and 1.2%, respectively) were higher than those of α-/β-pinene (0.31% and 0.55%) and β-caryophyllene (0.08% and 0.13%). Using a tracer-based method, we estimated the concentrations of secondary organic carbon (SOC) produced from isoprene, α-/β-pinene and β-caryophyllene to be 0.66-718 ngC m-3 (ave. 159 ngC m-3), 7.4-143 ngC m-3 (35 ngC m-3) and 4.5-391 ngC m-3 (66.3 ngC m-3), respectively. Based on SOA tracers, this study suggests that isoprene is a more important precursor for the production of biogenic SOA than α-/β-pinene and β-caryophyllene in subarctic Alaska.

  14. Evidence and quantitation of aromatic organosulfates in ambient aerosols in Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    S. Kundu

    2012-12-01

    Full Text Available Organosulfates are important components of atmospheric organic aerosols, yet their structures, abundances, sources and formation processes are not adequately understood. This study presents the identification and quantitation of benzyl sulfate in atmospheric aerosols, which is the first reported atmospheric organosulfate with aromatic carbon backbone. Benzyl sulfate was identified and quantified in fine particulate matter (PM2.5 collected in Lahore, Pakistan during 2007–2008. An authentic standard of benzyl sulfate was synthesized, standardized, and identified in atmospheric aerosols using ultra-performance liquid chromatography (UPLC coupled with quadrupole time-of-flight (Q-ToF mass spectrometry (MS. Benzyl sulfate was quantified in aerosol samples using UPLC coupled to negative electrospray ionization triple quadrupole (TQ MS. The highest benzyl sulfate concentrations were recorded in November and January 2007 (0.50 ± 0.11 ng m−3 whereas the lowest concentration was observed in July (0.05 ± 0.02 ng m−3. To evaluate matrix effects, benzyl sulfate concentrations were determined using external calibration and the method of standard addition; comparable concentrations were detected by the two methods, which ruled out significant matrix effects in benzyl sulfate quantitation. Three additional organosulfates with m/z 187, 201 and 215 were qualitatively identified as aromatic organosulfates with additional methyl substituents by high-resolution mass measurements and tandem MS. The observed aromatic organosulfates form a homologous series analogous to toluene, xylene, and trimethylbenzene, which are abundant anthropogenic volatile organic compounds (VOC, suggesting that aromatic organosulfates may be formed by secondary reactions. Further studies are needed to elucidate the sources and formation pathways of aromatic organosulfates in the atmosphere.

  15. Evidence and quantitation of aromatic organosulfates in ambient aerosols in Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    S. Kundu

    2013-05-01

    Full Text Available Organosulfates are important components of atmospheric organic aerosols, yet their structures, abundances, sources and formation processes are not adequately understood. This study presents the identification and quantitation of benzyl sulfate in atmospheric aerosols, which is the first confirmed atmospheric organosulfate with aromatic carbon backbone. Benzyl sulfate was identified and quantified in fine particulate matter (PM2.5 collected in Lahore, Pakistan, during 2007–2008. An authentic standard of benzyl sulfate was synthesized, standardized, and identified in atmospheric aerosols with quadrupole time-of-flight (Q-ToF mass spectrometry (MS. Benzyl sulfate was quantified in aerosol samples using ultra performance liquid chromatography (UPLC coupled to negative electrospray ionization triple quadrupole (TQ MS. The highest benzyl sulfate concentrations were recorded in November and January 2007 (0.50 ± 0.11 ng m−3 whereas the lowest concentration was observed in July (0.05 ± 0.02 ng m−3. To evaluate matrix effects, benzyl sulfate concentrations were determined using external calibration and the method of standard addition; comparable concentrations were detected by the two methods, which ruled out significant matrix effects in benzyl sulfate quantitation. Three additional organosulfates with m/z 187, 201 and 215 were qualitatively identified as aromatic organosulfates with additional methyl substituents by high-resolution mass measurements and tandem MS. The observed aromatic organosulfates form a homologous series analogous to toluene, xylene, and trimethylbenzene, which are abundant anthropogenic volatile organic compounds (VOC, suggesting that aromatic organosulfates may be formed by secondary reactions. However, stronger statistical correlations of benzyl sulfate with combustion tracers (EC and levoglucosan than with secondary tracers (SO42− and α-pinene-derived nitrooxy organosulfates suggest that aromatic organosulfates may be

  16. Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Directory of Open Access Journals (Sweden)

    D. R. Worton

    2011-10-01

    Full Text Available In this paper we report chemically resolved measurements of organic aerosol (OA and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA. The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1 aged biomass burning emissions and oxidized urban emissions, (2 oxidized urban emissions (3 oxidation products of monoterpene emissions, (4 monoterpene emissions, (5 anthropogenic emissions and (6 local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October, even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO, consistent with previous observations, while being comprised of mostly non-fossil carbon

  17. Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Science.gov (United States)

    Worton, D. R.; Goldstein, A. H.; Farmer, D. K.; Docherty, K. S.; Jimenez, J. L.; Gilman, J. B.; Kuster, W. C.; de Gouw, J.; Williams, B. J.; Kreisberg, N. M.; Hering, S. V.; Bench, G.; McKay, M.; Kristensen, K.; Glasius, M.; Surratt, J. D.; Seinfeld, J. H.

    2011-10-01

    In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August-10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August-12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September-10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The

  18. Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-11-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  19. Diffusion Coefficient when fine Aerosol Media Propagate in a Confined Volume

    OpenAIRE

    Korovina N.V.; Zharova I.K.; Kudryashova O.B.; Titov S.S.

    2016-01-01

    An experimental estimation is reported of the value of the effective diffusion coefficient during aerosol deposition in a confined volume. Aerosol propagation regularities have experimentally been studied in a chamber of a complex configuration with different placement of aerosol generators.

  20. Composition and distribution of fine particulate aerosols in the Mumbai City area

    International Nuclear Information System (INIS)

    The concentrations of 19 elements, namely As, Br, Ca, Cl, Co, Cr, Fe, Hg, K, La, Na, Pb, S, Sb, Sc, Si, Sm, Ti and Zn, were determined in fine (3 and 146 μg/m3, respectively, for Chembur and 22 μg/m3 and 44 μg/m3 respectively, for Borivli samples. Aerosol loads at Chembur showed about three times higher mass than that of Borivli. Enrichment factors (EFs) for different anthropogenic elements, calculated with respect to Si in standard crustal rock were of the same order for coarse fractions collected at both the sites except for Sb and Zn. The EF values for Sb and Zn in coarse fractions were higher by a factor of 1.5 and 3.5, respectively, for Chembur. On the other hand, EF values for As, Cr, Hg and S in fine fractions were found to be lower at Chembur compared with Borivli and Sb and Zn exhibited higher EF values than that for the coarse fraction. The correlation coefficients and factor analysis in both size fractions at these locations suggest four sources of pollutants, namely wind driven soil dust, sea salt, refuse and wood/coal burning. At Chembur, contributions from the wear and tear of vehicle tires (Cr and Zn), though less prominent, were also observed. (author)

  1. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  2. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    International Nuclear Information System (INIS)

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described

  3. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2007-05-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were carried out in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area – 2006 campaign (MCMA-2006 between 7–27 March, 2006. Biomass and organic carbon (OC particle types were found to dominate the accumulation mode both day and night. The concentrations of both organic carbon and biomass particles were roughly equal early in the morning, but biomass became the largest contributor to the accumulation mode mass from the late morning until early evening. The diurnal pattern can be attributed to aging and/or a change in meteorology. Fresh elemental carbon (EC particles were observed during rush hour. The majority of the EC particles were mixed with nitrate, sulfate, organic carbon and potassium. Submicron particles from industrial sources in the northeast were composed of an internal mixture of Pb, Zn, EC and Cl and peaked early in the morning. A unique nitrogen-containing organic (NOC particle type was observed, and is hypothesized to be from industrial emissions based on the temporal profile and back trajectory analysis. This study provides unique insights into the real-time changes in single particle mixing state as a function of size and time for aerosols in Mexico City. These new findings indicate that biomass burning and industrial operations make significant contributions to particles in Mexico City. These sources have received relatively little attention in previous intensive field campaigns.

  4. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  5. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2015-11-01

    Full Text Available Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq. atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 μg m-3 when LVOC fate corrected compared to daytime (average 1 μg m-3 when LVOC fate corrected, with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254, similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH

  6. ON THE PROPORTIONALITY OF FINE MASS CONCENTRATION AND EXTINCTION COEFFICIENT FOR BIMODAL SIZE DISTRIBUTIONS

    Science.gov (United States)

    For a bimodal size distribution of ambient aerosol, an upper limit in particle size can be chosen for the fine aerosol fraction so that the extinction coefficient for light scattering and absorption is directly proportional to the fine mass concentration, with no dependence on th...

  7. Analysis of Fine and Coarse mode Aerosol Distributions from AERONET's mini-DRAGON Set-up at Singapore 2012

    Science.gov (United States)

    Salinas Cortijo, S. V.; Chew, B. N.; Muller, A.; Liew, S.

    2013-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol type and particle size regime. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from industrial and urban areas. However, depending on the time of the year (July-October), there can be a strong bio-mass component originated from uncontrolled forest/plantation fires from the neighboring land masses of Sumatra and Borneo. Unlike urban/fossil fuel aerosols, smoke or bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. Trans-boundary smoke episodes has become an annual phenomenon in this region. Severe episodes were recorded in 1997 and 2006 and other minor episodes happened during 2002, 2004, 2010 and more recently on 2013. On August-September 2012, as part of CRISP participation on the August-September ground campaign of the Southeast Asia Composition, Cloud Climate Coupling Regional Study (SEAC4RS), a Distributed Regional Aerosol Gridded Observation Networks (DRAGON) set of six CIMEL CE-318A automatic Sun-tracking photometers have been deployed at sites located at North (Yishun ITE), East (Temasek Poly), West (NUS and Pandan Reservoir), Central (NEA) and South (St. John's island) of Singapore. In order to fully discriminate bio-mass burning events over other local sources, we perform a spectral discrimination of fine/coarse mode particle regime to all DRAGON sites; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponent are used to identify possible bio-mass related events within the data set. Spatio-temporal relationship between sites are also investigated.

  8. Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and Combustion Engines with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and Chamber Observations

    Science.gov (United States)

    Mohr, C.; Huffman, J. A.; Cubison, M. J.; Aiken, A. C.; Docherty, K. S.; Kimmel, J. R.; Ulbrich, I. M.; Hannigan, M.; Garcia, J.; Jimenez, J. L.

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS) and supporting instrumentation. A semi-quantitative comparison of emission factors highlights the potential importance of meat cooking as an OA source. GC-MS and AMS mass spectra are compared for the first time and show high similarity, but with more fragmentation in the AMS due to higher vaporization temperatures. High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to mass spectral signatures from hydrocarbon-like OA or primary OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from any of these sources is very unlikely to be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/z's that may be useful for differentiating these sources from each other. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, while motor vehicle emissions have very low signal at this m/z.

  9. Fast two-dimensional GC-MS with thermal extraction for anhydro-sugars in fine aerosols

    Directory of Open Access Journals (Sweden)

    Y. Ma

    2010-01-01

    Full Text Available A fast two-dimensional gas chromatography (GC-MS method that uses heart-cutting and thermal extraction (TE and requires no chemical derivatization was developed for the determination of anhydro-sugars in fine aerosols. Evaluation of the TE-GC-GC-MS method shows high average relative accuracy (≥90%, reproducibility (≤10% relative standard deviation, detection limits of less than 3 ng/μL, and negligible carryover for levoglucosan, mannosan, and galactosan markers. TE-GC-GC-MS- and solvent extraction (SE-GC-MS-measured levoglucosan concentrations correlate across several diverse types of biomass burning aerosols. Because the SE-GC-MS measurements were taken 8 years prior to the TE-GC-GC-MS ones, the stability of levoglucosan is established for quartz filter-collected biomass burning aerosol samples stored at ultra-low temperature (–45°C. Levoglucosan concentrations (w/w in aerosols collected following atmospheric dilution near open fires of varying intensity are similar to those in biomass burning aerosols produced in a laboratory enclosure. An average levoglucosan-mannosan-galactosan ratio of 15:2:1 is observed for these two aerosol sets. TE-GC-GC-MS analysis of atmospheric aerosols from the US and Africa produced levoglucosan concentrations (0.01–1.6 μg/m3 well within those reported for aerosols collected globally and examined using different analytical techniques (0.004–7.6 μg/m3. Further comparisons among techniques suggest that fast TE-GC-GC-MS is among the most sensitive, accurate, and precise methods for compound-specific quantification of anhydro-sugars. In addition, an approximately twofold increase in aerosol sample throughput may be realized when combining TE with fast chromatography for anhydro-sugar determination.

  10. Variability of Marine Aerosol Fine-Mode Fraction and Estimates of Anthropogenic Aerosol Component Over Cloud-Free Oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    Science.gov (United States)

    Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas

    2009-01-01

    In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.

  11. Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties

    Directory of Open Access Journals (Sweden)

    D. B. Atkinson

    2010-01-01

    Full Text Available During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006, the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σep were performed by two multi-wavelength cavity ring-down (CRD instruments, one located on board the NOAA R/V Ronald H. Brown (RHB and the other located at the University of Houston, Moody Tower (UHMT. An AERONET sunphotometer was also located at the UHMT to measure the columnar aerosol optical depth (AOD. The σep data were used to extract the extinction Ångström exponent (åep, a measure of the wavelength dependence of σep. There was general agreement between the åep (and to a lesser degree σep measurements by the two spatially separated CRD instruments during multi-day periods, suggesting a regional scale consistency of the sampled aerosols. Two spectral models are applied to the σep and AOD data to extract the fine mode fraction of extinction (η and the fine mode effective radius (Reff,f. These two parameters are robust measures of the fine mode contribution to total extinction and the fine mode size distribution, respectively. The results of the analysis are compared to Reff,f values extracted using AERONET V2 retrievals and calculated from in situ particle size measurements on the RHB and at UHMT. During a time period when fine mode aerosols dominated the extinction over a large area extending from Houston/Galveston Bay and out into the Gulf of Mexico, the various methods for obtaining Reff,f agree qualitatively (showing the same temporal trend and quantitatively (pooled standard deviation = 28 nm.

  12. Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties

    Directory of Open Access Journals (Sweden)

    D. B. Atkinson

    2009-08-01

    Full Text Available During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006, the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σep were performed by two multi-wavelength cavity ring-down (CRD instruments, one located on board the NOAA R/V Ronald H. Brown (RHB and the other located at the University of Houston, Moody Tower (UHMT. An AERONET sunphotometer was also located at the UHMT to measure the columnar aerosol optical depth (AOD. The σep data were used to extract the extinction Ångström exponent (åep, a measure of the wavelength dependence of σep. There was general agreement between the åep (and to a lesser degree σep measurements by the two spatially separated CRD instruments during multi-day periods, suggesting a regional scale consistency of the sampled aerosols. Two spectral models are applied to the σep and AOD data to extract the fine mode fraction of extinction (η and the fine mode effective radius (Reff f. These two parameters are robust measures of the fine mode contribution to total extinction and the fine mode size distribution respectively. The results of the analysis are compared to Reff f values extracted using AERONET V2 retrievals and calculated from in situ particle size measurements on the RHB and at UHMT. During a time period when fine mode aerosols dominated the extinction over a large area extending from Houston/Galveston Bay and out into the Gulf of Mexico, the various methods for obtaining Reff f agree qualitatively (showing the same temporal trend and quantitatively (pooled standard deviation

  13. Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia

    Science.gov (United States)

    Ivošević, Tatjana; Orlić, Ivica; Radović, Iva Bogdanović

    2015-11-01

    The results of a long term, multi elemental XRF and PIXE analysis of fine aerosol pollution in the city of Rijeka, Croatia, are reported for the first time. The samples were collected during a seven months period (6th Aug 2013-28th Feb 2014) on thin stretched Teflon filters and analyzed by energy dispersive X-ray fluorescence (EDXRF) at the Laboratory for Elemental Micro-Analysis (LEMA), University of Rijeka and by Particle Induced X-ray Emission (PIXE) using 1.6 MeV protons at the Laboratory for Ion Beam Interactions (LIBI), Ruđer Bošković Institute, Zagreb. The newly developed micro-XRF system at LEMA provided results for 19 elements in the range from Si to Pb. The PIXE at the LIBI provided information for the same elements as well for the light elements such as Na, Mg and Al. Black carbon was determined with the Laser Integrated Plate Method (LIPM). The results were statistically evaluated by means of the positive matrix factorization (PMF). The seven major pollution sources were identified together with their relative contributions, these are: secondary sulfates, road traffic, smoke, road dust, sea spray, ship emissions and soil dust.

  14. A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    Science.gov (United States)

    Bastian, S.; Löschau, G.; Wiedensohler, A.

    2014-04-01

    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The function control allows unattended quality assurance experiments at remote air quality monitoring or research stations under field conditions. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter while removing diffusive particles smaller than 20 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. Another feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. The performance of the function control is illustrated with the aid of a 1-year data set recorded at Annaberg-Buchholz, a station in the Saxon air quality monitoring network. During the period of concern, the total particle number concentration derived from the mobility particle size spectrometer slightly overestimated the particle number concentration recorded by the condensation particle counter by 2 % (grand average). Based on our first year of experience with the function control, we developed tolerance criteria that allow a performance evaluation of a tested mobility particle size spectrometer with respect to the total particle number concentration. We conclude that the automated function control enhances the quality and reliability of unattended long-term particle number size distribution measurements. This will have beneficial effects for intercomparison studies involving different measurement sites, and help provide a higher

  15. Technical Note: Fast two-dimensional GC-MS with thermal extraction for anhydro-sugars in fine aerosols

    Directory of Open Access Journals (Sweden)

    Y. Ma

    2010-05-01

    Full Text Available A fast two-dimensional gas chromatography (GC-MS method that uses heart-cutting and thermal extraction (TE and requires no chemical derivatization was developed for the determination of anhydro-sugars in fine aerosols. Evaluation of the TE-GC-GC-MS method shows high average relative accuracy (≥90%, reproducibility (≤10% relative standard deviation, detection limits of less than 3 ng/μL, and negligible carryover for levoglucosan, mannosan, and galactosan markers. TE-GC-GC-MS- and solvent extraction (SE-GC-MS-measured levoglucosan concentrations correlate across several diverse types of biomass burning aerosols. Because the SE-GC-MS measurements were taken 8 years prior to the TE-GC-GC-MS ones, the stability of levoglucosan is established for quartz filter-collected biomass burning aerosol samples stored at ultra-low temperature (−50 °C. Levoglucosan concentrations (w/w in aerosols collected following atmospheric dilution near open fires of varying intensity are similar to those in biomass burning aerosols produced in a laboratory enclosure. An average levoglucosan-mannosan-galactosan ratio of 15:2:1 is observed for these two aerosol sets. TE-GC-GC-MS analysis of atmospheric aerosols from the US and Africa produced levoglucosan concentrations (0.01–1.6 μg/m3 well within those reported for aerosols collected globally and examined using different analytical techniques (0.004–7.6 μg/m3. Further comparisons among techniques suggest that fast TE-GC-GC-MS is among the most sensitive, accurate, and precise methods for compound-specific quantification of anhydro-sugars. In addition, an approximately twofold increase in anhydro-sugar determination may be realized when combining TE with fast chromatography.

  16. The AIRPARIF-AEROSOL project: A comprehensive source apportionment study of fine aerosols (PM2.5) in the region of Paris (France)

    Science.gov (United States)

    Sciare, Jean; Ghersi, Veronique; Bressi, Michael; Lameloise, Philippe; Bonnaire, Nicolas; Rosso, Amandine; Nicolas, Jose; Moukhtar, Sophie; Ferron, Anais; Baumier, Dominique

    2010-05-01

    With a population of about 12 millions inhabitants (20% of the French population), Greater Paris (France) is one of the most populated megacity in Europe and among the few located in developed countries. Due to its favorable geographical situation (far from other big European cities and influenced very often by clean oceanic air masses), it may be considered as a good candidate for investigating the build-up of urban air pollution from temperate industrialized countries. Particulate mass of fine aerosols with aerodynamic diameter below 2.5μm (PM2.5) is continuously monitored at several stations from great Paris for almost 8 years by the local air quality network (AIRPARIF), using a conventional on-line automatic system (R&P TEOM; see Patashnik and Rupprecht, 1991). During the period 2000-2006, levels of PM2.5 in the region of Paris have shown rather stable yearly mean values ranging 13 to 16?g/m3 whereas most of the other pollutants monitored by AIRPARIF have shown a net decrease during this period (http:\\www.airparif.asso.fr). Since the year 2007, this situation has becoming worse for particulate pollution with a net increase of the yearly mean concentration of PM2.5 (up to 21?g/m3), which increase is partly due to the use of a new PM2.5 measurement technique (R&P TEOM-FDMS instrument) enabling a proper determination of the semi-volatile fraction of fine aerosols. Although this new method greatly improves the determination of PM2.5, it has also brought PM2.5 levels in the region of Paris closer to the 25?g/m3 yearly mean targeted value recommended by Europe for 2010 (limit value for 2015). Efficient abatement policies aiming at reducing levels of PM2.5 in the region of Paris will have to be fed by preliminary PM2.5 source apportionment studies and exhaustive aerosol chemistry studies (chemical mass balance) allowing a better separation between regional to continental aerosol sources. The objective of the AIRPARIF-AEROSOL project aims to perform a spatially- and

  17. Preparation of an ultra-fine, slightly dispersed silver iodide aerosol

    International Nuclear Information System (INIS)

    A silver iodide aerosol was prepared under clean conditions. The method was to react iodine vapor with a silver aerosol in an inert dry atmosphere and in darkness. Great care was taken to avoid contamination from atmosphere air. The ice nucleating properties of the ultrafine AgI aerosol obtained were studied in a cloud mixing chamber: the aerosol was found to be strangely inactive. (author)

  18. ENHANCED CHARACTERIZATION OF AMBIENT FINE PARTICULATE MATTER THROUGH COMPLEMENTARY DATA INTEGRATION AND IMPROVED MEASUREMENT INSTRUMENTATION

    Science.gov (United States)

    Improvements in fine particle characterization will allow for a more complete understanding of the processes particle in the atmosphere undergo. The integration of complementary measurements into a compact mathematical form, allows for ease of transfer from particle measureme...

  19. Seasonal variation of water-soluble inorganic species in the coarse and fine atmospheric aerosols at Dar es Salaam, Tanzania

    International Nuclear Information System (INIS)

    The ionic composition of coarse, fine and total PM10 was investigated in aerosol samples collected from a kerbside in Dar es Salaam during the 2005 dry season and 2006 wet season. A 'Gent' PM10 stacked filter unit sampler with sequential Nuclepore polycarbonate filters, providing coarse (8 μm) and fine (0.4 μm) size fractions, was deployed. The mean concentrations and associated standard deviation of fine, coarse and PM10 were, respectively, 17 ± 4, 52 ± 27, and 69 ± 29 μg/m3 during the 2005 dry season campaign and 13 ± 5, 34 ± 23 and 47 ± 25 μg/m3 for the 2006 wet season campaign. The higher PM mass concentrations during the dry season campaign are essentially due to soil dust dispersal, much biomass burning and temperature inversions. Chloride, Na+ and Mg2+ were the dominant ions in coarse fraction, indicating a significant influence of sea-salt aerosols. In the fine fraction, SO42- and NH4+ and K+ were the most important ions. The mean equivalent PM2 NO3- concentration in the 2005 dry season campaign was two times higher than in the 2006 wet season campaign, probably due to reaction of NaCl (sea-salt) with HNO3 as a result of higher levels of NOx during the dry season and/or reduced volatilization of NH4NO3 due to lower temperature in the dry season. The results from our water-soluble ions study strongly suggests that biomass burning and secondary aerosols make a significant contribution to fine particulate mass in Dar es Salaam atmosphere. Thus, burning of waste and biomass are thought to be the major causes for the atmospheric particulate pollution in Dar es Salaam during the dry season.

  20. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany)

    Science.gov (United States)

    Weckwerth, Gerd

    Emission of heavy metals, besides ozone and diesel-soot, is one of the most significant environmental problems caused by the existing transport systems. Emission arises from different parts of vehicles (tyres, brakes, exhausts) or running trains (rails, wheels, overhead cables, etc.). Various types of emission with their insufficiently known ways of spreading makes it difficult to estimate the risk and to realise effective counter-measures. Size-dependent sampling of aerosols with the virtual impactor technique of a dichotomous sampler (material together with ˜0.3% from rubbed off brake-linings in the coarse fraction. The assumption of 0.3% for brake-linings is based on the relative abundances of Cu and Sb which besides Cd are the most highly enriched. Since most brake-linings used in cars contain these elements in an unusually high quantity (5-20% Cu and 1-5% Sb) and are in very similar ratios as measured in the coarse fraction, Cu and Sb may be taken as quantitative tracers for the brake-lining component in the immission. The environmental interest in Sb arises mainly from the toxicological potential of the compounds Sb 2S 3 and Sb 2O 3. Other traffic related components could only be identified very close to the sources of emissions. Besides Pt from cars with catalysators and Cu emitted from overhead cables of trams, an As-enrichment from rusting rails, which segregates into fine particles because of shaking due to passing trains, was discovered.

  1. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  2. Differences in Fine- Coarse Aerosol Ratios in Convective and Non-Convective Dust Events in a Desert City

    Science.gov (United States)

    Gill, T. E.; Rivera Rivera, N. I.; Novlan, D. J.

    2014-12-01

    El Paso, Texas (USA) and Ciudad Juarez, Chihuahua (Mexico) form the Paso del Norte, the largest metropolitan area in North America's Chihuahuan Desert. The cities are subject to frequent dust storms presenting a hazard to local infrastructure and health, including synoptic-scale dust events during winter and spring, and dusty outflows from convective storms (haboobs) primarily during the summer. We evaluate particulate matter (PM2.5 and PM10) concentrations over a decade of convective and non-convective dust events, based on hourly aerosol data collected by Texas Commission on Environmental Quality (TCEQ) continuous air monitors in El Paso cross-referenced to weather observations from the USA National Weather Service. A total of 219 dust events (95 convective and 124 non-convective) events occurred between 2001 and 2010. The PM2.5/PM10 ratio was significantly higher (proportionally greater concentration of fine aerosols) in convective episodes and during summertime events than during non-convective dust events and dust episodes in other seasons, although overall concentrations of both PM2.5 and PM10 were higher in the non-convective events, which were also longer-lasting. These differences in fine/coarse aerosol ratios are likely related to different atmospheric stability conditions, and/or different mechanisms of dust particle entrainment and transport in haboobs versus non-convective dust events. Since visibility degradation and adverse human health effects are known to be exacerbated by to fine aerosol concentrations, thunderstorm-related dust events may present a proportionally greater hazard.

  3. Diurnal and seasonal trends in the apparent density of ambient fine and coarse particles in Los Angeles

    International Nuclear Information System (INIS)

    Diurnal and seasonal variations in the apparent density of ambient fine and coarse particulate matter (PM2.5 and CPM [PM2.5–10], respectively) were investigated in a location near downtown Los Angeles. The apparent densities, determined by particle mass-to-volume ratios, showed strong diurnal and seasonal variations, with higher values during the warm phase (June to August 2013) compared to cold phase (November 2012 to February 2013). PM2.5 apparent density showed minima during the morning and afternoon rush hours of the cold phase (1.20 g cm−3), mainly due to the increased contribution of traffic-emitted soot particles, and highest values were found during the midday in the warm phase (2.38 g cm−3). The lowest CPM apparent density was observed during the morning rush hours of the cold phase (1.41 g cm−3), while highest in early afternoon during the warm phase (2.91 g cm−3), most likely due to the increased wind-induced resuspension of road dust. - Highlights: • Hourly apparent density of ambient fine and coarse PM was measured in Los Angeles. • Apparent densities were higher during the warm season. • PM2.5 apparent density showed minima during the traffic rush hours. • Coarse PM apparent density showed a similar diurnal trend with wind speed in summer. - The apparent density of ambient particles, a direct tracer of chemical composition and morphology, shows strong seasonal and diurnal variability

  4. THE EFFECTS OF FINE LACTOSE AS A THIRD COMPONENT ON AEROSOLIZATION OF CEFOTAXIME SODIUM FROM DRY POWDER FORMULATIONS

    Directory of Open Access Journals (Sweden)

    ABDOLHOSEIN ROUHOLAMINI NAJAFABADI

    2006-06-01

    Full Text Available Dry powder inhaler (DPI formulations usually contain micronized drug particles and lactose as a carrier. Fine lactose could be used as a ternary component to improve drug delivery from DPIs. The aim of this study was to investigate the deposition profile of a model drug, cefotaxime sodium (CS, using coarse and fine carriers after aerosolization at 60 l/min via a spinhaler® into a twin stage liquid impinger (TSI. Two micronization methods. jet milling and spray drying were used to micronize the active drug and carrier. The particle size of CS and lactose were characterized by laser diffraction, and the morphology of formulations was examined by scanning electron microscopy. X-ray diffraction of jet milled lactose showed crystalline nature, but spray dried lactose exhibited an amorphous state. The results showed the existence of fine lactose in formulations significantly (p0.05 difference was observed between the effect of jet milled and spray dried lactose. On the other hand selection of micronization technique to reduce particle size of CS, was very effective on deposition profile. The highest influence of fine lactose was obtained by formulation containing jet milled CS in ratio of drug/carrier 1/1 and 10% of fine lactose as third component.

  5. ambiental

    Directory of Open Access Journals (Sweden)

    Roque Leal Salcedo

    2008-01-01

    Full Text Available El derecho internacional ambiental es un conocimiento de carácter transversal, que entre otras consideraciones refleja las preocupaciones de la sociedad por la implementación de un modelo de desarrollo sustentable para el respeto a las reglas del medio natural que garantizan la integridad y renovación de los sistemas naturales. El presente artículo enfoca esta visión a través del análisis de material documental revisado, entre ellos tratados internacionales que permiten distinguir el desarrollo del derecho internacional ambiental y el papel de Organización de las Naciones Unidas (ONU, en el propósito común del derecho individual y colectivo de disfrutar de una vida, un ambiente seguro, sano y ecológicamente equilibrado. En función a estas disertaciones las consideraciones finales exponen parte de la visión que ha estructurado la ONU y que representan un aporte considerable en el fomento de la conciencia mundial sobre la necesidad de establecer vínculos entre las naciones para el continuo desarrollo de esta rama del derecho.

  6. Characterization of ambient fine particles in the northwestern area and Anchorage, Alaska.

    Science.gov (United States)

    Kim, Eugene; Hopke, Philip K

    2008-10-01

    Ambient PM2.5 (particulate matter less than 2.5 microm in aerodynamic diameter) in the northwestern United States and Alaska is dominated by carbonaceous compounds associated with wood burning and transportation sources. PM2.5 source characterization studies analyzing recent PM2.5 speciation data have not been previously reported for these areas. In this study, ambient PM2.5 speciation samples collected at two monitoring sites located in the northwestern area, Olympic Peninsula, WA, and Portland, OR, and one monitoring site located in Anchorage, AK, were characterized through source apportionments. Gasoline vehicle, secondary sulfate, and wood smoke were the largest sources of PM2.5 collected at the Anchorage, Olympic, and Portland monitoring sites, respectively. Secondary sulfates showed an April peak at Anchorage and a November peak at Portland that are likely related to the increased photochemical reaction and long-range transport in Anchorage and meteorological stagnation in Portland. Secondary nitrate at the Olympic site showed a weak summer high peak that could be caused by seasonal tourism in the national park. Backward trajectories suggested that the elevated aged sea salt concentrations at the Portland monitoring site could be regional transport of sea salt that passed through other contaminated air sheds along the coast. Oil combustion emissions that might originate from ships and ferries were observed at the Olympic monitoring site. PMID:18939780

  7. Investigation of fine and coarse aerosol contributions to the total aerosol light scattering: Shape effects and concentration profiling by Raman lidar measurements

    International Nuclear Information System (INIS)

    Remote sensing techniques, such as sun-photometry (columnar integrated aerosol parameters) and Raman lidar (profile aerosol parameters), are used in inversion models to yield information about particle size distribution (PSD), concentration, and average refractive index (RI). Ground-based AERONET network uses sun-photometric measurements to retrieve columnar effective particle size distribution and refractive index values, as well as other radiative properties such as absorption optical depth, albedo, and asymmetry parameter, which do not have a strong dependence on particle shape. Raman lidar measurements, on the other hand, yield shape-dependent quantities like particle depolarization, backscattering and lidar ratio at several wavelengths. In order to evaluate what light scattering parameters can be used to infer information regarding particle shape and concentration, a set of computer simulations was carried out. AERONET-inverted particle data (PSD, RI, concentration) have been used as input. Simulated data are obtained from ALFA, a light-scattering database, using the kernel approximation scheme. As expected, the effect of fine mode particle shape on near-infrared (1064 nm) was found to be negligible; on the other hand, even a small amount of nonsphericity in small particles has a marked effect on depolarization ratio values. Data from a 2007 lidar campaign were then used to evaluate the validity of our approach on a real measurement campaign. Results show that our method can yield some information about layer profiling, such as the concentration of fine mode particles. Such information comes not as a best-fit solution but in the form of a compatible set of possible solutions, which could be narrowed by the use of closure relations. -- Highlights: ► We simulate bimodal particle size distribution in atmospheric aerosols. ► Lidar data are used from a campaign to test our approach. ► Backscattering can be used to obtain particle concentration by layer.

  8. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA: a semi-continuous method for soluble compounds

    Directory of Open Access Journals (Sweden)

    I. C. Rumsey

    2013-09-01

    Full Text Available Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's Clean Air Status and Trends Network (CASTNet currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA measures water-soluble gases and aerosols at hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV program. The assessment was conducted in Research Triangle Park, North Carolina from 8 September–8 October 2010 and focused on gaseous SO2, HNO3 and NH3 and aerosol SO4−, NO3− and NH4+. Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD between paired hourly results from duplicate MARGA units (MUs, with a performance goal of 2, SO42− and NH4+, with all three compounds passing the accuracy and precision goals by a significant margin. The performance of the MARGA in measuring NO3− could not be evaluated due to the different sampling efficiency of coarse NO3− by the MUs and the filter pack. Estimates of "fine" NO3− were calculated for the MUs and the filter pack. Using this and results from a previous study, it is concluded that if the MUs and the filter pack were sampling the same particle size, the MUs would have good agreement in terms of precision and accuracy. The MARGA performed moderately well in measuring HNO3 and NH3, though neither met the linear regression slope goals. However, recommendations for improving the measurement of HNO3 and NH3 are discussed. It is concluded that SO42−, SO2, NO3−, HNO3, NH4+ and NH3 concentrations can be measured with acceptable accuracy and precision when the MARGA is

  9. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    Science.gov (United States)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE

  10. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw

    Directory of Open Access Journals (Sweden)

    P. Zieger

    2011-03-01

    Full Text Available In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30–40%. Since ambient aerosol particles experience hygroscopic growth at enhanced RH, their microphysical and optical properties – especially the aerosol light scattering – are also strongly dependent on RH. The knowledge of this RH effect is of crucial importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. Here, we will present results from a four-month campaign which took place in summer 2009 in Cabauw, The Netherlands. The aerosol scattering coefficient σsp(λ was measured dry and at various, predefined RH conditions between 20 and 95% with a humidified nephelometer. The scattering enhancement factor f(RH,λ is the key parameter to describe the effect of RH on σsp(λ and is defined as σsp(RH,λ measured at a certain RH divided by the dry σsp(dry,λ. The measurement of f(RH,λ together with the dry absorption measurement (assumed not to change with RH allows the determination of the actual extinction coefficient σep(RH,λ at ambient RH. In addition, a wide range of other aerosol properties were measured in parallel. The measurements were used to characterize the effects of RH on the aerosol optical properties. A closure study showed the consistency of the aerosol in-situ measurements. Due to the large variability of air mass origin (and thus aerosol composition a simple parameterization of f(RH,λ could not be established. If f(RH,λ needs to be predicted, the chemical composition and size distribution need to be known. Measurements of four MAX-DOAS (multi-axis differential optical absorption spectroscopy instruments were used to retrieve vertical profiles of σep(λ. The values of the lowest layer were compared to the in-situ values after conversion of the latter ones to ambient

  11. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw

    Directory of Open Access Journals (Sweden)

    P. Zieger

    2010-12-01

    Full Text Available In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30–40%. Since ambient aerosol particles experience hygroscopic growth at enhanced RH, also their microphysical and optical properties – especially the aerosol light scattering – are strongly dependent on RH. The knowledge of this RH effect is of crucial importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. Here, we will present results from a four-month campaign which took place in summer 2009 in Cabauw, The Netherlands. The aerosol scattering coefficient σsp(λ was measured dry and at various, predefined RH conditions between 20 and 95% with a humidified nephelometer. The scattering enhancement factor f(RH,λ is the key parameter to describe the effect of RH on σsp(λ and is defined as σsp(RH,λ measured at a certain RH divided by the dry σsp(dry,λ. The measurement of f(RH,λ together with the dry absorption measurement (assumed not to change with RH allows the determination of the actual extinction coefficient σep(RH,λ at ambient RH. In addition, a wide range of other aerosol properties were measured in parallel. The measurements were used to characterize the effects of RH on the aerosol optical properties. A closure study showed the consistency of the aerosol in-situ measurements. Due to the large variability of air mass origin (and thus aerosol composition a simple parameterization of f(RH,λ could not be established. If f(RH,λ needs to be predicted, the chemical composition and size distribution needs to be known. Measurements of four MAX-DOAS (multi-axis differential optical absorption spectroscopy instruments were used to retrieve vertical profiles of σep(λ. The values of the lowest layer were compared to the in-situ values after conversion of the latter to ambient RH

  12. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2008-08-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006. Results are presented for the period of 15–27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC mixed with nitrate and sulfate, elemental carbon (EC, nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42% which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2–6 a.m. showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2–3μm size range. A unique nitrogen-containing organic carbon (NOC particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30–10 a.m. showed the greatest contributions from industrial emissions. During mid to late mornings (7–11 a.m., weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m., resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh

  13. Ambient fine particles modify heart rate variability in young healthy adults.

    Science.gov (United States)

    Vallejo, Maite; Ruiz, Silvia; Hermosillo, Antonio G; Borja-Aburto, Víctor H; Cárdenas, Manuel

    2006-03-01

    Particulate air pollution has been related with cardiopulmonary morbidity and mortality. Recent studies have shown that an increase in particulate matter (PM)(2.5) ambient concentrations was associated with a decrease in heart rate variability (HRV) in the elderly with cardiovascular conditions, which could increase the risk of death. In order to assess if this association could also be observed in young adults, we studied 40 young healthy residents of the Mexico City Metropolitan Area (MCMA) who underwent 13 h Holter electrocardiographic and PM(2.5) personal monitoring. HRV was evaluated in time domain: the standard deviation of normal RR intervals (SDNN) and the percentage of differences between adjacent normal RR intervals larger than 50 ms (pNN50). In multivariate analysis with mixed effects models, a significant negative association of pNN50 with PM(2.5) accumulative exposure was found. An increase in 30 microg/m(3) of the average PM(2.5) personal exposure in the previous 2 h decreased the pNN50 in 0.08% (P=0.01). This observation revealed an acute effect related to environmental exposure to PM(2.5) with regard to HRV in normal youngsters. The long-term health consequences of this association in young healthy adults remain to be clarified. PMID:16151470

  14. Temporal variability in Chemical and Stable isotopic characteristics of ambient bulk aerosols over a coastal environment of India

    Science.gov (United States)

    Agnihotri, R.; Karapurkar, S. G.; Sarma, V. V.; Praveen, P.; Kumar, M. D.

    2012-12-01

    Atmospheric carbonaceous aerosols are known to influence regional biogeochemical cycles of carbon (C) and nitrogen (N) in addition to regional radiation budgets. Owing to multiplicity of primary sources of natural and anthropogenic origin, their detailed chemical and isotopic characterization can greatly help in source apportionment and identifying secondary processes. From the roof of NIO-Goa (India) [15.46οN, 73.8oE; at ~55.8 MASL], atmospheric bulk aerosols (n=22) were collected on Quartz filters, from 2009 December to January 2011 covering entire 2010 (except monsoon period) to investigate temporal variability in their chemical and isotopic characteristics of the carbonaceous fraction i.e. TC, TOC and TN mass concentrations and their stable isotopic ratios (δ13CTC, δ13CTOC and δ15NTN). Both δ13CTC and δ13CTOC varied in narrow ranges (-24.9±1.1‰, -25.7±0.9‰ respectively), but significant differences were observed between the two during pre-monsoon months (as high as 2.3‰), possibly due to mixing of inorganic mineral dust. δ15NTN values showed a wide range of variability (average = 13.6±7.2‰), with significantly lower values (~2-5‰; as reported earlier by Agnihotri et al. 2011) during pre-monsoon period compared to those during winter (as high as ~26‰). Using δ13CTC values and two end-member mixing model (assuming δ13C of marine and continental carbon as -21 and -27‰ respectively), the average marine carbon fraction for Goa aerosols was estimated as 36±18.5%, significantly higher than reported for Chennai aerosols (~19%) (Pavuluri et al., 2011), but close to the reported average for marine aerosols at Bermuda (38%) (Turekian et al., 2003). Chemical and isotopic characteristics of ambient aerosols over Goa along with contemporaneous meteorological data indicate that winter aerosols contain significant proportion of carbonaceous fraction originated from biomass burning and other anthropogenic activities carried out in northern parts of

  15. Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E.

    2016-04-01

    The oxidative potential of various secondary organic aerosols (SOA) was measured using dithiothreitol (DTT) assay to understand how organic aerosols react with cellular materials. SOA was produced via the photooxidation of four different hydrocarbons (toluene, 1,3,5-trimethylbenzene, isoprene and α-pinene) in the presence of NOx using a large outdoor photochemical smog chamber. The DTT consumption rate was normalized by the aerosol mass, which is expressed as DTTmass. Toluene SOA and isoprene SOA yielded higher DTTmass than 1,3,5-trimethylbenzene SOA or α-pinene SOA. In order to discover the correlation between the molecular structure and oxidative potential, the DTT responses of selected model compounds were also measured. Among them, conjugated aldehydes, quinones, and H2O2 showed considerable DTT response. To investigate the correlation between DTT response and cell responses in vitro, the expression of biological markers, i.e. IL-6, IL-8, and HMOX-1 were studied using small airway epithelial cells. Higher cellular expression of IL-8 was observed with toluene SOA exposure compared to 1,3,5-trimethylbenzene SOA exposure, which aligned with the results from DTT assay. Our study also suggests that within the urban atmosphere, the contribution of toluene SOA and isoprene SOA to the oxidative potential of ambient SOA will be more significant than that of α-pinene SOA.

  16. Nighttime aqueous-phase secondary organic aerosols in Los Angeles and its implication for fine particulate matter composition and oxidative potential

    Science.gov (United States)

    Saffari, Arian; Hasheminassab, Sina; Shafer, Martin M.; Schauer, James J.; Chatila, Talal A.; Sioutas, Constantinos

    2016-05-01

    Recent investigations suggest that aqueous phase oxidation of hydrophilic organic compounds can be a significant source of secondary organic aerosols (SOA) in the atmosphere. Here we investigate the possibility of nighttime aqueous phase formation of SOA in Los Angeles during winter, through examination of trends in fine particulate matter (PM2.5) carbonaceous content during two contrasting seasons. Distinctive winter and summer trends were observed for the diurnal variation of organic carbon (OC) and secondary organic carbon (SOC), with elevated levels during the nighttime in winter, suggesting an enhanced formation of SOA during that period. The nighttime ratio of SOC to OC was positively associated with the relative humidity (RH) at high RH levels (above 70%), which is when the liquid water content of the ambient aerosol would be high and could facilitate dissolution of hydrophilic primary organic compounds into the aqueous phase. Time-integrated collection and analysis of wintertime particles at three time periods of the day (morning, 6:00 a.m.-9:00 a.m.; afternoon, 11:00 a.m.-3:00 p.m.; night, 8:00 p.m.-4:00 a.m.) revealed higher levels of water soluble organic carbon (WSOC) and organic acids during the night and afternoon periods compared to the morning period, indicating that the SOA formation in winter continues throughout the nighttime. Furthermore, diurnal trends in concentrations of semi-volatile organic compounds (SVOCs) from primary emissions showed that partitioning of SVOCs from the gas to the particle phase due to the decreased nighttime temperatures cannot explain the substantial OC and SOC increase at night. The oxidative potential of the collected particles (quantified using a biological macrophage-based reactive oxygen species assay, in addition to the dithiothreitol assay) was comparable during afternoon and nighttime periods, but higher (by at least ∼30%) compared to the morning period, suggesting that SOA formation processes possibly

  17. Secondary Organic Aerosol Formation from Ambient Air in an Oxidation Flow Reactor at GoAmazon2014/5

    Science.gov (United States)

    Palm, Brett B.; de Sa, Suzane S.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Seco, Roger; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Yee, Lindsay; Isaacman-VanWertz, Gabrial; Goldstein, Allen; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    During GoAmazon2014/5, ambient air was exposed to controlled concentrations of OH or O3 in situ using an oxidation flow reactor (OFR). Oxidation ranged from hours-several weeks of aging. Oxidized air was sampled by several instruments (e.g., HR-AMS, ACSM, PTR-TOF-MS, SMPS, CCN) at both the T3 site (IOP1: Feb 1-Mar 31, 2014, and IOP2: Aug 15-Oct 15, 2014) and T2 site (between IOPs and into 2nd IOP). The oxidation of ambient air in the OFR led to substantial and variable secondary organic aerosol (SOA) formation from any SOA-precursor gases, known and unknown, that entered the OFR. In general, more SOA was produced during the nighttime than daytime, suggesting that SOA-precursor gases were found in relatively higher concentrations at night. Similarly, more SOA was formed in the dry season (IOP2) than wet season (IOP1). The maximum amount of SOA produced during nighttime from OH oxidation ranged from less than 1 μg/m3 on some nights to greater than 10 μg/m3 on other nights. O3 oxidation of ambient air also led to SOA formation, although several times less than from OH oxidation. The amount of SOA formation sometimes, but not always, correlated with measured gas-phase biogenic and/or anthropogenic SOA precursors (e.g., SV-TAG sesquiterpenes, PTR-TOFMS aromatics, isoprene, and monoterpenes). The SOA mass formed in the OFR from OH oxidation was up to an order of magnitude larger than could be explained from aerosol yields of measured primary VOCs. This along with measurements from previous campaigns suggests that most SOA was formed from intermediate S/IVOC sources (e.g., VOC oxidation products, evaporated POA, or direct emissions). To verify the SOA yields of VOCs under OFR experimental conditions, atmospherically-relevant concentrations of several VOCs were added individually into ambient air in the OFR and oxidized by OH or O3. SOA yields in the OFR were similar to published chamber yields. Preliminary PMF factor analysis showed production of secondary factors in

  18. Direct and rapid determination of elements in the ambient air and in human expiration using the electrostatic precipitation of aerosols in the graphite atomizer of a Zeeman spectrometer

    International Nuclear Information System (INIS)

    The use of a new Zeeman spectrometer with the electrostatic precipitation of aerosols in the graphite furnace of the atomizer for the direct and rapid determination of aerosols in the ambient air and in the air expired by human beings is presented. The results are given for the comparative determination of elements (Cd, Mn, Cr, Pb, Cu, Se, Fe) in the laboratory air by the electrostatic precipitation and with the filter accumulation of aerosols. A correlation is found between the concentration of Se in the expiratory air and its concentration in the examinee's blood

  19. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    Directory of Open Access Journals (Sweden)

    Q. Q. Wu

    2015-02-01

    Full Text Available Hydrogen peroxide (H2O2 and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations suggest that peroxyacetic acid (PAA, CH3C(OOOH is one of the most important organic peroxides in the atmosphere, whose budget is potentially related to the aerosols. Here we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto the ambient fine particulate matter (PM2.5 as a function of relative humidity (RH at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ of 10−4, and both γPAA and γH2O2 increase with increasing RH. However, γPAA is more sensitive to the RH variation than is γH2O2, which indicates that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust Storm (ADS and Arizona Test Dust (ATD particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that in addition to the mineral dust in PM2.5, other components (e.g., inorganic soluble salts are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.3 h on haze days and 7.6 h on non-haze days, values which agree well with the field observed result.

  20. Fine ash morphology and aerosol formation: A comparison of coal and biomass fuels

    Science.gov (United States)

    Chenevert, Blake Charles

    1998-12-01

    Modeling and experimental methods were used to investigate ash formation mechanisms of four industrially significant high-alkali biomass (sawdust/sanderdust) fuels. Alkali minerals tend to vaporize and recondense to form sub-micron aerosol, which poses health risks and causes special operational problems for industrial combustors. Sawdust/sanderdust was burned in a 15 kW natural gas-fired tunnel furnace. The resulting ash was collected by a water-cooled probe, and size sorted by cascade impaction and Electrical Aerosol Size Analysis. Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy techniques were used to determine morphology and composition by size cut. Three ash modes were present: (1) A residual mode composed primarily of porous calcium structures with a scale length of 8 microns and larger. This mode was likely the result of direct oxide and carbonate formation. (2) A secondary residual mode near 2 microns composed of fluxed and fragmented calcium, but also containing significant amounts of Si, Fe, Mn and Al. This mode appeared to be composed of eutectic melts separated from the parent ash particle. (3) An aerosol mode composed of Na and K with Cl anion, or sulfate anion when Cl was not present. The aerosol mode diameter was found to be a function of initial nucleate number density and coagulation time. Long coagulation time or high initial number density resulted in an aerosol mode diameter near 0.1 micron. Modeling was composed of three elements: (1) Equilibrium modeling---These calculations validated experimental evidence for alkali vaporization and condensation, predicting all alkali to enter the vapor phase as NaCl or KCl when Cl is available, or NaOH and KOH otherwise. (2) Condensation modeling---This model was used to determine the partitioning of alkali metal between homogeneous particulate matter formation (self-nucleation) and deposition on existing residual particles. It was shown that vaporized alkali can be collected on the

  1. Element determination of fine particles in environmental aerosols using PIXE; Determinacion elemental de paticulas finas en aerosoles ambientales usando PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Garcia O, B. [ITT, 50000 Toluca (Mexico); Aldape U, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: gaolivab@gmail.com

    2007-07-01

    The Mexico city is classified as one of the more populated cities of the world which presents a decrease in the air quality and that gives place to a severe problematic in atmospheric pollution. To cooperate in the solution of this problem it is necessary to carry out studies that allow a better knowledge of the atmosphere of the city. This study presents the results of a monitoring campaign of fine particle carried out from September 21 to December 12, 2001 in three sites of the Mexico City center area. The samples were collected every third day with a collector type unit of heaped filters (Gent). The analysis of these samples was carried out in the 2 MV accelerator of the National Institute of Nuclear Research (ININ) applying the PIXE technique and with this analysis its were identified in the samples approximately 15 elements in each one of the 3 sites and was calculated the concentration in that its were present. With these results a database was created and by means of it mathematical treatment the Enrichment factor (FE), the time series of each element and the multiple correlation matrix were evaluated. The obtained results showed that the Civil Registration site (Salto del Agua) it was the more polluted coinciding that to a bigger concentration of activities a bigger increase in the pollution is generated. (Author)

  2. Experimental and Theoretical Characterization on the Sublimation (Evaporation) Kinetics of Fine Aerosol Particles (Droplets)

    OpenAIRE

    Ding, Haomin

    2008-01-01

    Sublimation (Evaporation) is widely used in different industrial applications. The important applications are the sublimation (evaporation) of small particles (solid and liquid), e.g., spray drying and fuel droplet evaporation. Since a few decades, sublimation technology has been used widely together with aerosol technology. This combination is aiming to get various products with desired compositions and morphologies. It can be used in the fields of nanoparticles generation, particle coating ...

  3. Characteristics of Fine Particulate Carbonaceous Aerosol at Two Remote Sites in Central Asia

    Science.gov (United States)

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of ...

  4. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6

    Directory of Open Access Journals (Sweden)

    M. Kamphus

    2009-07-01

    Full Text Available Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l. during the Cloud and Aerosol Characterization Experiment (CLACE 6 in February and March 2007. During mixed phase cloud events ice crystals from 5 μm up to 20 μm were separated from large ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI. During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The resulting ice and droplet residues (IR and DR were analyzed for size and composition by two single particle mass spectrometers: a custom-built Single Particle Laser-Ablation Time-of-Flight Mass Spectrometer (SPLAT and a commercial Aerosol Time of Flight Mass Spectrometer (ATOFMS, TSI Model 3800. During CLACE 6 the SPLAT instrument characterized 355 individual ice residues that produced a mass spectrum for at least one polarity and the ATOFMS measured 152 particles. The mass spectra were binned in classes, based on the combination of dominating substances, such as mineral dust, sulfate, potassium and elemental carbon or organic material. The derived chemical information from the ice residues is compared to the JFJ ambient aerosol that was sampled while the measurement station was out of clouds (several thousand particles analyzed by SPLAT and ATOFMS and to the composition of the residues of supercooled cloud droplets (SPLAT: 162 cloud droplet residues analyzed, ATOFMS: 1094. The measurements showed that mineral dust particles were strongly enhanced in the ice particle residues. 57% of the SPLAT spectra from ice residues were dominated by signatures from mineral compounds, and 78% of the ATOFMS spectra. Sulfate and nitrate containing particles were strongly

  5. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.

    Science.gov (United States)

    Cotterell, Michael I; Mason, Bernard J; Carruthers, Antonia E; Walker, Jim S; Orr-Ewing, Andrew J; Reid, Jonathan P

    2014-02-01

    A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed. PMID:24346588

  6. Application of Remotely-sensed Aerosol Optical Depth in Characterization and Forecasting of Urban Fine Particulate Matter

    Science.gov (United States)

    Grant, Shanique L.

    Emissions from local industries, particularly coal-fired power plants, have been shown to enhance the ambient pollutant budget in the Ohio River Valley (ORV) region. One pollutant that is of interest is PM2.5 due to its established link to respiratory illnesses, cardiopulmonary diseases and mortality. State and local agencies monitor the impact of the local point sources on the ambient concentrations at specific sites; however, the monitors do not provide satisfactory spatial coverage. An important metric for describing ambient particulate pollution is aerosol optical depth (AOD). It is a dimensionless geo-physical product measured remotely using satellites or ground-based light detection ranging instruments. This study focused on assessing the effectiveness of using satellite aerosol optical depth (AOD) as an indicator for PM2.5 in the ORV and two cities in Ohio. Three models, multi-linear regression (MLR), principal component analysis (PCA) -- MLR and neural network, were trained using 40% of the total dataset. The outcome was later tested to minimize error and further validated with another 40% of the dataset not included in the model development phase. Furthermore, to limit the effect of seasonality, four models representing each season were created for each city using meteorological variables known to influence PM2.5 and AOD concentration. GIS spatial analysis tool was employed to visualize and make spatial and temporal comparisons for the ORV region. Comparable spatial distributions were observed. Regression analysis showed that the highest and lowest correlations were in the summer and winter, respectively. Seasonal decomposition methods were used to evaluate trends at local Ohio monitoring stations to identify areas most suitable for improved air quality management. Over the six years of study, Cuyahoga County maintained PM2.5 concentrations above the national standard and in Hamilton County (Cincinnati) PM2.5 levels ranked above the national level for more

  7. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol

    OpenAIRE

    Vaden, Timothy D.; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2011-01-01

    Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species du...

  8. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    Science.gov (United States)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  9. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    Science.gov (United States)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  10. Quantifying short-term and long-term health benefits of attaining ambient fine particulate pollution standards in Guangzhou, China

    Science.gov (United States)

    Lin, Hualiang; Liu, Tao; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Guo, Lingchuan; Xu, Yanjun; Zhang, Yonghui; Vaughn, Michael G.; Nelson, Erik J.; Qian, Zhengmin (Min); Ma, Wenjun

    2016-07-01

    In 2012, Chinese Environmental Bureau modified its National Ambient Air Quality Standards to include fine particulate matter (PM2.5). Recent air pollution monitoring data shows that numerous locations have exceeded this standard, which may have resulted in avoidable adverse health effects. For example, among the 74 Chinese cities with PM2.5 monitoring data in 2013, only three cities attained the annual air quality standard (35 μg/m3). This study aimed to quantify the potential short- and long-term health benefits from achieving the Chinese ambient air quality standard and WHO's air quality objectives. A generalized additive model was used to estimate the short-term association of mortality with changes in daily PM2.5 concentrations, based on which we estimated the potential premature mortality reduction that would have been achieved during the period of 2012-2015 if the daily air quality standard had been met in Guangzhou, China; we also estimated the avoidable deaths if attaining the annual air quality standard using the relative risk obtained from a previous cohort study. During the study period, there were 160 days exceeding the national daily PM2.5 standard (75 μg/m3) in Guangzhou, and the annual average concentration (47.7 μg/m3) was higher than the air quality standard of 35 μg/m3. Significant associations between PM2.5 and mortality were observed. An increase of 10 μg/m3 in PM2.5 was associated with increases in daily death counts of 0.95% (95% CI: 0.56%, 1.34%) in natural mortality, 1.31% (95% CI: 0.75%, 1.87%) in cardiovascular mortality, and 1.06% (95% CI: 0.19%, 1.94%) in respiratory mortality. The health benefits of attaining the national daily air quality standard of PM2.5 (75 μg/m3) would have prevented 143 [95% confidence interval (CI): 84, 203] fewer natural deaths, including 84 (95% CI: 48, 121) fewer cardiovascular deaths and 27 (95% CI: 5, 49) fewer respiratory deaths. Had the annual PM2.5 levels been reduced to 35 μg/m3, an estimated 3875

  11. Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Richard E.; Laskina, Olga; Jayarathne, Thilina; Laskin, Alexander; Laskin, Julia; Lin, Peng; Sultana, Camile M.; Lee, Christopher; Moore, Kathryn A.; Cappa, Christopher; Bertram, Timothy; Prather, Kimberly; Grassian, Vicki H.; Stone, Elizabeth

    2016-02-01

    The inclusion of organic compounds in freshly emitted sea spray aerosol (SSA) has been shown to be size-dependent, with an increasing organic fraction in smaller particles. Defining the molecular composition of sea spray aerosol has proven challenging, due to the mix of continental and background particles even in remote marine environments. Here we have used electrospray ionization-high resolution mass spectrometry in negative ion mode to identify organic compounds in nascent sea spray collected throughout a 25-day mesocosm experiment. Over 280 organic compounds from ten major homologous series were identified. These compounds were operationally defined as molecules containing a hydrophobic alkyl chain with a hydrophilic head group making them surface active. The most abundant class of molecules detected were saturated (C8–C24) and unsaturated (C12–C22) fatty acids. Fatty acid derivatives (including saturated oxo-fatty acids (C5–C18) and saturated hydroxy-fatty acids (C5–C18) were also identified. Interestingly, anthropogenic influences on SSA from the seawater were observed in the form of sulfate (C2–C7, C12–C17) and sulfonate (C16–C22) species. During the mesocosm, the distributions of molecules within each homologous series were observed to respond to variations among the levels of phytoplankton and bacteria in the seawater, indicating an important role of biological processes in determining the composition of SSA.

  12. Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States – results from NEAQS

    Directory of Open Access Journals (Sweden)

    C. Warneke

    2007-02-01

    Full Text Available During the New England Air Quality Study (NEAQS in the summer of 2004, airborne measurements were made of the major inorganic ions and the water-soluble organic carbon (WSOC of the submicron (PM1.0 aerosol. These and ancillary data are used to describe the overall aerosol chemical characteristics encountered during the study. Fine particle mass was estimated from particle volume and a calculated density based on measured particle composition. Fine particle organic matter (OM was estimated from WSOC and a mass balance analysis. The aerosol over the northeastern United States (U.S. and Canada was predominately sulfate and associated ammonium, and organic components, although in unique plumes additional ionic components were also periodically above detection limits. In power generation regions, and especially in the Ohio River Valley region, the aerosol tended to be predominantly sulfate (~60% μg μg−1 and apparently acidic, based on an excess of measured anions compared to cations. In all other regions where sulfate concentrations were lower and a smaller fraction of overall mass, the cations and anions were balanced suggesting a more neutral aerosol. In contrast, the WSOC and estimated OM were more spatially uniform and the fraction of OM relative to PM mass largely influenced by sources of sulfate. The study median OM mass fraction was 40%. Throughout the study region, sulfate and organic aerosol mass were highest near the surface and decreased rapidly with increasing altitude. The relative fraction of organic mass to sulfate was similar within the boundary layer (altitude less than ~2.5 km, but was significantly higher in the free troposphere (above ~2.5 km. A number of distinct biomass burning plumes from fires in Alaska and the Yukon were periodically intercepted, mostly at altitudes between 3 and 4 km. These plumes were associated with highest aerosol concentrations of the study and were largely comprised of organic aerosol components

  13. Behaviour of various industrial aerosols on separation with fine atomising nozzles; Verhalten von verschiedenen technischen Aerosolen bei der Abscheidung mit fein zerstaeubenden Duesen

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, A. [Inst. fuer Technische Thermodynamik und Kaeltetechnik, Karlsruhe (Germany); Koch, A. [GEA Wiegand GmbH, Karlsruhe (Germany)

    1995-08-01

    This article is intended to show how aerosols of different compositions behave when passing through wet separators, with fine atomising nozzles and a saturation stage before them. Salt and acid aerosols can occur due to steam condensation in wet separation, in contrast to non-hygroscopic dust particles. The collection of particles can therefore be greater when leaving the separator than when entering it. After the description of the build-up of the experiment and the measurement technique, the generation of various industrial aerosols is to be explained here. Then there is a section with theoretical and experimental investigations of the growth of hygroscopic aerosol particles in damp air. The last part is intended to show how such growth has a favourable effect on aerosol separation. (orig./SR) [Deutsch] In diesem Beitrag soll gezeigt werden, wie sich Aerosole unterschiedlicher Zusammensetzung beim Durchgang durch Nassabscheider mit feinzerstaeubenden Duesen und vorgeschalteter Saettigungsstufe verhalten. Salz- und Saeureaerosole koennen bei der Nassabscheidung durch Wasserdampfkondensation anwachsen - im Gegensatz zu nicht hygroskopischen Staubpartikeln. Das Teilchenkollektiv kann also u.U. beim Verlassen des Abscheiders groesser sein als im Eintritt. Im folgenden soll nach der Beschreibung des Versuchsaufbaus und der Messtechnik zuerst die Generierung verschiedener technischer Aerosole erlaeutert werden. Danach folgt ein Abschnitt mit theoretischen und experimentellen Untersuchungen des Wachstums von hygroskopischen Aerosolpartikeln in feuchter Luft. Im letzten Teil soll gezeigt werden, wie sich ein derartiges Wachstum guenstig auf die Aerosolabscheidung auswirkt. (orig./SR)

  14. Characterization of fine primary biogenic organic aerosol in an urban area in the northeastern United States

    Science.gov (United States)

    Coz, Esther; Artíñano, Begoña; Clark, Lisa M.; Hernandez, Mark; Robinson, Allen L.; Casuccio, Gary S.; Lersch, Traci L.; Pandis, Spyros N.

    2010-10-01

    Scanning electron microscopy coupled to energy-dispersive x-ray spectroscopy (SEM/EDX) was used to quantify individual bioparticles in PM 2.5 samples collected during the Pittsburgh Air Quality Study. Microscopy-based estimates of primary biogenic organic aerosol (PBOA) mass were compared to carbohydrate mass associated with PM 2.5. Carbohydrates show substantial seasonal variations, with higher concentrations in the spring and the fall. During the summer, carbohydrates were about 30% of the estimated PBOA concentrations, but in the winter carbohydrate concentrations often greatly exceeded the PBOA mass estimate. Spores and insect detritus were the most abundant PBOA types in the summer samples, while winter samples were comprised predominantly of a mixture of microorganisms, insect and vegetative detritus. During the summer PBOA contributed on average 6.9 ± 5.4% by mass of the PM 2.5 versus 3.3 ± 1.4% of the PM 2.5 mass during the winter.

  15. PIXE identification of fine and coarse particles of aerosol samples and their distribution across Beirut

    Energy Technology Data Exchange (ETDEWEB)

    Roumie, M., E-mail: mroumie@cnrs.edu.lb [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Saliba, N., E-mail: ns30@aub.edu.lb [Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut (Lebanon); Nsouli, B., E-mail: bnsouli@cnrs.edu.lb [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Younes, M., E-mail: myriam_younis@hotmail.com [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Noun, M., E-mail: manale_noun@hotmail.com [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Massoud, R., E-mail: rm84@aub.edu.lb [Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut (Lebanon)

    2011-12-15

    This study is the first national attempt to assess the levels of PMs in Beirut city and consequently understand air pollution distribution. Aerosol sampling was carried out using three PM{sub 10} and three PM{sub 2.5} samplers which were installed at three locations lying along the SE-NW direction over Beirut. The sampling of PM{sub 10} and PM{sub 2.5} was done during a period extending from May till December 2009. The random collection of the particles (1 in 6 days) was carried out on Teflon filters, for a period of 24-h. The elemental analysis of particulate matter was performed using proton induced X-ray emission technique PIXE at the Lebanese 1.7 MV Tandem-Pelletron accelerator of Beirut. Na, Mg, Al, Si, P, S and Cl were quantified using 1 MeV proton beam, while K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb were determined using 3 MeV-energy of proton beam.

  16. PIXE identification of fine and coarse particles of aerosol samples and their distribution across Beirut

    International Nuclear Information System (INIS)

    This study is the first national attempt to assess the levels of PMs in Beirut city and consequently understand air pollution distribution. Aerosol sampling was carried out using three PM10 and three PM2.5 samplers which were installed at three locations lying along the SE-NW direction over Beirut. The sampling of PM10 and PM2.5 was done during a period extending from May till December 2009. The random collection of the particles (1 in 6 days) was carried out on Teflon filters, for a period of 24-h. The elemental analysis of particulate matter was performed using proton induced X-ray emission technique PIXE at the Lebanese 1.7 MV Tandem-Pelletron accelerator of Beirut. Na, Mg, Al, Si, P, S and Cl were quantified using 1 MeV proton beam, while K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb were determined using 3 MeV-energy of proton beam.

  17. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, W.A.; Mroz, E.J.; Heiken, G.

    1981-07-01

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background.

  18. Combining AOT, Angstrom Exponent and PM concentration data, with PSCF model, to distinguish fine and coarse aerosol intrusions in Southern France

    Science.gov (United States)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2016-05-01

    In this paper, a cluster analysis of backward air mass trajectories, arriving in Avignon (Southern France), was combined with a Potential Source Contribution Function (PSCF) model on a 0.5° × 0.5° resolution grid, in order to indicate possible aerosol intrusions. A strict triple criterion was constructed from Aerosol Optical Thickness (AOT), Angstrom Exponent (AE), and PM (PM10 and PM2.5) concentration measurements, aiming to distinguish more effectively Episodes of Fine, Coarse and Overall Aerosols (FAE, CAE and OAE respectively). Large fractions of FAE (60.0%) and CAE (40.6%) were strongly attributed to the prevalence of Eastern and South-Southwest (S-SW) airflows respectively, whereas these distinct trajectory clusters also gathered large fractions of OAE (90.2% cumulatively). According to PSCF results, FAE events were strongly associated with the influence of air masses traveling over North Italy and Southern Germany, hence the impact of urban and industrial combustion was emerged. Main sources of coarse aerosols were principally isolated over the Mediterranean, thus the import of sea spray and dust from the Sahara desert is presumed. Satellite AOT observations were used for a more detailed identification of an intense 5-day intrusion of coarse aerosols. Short range slow moving air mass trajectories, were proven to be a clear marker of atmospheric stagnation, based on a wind speed analysis, triggering the accumulation of locally emitted anthropogenic aerosols (mainly PM2.5) and lack of city ventilation.

  19. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    Directory of Open Access Journals (Sweden)

    A. Polidori

    2007-12-01

    Full Text Available A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH content, and the physical/chemical characteristics of aerosols collected a in Wilmington (CA near the Los Angeles port and close to 2 major freeways, and b at a dynamometer testing facility in downtown Los Angeles (CA, where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4–8 times higher at 09:00–11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converted were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (μg/m3 and the measured photo-electric aerosol sensor signal (fA was also established. Estimated ambient p-PAH concentrations (Average = 0.64 ng/m3; Standard deviation = 0.46 ng/m3 were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a

  20. Comparison between XRF and IBA techniques in analysis of fine aerosols collected in Rijeka, Croatia

    Science.gov (United States)

    Ivošević, Tatjana; Mandić, Luka; Orlić, Ivica; Stelcer, Eduard; Cohen, David D.

    2014-10-01

    The new system for energy dispersive X-ray fluorescence (EDXRF) analysis has been installed at the Laboratory for Elemental Micro-Analysis (LEMA) at the University of Rijeka. Currently the key application of this new XRF system is in the field of environmental science, i.e. in the analysis of fine airborne particles. In this work, results of initial multi-elemental analysis of PM2.5 fraction is reported for the first time in the region of Rijeka, Croatia. Sampling was performed at the Rijeka City center, during a continuous 9-day period in February/March 2012. All samples were collected on stretched Teflon filters in 12 h periods. To check the reliability of the new XRF system, results of XRF analysis are compared with the results obtained by the well-established Ion Beam Analysis (IBA) laboratory at Australian Nuclear Science and Technology Organisation (ANSTO). The concentrations of H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb were determined. In addition, black carbon was determined by Laser Integrating Plate Method (LIPM). Very good agreement between XRF and IBA techniques is obtained for all elements detected by both techniques. Elemental concentrations were correlated with the traffic volume and wind speed and direction. The summary of our findings is presented and discussed in this paper.

  1. Comparison between XRF and IBA techniques in analysis of fine aerosols collected in Rijeka, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Ivošević, Tatjana [Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia); Mandić, Luka, E-mail: lukam@phy.uniri.hr [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Orlić, Ivica [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Stelcer, Eduard; Cohen, David D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232 (Australia)

    2014-10-15

    The new system for energy dispersive X-ray fluorescence (EDXRF) analysis has been installed at the Laboratory for Elemental Micro-Analysis (LEMA) at the University of Rijeka. Currently the key application of this new XRF system is in the field of environmental science, i.e. in the analysis of fine airborne particles. In this work, results of initial multi-elemental analysis of PM{sub 2.5} fraction is reported for the first time in the region of Rijeka, Croatia. Sampling was performed at the Rijeka City center, during a continuous 9-day period in February/March 2012. All samples were collected on stretched Teflon filters in 12 h periods. To check the reliability of the new XRF system, results of XRF analysis are compared with the results obtained by the well-established Ion Beam Analysis (IBA) laboratory at Australian Nuclear Science and Technology Organisation (ANSTO). The concentrations of H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb were determined. In addition, black carbon was determined by Laser Integrating Plate Method (LIPM). Very good agreement between XRF and IBA techniques is obtained for all elements detected by both techniques. Elemental concentrations were correlated with the traffic volume and wind speed and direction. The summary of our findings is presented and discussed in this paper.

  2. Implications of ammonia emissions for fine aerosol formation and visibility impairment. A case study from the Lower Fraser Valley, British Columbia

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1998-01-01

    ammonia and ammonium measurements to explain: (i) the observed temporal and spatial variability of fine inorganic aerosol composition and concentrations in the valley, and (ii) the severity and spatial variability of visibility degradation in the LFV. It is proposed here that advection of urban emissions...... of nitrogen and sulphur oxides over agricultural areas in the eastern and central valley with higher ammonia emissions favours subsequent ammonium nitrate and sulphate formation. This leads to higher fine mass concentrations and lowest visibility in the predominantly agricultural regions of the...

  3. A molecular-level approach for characterizing water-insoluble components of ambient organic aerosol particulates using ultra-high resolution mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. S. Willoughby

    2014-04-01

    Full Text Available The chemical composition of organic aerosols in the atmosphere is strongly influenced by human emissions, and the effect these have on the environment, human health, and climate change is determined by the molecular nature of these chemical species. The complexity of organic aerosol samples limits the ability to study the chemical composition, and, therefore, the associated properties and the impacts they have. Many studies address the water-soluble fraction of organic aerosols, and have had much success in identifying specific molecular formulas for thousands of compounds present. However, little attention is given to the water-insoluble portion, which can contain most of the fossil material that is emitted through human activity. Here we compare the organic aerosols present in water extracts and organic solvent extracts (pyridine and acetonitrile of an ambient aerosol sample collected in a rural location that is impacted by natural and anthropogenic emission sources. A semi-quantitative method was developed using proton nuclear magnetic resonance spectroscopy to determine that the amount of organic matter extracted by pyridine is comparable to that of water. Electrospray ionization Fourier transform ion cyclotron resonance mass spectra show that pyridine extracts a molecularly unique fraction of organic matter compared to water or acetonitrile, which extract chemically similar organic matter components. The molecular formulas unique to pyridine were less polar, more aliphatic, and reveal formulas containing sulfur to be an important component of insoluble aerosol organic matter.

  4. Spectral Discrimination of Fine and Coarse Mode Aerosol Optical Depth from AERONET Direct Sun Data of Singapore and South-East Asia

    Science.gov (United States)

    Salinas Cortijo, S.; Chew, B.; Liew, S.

    2009-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.

  5. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution F Table F-6 to Subpart F of Part 53... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-6 Table F-6 to Subpart F of Part 53—Estimated...

  6. Investigation of the relative fine and coarse mode aerosol loadings and properties in the Southern Arabian Gulf region

    Science.gov (United States)

    Kaku, Kathleen C.; Reid, Jeffrey S.; Reid, Elizabeth A.; Ross-Langerman, Kristy; Piketh, Stuart; Cliff, Steven; Al Mandoos, Abdulla; Broccardo, Stephen; Zhao, Yongjing; Zhang, Jianglong; Perry, Kevin D.

    2016-03-01

    The aerosol chemistry environment of the Arabian Gulf region is extraordinarily complex, with high concentrations of dust aerosols from surrounding deserts mixed with anthropogenic aerosols originating from a large petrochemical industry and pockets of highly urbanized areas. Despite the high levels of aerosols experienced by this region, little research has been done to explore the chemical composition of both the anthropogenic and mineral dust portion of the aerosol burden. The intensive portion of the United Arab Emirates Unified Aerosol Experiment (UAE2), conducted during August and September 2004 was designed in part to resolve the aerosol chemistry through the use of multiple size-segregated aerosol samplers. The coarse mode mass (derived by subtracting the PM2.5 aerosol mass from the PM10 mass) is largely dust at 76% ± 7% of the total coarse mode mass, but is significantly impacted by anthropogenic pollution, primarily sulfate and nitrate. The PM2.5 aerosol mass also contains a large dust burden, at 38% ± 26%, but the anthropogenic component dominates. The total aerosol burden has significant impact not only on the atmosphere, but also the local population, as the air quality levels for both the PM10 and PM2.5 aerosol masses reached unhealthy levels for 24% of the days sampled.

  7. Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2009-08-01

    Full Text Available Submicron atmospheric aerosol particles were collected during the Megacity Initiative: Local and Global Research Observation (MILAGRO in March 2006 at three platforms located in the Mexico City urban area (at the Mexico City Atmospheric Monitoring System building – SIMAT, at about 60 km south-east of the metropolitan area (Altzomoni in the Cortes Pass, and on board the NCAR C130 aircraft. Organic functional group and elemental composition were measured by FTIR and XRF. The average organic mass (OM concentration, calculated as the sum of organic functional group concentrations, was 9.9 μg m−3 at SIMAT, 6.6 μg m−3 at Altzomoni, and 5.7 μg m−3 on the C130. Aliphatic saturated C-C-H and carboxylic acid COOH groups dominated OM (more than 60% at the ground sites. On the C130, a non-acid carbonyl C=O, carboxylic acid COOH, and amine NH2 groups were observed in concentrations above detection limit only outside the Mexico City basin. From the elemental composition of SIMAT samples, we estimated the upper bound of average contribution of biomass burning to the organic carbon (OC as 33–39%. The average OM/OC ratio was 1.8 at SIMAT, 2.0 at Altzomoni, and 1.6–1.8 on the C130. On the aircraft, higher OM/OC ratios were measured outside of the Mexico City basin, north of the urban area, along the city outflow direction. The average carboxylic acid to aliphatic saturated ratio at SIMAT reflected a local increase of oxidized functional group concentration in aged particles.

  8. Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2009-03-01

    Full Text Available Submicron atmospheric aerosol particles were collected during the Megacity Initiative: Local and Global Research Observation (MILAGRO in March 2006 at three platforms located in the Mexico City urban area (at the Mexico City Atmospheric Monitoring System building – SIMAT, at about 60 km south-west of the metropolitan area (Altzomoni in the Cortes Pass, and on board the NSF/NCAR aircraft C130. Organic functional group and elemental composition were measured by FTIR and XRF. The average organic mass (OM concentration, calculated as the sum of organic functional group concentrations, was 9.9 μg m−3 at SIMAT, 6.6 μg m−3 at Altzomoni, and 5.7 μg m−3 on the C130. Aliphatic saturated C-C-H and carboxylic acid COOH groups dominated OM (more than 60% at the ground sites. On the C130, a non-acid carbonyl C=O, and amine NH2 groups were observed in concentrations above detection limit only outside the Mexico City basin. From the elemental composition of SIMAT samples, we estimated the upper bound of average contribution of biomass burning to the organic carbon (OC as 33–39%. The average OM/OC ratio was 1.8 at SIMAT, 2.0 at Altzomoni, and 1.6–1.8 on the C130. On the aircraft, higher OM/OC ratios were measured outside of the Mexico City basin, north of the urban area, along the city outflow direction. The average carboxylic acid plus non-acid carbonyl to aliphatic saturated ratio was higher at Altzomoni relative to SIMAT, reflecting a larger average contribution of carbonyl functional groups (largely in carboxylic acids at the mountain site.

  9. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    Science.gov (United States)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-09-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all with substantial secondary formation from the photooxidation of aromatic volatile organic compounds (VOCs), was conducted in the gas phase and particulate matter (PM) together and in PM alone. Their concentrations in the atmosphere are in the low ng m-3 range and, consequently, a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33 ‰, which is well within the range predicted by mass balance. However, the observed carbon isotope ratios cover a range of nearly 9 ‰ and approximately 20 % of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban center with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in summer, a substantial difference is observed. This

  10. Changes in the Community of Ectomycorrhizal Fungi and Increased Fine Root Number Under Adult Beech Trees Chronically Fumigated with Double Ambient Ozone Concentration

    OpenAIRE

    Grebenc, Tine; Kraigher, Hojka

    2007-01-01

    Forest soils are an important but under-studied part of forest ecosystems. The effects of O3 on below-ground processes in a mature forest have only received limited attention so far. In our study, we have analysed the community of ectomycorrhizal fungi and beech fine root dynamics over two growing seasons (2003–2004) in a 70-year old mixed spruce-beech forest stand, in which two groups of five adult beech trees were either fumigated by 2 × ambient ozone concentration or used as control. The m...

  11. Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010

    Directory of Open Access Journals (Sweden)

    S. Itahashi

    2012-03-01

    Full Text Available Anthropogenic SO2 emissions increased alongside economic development in China at a rate of 12.7% yr−1 from 2000 to 2005. However, under new Chinese government policy, SO2 emissions declined by 3.9% yr−1 between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron aerosol optical depth (AOD over the oceans adjacent to East Asia increased by 3–8% yr−1 to a peak around 2005–2006 and subsequently decreased by 2–7% yr−1, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO2 emission intensity and fine-mode AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD devices in power plants in China, because aerosol sulfate is a major determinant of the fine-mode AOD in East Asia. Using a chemical transport model, we confirmed that the contribution of particulate sulfate to the fine-mode AOD is more than 70% of the annual mean and that the abovementioned fluctuation in fine-mode AOD is caused mainly by changes in SO2 emission rather than by other factors such as varying meteorological conditions in East Asia. A strong correlation was also found between satellite-retrieved SO2 vertical column density and bottom-up SO2 emissions, both of which were also consistent with observed fine-mode AOD trends. We propose a simplified approach for evaluating changes in SO2 emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of fine-mode AOD with changes in SO2 emissions and satellite retrieval. Satellite measurements of fine-mode AOD

  12. Vertical distribution of optical and micro-physical properties of ambient aerosols during dry haze periods in Shanghai

    Science.gov (United States)

    Chen, Yonghang; Liu, Qiong; Geng, Fuhai; Zhang, Hua; Cai, Changjie; Xu, Tingting; Ma, Xiaojun; Li, Hao

    2012-04-01

    Based on the lidar data obtained from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite of NASA (National Aeronautics and Space Administration), the vertical distributions of aerosols are revealed during dry haze periods in the Shanghai vicinity by analyzing the optical and micro-physical parameters including total attenuated backscatter coefficient (TABC), volume depolarization ratio (VDR) and total attenuated color ratio (TACR). The preliminary conclusion is that when dry haze occurs in the Shanghai vicinity, smoke and maritime aerosols are the major types in summer and autumn and aerosols might be affected by long-distance transport of dust in spring; lower troposphere below 2 km is the layer polluted most severely and aerosol scattering with relatively irregular shape is much stronger than that of aerosols with relatively regular shape within 2-10 km in middle and upper troposphere; relatively large aerosols appear more frequently in lower (0-2 km) and middle troposphere (2-6 km) than those in upper troposphere (6-10 km). In addition, HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model is applied to analyze the aerosol sources during two typical episodes. The results indicate that the middle and upper troposphere in the Shanghai vicinity are affected by the long-distance transport of dusts from northwest of China or other upstream regions. The high aerosol concentrations in the Shanghai vicinity are mainly caused not only by local human activities but also by the long-distance transport from other places.

  13. The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation

    OpenAIRE

    Chang, R. Y.-W.; Slowik, J. G.; Shantz, N. C.; A. Vlasenko; Liggio, J.; Sjostedt, S. J.; Leaitch, W. R.; Abbatt, J. P. D.

    2010-01-01

    Cloud condensation nuclei (CCN) concentrations were measured at Egbert, a rural site in Ontario, Canada during the spring of 2007. The CCN concentrations were compared to values predicted from the aerosol chemical composition and size distribution using κ-Köhler theory, with the specific goal of this work being to determine the hygroscopic parameter (κ) of the oxygenated organic component of the aerosol, assuming that oxygenation drives the hygroscopicity for the entire organic fraction of th...

  14. a Study of the Origin of Atmospheric Organic Aerosols

    Science.gov (United States)

    Hildemann, Lynn Mary

    1990-01-01

    The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds. The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other. A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites studied. Emissions from vehicles and fireplaces are identified as significant sources of solvent-extractable organic aerosol. Differences between the model

  15. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Exposure to ambient fine particular matter (PM2.5) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m−3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  16. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    Directory of Open Access Journals (Sweden)

    D. A. Healy

    2014-02-01

    Full Text Available Primary biological aerosol particles (PBAP can contribute significantly to the coarse particle burden in many environments, may thus influence climate and precipitation systems as cloud nuclei, and can spread disease to humans, animals, and plants. Measurements of PBAP in natural environments taken at high time- and size- resolution are, however, sparse and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in south western Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of the waveband integrated bioaerosol sensor (WIBS-4 with the ultraviolet aerodynamic particle sizer (UV-APS and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behaviour, with increased fluorescent bioparticle concentrations at night when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each were correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.. The WIBS FL1 channel exhibited variable multi-modal distributions turning into a broad featureless single mode after averaging and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent

  17. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    Science.gov (United States)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-08-01

    Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent

  18. A new algorithm for brown and black carbon identification and organic carbon detection in fine atmospheric aerosols by a multi-wavelength Aethalometer

    Directory of Open Access Journals (Sweden)

    F. Esposito

    2012-02-01

    Full Text Available A novel approach for the analysis of aerosol absorption coefficient measurements is presented. A 7-wavelenghts aethalometer has been employed to identify brown carbon (BrC and black carbon (BC and to detect organic carbon (OC in fine atmospheric aerosols (PM2.5. The Magee Aethalometer estimates the BC content in atmospheric particulate by measuring the light attenuation in the aerosols accumulated on a quartz filter, at the standard wavelength λ = 0.88 μm. The known Magee algorithm is based on the hypothesis of a mass absorption coefficient inversely proportional to the wavelength. The new algorithm has been developed and applied to the whole spectral range; it verifies the spectral absorption behavior and, thus, it distinguishes between black and brown carbon. Moreover, it allows also to correct the absorption estimation at the UV wavelength commonly used to qualitatively detect the presence of mixed hydrocarbons. The algorithm has been applied to data collected in Agri Valley, located in Southern Italy, where torched crude oil undergoes a pre-treatment process.

    The Magee Aethalometer has been set to measure Aerosol absorption coefficients τaer (λ, t every 5 min. Wavelength dependence of τaer (λ, t has been analyzed by a best-fit technique and, excluding UV-wavelengths, both the absorption Angstrom coefficient α and the BC (or BrC concentration have been determined. Finally, daily histograms of α provide information on optical properties of carbonaceous aerosol, while the extrapolation at UV-wavelengths gives information on the presence of semivolatile organic carbon (OC particles.

  19. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Directory of Open Access Journals (Sweden)

    A. M. Ortega

    2015-08-01

    Full Text Available Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An Oxidation Flow Reactor (OFR was deployed to study SOA formation in real-time during the CalNex campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent atmospheric aging from hours up to several weeks in 3 min of processing. OH radical concentration was continuously stepped, obtaining measurements of real-time SOA formation and oxidation at multiple equivalent ages from 0.8 days–6.4 weeks. Enhancement of OA from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry, and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived VOC correlation, indicates the importance of relatively reactive (τOH ∼ 0.3 day SOA precursors in the LA-Basin. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ∼ -0.65. Oxidation state of carbon (OSC in reactor SOA increased steeply with age and remained elevated (OSC ∼ 2 at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background vs. photochemical age is similar to previous studies at low to moderate ages and also extends to higher ages where OA loss dominates. The mass added at low

  20. A brief overview of the first twenty years (1970-1989) of aerosol analysis by PIXE and ten-year study (1995-2004) of fine aerosol at Sde Boker, Israel, using PIXE

    International Nuclear Information System (INIS)

    Full text: First, a brief overview is provided of the first twenty years (1970-1989) of aerosol analysis by PIXE. PIXE and also its application to aerosol samples started with the seminal paper of Johansson et aI. [1]. The potential of PIXE for aerosol analysis was soon recognized by Tom Cahill from UC Davis and Jack Winchester from Florida State University (FSU) and accelerators that were previously dedicated to nuclear physics research were from the early 1970s on also used for this new type of application. The enthusiasm of Tom and Jack stimulated many others and researchers from several other countries, including Denmark, Sweden, Finland, Belgium, Italy, Brazil, and South Africa, started with applying PIXE to aerosol analysis. Spectrum acquisition was done with energy-dispersive Si(Li) detectors, which were introduced in the second half of the 1960s, and the spectrum analysis profited from the increasing use of minicomputers and the publication of the very timely book by Bevington [2] with ready-to-use Fortran routines. Aerosol samplers with high time and/or size resolution, such as the Nelson streaker, the PIXE Int. cascade impactor, and the Davis DRUM impactor, were developed and intensively employed. The number of papers on aerosol analysis by PIXE increased steadily over the 1970-1989 period. Moreover, PIXE became the preferred aerosol analysis technique. Over the above 20-year period, its share in the total number of publications on the elemental analysis of aerosols grew from 9% in the first 5 years to as large as 65% in the last 5 years. Secondly, results are presented from a 1 O-year study of fine aerosol at Sde Boker, Israel. From January 1995 through December 2004 aerosol samples were collected at this site with a Gent stacked filter unit sampler. The collections were done according to a 2-2-3 day schedule, which resulted in about 150 samples per year. The samples were analyzed for the particulate mass (PM) by weighing, for black carbon (BC) by a

  1. A brief overview of the first twenty years (1970-1989) of aerosol analysis by PIXE and ten-year study (1995-2004) of fine aerosol at Sde Boker, Israel, using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Maenhaut, W. [Ghent University, Dept. Analytical Chemistry, Gent (Belgium); Dept. Pharm. Sci., University of Antwerp, Antwerp (Belgium); Karnieli, A. [Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev (Israel); Andreae, M.O. [Biogeochemistry Dept., Max Planck Institute for Chemistry, Mainz (Germany)

    2013-07-01

    Full text: First, a brief overview is provided of the first twenty years (1970-1989) of aerosol analysis by PIXE. PIXE and also its application to aerosol samples started with the seminal paper of Johansson et aI. [1]. The potential of PIXE for aerosol analysis was soon recognized by Tom Cahill from UC Davis and Jack Winchester from Florida State University (FSU) and accelerators that were previously dedicated to nuclear physics research were from the early 1970s on also used for this new type of application. The enthusiasm of Tom and Jack stimulated many others and researchers from several other countries, including Denmark, Sweden, Finland, Belgium, Italy, Brazil, and South Africa, started with applying PIXE to aerosol analysis. Spectrum acquisition was done with energy-dispersive Si(Li) detectors, which were introduced in the second half of the 1960s, and the spectrum analysis profited from the increasing use of minicomputers and the publication of the very timely book by Bevington [2] with ready-to-use Fortran routines. Aerosol samplers with high time and/or size resolution, such as the Nelson streaker, the PIXE Int. cascade impactor, and the Davis DRUM impactor, were developed and intensively employed. The number of papers on aerosol analysis by PIXE increased steadily over the 1970-1989 period. Moreover, PIXE became the preferred aerosol analysis technique. Over the above 20-year period, its share in the total number of publications on the elemental analysis of aerosols grew from 9% in the first 5 years to as large as 65% in the last 5 years. Secondly, results are presented from a 1 O-year study of fine aerosol at Sde Boker, Israel. From January 1995 through December 2004 aerosol samples were collected at this site with a Gent stacked filter unit sampler. The collections were done according to a 2-2-3 day schedule, which resulted in about 150 samples per year. The samples were analyzed for the particulate mass (PM) by weighing, for black carbon (BC) by a

  2. Biological aerosol background characterization

    Science.gov (United States)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  3. The hygroscopicity parameter (κ of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation

    Directory of Open Access Journals (Sweden)

    R. Y.-W. Chang

    2010-06-01

    Full Text Available Cloud condensation nuclei (CCN concentrations were measured at Egbert, a rural site in Ontario, Canada during the spring of 2007. The CCN concentrations were compared to values predicted from the aerosol chemical composition and size distribution using κ-Köhler theory, with the specific goal of this work being to determine the hygroscopic parameter (κ of the oxygenated organic component of the aerosol, assuming that oxygenation drives the hygroscopicity for the entire organic fraction of the aerosol. The hygroscopicity of the oxygenated fraction of the organic component, as determined by an Aerodyne aerosol mass spectrometer (AMS, was characterised by two methods. First, positive matrix factorization (PMF was used to separate oxygenated and unoxygenated organic aerosol factors. By assuming that the unoxygenated factor is completely non-hygroscopic and by varying κ of the oxygenated factor so that the predicted and measured CCN concentrations are internally consistent and in good agreement, κ of the oxygenated organic factor was found to be 0.22±0.04 for the suite of measurements made during this five-week campaign. In a second, equivalent approach, we continue to assume that the unoxygenated component of the aerosol, with a mole ratio of atomic oxygen to atomic carbon (O/C ≈ 0, is completely non-hygroscopic, and we postulate a simple linear relationship between κorg and O/C. Under these assumptions, the κ of the entire organic component for bulk aerosols measured by the AMS can be parameterised as κorg=(0.29±0.05·(O/C, for the range of O/C observed in this study (0.3 to 0.6. These results are averaged over our five-week study at one location using only the AMS for composition analysis. Empirically, our measurements are consistent with κorg generally increasing with increasing particle oxygenation, but high uncertainties preclude us from testing this hypothesis. Lastly, we examine select periods of

  4. Mixing state, composition, and sources of fine aerosol particles in the Qinghai-Tibetan Plateau and the influence of agricultural biomass burning

    Science.gov (United States)

    Li, W. J.; Chen, S. R.; Xu, Y. S.; Guo, X. C.; Sun, Y. L.; Yang, X. Y.; Wang, Z. F.; Zhao, X. D.; Chen, J. M.; Wang, W. X.

    2015-09-01

    Transmission electron microscopy (TEM) was employed to obtain morphology, size, composition, and mixing state of background fine particles with diameter less than 1 μm in the Qinghai-Tibetan Plateau (QTP) during 15 September to 15 October 2013. Individual aerosol particles mainly contained secondary inorganic aerosols (SIA-sulfate and nitrate) and organics during clean periods (PM2.5: particles less than 2.5 μg m-3). The presence of KCl-NaCl associated with organics and an increase of soot particles suggest that an intense biomass burning event caused the highest PM2.5 concentrations (> 30 μg m-3) during the study. A large number fraction of the fly ash-containing particles (21.73 %) suggests that coal combustion emissions in the QTP significantly contributed to air pollutants at the median pollution level (PM2.5: 10-30 μg m-3). We concluded that emissions from biomass burning and from coal combustion both constantly contribute to anthropogenic particles in the QTP atmosphere. Based on size distributions of individual particles in different pollution levels, we found that gas condensation on existing particles is an important chemical process for the formation of SIA with organic coating. TEM observations show that refractory aerosols (e.g., soot, fly ash, and visible organic particles) likely adhere to the surface of SIA particles larger than 200 nm due to coagulation. Organic coating and soot on surface of the aged particles likely influence their hygroscopic and optical properties in the QTP, respectively. To our knowledge, this study reports the first microscopic analysis of fine particles in the background QTP air.

  5. Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet

    Science.gov (United States)

    Huang, Jie; Kang, Shichang; Shen, Chengde; Cong, Zhiyuan; Liu, Kexin; Wang, Wei; Liu, Lichao

    2010-06-01

    A total of 30 samples of total suspended particles were collected at an urban site in Lhasa, Tibet from August 2006 to July 2007 for investigating carbonaceous aerosol features. The fractions of contemporary carbon ( fc) in total carbon (TC) of ambient aerosols are presented using radiocarbon ( 14C) measurements. The value of fc represents the biogenic contribution to TC, as the biosphere releases organic compounds with the present 14C/ 12C level ( fc = 1), whereas 14C has become extinct in anthropogenic emissions of fossil carbon ( fc = 0). The fc values in Lhasa ranging from 0.357 to 0.702, are higher than Beijing and Tokyo, but clearly lower than the rural region of Launceston, which indicates a major biogenic influence in Lhasa. Seasonal variations of fc values corresponded well with variations of pollutants concentrations (e.g. NO 2). Higher fc values appeared in winter indicating carbonaceous aerosol is more dominated by wood burning and incineration of agricultural wastes within this season. The lower fc values in summer and autumn may be caused by increased diesel and petroleum emissions related to tourism in Lhasa. δ13C values ranged from - 26.40‰ to - 25.10‰, with relative higher values in spring and summer, reflecting the increment of fossil carbon emissions.

  6. Biomass burning as an important source of reactive oxygen species associated with the atmospheric aerosols in Southeastern United States - Implications for health effects of ambient particulate matter

    Science.gov (United States)

    Verma, V.; Weber, R. J. J.; Fang, T.; Xu, L.; Ng, N. L.; Russell, A. G.

    2014-12-01

    We assessed the potential of water-soluble fraction of atmospheric fine aerosols in the southeastern US to generate reactive oxygen species (ROS). ROS-generation potential of particles was quantified by the dithiothreitol (DTT) assay and involved analysis of fine particulate matter (PM) extracted from high-volume quartz filters (23 h integrated daily samples) collected for one year at various sites in different environmental settings in the southeast, including three urban Atlanta sites, and one rural site in Yorkville. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for the DTT activity. Organic aerosol (OA) composition was measured at selected sites using a High-Resolution Time-of-Flight Aerosol Mass Spectrophotometer (HR-ToF-AMS). The various factors of the organic aerosols, i.e. Isoprene OA (Isop-OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA) were also resolved, and their ability to generate ROS investigated by linear regression techniques. Among all OA factors, BBOA was most consistently associated with ROS, with the highest intrinsic DTT activity of 151±20 pmol/min/μg. The water-soluble bioavailable fraction of BBOA-DTT activity is 2-3 times higher than the reported total-DTT activity of diesel exhaust particles. The total contribution of various aerosol sources to the ROS generating potential was also determined by the positive matrix factorization approach. Interestingly, biomass burning appears as the strongest source of ROS generation, with its annual contribution of 35 % to DTT activity; the contribution was higher in winter (47 %), than summer (24 %) and fall (17 %) seasons. The good agreement between the hydrophobic DTT activity with that estimated from the summed OA components, indicates that humic-like substances (HULIS), which are abundantly emitted

  7. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: first results from the short-term winter campaign

    Science.gov (United States)

    Majewski, Grzegorz; Rogula-Kozłowska, Wioletta

    2016-07-01

    Diurnal (24-h) samples of fine particulate matter (PM2.5, ambient particles with an aerodynamic diameter not greater than 2.5 μm) and soil samples were collected in an urban area in Warsaw, in winter. The samples were analysed for 24 elements with an Epsilon 5 spectrometer (PANalytical). The results were then arranged and compared with the results of research conducted earlier in Poland and other parts of the world. Afterwards, sources of ambient PM2.5 were identified and the share of each in the concentration of PM2.5 was evaluated by means of enrichment factor (EF) analysis, principal component analysis (PCA) and multi-linear regression analysis (MLRA). The results were interpreted using a detailed analysis of correlations between diurnal concentrations of PM2.5, PM2.5-elements, and of changes in meteorological conditions. The winter average ambient concentration of PM2.5 in Warsaw, was 10.7 ± 7.5 μg/m3 and was much lower than in the other sites in Poland. In Warsaw, regardless of the concentration of PM2.5, the concentrations of certain PM2.5-bound elements, mainly toxic, were high, e.g. the average ambient concentrations of PM2.5-bound Se, As, Co, V, Cd and Ni were 12.7 ± 30.5, 10.6 ± 34.4, 9.4 ± 13.7, 15.1 ± 32.7, 9.6 ± 22.2 and 3.5 ± 5.0 ng/m3, respectively. The elemental composition and concentrations of PM2.5 appeared to be influenced mainly by the anthropogenic emissions (energy production based on coal and biomass combustion, whose mean contribution to the concentration of PM2.5 was 18.4 %, and energy production based on oil combustion with a contribution of 9.9 % in PM2.5). A mixture of soil matter and road dust was also identified in PM2.5 (8 %). The mean contribution of traffic (exhaust) emissions to the concentration of PM2.5 in an urban area, selected as representative of the Warsaw conurbation, was assessed at 15.4 %.

  8. Comparison of FIPLOC-M with FIRAC computations on aerosol release in the event 'earthquake with subsequent solvent fine'

    International Nuclear Information System (INIS)

    The event 'earthquake with subsequent solvent fire' in the low level active waste management area of the Wackersdorf reprocessing plant has been modelled by two different computer codes FIPLOC-M (GRS) and FIRAC (Los Alamos). The results have been compared and are described. The fire itself with its gas and aerosol generation rates has been simulated by the FIRIN code which is integrated in FIRAC. The results were fed identically into FIPLOC and FIRAC. FIRAC underestimated the quantity of aerosols released to the environment by about 20%. The reasons for this result have been determined and analysed. Other differences between the results and models are described too. For the simulation of transportation pathways which comprise one or more larger volumes and which are therefore not typical for the application of FIRAC the FIPLOC code gives better results concerning aerosol transport and deposition effects. Also aerosol modelling is more precise in FIPLOC (MAEROS module) than in FIRAC. On the other hand ventilation components such as filters or blowers are simulated much better in the FIRAC code. (orig./HP)

  9. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Science.gov (United States)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2016-06-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days-6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ˜ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ˜ -0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ˜ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to

  10. STROBE-Long-Term Exposure to Ambient Fine Particulate Air Pollution and Hospitalization Due to Peptic Ulcers.

    Science.gov (United States)

    Wong, Chit-Ming; Tsang, Hilda; Lai, Hak-Kan; Thach, Thuan-Quoc; Thomas, G Neil; Chan, King-Pan; Lee, Siu-Yin; Ayres, Jon G; Lam, Tai-Hing; Leung, Wai K

    2016-05-01

    Little is known about the effect of air pollution on the gastrointestinal (GI) system. We investigated the association between long-term exposures to outdoor fine particles (PM2.5) and hospitalization for peptic ulcer diseases (PUDs) in a large cohort of Hong Kong Chinese elderly.A total of 66,820 subjects aged ≥65 years who were enrolled in all 18 Government Elderly Health Service centers of Hong Kong participated in the study voluntarily between 1998 and 2001. They were prospectively followed up for more than 10 years. Annual mean exposures to PM2.5 at residence of individuals were estimated by satellite data through linkage with address details including floor level. All hospital admission records of the subjects up to December 31, 2010 were retrieved from the central database of Hospital Authority. We used Cox regression to estimate the hazard ratio (HR) for PUD hospitalization associated with PM2.5 exposure after adjustment for individual and ecological covariates.A total of 60,273 subjects had completed baseline information including medical, socio-demographic, lifestyle, and anthropometric data at recruitment. During the follow-up period, 1991 (3.3%) subjects had been hospitalized for PUD. The adjusted HR for PUD hospitalization per 10 μg/m of PM2.5 was 1.18 (95% confidence interval: 1.02-1.36, P = 0.02). Further analysis showed that the associations with PM2.5 were significant for gastric ulcers (HR 1.29; 1.09-1.53, P = 0.003) but not for duodenal ulcers (HR 0.98; 0.78 to 1.22, P = 0.81).Long-term exposures to PM2.5 were associated with PUD hospitalization in elder population. The mechanism underlying the PM2.5 in the development of gastric ulcers warrants further research. PMID:27149464

  11. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite

    Directory of Open Access Journals (Sweden)

    D. Salcedo

    2006-01-01

    Full Text Available An Aerodyne Aerosol Mass Spectrometer (AMS was deployed at the CENICA Supersite, during the Mexico City Metropolitan Area field study (MCMA-2003 from 31 March-4 May 2003 to investigate particle concentrations, sources, and processes. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1 with high time and size-resolution. In order to account for the refractory material in the aerosol, we also present estimates of Black Carbon (BC using an aethalometer and an estimate of the aerosol soil component obtained from Proton-Induced X-ray Emission Spectrometry (PIXE analysis of impactor substrates. Comparisons of AMS + BC + soil mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a PM2.5 Tapered Element Oscillating Microbalance (TEOM, and a PM2.5 DustTrak Aerosol Monitor show that the AMS + BC + soil mass concentration is consistent with the total PM2.5 mass concentration during MCMA-2003 within the combined uncertainties. In Mexico City, the organic fraction of the estimated PM2.5 at CENICA represents, on average, 54.6% (standard deviation σ=10% of the mass, with the rest consisting of inorganic compounds (mainly ammonium nitrate and sulfate/ammonium salts, BC, and soil. Inorganic compounds represent 27.5% of PM2.5 (σ=10%; BC mass concentration is about 11% (σ=4%; while soil represents about 6.9% (σ=4%. Size distributions are presented for the AMS species; they show an accumulation mode that contains mainly oxygenated organic and secondary inorganic compounds. The organic size distributions also contain a small organic particle mode that is likely indicative of fresh traffic emissions; small particle modes exist for the inorganic species as well. Evidence suggests that the organic and inorganic species are not always internally mixed, especially in the small modes. The aerosol seems to be neutralized most

  12. Benchmark study on fine-mode aerosol in a big urban area and relevant doses deposited in the human respiratory tract.

    Science.gov (United States)

    Avino, Pasquale; Protano, Carmela; Vitali, Matteo; Manigrasso, Maurizio

    2016-09-01

    It is well-known that the health effects of PM increase as particle size decreases: particularly, great concern has risen on the role of UltraFine Particles (UFPs). Starting from the knowledge that the main fraction of atmospheric aerosol in Rome is characterized by significant levels of PM2.5 (almost 75% of PM10 fraction is PM2.5), the paper is focused on submicron particles in such great urban area. The daytime/nighttime, work-/weekdays and cold/hot seasonal trends of submicron particles will be investigated and discussed along with NOx and total PAH drifts demonstrating the primary origin of UFPs from combustion processes. Furthermore, moving from these data, the total dose of submicron particles deposited in the respiratory system (i.e., head, tracheobronchial and alveolar regions in different lung lobes) has been estimated. Dosimeter estimates were performed with the Multiple-Path Particle Dosimetry model (MPPD v.2.1). The paper discusses the aerosol doses deposited in the respiratory system of individuals exposed in proximity of traffic. During traffic peak hours, about 6.6 × 10(10) particles are deposited into the respiratory system. Such dose is almost entirely made of UFPs. According to the greater dose estimated, right lung lobes are expected to be more susceptible to respiratory pathologies than left lobes. PMID:27325547

  13. Chemical composition and source of fine and nanoparticles from recent direct injection gasoline passenger cars: Effects of fuel and ambient temperature

    Science.gov (United States)

    Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi

    2016-01-01

    Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.

  14. Uptake of NO3 and N2O5 to Saharan dust, ambient urban aerosol and soot: a relative rate study

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-03-01

    Full Text Available The uptake of NO3 and N2O5 to Saharan dust, ambient aerosols and soot was investigated using a novel and simple relative rate method with simultaneous detection of both NO3 and N2O5. The use of cavity ring down spectroscopy to detect both trace gases enabled the measurements to be carried out at low mixing ratios (<500 pptv or 1×1010 molecule cm−3. The uptake coefficient ratio, γ(NO3/γ(N2O5, was determined to be 0.9±0.4 for Saharan dust, independent of relative humidity, NO3 or N2O5 mixing ratio and exposure time. Ambient (urban aerosols showed a very limited capacity to take up N2O5 but were reactive towards NO3 with γ(NO3/γ(N2O5>15. A value of γ(NO3/γ(N2O5~1.5–3 was obtained when using candle generated soot. The relative rate obtained for Saharan dust can be placed on an absolute basis using our recently determined value of γ(N2O5=1×10−2 to give γ(NO3=9×10−3, which is significantly smaller than the single previous value. With the present uptake coefficient, reaction of NO3 with mineral dust will generally not contribute significantly to its NO3 loss in the boundary atmosphere or to the nitration of mineral dust.

  15. Uptake of NO3 and N2O5 to Saharan dust, ambient urban aerosol and soot: a relative rate study

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-01-01

    Full Text Available The uptake of NO3 and N2O5 to Saharan dust, ambient aerosols and soot was investigated using a novel and simple relative rate method with simultaneous detection of both NO3 and N2O5. The use of cavity ring down spectroscopy to detect both trace gases enabled the measurements to be carried out at low mixing ratios (<500 pptv or 1×1010 molecule cm-3. The uptake coefficient ratio, γ(3/γ(N2O5, was determined to be 0.9±0.4 for Saharan dust, independent of relative humidity, NO3 or N2O5 mixing ratio and exposure time. Ambient (urban aerosols showed a very limited capacity to take up N2O5 but were reactive towards 3 with γ(NO3/γ(N2O5>15. A value of γ(NO3/γ(N2O5≈1.5–3 was obtained when using candle generated soot. The relative rate obtained for Saharan dust can be placed on an absolute basis using our recently determined value of γ(N2O5=1×10−2 to give γ(NO3=9×10-3, which is significantly smaller than the single previous value. With the present uptake coefficient, reaction of NO3 with mineral dust will generally not contribute significantly to its NO3 loss in the boundary atmosphere or to the nitration of mineral dust.

  16. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days

    Science.gov (United States)

    See, S. W.; Balasubramanian, R.; Wang, W.

    2006-05-01

    Many Southeast Asian countries have been constantly plagued by recurring smoke haze episodes as a result of traditional slash-and-burn practices in agricultural areas to clear crop lands or uncontrolled forest fires. However, our current knowledge on the physiochemical and optical properties of ambient aerosols associated with regional haze phenomenon is still fairly limited. Therefore a comprehensive field study was carried out in Singapore from March 2001 to March 2002 under varying weather conditions to gain a better understanding of the characteristics. The physical (size distribution of mass and number concentrations), chemical (mass concentrations of chemical components: 14 ions, 24 metals, elemental carbon (EC) and organic carbon (OC)), and optical (light absorption (bap) and scattering (bsp) by particles) characteristics of ambient aerosol particles were investigated. The results are reported separately for clear and hazy days by categorizing the days as clear or hazy on the basis of visibility data. It was observed that the average concentrations of PM2.5 and most chemical components increased approximately by a factor of 2 on hazy days. Backward air trajectories together with the hot spot distributions in the region indicated that the degradation in Singapore's air quality on hazy days was attributable to large-scale forest fires in Sumatra. This visibility degradation was quantitatively measured on the basis of the light absorption and scattering by particles. As expected, scattering rather than absorption controlled atmospheric visibility, and PM2.5 particles present on hazy days were more efficient at scattering light than those found on clear days.

  17. Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa

    Science.gov (United States)

    Zhu, C.; Kawamura, K.; Kunwar, B.

    2015-02-01

    Biomass burning (BB) largely modifies the chemical composition of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, on subtropical Okinawa Island, from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of levoglucosan and mannosan with winter maxima and summer minima. Positive correlation was found between levoglucosan and nss-K+ (r = 0.38, p agricultural waste burning of maize straw in the North China Plain. Anhydrosugars comprised 0.22% of water-soluble organic carbon (WSOC) and 0.13% of organic carbon (OC). The highest values to WSOC (0.37%) and OC (0.25%) were found in winter, again indicating an important BB contribution to Okinawa aerosols in winter. This study provides useful information to better understand the effect of East Asian biomass burning on the air quality in the western North Pacific Rim.

  18. Situación actual en España de los aerosoles insecticidas registrados en sanidad ambiental para uso doméstico

    Directory of Open Access Journals (Sweden)

    Moreno Marí Josefa

    2003-01-01

    Full Text Available Fundamentos: La reciente transposición de la Directiva de Biocidas a través del Real Decreto 1.054/2002 conllevará un cambio sustancial en distintos aspectos de la Sanidad Ambiental. Para evaluar la incidencia de estos cambios se presenta un análisis de la situación actual, a partir del cual se podrán valorar adecuadamente las consecuencias de la implantación de la Directiva en España, así como establecer los aspectos básicos que se deben analizar con vistas al establecimiento de un Registro de Biocidas acorde con dicho Real Decreto. Métodos: El análisis se ha efectuado a partir de los datos que figuran en la base de datos del Ministerio de Sanidad y Consumo sobre los insecticidas registrados para Uso Doméstico presentados como aerosol. La elección de los aerosoles se ha realizado por tratarse del tipo de formulación más numerosa y utilizada para uso doméstico. Resultados: En la formulación de estos aerosoles intervienen 25 insecticidas, 1 desinfectante y 2 sinergizantes. La mayoría de los 298 aerosoles insecticidas presentan algún piretroide en su composición, sólo o en combinación con algún otro compuesto insecticida, desinfectante y/o sinergizante. La mayoría de estos biocidas son mezcla de sustancias activas. Conclusiones: Del análisis realizado se deduce la necesidad de definir nuevos procedimientos de evaluación de la eficacia de los formulados preparados para el uso (diseño de protocolos de ensayo estandarizados, evaluación de la eficacia sobre las distintas especies plaga, efecto de la mezcla de materias activas, plazos de seguridad,..., además de los aspectos referentes a la toxicología, ecotoxicología o características físico-químicas.

  19. Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS and high time-resolved GC-MS measurements in Augsburg, Germany

    Directory of Open Access Journals (Sweden)

    M. Elsasser

    2012-02-01

    Full Text Available The impact of wood combustion on ambient aerosols was investigated in Augsburg, Germany during a winter measurement campaign of a six-week period. Special attention was paid to the high time resolution observations of wood combustion with different mass spectrometric methods. Here we present and compare the results from an Aerodyne aerosol mass spectrometer (AMS and gas chromatographic – mass spectrometric (GC-MS analysed PM1 filters on an hourly basis. This includes source apportionment of the AMS derived organic mass by using positive matrix factorisation (PMF and analysis of levoglucosan as wood combustion marker, respectively. In the measurement period nitrate and organics are the main contributors to the defined submicron particle mass with 28% and 35%, respectively. To the latter wood combustion organic aerosol (WCOA contributes 23% on average and 27% in the evening and night-time. Conclusively, wood combustion has a strong influence on the organics and overall aerosol composition. Levoglucosan accounts for 14% of WCOA mass with a higher percentage in comparison to other studies. The ratio between the mass of levoglucosan and organic carbon amounts to 0.06. This study is unique in the one-hour time resolution comparison between the wood combustion results of the AMS and the GC-MS analysed filter method at a PM1 particle size range. This comparison of the concentration courses of the PMF WCOA factor, levoglucosan estimated by the AMS data and the levoglucosan measured by GC-MS is highly correlated, and a detailed discussion on the contributors to the wood combustion marker ion at mass-to-charge ratio 60 will be given. This offers a suitable application possibility for the description of the wood combustion course by the WCOA factor and the levoglucosan concentration estimated by AMS data. However, quantitative description of the levoglucosan concentration estimated by the AMS data is difficult due to the offset of

  20. Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies

    Directory of Open Access Journals (Sweden)

    B. N. Murphy

    2012-04-01

    Full Text Available Multigenerational oxidation chemistry of atmospheric organic compounds and its effects on aerosol loadings and chemical composition is investigated by implementing the Two-Dimensional Volatility Basis Set (2-D-VBS in a Lagrangian host chemical transport model. Three model formulations were chosen to explore the complex interactions between functionalization and fragmentation processes during gas-phase oxidation of organic compounds by the hydroxyl radical. The base case model employs a conservative transformation by assuming a reduction of one order of magnitude in effective saturation concentration and an increase of oxygen content by one or two oxygen atoms per oxidation generation. A second scheme simulates functionalization in more detail using group contribution theory to estimate the effects of oxygen addition to the carbon backbone on the compound volatility. Finally, a fragmentation scheme is added to the detailed functionalization scheme to create a functionalization-fragmentation parameterization. Two condensed-phase chemistry pathways are also implemented as additional sensitivity tests to simulate (1 heterogeneous oxidation via OH uptake to the particle-phase and (2 aqueous-phase chemistry of glyoxal and methylglyoxal. The model is applied to summer and winter periods at three sites where observations of organic aerosol (OA mass and O:C were obtained during the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI campaigns. The base case model reproduces observed mass concentrations and O:C well, with fractional errors (FE lower than 55% and 25%, respectively. The detailed functionalization scheme tends to overpredict OA concentrations, especially in the summertime, and also underpredicts O:C by approximately a factor of 2. The detailed functionalization model with fragmentation agrees well with the observations for OA concentration, but still underpredicts O:C. Both heterogeneous oxidation and

  1. Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies

    Directory of Open Access Journals (Sweden)

    B. N. Murphy

    2012-11-01

    Full Text Available Multigenerational oxidation chemistry of atmospheric organic compounds and its effects on aerosol loadings and chemical composition is investigated by implementing the Two-Dimensional Volatility Basis Set (2-D-VBS in a Lagrangian host chemical transport model. Three model formulations were chosen to explore the complex interactions between functionalization and fragmentation processes during gas-phase oxidation of organic compounds by the hydroxyl radical. The base case model employs a conservative transformation by assuming a reduction of one order of magnitude in effective saturation concentration and an increase of oxygen content by one or two oxygen atoms per oxidation generation. A second scheme simulates functionalization in more detail using group contribution theory to estimate the effects of oxygen addition to the carbon backbone on the compound volatility. Finally, a fragmentation scheme is added to the detailed functionalization scheme to create a functionalization-fragmentation parameterization. Two condensed-phase chemistry pathways are also implemented as additional sensitivity tests to simulate (1 heterogeneous oxidation via OH uptake to the particle-phase and (2 aqueous-phase chemistry of glyoxal and methylglyoxal. The model is applied to summer and winter periods at three sites where observations of organic aerosol (OA mass and O:C were obtained during the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI campaigns. The base case model reproduces observed mass concentrations and O:C well, with fractional errors (FE lower than 55% and 25%, respectively. The detailed functionalization scheme tends to overpredict OA concentrations, especially in the summertime, and also underpredicts O:C by approximately a factor of 2. The detailed functionalization model with fragmentation agrees well with the observations for OA concentration, but still underpredicts O:C. Both heterogeneous oxidation and

  2. Monitoring of inorganic ions, carbonaceous matter and mass in ambient aerosol particles with online and offline methods

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2011-10-01

    Full Text Available Year-long high timeresolution measurements of major chemical components in atmospheric sub-micrometer particles were conducted at an urban background station in Finland 2006–2007. Ions were analyzed using a particle-into-liquid sampler combined with an ion chromatograph (PILS-IC, organic and elemental carbon (OC and EC by using a semicontinuos OC/EC aerosol carbon analyzer (RT-OCEC, and PM2.5 mass with a tapered element oscillating microbalance (TEOM. Long time series provides information on differences between the used measurement techniques as well as information about the diurnal and seasonal changes. Chemical mass closure was constructed by comparing the identified aerosol mass with the measured PM2.5. The sum of all components measured online (ions, particulate organic matter (POM, EC represented only 65% of the total PM2.5 mass. The difference can be explained by the difference in cutoff sizes (PM1 for online measurements, PM2.5 for total mass and by evaporation of the semivolatile/volatile components. In general, some differences in results were observed when the results of the continuous/semicontinuous instruments were compared with those of the conventional filter samplings. For non-volatile compounds, like sulfate and potassium, correlation between the filter samples and the PILS was good but greater differences were observed for the semivolatile compounds like nitrate and ammonium. For OC the results of the RT-OCEC were on average 10% larger than those of the filters. When compared to filter measurements, high resolution measurements provide important data on short pollution plumes as well as on diurnal changes. Clear seasonal and diurnal cycles were observed for nitrate and EC.

  3. Monitoring of inorganic ions, carbonaceous matter and mass in ambient aerosol particles with online and offline methods

    Science.gov (United States)

    Timonen, H.; Aurela, M.; Saarnio, K.; Frey, A.; Saarikoski, S.; Teinilä, K.; Kulmala, M.; Hillamo, R.

    2011-10-01

    Year-long high timeresolution measurements of major chemical components in atmospheric sub-micrometer particles were conducted at an urban background station in Finland 2006-2007. Ions were analyzed using a particle-into-liquid sampler combined with an ion chromatograph (PILS-IC), organic and elemental carbon (OC and EC) by using a semicontinuos OC/EC aerosol carbon analyzer (RT-OCEC), and PM2.5 mass with a tapered element oscillating microbalance (TEOM). Long time series provides information on differences between the used measurement techniques as well as information about the diurnal and seasonal changes. Chemical mass closure was constructed by comparing the identified aerosol mass with the measured PM2.5. The sum of all components measured online (ions, particulate organic matter (POM), EC) represented only 65% of the total PM2.5 mass. The difference can be explained by the difference in cutoff sizes (PM1 for online measurements, PM2.5 for total mass) and by evaporation of the semivolatile/volatile components. In general, some differences in results were observed when the results of the continuous/semicontinuous instruments were compared with those of the conventional filter samplings. For non-volatile compounds, like sulfate and potassium, correlation between the filter samples and the PILS was good but greater differences were observed for the semivolatile compounds like nitrate and ammonium. For OC the results of the RT-OCEC were on average 10% larger than those of the filters. When compared to filter measurements, high resolution measurements provide important data on short pollution plumes as well as on diurnal changes. Clear seasonal and diurnal cycles were observed for nitrate and EC.

  4. Determination of air exchange rates of rooms and deposition factors for fine particles by means of photoelectric aerosol sensors

    International Nuclear Information System (INIS)

    Indoor and outdoor concentrations or airborne fine particles from internal combustion engines have been measured over periods of 24 h with a time resolution of 10 s. With this time series, the ventilation air exchange rate of different rooms has been computed using a novel approach to the solution of the mass balance equation. A 'mixing time' parameter has been introduced in order to account for the initial non-homogeneous distribution of the pollutants in the rooms. It is demonstrated that this method can be used to determine the impact of health relevant outdoor particles on the indoor particle concentration. This yields information on the protection a building offers against pollutants entering from outdoors. (author)

  5. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013.

    Science.gov (United States)

    Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong

    2016-04-01

    Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54 %) and combustion aerosol (27 %) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33 %) and accumulation mode aerosol (37 %) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49 % during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45 %) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing. PMID:26667647

  6. High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS

    Science.gov (United States)

    Timonen, H.; Aurela, M.; Carbone, S.; Saarnio, K.; Saarikoski, S.; Mäkelä, T.; Worsnop, D. R.; Kulmala, M.; Kerminen, V.-M.; Hillamo, R.

    2010-04-01

    A particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC) to enable high time-resolution measurements of water-soluble ions and water-soluble organic carbon (WSOC) by a single sampling and analytical set-up. The new high time-resolution measurement system, the PILS-TOC-IC, was able to provide essential chemical and physical information about fast changes in composition, concentrations and likely sources of the water-soluble fraction of atmospheric aerosol. The concentrations of major water-soluble ions and WSOC were measured by the PILS-TOC-IC system from 25 April to 28 May 2009. The data of the PILS-TOC-IC setup was completed with the data from the High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) data measured from 25 April to 8 May 2009. The measured water-soluble particulate organic matter (WSPOM) concentration varied typically from 0.10 to 8.8 µg m-3 (on average 1.5 µg m-3). The WSPOM contributed on average 51% to particulate organic matter (POM) measured with the AMS. The correlation between the data of all the online measurement devices (AMS, PILS-TOC-IC, semicontinous EC/OC carbon analyzer and TEOM) was excellent. For sulfate, nitrate and ammonium the correlations between the PILS-TOC-IC and AMS were 0.93, 0.96 and 0.96, respectively. The correlation between WSPOM and POM was also strong (r=0.88). The identified sources of WSPOM were long-range transported biomass burning and secondary organic aerosol (SOA) formation. The WSPOM/POM-ratio followed the trends of the ambient daytime temperature. The temperature dependency of the WSPOM/POM-ratio suggest that in the absence of emissions from biomass burning, the SOA formation was the prevailing source for WSPOM. WSPOM produced in biomass burning was clearly correlated with carbon monoxide, confirming that biomass burning was producing primary WSPOM. In addition, elevated oxalate and potassium concentrations were measured

  7. High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2010-04-01

    Full Text Available A particle-into-liquid sampler (PILS was coupled with a total organic carbon analyzer (TOC and two ion chromatographs (IC to enable high time-resolution measurements of water-soluble ions and water-soluble organic carbon (WSOC by a single sampling and analytical set-up. The new high time-resolution measurement system, the PILS-TOC-IC, was able to provide essential chemical and physical information about fast changes in composition, concentrations and likely sources of the water-soluble fraction of atmospheric aerosol. The concentrations of major water-soluble ions and WSOC were measured by the PILS-TOC-IC system from 25 April to 28 May 2009. The data of the PILS-TOC-IC setup was completed with the data from the High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS data measured from 25 April to 8 May 2009. The measured water-soluble particulate organic matter (WSPOM concentration varied typically from 0.10 to 8.8 µg m−3 (on average 1.5 µg m−3. The WSPOM contributed on average 51% to particulate organic matter (POM measured with the AMS. The correlation between the data of all the online measurement devices (AMS, PILS-TOC-IC, semicontinous EC/OC carbon analyzer and TEOM was excellent. For sulfate, nitrate and ammonium the correlations between the PILS-TOC-IC and AMS were 0.93, 0.96 and 0.96, respectively. The correlation between WSPOM and POM was also strong (r=0.88.

    The identified sources of WSPOM were long-range transported biomass burning and secondary organic aerosol (SOA formation. The WSPOM/POM-ratio followed the trends of the ambient daytime temperature. The temperature dependency of the WSPOM/POM-ratio suggest that in the absence of emissions from biomass burning, the SOA formation was the prevailing source for WSPOM. WSPOM produced in biomass burning was clearly correlated with carbon monoxide, confirming that biomass burning was producing primary WSPOM. In addition, elevated

  8. A one-year comprehensive chemical characterisation of fine aerosol (PM2.5) at urban, suburban and rural background sites in the region of Paris (France)

    Science.gov (United States)

    Bressi, M.; Sciare, J.; Ghersi, V.; Bonnaire, N.; Nicolas, J. B.; Petit, J.-E.; Moukhtar, S.; Rosso, A.; Mihalopoulos, N.; Féron, A.

    2013-08-01

    Studies describing the chemical composition of fine aerosol (PM2.5) in urban areas are often conducted for a few weeks only and at one sole site, giving thus a narrow view of their temporal and spatial characteristics. This paper presents a one-year (11 September 2009-10 September 2010) survey of the daily chemical composition of PM2.5 in the region of Paris, which is the second most populated "Larger Urban Zone" in Europe. Five sampling sites representative of suburban (SUB), urban (URB), northeast (NER), northwest (NWR) and south (SOR) rural backgrounds were implemented. The major chemical components of PM2.5 were determined including elemental carbon (EC), organic carbon (OC), and the major ions. OC was converted to organic matter (OM) using the chemical mass closure methodology, which leads to conversion factors of 1.95 for the SUB and URB sites, and 2.05 for the three rural ones. On average, gravimetrically determined PM2.5 annual mass concentrations are 15.2, 14.8, 12.6, 11.7 and 10.8 μg m-3 for SUB, URB, NER, NWR and SOR sites, respectively. The chemical composition of fine aerosol is very homogeneous at the five sites and is composed of OM (38-47%), nitrate (17-22%), non-sea-salt sulfate (13-16%), ammonium (10-12%), EC (4-10%), mineral dust (2-5%) and sea salt (3-4%). This chemical composition is in agreement with those reported in the literature for most European environments. On an annual scale, Paris (URB and SUB sites) exhibits its highest PM2.5 concentrations during late autumn, winter and early spring (higher than 15 μg m-3 on average, from December to April), intermediates during late spring and early autumn (between 10 and 15 μg m-3 during May, June, September, October, and November) and the lowest during summer (below 10 μg m-3 during July and August). PM levels are mostly homogeneous on a regional scale, during the whole project (e.g. for URB plotted against NER sites: slope = 1.06, r2=0.84, n=330), suggesting the importance of mid- or long

  9. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  10. Ten-year study of fine aerosol at Sde Boker, Israel, using PIXE: Time trends, seasonal variation, correlations, and source areas for anthropogenic elements

    International Nuclear Information System (INIS)

    From January 1995 through December 2004 aerosol samples were collected at Sde Boker, Israel, with a Gent stacked filter unit sampler. The collections were done according to a 2–2–3 day schedule, which resulted in about 150 samples per year. The samples were analysed for the particulate mass (PM) by weighing, for black carbon (BC) by a light reflectance technique, and for up to 46 elements by a combination of PIXE and instrumental neutron activation analysis. Here, we report on the fine (PM2) size fraction data for the PM, BC, and the following nine anthropogenic elements S, V, Ni, Cu, Zn, As, Se, Sb, and Pb, and discuss their time trends, seasonal variation, correlations, and source areas. The largest changes in the annual medians over the 10-year period were found for S, Ni, Se, Sb, and Pb, i.e., of −34%, −25%, −47%, +26%, and −40%, respectively. The seasonal variation was largest for S, with 1.6 times higher concentrations in summer than in the other three seasons. Vanadium and Ni were very highly correlated with each other (r = 0.95), pointing to a dominant common source, which is undoubtedly oil burning. Trajectory statistics, using 10-day back trajectories with arrival at 300 m above ground, were applied to assess the source areas. Sulphur originated mostly from south-eastern Europe (i.e., Turkey, Bulgaria, Romania, Ukraine, and southern Russia) and As from the south-eastern part of European Russia, whilst the source picture for Zn was rather unclear. The other six anthropogenic elements and BC seemed to originate mainly from regional sources

  11. Ten-year study of fine aerosol at Sde Boker, Israel, using PIXE: Time trends, seasonal variation, correlations, and source areas for anthropogenic elements

    Energy Technology Data Exchange (ETDEWEB)

    Maenhaut, Willy, E-mail: Willy.Maenhaut@UGent.be [Ghent University, Department of Analytical Chemistry, Krijgslaan 281, S12, BE-9000 Gent (Belgium); Department of Pharmaceutical Sciences, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1, BE-2610 Antwerp (Belgium); Karnieli, Arnon [Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus 84990 (Israel); Andreae, Meinrat O. [Biogeochemistry Department, Max Planck Institute for Chemistry, P.O. Box 3060, D-55020 Mainz (Germany)

    2014-01-01

    From January 1995 through December 2004 aerosol samples were collected at Sde Boker, Israel, with a Gent stacked filter unit sampler. The collections were done according to a 2–2–3 day schedule, which resulted in about 150 samples per year. The samples were analysed for the particulate mass (PM) by weighing, for black carbon (BC) by a light reflectance technique, and for up to 46 elements by a combination of PIXE and instrumental neutron activation analysis. Here, we report on the fine (PM2) size fraction data for the PM, BC, and the following nine anthropogenic elements S, V, Ni, Cu, Zn, As, Se, Sb, and Pb, and discuss their time trends, seasonal variation, correlations, and source areas. The largest changes in the annual medians over the 10-year period were found for S, Ni, Se, Sb, and Pb, i.e., of −34%, −25%, −47%, +26%, and −40%, respectively. The seasonal variation was largest for S, with 1.6 times higher concentrations in summer than in the other three seasons. Vanadium and Ni were very highly correlated with each other (r = 0.95), pointing to a dominant common source, which is undoubtedly oil burning. Trajectory statistics, using 10-day back trajectories with arrival at 300 m above ground, were applied to assess the source areas. Sulphur originated mostly from south-eastern Europe (i.e., Turkey, Bulgaria, Romania, Ukraine, and southern Russia) and As from the south-eastern part of European Russia, whilst the source picture for Zn was rather unclear. The other six anthropogenic elements and BC seemed to originate mainly from regional sources.

  12. Online determination of levoglucosan in ambient aerosols with Particle-into-Liquid Sampler – High-Performance Anion-Exchange Chromatography – Mass Spectrometry (PILS–HPAEC–MS

    Directory of Open Access Journals (Sweden)

    K. Saarnio

    2013-06-01

    Full Text Available Biomass burning, such as domestic heating, agricultural, and wild open-land fires, has a significant influence on the atmosphere at the global and, especially, at the local scale. Levoglucosan has been shown to be a good tracer for biomass burning emissions in atmospheric particulate matter and several analytical techniques have been presented for the determination of levoglucosan from filter samples. In this paper, a novel combination of a Particle-into-Liquid Sampler (PILS to a high-performance anion-exchange chromatograph (HPAEC with the detection by a mass spectrometer (MS is presented for the online analysis of levoglucosan in ambient particles. The PILS–HPAEC–MS technique enables a fast online analysis of levoglucosan from the particulate samples. The method was tested at an urban background station in Helsinki, Finland, in winter 2011. A comparison with simultaneous levoglucosan measurements from filter samples by the HPAEC–MS was performed and it showed a good agreement between the online and offline methods. Additionally, the online levoglucosan data were compared with the biomass burning tracer fragments measured by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS. As there were no local biomass burning sources close to the measurement station, online levoglucosan measurements revealed that most of the particles from biomass burning were either regionally distributed or long-range transported in the urban background of Helsinki. The average levoglucosan concentrations were relatively low (average 0.083 μg m−3 during the measurement campaign. The highest concentration peak measured for levoglucosan (1.4 μg m−3 seemed to originate from biomass burning in Eastern Europe, likely in Estonia, that was transported to Helsinki.

  13. Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler – high-performance anion-exchange chromatography – mass spectrometry (PILS–HPAEC–MS

    Directory of Open Access Journals (Sweden)

    K. Saarnio

    2013-10-01

    Full Text Available Biomass burning, such as domestic heating, agricultural, and wild open-land fires, has a significant influence on the atmosphere at the global and, especially, at the local scale. Levoglucosan has been shown to be a good tracer for biomass burning emissions in atmospheric particulate matter, and several analytical techniques have been presented for the determination of levoglucosan from filter samples. In this paper, a novel combination of a particle-into-liquid sampler (PILS to a high-performance anion-exchange chromatograph (HPAEC with the detection by a mass spectrometer (MS is presented for the online analysis of levoglucosan in ambient particles. The PILS–HPAEC–MS technique enables a fast online analysis of levoglucosan from the particulate samples. The method was tested at an urban background station in Helsinki, Finland, in winter 2011. A comparison with simultaneous levoglucosan measurements from filter samples by the HPAEC–MS was performed and it showed a good agreement between the online and offline methods. Additionally, the online levoglucosan data were compared with the biomass burning tracer fragments measured by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS. As there were no local biomass burning sources close to the measurement station, online levoglucosan measurements revealed that most of the particles from biomass burning were either regionally distributed or long-range transported in the urban background of Helsinki. The average levoglucosan concentrations were relatively low (average 0.083 μg m−3 during the measurement campaign. The highest concentration peak measured for levoglucosan (1.4 μg m−3 seemed to originate from biomass burning in the Baltic countries, likely in Estonia, that was transported to Helsinki.

  14. Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler - high-performance anion-exchange chromatography - mass spectrometry (PILS-HPAEC-MS)

    Science.gov (United States)

    Saarnio, K.; Teinilä, K.; Saarikoski, S.; Carbone, S.; Gilardoni, S.; Timonen, H.; Aurela, M.; Hillamo, R.

    2013-10-01

    Biomass burning, such as domestic heating, agricultural, and wild open-land fires, has a significant influence on the atmosphere at the global and, especially, at the local scale. Levoglucosan has been shown to be a good tracer for biomass burning emissions in atmospheric particulate matter, and several analytical techniques have been presented for the determination of levoglucosan from filter samples. In this paper, a novel combination of a particle-into-liquid sampler (PILS) to a high-performance anion-exchange chromatograph (HPAEC) with the detection by a mass spectrometer (MS) is presented for the online analysis of levoglucosan in ambient particles. The PILS-HPAEC-MS technique enables a fast online analysis of levoglucosan from the particulate samples. The method was tested at an urban background station in Helsinki, Finland, in winter 2011. A comparison with simultaneous levoglucosan measurements from filter samples by the HPAEC-MS was performed and it showed a good agreement between the online and offline methods. Additionally, the online levoglucosan data were compared with the biomass burning tracer fragments measured by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). As there were no local biomass burning sources close to the measurement station, online levoglucosan measurements revealed that most of the particles from biomass burning were either regionally distributed or long-range transported in the urban background of Helsinki. The average levoglucosan concentrations were relatively low (average 0.083 μg m-3) during the measurement campaign. The highest concentration peak measured for levoglucosan (1.4 μg m-3) seemed to originate from biomass burning in the Baltic countries, likely in Estonia, that was transported to Helsinki.

  15. Emission factors of fine particles, carbonaceous aerosols and traces gases from road vehicles: Recent tests in an urban tunnel in the Pearl River Delta, China

    Science.gov (United States)

    Zhang, Yanli; Wang, Xinming; Li, Guanghui; Yang, Weiqiang; Huang, Zhonghui; Zhang, Zhou; Huang, Xinyu; Deng, Wei; Liu, Tengyu; Huang, Zuzhao; Zhang, Zhanyi

    2015-12-01

    Motor vehicles contribute primarily and secondarily to air quality problems due to fine particle (PM2.5) and ozone (O3) pollution in China's megacities. Characterizing vehicle emission with the rapid change of vehicle numbers and fleet compositions is vital for both bottom-up emission survey and top-down source apportioning. To obtain emission factors (EFs) of PM2.5, carbonaceous aerosols and trace gases for road vehicles, in urban Guangzhou we conducted a field campaign in 2014 in the Zhujiang Tunnel, a heavily burdened tunnel with about 40,000 motor vehicles passing through each of its two separated bores per day. PM2.5 and volatile organic compounds (VOCs) were sampled for offline analysis while trace gases including SO2, NOx and CO were measured online and in situ. An eddy covariance system with an integrated 3-D sonic anemometer was also adopted to measure CO2 and winds inside the tunnel. We recorded an average fleet composition of 61% light-duty gasoline vehicles (LDVs) + 12% heavy-duty diesel vehicles (HDVs) + 27% liquefied petroleum gas vehicles (LPGVs), and EFs of 82.7 ± 28.3, 19.3 ± 4.7 and 13.3 ± 3.3 mg veh-1 km-1, respectively, for PM2.5, organic carbon (OC) and elemental carbon (EC). These EFs were respectively 23.4%, 18.3% and 72.3% lower when compared to that measured in the same tunnel in 2004. EFs of PM2.5, OC and EC were higher at night time (148 ± 126, 29 ± 24 and 21 ± 18 mg veh-1 km-1, respectively) due to significantly elevated fractions of HDVs in the traffic fleets. An average ratio of OC to EC 1.45 from this tunnel study was much higher than that of ∼0.5 in previous tunnel studies. The EFs of SO2, NOx, CO, CO2 and NMHCs for road traffic were also obtained from our tunnel tests, and they were 20.7 ± 2.9, (1.29 ± 0.2)E+03, (3.10 ± 0.68)E+03, (3.90 ± 0.49)E+05, and 448 ± 39 mg veh-1 km-1, respectively.

  16. Aerosol from Organic Nitrogen in the Southeast United States

    Science.gov (United States)

    Biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosol in the southeastern United States. During the Southern Oxidant and Aerosol Study (SOAS), a portion of ambient organic aerosol was attributed to isoprene oxidation and organic nitrogen from BVO...

  17. Determination of OM/OC ratios and specific attenuation coefficients (SAC in ambient fine PM at a rural site in southern Ontario: implications for emission sources, particle aging, and radiative forcing

    Directory of Open Access Journals (Sweden)

    T. W. Chan

    2009-07-01

    Full Text Available Ambient particulate matter (PM samples were collected on quartz filters at a rural site in southern Ontario during intensive studies in 2005 and 2007. The concentrations of organic carbon (OC, pyrolysis organic carbon (POC, and elemental carbon (EC were determined by thermal analysis. These results were compared to the organic aerosol mass concentration (OM measured by an Aerodyne Aerosol Mass Spectrometer (AMS and to the particle absorption coefficient (b_asp obtained from a Radiance Research Particle Soot Absorption Photometer (PSAP. The total organic mass to organic carbon ratios (OM/OC and specific attenuation coefficients (SAC were also derived. According to the results, the POC mass is proportional to the approximated oxygen mass in the aerosols and OM/OC ratios can be estimated directly from thermal measurements. The study also suggests that the air masses from the south, with relatively low OC/EC ratios, high EC, sulphate contents and OM/OC ratios, were originated from urban and industrial emissions and subsequently experienced photo-oxidations in the atmosphere, implying that the oxygenated organics could come from both primary and secondary sources. Whereas the air masses from the north, with relatively high OC/EC ratios, low EC, sulphate contents and OM/OC ratios, were dominant by the background clean air with relatively larger contributions from biogenic emissions.

    The mean SAC derived from the 2005 and 2007 studies are 4.9 m2 g−1 and 3.8 m2 g−1, respectively. When POC mass approaching zero (i.e. the impact of atmospheric aging is minimized, the SAC for primary emitted soot is estimated to be 5.8 m2 g−1 and 6.3 m2 g−1 for the northern and southern air masses, respectively, supported by the corresponding values when particulate sulphate concentration approaches zero. A decreasing trend in the SAC value with atmospheric aging

  18. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles

    OpenAIRE

    Arangio, Andrea M.; Tong, Haijie; Socorro, Joanna; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Fine particulate matter plays a central role in adverse health effects of air pollution. Inhalation and deposition of aerosol particles in the respiratory tract can lead to the release of reactive oxygen species (ROS), which may cause oxidative stress. In this study, we have detected and quantified a wide range of particle-associated radicals using electron paramagnetic resonance (EPR) spectroscopy. Ambient particle samples were collected using a cascade impactor at a semi-urban site in centr...

  19. Relationship between the Particulate Matter Concentrations in the Indoor and Ambient Air of the Tehran Children Hospital in 2007

    OpenAIRE

    Soheila Rezaei; Kazem Naddafi; Hossain Jabbari; Masoud Yonesian; Arsalan Jamshidi; Abdolmohamad Sadat; Alireza Raygan Shirazinejad

    2013-01-01

    Background and Objectives: In recent years exposure to fine airborne particles has been identified as an important factor affecting human health. Epidemiological studies have showed that the aerosol laden air can be an agent for microorganisms’ dispersion. Ignoring internal sources, ambient air quality significantly affects indoor air quality. Since people spend most of their times in the indoor spaces and little data are available on the general understanding of the indoor air quality, the...

  20. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases.

    OpenAIRE

    Burnett, R.T.; Cakmak, S; Brook, J. R.; Krewski, D

    1997-01-01

    In order to address the role that the ambient air pollution mix, comprised of gaseous pollutants and various physical and chemical measures of particulate matter, plays in exacerbating cardiorespiratory disease, daily measures of fine and coarse particulate mass, aerosol chemistry (sulfates and acidity), and gaseous pollution (ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) were collected in Toronto, Ontario, Canada, in the summers of 1992, 1993, and 1994. These time series were...

  1. Contrasting online MSn spectra of organic acids in ambient aerosol from the boreal forest at Hyytiälä, Finland and from the mixed forest at the Taunus observatory, Germany

    Science.gov (United States)

    Vogel, Alexander L.; Äijälä, Mikko; Ehn, Mikael; Junninen, Heikki; Petäjä, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Williams, Jonathan; Schneider, Johannes; Hoffmann, Thorsten

    2013-04-01

    Emission of biogenic volatile organic compounds (BVOCs) by the vegetation and subsequent atmospheric oxidation leads to the formation of secondary organic aerosol (SOA). Therefore, forests are a main source of aerosols which have significant impact on the earth's climate.[1] The oxidation of BVOCs results in a variety of mostly unidentified organic species in trace level concentrations, which partition between gas- and particle-phase. Organic acids are of particular importance for the particle-phase fraction, since the higher oxidation state and molecular mass, compared to the corresponding precursors, is accompanied by a much lower volatility. Until now, only limited instrumentation exists for the simultaneous online analysis of organic acids in gas- and particle-phase. Here we show the first field application of an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI-IT-MS) in combination with a miniature Versatile Aerosol Concentration Enrichment System (mVACES) for measuring organic acids in gas- and particle-phase[2]. The benefits of the online APCI-IT-MS are soft ionization with low fragmentation, high time resolution and less sampling artifacts than in the common procedure of taking filter samples, extraction and subsequent detection with LC-MS. Furthermore, the capability to perform online MSn of isolated m/z ratios from ambient and laboratory generated aerosol leads to an improved understanding of the composition of secondary organic aerosol. The here described measurements were conducted during the HUMPPA-COPEC 2010 campaign at Hyytiälä, Finland and during the INUIT campaign 2012 on Mt. Kleiner Feldberg, Germany. By merging APCI-IT-MS data with data from the Aerodyné C-ToF-AMS, it can be observed that the gas- to particle-partitioning of organic acids strongly depends on the fraction of aerosol which is organic matter, as it is predicted by a partitioning model[3]. High observed gas-phase concentrations of organic acids at Hyyti

  2. Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants

    Science.gov (United States)

    Kunwar, Bhagawati; Kawamura, Kimitaka; Zhu, Chunmao

    2016-04-01

    Stable carbon (δ13C) and nitrogen (δ15N) isotope ratios were measured for total carbon (TC) and nitrogen (TN), respectively, in aerosol (TSP) samples collected at Cape Hedo, Okinawa, an outflow region of Asian pollutants, during 2009-2010. The averaged δ13C and δ15N ratios are -22.2‰ and +12.5‰, respectively. The δ13C values are similar in both spring (-22.5‰) and winter (-22.5‰), suggesting the similar sources and/or source regions. We found that δ13C from Okinawa aerosols are ca. 2‰ higher than those reported from Chinese megacities probably due to photochemical aging of organic aerosols. A strong correlation (r = 0.81) was found between nss-Ca and TSP, suggesting that springtime aerosols are influenced from Asian dusts. However, carbonates in the Asian dusts were titrated with acidic species such as sulfuric acid and oxalic acid during atmospheric transport although two samples suggested the presence of remaining carbonate. No correlations were found between δ13C and tracer compounds (levoglucosan, elemental carbon, oxalic acid, and Na+). During winter and spring, coal burning is significant source in China. Based on isotopic mass balance, contribution of coal burning origin particles to total aerosol carbon was estimated as ca. 97% in winter, which is probably associated with the high emissions in China. Contribution of NO3- to TN was on average 45% whereas that of NH4+ was 18%. These results suggest that vehicular exhaust is an important source of TN in Okinawa aerosols. Concentration of water-soluble organic nitrogen (WSON) is higher in summer, suggesting that WSON is more emitted from the ocean in warmer season whereas inorganic nitrogen is more emitted in winter and spring from pollution sources in the Asian continent.

  3. Relationship between Ambient Fine Particles and Ventricular Repolarization Changes and Heart Rate Variability of Elderly People with Heart Disease in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    XU Mei Mei; JIA Yu Ping; LI Guo Xing; LIU Li Qun; MO Yun Zheng; JIN Xiao Bin; PAN Xiao Chuan

    2013-01-01

    Objective To explore the effects of particulate matters less than 2.5 μm in aerodynamic diameter (PM2.5) on heart repolarization/depolarization and heart rate variability (HRV). Methods We conducted a panel study for elderly subjects with heart disease in Beijing from 2007 to 2008. PM2.5 was measured at a fixed station for 20 h continuously each day while electrocardiogram (ECG) indexes of 42 subjects were also recorded repeatedly. Meteorological data was obtained from the China Meteorological Data Sharing Service System. A mixed linear regression model was used to estimate the associations between PM2.5 and the ECG indexes. The model was adjusted for age, body mass index, sex, day of the week and meteorology. Results Significant adverse effects of PM2.5 on ECG indexes reflecting HRV were observed statistically and the strongest effect of PM2.5 on HRV was on lag 1 day in our study. However, there were no associations between PM2.5 and ECG indexes reflecting heart repolarization/depolarization. Additionally, the effects of PM2.5 on subjects with hypertension were larger than on the subjects without hypertension. Conclusion This study showed ambient PM2.5 could affect cardiac autonomic function of the elderly people with heart disease, and subjects with hypertension appeared to be more susceptive to the autonomic dysfunction induced by PM2.5.

  4. Ambient Fine Particulate Matter Exposure and Myocardial Ischemia in the Environmental Epidemiology of Arrhythmogenesis in the Women’s Health Initiative (EEAWHI) Study

    Science.gov (United States)

    Zhang, Zhu-ming; Whitsel, Eric A.; Quibrera, P. Miguel; Smith, Richard L.; Liao, Duanping; Anderson, Garnet L.; Prineas, Ronald J.

    2009-01-01

    Background Ambient particulate matter (PM) air pollution is associated with coronary heart disease, but the pathways underlying the association remain to be elucidated. Methods We studied the association between PM and ischemia among 57,908 Women’s Health Initiative clinical trial participants from 1999–2003. We used the Minnesota Code criteria to identify ST-segment and T-wave abnormalities, and estimated T amplitude (microvolt) from resting, standard 12-lead electrocardiogram (ECG). We used U.S. Environmental Protection Agency’s monitor data to estimate concentrations of PM < 2.5 μm (PM2.5) at geocoded participant addresses over 6 days before the ECGs (lag0 through lag5). We excluded 2,379 women with ECG QRS duration ≥ 120 msec. Results Overall, 6% of the remaining 55,529 women (52–90 years of age; 83% non-Hispanic white) had ST abnormalities and 16% had T abnormalities. Lead-specific T amplitude was normally distributed (range of means from −14 to 349 μV). PM2.5 (mean ± SD) averaged over lag0–2 was 14 ± 7 μg/m3. In logistic and linear regression models adjusted for demographic, clinical, temporal, and climatic factors, a 10-μg/m3 increase in lag0–2 PM2.5 was associated with a 4% [95% confidence interval (CI), −3%, to 10%] increase in the odds of ST abnormality and a 5% (95% CI, 0% to 9%) increase in the odds of T abnormality. We observed corresponding decreases in T amplitude in all exam sites and leads except lead V1, reaching a minimum of −2 μV (95% CI, −5 to 0 μV) in lead V3. Conclusions Short-term PM2.5 exposure is associated with ECG evidence of myocardial ischemia among postmenopausal women. The principal manifestations include subclinical but potentially arrhythmogenic ST–T abnormalities and decreases in T amplitude. PMID:19479017

  5. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    Science.gov (United States)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  6. First measurements of ambient aerosol over an ecologically sensitive zone in Central India: Relationships between PM2.5 mass, its optical properties, and meteorology.

    Science.gov (United States)

    Sunder Raman, Ramya; Kumar, Samresh

    2016-04-15

    PM2.5 mass and its optical properties were measured over an ecologically sensitive zone in Central India between January and December, 2012. Meteorological parameters including temperature, relative humidity, wind speed, wind direction, and barometric pressure were also monitored. During the study period, the PM2.5 (fine PM) concentration ranged between 3.2μgm(-3) and 193.9μgm(-3) with a median concentration of 31.4μgm(-3). The attenuation coefficients, βATN at 370nm, 550nm, and 880nm had median values of 104.5Mm(-1), 79.2Mm(-1), and 59.8Mm(-1), respectively. Further, the dry scattering coefficient, βSCAT at 550nm had a median value of 17.1Mm(-1) while the absorption coefficient βABS at 550nm had a median value of 61.2Mm(-1). The relationship between fine PM mass and attenuation coefficients showed pronounced seasonality. Scattering, absorption, and attenuation coefficient at different wavelengths were all well correlated with fine PM mass only during the post-monsoon season (October, November, and December). The highest correlation (r(2)=0.81) was between fine PM mass and βSCAT at 550nm during post-monsoon season. During this season, the mass scattering efficiency (σSCAT) was 1.44m(2)g(-1). Thus, monitoring optical properties all year round, as a surrogate for fine PM mass was found unsuitable for the study location. In order to assess the relationships between fine PM mass and its optical properties and meteorological parameters, multiple linear regression (MLR) models were fitted for each season, with fine PM mass as the dependent variable. Such a model fitted for the post-monsoon season explained over 88% of the variability in fine PM mass. However, the MLR models were able to explain only 31 and 32% of the variability in fine PM during pre-monsoon (March, April, and May) and monsoon (June, July, August, and September) seasons, respectively. During the winter (January and February) season, the MLR model explained 54% of the PM2.5 variability. PMID

  7. Identification of source contributions to visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park. Interim final report

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A.; Hallock, K.A.; Leach, M. [Brookhaven National Lab., Upton, NY (United States); Mason-Jones, M.; Mason-Jones, H.; Salmon, L.G.; Winner, D.A.; Cass, G.R. [California Inst. of Tech., Pasadena, CA (United States). Dept. of Environmental Engineering Science

    1993-06-01

    Sulfates and carbonaceous aerosols are the largest contributors to the fine particle burden in the atmosphere near Grand Canyon National Park. While the effects of sulfate particles on visibility at the Grand Canyon has been extensively studied, much less is known about the nature and origin of the carbonaceous aerosols that are present. This disparity in understanding arises from at least two causes: aerosol carbon data for the region are less plentiful and many of the sources that could contribute to that organic aerosol are both diverse and not well characterized. The objective of this present study is to examine the origin of the carbonaceous aerosol at Grand Canyon National Park during the summer season based on molecular tracer techniques applied to source and ambient samples collected specifically for this purpose.

  8. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry – Part I: quantification, shape-related collection efficiency, and comparison with collocated instruments

    Directory of Open Access Journals (Sweden)

    D. Salcedo

    2005-06-01

    Full Text Available An Aerodyne Aerosol Mass Spectrometer (AMS was deployed at the CENICA Supersite, while another was deployed in the Aerodyne Mobile Laboratory (AML during the Mexico City Metropolitan Area field study (MCMA-2003 from 31 March–4 May 2003 to investigate particle concentrations, sources, and processes. This is the first of a series of papers reporting the AMS results from this campaign. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1 with high time and size-resolution. For the first time, we report field results from a beam width probe, which was used to study the shape and mixing state of the particles and to quantify potential losses of irregular particles due to beam broadening inside the AMS. Data from this probe show that no significant amount of irregular particles was lost due to excessive beam broadening. A comparison of the CENICA and AML AMSs measurements is presented, being the first published intercomparison between two quadrupole AMSs. The speciation, and mass concentrations reported by the two AMSs compared relatively well. The differences found are likely due to the different inlets used in both instruments. In order to account for the refractory material in the aerosol, we also present measurements of Black Carbon (BC using an aethalometer and an estimate of the aerosol soil component obtained from Proton-Induced X-ray Emission Spectrometry (PIXE analysis of impactor substrates. Comparisons of AMS + BC + soil mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a Tapered Element Oscillating Microbalance (TEOM and a DustTrak Aerosol Monitor are also presented. The comparisons show that the AMS + BC + soil mass concentration during MCMA-2003 is a good approximation to the total PM2.5 mass concentration.

  9. A twelve month study of PM2.5 and PM10 fine particle aerosol composition in the Sydney region using ion beam analysis techniques. Appendix 2

    International Nuclear Information System (INIS)

    The accelerator based ion beam (IBA) analysis techniques of PIXE, PIGME, PESA, and RBS have been used to characterise fine particles at selected sites in the Sydney region. The four techniques operating simultaneously provide elemental concentrations on 24 chemical species, including H, Q N, 0, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Ni, Zn, Br and Pb. The total mass and the elemental carbon by laser integrated plate techniques were also measured. A stacked filter system, built by the University of Gent, Belgium and supplied by the IAEA was used to provide fine particle data on PM2.5 and PM10 particles. While a cyclone sampler, built at ANSTO, Lucas Heights, was used to provide data on PM2.5 particles only. The two different types of units were operated along side each other for the whole of 1994 and the results compared. The use of the multi-elemental IBA techniques also allowed for some fine particle source fingerprinting to be performed. (author)

  10. Using the Aerosol Single Scattering Albedo and Angstrom Exponent from AERONET to Determine Aerosol Origins and Mixing States over the Indo-Gangetic Plain

    Science.gov (United States)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Slutsker, I.; Smirnov, A.; Schafer, J. S.; Dickerson, R. R.; Thompson, A. M.; Tripathi, S. N.; Singh, R. P.; Ghauri, B.

    2012-12-01

    aging processes including aggregation or mixing with ambient aerosols. Other intensive aerosol properties (e.g., depolarization ratio or absorption Angstrom exponent) may provide improved definition of fine mode dominated aerosol types from U/I and BB sources [Burton et al., 2012, Giles et al., 2012]. Additional sites in India and Pakistan are also analyzed using available AERONET Version 2, Level 2.0 data.

  11. Characterization of PM2.5 particles originating from a modern waste incineration plant by factor analysis of chemical data, mass and black carbon in ambient aerosol

    DEFF Research Database (Denmark)

    Aboh, Innocent Joy Kwame; Henrikson, Dag; Laursen, Jens;

    In the city of Borås, which is a medium sized city in the south-western part of Sweden, a new modern plant for electricity and heat generation has recently been installed and optimised with respect to internal parameters of efficiency and economy. The direct emissions of gaseous pollutants which ...... bio-mass fired stoves, industrial emissions and long range transported aerosols are believed to contribute to the observed data. Oil combustion was identified as one of the major sources to Ni and V in the urban air....

  12. Theoretical Mass Size Distribution of Wet Particles Calculated from Ambient Aerosol Sampled upon Dry Conditions during Summer and Winter Campaign 2008

    Czech Academy of Sciences Publication Activity Database

    Štefancová, Lucia; Schwarz, Jaroslav; Maenhaut, W.; Smolík, Jiří

    Praha: Česká aerosolová společnost, 2008, s. 29-30. ISBN 978-80-86186-17-7. [konference České aerosolové společnosti /9./. Praha (CZ), 04.12.2008] R&D Projects: GA MŠk OC 106; GA MŠk ME 941 Institutional research plan: CEZ:AV0Z40720504 Keywords : mass size distribution * urban aerosol * cascade impactor Subject RIV: CF - Physical ; Theoretical Chemistry http://cas.icpf.cas.cz/download/Sbornik_VKCAS_2008.pdf

  13. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013

    Science.gov (United States)

    Zhang, Y.-L.; Huang, R.-J.; El Haddad, I.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Zotter, P.; Bozzetti, C.; Daellenbach, K. R.; Canonaco, F.; Slowik, J. G.; Salazar, G.; Schwikowski, M.; Schnelle-Kreis, J.; Abbaszade, G.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.; Szidat, S.

    2015-02-01

    During winter 2013, extremely high concentrations (i.e., 4-20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily

  14. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode in 2013

    Directory of Open Access Journals (Sweden)

    Y.-L. Zhang

    2014-10-01

    Full Text Available During winter 2013, extremely high concentrations (i.e. 4–20 times higher than the World Health Organization guideline of PM2.5 (particulate matter with an aerodynamic diameter 14C and biomass-burning marker measurements using Latin-hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. We found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% at all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan and water-soluble potassium (K+. With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5% and decreased from Shanghai (49 ± 2% to Xian (38 ± 3% and Guangzhou (35 ± 7%. Generally, a larger fraction of fossil OC was rather from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10% and 48 ± 9% of OC and TC, respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8%, 48 ± 18%, 53 ± 4% and 65 ± 26% of non-fossil OC for Xian, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass-burning were mainly attributed to formation of secondary organic carbon (SOC from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately with heavily polluted days according to particulate matter mass. Despite a significant increase of absolute mass concentrations of primary emissions from both, fossil and non-fossil sources, during the heavily polluted events

  15. Aerosol filtration

    International Nuclear Information System (INIS)

    This report summarizes the work on the development of fibre metallic prefilters to be placed upstream of HEPA filters for the exhaust gases of nuclear process plants. Investigations at ambient and high temperature were carried out. Measurements of the filtration performance of Bekipor porous webs and sintered mats were performed in the AFLT (aerosol filtration at low temperature) unit with a throughput of 15 m3/h. A parametric study on the influence of particle size, fibre diameter, number of layers and superficial velocity led to the optimum choice of the working parameters. Three selected filter types were then tested with polydisperse aerosols using a candle-type filter configuration or a flat-type filter configuration. The small-diameter candle type is not well suited for a spraying nozzles regeneration system so that only the flat-type filter was retained for high-temperature tests. A high-temperature test unit (AFHT) with a throughput of 8 to 10 m3/h at 4000C was used to test the three filter types with an aerosol generated by high-temperature calcination of a simulated nitric acid waste solution traced with 134Cs. The regeneration of the filter by spray washing and the effect of the regeneration on the filter performance was studied for the three filter types. The porous mats have a higher dust loading capacity than the sintered web which means that their regeneration frequency can be kept lower

  16. Sources and source processes of organic nitrogen aerosols in the atmosphere

    Science.gov (United States)

    Erupe, Mark E.

    The research in this dissertation explored the sources and chemistry of organic nitrogen aerosols in the atmosphere. Two approaches were employed: field measurements and laboratory experiments. In order to characterize atmospheric aerosol, two ambient studies were conducted in Cache Valley in Northern Utah during strong winter inversions of 2004 and 2005. The economy of this region is heavily dependent on agriculture. There is also a fast growing urban population. Urban and agricultural emissions, aided by the valley geography and meteorology, led to high concentrations of fine particles that often exceeded the national ambient air quality standards. Aerosol composition was dominated by ammonium nitrate and organic species. Mass spectra from an aerosol mass spectrometer revealed that the organic ion peaks were consistent with reduced organic nitrogen compounds, typically associated with animal husbandry practices. Although no direct source characterization studies have been undertaken in Cache Valley with an aerosol mass spectrometer, spectra from a study at a swine facility in Ames, Iowa, did not show any evidence of reduced organic nitrogen species. This, combined with temporal and diurnal characteristics of organic aerosol peaks, was a pointer that the organic nitrogen species in Cache Valley likely formed from secondary chemistry. Application of multivariate statistical analyses to the organic aerosol spectra further supported this hypothesis. To quantify organic nitrogen signals observed in ambient studies as well as understand formation chemistry, three categories of laboratory experiments were performed. These were calibration experiments, smog chamber studies, and an analytical method development. Laboratory calibration experiments using standard calibrants indicated that quantifying the signals from organic nitrogen species was dependent on whether they formed through acid-base chemistry or via secondary organic aerosol pathway. Results from smog chamber

  17. Measurements of Natural Radioactivity in Submicron Aerosols in Mexico City.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Sterling, K.; Sturchio, N. C.

    2003-12-01

    Natural radionuclides can be useful in evaluating the transport of ozone and aerosols in the troposphere. Beryllium-7, which is produced by cosmic ray interactions in the upper troposphere and lower stratosphere and becomes adsorbed on fine aerosols, can be a useful indicator of upper air transport into a region. Lead-210 is produced by the decay of radon-222 out-gassed into the lower atmosphere from ground-based uranium deposits. Potassium-40, found in soils, can act as a measure of wind-blown dust and also comes from burning of wood and other biomass that is enriched in this natural radioisotope. Thus, both lead-210 and potassium-40 can aid in identification of aerosols sourced in the lower atmosphere. As part of our continuing interest in the lifetimes and sources of aerosols and their radiative effects, we report here measurements of fine aerosol radioactivity in Mexico City, one of the largest megacities in the world. Samples were collected on quartz fiber filters by using cascade impactors (Sierra type, Anderson Instruments) and high-volume air samplers from the rooftop of the main laboratory of El Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA). By using stage 4 of the impactor and timers, we were able to collect integrated samples of sizes > 1 micrometer and < 1 micrometer over 12-hr time periods daily for approximately one month in April 2003. Samples were counted at the University of Illinois at Chicago by using state-of-the-art gamma counting (beryllium-7, 477.6 keV; potassium-40, 1460.8 keV; lead-210, 46.5 keV). The beryllium-7 data indicate one possible upper-air transport event during April 2003. As expected, the lead-210 data indicate very little soil contribution to the fine aerosol. The potassium-40 data showed an increase in fine aerosol potassium during Holy Week that might be attributed to local combustion of biomass fuels. The data will be presented and discussed in light of future data analysis and comparison with other

  18. The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in Southwestern Ontario during BAQS-Met

    Directory of Open Access Journals (Sweden)

    M. Z. Markovic

    2010-10-01

    Full Text Available The Border Air Quality and Meteorology Study (BAQS-Met was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on regional air quality in Southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM1, with a specific emphasis on nitrate. We evaluate the ability of AURAMS, the Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS onboard the National Research Council (NRC of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO3 at the ground site (observed mean (M_obs = 0.50 μg m−3; modelled mean (M_mod = 0.58 μg m−3; root mean square error (RSME = 1.27 μg m−3 was better than aloft (M_obs = 0.32 μg m−3; M_mod = 0.09 μg m−3; RSME = 0.48 μg m−3. Possible reasons for discrepancies include errors in (i emission inventories, (ii atmospheric chemistry, (iii predicted meteorological parameters, or (iv gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM1 nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH3(g + NH4+ − SO42− are responsible for the poor agreement between modelled and measured values.

  19. The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in southwestern Ontario during BAQS-Met

    Directory of Open Access Journals (Sweden)

    M. Z. Markovic

    2011-04-01

    Full Text Available The Border Air Quality and Meteorology Study (BAQS-Met was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on air quality in southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM1, with a specific emphasis on nitrate. We evaluate the ability of AURAMS, Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS onboard the National Research Council (NRC of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO3 at the ground site (observed mean (Mobs = 0.50 μg m−3; modelled mean (Mmod = 0.58 μg m−3; root mean square error (RSME = 1.27 μg m−3 was better than aloft (Mobs = 0.32 μg m−3; Mmod = 0.09 μg m−3; RSME = 0.48 μg m−3. Possible reasons for discrepancies include errors in (i emission inventories, (ii atmospheric chemistry, (iii predicted meteorological parameters, or (iv gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM1 nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH3(g + pNH4+ − 2 · pSO42- are responsible for

  20. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013

    Science.gov (United States)

    Zhang, Y.-L.; Huang, R.-J.; El Haddad, I.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Zotter, P.; Bozzetti, C.; Daellenbach, K. R.; Canonaco, F.; Slowik, J. G.; Salazar, G.; Schwikowski, M.; Schnelle-Kreis, J.; Abbaszade, G.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.; Szidat, S.

    2015-02-01

    During winter 2013, extremely high concentrations (i.e., 4-20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction

  1. Aerosols and their sources at Summit Greenland - First results of continuous size- and time-resolved sampling

    Science.gov (United States)

    VanCuren, Richard A.; Cahill, Thomas; Burkhart, John; Barnes, David; Zhao, Yongjing; Perry, Kevin; Cliff, Steven; McConnell, Joe

    2012-06-01

    An ongoing program to continuously collect time- and size-resolved aerosol samples from ambient air at Summit Station, Greenland (72.6 N, 38.5 W) is building a long-term data base to both record individual transport events and provide long-term temporal context for past and future intensive studies at the site. As a "first look" at this data set, analysis of samples collected from summer 2005 to spring 2006 demonstrates the utility of continuous sampling to characterize air masses over the ice pack, document individual aerosol transport events, and develop a long-term record. Seven source-related aerosol types were identified in this analysis: Asian dust, Saharan dust, industrial combustion, marine with combustion tracers, fresh coarse volcanic tephra, and aged volcanic plume with fine tephra and sulfate, and the well-mixed background "Arctic haze". The Saharan dust is a new discovery; the other types are consistent with those reported from previous work using snow pits and intermittent ambient air sampling during intensive study campaigns. Continuous sampling complements the fundamental characterization of Greenland aerosols developed in intensive field programs by providing a year-round record of aerosol size and composition at all temporal scales relevant to ice core analysis, ranging from individual deposition events and seasonal cycles, to a record of inter-annual variability of aerosols from both natural and anthropogenic sources.

  2. Molecular characterization of S- and N-containing organic constituents in ambient aerosols by negative ion mode high-resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    Science.gov (United States)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-01

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using negative ion mode Nanospray Desorption Electrospray Ionization High-Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day (6 h each) were collected in Bakersfield, CA on 20-24 June. Four characteristic groups were identified: molecules composed of carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen- (CHON), and both nitrogen- and sulfur-containing organics (CHONS). The chemical formula and elemental ratios were consistent with the presence of organonitrates, organosulfate, and nitroxy organosulfates in the negative ion mode mass spectra. The number of observed CHO compounds increased in the afternoon samples, suggesting photochemical processing as a source. The average number of CHOS compounds had the smallest changes during the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHONS and CHON) had greater numbers of compounds in the early morning (midnight to 6 A.M.) and night (6 P.M. to midnight) samples, respectively, consistent with nitrate radical chemistry as a likely source for those compounds. Most of the compounds were found in submicron particles. The size distribution of the number of CHON compounds was bimodal, potentially indicating two types of sources. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources. These data are complementary to previous results from positive ion mode nano-DESI/MS analysis of a subset of the same samples providing a more complete view of aerosol chemical composition at Bakersfield.

  3. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan

    Science.gov (United States)

    Stone, Elizabeth; Schauer, James; Quraishi, Tauseef A.; Mahmood, Abid

    2010-03-01

    Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM 2.5 and PM 10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM 2.5 was 194 ± 94 μg m -3 and PM 10 was 336 ± 135 μg m -3. Coarse aerosol (PM 10-2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM 2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.

  4. Estimation of selected heavy metals and arsenic in PM10 aerosols in the ambient air of the Greater Athens Area, Greece

    International Nuclear Information System (INIS)

    Aerosol samples of PM10 were collected during summer and winter 2003 at two different sites in the Messogia Basin northeast of Athens, to demonstrate the variations of heavy metals in PM10 and examine their relationship with both gaseous pollutants and meteorological parameters. Estimated heavy metals during the experimental campaign were mercury (Hg), cadmium (Cd), lead (Pb), nickel (Ni) and arsenic (As). The average heavy metal concentrations for the first site (Spata) constituted 0.66-14.7 ng/m3 for the summer period and 0.14-19.5 ng/m3 for the winter period. At the second site (Koropi), the corresponding values varied between 0.89 and 13.3 ng/m3 and 0.16 and 24.7 ng/m3, respectively. PM10 Hg, PM10 Cd and PM10 Ni contents showed regular daily variations, with higher mass percentages during the summer, indicating differences in local PM10 sources for each season. On the contrary, PM10 Pb presented higher mass percentages during the winter. Examination of the relationship between heavy metals and meteorological parameters indicated a higher correlation with temperature and relative humidity, especially for Pb. In addition, most of the heavy metals (apart from Hg) presented an expected correlation with nitrate oxides (NO x), PM10 and ozone (O3). Higher correlations with both meteorological parameters and gaseous pollutants were observed during the winter experimental campaign. Maximum heavy metal concentrations at both sites were observed during days with NE or NNE prevailing winds during the summer campaign, while the winter period was characterized with maximums during days with W or WNW prevailing winds

  5. Wintertime measurements of aerosol acidity and trace elements in Wuhan, a city in central China

    Science.gov (United States)

    Waldman, J. M.; Lioy, P. J.; Zelenka, M.; Jing, L.; Lin, Y. N.; He, Q. C.; Qian, Z. M.; Chapman, R.; Wilson, W. E.

    A 2-week intensive ambient aerosol study was conducted in December 1988 in Wuhan (Hubei Province), a city of nearly 2 million located on the Yangtze River in central China (P.R.C.). This is an industrial region where soft coal burning is widespread, and emission controls for vehicles and industrial facilities are minimal. The sampling site was located in one of the civic centers where residential and commercial density is highest. An Andersen dichotomous sampler was operated with Teflon membrane filters to collect fine ( dp mass and element determinations. An annular denuder system (ADS) was used to collect fine fraction aerosols for analyses of ionic species including strong acidity (H +). The study was conducted between 18 and 30 December, which was rainless, consistently cool (3-10°C) and overcast, but without fog or acute stagnation. Fine particulate mass (PM, as μ m -3) averaged 139 (range 54-207); coarse PM averaged 86 (range 29-179). Trace element concentrations were also high. Crustal elements (Si, Al, Ca and Fe) were found primarily in the coarse fraction, while elements associated with combustion (S, K, Cl, Zn and Se) were enriched in the fine fraction. The concentrations of arsenic and selenium were evidence of a large source of coal burning, while vanadium levels (associated with fuel oil use) were not especially enriched. Despite the seemingly high PM loadings, ionic concentrations were not especially high. The average composition of soluble fine aerosol species (in neq m -3) were SO 42-: 520 (range 180-980), NO 3-: 225 (range 50-470), Cl -: 215 (range 20-640), and NH 4+: 760 (range 280-1660). A deficit in accountable FP components (total mass compared to the total of ionic plus element masses) as well as the black appearance of collected materials indicate an abundance of carbonaceous aerosol, as high as 100 μ m -3. (total mass compared to the total of ionic plus element masses) as well as the black appearance of collected materials indicate an

  6. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...... aspect of the aesthetization of modern culture in general, from architecture, transport and urbanized lifeforms to film, sound art, installation art and digital environments. This presentation will discuss the key aspects of ambient aesthetization, including issues such as objectlessness...

  7. Apportionment of urban aerosol sources in Chongqing (China) using synergistic on-line techniques

    Science.gov (United States)

    Chen, Yang; Yang, Fumo

    2016-04-01

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Chongqing (southwestern China) have been determined. Aerosol chemical composition analyses were performed using multiple on-line techniques, such as single particle aerosol mass spectrometer (SPAMS) for single particle chemical composition, on-line elemental carbon-organic carbon analyzer (on-line OC-EC), on-line X-ray fluorescence (XRF) for elements, and in-situ Gas and Aerosol Compositions monitor (IGAC) for water-soluble ions in PM2.5. All the datasets from these techniques have been adjusted to a 1-h time resolution for receptor model input. Positive matrix factorization (PMF) has been used for resolving aerosol sources. At least six sources, including domestic coal burning, biomass burning, dust, traffic, industrial and secondary/aged factors have been resolved and interpreted. The synergistic on-line techniques were helpful for identifying aerosol sources more clearly than when only employing the results from the individual techniques. This results are useful for better understanding of aerosol sources and atmospheric processes.

  8. Apportioned contributions of PM2.5 fine aerosol particles over the Maldives (northern Indian Ocean) from local sources vs long-range transport.

    Science.gov (United States)

    Budhavant, Krishnakant; Andersson, August; Bosch, Carme; Kruså, Martin; Murthaza, Ahmed; Zahid; Gustafsson, Örjan

    2015-12-01

    Urban-like plumes of gases and particulate matter originating from the South Asian region are frequently observed over the Indian Ocean, especially during the dry winter period. However, in addition to the strong sources on mainland South Asia, there are also local Maldivian emissions. The local contributions to the load of fine particulate matter (PM2.5) in the Maldivian capital Malé was assessed using the well-established Maldives Climate Observatory at Hanimaadhoo (MCOH) to represent local background, recording the long-range transported component for a full-year synoptic campaign at both sites in 2013. The year-round levels in both Malé and MCOH are strongly influenced by the seasonality of the monsoon cycle, including precipitation patterns and air-mass transport pathways, with lower levels during the wet summer season. The annual-average PM2.5 levels in Malé are higher (avg. 19 μg/m3) than at MCOH (avg. 13 μg/m3) with the difference being the largest during the summer, when local emissions play a larger role. The 24-h World Health Organization (WHO) PM2.5 health guideline was surpassed for the weeklong collections in 71% of the cases in Malé and in 74% of the cases for Hanimaadhoo. This study shows that in the dry/winter season 90±11% of PM2.5 levels in Malé could be from long-range transport with only 8±11% from local emissions while in the wet/monsoon season the relative contributions are about equal. The concentrations of organic carbon (OC) and elemental carbon (EC) showed similar seasonal patterns as bulk mass PM2.5. The relative contribution of total carbonaceous matter to bulk mass PM2.5 was 17% in Malé and 13% at MCOH, suggesting larger contributions from incomplete combustion practices in the Malé local region. PMID:26196071

  9. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry – Part II: overview of the results at the CENICA supersite and comparison to previous studies

    Directory of Open Access Journals (Sweden)

    D. Salcedo

    2005-06-01

    Full Text Available An Aerodyne Aerosol Mass Spectrometer (AMS was deployed at the CENICA Supersite during the Mexico City Metropolitan Area field study from 31 March–4 May 2003. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1 with high time and size-resolution. Measurements of Black Carbon (BC using an aethalometer, and estimated soil concentrations from Proton-Induced X-Ray Emission (PIXE analysis of impactor substrates are also presented and combined with the AMS in order to include refractory material and estimate the total PM2.5 mass concentration at CENICA during this campaign. In Mexico City, the organic fraction of the estimated PM2.5 at CENICA represents 54.6% of the mass, with the rest consisting of inorganic compounds (mainly ammonium nitrate and sulfate/ammonium salts, BC, and soil. Inorganic compounds represent 27.5% of PM2.5; BC mass concentration is about 11%; while soil represents about 6.9%. The NR species and BC have diurnal cycles that can be qualitatively interpreted as the interplay of direct emissions, photochemical production in the atmosphere followed by condensation and gas-to-particle partitioning, boundary layer dynamics, and/or advection. Bi- and trimodal size distributions are observed for the AMS species, with a small combustion (likely traffic organic particle mode and an accumulation mode that contains mainly organic and secondary inorganic compounds. The AMS and BC mass concentrations, size distributions, and diurnal cycles are found to be qualitatively similar to those from most previous field measurements in Mexico City.

  10. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites

    Science.gov (United States)

    Reggente, Matteo; Dillner, Ann M.; Takahama, Satoshi

    2016-02-01

    Organic carbon (OC) and elemental carbon (EC) are major components of atmospheric particulate matter (PM), which has been associated with increased morbidity and mortality, climate change, and reduced visibility. Typically OC and EC concentrations are measured using thermal-optical methods such as thermal-optical reflectance (TOR) from samples collected on quartz filters. In this work, we estimate TOR OC and EC using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE Teflon) filters using partial least square regression (PLSR) calibrated to TOR OC and EC measurements for a wide range of samples. The proposed method can be integrated with analysis of routinely collected PTFE filter samples that, in addition to OC and EC concentrations, can concurrently provide information regarding the functional group composition of the organic aerosol. We have used the FT-IR absorbance spectra and TOR OC and EC concentrations collected in the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network (USA). We used 526 samples collected in 2011 at seven sites to calibrate the models, and more than 2000 samples collected in 2013 at 17 sites to test the models. Samples from six sites are present both in the calibration and test sets. The calibrations produce accurate predictions both for samples collected at the same six sites present in the calibration set (R2 = 0.97 and R2 = 0.95 for OC and EC respectively), and for samples from 9 of the 11 sites not included in the calibration set (R2 = 0.96 and R2 = 0.91 for OC and EC respectively). Samples collected at the other two sites require a different calibration model to achieve accurate predictions. We also propose a method to anticipate the prediction error; we calculate the squared Mahalanobis distance in the feature space (scores determined by PLSR) between new spectra and spectra in the calibration set. The squared Mahalanobis distance provides a crude method for assessing the

  11. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  12. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D.E.; Hopkins, A.R.; Paladino, J.D.; Whitefield, P.D. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1997-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  13. Spectral dependence of aerosol light absorption over the Amazon Basin

    Science.gov (United States)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-09-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Ångström exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70 % of the absorption Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Ångström exponents (90 % of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Ångström exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Ångström exponents on 24-h aerosol forcings, at least in the spectral

  14. Sugars in Antarctic aerosol

    Science.gov (United States)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  15. Det ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Om begrebet "det ambiente", der beskriver, hvad der sker, når vi fornemmer baggrundsmusikkens diskrete beats, betragter udsigten gennem panoramavinduet eller tager 3D-brillerne på og læner os tilbage i biografsædet. Bogen analyserer, hvorfan ambiente oplevelser skabes, og hvilke konsekvenser det...

  16. Ambient Sensors

    OpenAIRE

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under the GNU LGPL licence version 3 or higher.

  17. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under th

  18. Typical household vacuum cleaners: the collection efficiency and emissions characteristics for fine particles.

    Science.gov (United States)

    Lioy, P J; Wainman, T; Zhang, J; Goldsmith, S

    1999-02-01

    The issue of fine particle (PM2.5) exposures and their potential health effects is a focus of scientific research because of the recently promulgated National Ambient Air Quality Standard for PM2.5. Before final implementation, the health and exposure basis for the standard will be reviewed by the U.S. Environmental Protection Agency within the next five years. As part of this process, it is necessary to understand total particle exposure issues and to determine the relative importance of the origin of PM2.5 exposure in various micro-environments. The results presented in this study examine emissions of fine particles from a previously uncharacterized indoor source: the residential vacuum cleaner. Eleven standard vacuum cleaners were tested for the emission rate of fine particles by their individual motors and for their efficiency in collecting laboratory-generated fine particles. An aerosol generator was used to introduce fine potassium chloride (KCl) particles into the vacuum cleaner inlet for the collection efficiency tests. Measurements of the motor emissions, which include carbon, and the KCl aerosol were made using a continuous HIAC/Royco 5130 A light-scattering particle detector. All tests were conducted in a metal chamber specifically designed to completely contain the vacuum cleaner and operate it in a stationary position. For the tested vacuum cleaners, fine particle motor emissions ranged from 9.6 x 10(4) to 3.34 x 10(8) particles/min, which were estimated to be 0.028 to 176 micrograms/min for mass emissions, respectively. The vast majority of particles released were in the range of 0.3-0.5 micron in diameter. The lowest particle emission rate was obtained for a vacuum cleaner that had a high efficiency (HEPA) filter placed after the vacuum cleaner bag and the motor within a sealed exhaust system. This vacuum cleaner removed the KCl particles that escaped the vacuum cleaner bag and the particles emitted by the motor. Results obtained for the KCl

  19. Size-resolved trace metal characterization of aerosols emitted by four important source types in Switzerland

    Science.gov (United States)

    Buerki, Peter R.; Gaelli, Brigitte C.; Nyffeler, Urs P.

    In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined. Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D. Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.

  20. Det Ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Det ambiente er iscenesættelsen af en karakteristisk sanseoplevelse, der er kendetegnet ved fornemmelsen af at være omgivet. I dag bliver begrebet om det ambiente mest anvendt i forbindelse med musikgenren ’ambient musik’. Det ambiente er dog ikke essentielt knyttet til det musikalske, men må...... forstås som et betydeligt bredere fænomen i den moderne æstetiske kultur, der spiller en væsentlig rolle i oplevelsen af moderne transportformer, arkitektur, film, lydkunst, installationskunst og digitale multimedieiscenesættelser. En forståelse af det ambiente er derfor centralt for forståelsen af en...... moderne æstetiseret oplevelseskultur i almindelighed. Da det ambiente ikke hidtil har været gjort til genstand for en mere indgående teoretisk behandling, er der dog stor usikkerhed omkring, hvad fænomenet overhovedet indebærer. Hovedformålet med Det ambiente – Sansning, medialisering, omgivelse er derfor...

  1. La intervención del derecho penal en materia de bioseguridad: la criminalización de la actividad empresarial biotecnológica de liberación intencional en el ambiente con fines comerciales y de comercialización de productos biotech

    OpenAIRE

    Tanus Job e Meira, Bruno

    2009-01-01

    [ES] El objetivo general del presente trabajo reside en analizar el sistema de control del riesgo biotecnológico relativo a las principales actividades por las cuales se utilizan las empresas biotech en el ámbito agroalimentario, es decir, las conductas de liberación en el ambiente con fines comerciales, así como la comercialización de “organismos modificados genéticamente” (OMGs) y sus derivados. Tales actividades son consideradas como las más importantes en el ámbito mercantil y, efectivame...

  2. Ambient Gestures

    OpenAIRE

    Karam, Maria; Hare, Jonathon; Lewis, Paul; schraefel, m.c.

    2006-01-01

    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be p...

  3. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  4. DIAGNOSTICO AMBIENTAL Y VALORACIÓN DE LOS RECURSOS PARA FINES TURÍSTICOS DE LOS ECOSISTEMAS DE MANGLAR EN LA BAHÍA DE BANDERAS, MÉXICO

    OpenAIRE

    Cruz Romero Bartolo; Luis Fernando González Guevara; Carmen Navarro Rodríguez

    2013-01-01

    Mediante una “Lista de chequeo” se establece el diagnóstico ambiental de los sistemas estuarinos de la Bahía de Banderas: El Salado, Boca Negra – Boca de Tomates y El Quelele; y se identifican los principales factores de presión ambiental en cada sistema. Los elementos ambientales considerados fueron el suelo, agua, aire, flora, fauna y paisaje. Los resultados indican que el paisaje de estos sistemas, ha perdido su calidad original y las principales causas han sido el cambio de uso de suelo y...

  5. DIAGNOSTICO AMBIENTAL Y VALORACIÓN DE LOS RECURSOS PARA FINES TURÍSTICOS DE LOS ECOSISTEMAS DE MANGLAR EN LA BAHÍA DE BANDERAS, MÉXICO.

    OpenAIRE

    Cruz Romero Bartolo; Luis Fernando González Guevara; Carmen Navarro Rodríguez

    2013-01-01

    Mediante una “Lista de chequeo” se establece el diagnóstico ambiental de los sistemas estuarinos de la Bahía de Banderas: El Salado, Boca Negra – Boca de Tomates y El Quelele; y se identifican los principales factores de presión ambiental en cada sistema. Los elementos ambientales considerados fueron el suelo, agua, aire, flora, fauna y paisaje. Los resultados indican que el paisaje de estos sistemas, ha perdido su calidad original y las principales causas han sido el cambio de uso de suelo y...

  6. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China

    Institute of Scientific and Technical Information of China (English)

    Yong Tang; Yuanlong Huang; Ling Li; Hong Chen; Jianmin Chen; Xin Yang; Song Gao

    2014-01-01

    Physical and chemical properdes of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28,2009.A Cavity-Ring-Down Aerosol Extinction Spectrometer (CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties,respectively.An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS)was used to detect single particle sizes and chemical composition.Seven particle types were detected.Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25,when they started to originate from North China.The aerosol extinction,scattering,and absorption coefficients all dropped sharply when this cold,clean air arrived.Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards.The aerosol optical properties were dependent on the wind direction.Aerosols with high extinction coefficient and scattering Angstr(o)m exponent (SAE) were observed when the wind blew from the west and northwest,indicating that they were predominantly fine particles.Nitrate and ammonium correlated most strongly with the change in aerosol optical properties.In the elemental carbon/organic carbon (ECOC) particle type,the diurnal trends of single scattering albedo (SSA) and elemental carbon (EC) signal intensity had a negative correlation.We also found a negative correlation (r =-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period,suggesting that particulate aromatic components might play an important role in light absorption in urban areas.

  7. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China.

    Science.gov (United States)

    Tang, Yong; Huang, Yuanlong; Li, Ling; Chen, Hong; Chen, Jianmin; Yang, Xin; Gao, Song; Gross, Deborah S

    2014-12-01

    Physical and chemical properties of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28, 2009. A Cavity-Ring-Down Aerosol Extinction Spectrometer (CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties, respectively. An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to detect single particle sizes and chemical composition. Seven particle types were detected. Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25, when they started to originate from North China. The aerosol extinction, scattering, and absorption coefficients all dropped sharply when this cold, clean air arrived. Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards. The aerosol optical properties were dependent on the wind direction. Aerosols with high extinction coefficient and scattering Ångström exponent (SAE) were observed when the wind blew from the west and northwest, indicating that they were predominantly fine particles. Nitrate and ammonium correlated most strongly with the change in aerosol optical properties. In the elemental carbon/organic carbon (ECOC) particle type, the diurnal trends of single scattering albedo (SSA) and elemental carbon (EC) signal intensity had a negative correlation. We also found a negative correlation (r=-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period, suggesting that particulate aromatic components might play an important role in light absorption in urban areas. PMID:25499489

  8. Los Angeles Summer Midday Particulate Carbon: Primary and Secondary Aerosol

    OpenAIRE

    Turpin, Barbara J.; Huntzicker, James J.; Larson, Susan M; Cass, Glen R.

    1991-01-01

    Aerosol sampling during photochemically active times across the Los Angeles Basin has provided evidence of secondary formation of organic aerosol from gas-phase precursors at midday. Ambient organic carbon/elemental carbon ratios exceeded the estimated ratio of organic carbon/elemental carbon in primary source emissions on most sampling days at all sites. The concentration of secondary organic aerosol was calculated by using ambient data and estimates of the organic ca...

  9. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material.Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005.Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  10. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered

  11. Determination of 40K, 232Th and 238U activity concentrations in ambient PM2.5 aerosols and the associated inhalation effective dose to the public in Jeddah City, Saudi Arabia

    International Nuclear Information System (INIS)

    Natural radioactivity of soil samples has been studied in many countries of the Arabian Peninsula, including Saudi Arabia. Radiological indices based on soil radioactivity have been widely used in these studies. However, there are no available data about natural radioactivity of fine aerosol particles in such countries. The objective of this study is to determine the activity concentrations of 40K, 232Th and 238U in airborne PM2.5 and the associated internal inhalation radiation dose to the public in Jeddah City, Saudi Arabia. Twenty-four air samples in four locations throughout Jeddah were collected and analyzed for PM2.5 and the associated K, Th and U. The activity concentrations of the isotopes 40K, 232Th and 238U were calculated. High atmospheric PM2.5 concentrations (mean: 50.81 ± 34.02 μg/m3) were found. The natural radioactivity associated with PM2.5 due to the isotopes 40K, 232Th and 238U were 301.8 ± 76.1, 11.8 ± 4.2 and 10.8 ± 3.4 Bq/kg, respectively, and the Raeq was calculated as 44.9 ± 14.0 Bq/kg. The inhalation annual effective radiation dose to the public due to natural isotopes of the airborne PM2.5 was in the range 15.03–58.87 nSv/year, depending on the age group. Although these dose values were associated with the PM2.5 fraction only, they were higher than the world references values in air reported in the UNSCEAR, 2000 report. - Highlights: • High airborne PM2.5 concentrations over 4 months (24 samples) were found in Jeddah. • The mean activity concentrations of 40K, 232Th and 238U were assessed in PM2.5. • Effective inhalation dose due to 40K, 232Th and 238U was 59 nSv/year for adults. • Effective inhalation dose was higher than the world reference values in air. • Studying the inhalation dose due to other radioisotopes in PM2.5 is recommended

  12. Atmospheric aerosols parameters behavior and its association with meteorological activities variables over western Indian tropical semi-urban site i.e., Udaipur

    Science.gov (United States)

    Vyas, B. M.; Saxenna, Abhishek; Panwar, Chhagan

    2016-05-01

    The present study has been focused to the identify the role of meteorological processes on changing the monthly variation of AOD at 550nm, Angstrom Exponent Coefficient (AEC, 440/670nm) and Cloud Effective Radius (CER, μm) measured during January, 2005 to December 2013 over western Indian location i.e., Udaipur (24.6° N, 73.7° E, 560 m amsl). The monthly variation of AOD 550nm, AEC and during entire study period have shown the strong combined influence of different local surface meteorological parameters in varying amplitude with different nature. The higher values of wind speed, ambient surface temperature, planetary boundary layer, and favorable wind direction coming from desert and oceanic region (W and SW) may be recognize as some of possible factor to exhibit the higher aerosols loading of bigger aerosol size particles in pre-monsoon. These meteorological factors seem also to be plausible responsible factors for drastically reducing the cloud effective radius in pre-monsoon season. In contrary to this, in winter, lower atmospheric aerosols burden and more abundance of fine size particles along with increasing the CER sizes also seem to be influenced and governed by the adverse nature of meteorological conditions such lowering the PBL, T, WS as well as with air pollutants transportation by wind from the N and NE region, of high aerosols loading of fine size particles as anthropogenic aerosols located far away to the observing site.

  13. Retrieving global aerosol sources from satellites using inverse modeling

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2008-01-01

    Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.

    The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.

    Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful

  14. Organic aerosols

    International Nuclear Information System (INIS)

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  15. Ambient intelligence

    OpenAIRE

    Sanders, David; Gegov, Alexander

    2006-01-01

    This paper considers some history and the state of the art of Ambient Intelligence and from that seeks to identify new topics and future work. Ubiquitous computing, communications, human-centric computer interaction, embedded systems, context awareness, adaptive systems and distributed device networks are considered.

  16. Ambient intelligence

    CERN Document Server

    Weber, W; Aarts, E

    2005-01-01

    Addresses ambient intelligence used to support human contacts and accompany an individual''s path through the complicated modern world, from applications that are imminent, since they use essentially existing technologies, to ambitious ideas whose realization is still far away, due to major unsolved technical challenges.

  17. PIXE investigation of aerosol composition over the Zambian Copperbelt

    International Nuclear Information System (INIS)

    Atmospheric sulphate aerosol concentrations are of interest in climate change studies because of their negative climate forcing potential. Quantification of their forcing strength requires the compilation of global sulphur emission inventories to determine the magnitude of regional sources. We report on measurements of the ambient aerosol concentrations in proximity to a copper refinery in the central African Copperbelt, along the border of Zambia and the Democratic Republic of the Congo. This region is historically regarded as one of the largest African sources of sulphate aerosols. Sulphate is produced by oxidation in the atmosphere of SO2 emitted during the pyrometallurgical processing of Cu-Co sulphide ores. Since the last quantification of sulphur emissions (late 1960s), there has been large-scale reduction in copper production and more frequent use of the leaching technique with negligible sulphur emissions. Samples were collected over four weeks, November-December 1996, at Kitwe, Zambia. A low volume two-stage time-resolving aerosol sampler (streaker) was used. Coarse and fine mode aerosols were separated at >2.5 and >10 μmad. Hourly elemental concentrations were determined by 3.2 MeV PIXE, and routinely yielded Si, S, K, Ca, Ti, Mn, Fe, Cu and Zn, above detection limits. Si, K, Ca and Fe (major crustal components) dominated the coarse elemental mass. In the fine stage, S and Si accounted for up to 80% of the measured mass, and S alone up to 60%. Time series analysis allowed the division of sulphur and crustal elements (Si, K, Ca, Fe) between (i) background concentrations representative of synoptic scale air masses; and (ii) contributions from local sources, i.e., copper smelter and re-suspended soil dust. Short duration episodes of S concentrations, up to 26 μg/m3, were found simultaneously with enhanced Cu, Fe and Zn. Contributions from individual pyrometallurgic processes and the cobalt slag dump could be distinguished from the elemental signatures

  18. Marine aerosols

    OpenAIRE

    Saltzman, Es

    2009-01-01

    The aerosol over the world oceans plays an important role in determining the physical and chemical characteristics of the Earth's atmosphere and its interactions with the climate system. The oceans contribute to the aerosols in the overlying atmosphere by the production and emission of aerosol particles and precursor gases. The marine aerosol, in turn, influences the biogeochemistry of the surface ocean through long distance transport and deposition of terrestrial and marine-derived nutrients...

  19. The effects of aerosols on climate

    International Nuclear Information System (INIS)

    Atmospheric aerosols (fine particles suspended in the atmosphere) can play two roles in the Earth’s radiation budget. In cloud-free air, aerosols scatter sunlight, some of which is reflected back to space (direct effect). Aerosols also determine the microphysical and optical properties of clouds (indirect effect). Whereas changes in natural aerosols are probably small during the last 100 years, there has been a large increase in the concentration of anthropogenic aerosols. The magnitude of their radiative effects is still very uncertain but seems to be sufficient to mask part of the global warming expected to stem from anthropogenic greenhouse gases. This paper presents the physical mechanisms of aerosol influence on climate. We then estimate the anthropogenic aerosol radiative effects and assess the climate response to these perturbations. (author)

  20. Development of a New Calibration Method for an Ambient Ion Monitor Ion Chromatograph (AIM-IC)

    Science.gov (United States)

    Markovic, M.; Vandenboer, T.; Murphy, J. G.

    2009-05-01

    Fine atmospheric aerosols play an important role in the atmosphere as they alter the radiative balance of the Earth through direct and indirect climate effects, reduce visibility, participate in acid rain formation and affect human health. The motivation for chemically and temporally resolved measurements of fine aerosol composition has lead to the development of the Ambient Ion Monitor Ion Chromatograph (AIM-IC) system by Dionex/URG. This instrument is capable of simultaneously monitoring fine aerosols (organic acids and amines. Standard calibration of the AIM-IC is carried out by injecting a series of mixed standards directly onto the ion chromatographs, bypassing the sampling component of the instrument. This results in calculated detection limits on the order of 10-200 pptv for gases and 10-500 of ng/m3 for individual particle constituents when collecting at 3 L/min for 55 minutes. In this work, we present a new method for the calibration of the AIM-IC for both gas and particle collection that enables us to evaluate the entire system from size-selection to detection. This external calibration method is assessed for the gases HNO3(g), SO2(g), and NH3(g), and for particles containing (NH4)2SO4, NH4NO3, and Na2SO4. Quantitative collection of SO2 is found to require careful optimization of the H2O2 concentration of the denuder liquid, while the replacement of a cyclone with an impactor improves the sampling efficiency of NH3 and HNO3.

  1. The fifth Finnish national aerosol symposium

    International Nuclear Information System (INIS)

    The Fifth Finnish Aerosol Symposium was held June 1-3, 1993. Symposium is jointly organized by FAAR, Aerosol Technology Group of Technical Research Centre of Finland and Helsinki University, Department of Physics. Aerosols, the suspensions of solid and liquid particles and gases, are receiving increasing importance in many areas of science and technology. These include industrial hygiene, ambient and indoor air pollution, pollution control technologies, cloud physics, nuclear safety engineering, combustion science and engineering, clean manufacturing technologies and material processing. The importance of aerosol issues during the development of advanced fuel conversion and material processing technologies can be realized when looking at the numerous papers presented on these topics at the Symposium

  2. Toxicity of Ambient Particulate Matter IV: Acute toxicity study in pulmonary hypertensive rats after exposure to model compounds for the secondary aerosol fraction of PM10 - ammonium bisulfate, ferrosulfate and nitrate

    NARCIS (Netherlands)

    Cassee FR; Boere AJF; Fokkens PHB; Dormans JAMA; Bree L van; Rombout PJA; LEO; LPI

    1999-01-01

    This (4th) report on the toxicity of ambient particulate matter (PM) presents effects of the model compounds for PM in ambient air - ammonium bisulfate, ammonium ferrosulfate and ammonium nitrate - on healthy rats and rats with monocrotaline-induced pulmonary hypertension (PH). The objective was bas

  3. Characterization of aerosol particles at the forested site in Lithuania

    Science.gov (United States)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  4. Chemical characterisation of fine particles from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Saarnio, K.

    2013-10-15

    Biomass burning has lately started to attract attention because there is a need to decrease the carbon dioxide (CO{sub 2}) emissions from the combustion of fossil fuels. Biomass is considered as CO{sub 2} neutral fuel. However, the burning of biomass is one of the major sources of fine particles both at the local and global scale. In addition to the use of biomass as a fuel for heat energy production, biomass burning emissions can be caused, e.g. by slash-and-burn agriculture and wild open-land fires. Indeed, the emissions from biomass burning are crucially important for the assessment of the potential impacts on global climate and local air quality and hence on human health. The chemical composition of fine particles has a notable influence on these impacts. The overall object of this thesis was to gain knowledge on the chemistry of fine particles that originate from biomass burning as well as on the contribution of biomass burning emissions to the ambient fine particle concentrations. For this purpose novel analytical methods were developed and tested in this thesis. Moreover, the thesis is based on ambient aerosol measurements that were carried out in six European countries at 12 measurement sites during 2002-2011. Additionally, wood combustion experiments were conducted in a laboratory. The measurements included a wide range of techniques: filter and impactor samplings, offline chemical analyses (chromatographic and mass spectrometric techniques, thermal-optical method), and online measurements of particles' physical properties and chemical composition (incl. particle number and mass concentrations and size distributions, concentrations of carbonaceous components, water-soluble ions, and tracer compounds). This thesis presents main results of different studies aimed towards chemical characterisation of fine particle emissions from biomass burning. It was found that wood combustion had a significant influence on atmospheric fine particle concentrations in

  5. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  6. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    International Nuclear Information System (INIS)

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  7. Detailed Study of Fine Particulate Matter during 2013 New Year’s Celebrations

    Czech Academy of Sciences Publication Activity Database

    Kubelová, Lucie; Vodička, Petr; Schwarz, Jaroslav; Ždímal, Vladimír

    Prague : Czech Aerosol Society, 2013, A115. ISBN N. [European Aerosol Conference (EAC 2013). Prague (CZ), 01.09.2013-06.09.2013] R&D Projects: GA ČR GAP209/11/1342 Institutional support: RVO:67985858 Keywords : fine particulate matter * firrworks * aerosol mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry http://eac2013.cz/index.php

  8. Fine chemistry

    International Nuclear Information System (INIS)

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included

  9. Ambient intelligence

    CERN Document Server

    Basten, Twan; de Groot, Harmke

    2007-01-01

    ""This book is truly an eye-opener as it is the first book that relates the dream scenarios of Ambient Intelligence quantitatively to the technical challenges and requirements of the huge distributed and interoperable embedded systems needed to implement AmI systems in the real world. This book is strongly recommended to a wide spectrum of engineers interested to embark in this rapidly emerging and fascinating technology."" (From the foreword by Hugo De Man, Professor K.U. Leuven and Senior Research Fellow IMEC)

  10. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China

    Science.gov (United States)

    Zhang, L.; Sun, J. Y.; Shen, X. J.; Zhang, Y. M.; Che, H. C.; Ma, Q. L.; Zhang, Y. W.; Zhang, X. Y.; Ogren, J. A.

    2015-01-01

    Scattering of solar radiation by aerosol particles is highly dependent on relative humidity (RH) as hygroscopic particles take up water with increasing RH. To achieve a better understanding of the effect of aerosol hygroscopic growth on light scattering properties and radiative forcing, a field campaign was carried out in the Yangtze River Delta of China in March 2013. During the observation period, the mean and standard deviation of enhancement factors at RH=85% for the scattering coefficient (f(85%)), backscattering coefficient (fb(85%)) and hemispheric backscatter fraction (fβ(85%)) were 1.58 ± 0.12, 1.25 ± 0.07 and 0.79 ± 0.04, respectively, i.e. aerosol scattering coefficient and backscattering coefficient increased by 58 and 25% as the RH increased from 40 to 85%. Meanwhile, the aerosol hemispheric backscatter fraction decreased by 21%. The relative amount of organic matter (OM) and inorganics in PM1 was found to be a main factor determining the magnitude of f(RH), the highest values of f(RH) corresponded to the aerosols with a small fraction of organic matter (OM), and vice versa. The relative amount of NO3- in fine particles was strongly correlated to f(85%), which suggests NO3- played a vital role in aerosol hygroscopic growth during this study. The mass percentage of nitrate also had a close relation to the curvature of humidograms, namely, the higher the nitrate concentration is, the straighter the humidogram will be. Air masses that arrived at LinAn in March can be classified into northerly-polluted, locally-polluted and dust-influenced types, the scattering enhancement factors at 85% RH were 1.52 ± 0.10, 1.64 ± 0.09 and 1.48 ± 0.05, respectively. The sensitivity of the aerosol radiative forcing to f(RH) at the measured mean ambient RH 67% for various aerosol types was also estimated. The direct radiative forcing increased by 11.8, 19.5, and 10.5%, respectively, for locally-polluted, northerly-polluted and dust-influenced aerosols due to aerosol

  11. Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong

    Science.gov (United States)

    Li, Y. J.; Lee, B. P.; Su, L.; Fung, J. C. H.; Chan, C. K.

    2015-01-01

    Atmospheric particulate matter (PM) remains poorly understood due to the lack of comprehensive measurements at high time resolution for tracking its dynamic features and the lack of long-term observation for tracking its seasonal variability. Here, we present highly time-resolved and seasonal compositions and characteristics of non-refractory components in PM with a diameter less than 1 μm (NR-PM1) at a suburban site in Hong Kong. The measurements were made with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at the Hong Kong University of Science and Technology (HKUST) Air Quality Research Supersite for 4 months, with one in each season of the year. The average NR-PM1 concentration of ~ 15 μg m-3 is higher than those AMS measurements made in South Korea and Japan, but lower than those in North China, the Yangtze River Delta and the nearby Pearl River Delta. The seasonal dependence of the total NR-PM1 monthly averaged concentrations was small, but that of the fractions of the species in NR-PM1 was significant. Site characteristic plays an important role in the relative fractions of species in NR-PM1 and our results are generally consistent with measurements at other non-urban sites in this regard. Detailed analyses were conducted on the AMS data in the aspects of (1) species concentrations, (2) size distributions, (3) degree of oxygenation of organics, and (4) positive matrix factorization (PMF)-resolved organic factors in a seasonal context, as well as with air mass origin from back-trajectory analysis. Sulfate had the highest fraction in NR-PM1 (> 40%), and the surrogates of secondary organic species - semi-volatile oxygenated organic aerosol (SVOOA) and low-volatility oxygenated organic aerosol (LVOOA) - prevailed (~ 80%) in the organic portion of NR-PM1. Local contributions to the organic portion of NR-PM1 at this suburban site was strongly dependent on season. The hydrocarbon-like organic aerosol (HOA) factor related to

  12. Seasonal characteristics of fine particulate matter (PM) based on high resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong

    Science.gov (United States)

    Li, Y. J.; Lee, B. P.; Su, L.; Fung, J. C. H.; Chan, C. K.

    2014-08-01

    Atmospheric particulate matter (PM) remains poorly understood due to the lack of comprehensive measurements at high time resolution for tracking its dynamic features and the lack of long-term observation for tracking its seasonal variability. Here, we present highly time-resolved and seasonal compositions and characteristics of non-refractory components in PM with diameter less than 1 μm (NR-PM1) at a suburban site in Hong Kong. The measurements were made with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at the Hong Kong University of Science and Technology (HKUST) Air Quality Research Supersite for four months, with one in each season of the year. The average NR-PM1 concentration of ~15 μg m-3 is higher than those AMS measurements made in South Korea and Japan, but lower than those in North China, the Yangtze River Delta and the nearby Pearl River Delta. The seasonal dependence of the total NR-PM1 monthly averaged concentrations was small but that of the fractions of the species in NR-PM1 was significant. Site characteristic plays an important role in the relative fractions of species in NR-PM1 and our results are generally consistent with measurements at other non-urban sites in this regard. Detailed analyses were conducted on the AMS data in the aspects of (1) species concentrations, (2) size distributions, (3) degree of oxygenation of organics, and (4) positive matrix factorization (PMF)-resolved organic factors in a seasonal context, as well as with air mass origin from back-trajectory analysis. Sulfate had the highest fraction in NR-PM1 (> 40%) and the surrogates of secondary organic species, semi-volatile oxygenated organic aerosol (SVOOA) and low-volatility oxygenated organic aerosol (LVOOA), prevailed (~80%) in the organic portion of NR-PM1. Local contributions to the organic portion of NR-PM1 at this suburban site was strongly dependent on season. The hydrocarbon-like organic aerosol (HOA) factor related to local

  13. DIAGNOSTICO AMBIENTAL Y VALORACIÓN DE LOS RECURSOS PARA FINES TURÍSTICOS DE LOS ECOSISTEMAS DE MANGLAR EN LA BAHÍA DE BANDERAS, MÉXICO.

    Directory of Open Access Journals (Sweden)

    Cruz Romero Bartolo

    2013-06-01

    Full Text Available Mediante una “Lista de chequeo” se establece el diagnóstico ambiental de los sistemas estuarinos de la Bahía de Banderas: El Salado, Boca Negra – Boca de Tomates y El Quelele; y se identifican los principales factores de presión ambiental en cada sistema. Los elementos ambientales considerados fueron el suelo, agua, aire, flora, fauna y paisaje. Los resultados indican que el paisaje de estos sistemas, ha perdido su calidad original y las principales causas han sido el cambio de uso de suelo y el desarrollo urbano y turístico mal planeado. Respecto a la valoración de los recursos (naturales y artificiales, con potencial turístico para cada sistema, se determinó bajo la metodología de “Inventario de recursos”; propuesta por Leno (1993. La valoración de recursos en los tres sistemas estuarinos El Salado, Boca Negra – Boca de Tomates y El Quelele; nos muestra que todos los recursos potenciales se encuentran en conjunto lo cual les otorga un valor más elevado respecto a la metodología utilizada, esto no limita las áreas solo al avistamiento y visita de los recursos con mayor jerarquía como las aves, cangrejos, flora, canales navegables, torres de observación y senderos elevados. Al contrario, se considera que el conjunto de todos los recursos con potencial turístico son susceptibles de aprovechamiento bajo esquemas de sustentabilidad mediante programas de turismo asociado a la naturaleza.

  14. Organic Components and Elemental Carbon in Soils and Ambient Particles near Phoenix, AZ

    Science.gov (United States)

    Fraser, M. P.; Jia, Y.; Clements, A.

    2008-12-01

    In the desert southwest, fugitive dust emissions contribute significantly to ambient aerosol concentrations. Wind erosion from the arid land is a primary contributor to ambient particulate matter (PM) concentrations but, in regions including Central Arizona, desert lands have been converted for agriculture use and thus agriculture processes constitute another contributor. As the metropolitan Phoenix region expands into these agricultural lands, urban sources and construction also contributes to the ambient PM load. In an effort to identify and access relative contribution of these and other major PM sources in the region, a series of ambient PM samples and soil samples were collected near Higley, AZ, a suburb of Phoenix which has seen rapid urbanization onto agricultural lands between January and May 2008. The soil samples collected were resuspended and samples of resuspended dust were collected to represent particles smaller than 2.5 microns and 10 microns in aerodynamic diameter (PM2.5 and PM10 respectively). The size segregated soil and ambient PM samples were analyzed for bulk mass, elemental and organic carbon content, and a number of specific compounds including ions, metals, alkanes, organic acids, polycyclic aromatic hydrocarbons, and saccharides. The saccharide contribution to soil organic carbon has been studied to elucidate key factors in the soil carbon balance and markers have been developed for tracing fungal metabolites, plant growth and budding and organic matter decay. Using organic markers, the contribution of various sources to PM10 and PM2.5 levels have been determined by positive matrix factorization (PMF) of the ambient aerosol marker concentrations quantified from PM samples. Subsequently, samples of local soil from native and agricultural fields and local roadways wers size- segregated and analyzed in an effort to create a source profile for the dust in the area. A chemical mass balance model has been used to compare with the PMF results

  15. The Finokalia Aerosol Measurement Experiment – 2008 (FAME-08): an overview

    OpenAIRE

    M. Pikridas; Bougiatioti, A.; Hildebrandt, L.; G. J. Engelhart; E. Kostenidou; Mohr, C.; A. S. H. Prévôt; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; M. Psichoudaki; Mihalopoulos, N.; Pilinis, C.; A. Stohl

    2010-01-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and partic...

  16. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    Science.gov (United States)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  17. Aerosol Chemistry of Furfural and Sugars

    Science.gov (United States)

    Srithawirat, T.; Brimblecombe, P.

    2008-12-01

    Furfural and sugars (as levoglucosan equivalent) are derived from biomass burning and contribute to aerosol composition. This study examined the potential of furfural and levoglucosan to be tracers of biomass burning. Furfural is likely to be oxidized quickly so comparison with levoglucosan may give a sense of the age of the aerosols in forest fire smoke. However, few furfural emissions are available for biomass combustion. Furfural and sugars were determined in coarse aerosols (>2.4μm aerodynamic diameter) and fine aerosols (Furfural and sugars dominated in fine fractions, especially in the UK autumn. Sugars were found at 5.96-18.37 nmol m-3 in fine mode and 1.36-5.75 nmol m-3 in coarse mode aerosols in the UK. Furfural was found at 0.18-0.91 nmol m-3 and 0.05-0.51 nmol m-3 respectively in the same aerosols. Sugars were a dominant contributor to aerosol derived from biomass burning. Sugars and furfural were about 10 and 20 times higher during haze episodes in Malaysia. Laboratory experimental simulation suggested furfural is more rapid destroyed by UV and sunlight than levoglucosan.

  18. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    Science.gov (United States)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  19. Computational model for deposition, clearance and dosimetry of inhaled aerosols and radionuclides in the human lung

    International Nuclear Information System (INIS)

    Aerosols are fine liquid droplets, solid particles or combination of both suspended in a gas medium. The microscopic particles that float in the air cover a wide size range and include both anthropogenic and non-anthropogenic particles. Understanding of the aerosol science is important in a wide range of areas, including inhalation toxicology, targeted drug delivery etc. The particle transport and deposition properties in human lung are determined by the particle properties, lung morphometry and respiratory physiology. This research work was started to investigate the effect intersubject variability of extrathoracic airways on particle deposition. Thus, the core of the thesis is associated with intersubject variability of particle inhalation and deposition in lung, but the results are also applied to investigate their effects on bronchial doses. The problem is addressed by the application of stochastic lung dosimetry model IDEAL. The results suggest that the major sources of the intersubject variability of bronchial doses for inhaled radon progeny are the asymmetry and variability of the linear airway dimensions, the filtering efficiency of the nasal passages, and the thickness of the bronchial epithelium, while fluctuations of the respiratory parameters and mucociliary clearance rates seem to compensate each other. In another study, a stochastic clearance model in the alveolar region is developed and incorporated into IDEAL in order to calculate doses produced by long-lived radionuclides (LLR) in alveolar and bronchial regions in addition to higher concentrations of short-lived radon decay products. The results obtained by the application slow alveolar clearance in the model indicate that LLR can deliver up to 5 % of the doses in the lung predicted for the short-lived radon daughters. In a case study ambient aerosol data from different cities of Pakistan was collected using optical particle counter (Grimm1.109) to analyze their size distributions and mass

  20. A new source of oxygenated organic aerosol and oligomers

    Directory of Open Access Journals (Sweden)

    J. Liggio

    2013-03-01

    Full Text Available A large oxygenated organic uptake to aerosols was observed when exposing ambient urban air to inorganic acidic and non-acidic sulfate seed aerosol. For non-acidic seed aerosol the uptake was attributed to the direct dissolution of primary vehicle exhaust gases into the aqueous aerosol fraction, and was correlated to the initial seed sulphate mass. The uptake of primary oxygenated organic gases to aerosols in this study represents a significant amount of organic aerosol (OA that may be considered primary when compared to that reported for primary organic aerosol (POA, but is considerably more oxygenated (O : C ~ 0.3 than traditional POA. Consequently, a fraction of measured ambient oxygenated OA, which correlates with secondary sulphate, may in fact be of a primary, rather than secondary source. These results represent a new source of oxygenated OA on neutral aerosol and imply that the uptake of primary organic gases will occur in the ambient atmosphere, under dilute conditions, and in the presence of pre-existing SO4 aerosols which contain water. Conversely, under acidic seed aerosol conditions, oligomer formation was observed with the uptake of organics being enhanced by a factor of three or more compared to neutral aerosols, and in less than 2 min, representing an additional source of SOA to the atmosphere. This resulted in a trajectory in Van Krevelen space towards higher O : C (slope ~ −1.5, despite a lack of continual gas-phase oxidation in this closed system. The results demonstrate that high molecular weight species will form on acidic aerosols at the ambient level and mixture of organic gases, but are otherwise unaffected by subsequent aerosol neutralization, and that aerosol acidity will affect the organic O : C via aerosol-phase reactions. These two processes, forming oxygenated POA under neutral conditions and SOA under acidic conditions can contribute to the total ambient OA mass and the evolution of ambient aerosol O : C ratios

  1. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    Science.gov (United States)

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.

    2016-07-01

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the

  2. Aerosol studies

    International Nuclear Information System (INIS)

    As part of the continuing studies of the effects of very severe reactor accidents, an effort was made to develop, test, and improve simple, effective, and inexpensive methods by which the average citizen, using only materials readily available, could protect his residence, himself, and his family from injury by toxic aerosols. The methods for protection against radioactive aerosols should be equally effective against a clandestine biological attack by terrorists. The results of the tests to date are limited to showing that spores of the harmless bacterium, bacillus globegii (BG), can be used as a simulant for the radioactive aerosols. An aerosol generator of Lauterbach type was developed which will produce an essentially monodisperse aerosol at the rate of 109 spores/min. Analytical techniques have been established which give reproducible results. Preliminary field tests have been conducted to check out the components of the system. Preliminary tests of protective devices, such as ordinary vacuum sweepers, have given protection factors of over 1000

  3. Catalyst Chemical State during CO Oxidation Reaction on Cu(111) Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy and Near Edge X-ray Adsorption Fine Structure Spectroscopy.

    Science.gov (United States)

    Eren, Baran; Heine, Christian; Bluhm, Hendrik; Somorjai, Gabor A; Salmeron, Miquel

    2015-09-01

    The chemical structure of a Cu(111) model catalyst during the CO oxidation reaction in the CO+O2 pressure range of 10-300 mTorr at 298-413 K was studied in situ using surface sensitive X-ray photoelectron and adsorption spectroscopy techniques [X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS)]. For O2:CO partial pressure ratios below 1:3, the surface is covered by chemisorbed O and by a thin (∼1 nm) Cu2O layer, which covers completely the surface for ratios above 1:3 between 333 and 413 K. The Cu2O film increases in thickness and exceeds the escape depth (∼3-4 nm) of the XPS and NEXAFS photoelectrons used for analysis at 413 K. No CuO formation was detected under the reaction conditions used in this work. The main reaction intermediate was found to be CO2(δ-), with a coverage that correlates with the amount of Cu2O, suggesting that this phase is the most active for CO oxidation. PMID:26275662

  4. Aerosol mass closure and reconstruction of the light scattering coefficient over the Eastern Mediterranean Sea during the MINOS campaign

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2005-01-01

    Full Text Available As part of the Mediterranean Intensive Oxidant Study (MINOS performed during August 2001 in the Eastern Mediterranean Region, intensive measurements of chemical and radiative properties of atmospheric aerosols were performed at two remote sites on Crete Island, located in the marine boundary layer (MBL, and in the lower free troposphere (FT, respectively. Gravimetric particulate mass, as well as chemically-derived masses of water soluble ions, organic and elemental carbon, and tracer elements for dust aerosols were measured for fine (1.2 µm particles at the two sampling sites. Although strongly bound water, mainly associated with inorganic species, could have slightly altered our results (10% of the reconstructed mass, chemical mass closure was achieved most of the time for the fine and coarse size fractions and at both sites. Our conversion factor of 2.1 for organic carbon (OC to particulate organic matter (POM is at the upper end of those reported in the literature, but fits with the aged smoke particles collected during the campaign. The results indicate that this conversion factor changed during the campaign along with the BC/TC ratio. The particulate mass (PM concentration for fine aerosols at the MBL and FT sites averaged 17.4±4.7 µg/m3 and 11.2±3.2 µg/m3, respectively, and is among the highest reported in the literature for remote sites; more than 90% of this PM was composed equally of ammonium sulfate and carbonaceous aerosols. Comparison between the MBL and FT sites showed a slight vertical gradient for PM that was not observed for dust aerosols, which averaged 10.5±4.8 and 11.7±5.0 µg/m3 for the MBL and FT sites, respectively. The results were used to reconstruct the ambient light scattering coefficient (σsp that was measured at ambient Relative Humidity (RH for fine particles at the MBL site. Reconstruction of σsp was achieved using ratios of wet to dry scattering, f(RH, that depend on RH for ammonium sulfate, but are kept

  5. Aerosol mass closure and reconstruction of the light scattering coefficient over the Eastern Mediterranean Sea during the MINOS campaign

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2005-04-01

    Full Text Available As part of the Mediterranean Intensive Oxidant Study (MINOS performed during August 2001 in the Eastern Mediterranean Region, intensive measurements of chemical and radiative properties of atmospheric aerosols were performed at two remote sites on Crete Island, located in the marine boundary layer (MBL, and in the lower free troposphere (FT, respectively. Gravimetric particulate mass, as well as chemically-derived masses of water soluble ions, organic and elemental carbon, and tracer elements for dust aerosols were measured for fine (<1.2 µm and coarse (>1.2 µm particles at the two sampling sites. Although strongly bound water, mainly associated with inorganic species, could have slightly altered our results (10% of the reconstructed mass, chemical mass closure was achieved most of the time for the fine and coarse size fractions and at both sites. Our conversion factor of 2.1 for organic carbon (OC to particulate organic matter (POM is at the upper end of those reported in the literature, but fits with the aged smoke particles collected during the campaign. The results indicate that this conversion factor changed during the campaign along with the BC/TC ratio.

    The particulate mass (PM concentration for fine aerosols at the MBL and FT sites averaged 17.4±4.7 µg/m3 and 11.2±3.2 µg/m3, respectively, and is among the highest reported in the literature for remote sites; more than 90% of this PM was composed equally of ammonium sulfate and carbonaceous aerosols. Comparison between the MBL and FT sites showed a slight vertical gradient for PM that was not observed for dust aerosols, which averaged 10.5±4.8 and 11.7±5.0 µg/m3 for the MBL and FT sites, respectively.

    The results were used to reconstruct the ambient light scattering coefficient (σsp that was measured at ambient Relative Humidity (RH for fine particles at the MBL site. Reconstruction of

  6. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  7. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG ManSing; NICHOL Janet; LEE Kwon Ho; LI ZhanQing

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolu-tion images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta re-gion. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the deter-mination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflec-tance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r=0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  8. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG; ManSing; NICHOL; Janet; LEE; Kwon; Ho

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolution images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the determination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflectance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r = 0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  9. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Charles E. Kolb

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  10. Secondary organic aerosol formation of primary, secondary and tertiary Amines

    Science.gov (United States)

    Amines have been widely identified in ambient aerosol in both urban and rural environments and they are potential precursors for formation of nitrogen-containing secondary organic aerosols (SOA). However, the role of amines in SOA formation has not been well studied. In this wrok, we use UC-Riversid...

  11. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    International Nuclear Information System (INIS)

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm−1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol

  12. Simplified aerosol modeling for variational data assimilation

    Directory of Open Access Journals (Sweden)

    F. Chevallier

    2009-06-01

    Full Text Available We have developed a simplified aerosol model together with its tangent linear and adjoint versions for variational assimilation of aerosol optical depth with the aim to optimize aerosol emissions over the globe. The model was derived from the general circulation model LMDz; it groups together the 24 aerosol species simulated in LMDz into 4 species, namely gaseous precursors, fine mode aerosols, coarse mode desert dust and coarse mode sea salt. The emissions have been kept as in the original model. Modifications, however, were introduced in the computation of aerosol optical depth and in the processes of sedimentation, dry and wet deposition and sulfur chemistry to ensure consistency with the new set of species and their composition.

    The simplified model successfully manages to reproduce the main features of the aerosol distribution in LMDz. Differences between the original and simplified models are mainly associated to the new deposition and sedimentation velocities consistent with the definition of species in the simplified model and the simplification of the sulfur chemistry. Furthermore, simulated aerosol optical depth remains within the variability of AERONET observations for all aerosol types and all sites throughout most of the year.

    Sensitivity analyses with the tangent linear version show that the simplified sulfur chemistry is the dominant process responsible for the strong non-linearity of the model.

  13. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  14. Aerosol Transport Over Equatorial Africa

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  15. Saltation Sandblasting behavior during mineral dust aerosol production

    OpenAIRE

    Grini, Alf; Zender, C. S.; P. Colarco

    2002-01-01

    The dominant process in producing fine dust aerosols during saltation is thought to be sandblasting. Recent studies claim that due to competing physical processes, emission efficiencies of dust aerosols oscillate with increasing wind friction speed. These oscillations can result in order of magnitude changes in dust mass emissions. Our work shows that emission efficiencies, and hence emissions of dust aerosols are smooth functions of the wind friction speed for natural soil size distributions...

  16. Characterization of urban aerosol in Cork city (Ireland using aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2013-05-01

    Full Text Available Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC, sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS and was also found to comprise organic aerosol as the most abundant species (62%, followed by nitrate (15%, sulphate (9% and ammonium (9%, and chloride (5%. Positive matrix factorization (PMF was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA comprised 18%, "biomass burning" organic aerosol (BBOA comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA comprised 21%, and finally a species type characterized by primary extit{m/z}~peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA, but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively.

  17. 上海市两社区大气细颗粒物的污染状况%Status of Ambient Air Pollution of Fine Particle Matters at Two Communities in Shanghai

    Institute of Scientific and Technical Information of China (English)

    张莉君; 东春阳; 许慧慧; 施烨闻; 金奇昂; 刘立平; 沈先标

    2011-01-01

    [目的]了解上海市社区大气细颗粒物(PM2.5)的污染状况.[方法]于2008年1月至2009年12月在上海市大气污染程度不同的2个社区(A社区为中心城区、B社区位于郊区)设置监测点,每月10~16日连续监测PM2.5浓度,数据采集后采用Wilcoxon秩和检验进行统计分析.[结果]B社区的PM2.5浓度在4、6月份均高于A社区,差异有统计学意义(P第一阶段目标相比,除A社区2009年未超标外,两社区其余年份均超标.[结论]两社区PM2.5污染呈冬季严重,夏秋季减轻的特点,B社区PM2.5的污染问题较A社区严重,两社区的PM2.5的污染水平与美国EPA标准和WHO第一阶段目标相比均存在超标问题.%[Objective]To understand the situation of fine air particle matters (PM2.5) pollution at two communities in Shanghai.[Methods]From 2008 to 2009, air samples were collected at fixed sites in two communities (A district was a resident area and B district adjacent the industry area) for monitoring the PM2.5 concentration with membrane gravimetric method every month.Air samples were continuously collected for 7 d each time in order to calculating daily average concentration.Data were analyzed with Wilcoxon rank sum test in SPSS 11.5 software, and adopted median (M) and central quadruplets (P25 to P75) in presence.[Results]The monthly PM2.5 level in site B was higher than that in site A, the differences were significant in April and June (P < 0.05).The pollution was most serious in winter but least in summer and autumn.The quaternary level of PM2.5 in site B was higher significantly than that in site A in summer (P<0.01).In 2009, the PM2.5 level in site B was higher significantly than that in site A (P<0.001).The concentration values of PM2.5 in two sites were all beyo nd the Air Quality Planning and Standard of U.S Environmental Protection Agency (U.S.EPA) from 2008 to 2009.The exceeded proportions of PM2.5 concentration in site A were 54.76% and 35.71%, and the

  18. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  19. Development and evaluation of a novel monitor for online measurement of iron, manganese, and chromium in ambient particulate matter (PM).

    Science.gov (United States)

    Wang, Dongbin; Sowlat, Mohammad H; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos

    2016-09-15

    A prototype atmospheric aerosol monitor was developed for online measurement of three toxicologically relevant redox-active metals (Fe, Mn, and Cr) in ambient fine particulate matter (PM2.5). The monitor has the unique ability to quantify these metals in specific chemical oxidation states in addition to both their total and water-soluble fractions in the ambient PM2.5. This information is critical for advancing our understanding of mechanisms of PM-induced toxicity as well as chemical processing of aerosol in the atmosphere. The metal monitor utilizes a high flow rate aerosol-into-liquid collector to collect ambient PM2.5 directly as concentrated aqueous slurry samples. The concentrations of target metals in the collected slurries are subsequently measured in a aerosol-into-liquid collector, micro volume flow cell (MVFC) using spectrophotometry to quantify the light absorption of colored complexes resulting from the reaction between the target metals and added analytical reagents. Our experimental evaluation indicated that, overall, this novel monitor can achieve accurate and reliable measurements over long sampling periods (i.e. at least several weeks). The online measurements for all three target elements were in good agreement (i.e., with slopes of the linear regression lines ranging between 0.90 and 1.07, and R(2) values between 0.76 and 0.95) with time-integrated filter samples collected in parallel and analyzed by magnetic sector inductively coupled plasma mass spectrometry (SF-ICPMS). Moreover, this metal monitor can provide semi-continuous measurements (i.e., every 2h) for at least 5 consecutive days without obvious shortcomings in its field operation. The online monitor measured total concentrations of Fe that ranged between 4.8 and 65.6ng/m(3), for Mn from below detection limit to 10.0ng/m(3), and for Cr from below detection limit to 6.6ng/m(3), respectively. Our results indicate that the developed metal monitor is a promising technology for online

  20. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    Science.gov (United States)

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-01

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/μg, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction. PMID:25748105

  1. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities

    Directory of Open Access Journals (Sweden)

    J. D. Allan

    2009-09-01

    Full Text Available Organic matter frequently represents the single largest fraction of fine particulates in urban environments and yet the exact contributions from different sources and processes remain uncertain, owing in part to its substantial chemical complexity. Positive Matrix Factorisation (PMF has recently proved to be a powerful tool for the purposes of source attribution and profiling when applied to ambient organic aerosol data from the Aerodyne Aerosol Mass Spectrometer (AMS. Here we present PMF analysis applied to AMS data from UK cities for the first time. Three datasets are analysed, with the focus on objectivity and consistency. The data were collected in London during the Regent's Park and Tower Environmental Experiment (REPARTEE intensives and Manchester. These occurred during the autumn and wintertime, such that the primary fraction would be prominent. Ambiguities associated with rotationality within sets of potential solutions are explored and the most appropriate solution sets selected based on comparisons with external data. In addition to secondary organic aerosols, three candidate sources of primary organic aerosol (POA were identified according to mass spectral and diurnal profiles; traffic emissions, cooking and solid fuel burning. Traffic represented, on average, 40% of POA during colder conditions and exhibited a hydrocarbon-like mass spectrum similar to those previously reported. Cooking aerosols represented 34% of POA and through laboratory work, their profile was matched with that sampled from the heating of seed oils, rather than previously-published spectra derived from charbroiling. This suggests that in these locations, oil from frying may have contributed more to the particulate than the meat itself. Solid fuel aerosols represented 26% of POA during cold weather conditions but were not discernable during the first REPARTEE experiment, when conditions were warmer than the other campaigns. This factor showed features associated

  2. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. W.

    2014-10-07

    Ambient fine particulate matter (PM2.5) is a leading environmental risk factor for premature mortality. We use aerosol optical depth (AOD) retrieved from two satellite instruments, MISR and SeaWiFS, to produce a unified 15-year global time series (1998-2012) of ground-level PM2.5 concentration at a resolution of 1 degrees x 1 degrees. The GEOS-Chem chemical transport model (CTM) is used to relate each individual AOD retrieval to ground-level PM2.5. Four broad areas showing significant, spatially coherent, annual trends are examined in detail: the Eastern U.S. (-0.39 +/- 0.10 mu g m(-3) yr(-1)), the Arabian Peninsula (0.81 +/- 0.21 mu g m(-3) yr(-1)), South Asia (0.93 +/- 0.22 mu g m(-3) yr(-1)) and East Asia (0.79 +/- 0.27 mu g m(-3) yr(-1)). Over the period of dense in situ observation (1999-2012), the linear tendency for the Eastern U.S. (-0.37 +/- 0.13 mu g m(-3) yr(-1)) agrees well with that from in situ measurements (-0.38 +/- 0.06 mu g m(-3) yr(-1)). A GEOS-Chem simulation reveals that secondary inorganic aerosols largely explain the observed PM2.5 trend over the Eastern U.S., South Asia, and East Asia, while mineral dust largely explains the observed trend over the Arabian Peninsula.

  3. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    Science.gov (United States)

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  4. Heterogeneous formation of HONO on carbonaceous aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ammann, M.; Kalberer, M.; Tabor, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)] [and others

    1997-09-01

    Based on an on-line and in situ experimental approach, for the first time heterogeneous production of nitrous acid (HONO) on carbon aerosol at ambient pressure and low NO{sub 2} concentration has been quantified by use of a {sup 13}N tracer technique. (author) 1 fig., 4 refs.

  5. Improving the simulation of organic aerosols from anthropogenic and burning sources: a simplified SOA formation mechanism and the impact of trash burning

    Science.gov (United States)

    Hodzic, A.; Wiedinmyer, C.; Jimenez, J. L.

    2011-12-01

    Organic aerosols (OA) are an major component of fine aerosols, but their sources are poorly understood. We present results of two methods to improve OA predictions in anthropogenic pollution and biomass-burning impacted regions. (1) An empirical parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is implemented into community chemistry-transport models (WRF/Chem and CHIMERE) and tested in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA. This approach is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass, as described in Hodzic and Jimenez (GMDD, 2011). The oxygen to carbon ratio in organic aerosols is also parameterizated vs. photochemical aged based on the ambient observations, and is used to estimate the aerosol hygroscopicity and CCN activity. The predicted SOA is assessed against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment, and compared to previous model results using the more complex volatility basis approach (VBS) of Robinson et al.. The results suggest that the simplified approach reproduces the observed average SOA mass within 30% in the urban area and downwind, and gives better results than the original VBS. In addition to being much less computationally expensive than VBS-type methods, the empirical approach can also be used in regions where the emissions of SOA precursors are not yet available. (2) The contribution of trash burning emissions to primary and secondary organic aerosols in Mexico City are estimated, using a recently-developed emission inventory. Submicron antimony (Sb) is used as a garbage-burning tracer following the results of Christian et al. (ACP 2010), which allows evaluation of the emissions inventory. Results suggests that trash burning may be an appreciable source of organic aerosols in the Mexico City

  6. Attachment of radon progeny to cigarette-smoke aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, {approximately}10{sup {minus}6} cm{sup 3}/s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols.

  7. Phase transformation and growth of hygroscopic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  8. Source apportionment of atmospheric fine particulate matter collected at the Seney National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife...

  9. Los estudios sobre el ambiente y la ciencia ambiental

    Directory of Open Access Journals (Sweden)

    Amelia Nancy Giannuzzo

    2010-03-01

    Full Text Available La existencia de la ciencia ambiental es reconocida en libros, revistas de publicación científica y carreras de grado y posgrado. Sin embargo, se desconoce su existencia en forma literal o indirecta, al no ser considerado su aporte, por ejemplo, en los planteos referidos sobre la ciencia y la tecnología de la sustentabilidad. En este trabajo se presentan estos antecedentes, relacionándolos con el objetivo del mismo, que es el de aportar a la dilucidación de la existencia y conformación de la ciencia ambiental. Para esto, se analiza la relación de las disciplinas con la dimensión compleja del ambiente como objeto de estudio y aspectos metodológicos derivados. A los fines de aportar al esclarecimiento conceptual, se identifican las distintas acepciones de ambiente comúnmente referidas en la bibliografía. Además, se discuten aspectos relacionados de multidisciplinariedad, interdisciplinariedad y transdisciplinariedad, y sobre el status epistémico de la ciencia ambiental. Se concluye que una mayor precisión conceptual embasada en un marco compartido por las disciplinas que estudian el ambiente, incluida la ciencia ambiental, y los distintos actores involucrados en las problemáticas ambientales, favorecerá el refinamiento de las metodologías tendientes a disminuir la fragmentación de las investigaciones concernientes y las aplicaciones para su resolución.The existence of an environmental science is recognized in books, journals of science as well as in undergraduate and graduate studies. Its existence, however, is unknown either literally or indirectly when, for instance, its contribution to topics connected to the science and technology of sustainability is not considered. This background is presented in this paper and connected to its objective, which is to elucidate the existence and structure of the environmental science. To this goal, I analyse the relationship of the disciplines with the complex dimension of the environment

  10. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  11. Indoor aerosols

    DEFF Research Database (Denmark)

    Morawska, L.; Afshari, Alireza; N. Bae, G.;

    2013-01-01

    understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19% to 76%. This indicates a strong dependence on resident...

  12. Fine motor control

    Science.gov (United States)

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  13. Ambient particulate matter air pollution in Mpererwe District, Kampala, Uganda: a pilot study.

    Science.gov (United States)

    Schwander, Stephan; Okello, Clement D; Freers, Juergen; Chow, Judith C; Watson, John G; Corry, Melody; Meng, Qingyu

    2014-01-01

    Air quality in Kampala, the capital of Uganda, has deteriorated significantly in the past two decades. We made spot measurements in Mpererwe district for airborne particulate matter PM2.5 (fine particles) and coarse particles. PM was collected on Teflon-membrane filters and analyzed for mass, 51 elements, 3 anions, and 5 cations. Both fine and coarse particle concentrations were above 100 µg/m(3) in all the samples collected. Markers for crustal/soil (e.g., Si and Al) were the most abundant in the PM2.5 fraction, followed by primary combustion products from biomass burning and incinerator emissions (e.g., K and Cl). Over 90% of the measured PM2.5 mass can be explained by crustal species (41% and 59%) and carbonaceous aerosol (33%-55%). Crustal elements dominated the coarse particles collected from Kampala. The results of this pilot study are indicative of unhealthy air and suggest that exposure to ambient air in Kampala may increase the burden of environmentally induced cardiovascular, metabolic, and respiratory diseases including infections. Greater awareness and more extensive research are required to confirm our findings, to identify personal exposure and pollution sources, and to develop air quality management plans and policies to protect public health. PMID:24693293

  14. Evaluation of Polarized Remote Sensing of Aerosol Optical Thickness Retrieval over China

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2015-10-01

    Full Text Available The monitoring capability of a polarized instrument (POLDER under high aerosol loading conditions over China is investigated. The aerosol optical thickness (AOT, which infers the aerosol burden, is used to measure the satellite monitoring capabilities. AOT products retrieved from POLDER on low aerosol loading days, and products from a radiometric instrument (MODIS on high and low aerosol loading days, are presented for comparison. Our study reveals that for high aerosol days, the monitoring capability of the polarized instrument is lower than that of the traditional instrument. The accuracy of matched POLDER fine-AOTs is lower than that of MODIS-matched AOTs. On low aerosol loading days, the performance of the polarized instrument is good when monitoring the aerosol optical thickness. Further analysis reveals that for the high aerosol loading days, the mean relative errors of matched POLDER fine AOTs and MODIS AOTs with respect to AERONET measurements are 44% and 16%, respectively. For the low aerosol loading days, the mean relative errors of POLDER and MODIS measurements with respect to AERONET measurements are 41% and 40%, respectively. During high aerosol days, POLDER-retrieved fine-AOTs reveal a poor accuracy with only 14% of matches falling within the error range, which is nearly one fourth of the MODIS regression results (51.59%. For the low aerosol loading days, the POLDER regression results are good. Approximately 62% of the POLDER measurements fall within the expected error range ±(0.05 + 15% compared with the AERONET observed values.

  15. Characterization of urban aerosol in Cork City (Ireland using aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2012-11-01

    Full Text Available Ambient wintertime background urban aerosol in Cork City, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the 1 200 000 single particles characterized by an Aerosol Time-Of-Flight Mass Spectrometer (TSI ATOFMS were classified into five organic-rich particle types, internally-mixed to different proportions with Elemental Carbon (EC, sulphate and nitrate while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was also characterized using a High Resolution Time-Of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS and was also found to comprise organic matter as the most abundant species (62%, followed by nitrate (15%, sulphate (9% and ammonium (9%, and then chloride (5%.

    Positive matrix factorization (PMF was applied to the HR-ToF-AMS organic matrix and a five-factor solution was found to describe the variance in the data well. Specifically, "Hydrocarbon-like" Organic Aerosol (HOA comprised 19% of the mass, "Oxygenated low volatility" Organic Aerosols (LV-OOA comprised 19%, "Biomass wood Burning" Organic Aerosol (BBOA comprised 23%, non-wood solid-fuel combustion "Peat and Coal" Organic Aerosol (PCOA comprised 21%, and finally, a species type characterized by primary m/z peaks at 41 and 55, similar to previously-reported "Cooking" Organic Aerosol (COA but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Despite wood, cool and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosols mass and non refractory PM1, respectively.

  16. Beijing aerosol: Atmospheric interactions and new trends

    International Nuclear Information System (INIS)

    Beijing aerosols are scrutinized as a case study for atmospheric interactions in a complex multi-source situation. For the first time, fine (≤ 2 μm) and coarse (≥ 2 μm) aerosols were continuously collected during a time period (20 months) long enough to capture seasonal trends of sources and interactions. Weekly samples were obtained from January 2003 to August 2004 downtown and during 9 months at two peri-urban sites. Aerosol samples were chemically characterized (black carbon (BC), organic carbon (OC), and major ions) and dust was obtained from mass closure. Concentration data were smoothed and boundary layer height (BLH) corrected in order to better identify sources and processes. All yearlong, the coarse aerosol is dominated by dust (75%) whereas the fine mode is dominated (46%) by carbonaceous particles. Photochemistry is an intense driving force for secondary aerosol formation including secondary organic aerosol (SOA). Dust particles present a reactive surface for secondary aerosol formation from the intense anthropogenic pool of acidic gaseous precursors (SO2, HNO3, and volatile organic compounds (VOCs)). These interactions favor the formation of a very significant coarse fraction for SO4, NO3, and POM, a feature almost never encountered in developed countries. Surprisingly too is the presence of fine NH4NO3 in summer. A new result is also that the winter 'heating season' appears at present of minor importance with, however, a significant component from domestic heating as traced by BC/OC. In the future, traffic is likely to dominate downtown anthropogenic emissions. Year-to-year variability in meteorological conditions is likely to influence inputs from arid regions and from regional industrial and biomass burning sources. (authors)

  17. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haofei; Zhang, Zhenfa; Cui, Tianqu; Lin, Ying-Hsuan; Bhathela, Neil A.; Ortega, John; Worton, David; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Gold, Avram; Surratt, Jason D.

    2014-04-08

    Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to isoprene, MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)methanol (MBO epoxide) was synthesized and tentatively proposed here to explain this enhancement. In the present study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosols. Major SOA constituents, 2,3-dihydroxyisopentanol (DHIP) and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and in ambient fine aerosols collected from the BEACHON-RoMBAS field campaign during summer 2011, where MBO emissions are substantial. Our results support epoxides as potential products of MBO photooxidation leading to formation of atmospheric SOA and suggest that reactive uptake of epoxides may generally explain acid enhancement of SOA observed from other biogenic hydrocarbons.

  18. Nitrate aerosols today and in 2030: importance relative to other aerosol species and tropospheric ozone

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2007-04-01

    Full Text Available Ammonium-nitrate aerosols are expected to become more important in the future atmosphere due to the expected increase in nitrate precursor emissions and the decline of ammonium-sulphate aerosols in wide regions of this planet. The GISS climate model is used in this study, including atmospheric gas- and aerosol phase chemistry to investigate current and future (2030, following the SRES A1B emission scenario atmospheric compositions. A set of sensitivity experiments was carried out to quantify the individual impact of emission- and physical climate change on nitrate aerosol formation. We found that future nitrate aerosol loads depend most strongly on changes that may occur in the ammonia sources. Furthermore, microphysical processes that lead to aerosol mixing play a very important role in sulphate and nitrate aerosol formation. The role of nitrate aerosols as climate change driver is analyzed and set in perspective to other aerosol and ozone forcings under pre-industrial, present day and future conditions. In the near future, year 2030, ammonium nitrate radiative forcing is about –0.14 W/m2 and contributes roughly 10% of the net aerosol and ozone forcing. The present day nitrate and pre-industrial nitrate forcings are –0.11 and –0.05 W/m2, respectively. The steady increase of nitrate aerosols since industrialization increases its role as a non greenhouse gas forcing agent. However, this impact is still small compared to greenhouse gas forcings, therefore the main role nitrate will play in the future atmosphere is as an air pollutant, with annual mean near surface air concentrations rising above 3 μg/m3 in China and therefore reaching pollution levels, like sulphate aerosols, in the fine particle mode.

  19. Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2007-10-01

    Full Text Available Nitrate aerosols are expected to become more important in the future atmosphere due to the expected increase in nitrate precursor emissions and the decline of ammonium-sulphate aerosols in wide regions of this planet. The GISS climate model is used in this study, including atmospheric gas- and aerosol phase chemistry to investigate current and future (2030, following the SRES A1B emission scenario atmospheric compositions. A set of sensitivity experiments was carried out to quantify the individual impact of emission- and physical climate change on nitrate aerosol formation. We found that future nitrate aerosol loads depend most strongly on changes that may occur in the ammonia sources. Furthermore, microphysical processes that lead to aerosol mixing play a very important role in sulphate and nitrate aerosol formation. The role of nitrate aerosols as climate change driver is analyzed and set in perspective to other aerosol and ozone forcings under pre-industrial, present day and future conditions. In the near future, year 2030, ammonium nitrate radiative forcing is about −0.14 W/m² and contributes roughly 10% of the net aerosol and ozone forcing. The present day nitrate and pre-industrial nitrate forcings are −0.11 and −0.05 W/m², respectively. The steady increase of nitrate aerosols since industrialization increases its role as a non greenhouse gas forcing agent. However, this impact is still small compared to greenhouse gas forcings, therefore the main role nitrate will play in the future atmosphere is as an air pollutant, with annual mean near surface air concentrations, in the fine particle mode, rising above 3 μg/m³ in China and therefore reaching pollution levels, like sulphate aerosols.

  20. Phase transformation and growth of hygroscopic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  1. Long term aerosol and trace gas measurements in Central Amazonia

    Science.gov (United States)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  2. Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity - Assessing the importance of quinones and atmospheric aging

    Science.gov (United States)

    Verma, Vishal; Wang, Ying; El-Afifi, Rawan; Fang, Ting; Rowland, Janessa; Russell, Armistead G.; Weber, Rodney J.

    2015-11-01

    In this paper, we present a technique to identify the redox-active components of fine organic aerosols by fractionating humic-like substances (HULIS). We applied this technique to a dithiothreitol (DTT) assay - a measure of the capability of PM to generate reactive oxygen species (ROS), and assessed the contribution of quinones to the DTT activity of ambient water-soluble PM. Filter samples from the Southeastern Center for Air Pollution & Epidemiology (SCAPE) were extracted in water and then passed-through a C-18 column to isolate the HULIS fraction by retention on the column. The HULIS was then eluted with a sequence of solvents of increasing polarity, i.e., hexane, dichloromethane (DCM) and then methanol. Each of these eluted fractions was analyzed for DTT activity. The methanol fraction was found to possess most of the DTT activity (>70%), while the hexane fraction had the least activity (60%) eluted in methanol. The results demonstrate the importance of atmospheric aging (oxidation) of organic aerosols in enhancing the ROS activity of ambient PM.

  3. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  4. Psicologia do Ambiente

    OpenAIRE

    Antunes, Dalila; Bernardo, Fátima; Palma-Oliveira, José-Manuel

    2011-01-01

    Na aplicação da Psicologia à área do AMBIENTE importa em primeiro lugar definir o que se entende, neste contexto, por ambiente. O conceito é entendido como toda a envolvente que rodeia o ser humano. Referimo-nos pois ao espaço físico e aos estímulos que nele existem (som, ar, paisagem…), dirigindo-se a Psicologia do Ambiente ao estudo e intervenção sobre a forma como o ambiente influencia o indivíduo ou grupos, e sobre o modo como o comportamento dos indivíduos e grupos influenciam o ambiente...

  5. A study on characteristics and sources of winter time atmospheric aerosols in Kyoto and Seoul using PIXE and supplementary analysis

    International Nuclear Information System (INIS)

    Atmospheric aerosols were collected using a two stages filter sampler to classify into the fine and coarse fraction in Kyoto and Seoul in winter season. Elemental concentrations of aerosols were analyzed by PIXE and EAS as well as ion concentrations by IC. Analyzed data were used to source of aerosol particles. (author)

  6. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    Science.gov (United States)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  7. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (Petroleo (IMP) and CENICA.

  8. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  9. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  10. Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy

    Science.gov (United States)

    Daher, Nancy; Ruprecht, Ario; Invernizzi, Giovanni; De Marco, Cinzia; Miller-Schulze, Justin; Heo, Jong Bae; Shafer, Martin M.; Shelton, Brandon R.; Schauer, James J.; Sioutas, Constantinos

    2012-03-01

    The correlation between health effects and exposure to particulate matter (PM) has been of primary concern to public health organizations. An emerging hypothesis is that many of the biological effects derive from the ability of PM to generate reactive oxygen species (ROS) within affected cells. Milan, one of the largest and most polluted urban areas in Europe, is afflicted with high particle levels. To characterize its ambient PM, fine and coarse PM (PM2.5 and PM2.5-10, respectively) samples were collected on a weekly basis for a year-long period. Samples were analyzed for their chemical properties and ROS-activity. A molecular marker chemical mass balance (MM-CMB) model was also applied to apportion primary and secondary sources to fine organic carbon (OC) and PM. Findings revealed that PM2.5 is a major contributor to ambient particle levels in Milan, averaging 34.5 ± 19.4 μg m-3 throughout the year. Specifically, secondary inorganic ions and organic matter were the most dominant fine PM species contributing to 36 ± 7.1% and 34 ± 6.3% of its mass on a yearly-based average, respectively. Highest PM2.5 concentrations occurred during December-February and were mainly attributed to poor atmospheric dispersion. On the other hand, PM2.5-10 exhibited an annual average of 6.79 ± 1.67 μg m-3, with crustal elements prevailing. Source apportionment results showed that wood-smoke and secondary organic aerosol sources contribute to 4.6 ± 2.6% and 9.8 ± 11% of fine OC on a yearly-based average, respectively. The remaining OC is likely associated with petroleum-derived material that is not adequately represented by existing source profiles used in this study. Lastly, ROS-activity measurements indicated that PM2.5-induced redox activity expressed per m3 of air volume is greatest during January (837 μg Zymosan equivalents m-3) and February (920 μg Zymosan equivalents m-3). Conversely, intrinsic (per PM mass) ROS-activity peaked in July (22,587 μg Zymosan equivalents mg

  11. Aerosol Climate Time Series in ESA Aerosol_cci

    Science.gov (United States)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  12. Information Content of Aerosol Retrievals in the Sunglint Region

    Science.gov (United States)

    Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.

    2013-01-01

    We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type.

  13. Chemical composition of aerosols in winter/spring in Beijing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In 1999 aerosol samples were collected by cascade at Meteorological Tower in Beijing. The 12 group aerosol samples obtained were analyzed using PIXE method, which resulted in 20 elemental concentrations and size distribution of elemental concentrations. From the observation, the elemental concentrations,size distribution of elemental concentrations and their variations are analyzed. It shows that concentrations of the most elements in aerosols increase greatly compared with those in the past except that the concentrations of V, K, Sr, and the source of aerosols has changed greatly in the past decade. Fine mode aerosols increase more rapidly in the past decade, which may be due to the contribution of coal combustion and automobile exhaust. Pb content in aerosol is much higher than that at the beginning of 1980s, and has a decreasing trend in recent years because of using non-leaded gasoline.

  14. Aerosol Observation System

    Data.gov (United States)

    Oak Ridge National Laboratory — The aerosol observation system (AOS) is the primary Atmospheric Radiation Measurement (ARM) platform for in situ aerosol measurements at the surface. The principal...

  15. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    Science.gov (United States)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  16. Analysis of atmospheric aerosols using the Lisbon Nuclear Microprobe

    International Nuclear Information System (INIS)

    The nuclear microprobe installed at Instituto Tecnologico e Nuclear in Lisbon, was used in the analysis of aerosol collected at the Azores islands. Samples from different aerosol groups were analysed. One referred to aerosols that were carried from North America and the other one contained aerosols that were carried from the Sahara desert and crossed over Europe. Coarse and fine fractions were analysed for each aerosol group and two-dimensional elemental maps were constructed, which allowed the identification of several individual particles. For particles of interest, elemental spatial correlations and dimensions were determined and point analysis was also carried out (depth information was achieved by fitting Rutherford backscattering spectra). Some of these particles are quite interesting. For instance, in the fine fraction of the aerosols that were carried from North America particles were found with Cu and Cl in the atomic proportion 1:2 and with dimensions 15x15x15 μm3, and in the corresponding coarse fraction a particle with K and S was identified, with dimensions 28x35x30 μm3. Some differences were found between aerosol groups. One example of these Ti particles (fine fraction) and Rb (coarse fraction) that were identified in one group (Sahara desert and Europe), but not in the other. (author)

  17. Modelling and numerical simulation of the General Dynamic Equation of aerosols; Modelisation et simulation des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Debry, E.

    2005-01-15

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as fine suspended particles, called aerosols, which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelling and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelling. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelling issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author)

  18. Retrieval of aerosol composition using ground-based remote sensing measurements

    Science.gov (United States)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  19. Aerosol Optical Properties and Determination of Aerosol Size Distribution in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2014-01-01

    Full Text Available Columnar aerosol volume size distributions from March 2012 to February 2013 in Wuhan, China, were investigated with a focus on monthly and seasonal variations in the aerosol optical depths (AODs and Ångström exponents. AOD is wavelength dependent, and for AOD at, for example, 500 nm, the seasonal averaged AOD value decreased in the order of winter (~0.84, spring (~0.83, summer (~0.76 and autumn (~0.55. The Ångström exponent suggested that the aerosol sizes in summer (~1.22, winter (~1.14, autumn (~1.06 and spring (~0.99 varied from fine to coarse particles. The Ångström exponent and AOD could provide a qualitative evaluation of ASD. Moreover, aerosol size distribution (ASD was larger in winter than the other three seasons, especially from 1.0 µm to 15 µm due to heavy anthropogenic aerosol and damp climate. The ASD spectral shape showed a bimodal distribution in autumn, winter, and spring, with one peak (<0.1 in the fine mode range and the other (>0.14 in the coarse mode range. However, there appeared to be a trimodal distribution during summer, with two peaks in the coarse mode, which might be due to the hygroscopic growth of the local particles and the generation of aerosol precursor resulting from the extreme-high temperature and relative humidity.

  20. Development of a cavity enhanced aerosol albedometer

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2014-03-01

    Full Text Available We report on the development of a cavity enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS approach and an integrating sphere (IS for simultaneous in situ measurements of aerosol scattering and extinction coefficients in the exact same sample volume. The cavity enhanced albedometer employed a blue light-emitting diode (LED based IBBCEAS approach for the measurement of wavelength-resolved aerosol optical extinction over the spectral range of 445–480 nm. An integrating sphere nephelometer coupled to the IBBCEAS setup was used for the measurement of aerosol scattering. The scattering signal was measured with a single channel photomultiplier tube (PMT, providing an integrated value over a narrow bandwidth (FWHM ~ 9 nm in the spectral region of 465–474 nm. A scattering coefficient at a wavelength of 470 nm was deduced as an averaged scattering value and used for data analysis and instrumental performance comparison. Performance evaluation of the albedometer was carried out using laboratory-generated particles and ambient aerosol. The scattering and extinction measurements of monodisperse polystyrene latex (PSL spheres generated in laboratory proved excellent correlation between two channels of the albedometer. The retrieved refractive index (RI from the measured scattering and extinction efficiencies agreed well with the values reported in previously published papers. Aerosol light scattering and extinction coefficients, single scattering albedo (SSA and NO2 concentrations in an ambient sample were directly and simultaneously measured using the developed albedometer. The developed instrument was validated via an intercomparison of the measured aerosol scattering coefficient and NO2 trace concentration against a TSI 3563 integrating nephelometer and a chemiluminescence detector, respectively.

  1. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  2. A Computational Study of Acid Catalyzed Aerosol Reactions of Atmospherically Relevant Epoxides

    Science.gov (United States)

    Epoxides are important intermediates of atmospheric isoprene oxidation. Their subsequent reactions in the particle phase lead to the production of organic compounds detected in ambient aerosols. We apply density functional theory to determine the important kinetic factors that ...

  3. Sources of carbonaceous aerosol in the Amazon basin

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2011-03-01

    Full Text Available The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies.

    In the framework of the European Integrated Project on Aerosol Cloud Climate Interactions (EUCAARI fine (Dp < 2.5 μm and coarse (2.5 μm < Dp <10 μm aerosol particles were sampled from February to June (wet season and from August to September (dry season 2008 in the central Amazon basin. The mass of fine particles averaged 2.4 μg m−3 during the wet season and 4.2 μg m−3 during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 μg m−3, respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC; the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m2 g−1 at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF analysis of thermograms: 44% of fine total carbon mass was assigned to biomass burning, 43% to secondary organic aerosol (SOA, and 13% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas.

    The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical background site. The comparison showed an overestimation

  4. Wintertime measurements of aerosol acidity and trace elements in wuhan, a city in central china

    International Nuclear Information System (INIS)

    In the People's Republic of China (P.R.C.), the pervasive use of soft coal leads to situations where the concentrations of SO2 and particulate matter approach or surpass those historically observed in London. A cooperative investigation of the effects of air pollution upon the lung function of children in five Chinese cities has been developed among China EPA, U.S. EPA and Robert Wood Johnson Medical School. The paper presents initial results of a winter air pollution field study conducted in Wuhan, one of the selected cities. A 2-week intensive ambient aerosol study was conducted in December 1988 in Wuhan (Hubei Province), a city of nearly 2 million located on the Yangtze River in central China (P.R.C.). This is an industrial region where soft coal burning is widespread, and emission controls for vehicles and industrial facilities are minimal. The sampling site was located in one of the civic centers where residential and commercial density is highest. The purpose of this initial intensive study period was to obtain information on the chemical and physical characteristics of the aerosol species in the urban P.R.C. setting. The focus was the composition and acidity of fine particulate material

  5. Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data

    Directory of Open Access Journals (Sweden)

    A. Fotiadi

    2006-01-01

    Full Text Available In this study, we investigate the aerosol optical properties, namely aerosol extinction optical thickness (AOT, Angström parameter and size distribution over the Eastern Mediterranean Basin, using spectral measurements from the recently established FORTH (Foundation for Research and Technology-Hellas AERONET station in Crete, for the two-year period 2003–2004. The location of the FORTH-AERONET station offers a unique opportunity to monitor aerosols from different sources. Maximum values of AOT are found primarily in spring, which together with small values of the Angström parameter indicate dust transported from African deserts, whereas the minimum values of AOT occur in winter. In autumn, large AOT values observed at near-infrared wavelengths arise also from dust transport. In summer, large AOT values at ultraviolet (340 nm and visible wavelengths (500 nm, together with large values of the Angström parameter, are associated with transport of fine aerosols of urban/industrial and biomass burning origin. The Angström parameter values vary on a daily basis within the range 0.05–2.20, and on a monthly basis within the range 0.68–1.9. This behaviour, together with broad frequency distributions and back-trajectory analyses, indicates a great variety of aerosol types over the study region including dust, urban-industrial and biomass-burning pollution, and maritime, as well as mixed aerosol types. Large temporal variability is observed in AOT, Angström parameter, aerosol content and size. The fine and coarse aerosol modes persist throughout the year, with the coarse mode dominant except in summer. The highest values of AOT are related primarily to southeasterly winds, associated with coarse aerosols, and to a less extent to northwesterly winds associated with fine aerosols. The results of this study show that the FORTH AERONET station in Crete is well suited for studying the transport and mixing of different types of aerosols from a variety

  6. Contribution of natural and anthropogenic aerosols to optical properties and radiative effects over an urban location

    International Nuclear Information System (INIS)

    A method to determine the contribution of natural and anthropogenic aerosol species to aerosol radiative forcing using surface-based, columnar and vertical profile measurements, optical properties and radiative transfer models is outlined. Aerosol optical properties and radiative fluxes measured during 2008 over Ahmedabad, an urban city located in western India are utilized. Mid-visible aerosol optical depth (AOD) does not show a strong seasonal variation, while α, the Ångström exponent, exhibits significant seasonal variation. α is higher during winter and post-monsoon, when fine mode aerosols are dominant, while α is lower during pre-monsoon and monsoon, when coarse mode aerosols are abundant. The contribution of mineral dust to the total aerosol mass is higher than 55% as the study location is in a semi-arid region. Natural aerosols (mineral dust and sea salt) dominate the aerosol mass concentration, while anthropogenic aerosols (water soluble aerosols and black carbon) dominate the aerosol optical depth. The percentage contribution of black carbon to the net atmospheric forcing is larger than 65% throughout the year, corroborating that black carbon aerosol is a strong contributor to global warming on regional scales. Black carbon aerosols contribute 50% or more to the aerosol radiative forcing at the surface, thus, significantly contributing to solar dimming. The large atmospheric warming and the surface forcing due to black carbon aerosols can influence the hydrological cycle. Results emphasize that aerosol radiative forcing is governed more by aerosol optical properties (aerosol optical depth and single scattering albedo) rather than their mass, and there exists no linear relation between mass, optical depth and radiative effects of different aerosol species. These results and the relationship can be used to delineate the anthropogenic influence of aerosols from their natural counterpart, because anthropogenic aerosols in the fine mode (lower mass) give

  7. The contribution of aerosol hygroscopic growth to the modeled aerosol radiative effect

    Science.gov (United States)

    Kokkola, Harri; Kühn, Thomas; Kirkevåg, Alf; Romakkaniemi, Sami; Arola, Antti

    2016-04-01

    The hygroscopic growth of atmospheric aerosols can have a significant effect on the direct radiative effect of atmospheric aerosol. However, there are significant uncertainties concerning how much of the radiative forcing is due to different chemical compounds, especially water. For example, modeled optical depth of water in global aerosol-climate models varies by more than a factor of two. These differences can be attributed to differences in modeled 1) hygroscopicity, 2) ambient relative humidity, and/or 3) aerosol size distribution. In this study, we investigate which of these above-mentioned factors cause the largest variability in the modeled optical depth of water. In order to do this, we have developed a tool that calculates aerosol extinction using interchangeable global 3D data of aerosol composition, relative humidity, and aerosol size distribution fields. This data is obtained from models that have taken part in the open international initiative AeroCom (Aerosol Comparisons between Observations and Models). In addition, we use global 3D data for relative humidity from the Atmospheric Infrared Sounder (AIRS) flying on board NASA's Aqua satellite and the National Centers for Environmental Prediction (NCEP) reanalysis data. These observations are used to evaluate the modeled relative humidity fields. In the first stage of the study, we made a detailed investigation using the aerosol-chemistry-climate model ECHAM-HAMMOZ in which most of the aerosol optical depth is caused by water. Our results show that the model significantly overestimates the relative humidity over the oceans while over land, the overestimation is lower or it is underestimated. Since this overestimation occurs over the oceans, the water optical depth is amplified as the hygroscopic growth is very sensitive to changes in high relative humidities. Over land, error in modeled relative humidity is unlikely to cause significant errors in water optical depth as relative humidities are generally

  8. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Directory of Open Access Journals (Sweden)

    T. Holzer-Popp

    2013-08-01

    photometer observations for the different versions of each algorithm globally (land and coastal and for three regions with different aerosol regimes. The analysis allowed for an assessment of sensitivities of all algorithms, which helped define the best algorithm versions for the subsequent round robin exercise; all algorithms (except for MERIS showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol-type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage for the MERIS standard product, but not for the algorithms using AATSR. It is noted that all these observations are mostly consistent for all five analyses (global land, global coastal, three regional, which can be understood well, since the set of aerosol components defined in Sect. 3.1 was explicitly designed to cover different global aerosol regimes (with low and high absorption fine mode, sea salt and dust.

  9. Aerosol behaviour modeling and measurements

    International Nuclear Information System (INIS)

    Aerosol behavior within Liquid Metal Fast Breeder Reactor (LMFBR) containments is of critical importance since most of the radioactive species are expected to be associated with particulate forms and the mass of radiologically significant material leaked to the ambient atmosphere is directly related to the aerosol concentration airborne within the containment. Mathematical models describing the behavior of aerosols in closed environments, besides providing a direct means of assessing the importance of specific assumptions regarding accident sequences, will also serve as the basic tool with which to predict the consequences of various postulated accident situations. Consequently, considerable efforts have been recently directed toward the development of accurate and physically realistic theoretical aerosol behavior models. These models have accounted for various mechanisms affecting agglomeration rates of airborne particulate matter as well as particle removal rates from closed systems. In all cases, spatial variations within containments have been neglected and a well-mixed control volume has been assumed. Examples of existing computer codes formulated from the mathematical aerosol behavior models are the Brookhaven National Laboratory TRAP code, the PARDISEKO-II and PARDISEKO-III codes developed at Karlsruhe Nuclear Research Center, and the HAA-2, HAA-3, and HAA-3B codes developed by Atomics International. Because of their attractive short computation times, the HAA-3 and HAA-3B codes have been used extensively for safety analyses and are attractive candidates with which to demonstrate order of magnitude estimates of the effects of various physical assumptions. Therefore, the HAA-3B code was used as the nucleus upon which changes have been made to account for various physical mechanisms which are expected to be present in postulated accident situations and the latest of the resulting codes has been termed the HAARM-2 code. It is the primary purpose of the HAARM

  10. Ultrahigh resolution mass spectrometric characterization of organic aerosol from European and Chinese cities

    Science.gov (United States)

    Wang, Kai; Huang, Ru-Jin; Hoffmann, Thorsten

    2016-04-01

    Organic aerosol constitutes a substantial fraction (20-90%) of submicrometer aerosol mass, playing an important role in air quality and human health. Over the past few years, ultra-high resolution mass spectrometry (UHRMS) has been applied to elucidate the chemical composition of ambient aerosols. However, most of the UHRMS studies used direct infusion without prior separation by liquid chromatography, which may cause the loss of individual compound information and interference problems. In the present study, urban ambient aerosol with particle diameter pure water and prepared for the extraction of humic-like substances. The extracts were analyzed by ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometer in both negative and the positive modes. The effects of pretreatment procedures on the characterization of organic aerosol and the city-wise difference in chemical composition of organic aerosol will be discussed in detail.

  11. Laser filament-induced aerosol formation

    OpenAIRE

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Y. Petit; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; J.-P. Wolf; Wöste, L.

    2012-01-01

    Using the aerosol and cloud simulation chamber AIDA we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon-oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with partic...

  12. Laser filament-induced aerosol formation

    OpenAIRE

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Y. Petit; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; J.-P. Wolf; Wöste, L.

    2013-01-01

    Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with parti...

  13. Laser filament-induced aerosol formation

    OpenAIRE

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Y. Petit; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; Wolf, J.-P.; Wöste, L.

    2013-01-01

    Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to...

  14. Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Annual PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD) data sets represent a series of annual average grids (2001-2010) of fine particulate...

  15. Analysis and quantification of the diversities of aerosol life cycles within AeroCom

    Directory of Open Access Journals (Sweden)

    C. Textor

    2006-01-01

    Full Text Available Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The differences among the results (model diversities for sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. Processes and parameters are identified which deserve further research. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS, followed by dust (DU, sulfate (SO4, particulate organic matter (POM, and finally black carbon (BC. Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO4, POM, and BC. The all-models-average residence time is shortest for SS with about half a day, followed by SO4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO4 and SS. It is the dominant sink for SO4, BC, and POM, and contributes about one third to the total removal

  16. Personal exposures to acidic aerosols and ammonia

    International Nuclear Information System (INIS)

    Indoor, outdoor, and personal exposures to acidic aerosols, sulfates, and ammonia were monitored for twenty-four children living in Uniontown, Pennsylvania. Adolescent children, age 11, participated in an investigation of air pollution (PM10, sulfates, acid aerosols, ozone) and pulmonary performance during the Summer of 1990. 92% of the participants (all from non-smoking homes) volunteered to wear personal monitors and record daily activities over two twelve-hour daytime periods. Similar air pollution measurements were made inside and immediately outside their homes. Indoor and outdoor concentrations were measured using the Harvard-EPA annular denuder system (HEADS), while personal exposures were measured using the Personal Annular Denuder system (PADS). All exposure measurements were compared to measurements collected at a centrally located ambient monitoring site. The paper reports the relationships among personal, indoor home, outdoor home, and central site measurements of acidic aerosols, sulfate particles, and ammonia. During days where personal monitoring occurred, hydrogen ion concentrations range from 0 to 520 nmoles/m3 at the central site. There was not substantial spatial variation in ambient acidity over this Western Pennsylvania community. Indoor concentrations were substantially lower than outdoors, with a mean ratio of 0.14. Personal exposures were typically greater than indoor exposures, but averaged only 29% of the outdoor concentrations. Time activity, housing factors, sulfate particles, and ammonia concentrations are analyzed. The impact of this study on the characterization of population exposures to acidic aerosols in epidemiologic studies and modeling also are discussed

  17. Weekly patterns of aerosol in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2008-05-01

    Full Text Available Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network of aerosol samplers and NOAA monitoring sites are examined for weekly cycles. At remote and rural sites, fine particle elemental carbon, crustal elements, and coarse particle mass had pronounced (up to 20% weekly cycles with minima on Sunday or Monday. Fine particle organic carbon and mass had smaller amplitude cycles, also with Sunday or Monday minima. There was no statistically significant weekly cycle in fine particle sulfate despite a 5 to 15% weekly cycle in power plant SO2 emissions. Although results for nitrate may be more susceptible to sampling artifacts, nitrate also showed a pronounced weekly cycle with an amplitude similar to elemental carbon. The only species found with a weekend maximum was Pb, probably from general aviation on weekends. Aerosol optical properties at NOAA monitoring sites were consistent with the IMPROVE chemical data, with significant weekly cycles in aerosol light absorption but not light scattering. These results support a large role of diesel emissions in elemental carbon aerosol over the entire United States and suggest that a large fraction of the airborne soil dust is anthropogenic. They also suggest that studies of weekly cycles in temperature, cloudiness, precipitation, or other meteorological variables should look for causes more in light-absorbing particles and possible ice nucleation by dust rather than sulfate or total aerosol. There are also implications for personal exposure and epidemiological studies of aerosol health effects.

  18. Weekly patterns of aerosol in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2008-01-01

    Full Text Available Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network of aerosol samplers and NOAA monitoring sites are examined for weekly cycles. Fine particle elemental carbon, crustal elements, and coarse particle mass had pronounced (up to 20% weekly cycles with minima on Sunday or Monday. Fine particle organic carbon and mass had smaller amplitude cycles, also with Sunday or Monday minima. There was no statistically significant weekly cycle in fine particle sulfate despite a 10 to 15% weekly cycle in power plant SO2 emissions. Although results for nitrate must be treated with caution, it showed a pronounced weekly cycle with an amplitude similar to elemental carbon. The only species found with a weekend maximum was Pb, probably from general aviation on weekends. Aerosol optical properties at NOAA monitoring sites were consistent with the IMPROVE chemical data, with significant weekly cycles in aerosol light absorption but not light scattering. These results support a large role of diesel emissions in elemental carbon aerosol over the entire United States and suggest that a large fraction of the airborne soil dust is anthropogenic. They also suggest that studies of weekly cycles in temperature, cloudiness, or precipitation should look for causes more in light-absorbing particles and dust rather than sulfate or total aerosol. There are also implications for personal exposure and epidemiological studies of aerosol health effects.

  19. Aerosol impacts on climate and environment over East Asia

    Science.gov (United States)

    Nakata, M.; Sano, I.; Mukai, S.

    2014-12-01

    It is well known that the aerosol distribution in East Asia is complex due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the behavior of natural dusts. Therefore, detailed observations of atmospheric particles in East Asian are important. It is concerned about the change of concentration of aerosols causes various effects on the climate by directly and indirectly modifying the optical properties and lifetimes of cloud. In addition to radiation budget change, aerosol has a significant potential to change cloud and precipitation. These circulation fields change influence on emission of natural aerosols such as dust aerosols and sea salt aerosols. Also, air pollution in megacities in East Asia has become a serious problem. Especially problematic are fine particles called PM2.5, whose diameter is 2.5 mm or less. Particulate matter (PM) pollution as indicated by high PM2.5 readings will cause a spike in the mortality rate of patients suffering from heart and lung diseases. Because fine particles are much smaller than inhalable coarse particles, the can penetrate deeper into the lungs and cause more severe effects on human health. Anthropogenic sources of PM2.5 include automobiles, factories, coal-burning power plants, and heaters in homes. It is well known that the size of dust particles decreases during long-range transport via westerly winds, and the resulting dust storms can contain high concentrations of fine particles. Accordingly, PM2.5 concentrations correspond well to both anthropogenic and dust aerosols. This work intends to investigate impacts of aerosol on regional climate change and environment over East Asia using observations and model simulations.

  20. The Seasonal Variations of Aerosols over East Asia as Jointly Inferred from MODIS and OMI

    Institute of Scientific and Technical Information of China (English)

    LIU Qi; DING Wei-Dong; FU Yun-Fei

    2011-01-01

    Data on aerosol optical thickness (AOT) and single scattering albedo (SSA) derived from Moderate Resolution Imaging Spectrometer (MODIS) and Ozone Monitoring Instrument (OMI) measurements, respectively, are used jointly to examine the seasonal variations of aerosols over East Asia. The seasonal signals of the total AOT are well defined and nearly similar over the land and over the ocean. These findings indicate a natural cycle of aerosols that originate primarily from natural emissions. In contrast, the small-sized aerosols represented by the fine-mode AOT, which are primarily generated over the land by human activities, do not have evident seasonalscale fluctuations. A persistent maximum of aerosol load- ings centered over the Sichuan basin is associated with considerable amounts of fine-mode aerosols throughout the year. Most regions exhibit a general spring maximum. During the summer, however, the aerosol loadings are the most marked over north central China. This occurrence may result from anthropogenic fine particles, such as sulfate and nitrate. Four typical regions were selected to perform a covariation analysis of the monthly gridded AOT and SSA. Over southwestern and southeastern China, if the aerosol loadings are small to moderate they are composed primarily of the highly absorptive aerosols. However, more substantial aerosol loadings probably represent less-absorptive aerosols. The opposite covaria- tion pattern occurring over the coastal-adjacent oceans suggests that the polluted oceanic atmosphere is closely correlated with the windward terrestrial aerosols. North central China is strongly affected by dust aerosols that show moderate absorption. This finding may explain the lower variability in the SSA that accompanies increasing aerosol loadings in this region.

  1. Investigation of indoor aerosols at educational institutions in Debrecen, Hungary

    International Nuclear Information System (INIS)

    concentrations. Based on the mass size distribution values significant differences were found between the salt and the gymnastic room. In the salt room, where children were allowed only to sit, lower concentration values and smaller particle sizes were detected than in the other room where children did exercises and gymnastics. In the light of these results further aerosol characterization studies is needed to provide more accurate information about the sources and the possible health effects of ambient aerosol in educational environments. Acknowledgements. This work was supported by the Hungarian Research Fund OTKA and the EGT Norwegian Financial Mechanism Programme (contract no. NNF78829) and the Janos Bolyai Research Scholarship of the HAS.

  2. Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study

    OpenAIRE

    Toprak, E.; Schnaiter, M.

    2013-01-01

    In this paper bioaerosol measurements conducted with the Waveband Integrated Bioaerosol Sensor mark 4 (WIBS-4) are presented. The measurements comprise aerosol chamber characterization experiments and a one-year ambient measurement period at a semi-rural site in South Western Germany. This study aims to investigate the sensitivity of WIBS-4 to biological and non-biological aerosols and detection of biological particles in the ambient aerosol. Several types of biological and non-biological aer...

  3. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  4. Comparison of physicochemical properties between fine (PM2.5) and coarse airborne particles at cold season in Korea.

    Science.gov (United States)

    Choung, Sungwook; Oh, Jungsun; Han, Weon Shik; Chon, Chul-Min; Kwon, Youngsang; Kim, Do Yeon; Shin, Woosik

    2016-01-15

    Although it has been well-known that atmospheric aerosols affect negatively the local air quality, human health, and climate changes, the chemical and physical properties of atmospheric aerosols are not fully understood yet. This study experimentally measured the physiochemical characteristics of fine and coarse aerosol particles at the suburban area to evaluate relative contribution to environmental pollution in consecutive seasons of autumn and winter, 2014-2015, using XRD, SEM-EDX, XNI, ICP-MS, and TOF-SIMS. For these experimental works, the fine and coarse aerosols were collected by the high volume air sampler for 7 days each season. The fine particles contain approximately 10 μg m(-3) of carbonaceous aerosols consisting of 90% organic and 10% elemental carbon. The spherical-shape carbonaceous particles were observed for the coarse samples as well. Interestingly, the coarse particles in winter showed the increased frequency of carbon-rich particles with high contents of heavy metals. These results suggest that, for the cold season, the coarse particles could contribute relatively more to the conveyance of toxic contaminants compared to the fine particles in the study area. However, the fine particles showed acidic properties so that their deposition to surface may cause facilitate the increase of mobility for toxic heavy metals in soil and groundwater environments. The fine and coarse particulate matters, therefore, should be monitored separately with temporal variation to evaluate the impact of atmospheric aerosols to environmental pollution and human health. PMID:26476059

  5. Fine Arts Database (FAD)

    Data.gov (United States)

    General Services Administration — The Fine Arts Database records information on federally owned art in the control of the GSA; this includes the location, current condition and information on artists.

  6. Comparison of aerosol and bioaerosol collection on air filters

    OpenAIRE

    Miaskiewicz-Peska, Ewa; Lebkowska, Maria

    2011-01-01

    Air filters efficiency is usually determined by non-biological test aerosols, such as potassium chloride particles, Arizona dust or di-ethyl-hexyl-sebacate (DEHS) oily liquid. This research was undertaken to asses, if application of non-biological aerosols reflects air filters capacity to collect particles of biological origin. The collection efficiency for non-biological aerosol was tested with the PALAS set and ISO Fine Test Dust. Flow rate during the filtration process was 720 l/h, and par...

  7. CHARACTERIZATION OF URBAN AEROSOL SOURCES IN DEBRECEN, HUNGARY

    Directory of Open Access Journals (Sweden)

    ZSÓFIA KERTÉSZ

    2008-12-01

    Full Text Available Debrecen is an average middle European city from the point of view of aerosol pollution. Its location makes the city an ideal place for observing aerosol transport processes. Systematic investigation ofatmospheric aerosol of the east-Hungarian region has been performed in the Institute of Nuclear Research of the Hungarian Academy of Sciences for 20 years by accelerator based elemental analytical technique. As a complementation of this research we observed the size distribution andshort-term time variation of the elemental component of fine (PM2.5 and coarse (PM10-PM2.5 urban aerosol in the frame of sampling campaigns during 2007 and 2008 in a downtown site of Debrecen.Meteorological parameters were also recorded parallel to the aerosol sampling. Elemental concentrations (Z ≥ 12 were determined by particle induced X-ray emission (PIXE analytical technique at the Laboratory of Ion Beam Applications (IBA of the ATOMKI. On the obtained database six sources of the urban aerosol were identified: 2 types of soil, domestic heating, sulphate originating from long range transport processes, an unidentified source enriched with chlorine andtraffic. Emission episodes were also observed. The short-time variation of urban aerosol combined with meteorological data and with mass size distribution serves as a basis to reach a better understanding of the aerosol sources in receptor areas, to select local emission and long range transport episodes, to follow the evolution of aerosol, and to make a better estimate on the health impact.

  8. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  9. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  10. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  11. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  12. Is Distant Pollution Contaminating Local Air? Analyzing the Origins of Atmospheric Aerosols

    OpenAIRE

    David Geng

    2012-01-01

    Understanding the origin of aerosols in the atmosphere is important because of visual pollution, climate impacts, and deleterious health effects due to the inhalation of fine particles. This research analyzed aerosols characterized by their chloride, sulfate, and nitrate content as a function of size over a 3-month period. Due to wind patterns over coal-burning power plants, a higher concentration of local sulfate pollution was expected. Aerosols were harvested on the Purdue University campus...

  13. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  14. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  15. Monitoring biological aerosols using UV fluorescence

    Science.gov (United States)

    Eversole, Jay D.; Roselle, Dominick; Seaver, Mark E.

    1999-01-01

    An apparatus has been designed and constructed to continuously monitor the number density, size, and fluorescent emission of ambient aerosol particles. The application of fluorescence to biological particles suspended in the atmosphere requires laser excitation in the UV spectral region. In this study, a Nd:YAG laser is quadrupled to provide a 266 nm wavelength to excite emission from single micrometer-sized particles in air. Fluorescent emission is used to continuously identify aerosol particles of biological origin. For calibration, biological samples of Bacillus subtilis spores and vegetative cells, Esherichia coli, Bacillus thuringiensis and Erwinia herbicola vegetative cells were prepared as suspensions in water and nebulized to produce aerosols. Detection of single aerosol particles, provides elastic scattering response as well as fluorescent emission in two spectral bands simultaneously. Our efforts have focuses on empirical characterization of the emission and scattering characteristics of various bacterial samples to determine the feasibility of optical discrimination between different cell types. Preliminary spectroscopic evidence suggest that different samples can be distinguished as separate bio-aerosol groups. In addition to controlled sample results, we will also discuss the most recent result on the effectiveness of detection outdoor releases and variations in environmental backgrounds.

  16. Environmental Ultrafine, Fine and Coarse Particles in a Highway Tunnel and at a Roadside

    Czech Academy of Sciences Publication Activity Database

    Chen, S.C.; Tsai, C.J.; Chen, S.J.; Lin, C.C.; Chou, Ch.C.K.; Lung, S.C.; Roam, G.D.; Wu, W.Y.; Smolík, Jiří; Ondráčková, Lucie

    Prague : Orgit, 2009 - (Smolík, J.; O'Dowd, C.), S.200-203 ISBN 978-80-02-12161-2. [International Conference Nucleation and Atmospheric Aerosols /18./. Prague (CZ), 10.08.2009-14.08.2009] Grant ostatní: EPA (TW) 97/U1U1/02/106 Institutional research plan: CEZ:AV0Z40720504 Keywords : ultrafine particle * ambient aerosols * sampling and analysis Subject RIV: CF - Physical ; Theoretical Chemistry http://www.icnaa.cz/

  17. Identification of sources of Phoenix aerosol by positive matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Z.; Song, X.-H.; Hopke, P.K. [Clarkson University, Potsdam, NY (USA). Depts. of Chemical Engineering and Chemistry

    2000-08-01

    Chemical composition data for fine and coarse particles collected in Phoenix, AZ were analyzed using positive matrix factorization (PMF). The objective was to identify the possible aerosol sources at the sampling site. Two sets of fine particle samples were collected by different samplers. Each of the resulting fine particle data sets was analyzed separately. For each fine particle data set, eight factors were obtained, identified as (1) biomass burning characterized by high concentrations of organic carbon (OC) elemental carbon (EC), and K; (2) wood burning with high concentrations of Na, K, OC and EC; (3) motor vehicles with high concentrations of OC and EC; (4) nonferrous smelting process characterized by Cu, Zn, As and Pb; (5) heavy-duty diesel characterized by high EC, OC, and Mn; (6) sea-salt factor dominated by Na and Cl; (7) soil with high values for Al, Si, Ca, Ti and Fe; and (8) secondary aerosol with SO{sub 4}{sup -2} and OC that may represent coal-fired power plant emissions. The major sources for the fine particles were motor vehicles, vegetation burning factors (biomass and wood burning), and coal-fired power plants. These sources contributed most of the fine aerosol mass by emitting carbonaceous particles, and they have higher contributions in winter. For the coarse particles, the major source contributions were soil and construction (high Ca). These sources also peaked in winter. 20 refs., 14 figs., 3 tabs.

  18. Analysis and Quantification of the Diversities of Aerosol Life Cycles within AeroCom

    Energy Technology Data Exchange (ETDEWEB)

    Textor, C.; Schulz, M.; Guibert, S.; Kinne, Stefan; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, Olivier; Chin, M.; Dentener, F.; Diehl, T.; Easter, Richard C.; Feichter, H.; Fillmore, D.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Grini, A.; Hendricks, J.; Horrowitz, L.; Huang, P.; Isaksen, I.; Iversen, T.; Kloster, S.; Koch, D.; Kirkevag, A.; Kristjansson, J. E.; Krol, M.; Lauer, A.; Lamarque, J. F.; Liu, Xiaohong; Montanaro, V.; Myhre, G.; Penner, Joyce E.; Pitari, G.; Reddy, S.; Seland, O.; Stier, P.; Takemura, T.; Tie, X.

    2006-05-29

    Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The diversities among the models for the sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol, which they dominate in mass. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry mass decrease along DU, SS, SO4, POM, and BC. The all-models-average residence time was the shortest for sea salt with about half a day, followed by SO4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO4 and SS. It is the dominant sink for SO4, BC, and POM, and contributes about one third to the total removal rate coefficients of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor

  19. Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity

    Science.gov (United States)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Fountoukis, Christos; Nenes, Athanasios; Zavala, Miguel; Lei, Wenfang; Molina, Luisa T.; Pandis, Spyros N.

    2010-02-01

    A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM 1 (fine) and PM 1-10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) "Supersite" shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m -3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m -3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m -3 (a factor of 10), 0.4 μg m -3, and 0.6 μg m -3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.

  20. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    This quarterly report presents results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the January-March, 2002 study period. The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. Some instrumental issues were noted with the upgrade of the APS model 3320 are described in the report, as well as preliminary performance indications for the upgraded instrument. During the quarter preliminary data analysis and modeling studies were conducted to test the potential of the North Birmingham site data for source attribution analyses. Our initial assessment has continued to be optimistic in this regard due to the location of the site relative to several important classes of local and midrange emission sources. We anticipate that these analyses will provide good separations of the effects of major source classes and spatial source clusters, and will provide useful information relevant to PM{sub 2.5} implementation strategies.

  1. Facility of aerosol filtration

    International Nuclear Information System (INIS)

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator)

  2. Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations

    International Nuclear Information System (INIS)

    Fine root dynamics (diameter < 1 mm) in mature Fagus sylvatica, with the canopies exposed to ambient or twice-ambient ozone concentrations, were investigated throughout 2004. The focus was on the seasonal timing and extent of fine root dynamics (growth, mortality) in relation to the soil environment (water content, temperature). Under ambient ozone concentrations, a significant relationship was found between fine root turnover and soil environmental changes indicating accelerated fine root turnover under favourable soil conditions. In contrast, under elevated ozone, this relationship vanished as the result of an altered temporal pattern of fine root growth. Fine root survival and turnover rate did not differ significantly between the different ozone regimes, although a delay in current-year fine root shedding was found under the elevated ozone concentrations. The data indicate that increasing tropospheric ozone levels can alter the timing of fine root turnover in mature F. sylvatica but do not affect the turnover rate. - Doubling of ozone concentrations in mature European beech affected the seasonal timing of fine root turnover rather than the turnover rate.

  3. Cloud albedo increase from carbonaceous aerosol

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2010-08-01

    Full Text Available Airborne measurements from two consecutive days, analysed with the aid of an aerosol-adiabatic cloud parcel model, are used to study the effect of carbonaceous aerosol particles on the reflectivity of sunlight by water clouds. The measurements, including aerosol chemistry, aerosol microphysics, cloud microphysics, cloud gust velocities and cloud light extinction, were made below, in and above stratocumulus over the northwest Atlantic Ocean. On the first day, the history of the below-cloud fine particle aerosol was marine and the fine particle sulphate and organic carbon mass concentrations measured at cloud base were 2.4 μg m−3 and 0.9 μg m−3 respectively. On the second day, the below-cloud aerosol was continentally influenced and the fine particle sulphate and organic carbon mass concentrations were 2.3 μg m−3 and 2.6 μg m−3 respectively. Over the range 0.06–0.8 μm diameter, the shapes of the below-cloud size distributions were similar on both days and the number concentrations were approximately a factor of two higher on the second day. The cloud droplet number concentrations (CDNC on the second day were approximately three times higher than the CDNC measured on the first day. Using the parcel model to separate the influence of the differences in gust velocities, we estimate from the vertically integrated cloud light scattering measurements a 6% increase in the cloud albedo principally due to the increase in the carbonaceous components on the second day. Assuming no additional absorption by this aerosol, a 6% albedo increase translates to a local daytime radiative cooling of ∼12 W m−2. This result provides observational evidence that the role of anthropogenic carbonaceous components in the cloud albedo effect can be much larger than that of anthropogenic sulphate, as some global simulations have indicated.

  4. Aerosol satellite remote sensing

    NARCIS (Netherlands)

    Veefkind, Joris Pepijn

    2001-01-01

    Aerosols are inportant for many processes in the atmosphere. Aerosols are a leading uncertainty in predicting global climate change, To a large extent this uncertainty is caused by a lack of knowledge on the occurrence and concentration of aerosols. On global scale, this information can only be o

  5. Laboratory studies of oxidation of primary emissions: Oxidation of organic molecular markers and secondary organic aerosol production

    Science.gov (United States)

    Weitkamp, Emily A.

    Particulate matter (PM) is solid particles and liquid droplets of complex composition suspended in the atmosphere. In 1997, the National Ambient Air Quality Standards (NAAQS) for PM was modified to include new standards for fine particulate (particles smaller than 2.5mum, PM2.5) because of their association with adverse health effects, mortality and visibility reduction. Fine PM may also have large impacts on the global climate. Chemically, fine particulate is a complex mixture of organic and inorganic material, from both natural and anthropogenic sources. A large fraction of PM2.5 is organic. The first objective was to investigate heterogeneous oxidation of condensed-phase molecular markers for two major organic source categories, meat-cooking emissions and motor vehicle exhaust. Effective reaction rate constants of key molecular markers were measured over a range of atmospherically relevant experimental conditions, including a range of concentrations and relative humidities, and with SOA condensed on the particles. Aerosolized meat grease was reacted with ozone to investigate the oxidation of molecular markers for meat-cooking emissions. Aerosolized motor oil, which is chemically similar to vehicle exhaust aerosol and contains the molecular markers used in source apportionment, was reacted with the hydroxyl radical (OH) to investigate oxidation of motor vehicle molecular markers. All molecular markers of interest - oleic acid, palmitoleic acid, and cholesterol for meat-cooking emissions, and hopanes and steranes for vehicle exhaust - reacted at rates that are significant for time scales on the order of days assuming typical summertime oxidant concentrations. Experimental conditions influenced the reaction rate constants. For both systems, experiments conducted at high relative humidity (RH) had smaller reaction rate constants than those at low RH. SOA coating slowed the reaction rate constants for meat-cooking markers, but had no effect on the oxidation of

  6. Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data

    Energy Technology Data Exchange (ETDEWEB)

    Kinne, S.; Lohmann, U; Feichter, J; Schulz, M.; Timmreck, C.; Ghan, Steven J.; Easter, Richard C.; Chin, M; Ginoux, P.; Takemura, T.; Tegen, I.; Koch, D; Herzog, M.; Penner, J.; Pitari, G.; Holben, B. N.; Eck, T.; Smirnov, A.; Dubovik, O.; Slutsker, I.; Tanre, D.; Torres, O.; Mishchenko, M.; Geogdzhayev, I.; Chu, D. A.; Kaufman, Yoram J.

    2003-10-21

    Aerosol introduces the largest uncertainties in model-based estimates of anthropogenic sources on the Earth's climate. A better representation of aerosol in climate models can be expected from an individual processing of aerosol type and new aerosol modules have been developed, that distinguish among at least five aerosol types: sulfate, organic carbon, black carbon, sea-salt and dust. In this study intermediate results of aerosol mass and aerosol optical depth of new aerosol modules from seven global models are evaluated. Among models, differences in predicted mass-fields are expected with differences to initialization and processing. Nonetheless, unusual discrepancies in source strength and in removal rates for particular aerosol types were identified. With simultaneous data for mass and optical depth, type conversion factors were compared. Differences among the tested models cover a factor of 2 for each, even hydrophobic, aerosol type. This is alarming and suggests that efforts of good mass-simulations could be wasted or that conversions are misused to cover for poor mass-simulations. An individual assessment, however, is difficult, as only part of the conversion determining factors (size assumption, permitted humidification and prescribed ambient relative humidity) were revealed. These differences need to be understood and minimized, if conclusions on aerosol processing in models can be drawn from comparisons to aerosol optical depth measurements.

  7. Perturbation of the aerosol layer by aviation-produced aerosols: a parametrization of plume processes

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Meilinger, S. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1998-11-01

    The perturbation of the sulfate surface area density (SAD) in the tropopause region and the lower stratosphere by subsonic and supersonic aircraft fleets is examined. The background aerosol surface area, the conversion of fuel sulfur into new sulfate particles in aircraft plumes, and the plume mixing with ambient air control this perturbation. The background aerosol surface area is enhanced by the addition of ultrafine aerosol particles at cruise altitudes. The study includes recent findings concerning the formation and development of these particles in aircraft plumes. Large-scale SAD enhancements become relevant for background SAD levels below about 10 {mu}m{sup 2}/cm{sup 3}, even for moderate sulfate conversion fractions of 5%. Results from an analytic expression for the surface area changes are presented which contains the dependences on these parameters and can be employed in large-scale atmospheric models. (orig.) 11 refs.

  8. African aerosol and large-scale precipitation variability over West Africa

    International Nuclear Information System (INIS)

    We investigated the large-scale connection between African aerosol and precipitation in the West African Monsoon (WAM) region using 8-year (2000-2007) monthly and daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products (aerosol optical depth, fine mode fraction) and Tropical Rainfall Measuring Mission (TRMM) precipitation and rain type. These high-quality data further confirmed our previous results that the large-scale link between aerosol and precipitation in this region undergoes distinct seasonal and spatial variability. Previously detected suppression of precipitation during months of high aerosol concentration occurs in both convective and stratiform rain, but not systematically in shallow rain. This suggests the suppression of deep convection due to the aerosol. Based on the seasonal cycle of dust and smoke and their geographical distribution, our data suggest that both dust (coarse mode aerosol) and smoke (fine mode aerosol) contribute to the precipitation suppression. However, the dust effect is evident over the Gulf of Guinea while the smoke effect is evident over both land and ocean. A back trajectory analysis further demonstrates that the precipitation reduction is statistically linked to the upwind aerosol concentration. This study suggests that African aerosol outbreaks in the WAM region can influence precipitation in the local monsoon system which has direct societal impact on the local community. It calls for more systematic investigations to determine the modulating mechanisms using both observational and modeling approaches.

  9. Aerosol characteristics at a rural station in southern peninsular India during CAIPEEX-IGOC: physical and chemical properties.

    Science.gov (United States)

    Bisht, D S; Srivastava, A K; Pipal, A S; Srivastava, M K; Pandey, A K; Tiwari, S; Pandithurai, G

    2015-04-01

    To understand the boundary layer characteristics and pathways of aerosol-cloud interaction, an Integrated Ground Observational Campaign, concurrent with Cloud Aerosol Interaction and Precipitation Enhancement Experiment, was conducted by the Indian Institute of Tropical Meteorology, Pune, under Ministry of Earth Sciences at Mahabubnagar (a rural environment, which is ~100 km away from an urban city Hyderabad in Andhra Pradesh), during the period of July-November 2011. Collected samples of PM2.5 and PM10 were analyzed for water-soluble ionic species along with organic carbon (OC) and elemental carbon (EC). During study period, the average mass concentrations of PM2.5 and PM10 were about 50(±10) and 69(±14) μg m(-3), respectively, which are significantly higher than the prescribed Indian National Ambient Air Quality Standards values. The chemical species such as sum of anions and cations from measured chemical constituents were contributed to be 31.27 and 38.49% in PM2.5 and 6.35 and 5.65% to the PM10, whereas carbonaceous species contributed ~17.3 and 20.47% for OC and ~3.0 and 3.10% for EC, respectively. The average ratio of PM2.5/PM10 during study period was ~0.73(±0.2), indicating that the dominance of fine size particles. Carbonaceous analysis results showed that the average concentration of OC was 14 and 8.7 μg m(-3), while EC was 2.1 and 1.5 μg m(-3) for PM10 and PM2.5, respectively. The ratios between OC and EC were estimated, which were 6.6 and 5.7 for PM10 and PM2.5, suggesting the presence of secondary organic aerosol. Total carbonaceous aerosol accounts 23% of PM10 in which the contribution of OC is 20% and EC is 3%, while 20% of PM2.5 mass in which the contribution of OC is 17% and EC is 3%. Out of the total aerosols mass, water-soluble constituents contributed an average of 45% in PM10 and 38% in PM2.5 including about 39% anions and 6% cations in PM10, while 31% anions and 7% cations in PM2.5 aerosol mass collectively at study site. PMID

  10. Characteristics of regional aerosols: Southern Arizona and eastern Pacific Ocean

    Science.gov (United States)

    Prabhakar, Gouri

    Atmospheric aerosols impact the quality of our life in many direct and indirect ways. Inhalation of aerosols can have harmful effects on human health. Aerosols also have climatic impacts by absorbing or scattering solar radiation, or more indirectly through their interactions with clouds. Despite a better understanding of several relevant aerosol properties and processes in the past years, they remain the largest uncertainty in the estimate of global radiative forcing. The uncertainties arise because although aerosols are ubiquitous in the Earth's atmosphere they are highly variable in space, time and their physicochemical properties. This makes in-situ measurements of aerosols vital in our effort towards reducing uncertainties in the estimate of global radiative forcing due to aerosols. This study is an effort to characterize atmospheric aerosols at a regional scale, in southern Arizona and eastern Pacific Ocean, based on ground and airborne observations of aerosols. Metals and metalloids in particles with aerodynamic diameter (Dp) smaller than 2.5 μm are found to be ubiquitous in southern Arizona. The major sources of the elements considered in the study are identified to be crustal dust, smelting/mining activities and fuel combustion. The spatial and temporal variability in the mass concentrations of these elements depend both on the source strength and meteorological conditions. Aircraft measurements of aerosol and cloud properties collected during various field campaigns over the eastern Pacific Ocean are used to study the sources of nitrate in stratocumulus cloud water and the relevant processes. The major sources of nitrate in cloud water in the region are emissions from ships and wildfires. Different pathways for nitrate to enter cloud water and the role of meteorology in these processes are examined. Observations of microphysical properties of ambient aerosols in ship plumes are examined. The study shows that there is an enhancement in the number

  11. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    Energy Technology Data Exchange (ETDEWEB)

    Hallock, K.A.; Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Cass, G.R. [California Inst. of Tech., Pasadena, CA (United States). Dept. of Environmental Engineering Science

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  12. Present role of PIXE in atmospheric aerosol research

    Science.gov (United States)

    Maenhaut, Willy

    2015-11-01

    In the 1980s and 1990s nearly half of the elemental analyses of atmospheric aerosol samples were performed by PIXE. Since then, other techniques for elemental analysis became available and there has been a steady increase in studies on organic aerosol constituents and other aspects of aerosols, especially in the areas of nucleation (new particle formation), optical properties, and the role of aerosol particles in cloud formation and properties. First, a brief overview and discussion is given of the developments and trends in atmospheric aerosol analysis and research of the past three decades. Subsequently, it is indicated that there is still invaluable work to be done by PIXE in atmospheric aerosol research, especially if one teams up with other aerosol researchers and performs complementary measurements, e.g., on small aerosol samples that are taken with high-time resolution. Fine examples of such research are the work done by the Lund group in the CARIBIC aircraft studies and the analysis of circular streaker samples by the Florence PIXE group. These and other examples are presented and other possibilities of PIXE are indicated.

  13. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    International Nuclear Information System (INIS)

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon

  14. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    -road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a

  15. Study on Aerosol Model and Sources at Zhoushan, China Using Sun-sky Photometer Observation

    International Nuclear Information System (INIS)

    Aerosol models are widely used in satellite remote sensing to derived aerosol mode from aerosol optical and microphysical properties. One year of ground-based aerosol remote sensing observations were carried out using sun-sky radiometer measurements in Zhoushan (122.1897E, 29.9944N), Zhejiang Province, Eastern China. At the same time column Aerosol Optical Depth (AOD), Ångström exponent (AE), Single Scattering Albedo (SSA), asymmetry factor (g), complex refractive index and column aerosol volume spectral distribution were retrieved by mature code as well as some procedures, such as radiometer calibration, cloud screening and data selection strategies. Aerosol size parameters were separated as fine effective radius (rvf) and coarse effective radius (rvc) due to the column aerosol size distribution is generally bimodal lognormal distribution. The relationship between these parameters and effective radius was shown and analyzed. It is shown that aerosol in Zhoushan is urban-industrial type dominate, mixed with marine aerosol and mineral dust aerosol. As a result, this study showed a part of aerosol comes from mainland industrial areas by using the backward trajectory model

  16. Fine 5 lavastab Venemaal

    Index Scriptorium Estoniae

    2013-01-01

    Tantsuteatru Fine 5 koreograafid Tiina Ollesk ja Rene Nõmmik toovad Jekaterinburgis välja lavastuse "... and Red", esitajaks Venemaa nimekas nüüdistantsutrupp Provintsialnõje Tantsõ. Lavastuses kõlab Taavo Remmeli kontrabassiimprovisatsioon "12.12.2006"

  17. Fine particle mass from the Diskus inhaler and Turbuhaler inhaler in children with asthma

    DEFF Research Database (Denmark)

    Bisgaard, H; Klug, B; Sumby, B S;

    1998-01-01

    in an inhalation profile simulator to assess drug delivery from both a Diskus inhaler and a Turbuhaler inhaler, and in particular to assess the proportion of drug emitted in the coarse (>4.7 microm) and fine (... represents the changes in flow rate over time through the device than the constant flow rate usually applied with an impactor alone. The aerosol cloud was released before the peak inspiratory effort had been achieved and accordingly the early part and not the peak of the inspiratory performance...... is a determinant of the quality of the aerosol. The mean (SD) amount of drug in large particles (>4.7 microm), fine particles (

  18. Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra

    Directory of Open Access Journals (Sweden)

    V. A. Lanz

    2006-11-01

    Full Text Available Submicron ambient aerosol was characterized in summer 2005 at an urban background site in Zurich, Switzerland, during a three-week measurement campaign. Highly time-resolved samples of non-refractory aerosol components were analyzed with an Aerodyne aerosol mass spectrometer (AMS. Positive matrix factorization (PMF was used for the first time for AMS data to identify the main components of the total organic aerosol and their sources. The PMF retrieved factors were compared to measured reference mass spectra and were correlated with tracer species of the aerosol and gas phase measurements from collocated instruments. Six factors were found to explain virtually all variance in the data and could be assigned either to sources or to aerosol components such as oxygenated organic aerosol (OOA. Our analysis suggests that at the measurement site only a small (<10% fraction of organic PM1 originates from freshly emitted fossil fuel combustion. Other primary sources identified to be of similar or even higher importance are charbroiling (10–15% and wood burning (~10%, along with a minor source interpreted to be influenced by food cooking (6%. The fraction of all identified primary sources is considered as primary organic aerosol (POA. This interpretation is supported by calculated ratios of the modelled POA and measured primary pollutants such as elemental carbon (EC, NOx, and CO, which are in good agreement to literature values. A high fraction (60–69% of the measured organic aerosol mass is OOA which is interpreted mostly as secondary organic aerosol (SOA. This oxygenated organic aerosol can be separated into a highly aged fraction, OOA I, (40–50% with low volatility and a mass spectrum similar to fulvic acid, and a more volatile and probably less processed fraction, OOA II (on average 20%. This is the first publication of a multiple component analysis technique to AMS organic spectral data and also the first report of the

  19. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  20. An investigation of ambient gameplay

    OpenAIRE

    Eyles, Mark

    2012-01-01

    Inspired by Brian Eno's ambient music, which is persistent and supports different levels of engagement, this research explores ambient gameplay in computer, video and pervasive games. Through the creation of original games containing ambient gameplay and looking for ambient gameplay in existing commercial games, this research focuses on gameplay that supports a range of depths of player engagement. This research is not concerned with ambient intelligent environments or other technologies that...

  1. Recent increase in aerosol loading over the Australian arid zone

    Directory of Open Access Journals (Sweden)

    R. M. Mitchell

    2010-02-01

    Full Text Available Collocated sun photometer and nephelometer measurements at Tinga Tingana in the Australian Outback over the decade 1997–2007 show a significant increase in aerosol loading following the onset of severe drought conditions in 2002. This increase is confined to the season of dust activity, particularly September to March. In contrast, background aerosol levels during May, June and July remained stable. The enhanced aerosol loadings during the latter 5 years of the study period can be understood as a combination of dune destabilisation through loss of ephemeral vegetation and surface crust, and the changing supply of fluvial sediments to ephemeral lakes and floodplains within the Lake Eyre Basin. Major dust outbreaks are generally highly localised, although significant dust activity was observed at Tinga Tingana on 50% of days when a major event occurred elsewhere in the Lake Eyre Basin, suggesting frequent basin-wide dust mobilisation. Combined analysis of aerosol optical depth and scattering coefficient shows weak correlation between the surface and column aerosol (R2=0.24. The aerosol scale height is broadly distributed with a mode typically between 2–3 km, with clearly defined seasonal variation. Climatological analysis reveals bimodal structure in the annual cycle of aerosol optical depth, with a summer peak related to maximal dust activity, and a spring peak related to lofted fine-mode aerosol. There is evidence for an increase in near-surface aerosol during the period 2003–2007 relative to 1997–2002, consistent with an increase in dust activity. This accords with an independent finding of increasing aerosol loading over the Australian region as a whole, suggesting that rising dust activity over the Lake Eyre Basin may be a significant contributor to changes in the aerosol budget of the continent.

  2. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  3. Mujer y medio ambiente

    OpenAIRE

    Zuluaga Sánchez, Gloria Patricia

    1998-01-01

    El debate sobre mujer y medio ambiente es bastante nuevo y, por lo tanto, aun no hay consenso sobre como abordarlo, ni análisis muy profundos sobre la interacción de estas dos problemáticas tan complejas y que además atraviesan las demás temáticas. Con ello no se quiere negar el importante aporte que se ha hecho en tal sentido, por parte de colectividades y de algunas personas. Selene Herculano y Jacqueline Pitanguy (1993), mencionan que el medio ambiente no es una categoría específica y que ...

  4. Ambientes de aprendizaje computacionales

    OpenAIRE

    Señas, Perla

    2001-01-01

    En el marco de las aplicaciones de la tecnología computacional a la educación se destaca de manera especial el trabajo sobre Ambientes de Aprendizaje. En él convergen tópicos relevantes de las Ciencias de la Computación y de la Educación. Se puede definir un Ambiente de Aprendizaje Computacional como un entorno integrado por un conjunto no homogéneo de elementos capaces de crear o recrear situaciones a partir de las cuales el alumno puede construir conocimiento y realizar aprendizajes y meta-...

  5. FT-IR TRANSMISSION SPECTROSCOPY FOR QUANTITATION OF AMMONIUM BISULFATE IN FINE PARTICULATE MATTER COLLECTED ON TEFLON FILTERS

    Science.gov (United States)

    A quantitative measurement method for fine particle bisulfatein ammonium bisulfate collected from the ambient air onto Teflon filters is described. nfrared absorbance measurements of the Teflon filters are made before and after particle collection. ubtraction of the two spectra r...

  6. Single-parameter estimates of aerosol water content

    International Nuclear Information System (INIS)

    Water can represent a substantial fraction of the mass of tropospheric non-cloud particulate matter, and can also serve as a medium for aqueous-phase reactions in such particles. Aerosol water contents are highly dependent upon aerosol hygroscopicity and ambient relative humidities (RH). In this work we evaluate a recently proposed parameterization of composition-dependent aerosol hygroscopicity that predicts the volume of liquid water associated with a unit volume of dry aerosol. The predictions over the range 10%85%) expected to have the most significant effects on tropospheric chemistry and radiation balance. Water contents for most of the compounds studied are generally represented within experimental uncertainties over the entire range of relative humidity examined, with the exception of marine-type particles dominated by sodium chloride and sodium sulfate

  7. Complex measurements of aerosol and ion characteristics in the atmospheric boundary layer

    Science.gov (United States)

    Kikas, Iu. E.; Kolomiets, S. M.; Kornienko, V. I.; Mirme, A. A.; Sal'm, Ia. I.; Sergeev, I. Ia.; Tammet, Kh. F.

    Results of a comprehensive study of the characteristics of atmospheric ions and aerosols in the boundary layer during the summer season are reported. A study is also made of the kinetics of aerosol formation under conditions of high artificial ionization of the air by alpha and UV radiation. A high degree of correlation is shown to exist between atmospheric concentrations of medium ions and fine (less than 0.01 micron) aerosol. The results obtained support the radiation-chemical mechanism of aerosol formation.

  8. Simulation of the influence of aerosol particles on Stokes parameters of polarized skylight

    International Nuclear Information System (INIS)

    Microphysical properties and chemical compositions of aerosol particles determine polarized radiance distribution in the atmosphere. In this paper, the influences of different aerosol properties (particle size, shape, real and imaginary parts of refractive index) on Stokes parameters of polarized skylight in the solar principal and almucantar planes are studied by using vector radiative transfer simulations. The results show high sensitivity of the normalized Stokes parameters due to fine particle size, shape and real part of refractive index of aerosols. It is possible to utilize the strength variations at the peak positions of the normalized Stokes parameters in the principal and almucantar planes to identify aerosol types

  9. Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion electrospray mass spectrometry.

    Science.gov (United States)

    Wan, Eric C H; Yu, Jian Zhen

    2007-04-01

    Sugars and sugar polyols are relatively abundant groups of water-soluble constituents in atmospheric aerosols. This paper describes a method that uses liquid chromatography-mass spectrometry (LC-MS) to analyze sugars and sugar polyols in atmospheric aerosols, ranging from C3 sugar alcohols to trisaccharides. Postcolumn addition of chloroform in acetonitrile was found to greatly enhance ionization of these compounds by forming chloride adduct ions in the negative-ion mode using electrospray ionization. A gradient elution program starting at 5%:95% H20/acetonitrile and ending at 30%:70% H2O/acetonitrile provides baseline separations of the sugars and sugar polyols on an amino-based carbohydrate column. The detection limits based on quantification of [M + 35Cl]- adduct ions were in the order of 0.1 microM. By eliminating the need for derivatization, this LC-MS based method provides a simpler alternative method to the commonly used and more laborious gas-chromatography based methods. It also has an additional advantage of being able to quantify trisaccharide sugars. The method was applied to analyze 30 ambient samples of fine particulate matter collected at a site away from urban centers in Hong Kong. The sugar compounds positively identified and detected in the ambient samples included four sugar alcohols (glycerol, erythritol, xylitol, and mannitol), three monosacchride sugars (xylose, fructose, and glucose), two disaccharides (sucrose, trehalose), two trisaccharides (melezitose, raffinose), and one anhydrosugar (levoglucosan). The sum of these sugar and sugar polyol compounds ranged from 38 to 1316 ng m(-3), accounting for an average of 1.3% organic carbon mass. Through the use of a principal component analysis of the ambient measurements, the mono- to trisactharide sugars and C3-C5 sugar polyols were identified to be mainly associated with soil/soil microbiota while the anhydrosugar (levoglucosan) was associated with biomass burning. PMID:17438800

  10. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities

    Directory of Open Access Journals (Sweden)

    J. D. Allan

    2010-01-01

    Full Text Available Organic matter frequently represents the single largest fraction of fine particulates in urban environments and yet the exact contributions from different sources and processes remain uncertain, owing in part to its substantial chemical complexity. Positive Matrix Factorisation (PMF has recently proved to be a powerful tool for the purposes of source attribution and profiling when applied to ambient organic aerosol data from the Aerodyne Aerosol Mass Spectrometer (AMS. Here we present PMF analysis applied to AMS data from UK cities for the first time. Three datasets are analysed, with the focus on objectivity and consistency. The data were collected in London during the Regent's Park and Tower Environmental Experiment (REPARTEE intensives and Manchester. These occurred during the autumn and wintertime, such that the primary fraction would be prominent. Ambiguities associated with rotationality within sets of potential solutions are explored and the most appropriate solution sets selected based on comparisons with external data. In addition to secondary organic aerosols, three candidate sources of primary organic aerosol (POA were identified according to mass spectral and diurnal profiles; traffic emissions, cooking and solid fuel burning (for space heating. Traffic represented, on average, 40% of POA during colder conditions and exhibited a hydrocarbon-like mass spectrum similar to those previously reported. Cooking aerosols represented 34% of POA and through laboratory work, their profile was matched with that sampled from the heating of seed oils, rather than previously-published spectra derived from charbroiling. This suggests that in these locations, oil from frying may have contributed more to the particulate than the meat itself. Solid fuel aerosols represented 26% of POA during cold weather conditions but were not discernable during the first REPARTEE campaign, when conditions were warmer than the other campaigns. This factor showed

  11. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yuan, E-mail: ycheng@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); He, Ke-bin, E-mail: hekb@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing (China); Duan, Feng-kui; Du, Zhen-yu [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); Zheng, Mei [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Ma, Yong-liang [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China)

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC{sub IMPROVE-A} (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC{sub NIOSH} ratio and the EC{sub IMPROVE-A} to EC{sub EUSAAR} ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation

  12. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    International Nuclear Information System (INIS)

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The ECIMPROVE-A (EC measured by the IMPROVE-A protocol; similar hereinafter) to ECNIOSH ratio and the ECIMPROVE-A to ECEUSAAR ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation of SOC by the EC

  13. A hazard to health? Fine particles arouse worldwide interest

    Energy Technology Data Exchange (ETDEWEB)

    Karas, J.; Oesch, P.

    1998-07-01

    The most recent studies show that particles contained in the air that we breathe may have harmful effects on the health of asthmatics, children and old people in particular. Particle material found in ambient air is formed by emissions resulting from traffic, industry and other use of fuels. Nature`s own sources also have a significant effect on particle concentrations. The mechanisms by which fine particles may produce negative health effects are so far unknown. At present it is therefore impossible to assess the effects of emissions of fine particles resulting, for instance, from the use of fossil fuels

  14. La radioactividad ambiental

    Directory of Open Access Journals (Sweden)

    Rafael Núñez-Lagos Roglá

    2011-01-01

    Full Text Available Se explican los conceptos fundamentales relacionados con la radiactividad y se utilizan para describir la radiactividad ambiental. Se explican también los isótopos de largo periodo y las principales familias radioactivas junto con la radiación cósmica y los radionucleidos cosmogénicos.

  15. Ambient mass spectrometry imaging

    DEFF Research Database (Denmark)

    Janfelt, Christian; Nørgaard, Asger W

    2012-01-01

    Easy ambient sonic spray ionization (EASI) and desorption electrospray ionization (DESI) were used for imaging of a number of samples, including sections of rat brain and imprints of plant material on porous Teflon. A novel approach termed Displaced Dual-mode Imaging was utilized for the direct c...

  16. Observations of the Interaction and/or Transport of Aerosols with Cloud or Fog during DRAGON Campaigns from AERONET Ground-Based Remote Sensing

    Science.gov (United States)

    Eck, Thomas; Holben, Brent; Schafer, Joel; Giles, David; Kim, Jhoon; Kim, Young; Sano, Itaru; Reid, Jeffrey; Pickering, Kenneth; Crawford, James; Sinyuk, Alexander; Trevino, Nathan

    2014-05-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. AERONET has established Distributed Regional Aerosol Gridded Observation Networks (DRAGON) during field campaigns that are short-term (~2-3 months) relatively dense spatial networks of ~15 to 45 sun and sky scanning photometers. Recent major DRAGON field campaigns in Japan and South Korea (Spring 2012) and California (Winter 2013) have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth signal for these cases of persistent and extensive cloud cover. Additionally, extensive fog that was coincident with aerosol layer height on some days in both Korea and California resulted in large increases in fine mode aerosol radius, with a mode of cloud-processed or residual aerosol of radius ~0.4-0.5 micron sometimes observed. Cloud processed aerosol may occur much more frequently than AERONET data suggest due to inherent difficulty in observing aerosol properties near clouds from remote sensing observations. These biases of aerosols associated with clouds would likely be even greater for satellite remote sensing retrievals of aerosol properties near clouds due to 3-D effects and sub-pixel cloud contamination issues.

  17. Intra and inter-continental aerosol transport and local and regional impacts

    Science.gov (United States)

    Charles, Leona Ann Marie

    vertical layering of aerosols in the troposphere from passive remote sensing measurements. Therefore, the connection with air pollution is very poor. Furthermore, the vertical structure of the aerosol is very important in assessing transport events and how they mix with the Planetary Boundary Layer (PBL). The need to fill this data gap and supply vertical information on plume detection has led to the launch of the Cloud Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) space borne lidar system, which can in principle provide vertical profiles of aerosol backscatter that can be used in the assimilation schemes. One particular problem which needs to be addressed, is the fact that the relationship between the optical scattering coefficients (or AOD) and the PM2.5 mass is not simple. Finally, regarding non-attainment of National Ambient Air Quality Standards (NAAQS), it has also been shown that a significant portion of the PM2.5 aerosol mass can be due to non-local sources. This fact is critical in assessing the appropriate strategy in emission controls, as part of the state implementation plan (SIP) to come into compliance. However, these studies are usually based on statistical analysis tools such as Positive Factor Analysis (PFA), and are not applicable to any single measurement. In addition, little is known about the impact of episodic long range transport as a possible mechanism for affecting local pollution. Such a mechanism cannot be investigated by statistical means or by any existing air transport models which do not consider high altitude plumes (aerosol layers), and must be studied solely with an appropriate suite of measurements including the simultaneous use of sky radiometers, lidars and satellites. Furthermore, since fine particulate matter is so crucial to identify, multi-wavelength determination of aerosol properties such as angstrom coefficient are necessary. It is our purpose to investigate the possibility that such long range transport events can

  18. Aerosol Chemistry Between Two Oceans: Auckland’s Urban Aerosol

    Czech Academy of Sciences Publication Activity Database

    Coulson, G.; Olivares, G.; Salmond, J.; Talbot, Nicholas

    -: Italian Aerosol Society, 2015. ISBN N. [European Aerosol Conference EAC 2015. Milano (IT), 06.09.2015-11.09.2015] Institutional support: RVO:67985858 Keywords : urban pollution * aerosol processing * New Zealand Subject RIV: CF - Physical ; Theoretical Chemistry

  19. Visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: Properties observed by high resolution gas chromatography

    OpenAIRE

    Mazurek, Monica A; Masonjones, Michael C.; Salmon, Lynn G.; Cass, Glen R.; Hallock, Kristen A.; Leach, Martin

    1997-01-01

    Fine particle and total airborne particle samples were collected during August 1989 within the Grand Canyon (Indian Gardens (IG)) and on its south rim (Hopi Point (HP)) to define summertime organic aerosol concentration and composition as a function of elevation at Grand Canyon National Park. Inorganic chemical constituents were analyzed also to help place the relative importance of organics in perspective. Fine particle organic aerosols were approximately equal in concentration to sulfate ae...

  20. TEM investigations of microstructures of combustion aerosols

    International Nuclear Information System (INIS)

    In the incineration of organic material, apart from a series of gaseous pollutants, particulate pollutants or combustion aerosols also arise. The latter frequently consist of particles with a solid core of carbon to which a large number of inorganic and organic compounds are attached. These primarily include the polycyclic aromatic hydrocarbons (PAH) and their nitro-derivatives (NPAH), whose mutagenic or carcinogenic effect is known. The invisible particle sizes in the nanometer range, whose retention in the incineration off-gas is not state of the art, are of increasing significance for man and environment. On the one hand, they are deposited almost completely in the human lung. On the other hand, due to their fine dispersity they have along residence time in the atmosphere where they participate in chemical reactions and climatically significant processes. Important insights about the formation process of combustion aerosols are to be expected from the imaging of their microstructures in the transmission electron microscope (TEM). The present contribution describes the development and application of a representative sampling procedure for aerosols from a partial flow of flue gas from a fluidized-bed furnace. The method developed consists of electrically charging aerosol particles in situ and subsequently selectively precipitating them onto a microscope slide in an electric field. TEM studies of aerosol microstructures on the microscope slides revealed that in the combustion of petrol and heating oil under different combustion conditions in principle the same particle structures result, whereas in the incineration of used lubricating oil quite different particle structures were found. Results from the literature on aerosol microstructures in exhaust gases from petrol and diesel engines demonstrate agreement with the results of this study in the basic structure of the particles. (orig.)

  1. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog in East Asia from AERONET and Satellite Remote Sensing: 2012 DRAGON Campaigns and Climatological Data

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Lynch, P.; Schafer, J.; Giles, D. M.; Kim, J.; Kim, Y. J.; Sano, I.; Arola, A. T.; Munchak, L. A.; O'Neill, N. T.; Lyapustin, A.; Sayer, A. M.; Hsu, N. Y. C.; Randles, C. A.; da Silva, A. M., Jr.; Govindaraju, R.; Hyer, E. J.; Pickering, K. E.; Crawford, J. H.; Sinyuk, A.; Smirnov, A.

    2015-12-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. Major Distributed Regional Aerosol Gridded Observation Networks (DRAGON) field campaigns involving multiple AERONET sites in Japan and South Korea during Spring of 2012 have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth (AODf) signal from AERONET data for these cases of persistent and extensive cloud cover. Satellite retrievals of AOD from MODIS sensors (from Dark Target, Deep Blue and MAIAC algorithms) were also investigated to assess the issue of detectability of high AOD events associated with high cloud fraction. Underestimation of fine mode AOD by the Navy Aerosol Analysis and Prediction System (NAAPS) and by the NASA Modern-Era Retrospective Analysis For Research And Applications Aerosol Re-analysis (MERRAaero) models at very high AOD at sites in China and Korea was observed, especially for observations that are cloud screened by AERONET (Level 2 data). Additionally, multi-year monitoring at several AERONET sites are examined for climatological statistics of cloud screening of fine mode aerosol events. Aerosol that has been affected by clouds or the near-cloud environment may be more prevalent than AERONET data suggest due to inherent difficulty in

  2. The colors of biomass burning aerosols in the atmosphere

    Science.gov (United States)

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  3. During air cool process aerosol absorption detection with photothermal interferometry

    Science.gov (United States)

    Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang

    2014-11-01

    This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.

  4. One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong - Part 1: Inorganic ions and oxalate

    Science.gov (United States)

    Bian, Q.; Huang, X. H. H.; Yu, J. Z.

    2014-09-01

    Size distribution data of major aerosol constituents are essential in source apportioning of visibility degradation, testing and verification of air quality models incorporating aerosols. We report here 1-year observations of mass size distributions of major inorganic ions (sulfate, nitrate, chloride, ammonium, sodium, potassium, magnesium and calcium) and oxalate at a coastal suburban receptor site in Hong Kong, China. A total of 43 sets of size-segregated samples in the size range of 0.056-18 μm were collected from March 2011 to February 2012. The size distributions of sulfate, ammonium, potassium and oxalate were characterized by a dominant droplet mode with a mass mean aerodynamic diameter (MMAD) in the range of ~ 0.7-0.9 μm. Oxalate had a slightly larger MMAD than sulfate on days with temperatures above 22 °C as a result of the process of volatilization and repartitioning. Nitrate was mostly dominated by the coarse mode but enhanced presence in fine mode was detected on winter days with lower temperature and lower concentrations of sea salt and soil particles. This data set reveals an inversely proportional relationship between the fraction of nitrate in the fine mode and product of the sum of sodium and calcium in equivalent concentrations and the dissociation constant of ammonium nitrate (i.e., (1/([Na+] + 2[Ca2+]) × (1/Ke')) when Pn_fine is significant (> 10%). The seasonal variation observed for sea salt aerosol abundance, with lower values in summer and winter, is possibly linked with the lower marine salinities in these two seasons. Positive matrix factorization was applied to estimate the relative contributions of local formation and transport to the observed ambient sulfate level through the use of the combined data sets of size-segregated sulfate and select gaseous air pollutants. On average, the regional/super-regional transport of air pollutants was the dominant source at this receptor site, especially on high-sulfate days while local formation

  5. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    Science.gov (United States)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed-layer aerosol extinction. Aerosol loading (dry extinction) was found to be the predominant source, accounting for 88 % on average of the measured spatial variability in ambient extinction, with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite-modeling assimilation products that are able to capture these components of the aerosol optical depth (AOD)-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day to day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015), who determined that the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

  6. CHARACTERIZATION OF FINE PARTICULATE MATTER

    Science.gov (United States)

    Size distribution data processing and fitting Ultrafine, very fine and fine PM were collected nearly continuously from December 2000 through March 2003 at a Washington State Department of Ecology site on Beacon Hill in Seattle. Particle size distributio...

  7. Absorption characteristics of aerosols over the northwestern region of India: Distinct seasonal signatures of biomass burning aerosols and mineral dust

    Science.gov (United States)

    Gogoi, Mukunda M.; Suresh Babu, S.; Krishna Moorthy, K.; Manoj, M. R.; Chaubey, Jai Prakash

    2013-07-01

    Continuous measurements of aerosol black carbon (BC) mass concentrations made over a period of 3 years from a semi-arid, near-coastal, remote and sparsely inhabited location along with satellite-based data of aerosol absorption index, optical depth and extinction profiles in western India are used to characterize the distinct nature of aerosols near the surface and in the free troposphere and their seasonality. Despite being far remote and sparsely inhabited, significant levels of BC are observed in the ambient during winter (1.45 ± 0.71 μg m-3) attributed to biomass burning aerosols, advected to the site from the north and west; while during summer the concentrations are far reduced (0.23 ± 0.11 μg m-3) and represent the apparent background concentrations. The spectral absorption coefficients suggest the BC during summer be mostly of fossil fuel combustions. The strong convective boundary layer dynamics produces significant diurnal variation during winter and modulates to a lesser extent the seasonal variation. Examination of aerosol (absorption) index from OMI data for the study period showed a seasonal pattern that is almost opposite to that seen at the surface; with high aerosol index in summer, showing a significant difference between the surface and columnar aerosol types in summer. MISR and MODIS-derived columnar AOD follow the OMI pattern. Analysis of the vertical profiles of aerosol extinction and volume depolarization ratio (VDR), derived from CALIPSO data indicates the presence of strong dust layers with VDR ˜ 0.3 in the altitude region 4-6 km, contributing to the high aerosol index in the OMI data, while the surface measurements show absorptive properties representing fossil fuel BC aerosols.

  8. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    Science.gov (United States)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  9. Optical and Chemical Properties of Atmospheric Aerosols at Amami Oshima and Fukue Islands in Japan in Spring, 2001

    OpenAIRE

    Ohta,Sachio; Murao, Naoto; Yamagata,Sadamu

    2013-01-01

    The optical and chemical properties of atmospheric aerosols were determined from the ground-based measurements at Amami Oshima in April 2001 during the Asian Atmospheric Particle Environmental Change Studies (APEX) campaign and at Fukue Island in March 2001. At Amami Oshima from April 10 to 16, an aerosol event was observed in which the volume scattering coefficient and sulfate concentration of fine particles increased conspicuously. At the former term of the aerosol event, the single scatter...

  10. Sensitivity of aerosol direct radiative forcing to aerosol vertical profile

    OpenAIRE

    Chung, Chul E.; Choi, Jung-Ok

    2014-01-01

    Aerosol vertical profile significantly affects the aerosol direct radiative forcing at the TOA level. The degree to which the aerosol profile impacts the aerosol forcing depends on many factors such as presence of cloud, surface albedo and aerosol single scattering albedo (SSA). Using a radiation model, we show that for absorbing aerosols (with an SSA of 0.7–0.8) whether aerosols are located above cloud or below induces at least one order of magnitude larger changes of the aerosol forcing tha...

  11. Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2015-05-01

    Full Text Available High concentrations of fine particles (PM2.5 are frequently observed during all seasons in Beijing, China, leading to severe air pollution and human health problems in this megacity. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1 species (sulfate, nitrate, ammonium, chloride, and organics in Beijing using an Aerodyne Aerosol Chemical Speciation Monitor for 1 year, from July 2011 to June 2012. This is the first long-term, highly time-resolved (~ 15 min measurement of fine particle composition in China. The seasonal average (± 1σ mass concentration of NR-PM1 ranged from 52 (± 49 μg m−3 in the spring season to 62 (± 49 μg m−3 in the summer season, with organics being the major fraction (40–51%, followed by nitrate (17–25% and sulfate (12–17%. Organics and chloride showed pronounced seasonal variations, with much higher concentrations in winter than in the other seasons, due to enhanced coal combustion emissions. Although the seasonal variations of secondary inorganic aerosol (SIA = sulfate + nitrate + ammonium concentrations were not significant, higher contributions of SIA were observed in summer (57–61% than in winter (43–46%, indicating that secondary aerosol production is a more important process than primary emissions in summer. Organics presented pronounced diurnal cycles that were similar among all seasons, whereas the diurnal variations of nitrate were mainly due to the competition between photochemical production and gas–particle partitioning. Our data also indicate that high concentrations of NR-PM1 (> 60 μg m−3 are usually associated with high ambient relative humidity (RH (> 50% and that severe particulate pollution is characterized by different aerosol composition in different seasons. All NR-PM1 species showed evident concentration gradients as a function of wind direction, generally with higher values associated with wind from the south, southeast or east. This

  12. Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis

    Science.gov (United States)

    Sun, Y. L.; Wang, Z. F.; Du, W.; Zhang, Q.; Wang, Q. Q.; Fu, P. Q.; Pan, X. L.; Li, J.; Jayne, J.; Worsnop, D. R.

    2015-09-01

    High concentrations of fine particles (PM2.5) are frequently observed during all seasons in Beijing, China, leading to severe air pollution and human health problems in this megacity. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1) species (sulfate, nitrate, ammonium, chloride, and organics) in Beijing using an Aerodyne Aerosol Chemical Speciation Monitor for 1 year, from July 2011 to June 2012. This is the first long-term, highly time-resolved (~ 15 min) measurement of fine particle composition in China. The seasonal average (±1σ) mass concentration of NR-PM1 ranged from 52 (±49) μg m-3 in the spring season to 62 (±49) μg m-3 in the summer season, with organics being the major fraction (40-51 %), followed by nitrate (17-25 %) and sulfate (12-17 %). Organics and chloride showed pronounced seasonal variations, with much higher concentrations in winter than in the other seasons, due to enhanced coal combustion emissions. Although the seasonal variations of secondary inorganic aerosol (SIA, i.e., sulfate + nitrate + ammonium) concentrations were not significant, higher contributions of SIA were observed in summer (57-61 %) than in winter (43-46 %), indicating that secondary aerosol production is a more important process than primary emissions in summer. Organics presented pronounced diurnal cycles that were similar among all seasons, whereas the diurnal variations of nitrate were mainly due to the competition between photochemical production and gas-particle partitioning. Our data also indicate that high concentrations of NR-PM1 (> 60 μg m-3) are usually associated with high ambient relative humidity (RH) (> 50 %) and that severe particulate pollution is characterized by different aerosol composition in different seasons. All NR-PM1 species showed evident concentration gradients as a function of wind direction, generally with higher values associated with wind from the south, southeast or east. This was consistent

  13. Aerosols Science and Technology

    CERN Document Server

    Agranovski, Igor

    2011-01-01

    This self-contained handbook and ready reference examines aerosol science and technology in depth, providing a detailed insight into this progressive field. As such, it covers fundamental concepts, experimental methods, and a wide variety of applications, ranging from aerosol filtration to biological aerosols, and from the synthesis of carbon nanotubes to aerosol reactors.Written by a host of internationally renowned experts in the field, this is an essential resource for chemists and engineers in the chemical and materials disciplines across multiple industries, as well as ideal supplementary

  14. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    Science.gov (United States)

    Barbaro, E.; Zangrando, R.; Vecchiato, M.; Piazza, R.; Cairns, W. R. L.; Capodaglio, G.; Barbante, C.; Gambaro, A.

    2015-05-01

    To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols and particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS) on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC) in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m-3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m-3), and the coarse particles were found to have higher concentrations of amino acids compared to the coastal site. The amino acid composition in the aerosol collected at Dome C had also changed compared to the coastal site, suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V Italica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material (as microorganisms or plant material) in the sample.

  15. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation??s (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  16. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  17. Assimilation of POLDER aerosol optical thickness into the LMDz-INCA model: Implications for the Arctic aerosol burden

    International Nuclear Information System (INIS)

    The large spatial and temporal variability of atmospheric aerosol load makes it a challenge to quantify aerosol effect on climate. This study is one of the first attempts to apply data assimilation for the analysis of global aerosol distribution. Aerosol optical thickness (AOT) observed from the Polarization and Directionality of the Earth Reflectances (POLDER) space-borne instrument are assimilated into a three-dimensional chemistry model. POLDER capabilities to distinguish between fine and coarse AOT are used to constrain them separately in the model. Observation and model errors are a key component of such a system and are carefully estimated on a regional basis using some of the high-quality surface observations from the Aerosol Robotic Network (AERONET). Other AERONET data provide an independent evaluation of the a posteriori fields. Results for the fine mode show improvements, in terms of reduction of root-mean-square errors, in most regions with the largest improvements found in the Mediterranean Sea and Eurasia. We emphasize the results for the Arctic, where there is growing evidence of a strong aerosol impact on climate, but a lack of regional and continuous aerosol monitoring. The a posteriori fields noticeably well reproduce the winter-spring 'Arctic Haze' peak measured in Longyearbyen (15 degrees E, 78 degrees N) and typical seasonal variations in the Arctic region, where AOT increase by up to a factor of three between a posteriori and a priori. Enhanced AOT are found over a longer period in spring 2003 than in 1997, suggesting that the large Russian fires in 2003 have influenced the Arctic aerosol load. (authors)

  18. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    Science.gov (United States)

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care. PMID:27136117

  19. Hygroscopicity of Black-Carbon-Containing Aerosol in Wildfire Plumes

    Science.gov (United States)

    Perring, A. E.; Schwarz, J. P.; Markovic, M. Z.; Fahey, D. W.; Yokelson, R. J.; Jimenez, J. L.; Campuzano Jost, P.; Day, D. A.; Palm, B. B.; Wisthaler, A.; Ziemba, L. D.; Anderson, B. E.; Diskin, G. S.; Huey, L. G.; Gao, R. S.

    2015-12-01

    Water uptake by black carbon (BC) containing aerosol has been quantified in wildfire plumes of varying age (from 1 to ~40 hr old) sampled in North America during the NASA SEAC4RS mission of 2013. Measurements were made in flight using parallel single-particle soot photometers (SP2) that simultaneously detected the BC component of the ambient aerosol ensemble under contrasting humidity conditions. The hygroscopicity parameter, κ, of material internally mixed with BC derived from this data set is consistent with previous estimates of bulk aerosol hygroscopicity from biomass burning sources. We explore the temporal evolution of κ during aging of the Yosemite Rim Fire plume to constrain the rate of conversion of BC-containing aerosol from hydrophobic to hydrophilic modes in these emissions. We also investigate the relationship between κ values for BC-containing particles and the oxidation state and hygroscopicity of the bulk aerosol. These observations have implications for BC transport and removal in biomass burning plumes and provide important constraints on model treatment of BC optical and microphysical properties from wildfire sources in ambient conditions.

  20. Quantification of aerosol chemical composition using continuous single particle measurements

    Directory of Open Access Journals (Sweden)

    C.-H. Jeong

    2011-07-01

    Full Text Available Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC, elemental carbon (EC were determined from real time single particle data in the size range 0.1–3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z −97 for sulphate, −62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS and a Fast Mobility Particle Sizer (FMPS. Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5 chemical composition measurements by an Aerosol Mass Spectrometer (AMS at a rural site, a Gas-Particle Ion Chromatograph (GPIC at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r of 0.89 (ATOFMS vs. GPIC and 0.85 (ATOFMS vs. AMS. ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86 at the urban site and a light scattering monitor (DustTrak, r = 0.87 at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, sugges