WorldWideScience

Sample records for amazonian rainforest sites

  1. Phthalate pollution in an Amazonian rainforest.

    Science.gov (United States)

    Lenoir, Alain; Boulay, Raphaël; Dejean, Alain; Touchard, Axel; Cuvillier-Hot, Virginie

    2016-08-01

    Phthalates are ubiquitous contaminants and endocrine-disrupting chemicals that can become trapped in the cuticles of insects, including ants which were recognized as good bioindicators for such pollution. Because phthalates have been noted in developed countries and because they also have been found in the Arctic, a region isolated from direct anthropogenic influence, we hypothesized that they are widespread. So, we looked for their presence on the cuticle of ants gathered from isolated areas of the Amazonian rainforest and along an anthropogenic gradient of pollution (rainforest vs. road sides vs. cities in French Guiana). Phthalate pollution (mainly di(2-ethylhexyl) phthalate (DEHP)) was higher on ants gathered in cities and along road sides than on those collected in the pristine rainforest, indicating that it follows a human-mediated gradient of disturbance related to the use of plastics and many other products that contain phthalates in urban zones. Their presence varied with the ant species; the cuticle of Solenopsis saevissima traps higher amount of phthalates than that of compared species. However, the presence of phthalates in isolated areas of pristine rainforests suggests that they are associated both with atmospheric particles and in gaseous form and are transported over long distances by wind, resulting in a worldwide diffusion. These findings suggest that there is no such thing as a "pristine" zone.

  2. Nutrition or detoxification: why bats visit mineral licks of the Amazonian rainforest.

    Directory of Open Access Journals (Sweden)

    Christian C Voigt

    Full Text Available Many animals in the tropics of Africa, Asia and South America regularly visit so-called salt or mineral licks to consume clay or drink clay-saturated water. Whether this behavior is used to supplement diets with locally limited nutrients or to buffer the effects of toxic secondary plant compounds remains unclear. In the Amazonian rainforest, pregnant and lactating bats are frequently observed and captured at mineral licks. We measured the nitrogen isotope ratio in wing tissue of omnivorous short-tailed fruit bats, Carollia perspicillata, and in an obligate fruit-eating bat, Artibeus obscurus, captured at mineral licks and at control sites in the rainforest. Carollia perspicillata with a plant-dominated diet were more often captured at mineral licks than individuals with an insect-dominated diet, although insects were more mineral depleted than fruits. In contrast, nitrogen isotope ratios of A. obscurus did not differ between individuals captured at mineral lick versus control sites. We conclude that pregnant and lactating fruit-eating bats do not visit mineral licks principally for minerals, but instead to buffer the effects of secondary plant compounds that they ingest in large quantities during periods of high energy demand. These findings have potential implications for the role of mineral licks for mammals in general, including humans.

  3. An Amazonian rainforest and its fragments as a laboratory of global change.

    Science.gov (United States)

    Laurance, William F; Camargo, José L C; Fearnside, Philip M; Lovejoy, Thomas E; Williamson, G Bruce; Mesquita, Rita C G; Meyer, Christoph F J; Bobrowiec, Paulo E D; Laurance, Susan G W

    2017-05-30

    We synthesize findings from one of the world's largest and longest-running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼1000 km(2) in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38-year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional- and global-change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long-term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction-prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or

  4. Amazonian Dark Earths: pathways to sustainable development in tropical rainforests?

    Directory of Open Access Journals (Sweden)

    Morgan Schmidt

    2013-04-01

    Full Text Available Fertile dark anthrosols associated with pre-Columbian settlement across the Amazon Basin have sparked wide interest for their potential contribution to sustainable use and management of tropical soils and ecosystems. In the Upper Xingu region of the southern Amazon, research on archaeological settlements and among contemporary descendant populations provides critical new data on the formation and use of anthrosols. These findings provide a basis for describing the variability of soil modifications that result from diverse human activities and a general model for the formation of Amazonian anthrosols. They underscore the potential for indigenous systems of knowledge and resource management to inform efforts for conservation and sustainable development of Amazonian ecosystems.

  5. Spatial trends in leaf size of Amazonian rainforest trees

    Directory of Open Access Journals (Sweden)

    A. C. M. Malhado

    2009-02-01

    Full Text Available Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots (e.g. RAINFOR, ATDN has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing south to northeast and length of the dry season (increasing from northwest to south and east. Here we describe the results of the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that, as predicted, the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25–182.25 cm2. The geographic distribution of species and individuals with large leaves (>20.25 cm2 is complex but is generally characterized by a higher proportion of such trees in the north-west of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  6. Long-term landscape change and bird abundance in Amazonian rainforest fragments.

    Science.gov (United States)

    Stouffer, Philip C; Bierregaard, Richard O; Strong, Cheryl; Lovejoy, Thomas E

    2006-08-01

    The rainforests of the Amazon basin are being cut by humans at a rate >20,000 km2/year leading to smaller and more isolated patches of forest, with remaining fragments often in the range of 1-100 ha. We analyzed samples of understory birds collected over 20 years from a standardized mist-netting program in 1- to 100-ha rainforest fragments in a dynamic Amazonian landscape near Manaus, Brazil. Across bird guilds, the condition of second growth immediately surrounding fragments was often as important as fragment size or local forest cover in explaining variation in abundance. Some fragments surrounded by 100 m of open pasture showed reductions in insectivorous bird abundance of over 95%, even in landscapes dominated by continuous forest and old second growth. These extreme reductions may be typical throughout Amazonia in small (rainforest. Abundance for some guilds returned to preisolation levels in 10- and 100-ha fragments connected to continuous forest by 20-year-old second growth. Our results show that the consequences of Amazonian forest loss cannot be accurately described without explicit consideration of vegetation dynamics in matrix habitat. Any dichotomous classification of the landscape into 'forest" and "nonforest" misses essential information about the matrix.

  7. Seed odor mediates an obligate ant-plant mutualism in Amazonian rainforests.

    Science.gov (United States)

    Youngsteadt, Elsa; Nojima, Satoshi; Häberlein, Christopher; Schulz, Stefan; Schal, Coby

    2008-03-25

    Seed dispersal mutualisms are essential for the survival of diverse plant species and communities worldwide. Among invertebrates, only ants have a major role in seed dispersal, and thousands of plant species produce seeds specialized for ant dispersal in "diffuse" multispecies interactions. An outstanding but poorly understood ant-seed mutualism occurs in the Amazonian rainforest, where arboreal ants collect seeds of several epiphyte species and cultivate them in nutrient-rich nests, forming abundant and conspicuous hanging gardens known as ant-gardens (AGs). AG ants and plants are dominant members of lowland Amazonian ecosystems, and their interaction is both specific and obligate, but the means by which ants locate, recognize, and accept their mutualist seeds while rejecting other seeds is unknown. Here we address the chemical and behavioral basis of the AG interaction. We show that workers of the AG ant Camponotus femoratus are attracted to odorants emanating from seeds of the AG plant Peperomia macrostachya, and that chemical cues also elicit seed-carrying behavior. We identify five compounds from P. macrostachya seeds that, as a blend, attract C. femoratus workers. This report of attractive odorants from ant-dispersed seeds illustrates the intimacy and complexity of the AG mutualism and begins to illuminate the chemical basis of this important and enigmatic interaction.

  8. Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes

    OpenAIRE

    Stouffer, Philip C.; Johnson, Erik I.; Bierregaard, Richard O.; Thomas E Lovejoy

    2011-01-01

    Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragme...

  9. Tropical rainforest palm communities in Madre de Dios in Amazonian Peru

    DEFF Research Database (Denmark)

    Balslev, Henrik; Laumark, Per; Pedersen, Dennis

    2016-01-01

    We studied palm communities, in particular species-richness and -abundance, in the tropical rainforests in southeastern Peru in 54 transects (5×500m) covering an area of 13,5 hectares in flood plain, terra firme, terrace and premontane hills. We found 42 palm species in the transects and we found...

  10. Road-edge effects on herpetofauna in a lowland Amazonian rainforest

    Science.gov (United States)

    Ross J. Maynard; Nathalie C. Aall; Daniel Saenz; Paul S. Hamilton; Matthew A. Kwiatkowski

    2016-01-01

    The impact of roads on the flora and fauna of Neotropical rainforest is perhaps the single biggest driver of habitat modification and population declines in these ecosystems. We investigated the road-edge effect of a low-use dirt road on amphibian and reptile abundance, diversity, and...

  11. A mid-Pleistocene rainforest corridor enabled synchronous invasions of the Atlantic Forest by Amazonian anole lizards.

    Science.gov (United States)

    Prates, Ivan; Rivera, Danielle; Rodrigues, Miguel T; Carnaval, Ana C

    2016-10-01

    Shifts in the geographic distribution of habitats over time can promote dispersal and vicariance, thereby influencing large-scale biogeographic patterns and ecological processes. An example is that of transient corridors of suitable habitat across disjunct but ecologically similar regions, which have been associated with climate change over time. Such connections likely played a role in the assembly of tropical communities, especially within the highly diverse Amazonian and Atlantic rainforests of South America. Although these forests are presently separated by open and dry ecosystems, paleoclimatic and phylogenetic evidence suggest that they have been transiently connected in the past. However, little is known about the timing, magnitude and the distribution of former forest connections. We employ sequence data at multiple loci from three codistributed arboreal lizards (Anolis punctatus, Anolis ortonii and Polychrus marmoratus) to infer the phylogenetic relationships among Amazonian and Atlantic Forest populations and to test alternative historical demographic scenarios of colonization and vicariance using coalescent simulations and approximate Bayesian computation (ABC). Data from the better-sampled Anolis species support colonization of the Atlantic Forest from eastern Amazonia. Hierarchical ABC indicates that the three species colonized the Atlantic Forest synchronously during the mid-Pleistocene. We find support of population bottlenecks associated with founder events in the two Anolis, but not in P. marmoratus, consistently with their distinct ecological tolerances. Our findings support that climatic fluctuations provided key opportunities for dispersal and forest colonization in eastern South America through the cessation of environmental barriers. Evidence of species-specific histories strengthens assertions that biological attributes play a role in responses to shared environmental change.

  12. Primary and secondary organics in tropical Amazonian rainforest aerosols: Chiral analysis of 2-methyltetrols

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Nelida; Borg-Karlson, Anna-Karin; Artaxo, Paulo; Guenther, Alex B.; Krejci, R.; Noziere, Barbara; Noone, Kevin

    2014-06-01

    This work presents the application of a newly developed method to facilitate the distinction between primary and secondary organic compounds in ambient aerosols based on their chiral analysis. The organic constituents chosen for chiral analysis are the four stereomers of the 2-methyltetrols, (2R,3S)- and (2S,3R)- methylerythritol and (2S,3S)- and (2R,3R)- methylthreitol. Ambient PM10 aerosol samples were collected between June 2008 and June 2009 near Manaus, Brazil, in a remote tropical rainforest environment of central Amazonia. The samples were analyzed for the presence of these four stereomers because qualitatively, in a previous study, they have been demonstrated to have partly primary origins. Thus the origin of these compounds may be primary and secondary from the biosynthesis and oxidation processes of isoprene within plants and also in the atmosphere. Using authentic standards, the quantified concentrations were in average 78.2 and 72.8 ng m-3 for (2R,3S)- and (2S,3R)- methylerythritol and 3.1 and 3.3 ng m-3 for (2S,3S)- and (2R,3R)- methylthreitol during the dry season and 7.1, 6.5, 2.0, and 2.2 ng m-3 during the wet season, respectively. Furthermore, these compounds were found to be outside the confidence interval for racemic mixtures (enantiomeric fraction, Ef = 0.5 -0.01) in nearly all the samples, with deviations of up to 32 % (Ef = 0.61) for (2R,3S)-methylerythritol and 47 % (Ef = 0.65) for (2S,3S)-methylthreitol indicating (99% confidence level) biologically-produced 2-methyltetrols. The minimum primary origin contribution ranged between 0.19 and 29.67 ng m-3 for the 2-methylerythritols and between 0.15 and 1.2 ng m-3 for the 2-methylthreitols. The strong correlation of the diatereomers (racemic 2-methylerythritol and 2-methylthreitol) in the wet season implied a secondary origin. Assuming the maximum secondary contribution in the dry season, the secondary fraction in the wet season was 81-99 % and in the dry season, 10 - 95 %. Nevertheless, from the

  13. Bradyrhizobium manausense sp. nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazonian rainforest soils.

    Science.gov (United States)

    Silva, Flavia V; De Meyer, Sofie E; Simões-Araújo, Jean L; Barbé, Tatiane da Costa; Xavier, Gustavo R; O'Hara, Graham; Ardley, Julie K; Rumjanek, Norma G; Willems, Anne; Zilli, Jerri E

    2014-07-01

    Root nodule bacteria were trapped within cowpea (Vigna unguiculata) in soils with different cultivation histories collected from the Amazonian rainforest in northern Brazil. Analysis of the 16S rRNA gene sequences of six strains (BR 3351(T), BR 3307, BR 3310, BR 3315, BR 3323 BR and BR 3361) isolated from cowpea nodules showed that they formed a distinct group within the genus Bradyrhizobium, which was separate from previously identified type strains. Phylogenetic analyses of three housekeeping genes (glnII, recA and rpoB) revealed that Bradyrhizobium huanghuaihaiense CCBAU 23303(T) was the most closely related type strain (96% sequence similarity or lower). Chemotaxonomic data, including fatty acid profiles (predominant fatty acids being C16 : 0 and summed feature 8), the slow growth rate and carbon compound utilization patterns supported the assignment of the strains to the genus Bradyrhizobium. The results of DNA-DNA hybridizations, antibiotic resistance and physiological tests differentiated these novel strains from the most closely related species of the genus Bradyrhizobium with validly published names. Symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) grouped the novel strains of the genus Bradyrhizobium together with Bradyrhizobium iriomotense strain EK05(T), with 94% and 96% sequence similarity, respectively. Based on these data, these six strains represent a novel species for which the name Brabyrhizobium manausense sp. nov. (BR 3351(T) = HAMBI 3596(T)), is proposed.

  14. Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post-isolation in recovering landscapes.

    Science.gov (United States)

    Stouffer, Philip C; Johnson, Erik I; Bierregaard, Richard O; Lovejoy, Thomas E

    2011-01-01

    Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1-100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1-2 preisolation samples and 4-5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction.

  15. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest.

    Science.gov (United States)

    da Costa, Antonio Carlos Lola; Galbraith, David; Almeida, Samuel; Portela, Bruno Takeshi Tanaka; da Costa, Mauricio; Silva Junior, João de Athaydes; Braga, Alan P; de Gonçalves, Paulo H L; de Oliveira, Alex A R; Fisher, Rosie; Phillips, Oliver L; Metcalfe, Daniel B; Levy, Peter; Meir, Patrick

    2010-08-01

    *At least one climate model predicts severe reductions of rainfall over Amazonia during this century. Long-term throughfall exclusion (TFE) experiments represent the best available means to investigate the resilience of the Amazon rainforest to such droughts. *Results are presented from a 7 yr TFE study at Caxiuanã National Forest, eastern Amazonia. We focus on the impacts of the drought on tree mortality, wood production and above-ground biomass. *Tree mortality in the TFE plot over the experimental period was 2.5% yr(-1), compared with 1.25% yr(-1) in a nearby control plot experiencing normal rainfall. Differences in stem mortality between plots were greatest in the largest (> 40 cm diameter at breast height (dbh)) size class (4.1% yr(-1) in the TFE and 1.4% yr(-1) in the control). Wood production in the TFE plot was c. 30% lower than in the control plot. Together, these changes resulted in a loss of 37.8 +/- 2.0 Mg carbon (C) ha(-1) in the TFE plot (2002-2008), compared with no change in the control. *These results are remarkably consistent with those from another TFE (at Tapajós National Forest), suggesting that eastern Amazonian forests may respond to prolonged drought in a predictable manner.

  16. Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post-isolation in recovering landscapes.

    Directory of Open Access Journals (Sweden)

    Philip C Stouffer

    Full Text Available Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1-100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1-2 preisolation samples and 4-5 post-isolation samples. Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction.

  17. Tropical rainforest palm communities in Madre de Dios in Amazonian Peru

    Directory of Open Access Journals (Sweden)

    Henrik Balslev

    2016-05-01

    Full Text Available We studied palm communities, in particular species-richness and abundance, in the tropical rainforests in southeastern Peru in 54 transects (5×500m covering an area of 13.5 hectares in flood plain, terra firme, terrace and premontane hills. We found 42 palm species in 18 genera in the transects. Terra firme forest had the highest species richness (38 species followed by floodplain and premontane hills with 27 species and terrace forests with 26 species. The highest palm abundances were found in premontane hill forest which had 3243 palms per hectare and terra firme forest which had 2968 palms per hectare. The floodplain forests were intermediate in palm abundance with 2647 and the terrace forests had the lowest abundance with 1709 palms per hectare. Intermediate sized palms were the most common being represented by 18 species, while large palms were represented with 16 species. There were only eight species of small palms of which one was acaulescent. Only one species of liana palm was registered. Of the 42 species observed in the 54 transects, 20 were cespitose, 21 solitary and two had colonial growth. Seven species were found 40–320 km outside of their previously known range.

  18. Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes

    Science.gov (United States)

    Vihermaa, Leena E.; Waldron, Susan; Domingues, Tomas; Grace, John; Cosio, Eric G.; Limonchi, Fabian; Hopkinson, Chris; Rocha, Humberto Ribeiro; Gloor, Emanuel

    2016-12-01

    We constructed a whole carbon budget for a catchment in the Western Amazon Basin, combining drainage water analyses with eddy covariance (EC) measured terrestrial CO2 fluxes. As fluvial C export can represent permanent C export it must be included in assessments of whole site C balance, but it is rarely done. The footprint area of the flux tower is drained by two small streams ( 5-7 km2) from which we measured the dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) export, and CO2 efflux. The EC measurements showed the site C balance to be +0.7 ± 9.7 Mg C ha-1 yr-1 (a source to the atmosphere) and fluvial export was 0.3 ± 0.04 Mg C ha-1 yr-1. Of the total fluvial loss 34% was DIC, 37% DOC, and 29% POC. The wet season was most important for fluvial C export. There was a large uncertainty associated with the EC results and with previous biomass plot studies (-0.5 ± 4.1 Mg C ha-1 yr-1); hence, it cannot be concluded with certainty whether the site is C sink or source. The fluvial export corresponds to only 3-7% of the uncertainty related to the site C balance; thus, other factors need to be considered to reduce the uncertainty and refine the estimated C balance. However, stream C export is significant, especially for almost neutral sites where fluvial loss may determine the direction of the site C balance. The fate of C downstream then dictates the overall climate impact of fluvial export.

  19. Carbon allocation in a Bornean tropical rainforest without dry seasons.

    Science.gov (United States)

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Saitoh, Taku M; Ohashi, Mizue; Nakagawa, Michiko; Suzuki, Masakazu; Otsuki, Kyoichi; Kumagai, Tomo'omi

    2013-07-01

    To clarify characteristics of carbon (C) allocation in a Bornean tropical rainforest without dry seasons, gross primary production (GPP) and C allocation, i.e., above-ground net primary production (ANPP), aboveground plant respiration (APR), and total below-ground carbon flux (TBCF) for the forest were examined and compared with those from Amazonian tropical rainforests with dry seasons. GPP (30.61 MgC ha(-1) year(-1), eddy covariance measurements; 34.40 MgC ha(-1) year(-1), biometric measurements) was comparable to those for Amazonian rainforests. ANPP (6.76 MgC ha(-1) year(-1)) was comparable to, and APR (8.01 MgC ha(-1) year(-1)) was slightly lower than, their respective values for Amazonian rainforests, even though aboveground biomass was greater at our site. TBCF (19.63 MgC ha(-1) year(-1)) was higher than those for Amazonian forests. The comparable ANPP and higher TBCF were unexpected, since higher water availability would suggest less fine root competition for water, giving higher ANPP and lower TBCF to GPP. Low nutrient availability may explain the comparable ANPP and higher TBCF. These data show that there are variations in C allocation patterns among mature tropical rainforests, and the variations cannot be explained solely by differences in soil water availability.

  20. (En)Countering Social and Environmental Messages in the Rainforest Cafe [sic], Children's Picturebooks, and Other Visual Culture Sites

    Science.gov (United States)

    Reisberg, Mira; Han, Sandrine

    2009-01-01

    Our study critically examines social and environmental messages in a range of visual sites educating about rainforest environments. We focus primarily on the Rainforest Cafe, an international series of rainforest-themed edutainment restaurant/stores, whose inherent contradictions between consumption and conservation are quite disturbing when…

  1. Reading, Learning and Enacting: Interpretation at Visitor Sites in the Wet Tropics Rainforest of Australia

    Science.gov (United States)

    McNamara, Karen Elizabeth; Prideaux, Bruce

    2010-01-01

    The northern Wet Tropics rainforest of Australia was declared a world heritage site in 1988 and now supports an extensive tourism industry that attracts an estimated 2.5 million local and international visits annually. As part of the visitor experience, many sites include both environmental and cultural interpretation experiences, which range from…

  2. Fine litter accumulation in Central Amazonian Tropical Rainforest canopy Acúmulo de liteira fina no dossel de uma Floresta Tropical na Amazônia Central

    Directory of Open Access Journals (Sweden)

    Fabiana Rita do Couto-Santos

    2010-12-01

    Full Text Available Fine litter dynamics within the canopy differ from litter dynamics on the forest floor for reasons such as differences in microclimate, substrate, disturbance level, stratum influence and decomposition rates. This study is the first attempt to quantify the fine litter accumulated in the canopy of Central Amazonian forests. We compared the canopy litter accumulation to fine litter-layer on forest floor and to other forests and also investigated which were the mostly accumulated litter omponents. We found that Central Amazonian Rainforest intercepts greater fine litter in the canopy (294 g.m-2 compared to other forest formations with higher winds speed as in a Costa Rican Cloud Forest (170 g.m-2. The mean canopy fine litter accumulated at the end of the dry season was less than a half of that on soil surface (833 g.m-2 and the fine wood component dominates the canopy samplings (174 g.m-2 while leafy component predominate on soil surface litter (353 g.m-2.A dinâmica da liteira fina no dossel difere da dinâmica no chão da floresta por razões como diferenças no microclima, tipo de substrato, taxas de decomposição, distúrbios e influência dos estratos. Esta é a primeira tentativa de quantificar a liteira fina acumulada no dossel das florestas da Amazônia Central. Comparamos o acúmulo da liteira no dossel com a camada de liteira do chão da floresta e com outros tipos de florestas e investigamos quais componentes da liteira acumularam em maiores quantidades. A floresta estudada na Amazônia Central interceptou uma maior quantidade de liteira no dossel (294 g.m-2 do que outras florestas com maior influência dos ventos, como na Costa Rica (170 g.m-2. A média de liteira no dossel no fim da estação seca foi menos da metade da acumulada sobre o solo (833 g.m-2. Os galhos finos dominaram nas amostras do dossel (174 g.m-2 enquanto as folhas predominaram na liteira sobre o solo (353 g.m-2.

  3. Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients.

    Science.gov (United States)

    Fortunel, Claire; Ruelle, Julien; Beauchêne, Jacques; Fine, Paul V A; Baraloto, Christopher

    2014-04-01

    Wood specific gravity (WSG) is a strong predictor of tree performance across environmental gradients. Yet it remains unclear how anatomical elements linked to different wood functions contribute to variation in WSG in branches and roots across tropical forests. We examined WSG and wood anatomy in white sand, clay terra firme and seasonally flooded forests in French Guiana, spanning broad environmental gradients found throughout Amazonia. We measured 15 traits relating to branches and small woody roots in 113 species representing the 15 most abundant species in each habitat and representative species from seven monophyletic lineages occurring in all habitats. Fiber traits appear to be major determinants of WSG, independent of vessel traits, in branches and roots. Fiber traits and branch and root WSG increased from seasonally flooded species to clay terra firme species and lastly to white sand species. Branch and root wood traits were strongly phylogenetically constrained. Lineages differed in wood design, but exhibited similar variation in wood structure across habitats. We conclude that tropical trees can invest differently in support and transport to respond to environmental conditions. Wind disturbance and drought stress represent significant filters driving tree distribution of Amazonian forests; hence we suggest that biophysical explanations should receive more attention.

  4. Validation of Satellite Precipitation (trmm 3B43) in Ecuadorian Coastal Plains, Andean Highlands and Amazonian Rainforest

    Science.gov (United States)

    Ballari, D.; Castro, E.; Campozano, L.

    2016-06-01

    Precipitation monitoring is of utmost importance for water resource management. However, in regions of complex terrain such as Ecuador, the high spatio-temporal precipitation variability and the scarcity of rain gauges, make difficult to obtain accurate estimations of precipitation. Remotely sensed estimated precipitation, such as the Multi-satellite Precipitation Analysis TRMM, can cope with this problem after a validation process, which must be representative in space and time. In this work we validate monthly estimates from TRMM 3B43 satellite precipitation (0.25° x 0.25° resolution), by using ground data from 14 rain gauges in Ecuador. The stations are located in the 3 most differentiated regions of the country: the Pacific coastal plains, the Andean highlands, and the Amazon rainforest. Time series, between 1998 - 2010, of imagery and rain gauges were compared using statistical error metrics such as bias, root mean square error, and Pearson correlation; and with detection indexes such as probability of detection, equitable threat score, false alarm rate and frequency bias index. The results showed that precipitation seasonality is well represented and TRMM 3B43 acceptably estimates the monthly precipitation in the three regions of the country. According to both, statistical error metrics and detection indexes, the coastal and Amazon regions are better estimated quantitatively than the Andean highlands. Additionally, it was found that there are better estimations for light precipitation rates. The present validation of TRMM 3B43 provides important results to support further studies on calibration and bias correction of precipitation in ungagged watershed basins.

  5. Associations of Two Ecologically Significant Social Insect Taxa in the Litter of an Amazonian Rainforest: Is There a Relationship between Ant and Termite Species Richness?

    Directory of Open Access Journals (Sweden)

    Amy L. Mertl

    2012-01-01

    Full Text Available In spite of the ecological dominance of Neotropical ants and termites, little is understood about how their interactions influence their species richness and distribution. We surveyed ground-dwelling termite and ant species in a primary rainforest in Ecuador and analyzed ecological correlates of diversity. Termite richness was positively correlated with ant richness and abundance of twig-nesting ants. We found no evidence of competition for twigs between termites and ants. No ecological factors were correlated with termite diversity although elevation and twig and log abundance influenced ant diversity. When ant richness was compared to the richness of termites employing different predator defenses, a positive correlation was found with soldierless termites, but not genera employing chemical or mechanical defense. Our results suggest that multiple ecological factors influence ant and termite diversity, and that ant predation on termites may have a greater effect than competition between ant and termites for nest sites and food sources.

  6. Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget

    Directory of Open Access Journals (Sweden)

    U. Kuhn

    2007-01-01

    . The remarkably high OH concentrations were also supported by results of a simple budget analysis, based on the flux-to-lifetime relationship of isoprene within the CBL. Furthermore, VOC fluxes determined with the airborne MLG approach were only in reasonable agreement with those of the tower-based REA and SLG approaches after correction for chemical decay by OH radicals, applying a best estimate OH concentration of 5.5×106 molecules cm−3. The SCM model calculations support relatively high OH concentration estimates after specifically being constrained by the mixing ratios of chemical constituents observed during the campaign.

    The relevance of the VOC fluxes for the local carbon budget of the tropical rainforest site during the measurements campaign was assessed by comparison with the concurrent CO2 fluxes, estimated by three different methods (eddy correlation, Lagrangian dispersion, and mass budget approach. Depending on the CO2 flux estimate, 1–6% or more of the carbon gained by net ecosystem productivity appeared to be re-emitted through VOC emissions.

  7. Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget

    Directory of Open Access Journals (Sweden)

    U. Kuhn

    2007-06-01

    . The remarkably high OH concentrations were also supported by results of a simple budget analysis, based on the flux-to-lifetime relationship of isoprene within the CBL. Furthermore, VOC fluxes determined with the airborne MLG approach were only in reasonable agreement with those of the tower-based REA and SLG approaches after correction for chemical decay by OH radicals, applying a best estimate OH concentration of 5.5×106 molecules cm−3. The SCM model calculations support relatively high OH concentration estimates after specifically being constrained by the mixing ratios of chemical constituents observed during the campaign.

    The relevance of the VOC fluxes for the local carbon budget of the tropical rainforest site during the measurements campaign was assessed by comparison with the concurrent CO2 fluxes, estimated by three different methods (eddy correlation, Lagrangian dispersion, and mass budget approach. Depending on the CO2 flux estimate, 1–6% or more of the carbon gained by net ecosystem productivity appeared to be re-emitted through VOC emissions.

  8. Sleeping site ecology in a rain-forest dwelling nocturnal lemur (Lepilemur mustelinus): implications for sociality and conservation.

    Science.gov (United States)

    Rasoloharijaona, Solofonirina; Randrianambinina, Blanchard; Zimmermann, Elke

    2008-03-01

    Suitable sleeping sites as potentially restricted resources are suggested to shape sociality in primates. We investigated sleeping site ecology of a rain-forest dwelling sportive lemur in eastern Madagascar for the first time. Using radiotelemetry, we characterized the type, quality and usage of sleeping sites as well as social sleeping habits of 11 focal individuals of the weasel sportive lemur (Lepilemur mustelinus) during the dry and the onset of the rainy season. Morphometric measurements provided additional information. The sexes showed an unusual sexual dimorphism for primates. Males and females did not differ in body length, but females surpassed males in body mass suggesting female dominance. Both sexes used dense vegetation and holes in hollow trees high above the ground as shelters for sleeping during the day. No sex difference in the quality of tree holes was found, but focal individuals used tree holes more often than open sleeping sites in dense vegetation. Both sexes showed high sleeping site fidelity limited to two to six different sites that they used primarily solitarily. The results imply that suitable sleeping sites are limited and survival of this species will strongly depend on the availability of mature rain forests with suitable hollow trees. Furthermore, these findings provide evidence of a solitary sleeping and ranging system in this rain-forest dwelling sportive lemur with suitable sleeping sites as defendable resources.

  9. Sleeping sites and latrines of spider monkeys in continuous and fragmented rainforests: implications for seed dispersal and forest regeneration.

    Directory of Open Access Journals (Sweden)

    Arturo González-Zamora

    Full Text Available Spider monkeys (Ateles geoffroyi use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively. Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations

  10. Sleeping sites and latrines of spider monkeys in continuous and fragmented rainforests: implications for seed dispersal and forest regeneration.

    Science.gov (United States)

    González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A; Stoner, Kathryn E

    2012-01-01

    Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the

  11. Sleeping Sites and Latrines of Spider Monkeys in Continuous and Fragmented Rainforests: Implications for Seed Dispersal and Forest Regeneration

    Science.gov (United States)

    González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A.; Stoner, Kathryn E.

    2012-01-01

    Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the

  12. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site

    NARCIS (Netherlands)

    Araújo, A.C.; Nobre, A.D.; Kruijt, B.; Elbers, J.A.; Dallarosa, R.; Stefani, P.; Randow, von C.; Manzi, A.O.; Culf, A.D.; Gash, J.H.C.; Valentini, R.; Kabat, P.

    2002-01-01

    Forests around Manaus have staged the oldest and the longest forest-atmosphere CO2 exchange studies made anywhere in the Amazon. Since July 1999 the exchange of CO2, water, and energy, as well as weather variables, have been measured almost continuously over two forests, 11 km apart, in the Cuieiras

  13. Amazonian coca.

    Science.gov (United States)

    Plowman, T

    1981-01-01

    A general overview of various aspects of Amazonian coca (Erythroxylum coca var. ipadu) is presented. This plant is considered a distinct variety of coca which has been developed as a cultivated plant in the upper Amazon basin. It differs from typical Andean coca in morphological, physiological and chemical features as well as in the method of preparation and use by Amazonian tribes. The main topics here discussed are the history, distribution, botany, chemistry, origin, methods of preparation and use, and the effects of Amazonian coca.

  14. Hunting in the Rainforest and Mayaro Virus Infection: An emerging Alphavirus in Ecuador

    OpenAIRE

    Izurieta, Ricardo O; Maurizio Macaluso; Watts, Douglas M.; Robert B Tesh; Bolivar Guerra; Cruz, Ligia M; Sagar Galwankar; Vermund, Sten H.

    2011-01-01

    Objectives: The objectives of this report were to document the potential presence of Mayaro virus infection in Ecuador and to examine potential risk factors for Mayaro virus infection among the personnel of a military garrison in the Amazonian rainforest. Materials and Methods: The study population consisted of the personnel of a garrison located in the Ecuadorian Amazonian rainforest. The cross-sectional study employed interviews and seroepidemiological methods. Humoral immune response to Ma...

  15. The Effect of Drought on Stomatal Conductance in the Biosphere 2 Rainforest

    Science.gov (United States)

    Gay, J. D.; Van Haren, J. L. M.

    2015-12-01

    Drought is a major climate change concern for the Earth's rainforests; however little is currently known about how these forests and individual plants will respond to water stress. At the individual level, the ability of plants to regulate their stomatal conductance is an important preservation mechanism that helps to cool leaves, regulate water loss, and uptake carbon dioxide. At the ecosystem level, transpiration in rainforests is a major contributor to the positive feedback loop that returns moisture to the atmosphere for continued precipitation cycles. Nearly 60% of atmospheric moisture in the Amazon rain forests has been traced back to origins of transpiration from its plants. In relation to current climatic conditions, stomatal conductance rates are highly variable across rainforest species and environmental conditions. It is still unknown to what extent these rates will decrease at leaf and forest level in response to periods of drought. The University of Arizona's Biosphere 2 (B2) served as the study site for a simulated 4-week long drought because of its ability to mimic the micrometeorology of an Amazonian rainforest. Three species of plants were chosen at various levels in the canopy: Clitoria racemosa, Cissus sicyoides, and Hibiscus elatus. These plants were selected based on their relative abundance and distribution in the B2 forest. It was revealed that two out of the three species exhibited decreases in H20 efflux at each elevation, while one species (C. racemosa) proved much more resistant, at each elevation, to H20 loss. These results may be useful for future integrative modeling of how individual leaf level responses extend to entire ecosystem scales. It will be important to better understand how rainforests conserve, recycle, and lose water to gauge their response to warming climate, and increased periods of drought in the tropics.

  16. Using biometry to elucidate eddy flux observations of net ecosystem carbon exchange: evidence for episodic disturbance as the cause of net carbon loss from an old-growth Amazonian rainforest

    Science.gov (United States)

    Saleska, S. R.; Wofsy, S. C.; Rice, A. H.; Hutyra, L.; Pyle, E. H.; Camargo, P. B.; Portilho, K.; Marques, D. F.

    2002-12-01

    Net ecosystem exchange (NEE) of CO2, measured by eddy-covariance in a central Amazonian old-growth forest, showed ecosystem C loss of 0.5 to 2 MgC/ha/yr (see Wofsy et al invited presentation). This is in contrast to other published eddy flux studies of Amazonian C-balance most of which have reported significant uptake. In order to independently test eddy flux results, and elucidate the underlying forest vegetation dynamics driving this net loss, we surveyed trees and coarse woody debris in 20 ha of the eddy flux tower footprint (in the Tapaj¢s National Forest, km 67, near Santarém, Par , Brazil, 54d 58'W, 2d 51'S). Net flux to live wood biomass, estimated by resurvey after two years, was 1.49 +/- 0.58 Mg C/ha/yr, the net result of high growth rate (3.28 +/- 0.23 Mg C/ha/yr from a mean bole increment of 0.18 cm), recruitment of new trees (0.61 +/- 0.02 Mg C/ha/yr), and high mortality (-2.4 +/- 0.51 Mg C/ha/yr due to stem mortality of 1.8 percent/yr). The measured net gain in live wood biomass was exceeded, however, by estimated net loss (flux to CWD = -1.7 to -5.0 Mg C/ha/yr) from the large stock of CWD, resulting in an overall estimated flux to aboveground live and dead wood of -0.2 to -3.9 Mg C/ha/yr, a loss consistent with eddy flux. Three observations suggest that an episode of high mortality (possibly caused by El Ni¤o Southern Oscillation events of the 1990s) preceded study initiation and resulted in the current observations of carbon loss: (i) the stock of CWD is large, (ii) all of the net gain in live biomass is due to small-tree growth and recruitment, and (iii) the distribution of stem density was piecewise log-linear with a notable steeper slope for trees less than 40 cm DBH. This scenario confirms predictions that large variations in carbon balance may be expected in even old growth forest, and suggests that climatically-induced disturbance events may mask the relatively small effects on carbon uptake predicted from rising atmospheric carbon dioxide.

  17. Floristic composition and diversity of Amazonian rainforest bryophytes in the state of Acre, Brazil Composição florística e diversidade de briófitas em floresta no estado do Acre, Brasil

    Directory of Open Access Journals (Sweden)

    Denise Pinheiro da Costa

    2003-01-01

    Full Text Available Bryophyte diversity in Amazonian Brazil is high, presently recorded at 514 species distributed among 36 families and 89 genera. Comparisions of species richness among the Amazonian states of Brazil suggests that the bryoflora of Acre is still underestimated, presently recorded at 106 species distributed among 33 families and 63 genera. After two field trips, the diversity increased 50% showing that the bryoflora is still poorly known. Collection data and comments on morphology, ecology and distribution are given for sixty-two species of bryophytes collected in the state of Acre, Brazil, which are new (fifty-two species or interesting floristic records (ten species. Microlejeunea crenulifolia (Gottsche Steph. and Stictolejeunea balfourdii Mitt. are new records for Brazil and fifty species are new records for Acre.A diversidade de briófitas na região Amazônica brasileira é alta, sendo citado atualmente, 514 espécies, em 36 famílias e 89 gêneros. Comparações entre a riqueza de espécies dos estados da Amazônia brasileira sugerem que a brioflora do Acre ainda é subestimada, contando atualmente com 106 espécies, distribuídas em 33 famílias e 63 gêneros. Após duas excursões científicas, a diversidade para o estado aumentou em 50 %, demonstrando que a brioflora ainda é pouco conhecida. Dados sobre a morfologia, ecologia e distribuição geográfica são apresentados para sessenta e duas espécies de briófitas coletadas no estado do Acre, Brasil, as quais são registros florísticos novos (cinquenta e duas espécies ou interessantes (dez espécies. Microlejeunea crenulifolia (Gottsche Steph. e Stictolejeunea balfourdii Mitt. são citadas pela primeira vez para o Brasil e cinquenta espécies são novas ocorrências para o estado do Acre.

  18. Phylogenetic origins of local-scale diversity patterns and the causes of Amazonian megadiversity.

    Science.gov (United States)

    Wiens, John J; Pyron, R Alexander; Moen, Daniel S

    2011-07-01

    What explains the striking variation in local species richness across the globe and the remarkable diversity of rainforest sites in Amazonia? Here, we apply a novel phylogenetic approach to these questions, using treefrogs (Hylidae) as a model system. Hylids show dramatic variation in local richness globally and incredible local diversity in Amazonia. We find that variation in local richness is not explained primarily by climatic factors, rates of diversification (speciation and extinction) nor morphological variation. Instead, local richness patterns are explained predominantly by the timing of colonization of each region, and Amazonian megadiversity is linked to the long-term sympatry of multiple clades in that region. Our results also suggest intriguing interactions between clade diversification, trait evolution and the accumulation of local richness. Specifically, sympatry between clades seems to slow diversification and trait evolution, but prevents neither the accumulation of local richness over time nor the co-occurrence of similar species.

  19. Effect of seasonal flooding cycle on litterfall production in alluvial rainforest on the middle Xingu River (Amazon basin, Brazil).

    Science.gov (United States)

    Camargo, M; Giarrizzo, T; Jesus, A J S

    2015-08-01

    The assumption for this study was that litterfall in floodplain environments of the middle Xingu river follows a pattern of seasonal variation. According to this view, litterfall production (total and fractions) was estimated in four alluvial rainforest sites on the middle Xingu River over an annual cycle, and examined the effect of seasonal flooding cycle. The sites included two marginal flooded forests of insular lakes (Ilha Grande and Pimentel) and two flooded forests on the banks of the Xingu itself (Boa Esperança and Arroz Cru). Total litterfall correlated with rainfall and river levels, but whereas the leaf and fruit fractions followed this general pattern, the flower fraction presented an inverse pattern, peaking in the dry season. The litterfall patterns recorded in the present study were consistent with those recorded at other Amazonian sites, and in some other tropical ecosystems.

  20. Hunting in the rainforest and mayaro virus infection: An emerging alphavirus in Ecuador

    Directory of Open Access Journals (Sweden)

    Ricardo O Izurieta

    2011-01-01

    Full Text Available Objectives: The objectives of this report were to document the potential presence of Mayaro virus infection in Ecuador and to examine potential risk factors for Mayaro virus infection among the personnel of a military garrison in the Amazonian rainforest. Materials and Methods: The study population consisted of the personnel of a garrison located in the Ecuadorian Amazonian rainforest. The cross-sectional study employed interviews and seroepidemiological methods. Humoral immune response to Mayaro virus infection was assessed by evaluating IgM- and IgG-specific antibodies using ELISA. Results: Of 338 subjects studied, 174 were from the Coastal zone of Ecuador, 73 from Andean zone, and 91 were native to the Amazonian rainforest. Seroprevalence of Mayaro virus infection was more than 20 times higher among Amazonian natives (46% than among subjects born in other areas (2%. Conclusions: Age and hunting in the rainforest were significant predictors of Mayaro virus infection overall and among Amazonian natives. The results provide the first demonstration of the potential presence of Mayaro virus infection in Ecuador and a systematic evaluation of risk factors for the transmission of this alphavirus. The large difference in prevalence rates between Amazonian natives and other groups and between older and younger natives suggest that Mayaro virus is endemic and enzootic in the rainforest, with sporadic outbreaks that determine differences in risk between birth cohorts of natives. Deep forest hunting may selectively expose native men, descendants of the Shuar and Huaronai ethnic groups, to the arthropod vectors of Mayaro virus in areas close to primate reservoirs.

  1. Molecular and morphological characterization of heterorhabditid entomopathogenic nematodes from the tropical rainforest in Brazil

    Directory of Open Access Journals (Sweden)

    Claudia Dolinski

    2008-03-01

    Full Text Available Despite massive losses of primary forest, the Amazonian rainforest remains an extremely rich source of biodiversity. In recent years, entomopathogenic nematodes (EPNs have been isolated from soil in various parts of the world and used successfully as biological control agents against numerous insect pests. Therefore, a sampling in the rainforest of Monte Negro, Rondônia, Brazil was conducted with the aim of discovering new strains and/or species of EPNs for future development as biological control agents. From 156 soil samples taken at nine collecting sites, 19 isolates were obtained, all of them belonging to the genus Heterorhabditis. Four strains were subjected to detailed morphological and molecular evaluation. Based on morphometrics and internal transcribed spacer (ITS sequence data, the strains LPP1, LPP2 and LPP4 were identified as Heterorhabditis indica, whereas LPP7 was considered Heterorhabditis baujardi. Comparative analysis of the ITS1 sequence of H. indica and H. baujardi isolates showed a polymorphic site for the restriction enzyme Tth 111 that could be used to distinguish the two species. Consequently, strains LPP1, LPP2, LPP3, LPP4, and LPP9 were identified as H. indica, whereas LPP5, LPP7, LPP8 and LPP10 were identified as H. baujardi.

  2. Effects of Selection Logging on Rainforest Productivity

    OpenAIRE

    Vanclay, Jerome K.

    2006-01-01

    An analysis of data from 212 permanent sample plots provided no evidence of any decline in rainforest productivity after three cycles of selection logging in the tropical rainforests of north Queensland. Relative productivity was determined as the difference between observed diameter increments and increments predicted from a diameter increment function which incorporated tree size, stand density and site quality. Analyses of variance and regression analyses revealed no significant decline in...

  3. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa

    Science.gov (United States)

    Ter Steege, Hans; Vaessen, Rens W.; Cárdenas-López, Dairon; Sabatier, Daniel; Antonelli, Alexandre; de Oliveira, Sylvia Mota; Pitman, Nigel C. A.; Jørgensen, Peter Møller; Salomão, Rafael P.

    2016-07-01

    Amazonia is the most biodiverse rainforest on Earth, and the debate over how many tree species grow there remains contentious. Here we provide a checklist of all tree species collected to date, and describe spatial and temporal trends in data accumulation. We report 530,025 unique collections of trees in Amazonia, dating between 1707 and 2015, for a total of 11,676 species in 1225 genera and 140 families. These figures support recent estimates of 16,000 total Amazonian tree species based on ecological plot data from the Amazonian Tree Diversity Network. Botanical collection in Amazonia is characterized by three major peaks, centred around 1840, 1920, and 1980, which are associated with flora projects and the establishment of inventory plots. Most collections were made in the 20th century. The number of collections has increased exponentially, but shows a slowdown in the last two decades. We find that a species’ range size is a better predictor of the number of times it has been collected than the species’ estimated basin-wide population size. Finding, describing, and documenting the distribution of the remaining species will require coordinated efforts at under-collected sites.

  4. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production.

    Science.gov (United States)

    Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; da Silva, Mateus Ribeiro; Azzoni, Sindelia Freitas; Pradella, José Geraldo da Cruz

    2012-03-01

    The on-site production of cellulases is an important strategy for the development of sustainable second-generation ethanol production processes. This study concerns the use of a specific cellulolytic enzyme complex for hydrolysis of pretreated sugar cane bagasse. Glycosyl hydrolases (FPase, xylanase, and β-glucosidase) were produced using a new strain of Trichoderma harzianum, isolated from the Amazon rainforest and cultivated under different conditions. The influence of the carbon source was first investigated using shake-flask cultures. Selected carbon sources were then further studied under different pH conditions using a stirred tank bioreactor. Enzymatic activities up to 121 FPU/g, 8000 IU/g, and 1730 IU/g of delignified steam-exploded bagasse+sucrose were achieved for cellulase, xylanase and β-glucosidase, respectively. This enzymatic complex was used to hydrolyze pretreated sugar cane bagasse. A comparative evaluation, using an enzymatic extract from Trichoderma reesei RUTC30, indicated similar performance of the T. harzianum enzyme complex, being a potential candidate for on-site production of enzymes.

  5. Alluvial deposits and plant distribution in an Amazonian lowland megafan

    Science.gov (United States)

    Zani, H.; Rossetti, D.; Cremon; Cohen, M.; Pessenda, L. C.

    2012-12-01

    A large volume of sandy alluvial deposits (> 1000 km2) characterizes a flat wetland in northern Amazonia. These have been recently described as the sedimentary record of a megafan system, which have a distinct triangular shape produced by highly migratory distributary rivers. The vegetation map suggests that this megafan is dominated by open vegetation in sharp contact with the surround rainforest. Understanding the relationship between geomorphological processes and vegetation distribution is crucial to decipher and conserve the biodiversity in this Amazonian ecosystem. In this study we interpret plant dynamics over time, and investigate its potential control by sedimentary processes during landscape evolution. The study area is located in the Viruá National Park. Two field campaigns were undertaken in the dry seasons of 2010 and 2011 and the sampling sites were selected by combining accessibility and representativeness. Vegetation contrasts were recorded along a transect in the medial section of the Viruá megafan. Due to the absence of outcrops, samples were extracted using a core device, which allowed sampling up to a depth of 7.5 m. All cores were opened and described in the field, with 5 cm3 samples collected at 20 cm intervals. The δ13C of organic matter was used as a proxy to distinguish between C3 and C4 plant communities. The chronology was established based on radiocarbon dating. The results suggest that the cores from forested areas show the most depleted values of δ13C, ranging from -32.16 to -27.28‰. The δ13C curve in these areas displays typical C3 land plant values for the entire record, which covers most of the Holocene. This finding indicates that either the vegetation remained stable over time or the sites were dominated by aquatic environments with freshwater plants before forest establishment. The cores from the open vegetation areas show a progressive upward enrichment in δ13C values, which range from -28.50 to -19.59‰. This trend is

  6. Control of dry season evapotranspiration over the Amazonian forest as inferred from observations at a southern Amazon forest site

    NARCIS (Netherlands)

    Negrón Juárez, R.I.; Hodnett, M.G.; Fu, R.; Goulden, M.L.; Randow, von C.

    2007-01-01

    The extent to which soil water storage can support an average dry season evapotranspiration (ET) is investigated using observations from the Rebio Jarú site for the period of 2000 to 2002. During the dry season, when total rainfall is less than 100 mm, the soil moisture storage available to root upt

  7. Coastal Temperate Rainforest Symposium

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The North Pacific LCC is helping sponsor the April 2012 science symposium - Coastal Temperate Rainforests: Integrating Communities, Climate Science, and Resource...

  8. Modeling radiative transfer in tropical rainforest canopies: sensitivity of simulated albedo to canopy architectural and optical parameters.

    Science.gov (United States)

    Yanagi, Sílvia N M; Costa, Marcos H

    2011-12-01

    This study evaluates the sensitivity of the surface albedo simulated by the Integrated Biosphere Simulator (IBIS) to a set of Amazonian tropical rainforest canopy architectural and optical parameters. The parameters tested in this study are the orientation and reflectance of the leaves of upper and lower canopies in the visible (VIS) and near-infrared (NIR) spectral bands. The results are evaluated against albedo measurements taken above the K34 site at the INPA (Instituto Nacional de Pesquisas da Amazônia) Cuieiras Biological Reserve. The sensitivity analysis indicates a strong response to the upper canopy leaves orientation (χup) and to the reflectivity in the near-infrared spectral band (ρNIR,up), a smaller sensitivity to the reflectivity in the visible spectral band (ρVIS,up) and no sensitivity at all to the lower canopy parameters, which is consistent with the canopy structure. The combination of parameters that minimized the Root Mean Square Error and mean relative error are χup = 0.86, ρVIS,up = 0.062 and ρNIR,up = 0.275. The parameterizations performed resulted in successful simulations of tropical rainforest albedo by IBIS, indicating its potential to simulate the canopy radiative transfer for narrow spectral bands and permitting close comparison with remote sensing products.

  9. Hysteresis in the Central African Rainforest

    Science.gov (United States)

    Pietsch, Stephan Alexander; Elias Bednar, Johannes; Gautam, Sishir; Petritsch, Richard; Schier, Franziska; Stanzl, Patrick

    2014-05-01

    Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, analyse the relationship between resilience, standing C-stocks and change in climate and finally provide evidence of hysteresis.

  10. Ritualistic use of the holly Ilex guayusa by Amazonian Jívaro Indians.

    Science.gov (United States)

    Lewis, W H; Kennelly, E J; Bass, G N; Wedner, H J; Elvin-Lewis, M P; Fast, D

    1991-01-01

    In Amazonian Peru and Ecuador leaf decoctions of the rainforest holly Ilex guayusa with high caffeine concentrations are used as a morning stimulant. After daily ingestion, ritualistic vomiting by male Achuar Indians, better known as Jívaros, reduces excessive caffeine intake, so that blood levels of caffeine and biotransformed dimethylxanthines do not cause undesirable CNS and other effects. Emesis is learned and apparently not due to emetic compounds.

  11. South American palaeobotany and the origins of neotropical rainforests.

    Science.gov (United States)

    Burnham, Robyn J; Johnson, Kirk R

    2004-10-29

    Extant neotropical rainforest biomes are characterized by a high diversity and abundance of angiosperm trees and vines, high proportions of entire-margined leaves, high proportions of large leaves (larger than 4500 mm2), high abundance of drip tips and a suite of characteristic dominant families: Sapotaceae, Lauraceae, Leguminosae (Fabaceae), Melastomataceae and Palmae (Arecaceae). Our aim is to define parameters of extant rainforests that will allow their recognition in the fossil record of South America and to evaluate all known South American plant fossil assemblages for first evidence and continued presence of those parameters. We ask when did these critical rainforest characters arise? When did vegetative parameters reach the level of abundance that we see in neotropical forests? Also, when do specific lineages become common in neotropical forests? Our review indicates that evidence of neotropical rainforest is exceedingly rare and equivocal before the Palaeocene. Even in the Palaeocene, the only evidence for tropical rainforest in South America is the appearance of moderately high pollen diversity. By contrast, North American sites provide evidence that rainforest leaf physiognomy was established early in the Palaeocene. By the Eocene in South America, several lines of evidence suggest that neotropical rainforests were diverse, physiognomically recognizable as rainforest and taxonomically allied to modern neotropical rainforests. A mismatch of evidence regarding the age of origin between sites of palaeobotanical high diversity and sites of predicted tropical climates should be reconciled with intensified collecting efforts in South America. We identify several lines of promising research that will help to coalesce previously disparate approaches to the origin, longevity and maintenance of high diversity floras of South America.

  12. Rainforest: Reptiles and Amphibians

    Science.gov (United States)

    Olson, Susanna

    2006-01-01

    Rainforest reptiles and amphibians are a vibrantly colored, multimedia art experience. To complete the entire project one may need to dedicate many class periods to production, yet in each aspect of the project a new and important skill, concept, or element is being taught or reinforced. This project incorporates the study of warm and cool color…

  13. Mapping phytophysiognomies to undisclosed past landscape in an Amazonian wetland

    Science.gov (United States)

    Cremon, E.; Rossetti, D.; Zani, H.

    2012-12-01

    Wetlands cover 800,000 km2 in the Amazon basin, and these not distributed randomly in the landscape. These areas record a complex geomorphological history during the late Quaternary, mainly due to interplay of tectonics and climatic changes, which resulted in high volumes of sediment deposited in renewed accommodation spaces. It is interesting that these wetlands are highlighted by open vegetation of non-random distribution in contrast with the surrounding rainforest. In general, natural patches of open vegetation within the Amazonian forest have been most often assigned to past arid climatic episodes, or contrasting soil properties. In this work, we analyzed the relationship between geomorphology and the distribution of vegetation patterns over an Amazonian wetland located in the interfluve of the Negro and Branco Rivers. This area is interesting because it contains one of the largest (i.e., more than 100 km in length and 50 km in width) patches of open vegetation (mostly grassland campinarana) in sharp contrast with the rainforest. The main goal was to perform a phytophysiognomic map based on decision tree classifier and data mining of reflectance factor and backscattering using TM/Landsat (dry season) and PALSAR (wet season) images. Five phytophysiognomies were categorized: rainforest; flooded forest; wooded open vegetation; grassy-shrubby open vegetation; and water body. The output map showed an overall accuracy of 94% and Kappa index of 0.93 (p grassy, shrubby and woody) from forested areas (rainforest and flooded forest). Together with the visual interpretation of remote sensing products, the achieved phytophysiognomic map served as the basis for a geomorphological interpretation of the study area. Hence, grassy and shrubby open vegetation class defines a triangular, cone-shaped morphology sharply bounded by flooded and dense forests. Within the open forest, there are also numerous, narrow and elongated belts of wooded open vegetation and forest, which

  14. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition

    NARCIS (Netherlands)

    Levis, C.; Costa, Flávia R.C.; Bongers, F.; Pena Claros, M.; Braga Junqueira, A.

    2017-01-01

    The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by p

  15. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition

    NARCIS (Netherlands)

    Levis, C.; Costa, Flávia R.C.; Bongers, F.; Pena Claros, M.; Braga Junqueira, A.

    2017-01-01

    The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by p

  16. Vertical stratification of bat assemblages in flooded and unflooded Amazonian forests

    Directory of Open Access Journals (Sweden)

    Maria João Ramos PEREIRA, João Tiago MARQUES, Jorge M. PALMEIRIM

    2010-08-01

    Full Text Available Tropical rainforests usually have multiple strata that results in a vertical stratification of ecological opportunities for animals. We investigated if this stratification influences the way bats use the vertical space in flooded and unflooded forests of the Central Amazon. Using mist-nets set in the canopy (17 to 35 m high and in the understorey (0 to 3 m high we sampled four sites in upland unflooded forests (terra firme, three in forests seasonally flooded by nutrient-rich water (várzea, and three in forests seasonally flooded by nutrient-poor water (igapó. Using rarefaction curves we found that species richness in the understorey and canopy were very similar. An ordination analysis clearly separated the bat assemblages of the canopy from those of the understorey in both flooded and unflooded habitats. Gleaning carnivores were clearly associated with the understorey, whereas frugivores were abundant in both strata. Of the frugivores, Carollinae and some Stenodermatinae were understorey specialists, but several Stenodermatinae mostly used the canopy. The first group mainly includes species that, in general, feed on fruits of understorey shrubs, whereas the second group feed on figs and other canopy fruits. We conclude that vertical stratification in bat communities occurs even within forests with lower canopy heights, such as Amazonian seasonally flooded forests, and that the vertical distribution of bat species is closely related to their diet and foraging behaviour [Current Zoology 56 (4: 469–478, 2010].

  17. Response of frugivorous primates to changes in fruit supply in a northern Amazonian forest.

    Science.gov (United States)

    Mourthé, I

    2014-08-01

    Few attempts have been made to understand how spatiotemporal changes in fruit supply influence frugivores in tropical forests. The marked spatiotemporal variation in fruit supply can affect frugivore abundance and distribution, but studies addressing the effects of this variation on primates are scarce. The present study aimed to investigate how the spatiotemporal distribution of fruits influences the local distribution of three frugivorous primates in the eastern part of the Maracá Ecological Station, a highly seasonal Amazonian rainforest. Specifically, it was hypothesised that primate distribution will track changes in fruit supply, resulting that sites with high fruit availability should be heavily used by primates. During a 1-year study, fruit supply (ground fruit surveys) and primate density (line-transects) were monitored in twelve 2 km-long transects at monthly intervals. Fruit supply varied seasonally, being low during the dry season. The density of Ateles belzebuth was positively related to fruit supply during fruit shortage, but Cebus olivaceus and Alouatta macconnelli did not follow the same pattern. The supply of Sapotaceae fruit was an important component determining local distribution of A. belzebuth during the overall fruit shortage. Highly frugivorous primates such as A. belzebuth respond to seasonal decline in fruit supply by congregating at places with high fruit supply in this forest, particularly, those with many individuals of species of Sapotaceae. This study underscores the importance of small-scale spatiotemporal changes of fruit supply as a key component of frugivorous primate ecology in highly seasonal environments.

  18. Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest.

    Science.gov (United States)

    Barantal, Sandra; Roy, Jacques; Fromin, Nathalie; Schimann, Heidy; Hättenschwiler, Stephan

    2011-09-01

    Plant litter diversity effects on decomposition rates are frequently reported, but with a strong bias towards temperate ecosystems. Altered decomposition and nutrient recycling with changing litter diversity may be particularly important in tree species-rich tropical rainforests on nutrient-poor soils. Using 28 different mixtures of leaf litter from 16 Amazonian rainforest tree species, we tested the hypothesis that litter mixture effects on decomposition increase with increasing functional litter diversity. Litter mixtures and all single litter species were exposed in the field for 9 months using custom-made microcosms with soil fauna access. In order to test the hypothesis that the long-term presence of tree species contributing to the litter mixtures increases mixture effects on decomposition, microcosms were installed in a plantation at sites including the respective tree species composition and in a nearby natural forest where these tree species are absent. We found that mixture decomposition deviated from predictions based on single species, with predominantly synergistic effects. Functional litter diversity, defined as either richness, evenness, or divergence based on a wide range of chemical traits, did not explain the observed litter mixture effects. However, synergistic effects in litter mixtures increased with the long-term presence of tree species contributing to these mixtures as the home field advantage hypothesis assumes. Our data suggest that complementarity effects on mixed litter decomposition may emerge through long-term interactions between aboveground and belowground biota.

  19. Rainforests and Rousseau

    Science.gov (United States)

    Rohrbach, Marla

    2012-01-01

    One of the fifth-grade art-curriculum objectives is to create a relief print. In this era of budget cuts, the author was looking for a way for her students to meet this objective by making colorful prints without using a lot of expensive printing ink. She knew she wanted to use a rainforest animal theme, as well as share the colorful art of Henri…

  20. DNA Metabarcoding of Amazonian Ichthyoplankton Swarms

    Science.gov (United States)

    Maggia, M. E.; Vigouroux, Y.; Renno, J. F.; Duponchelle, F.; Desmarais, E.; Nunez, J.; García-Dávila, C.; Carvajal-Vallejos, F. M.; Paradis, E.; Martin, J. F.; Mariac, C.

    2017-01-01

    Tropical rainforests harbor extraordinary biodiversity. The Amazon basin is thought to hold 30% of all river fish species in the world. Information about the ecology, reproduction, and recruitment of most species is still lacking, thus hampering fisheries management and successful conservation strategies. One of the key understudied issues in the study of population dynamics is recruitment. Fish larval ecology in tropical biomes is still in its infancy owing to identification difficulties. Molecular techniques are very promising tools for the identification of larvae at the species level. However, one of their limits is obtaining individual sequences with large samples of larvae. To facilitate this task, we developed a new method based on the massive parallel sequencing capability of next generation sequencing (NGS) coupled with hybridization capture. We focused on the mitochondrial marker cytochrome oxidase I (COI). The results obtained using the new method were compared with individual larval sequencing. We validated the ability of the method to identify Amazonian catfish larvae at the species level and to estimate the relative abundance of species in batches of larvae. Finally, we applied the method and provided evidence for strong temporal variation in reproductive activity of catfish species in the Ucayalí River in the Peruvian Amazon. This new time and cost effective method enables the acquisition of large datasets, paving the way for a finer understanding of reproductive dynamics and recruitment patterns of tropical fish species, with major implications for fisheries management and conservation. PMID:28095487

  1. The Living Rainforest Sustainable Greenhouses

    NARCIS (Netherlands)

    Bot, G.P.A.; Zwart, de H.F.; Hansen, K.; Logan, A.; Witte Groenholland, H.

    2008-01-01

    The Living Rainforest (www.livingrainforest.org) is an educational charity that uses rainforest ecology as a metaphor for communicating general sustainability issues to the public. Its greenhouses and office buildings are to be renovated using the most sustainable methods currently available. This w

  2. Mapping the geographic distribution of canopy species communities in lowland Amazon rainforest with CAO-AToMS (Invited)

    Science.gov (United States)

    Feret, J.; Asner, G. P.

    2013-12-01

    Mapping regional canopy diversity will greatly advance our understanding as well as the conservation of tropical rainforests. Changes in species composition across space and time are particularly important to understand the influence of climate, human activity and environmental factors on these ecosystems, but to date such monitoring is extremely challenging and is facing a scale gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. Advances were recently made in the field of spectroscopic imagery for the estimation of canopy alpha-diversity, and an original approach based on the segmentation of the spectral space proved its ability to estimate Shannon diversity index with unprecedented accuracy. We adapted this method in order to estimate spectral dissimilarity across landscape as a proxy for changes in species composition. We applied this approach and mapped species composition over four sites located in lowland rainforest of Peruvian Amazon. This study was based on spectroscopic imagery acquired using the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS), operating a unique sensor combining the fine spectral and spatial resolution required for such task. We obtained accurate estimation of Bray-Curtis distance between pairs of plots, which is the most commonly used metric to estimate dissimilarity in species composition (n=497 pairs, r=0.63). The maps of species composition were then compared to topo-hydrographic properties. Our results indicated a strong shift in species composition and community diversity between floodplain and terra firme terrain conditions as well as a significantly higher diversity of species communities within Amazonian floodplains. These results pave the way for global mapping of tropical canopy diversity at fine geographic resolution.

  3. Modeling the effects of anthropogenic habitat change on savanna snake invasions into African rainforest.

    Science.gov (United States)

    Freedman, Adam H; Buermann, Wolfgang; Lebreton, Matthew; Chirio, Laurent; Smith, Thomas B

    2009-02-01

    We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus), olympic lined snake (Dromophis lineatus), and African house snake (Lamprophis fuliginosus). Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.

  4. Impact of pre-Columbian "geoglyph" builders on Amazonian forests.

    Science.gov (United States)

    Watling, Jennifer; Iriarte, José; Mayle, Francis E; Schaan, Denise; Pessenda, Luiz C R; Loader, Neil J; Street-Perrott, F Alayne; Dickau, Ruth E; Damasceno, Antonia; Ranzi, Alceu

    2017-02-21

    Over 450 pre-Columbian (pre-AD 1492) geometric ditched enclosures ("geoglyphs") occupy ∼13,000 km(2) of Acre state, Brazil, representing a key discovery of Amazonian archaeology. These huge earthworks were concealed for centuries under terra firme (upland interfluvial) rainforest, directly challenging the "pristine" status of this ecosystem and its perceived vulnerability to human impacts. We reconstruct the environmental context of geoglyph construction and the nature, extent, and legacy of associated human impacts. We show that bamboo forest dominated the region for ≥6,000 y and that only small, temporary clearings were made to build the geoglyphs; however, construction occurred within anthropogenic forest that had been actively managed for millennia. In the absence of widespread deforestation, exploitation of forest products shaped a largely forested landscape that survived intact until the late 20th century.

  5. Fungal community assembly in the Amazonian Dark Earth

    NARCIS (Netherlands)

    Reis Lucheta, Adriano; Souza Cannavan, F.S.; Roesch, L.; Tsai, S.M.; Kuramae, E.E.

    2016-01-01

    Here, we compare the fungal community composition and diversity in Amazonian Dark Earth (ADE) and the respective non-anthropogenic origin adjacent (ADJ) soils from four different sites in Brazilian Central Amazon using pyrosequencing of 18S ribosomal RNA (rRNA) gene. Fungal community composition in

  6. Fungal community assembly in the Amazonian Dark Earth

    NARCIS (Netherlands)

    Lucheta, A.R.; Souza Cannavan, F.S.; Roesch, L.; Tsai, S.M.; Kuramae, E.E.

    2016-01-01

    Here, we compare the fungal community composition and diversity in Amazonian Dark Earth (ADE) and the respective non-anthropogenic origin adjacent (ADJ) soils from four different sites in Brazilian Central Amazon using pyrosequencing of 18S ribosomal RNA (rRNA) gene. Fungal community composition in

  7. Climate science: The resilience of Amazonian forests

    Science.gov (United States)

    Bush, Mark B.

    2017-01-01

    Isotope evidence suggests that, during dry periods associated with the most recent ice age, the Amazonian forest survived in a region that is sensitive to rainfall changes -- settling a debate about Amazonian aridity. See Letter p.204

  8. Pterygium: prevalence and severity in an Amazonian ophthalmic setting, Brazil

    Directory of Open Access Journals (Sweden)

    Sophie Joanna Coutts

    2012-12-01

    Full Text Available OBJECTIVE: This is a cross sectional ophthalmic clinic-based study to estimate the prevalence and severity of pterygium in a selected population in the Amazon Basin, Brazil. METHODS: The study included 225 subjects above 20 years age from three different places of residence of Manaus city (group 1, n=89, river based communities (group 2, n= 116 and indigenous rainforest inhabitants (group 3, n=20. Pterygia was graded 1-4 by torch examination and gender, age and occupation determined. RESULTS: were assessed to have pterygia (grades 2-4 117 people; 52% against 108 control subjects with bilateral disease in 43% of subjects. Prevalence of grades 2-4 increased from 36% in group 1 to 62.5 % in group 2 and 75% in group 3. Of these subjects the percentage with outdoor professions increased across the groups from 31.2% to 67.1 % and 70% respectively. Also subjects of group 2 who worked largely outdoors, showed increasing pterygia severity, from grades 2 at 57% (p=0.0002, grade 3 at 93.3% (p,0.0001 to grade 4 at 100% (p=0.0004 CONCLUSION: Amazonian communities have a high prevalence of pterygia, which correlates to greater outdoor occupation and sun exposure. This study agrees with previous worldwide reports and it is the first study to compare the prevalence of pterygium in rural and urban living in Amazonian in Brazil. This study highlights the public health significance and gross need for intervention studies.

  9. Medicinal plants of the Achuar (Jivaro) of Amazonian Ecuador: ethnobotanical survey and comparison with other Amazonian pharmacopoeias.

    Science.gov (United States)

    Giovannini, Peter

    2015-04-22

    This paper presents the first ethnobotanical survey conducted among the Achuar (Jivaro), indigenous people living in Amazonian Ecuador and Peru. The aims of this study are: (a) to present and discuss Achuar medicinal plant knowledge in the context of the epidemiology of this population (b) to compare the use of Achuar medicinal plants with the uses reported among the Shuar Jivaro and other Amazonian peoples. The author conducted field research in 9 indigenous villages in the region of Morona Santiago and Pastaza in Ecuador. Semi-structured interviews on local illnesses and herbal remedies were carried out with 82 informants and plant specimens were collected and later identified in Quito. A literature research was conducted on the medicinal species reported by Achuar people during this study. The most reported medicinal plants are species used by the Achuar to treat diarrhoea, parasites infection, fractures, wounds, and snakebites. Informants reported the use of 134 medicinal species for a total of 733 recorded use-reports. Of these 134 species, 44 are reported at least 3 times for one or more specific disease condition for a total of 56 uses. These species are considered a core kit of medicinal plants of the Achuar of Ecuador. Most of these medicinal species are widely used in the Amazon rainforest and in many other parts of Latin America. The author documented a core kit of 44 medicinal plants used among the Achuar of Ecuador and found that this core set of medicinal plants reflects local epidemiological concerns and the pharmacopoeias of the Shuar and other Amazonian groups. These findings suggest that inter-group diffusion of medicinal plant knowledge had a prominent role in the acquisition of current Achuar knowledge of medicinal plants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Patterns of Phylogenetic Diversity of Subtropical Rainforest of the Great Sandy Region, Australia Indicate Long Term Climatic Refugia.

    Directory of Open Access Journals (Sweden)

    Marion G Howard

    Full Text Available Australia's Great Sandy Region is of international significance containing two World Heritage areas and patches of rainforest growing on white sand. Previous broad-scale analysis found the Great Sandy biogeographic subregion contained a significantly more phylogenetically even subset of species than expected by chance contrasting with rainforest on white sand in Peru. This study aimed to test the patterns of rainforest diversity and relatedness at a finer scale and to investigate why we may find different patterns of phylogenetic evenness compared with rainforests on white sands in other parts of the world. This study focussed on rainforest sites within the Great Sandy and surrounding areas in South East Queensland (SEQ, Australia. We undertook field collections, expanded our three-marker DNA barcode library of SEQ rainforest plants and updated the phylogeny to 95% of the SEQ rainforest flora. We sampled species composition of rainforest in fixed area plots from 100 sites. We calculated phylogenetic diversity (PD measures as well as species richness (SR for each rainforest community. These combined with site variables such as geology, were used to evaluate patterns and relatedness. We found that many rainforest communities in the Great Sandy area were significantly phylogenetically even at the individual site level consistent with a broader subregion analysis. Sites from adjacent areas were either not significant or were significantly phylogenetically clustered. Some results in the neighbouring areas were consistent with historic range expansions. In contrast with expectations, sites located on the oldest substrates had significantly lower phylogenetic diversity (PD. Fraser Island was once connected to mainland Australia, our results are consistent with a region geologically old enough to have continuously supported rainforest in refugia. The interface of tropical and temperate floras in part also explains the significant phylogenetic evenness

  11. Patterns of Phylogenetic Diversity of Subtropical Rainforest of the Great Sandy Region, Australia Indicate Long Term Climatic Refugia.

    Science.gov (United States)

    Howard, Marion G; McDonald, William J F; Forster, Paul I; Kress, W John; Erickson, David; Faith, Daniel P; Shapcott, Alison

    2016-01-01

    Australia's Great Sandy Region is of international significance containing two World Heritage areas and patches of rainforest growing on white sand. Previous broad-scale analysis found the Great Sandy biogeographic subregion contained a significantly more phylogenetically even subset of species than expected by chance contrasting with rainforest on white sand in Peru. This study aimed to test the patterns of rainforest diversity and relatedness at a finer scale and to investigate why we may find different patterns of phylogenetic evenness compared with rainforests on white sands in other parts of the world. This study focussed on rainforest sites within the Great Sandy and surrounding areas in South East Queensland (SEQ), Australia. We undertook field collections, expanded our three-marker DNA barcode library of SEQ rainforest plants and updated the phylogeny to 95% of the SEQ rainforest flora. We sampled species composition of rainforest in fixed area plots from 100 sites. We calculated phylogenetic diversity (PD) measures as well as species richness (SR) for each rainforest community. These combined with site variables such as geology, were used to evaluate patterns and relatedness. We found that many rainforest communities in the Great Sandy area were significantly phylogenetically even at the individual site level consistent with a broader subregion analysis. Sites from adjacent areas were either not significant or were significantly phylogenetically clustered. Some results in the neighbouring areas were consistent with historic range expansions. In contrast with expectations, sites located on the oldest substrates had significantly lower phylogenetic diversity (PD). Fraser Island was once connected to mainland Australia, our results are consistent with a region geologically old enough to have continuously supported rainforest in refugia. The interface of tropical and temperate floras in part also explains the significant phylogenetic evenness and higher than

  12. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    Directory of Open Access Journals (Sweden)

    Félix Marie-Anne

    2013-01-01

    Full Text Available Abstract Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and

  13. Site Jabuti, in Bragança, State of Pará, in the archaeological scenario of the Amazonian coastal landscape

    Directory of Open Access Journals (Sweden)

    Maura Imazio da Silveira

    2011-08-01

    Full Text Available Forty years after completing the archaeological investigations in the Salgado region, northeastern Pará, researchers have returned to the site to study prehistoric human occupations in the northern coastal regions of Brazil near the Amazon estuary. This article presents the first results of archaeological research at the site Jabuti, located in the Caeté-Taperuçu Marine Extractive Reserve in the municipality of Bragança. This is an open-air residential site with anthropogenic dark earths ('terra preta de índio' and ceramic remains. The archeological remains consist mostly of fragments of pottery, as well as some flaked stone tools and dye residues. The sole C14 date obtained indicates that the site was occupied at least 2,900 years BP. According to this timing, the occupation occurred in the second stage of the model established by Pedro Walfir Martins Souza Filho and collaborators, in a paper published in 2009, for the geological evolution of the Bragança zone along the Salgado coast. Thus the site was situated on the largest soil-bearing island near the mainland. The ceramic material of this site belongs to the Mina tradition. Initially two hypotheses are proposed: 1 the Mina pottery indicates contact between shell midden groups and other ceramic-making groups, or 2 shell midden groups have begun a shift in their subsistence pattern towards cultivation.

  14. Commonness of Amazonian palm (Arecaceae) species: Cross-scale links and potential determinants

    Science.gov (United States)

    Kristiansen, Thea; Svenning, Jens-Christian; Grández, César; Salo, Jukka; Balslev, Henrik

    2009-07-01

    The mechanisms that cause variation in commonness (abundances and range sizes) of species remain debated in ecology, and a repeatedly observed pattern is the positive relation between local abundances and larger scale range sizes. We used the Amazonian palm species (Arecaceae) to investigate the dependence between and potential determinants of commonness across three (local, landscape, continental) spatial scales. Commonness at the smaller scales (local abundance, landscape frequency) was estimated using data from 57 transects (5 × 500 m) in primary, non-inundated ( terra firme) rainforest in a western Amazonian landscape, while commonness at the largest scale (continental range size) was estimated from digitized distribution maps. Landscape frequency was positively related to both local abundance and continental range size, which, however, were not related to each other. Landscape frequency was positively related to topographic niche breadth. Stem height correlated with continental range size and was the only species life-history trait related to any commonness measure. Distance from the study area to a species' range centre did not influence any of the commonness measures. The factors determining commonness in the Amazonian palm flora appear to be scale-dependent, with the unrelated local scale abundance and continental range size probably being controlled by different driving factors. Interestingly, commonness at the intermediate, landscape scale seems linked to both the smaller and the larger scale. Our results point towards topographic niche breadth at the smaller scales and stem height, possibly reflecting species' dispersal potential, at the continental scale as important determinants of commonness.

  15. Modelling the water and energy balances of Amazonian rainforest and pasture using Anglo-Brazilian Amazonian climate observation study data

    NARCIS (Netherlands)

    Ashby, M.

    1999-01-01

    A soil-vegetation-atmosphere transfer model, SWAPS, is introduced. The model is based on existing models for two-layer evaporation and energy balance, interception evaporation and unsaturated soil moisture transport. The model includes a physically based parameterisation for the soil surface resista

  16. Building positive nature awareness in pupils using the "Rainforest of the Austrians" in Costa Rica.

    Science.gov (United States)

    Aubrecht, Margit; Hölzl, Irmgard; Huber, Werner; Weissenhofer, Anton

    2013-04-01

    20 years ago, Michael Schnitzler founded the NGO "Rainforest of the Austrians" to help save one of the most diverse rainforests in Central America, the Esquinas rainforest on the Pacific coast of SW Costa Rica, from being destroyed through logging. In this abstract we present an interdisciplinary upper Austrian school project aiming at building positive awareness in pupils towards rainforest conservation by fund-raising to help purchase endangered forest areas. The acquired rainforest was donated to the Costa Rican government and became part of the National Park "Piedras Blancas". In the following, we present a chronology of events and actions of the school project. We started our rainforest project by face-to-face encounters, letting involved persons speak directly to the pupils. Dr. Huber, coordinator of the tropical rainforest station La Gamba in Costa Rica (www.lagamba.at), together with Dr. Weissenhofer, presented an introductory slide show about the "Rainforest of the Austrians". With rainforest images and sounds in their mind the pupils wrote "trips of a lifetime" stories, thus creating idyllic images of rainforest habitats. Following up on that, we visited the exhibition "Heliconia and Hummingbirds" at the Biology Center in Linz. Reports about the slide show and the exhibition followed. Tropical sites were compared by producing climate graphs of La Gamba, Costa Rica, and Manaus in Brazil. The global distribution and the decrease of rainforests were also analyzed. In biology lessons the symbiosis between plants and animals of the rainforest were worked out by searching the Internet. Flyers with profiles of rainforest animals were produced. We also discussed the ecotourism project "RICANCIE" in Ecuador using fact sheets. "RICANCIE" is a Spanish acronym standing for "Indigenous Community Network of the Upper Napo for Intercultural Exchange and Ecotourism". It was founded in 1993 aiming to improve the quality of life for some 200 indigenous Kichwa families

  17. The production, storage, and flow of carbon in Amazonian forests

    Science.gov (United States)

    Malhi, Yadvinder; Saatchi, Sassan; Girardin, Cecile; Aragão, Luiz E. O. C.

    The carbon stores and dynamics of tropical forests are the subject of major international scientific and policy attention. Research associated with the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) has generated substantial advances in our understanding of the cycling of carbon at selected forest sites in Brazilian Amazonia and generated new insights into how these processes may vary across the wider Amazonian region. Here we report on aspects of this new understanding. We present, in particular, a comprehensive synthesis of carbon cycling in three focal LBA sites (Manaus, Tapajõs, and Caxiuanã), drawing on studies of productivity, litterfall, respiration, physiology, and ecosystem fluxes. These studies are placed in the context of the wider Amazonian region by utilizing the results of the Amazon Forest Inventory Network (RAINFOR) and other forest plots. We discuss the basin-wide distribution of forest biomass derived by combining these plots and a suite of satellite data, and examine the dynamics of carbon cycling in the context of regional carbon stores in the forest. Particular attention is drawn to the strong relationship between forest productivity and turnover, which suggests that higher levels of forest productivity increase forest dynamism rather than forest biomass. We conclude by discussing what the scientific priorities should be for a synthetic region-wide understanding of the carbon dynamics and stores of Amazonian forests.

  18. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition.

    Science.gov (United States)

    Levis, C; Costa, F R C; Bongers, F; Peña-Claros, M; Clement, C R; Junqueira, A B; Neves, E G; Tamanaha, E K; Figueiredo, F O G; Salomão, R P; Castilho, C V; Magnusson, W E; Phillips, O L; Guevara, J E; Sabatier, D; Molino, J-F; López, D Cárdenas; Mendoza, A M; Pitman, N C A; Duque, A; Vargas, P Núñez; Zartman, C E; Vasquez, R; Andrade, A; Camargo, J L; Feldpausch, T R; Laurance, S G W; Laurance, W F; Killeen, T J; Nascimento, H E Mendonça; Montero, J C; Mostacedo, B; Amaral, I L; Guimarães Vieira, I C; Brienen, R; Castellanos, H; Terborgh, J; Carim, M de Jesus Veiga; Guimarães, J R da Silva; Coelho, L de Souza; Matos, F D de Almeida; Wittmann, F; Mogollón, H F; Damasco, G; Dávila, N; García-Villacorta, R; Coronado, E N H; Emilio, T; Filho, D de Andrade Lima; Schietti, J; Souza, P; Targhetta, N; Comiskey, J A; Marimon, B S; Marimon, B-H; Neill, D; Alonso, A; Arroyo, L; Carvalho, F A; de Souza, F C; Dallmeier, F; Pansonato, M P; Duivenvoorden, J F; Fine, P V A; Stevenson, P R; Araujo-Murakami, A; Aymard C, G A; Baraloto, C; do Amaral, D D; Engel, J; Henkel, T W; Maas, P; Petronelli, P; Revilla, J D Cardenas; Stropp, J; Daly, D; Gribel, R; Paredes, M Ríos; Silveira, M; Thomas-Caesar, R; Baker, T R; da Silva, N F; Ferreira, L V; Peres, C A; Silman, M R; Cerón, C; Valverde, F C; Di Fiore, A; Jimenez, E M; Mora, M C Peñuela; Toledo, M; Barbosa, E M; Bonates, L C de Matos; Arboleda, N C; Farias, E de Sousa; Fuentes, A; Guillaumet, J-L; Jørgensen, P Møller; Malhi, Y; de Andrade Miranda, I P; Phillips, J F; Prieto, A; Rudas, A; Ruschel, A R; Silva, N; von Hildebrand, P; Vos, V A; Zent, E L; Zent, S; Cintra, B B L; Nascimento, M T; Oliveira, A A; Ramirez-Angulo, H; Ramos, J F; Rivas, G; Schöngart, J; Sierra, R; Tirado, M; van der Heijden, G; Torre, E V; Wang, O; Young, K R; Baider, C; Cano, A; Farfan-Rios, W; Ferreira, C; Hoffman, B; Mendoza, C; Mesones, I; Torres-Lezama, A; Medina, M N U; van Andel, T R; Villarroel, D; Zagt, R; Alexiades, M N; Balslev, H; Garcia-Cabrera, K; Gonzales, T; Hernandez, L; Huamantupa-Chuquimaco, I; Manzatto, A G; Milliken, W; Cuenca, W P; Pansini, S; Pauletto, D; Arevalo, F R; Reis, N F Costa; Sampaio, A F; Giraldo, L E Urrego; Sandoval, E H Valderrama; Gamarra, L Valenzuela; Vela, C I A; Ter Steege, H

    2017-03-03

    The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples.

  19. Hyperdominance in Amazonian forest carbon cycling

    NARCIS (Netherlands)

    Fauset, S.; Arets, E.J.M.M.; Steege, ter H.; Pena Claros, M.; Poorter, L.; Levis, C.; Toledo, M.

    2015-01-01

    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant’ species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem

  20. Birds - Their importance to visitors to an Australian Rainforest

    OpenAIRE

    Tisdell, Clement A.; Wilson, Clevo

    2004-01-01

    Lamington National Park in Queensland, Australia is noted for its rainforest and is part of Australia’s fourteen World Heritage listed properties but no systematic study has been done of the importance of birds to its visitors. This study rectifies this situation. It is based on data from survey forms handed to visitors at an important site in this park and completed by visitors following their visit. This yielded 622 useable replies. These enabled us to establish the comparative importance o...

  1. Genetic effects of rainforest fragmentation in an early successional tree (Elaeocarpus grandis).

    Science.gov (United States)

    Rossetto, M; Jones, R; Hunter, J

    2004-12-01

    Rainforests in Australia and around the world have been extensively cleared and degraded. It is essential to recognize the changes in population diversity and dynamics that follow habitat fragmentation if better conservation and management strategies are to be developed. This study is an investigation of the medium term (over 100 years) effects of rainforest fragmentation on a long-lived, early successional tree species within a habitat matrix that includes various types of fragmented and undisturbed sites. Five microsatellite loci were used to assess the level and distribution of genetic variation across the southern range of Elaeocarpus grandis (Elaeocarpaceae). In all, 21 sites were sampled to provide a direct comparison between fragmented and undisturbed populations. Overall levels of diversity (A=3.4, He=0.568, f=0.094) were higher than those of closely related endemic species, but lower than those recorded across other rainforest trees. No significant genetic structure was detected across this species, suggesting the existence of efficient dispersal and colonization mechanisms responsible for the maintenance of gene flow. Rainforest fragments, and in particular those within the extensively cleared Big Scrub, show a trend for increased inbreeding levels caused by a loss of heterozygosity within juvenile cohorts. However, the overall rate of genetic decline within fragmented rainforests appears to be more subtle in E. grandis than across other species. A combination of ecological attributes and evolutionary history is likely to have contributed to this outcome and need to be considered in future rainforest restoration projects.

  2. The Origins of Tropical Rainforest Hyperdiversity.

    Science.gov (United States)

    Pennington, R Toby; Hughes, Mark; Moonlight, Peter W

    2015-11-01

    Traditional models for tropical species richness contrast rainforests as "museums" of old species or "cradles" of recent speciation. High plant species diversity in rainforests may be more likely to reflect high episodic evolutionary turnover of species--a scenario implicating high rates of both speciation and extinction through geological time.

  3. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Science.gov (United States)

    Hines, James; Powell, Luke L.; Wolfe, Jared D.; Johnson, Erik l.; Nichols, James D.; Stouffer, Phillip C.

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with radiotelemetry data to determine the successional stage at which within-day movement probabilities of Amazonian birds in secondary forest are similar to those in primary forest. We radio-tracked three common understory insectivore species in primary and secondary forest at the Biological Dynamics of Forest Fragments project near Manaus, Brazil: two woodcreepers, Glyphorynchus spirurus (n = 19) andXiphorhynchus pardalotus (n = 18), and the terrestrial antthrush Formicarius colma(n = 19). Forest age was a strong predictor of fidelity to a given habitat. All three species showed greater fidelity to primary forest than to 8–14-year-old secondary forest, indicating the latter’s relatively poor quality. The two woodcreeper species used 12–18-year-old secondary forest in a manner comparable to continuous forest, but F. colmaavoided moving even to 27–31-year-old secondary forest—the oldest at our site. Our results suggest that managers concerned with less sensitive species can assume that forest reserves connected by 12–18-year-old secondary forest corridors are effectively connected. On the other hand, >30 years are required after land abandonment before secondary forest serves as a primary forest-like conduit for movement by F. colma; more sensitive terrestrial insectivores may take longer still.

  4. Late Amazonian Glaciations in Utopia Planitia, Mars

    Science.gov (United States)

    Osinski, G. R.; Capitan, R. D.; Kerrigan, M.; Barry, N.; Blain, S.

    2012-03-01

    We present evidence from western Utopia Planitia, including lineated valley fill and lobate debris aprons, for widespread glaciations over a large expanse of the northern plains and dichotomy boundary during Late Amazonian times.

  5. The Amazonian Goblin Spiders of the New Genus Gradunguloonops (Araneae: Oonopidae).

    Science.gov (United States)

    Grismado, Cristian J; Izquierdo, Matías A; González Márquez, María E; Ramírez, Martín J

    2015-03-29

    A new genus of soft-bodied oonopids, Gradunguloonops, is established for a group of goblin spiders found in the Amazonian rainforests of northern South America. Members of this genus differ from other oonopids in that the proclaw of tarsi I and II is notably larger than the corresponding retroclaw, a putative synapomorphy of the group. Gradunguloonops comprises twelve species, all new and described in this contribution: G. mutum (type species) from Brazil and Peru, G. bonaldoi, G. amazonicus, G. urucu, G. pacanari, G. juruti from Brazil, G. erwini from Peru, G. orellana and G. nadineae from Ecuador, G. benavidesae and G. florezi from Colombia, and G. raptor from Venezuela. Two preliminary intrageneric groups are proposed on the basis of their female genital morphology: the bonaldoi group, to which are assigned the species with the anterior section comprising only a single anterior sclerite, and the mutum group, with a more complex, tripartite anterior section.

  6. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest.

    Science.gov (United States)

    Malhi, Yadvinder; Aragão, Luiz E O C; Galbraith, David; Huntingford, Chris; Fisher, Rosie; Zelazowski, Przemyslaw; Sitch, Stephen; McSweeney, Carol; Meir, Patrick

    2009-12-08

    We examine the evidence for the possibility that 21st-century climate change may cause a large-scale "dieback" or degradation of Amazonian rainforest. We employ a new framework for evaluating the rainfall regime of tropical forests and from this deduce precipitation-based boundaries for current forest viability. We then examine climate simulations by 19 global climate models (GCMs) in this context and find that most tend to underestimate current rainfall. GCMs also vary greatly in their projections of future climate change in Amazonia. We attempt to take into account the differences between GCM-simulated and observed rainfall regimes in the 20th century. Our analysis suggests that dry-season water stress is likely to increase in E. Amazonia over the 21st century, but the region tends toward a climate more appropriate to seasonal forest than to savanna. These seasonal forests may be resilient to seasonal drought but are likely to face intensified water stress caused by higher temperatures and to be vulnerable to fires, which are at present naturally rare in much of Amazonia. The spread of fire ignition associated with advancing deforestation, logging, and fragmentation may act as nucleation points that trigger the transition of these seasonal forests into fire-dominated, low biomass forests. Conversely, deliberate limitation of deforestation and fire may be an effective intervention to maintain Amazonian forest resilience in the face of imposed 21st-century climate change. Such intervention may be enough to navigate E. Amazonia away from a possible "tipping point," beyond which extensive rainforest would become unsustainable.

  7. Attribution of changes in precipitation patterns in African rainforests

    Science.gov (United States)

    Otto, F. E.; Jones, R. G.; Halladay, K.; Allen, M. R.

    2013-12-01

    The effects of projected future global and regional climate change on the water cycle and thus on global water security are amongst the most economically and politically important challenges that society faces in the 21st century. The provision of secure access to water resources and the protection of communities from water-related risks have emerged as top priorities amongst policymakers within the public and private sectors alike. Investment decisions on water infrastructure rely heavily on quantitative assessments of risks and uncertainties associated with future changes in water-related threats. Especially with the introduction of loss and damages on the agenda of the UNFCCC additionally the attribution of such changes to anthropogenic climate change and other external climate drivers is crucial. Probabilistic event attribution (PEA) provides a method of evaluating the extent to which human-induced climate change is affecting localised weather events and impacts of such events that relies on good observations as well as climate modelling. The overall approach is to simulate both, the statistics of observed weather, and the statistics of the weather that would have occurred had specific external drivers of climate change been absent. The majority of studies applying PEA have focused on quantifying attributable risk, with changes in risk depending on an assumption of 'all other things being equal', including natural drivers of climate change and vulnerability. Most previous attribution studies have focused on European extreme weather events, but the most vulnerable regions to climate change are in Asia and Africa. One of the most complex hydrological systems is the tropical rainforest, with the rainforests in tropical Africa being some of the most under-researched regions in the world. Research in the Amazonian rainforest suggests potential vulnerability to climate change. We will present results from using the large ensemble of atmosphere-only general

  8. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary.

    Science.gov (United States)

    Johnson, Kirk R; Ellis, Beth

    2002-06-28

    An extremely diverse lower Paleocene (64.1 million years ago) fossil leaf site from Castle Rock, Colorado, contains fossil litter that is similar to the litter of extant equatorial rainforests. The presence of a high-diversity tropical rainforest is unexpected, because other Paleocene floras are species-poor, a feature generally attributed to the Cretaceous-Tertiary (K-T) extinction. The site occurs on the margin of the Denver Basin in synorogenic sedimentary rocks associated with the rise of the Laramide Front Range. Orographic conditions caused by local topography, combined with equable climate, appear to have allowed for the establishment of rainforests within 1.4 million years of the K-T boundary.

  9. Rainforest

    Institute of Scientific and Technical Information of China (English)

    夏思成

    2003-01-01

    热带雨林是地球上最为壮观的自然奇迹之一,在那里你会看到只有在雨林中才能存活的各种动植物。当雨林遭到破坏时,生活在其中的上百万年的动植物也同时会灭亡。一旦遭到破坏,它们就只能成为我们过去的记忆了,除非我们现在就采取措施加以保护!读下面的小短文,然后回答有关雨林的问题。

  10. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought.

    Science.gov (United States)

    Moser, Gerald; Schuldt, Bernhard; Hertel, Dietrich; Horna, Viviana; Coners, Heinz; Barus, Henry; Leuschner, Christoph

    2014-05-01

    Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood

  11. Spatial and temporal distribution of atmospheric aerosols in the lowermost troposphere over the Amazonian tropical rainforest

    Directory of Open Access Journals (Sweden)

    R. Krejci

    2005-01-01

    Full Text Available We present measurements of aerosol physico-chemical properties below 5 km altitude over the tropical rain forest and the marine boundary layer (MBL obtained during the LBA-CLAIRE 1998 project. The MBL aerosol size distribution some 50-100km of the coast of French Guyana and Suriname showed a bi-modal shape typical of aged and cloud processed aerosol. The average particle number density in the MBL was 383cm-3. The daytime mixed layer height over the rain forest for undisturbed conditions was estimated to be between 1200-1500m. During the morning hours the height of the mixed layer increased by 144-180mh-1. The median daytime aerosol number density in the mixed layer increased from 450cm-3 in the morning to almost 800cm-3 in the late afternoon. The evolution of the aerosol size distribution in the daytime mixed layer over the rain forest showed two distinct patterns. Between dawn and midday, the Aitken mode particle concentrations increased, whereas later during the day, a sharp increase of the accumulation mode aerosol number densities was observed, resulting in a doubling of the morning accumulation mode concentrations from 150cm-3 to 300cm-3. Potential sources of the Aitken mode particles are discussed here including the rapid growth of ultrafine aerosol particles formed aloft and subsequently entrained into the mixed layer, as well as the contribution of emissions from the tropical vegetation to Aitken mode number densities. The observed increase of the accumulation mode aerosol number densities is attributed to the combined effect of: the direct emissions of primary biogenic particles from the rain forest and aerosol in-cloud processing by shallow convective clouds. Based on the similarities among the number densities, the size distributions and the composition of the aerosol in the MBL and the nocturnal residual layer we propose that the air originating in the MBL is transported above the nocturnal mixed layer up to 300-400km inland over the rain forest by night without significant processing.

  12. Selection harvests in Amazonian rainforests: long-term impacts on soil properties

    Science.gov (United States)

    K.L. McNabb; M.S. Miller; B.G. Lockaby; B.J. Stokes; R.G. Clawson; John A. Stanturf; J.N.M. Silva

    1997-01-01

    Surface soil properties were compared among disturbance classes associated with a single-tree selection harvest study installed in 1979 in the Brazilian Amazon. Response variables included pH, total N, total organic C, extractable P, exchangeable K, Ca, Mg, and bulk density. In general, concentrations of all elements displayed residual effects 16 years after harvests...

  13. Disease concepts and treatment by tribal healers of an Amazonian forest culture

    Directory of Open Access Journals (Sweden)

    Plotkin Mark J

    2009-10-01

    Full Text Available Abstract Background The extensive medicinal plant knowledge of Amazonian tribal peoples is widely recognized in the scientific literature and celebrated in popular lore. Despite this broad interest, the ethnomedical systems and knowledge of disease which guide indigenous utilization of botanical diversity for healing remain poorly characterized and understood. No study, to our knowledge, has attempted to directly examine patterns of actual disease recognition and treatment by healers of an Amazonian indigenous culture. Methods The establishment of traditional medicine clinics, operated and directed by elder tribal shamans in two remote Trio villages of the Suriname rainforest, presented a unique investigational opportunity. Quantitative analysis of clinic records from both villages permitted examination of diseases treated over a continuous period of four years. Cross-cultural comparative translations were articulated of recorded disease conditions through ethnographic interviews of elder Trio shamans and a comprehensive atlas of indigenous anatomical nomenclature was developed. Results 20,337 patient visits within the period 2000 to 2004 were analyzed. 75 disease conditions and 127 anatomical terms are presented. Trio concepts of disease and medical practices are broadly examined within the present and historical state of their culture. Conclusion The findings of this investigation support the presence of a comprehensive and highly formalized ethnomedical institution within Trio culture with attendant health policy and conservation implications.

  14. Disease concepts and treatment by tribal healers of an Amazonian forest culture.

    Science.gov (United States)

    Herndon, Christopher N; Uiterloo, Melvin; Uremaru, Amasina; Plotkin, Mark J; Emanuels-Smith, Gwendolyn; Jitan, Jeetendra

    2009-10-12

    The extensive medicinal plant knowledge of Amazonian tribal peoples is widely recognized in the scientific literature and celebrated in popular lore. Despite this broad interest, the ethnomedical systems and knowledge of disease which guide indigenous utilization of botanical diversity for healing remain poorly characterized and understood. No study, to our knowledge, has attempted to directly examine patterns of actual disease recognition and treatment by healers of an Amazonian indigenous culture. The establishment of traditional medicine clinics, operated and directed by elder tribal shamans in two remote Trio villages of the Suriname rainforest, presented a unique investigational opportunity. Quantitative analysis of clinic records from both villages permitted examination of diseases treated over a continuous period of four years. Cross-cultural comparative translations were articulated of recorded disease conditions through ethnographic interviews of elder Trio shamans and a comprehensive atlas of indigenous anatomical nomenclature was developed. 20,337 patient visits within the period 2000 to 2004 were analyzed. 75 disease conditions and 127 anatomical terms are presented. Trio concepts of disease and medical practices are broadly examined within the present and historical state of their culture. The findings of this investigation support the presence of a comprehensive and highly formalized ethnomedical institution within Trio culture with attendant health policy and conservation implications.

  15. Predicting land cover changes in the Amazon rainforest: An ocean-atmosphere-biosphere problem

    Science.gov (United States)

    Pereira, Marcos Paulo Santos; Malhado, Ana Cláudia Mendes; Costa, Marcos Heil

    2012-05-01

    Accurate studies of the impacts of climate change on the distribution of major vegetation types are essential for developing effective conservation and land use policy. Such studies require the development of models that accurately represent the complex and interacting biophysical factors that influence regional patterns of vegetation. Here we investigate the impacts of Sea Surface Temperature (SST) on the vegetation of the Amazon, testing the hypothesis that changes in Amazonian vegetation structure are a consequence of an ocean-atmosphere-biosphere interaction. We design a numerical experiment in which we force a coupled climate-biosphere model by 10 SST patterns produced by different IPCC AR4 models, for the A2 scenario for the period 2000-2050. Simulations for 2011-2050 show that certain patterns of SST are likely to decrease the ensemble for tropical evergreen rainforest and savanna, and that these areas will be occupied mainly by tropical deciduous rainforest, emitting an average of 0.53 Pg-C.yr-1 during the transition.

  16. Phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae) in urban rainforest fragments, Manaus -- Amazonas State, Brazil.

    Science.gov (United States)

    da Rocha, Liliane Coelho; de Freitas, Rui Alves; Franco, Antonia Maria Ramos

    2013-05-01

    The non-flooded upland rainforest fragment in the Federal University of Amazonas Campus is considered one of the world's largest urban tropical woodland areas and Brazil's second largest one in an urban setting. It is located in the city of Manaus, State of Amazonas at 03° 04' 34″ S, 59° 57' 30″ W, in an area covering nearly 800 hectares. Forty-one (41) sand fly species belonging to genus Lutzomyia were found attaining a total of 4662 specimens collected. Lutzomyia umbratilis was the dominant species at all heights, followed by Lutzomyia anduzei and Lutzomyia claustrei. The fauna alpha diversity index showed to be 6.4, which is not much lower than that reported for areas of continuous forest in this Amazonian region. This data provides additional evidence on Phlebotomine sand flies found to transmit Leishmania and other trypanosomatids to humans and other animals circulating in this area. This is the first study being reported on sand flies collected in an urban rainforest fragment in Amazonia. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Isoprene photochemistry over the Amazon rainforest

    Science.gov (United States)

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.; Martin, Scot T.

    2016-05-01

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (rainforest.

  18. How might Australian rainforest cloud interception respond to climate change?

    Science.gov (United States)

    Wallace, Jim; McJannet, Dave

    2013-02-01

    SummaryThe lower and upper montane rainforests in northern Queensland receive significant amounts of cloud interception that affect both in situ canopy wetness and downstream runoff. Cloud interception contributes 5-30% of the annual water input to the canopy and this increases to 40-70% of the monthly water input during the dry season. This occult water is therefore an important input to the canopy, sustaining the epiphytes, mosses and other species that depend on wet canopy conditions. The potential effect of climate change on cloud interception was examined using the relationship between cloud interception and cloud frequency derived from measurements made at four different rainforest locations. Any given change in cloud frequency produces a greater change in cloud interception and this 'amplification' increases from 1.1 to 1.7 as cloud frequency increases from 5% to 70%. This means that any changes in cloud frequency will have the greatest relative effects at the higher altitude sites where cloud interception is greatest. As cloud frequency is also a major factor affecting canopy wetness, any given change in cloud frequency will therefore have a greater impact on canopy wetness at the higher altitude sites. These changes in wetness duration will augment those due to changes in rainfall and may have important implications for the fauna and flora that depend on wet canopy conditions. We also found that the Australian rainforests may be more efficient (by ˜50% on average) in intercepting cloud water than American coniferous forests, which may be due to differences in canopy structure and exposure at the different sites.

  19. Holocene Amazon rainforest-savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia

    Science.gov (United States)

    Behling, Hermann; Hooghiemstra, Henry

    2000-10-01

    We present a high-resolution pollen record of a 695-cm-long sediment core from Laguna Loma Linda, located at an altitude of 310 m in the transitional zone between the savannas of the Llanos Orientales and the Amazonian rainforest, about 100 km from the Eastern Cordillera. Based on eight AMS 14C ages, the record represents the last 8700 14C yr BP. During the period from 8700 to 6000 14C yr BP the vegetation was dominated by grass savanna with only a few woody taxa, such as Curatella and Byrsonima, present in low abundance. Gallery forest along the drainage system apparently was poorly developed. Compared with today, precipitation must have been significantly lower and seasonality stronger. During the period from 6000 to 3600 14C yr BP, rainforest taxa increased markedly, reflecting an increase in precipitation. Rainforest and gallery forest taxa such as Moraceae/Urticaceae, Melastomataceae, Alchornea, Cecropia and Acalypha, were abundant, whereas Poaceae were reduced in frequency. From 3600 to 2300 14C yr BP rainforest taxa continued to increase; Moraceae/Urticaceae became very frequent, and Myrtaceae and Myrsine became common. Savanna vegetation decreased continuously. We infer that precipitation was still increasing, and that the length of the annual dry period possibly shortened. From 2300 14C yr BP onwards, grass savanna (mainly represented by Poaceae) expanded and Mauritia palms became frequent. This reflects increased human impact on the vegetation.

  20. Alluvial plain dynamics in the southern Amazonian foreland basin

    Science.gov (United States)

    Lombardo, Umberto

    2016-05-01

    Alluvial plains are formed with sediments that rivers deposit on the adjacent flood-basin, mainly through crevasse splays and avulsions. These result from a combination of processes, some of which push the river towards the crevasse threshold, while others act as triggers. Based on the floodplain sedimentation patterns of large rivers in the southern Amazonian foreland basin, it has been suggested that alluvial plain sediment accumulation is primarily the result of river crevasse splays and sheet sands triggered by above-normal precipitation events due to La Niña. However, more than 90 % of the Amazonian river network is made of small rivers and it is unknown whether small river floodplain sedimentation is influenced by the ENSO cycle as well. Using Landsat images from 1984 to 2014, here I analyse the behaviour of all 12 tributaries of the Río Mamoré with a catchment in the Andes. I show that these are very active rivers and that the frequency of crevasses is not linked to ENSO activity. The data suggest that most of the sediments eroded from the Andes by the tributaries of the Mamoré are deposited in the alluvial plains, before reaching the parent river. The mid-to-late Holocene paleo-channels of these rivers are located tens of kilometres further away from the Andes than the modern crevasses. I conclude that the frequency of crevasses is controlled by intrabasinal processes that act on a yearly to decadal timescale, while the average location of the crevasses is controlled by climatic or neo-tectonic events that act on a millennial scale. Finally, I discuss the implications of river dynamics on rural livelihoods and biodiversity in the Llanos de Moxos, a seasonally flooded savannah covering most of the southern Amazonian foreland basin and the world's largest RAMSAR site.

  1. Resilience landscapes for Congo basin rainforests vs. climate and management impacts

    Science.gov (United States)

    Pietsch, Stephan Alexander; Gautam, Sishir; Elias Bednar, Johannes; Stanzl, Patrick; Mosnier, Aline; Obersteiner, Michael

    2015-04-01

    Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, and construct resilience landscapes for current day conditions vs. climate and management impacts.

  2. Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity

    NARCIS (Netherlands)

    Koenen, E.J.M.; Clarkson, J.J.; Pennington, T.D.; Chatrou, L.W.

    2015-01-01

    •Tropical rainforest hyperdiversity is often suggested to have evolved over a long time-span (the ‘museum’ model), but there is also evidence for recent rainforest radiations. The mahoganies (Meliaceae) are a prominent plant group in lowland tropical rainforests world-wide but also occur in all othe

  3. Exploring eco-hydrological consequences of the Amazonian ecosystems under climate and land-use changes in the 21st century

    Science.gov (United States)

    Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.

    2012-12-01

    Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.

  4. Resilience of Amazonian landscapes to agricultural intensification

    NARCIS (Netherlands)

    Jakovac, C.C.

    2015-01-01

    ISBN: 978-94-6257-443-4 Author: Catarina C. Jakovac Title: Resilience of Amazonian landscapes to agricultural intensification Swidden cultivation is the traditional agricultural system in riverine Amazonia, which supports local livelihoods and trans

  5. Human Impacts Flatten Rainforest-Savanna Gradient and Reduce Adaptive Diversity in a Rainforest Bird

    OpenAIRE

    Freedman, Adam H.; Wolfgang Buermann; Mitchard, Edward T A; DeFries, Ruth S.; Smith, Thomas B

    2010-01-01

    Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul...

  6. Ecotourism: The Santa Elena Rainforest Project.

    Science.gov (United States)

    Wearing, Stephen

    1993-01-01

    Describes an ecotourism project in which the community of Santa Elena, Costa Rica, are developing a rainforest reserve on government land leased permanently to the local high school. Discusses the impact of the project on the community's economy and environment. (Contains 30 references.) (MDH)

  7. Floristic diversity in fragmented Afromontane rainforests

    DEFF Research Database (Denmark)

    Schmitt, Christine B.; Denich, Manfred; Demissew, Sebsebe;

    2010-01-01

    . Lower montane forest (o1830 m) exhibits a greater diversity of tree species and a higher abundance of the flagship species Coffea arabica. Conclusions: Our results provide crucial ecological background information concerning the montane rainforests of Ethiopia, which have been poorly studied until now...

  8. African rainforests: past, present and future

    Science.gov (United States)

    Malhi, Yadvinder; Adu-Bredu, Stephen; Asare, Rebecca A.; Lewis, Simon L.; Mayaux, Philippe

    2013-01-01

    The rainforests are the great green heart of Africa, and present a unique combination of ecological, climatic and human interactions. In this synthesis paper, we review the past and present state processes of change in African rainforests, and explore the challenges and opportunities for maintaining a viable future for these biomes. We draw in particular on the insights and new analyses emerging from the Theme Issue on ‘African rainforests: past, present and future’ of Philosophical Transactions of the Royal Society B. A combination of features characterize the African rainforest biome, including a history of climate variation; forest expansion and retreat; a long history of human interaction with the biome; a relatively low plant species diversity but large tree biomass; a historically exceptionally high animal biomass that is now being severely hunted down; the dominance of selective logging; small-scale farming and bushmeat hunting as the major forms of direct human pressure; and, in Central Africa, the particular context of mineral- and oil-driven economies that have resulted in unusually low rates of deforestation and agricultural activity. We conclude by discussing how this combination of factors influences the prospects for African forests in the twenty-first century. PMID:23878339

  9. Modeling radiative transfer in tropical rainforest canopies: sensitivity of simulated albedo to canopy architectural and optical parameters

    Directory of Open Access Journals (Sweden)

    Sílvia N. M. Yanagi

    2011-12-01

    Full Text Available This study evaluates the sensitivity of the surface albedo simulated by the Integrated Biosphere Simulator (IBIS to a set of Amazonian tropical rainforest canopy architectural and optical parameters. The parameters tested in this study are the orientation and reflectance of the leaves of upper and lower canopies in the visible (VIS and near-infrared (NIR spectral bands. The results are evaluated against albedo measurements taken above the K34 site at the INPA (Instituto Nacional de Pesquisas da Amazônia Cuieiras Biological Reserve. The sensitivity analysis indicates a strong response to the upper canopy leaves orientation (x up and to the reflectivity in the near-infrared spectral band (rNIR,up, a smaller sensitivity to the reflectivity in the visible spectral band (rVIS,up and no sensitivity at all to the lower canopy parameters, which is consistent with the canopy structure. The combination of parameters that minimized the Root Mean Square Error and mean relative error are Xup = 0.86, rVIS,up = 0.062 and rNIR,up = 0.275. The parameterizations performed resulted in successful simulations of tropical rainforest albedo by IBIS, indicating its potential to simulate the canopy radiative transfer for narrow spectral bands and permitting close comparison with remote sensing products.Este estudo avalia a sensibilidade do albedo da superfície pelo Simulador Integrado da Biosfera (IBIS a um conjunto de parâmetros que representam algumas propriedades arquitetônicas e óticas do dossel da floresta tropical Amazônica. Os parâmetros testados neste estudo são a orientação e refletância das folhas do dossel superior e inferior nas bandas espectrais do visível (VIS e infravermelho próximo (NIR. Os resultados são avaliados contra observações feitas no sítio K34 pertencente ao Instituto Nacional de Pesquisas da Amazônia (INPA na Reserva Biológica de Cuieiras. A análise de sensibilidade indica uma forte resposta aos parâmetros de orienta

  10. Soil methane and CO2 fluxes in rainforest and rubber plantations

    Science.gov (United States)

    Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu

    2017-04-01

    Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old

  11. High Species Richness of Scinax Treefrogs (Hylidae) in a Threatened Amazonian Landscape Revealed by an Integrative Approach.

    Science.gov (United States)

    Ferrão, Miquéias; Colatreli, Olavo; de Fraga, Rafael; Kaefer, Igor L; Moravec, Jiří; Lima, Albertina P

    2016-01-01

    Rising habitat loss is one of the main drivers of the global amphibian decline. Nevertheless, knowledge of amphibian diversity needed for effective habitat protection is still highly inadequate in remote tropical regions, the greater part of the Amazonia. In this study we integrated molecular, morphological and bioacoustic evidence to evaluate the species richness of the treefrogs genus Scinax over a 1000 km transect across rainforest of the Purus-Madeira interfluve, and along the east bank of the upper Madeira river, Brazilian Amazonia. Analysis revealed that 82% of the regional species richness of Scinax is still undescribed; two nominal species, seven confirmed candidate species, two unconfirmed candidate species, and one deep conspecific lineage were detected in the study area. DNA barcoding based analysis of the 16s rRNA gene indicates possible existence of three discrete species groups within the genus Scinax, in addition to the already-known S. rostratus species Group. Quantifying and characterizing the number of undescribed Scinax taxa on a regional scale, we provide a framework for future taxonomic study in Amazonia. These findings indicate that the level to which Amazonian anura species richness has been underestimated is far greater than expected. Consequently, special attention should be paid both to taxonomic studies and protection of the still-neglected Amazonian Scinax treefrogs.

  12. High Species Richness of Scinax Treefrogs (Hylidae) in a Threatened Amazonian Landscape Revealed by an Integrative Approach

    Science.gov (United States)

    Ferrão, Miquéias; Colatreli, Olavo; de Fraga, Rafael; Kaefer, Igor L.; Moravec, Jiří; Lima, Albertina P.

    2016-01-01

    Rising habitat loss is one of the main drivers of the global amphibian decline. Nevertheless, knowledge of amphibian diversity needed for effective habitat protection is still highly inadequate in remote tropical regions, the greater part of the Amazonia. In this study we integrated molecular, morphological and bioacoustic evidence to evaluate the species richness of the treefrogs genus Scinax over a 1000 km transect across rainforest of the Purus-Madeira interfluve, and along the east bank of the upper Madeira river, Brazilian Amazonia. Analysis revealed that 82% of the regional species richness of Scinax is still undescribed; two nominal species, seven confirmed candidate species, two unconfirmed candidate species, and one deep conspecific lineage were detected in the study area. DNA barcoding based analysis of the 16s rRNA gene indicates possible existence of three discrete species groups within the genus Scinax, in addition to the already-known S. rostratus species Group. Quantifying and characterizing the number of undescribed Scinax taxa on a regional scale, we provide a framework for future taxonomic study in Amazonia. These findings indicate that the level to which Amazonian anura species richness has been underestimated is far greater than expected. Consequently, special attention should be paid both to taxonomic studies and protection of the still-neglected Amazonian Scinax treefrogs. PMID:27806089

  13. Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation

    Science.gov (United States)

    Lejeune, Quentin; Davin, Edouard L.; Guillod, Benoit P.; Seneviratne, Sonia I.

    2015-05-01

    The extent of the Amazon rainforest is projected to drastically decrease in future decades because of land-use changes. Previous climate modelling studies have found that the biogeophysical effects of future Amazonian deforestation will likely increase surface temperatures and reduce precipitation locally. However, the magnitude of these changes and the potential existence of tipping points in the underlying relationships is still highly uncertain. Using a regional climate model at a resolution of about 50 km over the South American continent, we perform four ERA-interim-driven simulations with prescribed land cover maps corresponding to present-day vegetation, two deforestation scenarios for the twenty-first century, and a totally-deforested Amazon case. In response to projected land cover changes for 2100, we find an annual mean surface temperature increase of over the Amazonian region and an annual mean decrease in rainfall of 0.17 mm/day compared to present-day conditions. These estimates reach and 0.22 mm/day in the total-deforestation case. We also compare our results to those from 28 previous (regional and global) climate modelling experiments. We show that the historical development of climate models did not modify the median estimate of the Amazonian climate sensitivity to deforestation, but led to a reduction of its uncertainty. Our results suggest that the biogeophysical effects of deforestation alone are unlikely to lead to a tipping point in the evolution of the regional climate under present-day climate conditions. However, the conducted synthesis of the literature reveals that this behaviour may be model-dependent, and the greenhouse gas-induced climate forcing and biogeochemical feedbacks should also be taken into account to fully assess the future climate of this region.

  14. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees

    Directory of Open Access Journals (Sweden)

    A. C. M. Malhado

    2009-02-01

    Full Text Available Leaves in tropical forests come in an enormous variety of sizes and shapes, each of which can be ultimately viewed as an adaptation to the complex problem of optimising the capture of light for photosynthesis. However, the fact that many different shape "strategies" coexist within a habitat demonstrate that there are many other intrinsic and extrinsic factors involved, such as the differential investment in support tissues required for different leaf lamina shapes. Here, we take a macrogeographic approach to understanding the function of different lamina shape categories. Specifically, we use 106 permanent plots spread across the Amazon rainforest basin to: (1 describe the geographic distribution of some simple metrics of lamina shape in plots from across Amazonia, and; (2 identify and quantify relationships between key environmental parameters and lamina shape in tropical forests. Because the plots are not randomly distributed across the study area, achieving this latter objective requires the use of statistics that can account for spatial auto-correlation. We found that between 60–70% of the 2791 species and 83 908 individual trees in the dataset could be classified as elliptic (=the widest part of a leaf is on an axis in the middle fifth of the long axis of the leaf. Furthermore, the average Amazonian tree leaf is 2.5 times longer than it is wide and has an entire margin. Contrary to theoretical expectations we found little support for the hypothesis that narrow leaves are an adaptation to dry conditions and low nutrient soils. However, we did find strong regional patterns in leaf lamina length-width ratios and several significant correlations with precipitation variables suggesting that water availability may be exerting an as yet unrecognised selective pressure on leaf shape of rainforest trees. Furthermore, we found a strong correlation between the proportion of trees with non-entire laminas (dissected, toothed, etc. and mean annual

  15. Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa

    Science.gov (United States)

    Klinger, L. F.; Greenburg, J.; Guenther, A.; Tyndall, G.; Zimmerman, P.; M'bangui, M.; Moutsamboté, J.-M.; Kenfack, D.

    1998-01-01

    In temperate regions the chemistry of the lower troposphere is known to be significantly affected by biogenic volatile organic compounds (VOCs) emitted by plants. The chemistry of the lower troposphere over the tropics, however, is poorly understood, in part because of the considerable uncertainties in VOC emissions from tropical ecosystems. Present global VOC models predict that base emissions of isoprene from tropical rainforests are considerably higher than from savannas. These global models of VOC emissions which rely mainly on species inventories are useful, but significant improvement might be made with more ecologically based models of VOC emissions by plants. Ecosystems along a successional transect from woodland savanna to primary rainforest in central Africa were characterized for species composition and vegetation abundance using ground surveys and remotely sensed data. A total of 336 species (mostly trees) at 13 sites were recorded, and 208 of these were measured for VOC emissions at near-optimal light and temperature conditions using a leaf cuvette and hand-held photoionization detector (PID). A subset of 59 species was also sampled using conventional VOC emission techniques in order to validate the PID technique. Results of ecological and VOC emission surveys indicate both phylogenetic and successional patterns along the savanna-rainforest transect. Genera and families of trees which tend to emit isoprene include Lophira, Irvingia, Albizia, Artocarpus, Ficus, Pterocarpus, Caesalpiniaceae, Arecaceae, and Moraceae. Other taxa tend to contain stored VOCs (Annonaceae and Asteraceae). Successional patterns suggest that isoprene emissions are highest in the relatively early successional Isoberlinia forest communities and progressively decrease in the later successional secondary and primary rainforest communities. Stored VOCs appear to increase along the savanna-rainforest succession, but these data are more tentative. These findings are consistent with

  16. Modeling the Marginal Value of Rainforest Losses

    OpenAIRE

    Strand, Jon

    2015-01-01

    A rainforest can be modeled as a dynamic asset subject to various risks, including risk of fire. Any small part of the forest can be in one of two states: either untouched by forest fire, or already damaged by fire, in which case there is both a local forest loss and increased dryness over a broader area. In this paper, two Bellman equations are constructed, one for unharmed forest and a s...

  17. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    Science.gov (United States)

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity.

  18. Voices of Contact: Politics of Language in Urban Amazonian Ecuador

    Science.gov (United States)

    Wroblewski, Michael

    2010-01-01

    This dissertation is a study of diverse linguistic resources and contentious identity politics among indigenous Amazonian Kichwas in the city of Tena, Ecuador. Tena is a rapidly developing Amazonian provincial capital city with a long history of interethnic and interlinguistic contact. In recent decades, the course of indigenous Kichwa identity…

  19. Late Holocene rainforest disturbance in French Guiana.

    Science.gov (United States)

    Ledru, M -P.

    2001-06-01

    Palm swamp forest sediments collected in French Guiana provide new data about late Holocene rainforest. Two cores were collected in 'Les Nouragues' ecological station (4 degrees 05'N, 52 degrees 40'W). The lithology shows two different types of sediment, organic peat in the upper part and oxidized clay with low organic content and lacking pollen in the lower part, both separated by a gravel horizon. Radiocarbon dates show that this gravel horizon could have been deposited between 4500 and 3000yrBP. Pollen analysis carried out on the organic sediments record rainforest disturbances between ca 1520-1380 and 1060-860cal yrBP suggested by the presence of the pioneer tree species Cecropia together with other shade intolerant genera. Cecropia is recorded for a period that lasts between 660 and 320 years. This abnormal duration for presence of a pioneer species in rainforest is explained by brief and repeated changes in the composition of the canopy asssociated to perturbations of the palm swamp.

  20. Molecular identification of Amazonian stingless bees using polymerase chain reaction single-strand conformation polymorphism.

    Science.gov (United States)

    Souza, M T; Carvalho-Zilse, G A

    2014-07-25

    In countries containing a mega diversity of wildlife, such as Brazil, identifying and characterizing biological diversity is a continuous process for the scientific community, even in face of technological and scientific advances. This activity demands initiatives for the taxonomic identification of highly diverse groups, such as stingless bees, including molecular analysis strategies. This type of bee is distributed in all of the Brazilian states, with the highest species diversity being found in the State of Amazônia. However, the estimated number of species diverges among taxonomists. These bees are considered the main pollinators in the Amazon rainforest, in which they obtain food and shelter; however, their persistence is constantly threatened by deforestation pressure. Hence, it is important to classify the number and abundance of bee specie, to measure their decline and implement meaningful, priority conservation strategies. This study aims to maximize the implementation of more direct, economic and successful techniques for the taxonomic identification of stingless bees. Specifically, the genes 16S rRNA and COI from mitochondrial DNA were used as molecular markers to differentiate 9 species of Amazonian stingless bees based on DNA polymorphism, using the polymerase chain reaction-single-strand conformation polymorphism technique. We registered different, exclusive SSCP haplotypes for both genes in all species analyzed. These results demonstrate that SSCP is a simple and cost-effective technique that is applicable to the molecular identification of stingless bee species.

  1. Human impacts flatten rainforest-savanna gradient and reduce adaptive diversity in a rainforest bird.

    Directory of Open Access Journals (Sweden)

    Adam H Freedman

    Full Text Available Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens. Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions.

  2. Human impacts flatten rainforest-savanna gradient and reduce adaptive diversity in a rainforest bird.

    Science.gov (United States)

    Freedman, Adam H; Buermann, Wolfgang; Mitchard, Edward T A; Defries, Ruth S; Smith, Thomas B

    2010-09-30

    Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions.

  3. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia:

    Science.gov (United States)

    Gunthe, S. S.

    2009-04-01

    were in the range of NCCN,0.10•NCN,30 ? 0.1 to NCCN,0.82•NCN,30 ? 0.8. Although the number concentrations and hygroscopicity parameters were much lower, the integral CCN efficiencies observed in pristine rainforest air were similar to those in highly polluted mega-city air. Moreover, model calculations of NCCN,S with a global average value of ΰ = 0.3 led to systematic overpredictions, but the relative deviations exceeded ~50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (? 100 cm-3). These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols in detailed process models as well as in large-scale atmospheric and climate models. References Andreae, M. O.: Aerosols before pollution, Science, 315, (5808), 50-51, 2007. Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys. Discuss., 8, 11293-11320, 2008. Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth Science Reviews, 89, 13-41, 2008. Martin, S. T., et al.: Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08), Atmospheric Chemistry and Physics, in preparation, 2009. Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmospheric Chemistry and Physics, 7, (8), 1961-1971, 2007. Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O. and Pöschl, U

  4. Ecological legacies of Indigenous fire management in high-latitude coastal temperate rainforests, Canada

    Science.gov (United States)

    Hoffman, K.; Lertzman, K. P.; Starzomski, B. M.

    2016-12-01

    Anthropogenic burning is considered to have little impact on coastal temperate rainforest fire regimes in the Pacific Northwest (PNW) of North America, yet few long-term fire histories have been reconstructed in these forests. We use a multidisciplinary approach to reconstruct the ecological impact, scale, and legacies of historic fire regime variability in high-latitude coastal temperate rainforests located in British Columbia, Canada. We map seven centuries of fire activity with fire scars and records of stand establishment, and examine patterns in the distribution and composition of vegetation to assess whether fire was historically used as a tool for resource management. We conduct a paired study of 20 former Indigenous habitation and control sites across a 100 km2 island group to relate historic fire activity with long-term patterns of human land use and contemporary lightning strike densities. Fires were significantly associated with the locations of former Indigenous habitation sites, low and mixed in severity, and likely intentionally used to influence the composition and structure of vegetation, thus increasing the productivity of culturally important plants such as western redcedar, berry-producing shrubs, and bracken fern. Centuries of repeated anthropogenic burning have resulted in a mosaic of vegetation types in different stages of succession. These data are directly relevant to the management of contemporary forests as they do not support the widespread contention that old growth coastal temperate rainforests in this region are pristine landscapes where fire is rare, but more likely the result of long-term human land use practices.

  5. Modelling interception in coastal and montane rainforests in northern Queensland, Australia

    Science.gov (United States)

    Wallace, Jim; McJannet, Dave

    2008-01-01

    SummaryThis paper reports a comparison of measured and modelled interception for three different forest types at six rainforest locations in northern Queensland. The Gash interception model was able to reproduce cumulative interception at the sites accurately, provided an appropriate value of canopy storage capacity ( S) was used, 2.0-3.6 mm. These values are significantly higher than S values generally reported in other rainforest studies (˜1 mm) and the reason may be that Australian rainforests contain many epiphytes and mosses, which can trap significant quantities of water within the canopy. There is also some evidence of a seasonal variation in S and wet canopy evaporation rate ( E), both being lower in the dry season than the wet season. However, although the rainfall rate ( R), S and E all affect the seasonal value of interception, the changes in these three parameters tend to compensate and so the biggest factor affecting seasonal variations in interception is the number of small storms. The consequence of this is that it is still possible to get good estimates of seasonal and annual interception using R, S and E values that are fixed for the entire year. Values of E fell in the range 0.35-0.81 mm h -1, which are 1.4-9 times the concurrent rates estimated using the Penman-Monteith equation. This implies that either our rainforests received very large amounts of advected energy during rain storms, or the Penman-Monteith E values are too low. Some advection of energy to our sites is quite feasible given their proximity to the ocean and generally well exposed locations. However, most of the above discrepancy is probably due to underestimation of the Penman-Monteith values of E, because of errors in the estimation of the above canopy relative humidity, due to the use of weather data adjacent to rather than above the forests and inherent difficulties of measuring the very high humidity's that occur during rainfall.

  6. CO2 fertilization stimulates vegetation productivity but has little impact on hydrology in tropical rainforests

    Science.gov (United States)

    Yang, Yuting; Donohue, Randall; McVicar, Tim; Roderick, Michael; Beck, Hylke

    2016-04-01

    Tropical rainforests contribute to ~52% of the terrestrial biomass carbon and more than one-third of global terrestrial net primary production. Thus, understanding how tropical rainforests respond to elevated atmospheric CO2 concentration (eCO2) is essential for predicting Earth's carbon, water and energy budgets under future climate change. While the Free-air CO2 enrichment (FACE) technique has greatly advanced our understanding of how boreal and temperate ecosystems respond to eCO2, there are currently no FACE sites available in tropical rainforest ecosystems. Here we firstly examine the trend in long-term (1982-2010) satellite-observed leaf area index and fraction of vegetation light absorption and find only minor changes in these variables in tropical rainforests over years, suggesting that eCO2 has not increased vegetation leaf area in tropical rainforests and therefore any plant response to eCO2 occurs at the leaf-level. Following that, we investigate the long-term physiological response (i.e., leaf-level) of tropical rainforests to eCO2 from three different perspectives by: (1) analyzing long-term runoff and precipitation records in 18 unimpaired tropical rainforest catchments to provide observational evidence on the eCO2 effect from an eco-hydrological perspective; (2) developing an analytical model using gas-exchange theory to predict the effect of eCO2 from a top-down perspective; and (3) interpreting outputs from 10 process-oriented ecosystem models to examine the effect of eCO2 from a bottom-up perspective. Our results show that the observed runoff coefficient (the ratio of runoff over precipitation) and ecosystem evapotranspiration (calculated from catchment water balance) remain relatively constant in 18 unimpaired tropical catchments over 1982-2010, implying an unchanged hydrological partitioning and thus conserved transpiration under eCO2. For the same period, using 'top-down' model based on gas-exchange theory, we predict an increase in plant

  7. Hyperdominance in Amazonian forest carbon cycling

    Science.gov (United States)

    Fauset, Sophie; Johnson, Michelle O.; Gloor, Manuel; Baker, Timothy R.; Monteagudo M., Abel; Brienen, Roel J.W.; Feldpausch, Ted R.; Lopez-Gonzalez, Gabriela; Malhi, Yadvinder; ter Steege, Hans; Pitman, Nigel C.A.; Baraloto, Christopher; Engel, Julien; Pétronelli, Pascal; Andrade, Ana; Camargo, José Luís C.; Laurance, Susan G.W.; Laurance, William F.; Chave, Jerôme; Allie, Elodie; Vargas, Percy Núñez; Terborgh, John W.; Ruokolainen, Kalle; Silveira, Marcos; Aymard C., Gerardo A.; Arroyo, Luzmila; Bonal, Damien; Ramirez-Angulo, Hirma; Araujo-Murakami, Alejandro; Neill, David; Hérault, Bruno; Dourdain, Aurélie; Torres-Lezama, Armando; Marimon, Beatriz S.; Salomão, Rafael P.; Comiskey, James A.; Réjou-Méchain, Maxime; Toledo, Marisol; Licona, Juan Carlos; Alarcón, Alfredo; Prieto, Adriana; Rudas, Agustín; van der Meer, Peter J.; Killeen, Timothy J.; Marimon Junior, Ben-Hur; Poorter, Lourens; Boot, Rene G.A.; Stergios, Basil; Torre, Emilio Vilanova; Costa, Flávia R.C.; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Groot, Nikée; Arets, Eric; Moscoso, Victor Chama; Castro, Wendeson; Coronado, Euridice N. Honorio; Peña-Claros, Marielos; Stahl, Clement; Barroso, Jorcely; Talbot, Joey; Vieira, Ima Célia Guimarães; van der Heijden, Geertje; Thomas, Raquel; Vos, Vincent A.; Almeida, Everton C.; Davila, Esteban Álvarez; Aragão, Luiz E.O.C.; Erwin, Terry L.; Morandi, Paulo S.; de Oliveira, Edmar Almeida; Valadão, Marco B.X.; Zagt, Roderick J.; van der Hout, Peter; Loayza, Patricia Alvarez; Pipoly, John J.; Wang, Ophelia; Alexiades, Miguel; Cerón, Carlos E.; Huamantupa-Chuquimaco, Isau; Di Fiore, Anthony; Peacock, Julie; Camacho, Nadir C. Pallqui; Umetsu, Ricardo K.; de Camargo, Plínio Barbosa; Burnham, Robyn J.; Herrera, Rafael; Quesada, Carlos A.; Stropp, Juliana; Vieira, Simone A.; Steininger, Marc; Rodríguez, Carlos Reynel; Restrepo, Zorayda; Muelbert, Adriane Esquivel; Lewis, Simon L.; Pickavance, Georgia C.; Phillips, Oliver L.

    2015-01-01

    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region. PMID:25919449

  8. Origin and Domestication of Native Amazonian Crops

    Directory of Open Access Journals (Sweden)

    Doriane Picanço-Rodrigues

    2010-01-01

    Full Text Available Molecular analyses are providing new elements to decipher the origin, domestication and dispersal of native Amazonian crops in an expanding archaeological context. Solid molecular data are available for manioc (Manihot esculenta, cacao (Theobroma cacao, pineapple (Ananas comosus, peach palm (Bactris gasipaes and guaraná (Paullinia cupana, while hot peppers (Capsicum spp., inga (Inga edulis, Brazil nut (Bertholletia excelsa and cupuassu (Theobroma grandiflorum are being studied. Emergent patterns include the relationships among domestication, antiquity (terminal Pleistocene to early Holocene, origin in the periphery, ample pre-Columbian dispersal and clear phylogeographic population structure for manioc, pineapple, peach palm and, perhaps, Capsicum peppers. Cacao represents the special case of an Amazonian species possibly brought into domestication in Mesoamerica, but close scrutiny of molecular data suggests that it may also have some incipiently domesticated populations in Amazonia. Another pattern includes the relationships among species with incipiently domesticated populations or very recently domesticated populations, rapid pre- or post-conquest dispersal and lack of phylogeographic population structure, e.g., Brazil nut, cupuassu and guaraná. These patterns contrast the peripheral origin of most species with domesticated populations with the subsequent concentration of their genetic resources in the center of the basin, along the major white water rivers where high pre-conquest population densities developed. Additional molecular genetic analyses on these and other species will allow better examination of these processes and will enable us to relate them to other historical ecological patterns in Amazonia.

  9. Aerosol fluxes and dynamics within and above a tropical rainforest in South-East Asia

    Science.gov (United States)

    Whitehead, James; Gallagher, Martin; Robinson, Niall; Gabey, Andrew; Dorsey, James; Coe, Hugh; McFiggans, Gordon; Ryder, James; Nemitz, Eiko; Davies, Fay

    2010-05-01

    Atmospheric aerosol measurements over tropical rainforests are important in order to understand their sources and sinks, and hence the rainforests' influence on local and regional climate. To date, there have been no published studies in South-East Asia, which, compared to the African and South American continents, represents a unique mixture of tropical seas and islands. Aerosol measurements were conducted near Danum Valley, in the Malaysian state of Sabah, North-east Borneo, as part of the OP3 and ACES projects, in April and June/July 2008. Ultrafine particle fluxes were calculated by eddy covariance from measurements above the rainforest canopy on the Global Atmosphere Watch (GAW) tower. Upward fluxes were seen on most mornings between 09:00 and 11:00 local time and this could be attributed to entrainment of particles into the growing mixed layer. In-canopy measurements were conducted at a nearby site. Profiles in aerosol number concentrations were investigated using GRIMM Optical Particle Counters (OPCs) at various levels within the rainforest canopy as well as a single OPC on a vertically moving platform. These showed an overnight increase in larger particles (1 - 20 µm) at all levels, but much more prominently near the top of the canopy, which could be attributed to fog formation. Number concentrations in this size range in the canopy understory correlated with enhancements in biological aerosol concentrations, measured using a Wide Issue Bioaerosol Spectrometer (WIBS) located near the forest floor, suggesting that coarse particle number concentrations were dominated by biological aerosols. A comparison of particle number concentrations (in the size range 0.5 - 1.0 µm) between above and below canopy showed correlations, despite turbulence data suggesting persistent decoupling between the two measurement sites. These correlations often relied on a shift of the particle time-series against each other, implying a time delay in observations between the sites

  10. Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project: introduction, rationale, location characteristics and tools

    Directory of Open Access Journals (Sweden)

    C. N. Hewitt

    2010-01-01

    Full Text Available In April–July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rainforest" (OP3 project. Fluxes and concentrations of trace gases and particles were made from and above the rainforest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest site was not significantly impacted by anthropogenic pollution, and this is confirmed by satellite retrievals of NO2 and HCHO. The dominant modulators of atmospheric chemistry at the rainforest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NOx volume mixing ratio (~100 pptv/pptv, current chemical models suggest that daytime maximum OH concentrations should be ca. 105 radicals cm−3, but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements that suggest that an unexplained source of OH must exist above tropical rainforest and we continue to interrogate the data to find explanations for this.

  11. New Brazilian Cerambycidae from the Amazonian region (Coleoptera)

    Science.gov (United States)

    Santos-Silva, Antonio; Galileo, Maria Helena M.

    2016-01-01

    Abstract Three new species of Cerambycidae are described from the Brazilian Amazonian region: Psapharochrus bezarki (Lamiinae, Acanthoderini); Xenofrea ayri (Lamiinae, Xenofreini); and Mecometopus wappesi (Cerambycinae, Clytini). Mecometopus wappesi is added to a previous key. PMID:27551200

  12. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape?

    Science.gov (United States)

    Grimbacher, Peter S; Stork, Nigel E

    2009-09-01

    There are surprisingly few studies documenting effects of tropical cyclones (including hurricanes and typhoons) on rainforest animals, and especially insects, considering that many tropical forests are frequently affected by cyclonic disturbance. Consequently, we sampled a beetle assemblage inhabiting 18 upland rainforest sites in a fragmented landscape in north-eastern Queensland, Australia, using a standardised sampling protocol in 2002 and again 12 months after the passage of Severe Tropical Cyclone Larry (March 2006). The spatial configuration of sites allowed us to test if the effects of a cyclone and those from fragmentation interact. From all insect samples we extracted 12,568 beetles of 382 species from ten families. Beetle species composition was significantly different pre-and post-cyclone although the magnitude of faunal change was not large with 205 species, representing 96% of all individuals, present in both sampling events. Sites with the greatest changes to structure had the greatest changes in species composition. At the site level, increases in woody debris and wood-feeding beetle (Scolytinae) counts were significantly correlated but changes in the percent of ground vegetation were not mirrored by changes in the abundance of foliage-feeding beetles (Chrysomelidae). The overall direction of beetle assemblage change was consistent with increasing aridity, presumably caused by the loss of canopy cover. Sites with the greatest canopy loss had the strongest changes in the proportion of species previously identified in the pre-cyclone study as preferring arid or moist rainforest environments. The magnitude of fragmentation effects was virtually unaltered by the passage of Cyclone Larry. We postulate that in the short-term the effects of cyclonic disturbance and forest fragmentation both reduce the extent of moist, interior habitat.

  13. Evidence for Novel Atmospheric Organic Aerosol Measured in a Bornean Rainforest

    Science.gov (United States)

    Robinson, N. H.; Hamilton, J. F.; Allan, J. D.; Langford, B.; Oram, D. E.; Chen, Q.; Ward, M. W.; Hewitt, C. N.; Martin, S. T.; Coe, H.; McFiggans, G. B.

    2009-12-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth’s atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Off line analysis of filter samples was performed using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GCxGC/ToFMS). This technique provide a more detailed chemical characterisation of the SOA, allowing direct links back to gas phase precursors. The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Proton Transfer Reaction Mass Spectrometry (PTRMS) measurements of VOCs were made at the ground site and from the FAAM aircraft. Novel organic aerosol was measured by both AMSs, and identified by GCxGC/ToFMS analysis. The aerosol component was

  14. Proterozoic granitoids of the Amazonian craton

    Science.gov (United States)

    dalĺAgnol, R.; Costi, H. T.; Lamarão, C. N.; Teixeira, N. P.; Bettencourt, J. S.; Fraga, L. M.

    2003-04-01

    Proterozoic granitoids are widespread in all provinces of the Amazonian craton. In the Maroni-Itacaiunas Province, granitoids associated with the Trans-Amazonian event include: subduction related, 2.16 to 2.14 Ga, calc-alkaline tonalites and trondhjemites; 2.10 to 2.08 Ga, syncolisional potassic granites; 2.05 Ga, charnockites. In the Tapajós Province, ˜2.01 Ga, tonalites are followed by ˜2.0 Ga volcanic sequences and ˜1.98 to 1.96 Ga calc-alkaline granitoids. A reappraisal of magmatic activity occurred at ˜1.88 Ga when calc-alkaline granitoids, as well as subalkaline, A-type granites, associated with felsic volcanic sequences were formed. A similar picture is observed in the northern Roraima region, where post-collisional 2.0 to 1.96 Ga calc-alkaline granitoids and associated volcanic sequences are followed by 1.92 Ga A-type granites. The remarkable 1.88 Ga magmatic event has a continental scale and is related to an extensional tectonism. It affected also the Archean Carajás Province, where, at this time, within-plate, shallow-level, A-type granites were emplaced. Coeval intermediate to felsic volcanic sequences are widespread in the Central Amazonian Province. In the Pitinga region, these sequences are intruded by ˜1.82 Ga, tin-mineralized granites. In the Central Guiana Belt and in the northwestern domains of the Guiana shield ˜1.55 Ga rapakivi complexes, locally with associated anorthosites and mangerites, are common. In the Rio Negro Province, 1.8 to 1.60 calc-alkaline (?) granitoids and gneisses are dominant. They are followed by 1.55 to 1.52 Ga, oxidized, titanite-bearing A-type granites and S-type, two-mica granites. The evolution of the southwestern part of the Amazonian craton is characterized by the occurrence of successive tectonic events extending from ˜1.75 Ga to ˜1.0 Ga. The oldest granitoids are dominantly calc-alkaline tonalites, trondhjemites and granodiorites. However, the Rondonia region is marked by the occurrence of 1.6 to 1.0 Ga old

  15. Small Glaciofluvial Valleys on Amazonian Mars

    Science.gov (United States)

    Fassett, C.; Dickson, J.; Head, J. W.; Levy, J. S.; Marchant, D. R.

    2009-12-01

    We present new observations of small valleys associated with glacial features in the Martian mid-latitudes, based on a survey of images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter. These valleys are small (~50-400 m wide) and short (mechanism most likely to explain their origin is top-down melting of these cold-based glaciers. Some valleys have associated sedimentary deposits (small fans) (e.g., Fig. 1). Both stratigraphic relations and crater counting constrain most such valleys to the Amazonian period. The observed glaciofluvial valleys are typically on slopes of P16_007256_1383). The valley begins in a small alcove, where remnant glacial materials are now ~1 km from the valley head. The valley is ~5.5 km long, has an average slope of 5°, and terminates in an elongate fan.

  16. Placentation in the Amazonian manatee (Trichechus inunguis)

    DEFF Research Database (Denmark)

    Carter, A M; Miglino, M A; Ambrosio, C E;

    2008-01-01

    Evidence from several sources supports a close phylogenetic relationship between elephants and sirenians. To explore whether this was reflected in similar placentation, we examined eight delivered placentae from the Amazonian manatee using light microscopy and immunohistochemistry. In addition......, the fetal placental circulation was described by scanning electron microscopy of vessel casts. The manatee placenta was zonary and endotheliochorial, like that of the elephant. The interhaemal barrier comprised maternal endothelium, cytotrophoblasts and fetal endothelium. We found columnar trophoblast...... beneath the chorionic plate and lining lacunae in this region, but there was no trace in the term placenta of haemophagous activity. The gross anatomy of the cord and fetal membranes was consistent with previous descriptions and included a four-chambered allantoic sac, as also found in the elephant...

  17. Coastal rainforest boundary dynamics during the late Holocene in monsoonal Australia: evidence from radiocarbon dates of abandoned nests of Orange-footed Scrubfowl

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, D.M.J.S.; Panton, W.J. [Parks and Wildlife Commission of the Northern Territory, Darwin, NT (Australia); Head, J. [Australian National Univ, Canberra, ACT (Australia). Quaternary Dating Research Centre

    1997-12-31

    The late Holocene history of monsoon rainforest retreat was explored by radiocarbon dating abandoned Orange-footed Scrubfowl (Megapodius reinwardt Gaimard) nests in coastal savannas in the Northern Territory of Australia. Previous work has demonstrated that in savanna environments this rainforest bird can not build nor maintain the large heaps of soil and leaf litter that it uses for nests. Excavations of two earthen mounds in a savanna habitat verified that they were abandoned Scrubfowl nests, and not Aboriginal middens, given their lack of stratigraphy, non-sequential dating of charcoal in a vertical profile, and absence of archaeological material. Radiocarbon dates of material taken from the surface of abandoned nests were determined for three sites on the coast of the Northern Territory. These analyses revealed that for all three sites, rainforests have contracted within the last 1800 years BP. On Elcho Island an abandoned nest was found to contain the land snail Xanthomelon spheroidea Le Guillou (known to prefer rainforest habitat) with a modern radiocarbon age, suggesting recent contraction of rainforest. The results of this study further weaken the theory that Aboriginal burning was a major cause of rain forest fragmentation in the monsoon tropics, and possibly elsewhere in Australia.

  18. Does Diversity Matter In Modeling? Testing A New Version Of The FORMIX3 Growth Model For Madagascar Rainforests

    Science.gov (United States)

    Armstrong, A. H.; Fischer, R.; Shugart, H. H.; Huth, A.

    2012-12-01

    Ecological forecasting has become an essential tool used by ecologists to understand the dynamics of growth and disturbance response in threatened ecosystems such as the rainforests of Madagascar. In the species rich tropics, forest conservation is often eclipsed by anthropogenic factors, resulting in a heightened need for accurate assessment of biomass before these ecosystems disappear. The objective of this study was to test a new Madagascar rainforest specific version of the FORMIX3 growth model (Huth and Ditzer, 2000; Huth et al 1998) to assess how accurately biomass can be simulated in high biodiversity forests using a method of functional type aggregation in an individual-based model framework. Rainforest survey data collected over three growing seasons, including 265 tree species, was aggregated into 12 plant functional types based on size and light requirements. Findings indicated that the forest study site compared best when the simulated forest reached mature successional status. Multiple level comparisons between model simulation data and survey plot data found that though some features, such as the dominance of canopy emergent species and relative absence of small woody treelets are captured by the model, other forest attributes were not well reflected. Overall, the ability to accurately simulate the Madagascar rainforest was slightly diminished by the aggregation of tree species into size and light requirement functional type groupings.

  19. The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest.

    Science.gov (United States)

    Rowland, Lucy; Malhi, Y; Silva-Espejo, J E; Farfán-Amézquita, F; Halladay, K; Doughty, C E; Meir, P; Phillips, O L

    2014-01-01

    Understanding climatic controls on tropical forest productivity is key to developing more reliable models for predicting how tropical biomes may respond to climate change. Currently there is no consensus on which factors control seasonal changes in tropical forest tree growth. This study reports the first comprehensive plot-level description of the seasonality of growth in a Peruvian tropical forest. We test whether seasonal and interannual variations in climate are correlated with changes in biomass increment, and whether such relationships differ among trees with different functional traits. We found that biomass increments, measured every 3 months on the two plots, were reduced by between 40 and 55% in the peak dry season (July-September) relative to peak wet season (January-March). The seasonal patterns of biomass accumulation are significantly (p productive in the wet season, but more vulnerable to water limitation in the dry season.

  20. A new species of Falsocaenia Pic, 1922 from Amazonian Rainforest (Coleoptera: Lycidae) with an updated key to the species.

    Science.gov (United States)

    Ferreira, Vinicius S

    2016-04-25

    While searching for Calochromini (Coleoptera: Lycidae) specimens in entomological collections and identifying other Lycidae, a new species of Falsocaenia Pic, 1922 was found in the collection of Instituto Nacional de Pesquisas da Amazônia (INPA). This genus is one of the smallest in the tribe Calopterini with 13 known species, two of which were recently described by Bocákova et al. (2012) in their revision of the genus, and can be found in Central and South America.

  1. The salmon bears: giants of the great bear rainforest

    National Research Council Canada - National Science Library

    McAllister, I; Read, N

    2010-01-01

    The Salmon Bears explores the delicate balance that exists between the grizzly, black and spirit bears of the Great Bear Rainforest and their natural environment on the central coast of British Columbia...

  2. China's largest tropical rainforest dynamics plot established in Yunnan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A 20-ha Tropical Rainforest Dynamics Plot, located in Xishuangbanna in southwestern Yunnan Province, was recently established by the CAS Xishuangbanna Tropical Botanical Garden (XTBG) and the Xishuangbanna National Nature Reserve Administration recently.

  3. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    Science.gov (United States)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge

  4. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees

    Directory of Open Access Journals (Sweden)

    A. C. M. Malhado

    2009-08-01

    Full Text Available Leaves in tropical forests come in an enormous variety of sizes and shapes, each of which can be ultimately viewed as an adaptation to the complex problem of optimising the capture of light for photosynthesis. However, the fact that many different shape "strategies" coexist within a habitat demonstrate that there are many other intrinsic and extrinsic factors involved, such as the differential investment in support tissues required for different leaf lamina shapes. Here, we take a macrogeographic approach to understanding the function of different lamina shape categories. Specifically, we use 106 permanent plots spread across the Amazon rainforest basin to: 1 describe the geographic distribution of some simple metrics of lamina shape in plots from across Amazonia, and; 2 identify and quantify relationships between key environmental parameters and lamina shape in tropical forests. Because the plots are not randomly distributed across the study area, achieving this latter objective requires the use of statistics that can account for spatial auto-correlation. We found that between 60–70% of the 2791 species and 83 908 individual trees in the dataset could be classified as having elliptic leaves (= the widest part of the leaf is on an axis in the middle fifth of the long axis of the leaf. Furthermore, the average Amazonian tree leaf is 2.5 times longer than it is wide and has an entire margin. Contrary to theoretical expectations we found little support for the hypothesis that narrow leaves are an adaptation to dry conditions. However, we did find strong regional patterns in leaf lamina length-width ratios and several significant correlations with precipitation variables suggesting that water availability may be exerting an as yet unrecognised selective pressure on leaf shape of rainforest trees. Some support was found for the hypothesis that narrow leaves are an adaptation to low nutrient soils. Furthermore, we found a strong correlation between

  5. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016

    Science.gov (United States)

    Jiménez-Muñoz, Juan C.; Mattar, Cristian; Barichivich, Jonathan; Santamaría-Artigas, Andrés; Takahashi, Ken; Malhi, Yadvinder; Sobrino, José A.; Schrier, Gerard Van Der

    2016-09-01

    The El Niño-Southern Oscillation (ENSO) is the main driver of interannual climate extremes in Amazonia and other tropical regions. The current 2015/2016 EN event was expected to be as strong as the EN of the century in 1997/98, with extreme heat and drought over most of Amazonian rainforests. Here we show that this protracted EN event, combined with the regional warming trend, was associated with unprecedented warming and a larger extent of extreme drought in Amazonia compared to the earlier strong EN events in 1982/83 and 1997/98. Typical EN-like drought conditions were observed only in eastern Amazonia, whilst in western Amazonia there was an unusual wetting. We attribute this wet-dry dipole to the location of the maximum sea surface warming on the Central equatorial Pacific. The impacts of this climate extreme on the rainforest ecosystems remain to be documented and are likely to be different to previous strong EN events.

  6. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016.

    Science.gov (United States)

    Jiménez-Muñoz, Juan C; Mattar, Cristian; Barichivich, Jonathan; Santamaría-Artigas, Andrés; Takahashi, Ken; Malhi, Yadvinder; Sobrino, José A; Schrier, Gerard van der

    2016-09-08

    The El Niño-Southern Oscillation (ENSO) is the main driver of interannual climate extremes in Amazonia and other tropical regions. The current 2015/2016 EN event was expected to be as strong as the EN of the century in 1997/98, with extreme heat and drought over most of Amazonian rainforests. Here we show that this protracted EN event, combined with the regional warming trend, was associated with unprecedented warming and a larger extent of extreme drought in Amazonia compared to the earlier strong EN events in 1982/83 and 1997/98. Typical EN-like drought conditions were observed only in eastern Amazonia, whilst in western Amazonia there was an unusual wetting. We attribute this wet-dry dipole to the location of the maximum sea surface warming on the Central equatorial Pacific. The impacts of this climate extreme on the rainforest ecosystems remain to be documented and are likely to be different to previous strong EN events.

  7. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  8. Island vs. countryside biogeography: an examination of how Amazonian birds respond to forest clearing and fragmentation

    Science.gov (United States)

    Jared D. Wolfe; Philip C. Stouffer; Karl Mokross; Luke L. Powell; Marina M. Anciães

    2015-01-01

    Avian diversity in fragmented Amazonian landscapes depends on a balance between extinction and colonization in cleared and disturbed areas. Regenerating forest facilitates bird dispersal within degraded Amazonian landscapes and may tip the balance in favor of persistence in habitat patches. Determining the response of Amazonian birds to fragmentation may be...

  9. Birds in an Australian Rainforest: Their Attraction for Visitors and Visitor's Ecological Impacts

    OpenAIRE

    Tisdell, Clement A.; Wilson, Clevo

    2004-01-01

    Lamington National Park in Queensland, Australia is noted for its rainforest and is part of the World Heritage listed property but prior to this work, no systematic study has been done of the importance of birds to its visitors. This study is based on data from survey forms handed to visitors at an important site in the park and completed by visitors following their visit. It yielded 622 useable responses. These enabled us to establish the comparative importance of birds as an attraction to t...

  10. Aerosol fluxes and dynamics within and above a tropical rainforest in South-East Asia

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-05-01

    Full Text Available Atmospheric aerosol measurements were conducted near Danum Valley, in the Malaysian state of Sabah, North-East Borneo, as part of the OP3 and ACES projects, in April and June/July 2008. Here, aerosol fluxes and diurnal variability in and above the rainforest canopy were examined in order to gain an understanding of their dynamics in the surface layer of the South-East Asian rainforest. Aerosol fluxes were calculated by eddy covariance from measurements above the rainforest canopy on the Global Atmosphere Watch (GAW tower. Upward fluxes were seen on most mornings between 09:00 and 11:00 local time and this could be attributed to venting of the nocturnal boundary layer as it broke up in the morning. Measurements were also conducted below and within canopy at a nearby site. Profiles in aerosol number concentrations were investigated using GRIMM Optical Particle Counters (OPCs at various levels within the rainforest canopy as well as a single OPC on a vertically moving platform. These showed an overnight increase in larger particles (1–20 μm at all levels, but much more prominently near the top of the canopy, which could be attributed to fog formation. At ground level, number concentrations in this size range correlated with enhancements in biological aerosol concentrations, measured using a Wide Issue Bioaerosol Spectrometer (WIBS located near the forest floor, suggesting that coarse particle number concentrations were dominated by biological aerosols. A comparison of particle number concentrations (in the size range 0.5–1.0 μm between above and below canopy showed correlations, despite turbulence data suggesting persistent decoupling between the two measurement sites. These correlations often relied on a shift of the particle time-series against each other, implying a time delay in observations between the sites, which varied according to time of day. This lag time was shortest during the middle of the day by a significant margin. This was

  11. Aerosol fluxes and dynamics within and above a tropical rainforest in South-East Asia

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-10-01

    Full Text Available Atmospheric aerosol measurements were conducted near Danum Valley, in the Malaysian state of Sabah, North-East Borneo, as part of the OP3 and ACES projects, in April and June/July 2008. Here, aerosol fluxes and diurnal variability in and above the rainforest canopy were examined in order to gain an understanding of their behaviour in the surface layer of the South-East Asian rainforest. Aerosol fluxes were calculated by eddy covariance from measurements above the rainforest canopy on the Global Atmosphere Watch (GAW tower. Upward fluxes were seen on most mornings between 09:00 and 11:00 local time and this could be attributed to venting of the nocturnal boundary layer as it broke up in the morning. Measurements were also conducted within the canopy and trunk space at a nearby site. Profiles in aerosol number concentrations were investigated using GRIMM Optical Particle Counters (OPCs at various levels within the rainforest canopy and trunk space, as well as a single OPC on a vertically moving platform. These showed an overnight increase in larger particles (1–20 μm at all levels, but much more prominently near the top of the canopy, which could be attributed to fog formation. At ground level, number concentrations in this size range correlated with enhancements in biological aerosol concentrations, measured using a Wide Issue Bioaerosol Spectrometer (WIBS located near the forest floor, suggesting that coarse particle number concentrations were dominated by biological aerosols. A comparison of particle number concentrations (in the size range 0.5–1.0 μm between above canopy and the trunk space showed correlations, despite turbulence data suggesting persistent decoupling between the two measurement sites. These correlations often relied on a shift of the particle time-series against each other, implying a time delay in observations between the sites, which varied according to time of day. This lag time was shortest during the middle of the

  12. Soil moisture dynamics in an eastern Amazonian tropical forest

    Science.gov (United States)

    Bruno, Rogério D.; da Rocha, Humberto R.; de Freitas, Helber C.; Goulden, Michael L.; Miller, Scott D.

    2006-08-01

    We used frequency-domain reflectometry to make continuous, high-resolution measurements for 22 months of the soil moisture to a depth of 10 m in an Amazonian rain forest. We then used these data to determine how soil moisture varies on diel, seasonal and multi-year timescales, and to better understand the quantitative and mechanistic relationships between soil moisture and forest evapotranspiration. The mean annual precipitation at the site was over 1900 mm. The field capacity was approximately 0.53 m3 m-3 and was nearly uniform with soil depth. Soil moisture decreased at all levels during the dry season, with the minimum of 0.38 m3 m-3 at 3 m beneath the surface. The moisture in the upper 1 m showed a strong diel cycle with daytime depletion due to evapotranspiration. The moisture beneath 1 m declined during both day and night due to the combined effects of evapotranspiration, drainage and a nighttime upward movement of water. The depth of active water withdrawal changed markedly over the year. The upper 2 m of soil supplied 56% of the water used for evapotranspiration in the wet season and 28% of the water used in the dry season. The zone of active water withdrawal extended to a depth of at least 10 m. The day-to-day rates of moisture withdrawal from the upper 10 m of soil during rain-free periods agreed well with simultaneous measurements of whole-forest evapotranspiration made by the eddy covariance technique. The forest at the site was well adapted to the normal cycle of wet and dry seasons, and the dry season had only a small effect on the rates of land-atmosphere water vapour exchange.

  13. Improving Farming Practices for Sustainable Soil Use in the Humid Tropics and Rainforest Ecosystem Health

    Directory of Open Access Journals (Sweden)

    Emanoel Gomes de Moura

    2016-08-01

    Full Text Available Unsustainable farming practices such as shifting cultivation and slash-and-burn agriculture in the humid tropics threaten the preservation of the rainforest and the health of the local and global environment. In weathered soils prone to cohesion in humid tropic due to low Fe and carbon content and the enormous amounts of P that can be adsorbed, sustainable soil use is heavily dependent on the availability and efficient use of nutrients. This paper reviews the literature in the field and provides some insights about sustainable soil use in the humid tropics, mainly for the Brazilian Amazonia region. Careful management of organic matter and physical and chemical indicators is necessary to enhance root growth and nutrient uptake. To improve the rootability of the arable layer, a combination of gypsum with continuous mulching to increase the labile organic matter fraction responsible for the formation of a short-lived structure important for root growth is recommended, rather than tillage. Unlike mulching, mechanical disturbance via ploughing of Amazonian soils causes very rapid and permanent soil organic matter losses and often results in permanent recompaction and land degradation or anthropic savannization; thus, it should be avoided. Unlike in other regions, like southeast Brazil, saturating the soil solely with inorganic potassium and nitrogen soluble fertilizers is not recommended. Nutrient retention in the root zone can be enhanced if nutrients are added in a slow-release form and if biologically mediated processes are used for nutrient release, as occurs in green manure. Therefore, an alternative that favors using local resources to increase the supply of nutrients and offset processes that impair the efficiency of nutrient use must be pursued.

  14. The importance of an alternative for sustainability of agriculture around the periphery of the Amazon rainforest.

    Science.gov (United States)

    Moura, Emanoel G; Sena, Virley G L; Corrêa, Mariana S; Aguiar, Alana das C F

    2013-04-01

    The unsustainable use of the soil of the deforested area at the Amazonian border is one of the greatest threats to the rainforest, because it is the predominant cause of shifting cultivation in the region. The sustainable management of soils with low natural fertility is a major challenge for smallholder agriculture in the humid tropics. In the periphery of Brazilian Amazonia, agricultural practices that are recommended for the Brazilian savannah, such as saturating soils with soluble nutrients do not ensure the sustainability of agroecosystems. Improvements in the tilled topsoil cannot be maintained if deterioration of the porous soil structure is not prevented and nutrient losses in the root zone are not curtailed. The information gleaned from experiments affirms that in the management of humid tropical agrosystems, the processes resulting from the interaction between climatic factors and indicators of soil quality must be taken into consideration. It must be remembered that these interactions manifest themselves in ways that cannot be predicted from the paradigm established in the other region like the southeast of Brazil, which is based only on improving the chemical indicators of soil quality. The physical indicators play important role in the sustainable management of the agrosystems of the region and for these reasons must be considered. Therefore, alley cropping is a potential substitute for slash and burn agriculture in the humid tropics with both environmental and agronomic advantages, due to its ability to produce a large amount of residues on the soil surface and its effect on the increase of economic crop productivity in the long term. The article presents some promising patents on the importance of an alternative for sustainability of agriculture.

  15. Metagenomic analysis of microbial community of an Amazonian geothermal spring in Peru.

    Science.gov (United States)

    Paul, Sujay; Cortez, Yolanda; Vera, Nadia; Villena, Gretty K; Gutiérrez-Correa, Marcel

    2016-09-01

    Aguas Calientes (AC) is an isolated geothermal spring located deep into the Amazon rainforest (7°21'12″ S, 75°00'54″ W) of Peru. This geothermal spring is slightly acidic (pH 5.0-7.0) in nature, with temperatures varying from 45 to 90 °C and continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). Pooled water sample was analyzed at 16S rRNA V3-V4 hypervariable region by amplicon metagenome sequencing on Illumina HiSeq platform. A total of 2,976,534 paired ends reads were generated which were assigned into 5434 numbers of OTUs. All the resulting 16S rRNA fragments were then classified into 58 bacterial phyla and 2 archaeal phyla. Proteobacteria (88.06%) was found to be the highest represented phyla followed by Thermi (6.43%), Firmicutes (3.41%) and Aquificae (1.10%), respectively. Crenarchaeota and Euryarchaeota were the only 2 archaeal phyla detected in this study with low abundance. Metagenomic sequences were deposited to SRA database which is available at NCBI with accession number SRX1809286. Functional categorization of the assigned OTUs was performed using PICRUSt tool. In COG analysis "Amino acid transport and metabolism" (8.5%) was found to be the highest represented category whereas among predicted KEGG pathways "Metabolism" (50.6%) was the most abundant. This is the first report of a high resolution microbial phylogenetic profile of an Amazonian hot spring.

  16. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during

  17. Evaluating the nodulation status of leguminous species from the Amazonian forest of Brazil.

    Science.gov (United States)

    de Faria, Sergio M; Diedhiou, Abdala G; de Lima, Haroldo C; Ribeiro, Robson D; Galiana, Antoine; Castilho, Alexandre F; Henriques, João C

    2010-06-01

    Numerous leguminous species are used or have potential uses for timber production, pharmacological products, or land reclamation. Through N(2)-fixation, many leguminous trees contribute to the N-balance of tropical wetlands and rainforests. Therefore, studies of the N(2)-fixation ability of leguminous species appear to be crucial for the better use and conservation of these resources. The global nodulation inventory in the Leguminosae family is constantly being enriched with new records, suggesting the existence of undiscovered nodulated species, especially in tropical natural ecosystems and other hot spots of biodiversity. In this respect, the nodulation of leguminous species from the Amazonian forest of Porto Trombetas (Brazil) was surveyed. Overall, 199 leguminous species from flooded and non-flooded areas, were examined for their nodulation status by combining field observations, seedling inoculations, and screening of N(2)-fixing bacterial strains from the collected nodules. The results revealed a tendency for a higher relative frequency of nodulation in the species from the flooded areas (74%) compared with those from the non-flooded areas (67%). Nodulation was observed in the Caesalpinioideae, Mimosoideae, and Papilionoideae, with 25, 88, and 84% of the examined species in each subfamily, respectively. Of the 137 nodulated leguminous species, 32 including three Caesalpinoideae, 19 Mimosoideae, and 10 Papilionoideae are new records. One new nodulated genus (Cymbosema) was found in the Papilionoideae. Twelve non-nodulating leguminous species were also observed for the first time. The results are discussed based on the systematics of the Leguminosae family and the influence of available nutrients to the legume-bacteria symbiosis.

  18. Brazil's Amazonian dams: Ecological and socioeconomic impacts

    Science.gov (United States)

    Fearnside, P. M.

    2016-12-01

    Brazil's 2015-2024 Energy Expansion Plan calls for 11 hydroelectric dams with installed capacity ≥ 30 MW in the country's Amazon region. Dozens of other large dams are planned beyond this time horizon, and dams with consumers. Population displacement is a major impact; for example, the Marabá Dam would displace 40,000 people, mostly traditional riverside dwellers (ribeirinhos). Various dams impact indigenous peoples, such as the Xingu River dams (beginning with Belo Monte) and the São Luiz do Tapajós and Chacorão Dams on the Tapajós River. Brazil has many energy options other than dams. Much energy use has little benefit for the country, such as exporting aluminum. Electric showerheads use 5% of the country's power. Losses in transmission lines (20%) are far above global averages and can be expected to increase as Amazonian hydroelectric dams far from consumer centers come on line. Brazil has tremendous wind and solar potential, but these do not have the same priority as dams. At the root of many questionable policies is a decision-making process in need of reform.

  19. Carbon dynamics and ecosystem diversity of Amazonian peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Laehteenoja, O.

    2011-07-01

    The overall aim was to initiate peatland research in Amazonia, which has been referred to as 'one of the large white spots on the global peatland map'. Specifically, the study was to clarify how common peat accumulation is on Amazonian floodplains, and how extensive and thick peat deposits can be encountered. Secondly, the intention was to study how rapidly Amazonian peatlands sequester carbon, and how much carbon they store and thirdly, to gain some understanding of the diversity of peatland ecosystem types and of the processes forming these ecosystems

  20. Olfaction and environment: Tsimane' of Bolivian rainforest have lower threshold of odor detection than industrialized German people.

    Directory of Open Access Journals (Sweden)

    Agnieszka Sorokowska

    Full Text Available Olfactory sensitivity varies between individuals. However, data regarding cross-cultural and inter-group differences are scarce. We compared the thresholds of odor detection of the traditional society of Tsimane' (native Amazonians of the Bolivian rainforest; n = 151 and people living in Dresden (Germany; n = 286 using "Sniffin' Sticks" threshold subtest. Tsimane' detected n-butanol at significantly lower concentrations than the German subjects. The distribution of thresholds of the Tsimane' was very specific, with 25% of Tsimane' obtaining better results in the olfactory test than any member of the German group. These data suggest that differences in olfactory sensitivity seem to be especially salient between industrialized and non-industrialized populations inhabiting different environmental conditions. We hypothesize that the possible sources of such differences are: (i the impact of pollution which impairs the olfactory abilities of people from industrialized countries; (ii better training of olfaction because of the higher importance of smell in traditional populations; (iii environmental pressures shaping olfactory abilities in these populations.

  1. The effects of cannibalism on Amazonian poison frog egg and tadpole deposition and survivorship in Heliconia axil pools.

    Science.gov (United States)

    Summers, Kyle

    1999-06-01

    This study investigated the influence of cannibalism on egg and larval mortality, and on the deposition strategies of adults, in a tropical anuran breeding in very small leaf axil pools. Patterns of egg and tadpole deposition and mortality in the Amazonian poison frog, Dendrobates ventrimaculatus, were monitored in rainforest near Pompeya in Sucumbios Province, Ecuador. Oviposition and tadpole deposition typically ocurred in leaf axils of Heliconia plants. Pools typically received more than one oviposition. Egg survivorship was low, and significantly lower when eggs were deposited in pools with large tadpoles, indicating that cannibalism is an important source of mortality. Tadpole survivorship was also associated with the presence of other tadpoles: most pools ended with only one surviving tadpole, regardless of the number of tadpoles deposited in the pool. Egg deposition was signifcantly less likely for pools that had a tadpole in them, suggesting that adults can detect the presence of tadpoles and avoid ovipositing in pools that contain them. This hypothesis was tested with a series of pool choice experiments, which revealed that D. ventrimaculatus avoid placing either eggs or tadpoles into a pool which contains a large tadpole. Several hypotheses which could explain multiple deposition in this species are discussed.

  2. Root Niche Separation as Strategy of Avoidance of Seasonal Drought Stress in a Mature Amazonian Forest (Invited)

    Science.gov (United States)

    Ivanov, V. Y.; Hutyra, L.; Wofsy, S. C.; Munger, J. W.; Saleska, S. R.; De Oliveira, R., Jr.; Camargo, P. B.; Fatichi, S.

    2013-12-01

    Large areas of Amazonian evergreen forests experience seasonal droughts extending for three or more months, and show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic vegetation-hydrology model is developed to test the roles of deep roots and the possibility of 'root niche separation,' in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data on canopy phenology, energy fluxes, soil moisture, and soil and root structure from the Tapajos National Forest, Brazil, provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented.

  3. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    Science.gov (United States)

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  4. Attribution of precipitation changes in African rainforest

    Science.gov (United States)

    Otto, F. E. L.; Allen, M. R.; Bowery, A.; Imbers, J.; Jones, R.; Massey, N.; Miller, J.; Rosier, S.; Rye, C.; Thurston, M.; Wilson, S.; Yamazaki, H.

    2012-04-01

    Global climate change is almost certainly affecting the magnitude and frequency of extreme weather and hydrological events. However, whether and to what extend the occurrence of such an event can be attributed to climate change remains a challenge that relies on good observations as well as climate modelling. A number of recent studies have attempted to quantify the role of human influence on climate in observed weather events as e.g. the 2010 Russian heat wave (Dole et al, 2011; Rahmstorf and Coumou, 2011; Otto et al, 2012). The overall approach is to simulate, with as realistic a model as possible and accounting as far as possible for modelling uncertainties, both the statistics of observed weather and the statistics of the weather that would have obtained had specific external drivers of climate change been absent. This approach requires a large ensemble size to provide results from which the statistical significance and the shape of the distribution of key variables can be assessed. Also, a sufficiently long period of time must be simulated to evaluate model bias and whether the model captures the observed distribution. The weatherathome.net within the climateprediction.net projects provides such an ensemble with many hundred ensemble members per year via volunteer distributed computing. Most previous attribution studies have been about European extreme weather events but the most vulnerable regions to climate change are in Asia and Africa. One of the most complex hydrological systems is the tropical rainforest, which is expected to react highly sensible to a changing climate. Analysing the weatherathome.net results we find that conditions which are too dry for rainforests to sustain without damages occurred more frequently and more severe in recent years. Furthermore the changes in precipitation in that region can be linked to El Nino/ La Nina events. Linking extreme weather events to large-scale teleconnections helps to understand the occurrence of this

  5. People of the ancient rainforest: late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka.

    Science.gov (United States)

    Perera, Nimal; Kourampas, Nikos; Simpson, Ian A; Deraniyagala, Siran U; Bulbeck, David; Kamminga, Johan; Perera, Jude; Fuller, Dorian Q; Szabó, Katherine; Oliveira, Nuno V

    2011-09-01

    Batadomba-lena, a rockshelter in the rainforest of southwestern Sri Lanka, has yielded some of the earliest evidence of Homo sapiens in South Asia. H. sapiens foragers were present at Batadomba-lena from ca. 36,000 cal BP to the terminal Pleistocene and Holocene. Human occupation was sporadic before the global Last Glacial Maximum (LGM). Batadomba-lena's Late Pleistocene inhabitants foraged for a broad spectrum of plant and mainly arboreal animal resources (monkeys, squirrels and abundant rainforest snails), derived from a landscape that retained equatorial rainforest cover through periods of pronounced regional aridity during the LGM. Juxtaposed hearths, palaeofloors with habitation debris, postholes, excavated pits, and animal and plant remains, including abundant Canarium nutshells, reflect intensive habitation of the rockshelter in times of monsoon intensification and biome reorganisation after ca. 16,000 cal BP. This period corresponds with further broadening of the economic spectrum, evidenced though increased contribution of squirrels, freshwater snails and Canarium nuts in the diet of the rockshelter occupants. Microliths are more abundant and morphologically diverse in the earliest, pre-LGM layer and decline markedly during intensified rockshelter use on the wane of the LGM. We propose that changing toolkits and subsistence base reflect changing foraging practices, from shorter-lived visits of highly mobile foraging bands in the period before the LGM, to intensified use of Batadomba-lena and intense foraging for diverse resources around the site during and, especially, following the LGM. Traces of ochre, marine shell beads and other objects from an 80 km-distant shore, and, possibly burials reflect symbolic practices from the outset of human presence at the rockshelter. Evidence for differentiated use of space (individual hearths, possible habitation structures) is present in LGM and terminal Pleistocene layers. The record of Batadomba-lena demonstrates

  6. New species of Monostylis Tulasne (Podostemaceae from the Amazonian region

    Directory of Open Access Journals (Sweden)

    Aldaléa Sprada Tavares

    2015-09-01

    Full Text Available Until now, Monostylis Tulasne (Podostemaceae was considered monospecific, containing only M. capillacea Tulasne. However, recent field expeditions and an analysis of samples from the Amazonian region revealed three new species, Monostylis aripuanensis, M. goeldiana and M. paraensis. The present paper provides detailed morphological descriptions, illustrations, habitat data, comparative taxonomic comments and a dichotomous key to the species.

  7. Towards an understanding of tree diversity in Amazonian forests

    NARCIS (Netherlands)

    Stropp Carneiro, J.

    2011-01-01

    Amazonian forests harbor the highest biodiversity of all terrestrial ecosystems on Earth. The origin of this extraordinary biodiversity and its current distribution are recently becoming better understood. Still, our knowledge of the contribution of processes operating at different temporal and spat

  8. The Amazonian Formative: Crop Domestication and Anthropogenic Soils

    Directory of Open Access Journals (Sweden)

    Manuel Arroyo-Kalin

    2010-03-01

    Full Text Available The emergence of sedentism and agriculture in Amazonia continues to sit uncomfortably within accounts of South American pre-Columbian history. This is partially because deep-seated models were formulated when only ceramic evidence was known, partly because newer data continue to defy simple explanations, and partially because many discussions continue to ignore evidence of pre-Columbian anthropogenic landscape transformations. This paper presents the results of recent geoarchaeological research on Amazonian anthropogenic soils. It advances the argument that properties of two different types of soils, terras pretas and terras mulatas, support their interpretation as correlates of, respectively, past settlement areas and fields where spatially-intensive, organic amendment-reliant cultivation took place. This assessment identifies anthropogenic soil formation as a hallmark of the Amazonian Formative and prompts questions about when similar forms of enrichment first appear in the Amazon basin. The paper reviews evidence for embryonic anthrosol formation to highlight its significance for understanding the domestication of a key Amazonian crop: manioc (Manihot esculenta ssp. esculenta. A model for manioc domestication that incorporates anthropogenic soils outlines some scenarios which link the distribution of its two broader varieties—sweet and bitter manioc—with the widespread appearance of Amazonian anthropogenic dark earths during the first millennium AD.

  9. A Miocene perspective on the evolution of the Amazonian biota

    NARCIS (Netherlands)

    Wesselingh, F.P.; Salo, J.A.

    2006-01-01

    Between c. 23 and 8 Ma, western Amazonia was occupied by the vast Pebas long-lived lake/wetland system. The Pebas system had a variety of influences over the evolution of Miocene and modern Amazonian biota; it formed a barrier for the exchange of terrestrial biota, a pathway for the transition of ma

  10. The structure of the Amazonian craton: Available geophysical evidence

    Science.gov (United States)

    Rosa, João Willy Corrêa; Rosa, José Wilson Corrêa; Fuck, Reinhardt A.

    2016-10-01

    The Amazonian craton, which covers a large area of South America, and is thought to have been stable since the end of the Mesoproterozoic, has recently benefited from a series of regional geophysical surveys. The Amazonian craton comprises the northern Guyana shield and the southern Central Brazil shield. It has become the main subject of seismological studies aiming to determine crustal thickness. Moho thickness maps that cover a large part of the South American continent summarize these studies. Receiver function studies, aided by surface wave dispersion tomography, were also useful tools applied in the region over the past decade. These have been improved by the addition of temporary and permanent regional seismological arrays and stations. An interesting NNW-SSE Moho depth anomaly, pointing to crustal thickening of up to 60 km in the central Guyana shield and a 50 km thick anomaly of the southern Central Brazil shield were recently identified. Areas with crustal thickening correspond to Paleoproterozoic magmatic arcs. The upper mantle seismic anisotropy in part of the region has been determined from SKS splitting studies. The currently available seismic anisotropy information shows that the orientation of the determined anisotropic axis is related to the frozen in anisotropy hypothesis for the Amazonian craton. The orientation of the anisotropic axis shows no relation to the current South American plate motion in the Amazonian craton. Most recently, detailed information for the two shields has benefited from a series of high-resolution, regional aerogeophysical surveys, made available by CPRM, the Brazilian Geological Survey. In addition to the mentioned contribution from seismology for imaging deeper crustal structures, regional gravity surveys have been expanded, adding to previous Bouguer anomaly maps, and deep drilling information from early exploration efforts have been compiled for the Amazon basin, which covers the Amazonian craton separating the Guyana

  11. Biodiversity of leaf-litter ants in fragmented tropical rainforests of Borneo: the value of publically and privately managed forest fragments

    OpenAIRE

    Tawatao, N; Lucey, JM; M Senior (Referee); Benedick, S; Vun Khen, C; Hill, JK; Hamer, KC

    2014-01-01

    In view of the rapid rate of expansion of agriculture in tropical regions, attention has focused on the potential for privately-managed rainforest patches within agricultural land to contribute to biodiversity conservation. However, these sites generally differ in their history of forest disturbance and management compared with other forest fragments, and more information is required on the biodiversity value of these privately-managed sites, particularly in oil-palm dominated landscapes of S...

  12. Responses of Quaternary rainforest vertebrates to climate change in Australia

    Science.gov (United States)

    Hocknull, Scott A.; Zhao, Jian-xin; Feng, Yue-xing; Webb, Gregory E.

    2007-12-01

    A new middle Pleistocene vertebrate fossil record from eastern Australia, dated by U disequilibrium series, records the first Quaternary record of an Australian tropical rainforest fauna. This exceptionally rich fauna underwent extinction after a long period of relative faunal stability, spanning several glacial cycles, and persisted probably until 280 000 years ago. Some time between 280 000 and 205 000 years ago the rainforest fauna was replaced by a xeric-adapted fauna. Since that time, the xeric-adapted fauna was replaced by a mesic-adapted fauna which was established by the Holocene. This is the first vertebrate faunal evidence in Australia of the middle Pleistocene Mid-Brunhes Climatic Event (MBE), a major climatic reorganisation that led to increased aridity in northern Australia from around 300 000 years ago. Several independent palaeoclimate proxies suggest that the climatic shift to aridity was due to increased climatic variability and weakened northern monsoons, which may be manifested in the extinction of the aseasonal rainforest fauna and its replacement by an arid-adapted fauna. We extend the temporal ranges of several taxa from the Pliocene into the middle Pleistocene. We also reveal a longer palaeobiogeographic connection of rainforest taxa and lineages shared between New Guinea and Australia than was previously thought and show that their extinction on mainland Australia occurred sometime after 280 000 years ago.

  13. Landscape Variation in Plant Defense Syndromes across a Tropical Rainforest

    Science.gov (United States)

    McManus, K. M.; Asner, G. P.; Martin, R.; Field, C. B.

    2014-12-01

    Plant defenses against herbivores shape tropical rainforest biodiversity, yet community- and landscape-scale patterns of plant defense and the phylogenetic and environmental factors that may shape them are poorly known. We measured foliar defense, growth, and longevity traits for 345 canopy trees across 84 species in a tropical rainforest and examined whether patterns of trait co-variation indicated the existence of plant defense syndromes. Using a DNA-barcode phylogeny and remote sensing and land-use data, we investigated how phylogeny and topo-edaphic properties influenced the distribution of syndromes. We found evidence for three distinct defense syndromes, characterized by rapid growth, growth compensated by defense, or limited palatability/low nutrition. Phylogenetic signal was generally lower for defense traits than traits related to growth or longevity. Individual defense syndromes were organized at different taxonomic levels and responded to different spatial-environmental gradients. The results suggest that a diverse set of tropical canopy trees converge on a limited number of strategies to secure resources and mitigate fitness losses due to herbivory, with patterns of distribution mediated by evolutionary histories and local habitat associations. Plant defense syndromes are multidimensional plant strategies, and thus are a useful means of discerning ecologically-relevant variation in highly diverse tropical rainforest communities. Scaling this approach to the landscape level, if plant defense syndromes can be distinguished in remotely-sensed data, they may yield new insights into the role of plant defense in structuring diverse tropical rainforest communities.

  14. Co-occurrence and community assembly in Amazonian palms (Arecaceae)

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Balslev, Henrik; Kristiansen, Thea

    Palms (Arecaceae) are a distinctive, diverse and ecologically important element of tropical rainforest. Often numerous palm species co-occur locally in "palm communities" that span all strata of the forest. In South America, the palm family has a centre of diversity in the western Amazon basin...

  15. Chemical Composition of Atmospheric Aerosols Above a Pristine South East Asian Rainforest

    Science.gov (United States)

    Robinson, N. H.; Allan, J. D.; Williams, P. I.; Coe, H.; Hamilton, J.; Chen, Q.; Martin, S.; Trembath, J.

    2009-04-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth's atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Other tools such as positive matrix factorisation (PMF) have been used to help assess the relative source contributions to the organic aerosol. A suite of supporting aerosol and gas phase measurements were made, including size resolved number concentration measurements with Differential Mobility Particle Sizer (DMPS), as well as absorption measurements made with a Multi-Angle Absorption Photometer (MAAP). The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Airborne hygroscopicity was measured using a Droplet Measurement Technology Cloud Condensation Nuclei counter (DMT CCN counter) in

  16. Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography?

    OpenAIRE

    Aleixo, Alexandre Luis Padovan; Rossetti, Dilce de Fátima

    2007-01-01

    Recent studies have improved our understanding of Amazonian geological history during the late Tertiary and Quaternary, two periods regarded as critical for the recent diversification of the Amazonian avifauna. The notion that geologically older and more stable areas of Amazonia (such as the Brazilian and Guianan shields) functioned as ‘‘species-pumps’’, whereas geologically more dynamic areas (such as the western Amazonian lowlands) mostly ‘‘captured’’ part of the div...

  17. ASSESSING SOIL FERTILITY STATUS OF REHABILITATED DEGRADED TROPICAL RAINFOREST

    Directory of Open Access Journals (Sweden)

    Aiza Shaliha Jamaluddin

    2013-01-01

    Full Text Available An assessment of forest rehabilitation program in relation to soil fertility status by using soil indices could provide fundamental information on soil suitability for species preferences and improve the effective technique for future rehabilitation program in tropical rainforests. This study was conducted in order to characterize the soil properties and identifying the soil fertility status of rehabilitated and secondary forests. Soil samples were collected in year 2009 at rehabilitation forests (20 years after planting and secondary forest of Nirwana Forest Reserve, Universiti Putra Malaysia (UPM Bintulu Campus, Sarawak, Malaysia. The rehabilitation plots were planted with mixed dipterocarp and non-dipterocarp species since 1991. Prior to conversion of the areas into various land use types, the rehabilitation and secondary forests areas were considered as natural forests and subsequently subjected to forest logging with Selective Management System (SMS in 1980s.The plot size for each site was 20×20 m for 18 experimental sites (at different ages after planting were established, followed by soil sampling at 0-15 cm and 15-30 cm depth randomly using soil auger. Standard soil analysis for physical and chemical properties was used to analyze the soil samples. The soil fertility status was evaluated using two indices, namely Soil Fertility Index (SFI and Soil Evaluation Factor (SEF for both rehabilitated and secondary forests. The results showed that there were significant differences (p<0.05 in pH (water and KCl, exchangeable Mg, Na, Al and ammonium and granule composition (clay, silt and sand between depths. The PCA result of 70% total variability (OM, TOC, TC and CEC score in PC1 shows positive relationship, explaining nutrients in the soil stored in the organic matter in the surface soils. The correlation analysis indicated that there were positive relationship (p<0.05 between OM and TC, CEC and exchangeable Al for surface soils. We found

  18. Methylmercury in tailings ponds of Amazonian gold mines (French Guiana): Field observations and an experimental flocculation method for in situ remediation

    OpenAIRE

    Guédron, Stéphane; Cossa, D.; Grimaldi, Michel; Charlet, L.

    2011-01-01

    Sites of monomethylmercury (MMHg) production in Amazonian regions have been identified in hydraulic reservoirs, lake sediments and wetlands, but tailings ponds have not yet received sufficient attention for this purpose. This work evidenced high MMHg production within the water column and the interstitial water of two tailings ponds of French Guiana Au mines located; (i) in a small scale exploitation (Combat) where Hg was used for Au amalgamation, and (ii) in an industrial on-going Au mine (Y...

  19. Hair mercury levels in Amazonian populations: spatial distribution and trends

    Directory of Open Access Journals (Sweden)

    Barbieri Flavia L

    2009-12-01

    Full Text Available Abstract Background Mercury is present in the Amazonian aquatic environments from both natural and anthropogenic sources. As a consequence, many riverside populations are exposed to methylmercury, a highly toxic organic form of mercury, because of their intense fish consumption. Many studies have analysed this exposure from different approaches since the early nineties. This review aims to systematize the information in spatial distribution, comparing hair mercury levels by studied population and Amazonian river basin, looking for exposure trends. Methods The reviewed papers were selected from scientific databases and online libraries. We included studies with a direct measure of hair mercury concentrations in a sample size larger than 10 people, without considering the objectives, approach of the study or mercury speciation. The results are presented in tables and maps by river basin, displaying hair mercury levels and specifying the studied population and health impact, if any. Results The majority of the studies have been carried out in communities from the central Amazonian regions, particularly on the Tapajós River basin. The results seem quite variable; hair mercury means range from 1.1 to 34.2 μg/g. Most studies did not show any significant difference in hair mercury levels by gender or age. Overall, authors emphasized fish consumption frequency as the main risk factor of exposure. The most studied adverse health effect is by far the neurological performance, especially motricity. However, it is not possible to conclude on the relation between hair mercury levels and health impact in the Amazonian situation because of the relatively small number of studies. Conclusions Hair mercury levels in the Amazonian regions seem to be very heterogenic, depending on several factors. There is no obvious spatial trend and there are many areas that have never been studied. Taking into account the low mercury levels currently handled as acceptable, the

  20. Elemental mercury in the atmosphere of a tropical Amazonian forest (French Guiana)

    Energy Technology Data Exchange (ETDEWEB)

    Amouroux, D.; Wasserman, J.C.Tessier, E.; Donard, O.F.X. [Univ. de Pau et des Pays de l`Adour, Pau (France). Lab. de Chimie Analytique Bio-Inorganique et Environnement

    1999-09-01

    Gaseous atmospheric mercury was investigated at two sites of a tropical Amazonian forest (French Guiana) in the Petit Inini River basin and the Petit Saut Lake in June, 1998. Gaseous atmospheric mercury was identified as elemental mercury (Hg{sup 0}). Diurnal variation of atmospheric Hg{sup 0} in both studied aquatic environments were significantly correlated with air temperature and anticorrelated with relative humidity. Average Hg{sup 0} concentrations were higher above the Petit Inini River that the Petit Saut Lake. Background Hg{sup 0} concentrations in the Petit Inini River basin were higher than those observed in remote environments. These data suggest that gold mining activity (i.e., Petit Inini River basin) may influence mercury mobilization in tropical forest ecosystems and that atmospheric transfer is a major pathway for mercury cycling in these environments.

  1. Millennial-scale dynamics of southern Amazonian rain forests.

    Science.gov (United States)

    Mayle, F E; Burbridge, R; Killeen, T J

    2000-12-22

    Amazonian rain forest-savanna boundaries are highly sensitive to climatic change and may also play an important role in rain forest speciation. However, their dynamics over millennial time scales are poorly understood. Here, we present late Quaternary pollen records from the southern margin of Amazonia, which show that the humid evergreen rain forests of eastern Bolivia have been expanding southward over the past 3000 years and that their present-day limit represents the southernmost extent of Amazonian rain forest over at least the past 50,000 years. This rain forest expansion is attributed to increased seasonal latitudinal migration of the Intertropical Convergence Zone, which can in turn be explained by Milankovitch astronomic forcing.

  2. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    Directory of Open Access Journals (Sweden)

    S. A. Parsons

    2014-06-01

    Full Text Available The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability, using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots, temperature (higher seasonality in the uplands, disturbance (lower seasonality with more early secondary species and soil fertility (higher seasonality with higher N : P/P limitation (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp: r2 = 0.63, n = 30 plots; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30. Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall inputs were generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry being more recalcitrant to decay.

  3. Correlation and persistence of hunting and logging impacts on tropical rainforest mammals.

    Science.gov (United States)

    Brodie, Jedediah F; Giordano, Anthony J; Zipkin, Elise F; Bernard, Henry; Mohd-Azlan, Jayasilan; Ambu, Laurentius

    2015-02-01

    Humans influence tropical rainforest animals directly via exploitation and indirectly via habitat disturbance. Bushmeat hunting and logging occur extensively in tropical forests and have large effects on particular species. But how they alter animal diversity across landscape scales and whether their impacts are correlated across species remain less known. We used spatially widespread measurements of mammal occurrence across Malaysian Borneo and recently developed multispecies hierarchical models to assess the species richness of medium- to large-bodied terrestrial mammals while accounting for imperfect detection of all species. Hunting was associated with 31% lower species richness. Moreover, hunting remained high even where richness was very low, highlighting that hunting pressure persisted even in chronically overhunted areas. Newly logged sites had 11% lower species richness than unlogged sites, but sites logged >10 years previously had richness levels similar to those in old-growth forest. Hunting was a more serious long-term threat than logging for 91% of primate and ungulate species. Hunting and logging impacts across species were not correlated across taxa. Negative impacts of hunting were the greatest for common mammalian species, but commonness versus rarity was not related to species-specific impacts of logging. Direct human impacts appeared highly persistent and lead to defaunation of certain areas. These impacts were particularly severe for species of ecological importance as seed dispersers and herbivores. Indirect impacts were also strong but appeared to attenuate more rapidly than previously thought. The lack of correlation between direct and indirect impacts across species highlights that multifaceted conservation strategies may be needed for mammal conservation in tropical rainforests, Earth's most biodiverse ecosystems.

  4. Plant reproduction in the Central Amazonian floodplains : challenges and adaptations

    OpenAIRE

    Ferreira, Cristiane da Silva; Fernandez Piedade, Maria Teresa; Wittmann, Astrid de Oliveira; Franco, Augusto César

    2010-01-01

    Background The Central Amazonian floodplain forests are subjected to extended periods of flooding and to flooding amplitudes of 10 m or more. The predictability, the length of the flood pulse, the abrupt transition in the environmental conditions along topographic gradients on the banks of major rivers in Central Amazonia, and the powerful water and sediment dynamics impose a strong selective pressure on plant reproduction systems. Scope In this review, we examine how the hydrological cycle i...

  5. Food Plants Eaten by Amazonian Manatees (Trichechus inunguis, Mammalia : Sirenia

    Directory of Open Access Journals (Sweden)

    Colares Ioni G.

    2002-01-01

    Full Text Available To determine the feeding habits of the Amazonian manatee Trichechus inunguis in some Central Amazonian rivers and lakes, we compared plant epidermis found in the stomach contents and/or faeces of animals with a reference collection of plants present in the studied areas. Twenty five samples from digestive tracts of animals found dead and 25 faeces samples found floating were analyzed. From these samples, 24 aquatic macrophytes were identified. The Gramineae family was identified in 96% of the samples, Paspalum repens and Echinochloa polystachya being the most abundant in the samples. The second most frequent family was the Pontederiaceae primarily Eichhornia crassipes. During the high water period, the animals showed a more selective diet (eight identified species. In the low water period, when food was more scarce, the animals showed a larger diversity of species in their diet (21 species of plants. Differences in the diet among the two studied areas reflected the physiographics characteristics of the region. Amazonian manatees fed mostly on emergent plants.

  6. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    Directory of Open Access Journals (Sweden)

    L. E. O. C. Aragão

    2009-12-01

    Full Text Available The net primary productivity (NPP of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1 How do Amazonian forests allocate productivity among its above- and below-ground components? (2 How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error, at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  7. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    Directory of Open Access Journals (Sweden)

    L. E. O. C. Aragão

    2009-02-01

    Full Text Available The net primary productivity (NPP of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1 How do Amazonian forests allocate productivity among its above- and below-ground components? (2 How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error, at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  8. Rapid Amazonian Moisture Oscillations Correlated with Dansgaard-Oeschger Cycles

    Science.gov (United States)

    Wang, X.; Auler, A. S.; Edwards, R.; Cheng, H.; Ito, E.; Dorale, J. A.

    2007-12-01

    Terrestrial paleoclimate records on abrupt climate events from the tropics, e.g. Dansgaard-Oeschger (D-O) oscillations, are still rare, in particular, from Amazonia, which contains the largest tropical rainforest in the world. We have obtained a high-resolution oxygen isotopic record of cave calcite from Caverna Paraíso (PAR, 04o04'S, 55o27'W), Amazonia, Brazil. The chronology was determined by 69 U-Th ages from 4 stalagmites. Tests for equilibrium conditions show that their oxygen isotopic variations are primarily caused by climate change. We thus interpret the Paraíso record, spanning the last 50 thousand years, in terms of meteoric precipitation changes at this equatorial location. The oxygen isotopic profile shows significant abrupt millennial-scale variations during Marine Isotope Stage (MIS) 3, with amplitudes as large as 2 per mil. Using independent age scales, we compare the record to contemporaneous records from caves in eastern China and high-latitude ice cores. During MIS 3, the PAR calcite oxygen isotopic profile correlates remarkably with the Hulu Cave record (Wang Y.J. et al., 2001, Science), indicating that precipitation histories at the two sites are asynchronous, similar to our previous observations from northeastern and southern Brazil speleothems (Wang X.F. et al., 2004, Nature; Wang X.F. et al., 2006, Quat. Sci. Rev.). During MIS 3, Paraíso precipitation also broadly anti-correlates with Greenland D-O events (NGRIP members, 2004, Nature) and positively correlates with Antarctic warm events (EPICA community members, 2006, Nature). Our record adds further support to the idea that abrupt climate events have a worldwide distribution during MIS 3 (Voelker et al., 2002, Quat. Sci. Rev.). The observed correlations between the records support an oceanic meridional overturning circulation mechanism for driving the abrupt millennial-scale events of the last glacial period, coupled with strong air-sea feedbacks from the tropics. In combination with

  9. Micro hydropower for the electrification of a village in the Ecuadorian rainforest; Kleinstwasserkraft zur elektrischen Versorgung eines Dorfes im Regenwald Ecuadors

    Energy Technology Data Exchange (ETDEWEB)

    Zeiselmair, Andreas; Konz, Alexandra; Rapp, Christoph [Technische Univ. Muenchen (Germany). Fachgebiet Hydromechanik

    2011-07-01

    During the summer term 2010 several theses on the topic of infrastructural development of the village Yuwentsa situated in the Ecuadorian rainforest were written at the Technische Universitaet Muenchen. One of these works was especially concerned with the electrical energy supply of the community and a planned rainforest academy by micro hydro power. Within this study a major task was to identify appropriate installation sites and to develop practicable structural measures. Finally two sites were investigated, one for the installation of a water wheel and another for the construction of a power plant using a conventional turbine with penstock. A special challenge was the lack of hydrological data which made it necessary to put more effort on flood prevention. Another central issue of the two-week stay at the village was the knowledge exchange and cooperation between the students and the indigenas. (orig.)

  10. Hillslope hydrology in tropical rainforest steeplands in Brunei

    Science.gov (United States)

    Dykes, A. P.; Thornes, J. B.

    2000-02-01

    Many remaining areas of tropical rainforest in south-east Asia are located on landscapes dominated by deep valleys and very steep slopes. Now that logging activities are extending into these steeplands, it is essential to understand how the natural rainforest system behaves if any kind of realistic assessment of the effects of such disturbance is to be made. This paper examines the hydrological behaviour of an undisturbed rainforest system on steep topography in the Temburong District of Brunei, north-west Borneo. The physical and hydrological properties of the regolith material are generally typical of tropical residual soils. The regolith has a clay texture and a low dry bulk density beneath a superficial litter/organic horizon. The infiltration capacity of the surface soil was several hundred mm h-1. That of the exposed mineral subsoil was an order of magnitude less, similar to the saturated hydraulic conductivity (Ksat) of around 180 mm h-1 at a depth of 150 cm. There was no indication that Ksat reduced with depth except very near the bedrock interface.Soil tensions were measured using a two-dimensional array of tensiometers on a 30° slope. During dry season conditions, infiltrating rain-water contributes to soil moisture, and drying of the soil is dominated by transpiration losses. During wet season conditions, perched water tables quickly develop during heavy rainfall, giving rise to the rapid production of return flow in ephemeral channels. No infiltration excess or saturation overland flow was observed on hillslopes away from channel margins. Subsurface storm flow combined with return flow produce stream flow hydrographs with high peak discharges and very short lag times. Storm event runoff coefficients are estimated to be as high as 40%. It is concluded that the most distinctive feature of the hydrology of this steepland rainforest is the extremely flashy nature of the catchment runoff regime produced by the combination of thin but very permeable regolith

  11. Climate change in Australian tropical rainforests: an impending environmental catastrophe.

    OpenAIRE

    Williams, Stephen E.; Bolitho, Elizabeth E; Fox, Samantha

    2003-01-01

    It is now widely accepted that global climate change is affecting many ecosystems around the globe and that its impact is increasing rapidly. Many studies predict that impacts will consist largely of shifts in latitudinal and altitudinal distributions. However, we demonstrate that the impacts of global climate change in the tropical rainforests of northeastern Australia have the potential to result in many extinctions. We develop bioclimatic models of spatial distribution for the regionally e...

  12. Natural disturbance reduces disease risk in endangered rainforest frog populations

    OpenAIRE

    Roznik, Elizabeth A; Sarah J. Sapsford; Pike, David A; Lin Schwarzkopf; Ross A Alford

    2015-01-01

    Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that increase or decrease infection prevalence and intensity in host populations. Here we show that a reduction of rainforest canopy cover caused by a severe tropical cyclone decreased the risk of endangere...

  13. Co-occurrence and community assembly in Amazonian palms (Arecaceae)

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Balslev, Henrik; Kristiansen, Thea

    Palms (Arecaceae) are a distinctive, diverse and ecologically important element of tropical rainforest. Often numerous palm species co-occur locally in "palm communities" that span all strata of the forest. In South America, the palm family has a centre of diversity in the western Amazon basin...... where palms abound in all major habitats. Using a dataset including >340,000 palm individuals in 430 transects, we analysed species richness, compositional turnover, and phylogenetic structure of palm assemblages in this region. We found a strong relationship of alpha-diversity and species turnover...... on phylogenetic assemblage structure. The results indicate that multiple drivers interact to determine palm diversity patterns in lowland rainforests. A major future challenge is adding the effect of plant-plant, plant-animal, and plant-pathogen interactions to the equation....

  14. Estimating the global conservation status of more than 15,000 Amazonian tree species

    DEFF Research Database (Denmark)

    ter Steege, Hans; Pitman, Nigel C. A.; Killeen, Timothy J.

    2015-01-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree ...

  15. [Relationship between antophyte foliar morphology and abiotic factors in the main rainforests of Eastern Cuba].

    Science.gov (United States)

    Quesada, Eddy Martínez

    2009-01-01

    Relationship between antophyte foliar morphology and abiotic factors in the main rainforests of Eastern Cuba. The foliar morphology of representative antophytes in four rainforest types of Eastern Cuba was studied in relation to the main abiotic factors. Although there are several leaf types in these forests, the microphyll type is the most important among endemic species in the ophiolites complex and the Montane rainforest. At the Lowland rainforest (metamorphic complex) the mesophyll leaf was the most important. Most foliar epidermis had structures normally found in mesomorphic plants, but xeromorphic and higromorphic morphologies were also present.

  16. Natural disturbance reduces disease risk in endangered rainforest frog populations.

    Science.gov (United States)

    Roznik, Elizabeth A; Sapsford, Sarah J; Pike, David A; Schwarzkopf, Lin; Alford, Ross A

    2015-08-21

    Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that increase or decrease infection prevalence and intensity in host populations. Here we show that a reduction of rainforest canopy cover caused by a severe tropical cyclone decreased the risk of endangered rainforest frogs (Litoria rheocola) becoming infected by a fungal pathogen (Batrachochytrium dendrobatidis). Reductions in canopy cover increased the temperatures and rates of evaporative water loss in frog microhabitats, which reduced B. dendrobatidis infection risk in frogs by an average of 11-28% in cyclone-damaged areas, relative to unaffected areas. Natural disturbances to the rainforest canopy can therefore provide an immediate benefit to frogs by altering the microclimate in ways that reduce infection risk. This could increase host survival and reduce the probability of epidemic disease outbreaks. For amphibian populations under immediate threat from this pathogen, targeted manipulation of canopy cover could increase the availability of warmer, drier microclimates and therefore tip the balance from host extinction to coexistence.

  17. Implications of global warming for the climate of African rainforests.

    Science.gov (United States)

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions.

  18. Temperature Response in Hardened Concrete Subjected to Tropical Rainforest Environment

    Directory of Open Access Journals (Sweden)

    E. I. Egba

    2017-06-01

    Full Text Available The objective of this paper is to characterize concrete micro-environment temperature response to the natural climate of the tropical rainforest. The peculiar warmth, high humidity, and low pressure nature of the tropical rainforest necessitated the present study. Temperature probes were inserted into concrete specimens subjected to the sheltered and unsheltered environment to measure the micro-environment temperature of the concrete, and study the hysteresis characteristics in relation to the climate temperature. Some mathematical relationships for forecasting the internal temperature of concrete in the tropical rainforest environment were proposed and tested. The proposed relationships were found reliable. It was observed that the micro-environment temperature was lower at the crest, and higher at the trough than the climate environment temperature with a temperature difference of 1-3 oC. Also, temperature response in concrete for the unsheltered micro-environment was 1.85 times faster than the response in the sheltered micro-environment. The findings of the study may be used to assist the durability assessment of concrete.

  19. Primate population densities in three nutrient-poor amazonian terra firme forests of south-eastern Colombia.

    Science.gov (United States)

    Palacios, Erwin; Peres, Carlos A

    2005-01-01

    We censused primate populations at three non-hunted 'terra firme' forests of south-eastern Colombian Amazonia. The aggregate biomass densities of diurnal primates at all sites were amongst the lowest recorded for any non-hunted forest in western Amazonia and elsewhere in the Neotropics. Densities of red howler monkeys were low, as is typical in Amazonian terra firme forests far removed from white-water rivers, and densities of woolly monkeys were 1.5-3.5 times lower than those estimated for this species in central-western Brazilian Amazonia. Densities of small to mid-sized primates except for brown capuchins (Cebus apella) and white-faced capuchins (Cebus albifrons) were similar to those of other oligotrophic Amazonian forest sites. Our results are in agreement with other studies showing that terra firme forests of lowland Amazonia typically sustain a low biomass density of primates and other mid-sized to large vertebrates. Large reserves are therefore required to assure the viability of primate populations in oligotrophic systems. Given the escalating negative impacts of human habitat disturbance and hunting in Colombian Amazonia, we urge that a baseline sampling protocol to quantify the abundance and distribution of the harvest-sensitive vertebrate fauna be established within protected areas and the large indigenous reserves so that conservation efforts can be defined and implemented.

  20. Ridges and rivers: a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis).

    Science.gov (United States)

    Lougheed, S C; Gascon, C; Jones, D A; Bogart, J P; Boag, P T

    1999-09-22

    Mitochondrial DNA cytochrome b sequence data from a dart-poison frog, Epipedobates femoralis, were used to test two hypotheses of Amazonian diversification: the riverine barrier and the ridge hypotheses. Samples were derived from sites located on both banks of the Rio Juruá and on both sides of the Iquitos Arch in western Amazonia. The phylogeographic structure was inconsistent with predictions of the riverine barrier hypothesis. Haplotypes from opposite river banks did not form monophyletic clades in any of our phylogenetic analyses, nor was the topology within major clades consistent with the riverine hypothesis. Further, the greatest differentiation between paired sites on opposite banks was not at the river mouth where the strongest barrier to gene flow was predicted to occur. The results instead were consistent with the hypothesis that ancient ridges (arches), no longer evident on the landscape, have shaped the phylogeographic relationships of Amazonian taxa. Two robustly supported clades map onto opposite sides of the Iquitos Arch. The mean haplotypic divergence between the two clades, in excess of 12%, suggests that this cladogenic event dates to between five and 15 million years ago. These estimates span a period of major orogenesis in western South America and presumably the formation of these ancient ridges.

  1. Evidence for ecological divergence across a mosaic of soil types in an Amazonian tropical tree: Protium subserratum (Burseraceae).

    Science.gov (United States)

    Misiewicz, Tracy M; Fine, Paul V A

    2014-05-01

    Soil heterogeneity is an important driver of divergent natural selection in plants. Neotropical forests have the highest tree diversity on earth, and frequently, soil specialist congeners are distributed parapatrically. While the role of edaphic heterogeneity in the origin and maintenance of tropical tree diversity is unknown, it has been posited that natural selection across the patchwork of soils in the Amazon rainforest is important in driving and maintaining tree diversity. We examined genetic and morphological differentiation among populations of the tropical tree Protium subserratum growing parapatrically on the mosaic of white-sand, brown-sand and clay soils found throughout western Amazonia. Nuclear microsatellites and leaf morphology were used to (i) quantify the extent of phenotypic and genetic divergence across habitat types, (ii) assess the importance of natural selection vs. drift in population divergence, (iii) determine the extent of hybridization and introgression across habitat types, (iv) estimate migration rates among populations. We found significant morphological variation correlated with soil type. Higher levels of genetic differentiation and lower migration rates were observed between adjacent populations found on different soil types than between geographically distant populations on the same soil type. PST -FST comparisons indicate a role for natural selection in population divergence among soil types. A small number of hybrids were detected suggesting that gene flow among soil specialist populations may occur at low frequencies. Our results suggest that edaphic specialization has occurred multiple times in P. subserratum and that divergent natural selection across edaphic boundaries may be a general mechanism promoting and maintaining Amazonian tree diversity.

  2. Halogenated organic species over the tropical South American rainforest

    Directory of Open Access Journals (Sweden)

    S. Gebhardt

    2008-06-01

    Full Text Available Airborne measurements of the halogenated trace gases methyl chloride, methyl bromide and chloroform were conducted over the Atlantic Ocean and about 1000 km of pristine tropical rainforest in Suriname and French Guyana (3–6° N, 51–59° W in October 2005. In the boundary layer (0–1.4 km, maritime air masses, advected over the forest by southeasterly trade winds, were measured at various distances from the coast. Since the organohalogens presented here have relatively long atmospheric lifetimes (0.4–1.0 years in comparison to the advection times from the coast (1–2 days, emissions will accumulate in air traversing the rainforest. The distributions of methyl chloride, methyl bromide and chloroform were analyzed as a function of time the air spent over land and the respective relationship used to determine net fluxes from the rainforest for one week within the long dry season.

    Net fluxes from the rainforest ecosystem have been calculated for methyl chloride and chloroform as 9.5 (±3.8 2σ and 0.35 (±0.15 2σμg m-2 h−1, respectively. No significant flux was observed for methyl bromide within the limits of these measurements.

    The global budget of methyl chloride contains large uncertainties, in particular with regard to a possible source from tropical vegetation. Our measurements are used in a large-scale approach to determine the net flux from a tropical ecosystem to the planetary boundary layer. The obtained global net flux of 1.5 (±0.6 2σ Tg yr-1 for methyl chloride is at the lower end of current estimates for tropical vegetation sources, which helps to constrain the range of tropical sources and sinks (0.82 to 8.2 Tg yr-1 from tropical plants, 0.03 to 2.5 Tg yr-1 from senescent/dead leaves and a sink of 0.1 to 1.6 Tg yr-1 by soil uptake. Nevertheless, these results show that the contribution of the rainforest ecosystem is the major source in the

  3. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration.

    Science.gov (United States)

    Shoo, Luke P; Freebody, Kylie; Kanowski, John; Catterall, Carla P

    2016-02-01

    There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self-organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native tree species at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1-59 years, some structural attributes reached reference rainforest levels within 40 years, whereas wood volume and most tested components of native plant species richness (classified by species' origins, family, and ecological functions) reached less than 50% of reference rainforest values. Development of native tree and shrub richness was particularly slow among species that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many species with animal-dispersed seeds were from near-basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1-25 years in which wood volume developed more rapidly; native woody plant species richness reached values similar to reference rainforest and was better represented across all dispersal modes; and species from near-basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in species richness of vines and epiphytes and in overall resemblance to forest in species composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old-growth forest is crucially important for sustaining tropical biodiversity. © 2015 Society for Conservation Biology.

  4. Four years of ozone measurements in the Central Amazon - Absorption mechanisms and reactions within the rainforest

    Science.gov (United States)

    Wolff, Stefan; Ganzeveld, Laurens; Tsokankunku, Anywhere; Saturno, Jorge; Souza, Rodrigo; Trebs, Ivonne; Sörgel, Matthias

    2017-04-01

    The ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W) is located in the remote Amazon rainforest, allowing atmospheric and forest studies away from nearby anthropogenic emission sources. Starting with continuous measurements of vertical mixing ratio profiles of H2O, CO2 and O3 in April 2012 at 8 heights between 0.05 m and 80 m above ground, the longest continuous record of near surface O3 in the Amazon rainforest was established. Black carbon (BC), CO and micrometeorological measurements are available for the same period. During intensive campaigns, NOx was measured as well using the same profile system, and therefore several month of parallel NOx measurements are available. This data allows the analyses of diverse patterns regarding emission, deposition, turbulence and chemical reactions of trace gases within and above the rainforest for several rainy and dry seasons. The remote Amazon generally serves as a sink for O3 which is mainly deposited to the canopy. The deposition depends to a large extent on the aperture of the leaf stomata, which is correlated to temperature, humidity, solar radiation and water availability. Comparing these parameters with the in-canopy and above canopy gradients of O3, considering the turbulent conditions and further chemical reactions of O3 with NOx and VOC molecules, we estimated the role of the forest for the removal of ozone from the atmosphere under different meteorological conditions. We applied the Multi-Layer Canopy Chemical Exchange Model - MLC-CHEM to support the analysis of the observed profiles of NOx and O3. Under pristine conditions, the forest soil is the major source for NO emissions, which are directly reacting with O3 molecules, affecting the O3 gradient within the sub-canopy. We have analyzed differences between model and measurements in sub-canopy NO and O3 mixing ratios by the application of different NO soil emission scenarios and by the performance of several sensitivity analyses to

  5. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    Science.gov (United States)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  6. Medicinal Bioprospecting of the Amazon Rainforest: A Modern Eldorado?

    Science.gov (United States)

    Skirycz, Aleksandra; Kierszniowska, Sylwia; Méret, Michaël; Willmitzer, Lothar; Tzotzos, George

    2016-10-01

    Ignorant of the New World, Europeans believed in El Dorado, a hidden city of immense wealth in gold. Many consider the Amazonian forest to be a medicinal treasure chest and potentially the largest drug dispensary in the world. Yet, the quest to obtain drugs from indigenous tropical plants remains elusive. Here, we assess the potential of new technologies to tap into the metabolic diversity of tropical plants. We also consider how regulations affect access to plant resources. We conclude that, although the road to this medicinal El Dorado may be long and arduous, many other smaller but still valuable finds are hidden along the way.

  7. Fire-free land use in pre-1492 Amazonian savannas.

    Science.gov (United States)

    Iriarte, José; Power, Mitchell J; Rostain, Stéphen; Mayle, Francis E; Jones, Huw; Watling, Jennifer; Whitney, Bronwen S; McKey, Doyle B

    2012-04-24

    The nature and scale of pre-Columbian land use and the consequences of the 1492 "Columbian Encounter" (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions.

  8. Environmental change and the carbon balance of Amazonian forests.

    Science.gov (United States)

    Aragão, Luiz E O C; Poulter, Benjamin; Barlow, Jos B; Anderson, Liana O; Malhi, Yadvinder; Saatchi, Sassan; Phillips, Oliver L; Gloor, Emanuel

    2014-11-01

    Extreme climatic events and land-use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990s mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990s and early 2000s to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) Pg C year(-1) in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land-use change for 2008, can be negated or reversed during drought years [NBP = -0.06 (-0.31 to +0.01) Pg C year(-1) ]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land-use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical

  9. Large-scale degradation of Amazonian freshwater ecosystems

    Science.gov (United States)

    Castello, L.; Macedo, M.

    2016-12-01

    The integrity of freshwater ecosystems depends on their hydrological connectivity with land, water, and climate systems. Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. However, the hydrological connectivity of Amazonian freshwater ecosystems is increasingly disrupted by construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation; evaluates their impacts on hydrological connectivity; and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 155 large hydroelectric dams in operation, 21 dams under construction, and there will be only three free-flowing tributaries if all 277 planned dams for the Basin are built. Land-cover changes driven by mining, dam and road construction, and agriculture and cattle ranching have already affected 20% of the Basin and up to 50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g. droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and do not consider the hydrological connectivity of freshwater

  10. Modified Whittaker plots as an assessment and monitoring tool for vegetation in a lowland tropical rainforest.

    Science.gov (United States)

    Campbell, Patrick; Comiskey, James; Alonso, Alfonso; Dallmeier, Francisco; Nuñez, Percy; Beltran, Hamilton; Baldeon, Severo; Nauray, William; de la Colina, Rafael; Acurio, Lucero; Udvardy, Shana

    2002-05-01

    Resource exploitation in lowland tropical forests is increasing and causing loss of biodiversity. Effective evaluation and management of the impacts of development on tropical forests requires appropriate assessment and monitoring tools. We propose the use of 0.1-ha multi-scale, modified Whittaker plots (MWPs) to assess and monitor vegetation in lowland tropical rainforests. We established MWPs at 4 sites to: (1) describe and compare composition and structure of the sites using MWPs, (2) compare these results to those of 1-ha permanent vegetation plots (BDPs), and (3) evaluate the ability of MWPs to detect changes in populations (statistical power). We recorded more than 400 species at each site. Species composition among the sites was distinctive, while mean abundance and basal area was similar. Comparisons between MWPs and BDPs show that they record similar species composition and abundance and that both perform equally well at detecting rare species. However, MWPs tend to record more species, and power analysis studies show that MWPs were more effective at detecting changes in the mean number of species of trees > or = 10 cm in diameter at breast height (dbh) and in herbaceous plants. Ten MWPs were sufficient to detect a change of 11% in the mean number of herb species, and they were able to detect a 14% change in the mean number of species of trees > or =10 cm dbh. The value of MWPs for assessment and monitoring is discussed, along with recommendations for improving the sampling design to increase power.

  11. Late Miocene Tidal Deposits in the Amazonian Foreland Basin

    Science.gov (United States)

    Rasanen, Matti E.; Linna, Ari M.; Santos, Jose C. R.; Negri, Francisco R.

    1995-07-01

    Late Miocene tidal sediments of Acre, Brazilian Amazonia, were deposited in an embayment or interior seaway located in the sub-Andean zone. This late Tertiary embayment system may once have connected the Caribbean with the South Atlantic. The tidal coasts of the embayment-seaway have provided an avenue for the earliest waif (over water) dispersal phases of the great American biotic interchange in the late Miocene. The subsequent change from semimarine to terrestrial environments is of value in assessing the importance of earlier hypotheses on the evolution of the western Amazonian landscape and gives insight into the formation of several observed biogeographic patterns, especially of aquatic biota.

  12. Studies on the pharmacological activity of Amazonian Euphorbiaceae.

    Science.gov (United States)

    Macrae, W D; Hudson, J B; Towers, G H

    1988-01-01

    Plant material from 34 Amazonian species of the family Euphorbiaceae were collected and extracts prepared. Sixteen of these species have a documented use as a medicinal agent. The extracts were tested for their ability to inhibit the growth of the bacteria, Escherichia coli and Staphylococcus aureus; the yeasts, Saccharomyces cerevisiae and Candida albicans; the dermatophytic fungi, Microsporum canis, Microsporum fulvum, Microsporum gypseum and Trichophyton gallinae; the viruses, Sindbis virus and murine cytomegalovirus; and tumours induced on potato discs by Agrobacterium tumefaciens. They were also examined for their toxicity to brine shrimp, Artemia salina. The results are discussed with respect to ethnobotanical information available for some of the species.

  13. Tropical Rainforests: A Case Study of UK, 13-Year-Olds' Knowledge and Understanding of These Environments

    Science.gov (United States)

    Dove, Jane

    2012-01-01

    Tropical rainforests are biologically rich ecosystems, which are threatened by a variety of different human activities. This study focuses on students' knowledge and understanding of rainforest locations, their reasons for protecting these environments and their familiarity with selected concepts about rainforest vegetation and soil. These…

  14.  Climate change may trigger broad shifts in North America's Pacific Coastal rainforests

    Science.gov (United States)

    Dominick A. DellaSala; Patric Brandt; Marni   Koopman; Jessica Leonard; Claude Meisch; Patrick Herzog; Paul Alaback; Michael I. Goldstein; Sarah Jovan; Andy MacKinnon; Henrik von Wehrden

    2015-01-01

    Climate change poses significant threats to Pacific coastal rainforests of North America. Land managers currently lack a coordinated climate change adaptation approach with which to prepare the region's globally outstanding biodiversity for accelerating change. We provided analyses intended to inform coordinated adaptation for eight focal rainforest tree species...

  15. Biodiversity and Peace: Where Technology and Montessori Come Together in the Children's Eternal Rainforest, Costa Rica

    Science.gov (United States)

    Norris, Jeff

    2016-01-01

    Jeff Norris, initially shocked by the Montessorians who are calling technology into question, states that technology can offer a means of development for the child who is concurrently supporting and learning from the rich and overpowering biodiversity of the rainforest. He speaks for the Children's Eternal Rainforest citizen's science as well as…

  16. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Directory of Open Access Journals (Sweden)

    Troy Patrick Beldini

    2015-11-01

    Full Text Available Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest. Increases in soil bulk density, exchangeable cations and pH were observed in the soy field soil. In the primary forest, soil microbial biomass and basal respiration rates were higher, and the microbial community was metabolically more efficient. The sum of basal respiration across the A, AB and BA horizons on a mass per area basis ranged from 7.31 to 10.05 Mg CO2-C ha-1yr-1, thus yielding estimates for total soil respiration between 9.6 and 15.5 Mg CO2-C ha-1yr-1 across sites and seasons. These estimates are in good agreement with literature values for Amazonian ecosystems. The estimates of heterotrophic respiration made in this study help to further constrain the estimates of autotrophic soil respiration and will be useful for monitoring the effects of future land-use in Amazonian ecosystems.

  17. AMAZON RAINFOREST COSMETICS: CHEMICAL APPROACH FOR QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    Mariko Funasaki

    2016-02-01

    Full Text Available The market for natural cosmetics featuring ingredients derived from Amazon natural resources is growing worldwide. However, there is neither enough scientific basis nor quality control of these ingredients. This paper is an account of the chemical constituents and their biological activities of fourteen Amazonian species used in cosmetic industry, including açaí (Euterpe oleracea, andiroba (Carapa guianensis, bacuri (Platonia insignis, Brazil nut (Bertholletia excelsa, buriti (Mauritia vinifera or M. flexuosa, cumaru (Dipteryx odorata, cupuaçu (Theobroma grandiflorum, guarana (Paullinia cupana, mulateiro (Calycophyllum spruceanum, murumuru (Astrocaryum murumuru, patawa (Oenocarpus bataua or Jessenia bataua, pracaxi (Pentaclethra macroloba, rosewood (Aniba rosaeodora, and ucuuba (Virola sebifera. Based on the reviewed articles, we selected chemical markers for the quality control purpose and evaluated analytical methods. Even though chromatographic and spectroscopic methods are major analytical techniques in the studies of these species, molecular approaches will also be important as used in food and medicine traceability. Only a little phytochemical study is available about most of the Amazonian species and some species such as açaí and andiroba have many reports on chemical constituents, but studies on biological activities of isolated compounds and sampling with geographical variation are limited.

  18. Unveiling the diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study.

    Directory of Open Access Journals (Sweden)

    Fabrice Hibert

    Full Text Available Characterizing the trophic relationships between large herbivores and the outstanding plant diversity in rainforest is a major challenge because of their elusiveness. This is crucial to understand the role of these herbivores in the functioning of the rainforest ecosystems. We tested a non-invasive approach based on the high-throughput sequencing of environmental samples using small plant plastid sequences (the trnL P6 loop and ribosomal ITS1 primers, referred to as DNA metabarcoding, to investigate the diet of the largest neotropical herbivore, the lowland tapir. Sequencing was performed on plant DNA extracted from tapir faeces collected at the Nouragues station, a protected area of French Guiana. In spite of a limited sampling, our approach reliably provided information about the lowland tapir's diet at this site. Indeed, 95.1% and 74.4% of the plant families and genera identified thanks to the trnL P6 loop, respectively, matched with taxa already known to be consumed by tapirs. With this approach we were able to show that two families and eight new genera are also consumed by the lowland tapir. The taxonomic resolution of this method is limited to the plant family and genera. Complementary barcodes, such as a small portion of ITS1, can be used to efficiently narrow identifications down to the species in some problematic families. We will discuss the remaining limitations of this approach and how useful it is at this stage to unravel the diet of elusive rainforest herbivores and better understand their role as engineers of the ecosystem.

  19. Amazonian indigenous settlement and local development in Pastaza, Ecuador

    Directory of Open Access Journals (Sweden)

    Ruth I. Arias-Gutiérrez

    2016-07-01

    Full Text Available In six Amazonian indigenous communities that call to their selves as membership of nación Kichwa, located in Pastaza province, in Ecuador, it is analyzed the process of inhabitation, population characteristics, how much the territory is enough for food requirements for the indigenous families, and their use of land, to determine important factors to improve strategies for local sustainable development. It is considered important because Ecuador has constitutional protection for plural ethnicity and it is looking for improving a new productivity matrix that let down extraction and contamination and raise another matrix based on knowledge and richness from natural renewable resources. Survey used statistics information, qualitative analysis around reality in process, participant research, documentary analysis, oral history and surveys to leadership and family`s chiefs. Results confirm that communities hold standing their identity and knowledge systems of the Amazonian environment, whose conservation they need. Those are factors to be included in local development strategies that let people become safe from effects of extractives activities that are dangerous for culture and environment, in the geographic and biological diversity of the high Ecuadorian Amazonia.

  20. HLA genes in Lamas Peruvian-Amazonian Amerindians.

    Science.gov (United States)

    Moscoso, Juan; Seclen, Segundo; Serrano-Vela, Juan I; Villena, A; Martinez-Laso, Jorge; Zamora, Jorge; Moreno, Almudena; Ira-Cachafeiro, Juan; Arnaiz-Villena, Antonio

    2006-04-01

    The Lamas Amerindians are the Chancas descents who established before 1532 a.d. (Spanish conquest) at Lamas City, Wayku quarter in a Peruvian-Amazonian province (San Martin). The Lamas HLA profile shows significant differences with other Amerindians HLA profile, i.e.: (a) a higher number of newly found haplotypes compared to other studied Amerindian populations, particularly HLA-A*02-B*48-DRB1*0403-DQB1*0302, A*02-B*48-DRB1*0804-DQB1*0402 and A*02-B*40-DRB1*0407-DQB1*0302; (b) a relative high frequency of HLA-DRB1*0901 (a high frequency southern Asian allele) and HLA-B*48 (a Na-Dene, Siberian and Eskimo allele); both alleles are also found frequently in Quechuas and Aymaras, but not in many other (particularly Meso American) Amerindians and (c) correspondence and neighbor-joining dendrogram analyses show that Lamas (Chancas) may have an origin close to Amazonian Indians that later reached the Andean altiplano.

  1. A free-access online key to identify Amazonian ferns

    Directory of Open Access Journals (Sweden)

    Gabriela Zuquim

    2017-03-01

    Full Text Available There is urgent need for more data on species distributions in order to improve conservation planning. A crucial but challenging aspect of producing high-quality data is the correct identification of organisms. Traditional printed floras and dichotomous keys are difficult to use for someone not familiar with the technical jargon. In poorly known areas, such as Amazonia, they also become quickly outdated as new species are described or ranges extended. Recently, online tools have allowed developing dynamic, interactive, and accessible keys that make species identification possible for a broader public. In order to facilitate identifying plants collected in field inventories, we developed an internet-based free-access tool to identify Amazonian fern species. We focused on ferns, because they are easy to collect and their edaphic affinities are relatively well known, so they can be used as an indicator group for habitat mapping. Our key includes 302 terrestrial and aquatic entities mainly from lowland Amazonian forests. It is a free-access key, so the user can freely choose which morphological features to use and in which order to assess them. All taxa are richly illustrated, so specimens can be identified by a combination of character choices, visual comparison, and written descriptions. The identification tool was developed in Lucid 3.5 software and it is available at http://keyserver.lucidcentral.org:8080/sandbox/keys.jsp.

  2. Amazonian Buriti oil: chemical characterization and antioxidant potential

    Energy Technology Data Exchange (ETDEWEB)

    Speranza, P.; Oliveira Falcao, A. de; Alves Macedo, J.; Silva, L.H.M. da; Rodrigues, A.M. da C.; Alves Macedo, G.

    2016-07-01

    Buriti oil is an example of an Amazonian palm oil of economic importance. The local population uses this oil for the prevention and treatment of different diseases; however, there are few studies in the literature that evaluate its properties. In this study, detailed chemical and antioxidant properties of Buriti oil were determined. The predominant fatty acid was oleic acid (65.6%) and the main triacylglycerol classes were tri-unsaturated (50.0%) and di-unsaturated-mono-saturated(39.3%) triacylglycerols. The positional distribution of the classes of fatty acids on the triacylglycerol backbone indicated a saturated and unsaturated fatty acid relationship similar in the three-triacylglycerol positions. All tocopherol isomers were present, with a total content of 2364.1 mg·kg−1. α-tocopherol constitutes 48% of the total tocopherol content, followed by γ- tocopherol (45%). Total phenolic (107.0 mg gallic acid equivalent·g−1 oil) and β-carotene (781.6 mg·kg−1) were particularly high in this oil. The highest antioxidant activity against the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) was obtained at an oil concentration of 50 mg·mL−1 (73.15%). The antioxidant activity evaluated by the Oxygen Radical Absorbance Capacity (ORAC) was 95.3 μmol Trolox equivalent·g−1 oil. These results serve to present Buriti oil as an Amazonian resource for cosmetic, food and pharmaceuticals purposes. (Author)

  3. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest.

    Science.gov (United States)

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D; Magnusson, William E

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone.

  4. Virus-bacterium coupling driven by both turbidity and hydrodynamics in an Amazonian floodplain lake.

    Science.gov (United States)

    Barros, Nathan; Farjalla, Vinicius F; Soares, Maria C; Melo, Rossana C N; Roland, Fábio

    2010-11-01

    The importance of viruses in aquatic ecosystem functioning has been widely described. However, few studies have examined tropical aquatic ecosystems. Here, we evaluated for the first time viruses and their relationship with other planktonic communities in an Amazonian freshwater ecosystem. Coupling between viruses and bacteria was studied, focusing both on hydrologic dynamics and anthropogenic forced turbidity in the system (Lake Batata). Samples were taken during four hydrologic seasons at both natural and impacted sites to count virus-like particles (VLP) and bacteria. In parallel, virus-infected bacteria were identified and quantified by transmission electron microscopy (TEM). Viral abundance ranged from 0.5 × 10⁷ ± 0.2 × 10⁷ VLP ml⁻¹ (high-water season, impacted site) to 1.7 × 10⁷ ± 0.4 × 10⁷ VLP ml⁻¹ (low-water season, natural site). These data were strongly correlated with the bacterial abundance (r² = 0.84; P < 0.05), which ranged from 1.0 × 10⁶ ± 0.5 × 10⁶ cells ml⁻¹ (high water, impacted site) to 3.4 × 10⁶ ± 0.7 × 10⁶ cells ml⁻¹ (low water, natural site). Moreover, the viral abundance was weakly correlated with chlorophyll a, suggesting that most viruses were bacteriophages. TEM quantitative analyses revealed that the frequency of visibly infected cells was 20%, with 10 ± 3 phages per cell section. In general, we found a low virus-bacterium ratio (<7). Both the close coupling between the viral and bacterial abundances and the low virus-bacterium ratio suggest that viral abundance tends to be driven by the reduction of hosts for viral infection. Our results demonstrate that viruses are controlled by biological substrates, whereas in addition to grazing, bacteria are regulated by physical processes caused by turbidity, which affect underwater light distribution and dissolved organic carbon availability.

  5. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms.

    Science.gov (United States)

    Halsey, Joshua Andrew; de Cássia Pereira E Silva, Michele; Andreote, Fernando Dini

    2016-10-01

    This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment.

  6. Cloudiness over the Amazon rainforest: Meteorology and thermodynamics

    Science.gov (United States)

    Collow, Allison B. Marquardt; Miller, Mark A.; Trabachino, Lynne C.

    2016-07-01

    Comprehensive meteorological observations collected during GOAmazon2014/15 using the Atmospheric Radiation Measurement Mobile Facility no. 1 and assimilated observations from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 are used to document the seasonal cycle of cloudiness, thermodynamics, and precipitation above the Amazon rainforest. The reversal of synoptic-scale vertical motions modulates the transition between the wet and dry seasons. Ascending moist air during the wet season originates near the surface of the Atlantic Ocean and is advected into the Amazon rainforest, where it experiences convergence and, ultimately, precipitates. The dry season is characterized by weaker winds and synoptic-scale subsidence with little or no moisture convergence accompanying moisture advection. This combination results in the drying of the midtroposphere during June through October as indicated by a decrease in liquid water path, integrated water, and the vertical profile of water vapor mixing ratio. The vertical profile of cloud fraction exhibits a relatively consistent decline in cloud fraction from the lifting condensation level (LCL) to the freezing level where a minimum is observed, unlike many other tropical regions. Coefficients of determination between the LCL and cloud fractional coverage suggest a relatively robust relationship between the LCL and cloudiness beneath 5 km during the dry season (R2 = 0.42) but a weak relationship during the wet season (0.12).

  7. Climate change in Australian tropical rainforests: an impending environmental catastrophe.

    Science.gov (United States)

    Williams, Stephen E; Bolitho, Elizabeth E; Fox, Samantha

    2003-09-22

    It is now widely accepted that global climate change is affecting many ecosystems around the globe and that its impact is increasing rapidly. Many studies predict that impacts will consist largely of shifts in latitudinal and altitudinal distributions. However, we demonstrate that the impacts of global climate change in the tropical rainforests of northeastern Australia have the potential to result in many extinctions. We develop bioclimatic models of spatial distribution for the regionally endemic rainforest vertebrates and use these models to predict the effects of climate warming on species distributions. Increasing temperature is predicted to result in significant reduction or complete loss of the core environment of all regionally endemic vertebrates. Extinction rates caused by the complete loss of core environments are likely to be severe, nonlinear, with losses increasing rapidly beyond an increase of 2 degrees C, and compounded by other climate-related impacts. Mountain ecosystems around the world, such as the Australian Wet Tropics bioregion, are very diverse, often with high levels of restricted endemism, and are therefore important areas of biodiversity. The results presented here suggest that these systems are severely threatened by climate change.

  8. Draft Genome Sequence of Microcystis aeruginosa CACIAM 03, a Cyanobacterium Isolated from an Amazonian Freshwater Environment

    Science.gov (United States)

    Castro, Wendel Oliveira; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Aguiar, Délia Cristina Figueira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Fuzii, Hellen Thais; de Lima, Clayton Pereira Silva; Vianez-Júnior, João Lídio Silva Gonçalves; Nunes, Márcio Roberto Teixeira; Dall'Agnol, Leonardo Teixeira

    2016-01-01

    Given its toxigenic potential, Microcystis aeruginosa is an important bloom-forming cyanobacterium. Here, we present a draft genome and annotation of the strain CACIAM 03, which was isolated from an Amazonian freshwater environment. PMID:27856592

  9. Unihemispheric slow-wave sleep in the Amazonian dolphin, Inia geoffrensis.

    Science.gov (United States)

    Mukhametov, L M

    1987-08-18

    An electroencephalographic study of sleep in Amazonian dolphins, Inia geoffrensis, revealed that unihemispheric slow-wave sleep is the dominant sleep type in this species, as in the other two dolphin species that were studied earlier.

  10. C dynamics in Amazonian podzols under climate change

    Science.gov (United States)

    Nunan, Naoise; Soro, Andre; Potard, Kevin; Pouteau, Valerie; Montes, Celia; Melphi, Adolpho; Lucas, Yves; Chenu, Claire

    2016-04-01

    It has recently been shown that the C stocks in Amazonian podzols are very large. They are much larger than was previously thought, particularly in the Bh horizon, which has been estimated to contain in excess of 13Pg C for Amazonia alone. It is predicted that the changes in regional climate will result in a drier soil water regime which may affect the C dynamics in these soils that are usually saturated. In order to determine the vulnerability to change of the organic C contained in the Amazonian podzols, a series of incubation experiments were established in which the effects of a number of different factors on microbial decomposition were measured. The direct effect of drier soil water regimes was tested by incubating undisturbed cores from the Bh horizon at a range of matric potentials (saturation to wilting point). Contrary to what is usually found in soils, no significant difference in mineralisation was found among matric potentials, suggesting that other factors control microbial mineralisation of this organic C. The effect of nitrogen additions, of anaerobic conditions and of the addition labile C substrate were also tested on undisturbed cores of the Bh horizon of the podzols. Samples incubated under aerobic conditions produced 3 times more CO2 than samples incubated under anaerobic conditions, whilst samples incubated under aerobic conditions with the addition of N mineralised 6.7 times more CO2 than the anaerobic samples. The addition of labile C did not have a significant effect on C mineralisation, i.e. there was no priming effect. The combined addition of labile C and mineral N did not stimulate C mineralisation more than N additions alone. By extrapolating the differences obtained here to the whole of the Amazonian podzols, it is estimated that changes in conditions which result in an increase in O2 and in N (i.e. changes in vegetation due to increases in dry periods with the establishment of a savanna for example) in the soil will cause the release

  11. Estimating the global conservation status of more than 15,000 Amazonian tree species

    DEFF Research Database (Denmark)

    ter Steege, Hans; Pitman, Nigel C. A.; Killeen, Timothy J.

    2015-01-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree...... degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century....

  12. Estimating the global conservation status of more than 15,000 Amazonian tree species

    OpenAIRE

    ter Steege, Hans; Nigel C.A. Pitman; Killeen, Timothy J; Laurance, William F.; Peres, Carlos A.; Guevara, Juan Ernesto; Salomão, Rafael P; Castilho, Carolina V; Amaral, Ieda; de Almeida Matos, Francisca Dionízia; de Souza Coelho, Luiz; Magnusson, William E.; Phillips, Oliver L.; de Andrade Lima Filho, Diogenes; de Jesus Veiga Carim, Marcelo

    2015-01-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened ...

  13. Morphology, morphometry and ultrastructure of the Amazonian manatee (Sirenia: Trichechidae) spermatozoa

    OpenAIRE

    Amaral,Rodrigo S.; LUCCI, Carolina M.; Fernando C.W. Rosas; Vera M. F. da Silva; Báo,Sônia N.

    2010-01-01

    This study describes the morphological, morphometric and ultrastructural characteristics of the Amazonian manatee Trichechus inunguis (Natterer, 1883) spermatozoon. The spermatozoa were obtained from a urine sample of an adult T. inunguis kept in captivity. The spermatozoa were analyzed by light and transmission electron microscopy. The head of Amazonian manatee spermatozoa had a flat oval shape and a well distinguishable midpiece. The mean dimensions of the spermatozoa were: head length, 7.4...

  14. Soil biogeochemical and fungal patterns across a precipitation gradient in the lowland tropical rainforests of French Guiana

    Science.gov (United States)

    Soong, J.; Verbruggen, E.; Janssens, I.

    2016-12-01

    The Guyafor network contains over 12 pristine tropical rainforest long-term research sites throughout French Guiana, with a focus on vegetation and environmental monitoring at regular intervals. However, biogeochemical and belowground insights are needed to complete the picture of ecosystem functioning in these lowland tropical rainforests, which are critical to Earth's water and energy balance. Improving our biogeochemical understanding of these ecosystems is needed to improve Earth System Models, which poorly represent tropical systems. In July 2015 we sampled soils and litter from 12 of the Guyafor permanent plots in French Guiana spanning a mean annual precipitation gradient of over 2000 mm per year. We measured soil texture, pH, C, N and available P stocks in the top 30 cm, and fungal biodiversity using ITS DNA sequencing and characterized soil organic matter (SOM) C, N and P distribution among physically defined SOM fractions. We also measured litter layer standing stocks and CNP stoichiometry. We found significant stocks of SOM in the top 30 cm of the soil varying by a factor of 4 in the top 30 cm of soil with a negative correlation of arbuscular mycorrhizal fungi and soil C and N with available P. Available P was also a strong predictor of fungal community composition. Furthermore there is evidence for precipitation and mineralogical influences on leaf litter and SOM dynamics highlighting the importance of heterogeneity in tropical soil substrates and sub-climates in better understanding the biogeochemistry of tropical ecosystems.

  15. Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3

    Directory of Open Access Journals (Sweden)

    M. Irwin

    2011-11-01

    Full Text Available The influence of the properties of fine particles on the formation of clouds and precipitation in the tropical atmosphere is of primary importance to their impacts on radiative forcing and the hydrological cycle. Measurements of aerosol number size distribution, hygroscopicity in both sub- and supersaturated regimes and composition were taken between March and July 2008 in the tropical rainforest in Borneo, Malaysia, marking the first study of this type in an Asian tropical rainforest. Hygroscopic growth factors (GF at 90 % relative humidity (RH for the dry diameter range D0 = 32–258 nm, supersaturated water uptake behaviour for the dry diameter range D0 = 45–300 nm and aerosol chemical composition were simultaneously measured using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA, a Droplet Measurement Technologies Cloud Condensation Nuclei counter (CCNc and an Aerodyne Aerosol Mass Spectrometer (AMS respectively.

    The hygroscopicity parameter κ was derived from both CCNc and HTDMA measurements, with the resulting values of κ ranging from 0.05–0.37, and 0.17–0.37, respectively. Although the total range of κ values is in good agreement, there are inconsistencies between CCNc and HTDMA derived κ values at different dry diameters. Results from a study with similar methodology performed in the Amazon rainforest report values for κ within a similar range to those reported in this work, indicating that the aerosol as measured from both sites shows similar hygroscopic properties. However, the derived number of cloud condensation nuclei (NCCN were much higher in the present experiment than the Amazon, resulting in part from the increased total particle number concentrations observed in the Bornean rainforest. This contrast between the two environments may be of substantial importance in describing the impacts of particles in the tropical atmosphere.

  16. Dynamics of bacterial communities in soils of rainforest fragments under restoration processes

    Science.gov (United States)

    Vasconcellos, Rafael; Zucchi, Tiago; Taketani, Rodrigo; Andreote, Fernando; Cardoso, Elke

    2014-05-01

    The Brazilian Atlantic Forest ("Mata Atlântica") has been largely studied due to its valuable and unique biodiversity. Unfortunately, this priceless ecosystem has been widely deforested and only 10% of its original area still remains. Many projects have been successfully implemented to restore its fauna and flora but there is a lack of information on how the soil bacterial communities respond to this process. Thus, our aim was to evaluate the influence of soil attributes and seasonality on soil bacterial communities of rainforest fragments under restoration processes. Soil samples from a native site and two ongoing restoration fragments with different ages of implementation (10 and 20 years) were collected and assayed by using culture-independent approaches. Our findings demonstrate that seasonality barely altered the bacterial distribution whereas soil chemical attributes and plant diversity highly influenced the bacterial community structure during the restoration process. Moreover, the strict relationship observed for two bacterial groups, Solibacteriaceae and Verrucomicrobia, one with the youngest (10 years) and the other with the oldest (native) site suggests their use as bioindicators of soil quality and soil recovery of forest fragments under restoration.

  17. The impact of edge effect on termite community (Blattodea: Isoptera in fragments of Brazilian Atlantic Rainforest

    Directory of Open Access Journals (Sweden)

    C. S. Almeida

    Full Text Available Abstract Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m, while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting.

  18. The impact of edge effect on termite community (Blattodea: Isoptera) in fragments of Brazilian Atlantic Rainforest.

    Science.gov (United States)

    Almeida, C S; Cristaldo, P F; Florencio, D F; Ribeiro, E J M; Cruz, N G; Silva, E A; Costa, D A; Araújo, A P A

    2016-09-26

    Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m), while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m) at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass) did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting).

  19. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    Science.gov (United States)

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest.

  20. A marvelous new glassfrog (Centrolenidae, Hyalinobatrachium) from Amazonian Ecuador

    Science.gov (United States)

    Guayasamin, Juan M.; Cisneros-Heredia, Diego F.; Maynard, Ross J.; Lynch, Ryan L.; Culebras, Jaime; Hamilton, Paul S.

    2017-01-01

    Abstract Hyalinobatrachium is a behaviorally and morphologically conserved genus of Neotropical anurans, with several pending taxonomic problems. Using morphology, vocalizations, and DNA, a new species from the Amazonian lowlands of Ecuador is described and illustrated. The new species, Hyalinobatrachium yaku sp. n., is differentiated from all other congenerics by having small, middorsal, dark green spots on the head and dorsum, a transparent pericardium, and a tonal call that lasts 0.27–0.4 s, with a dominant frequency of 5219.3–5329.6 Hz. Also, a mitochondrial phylogeny for the genus is presented that contains the new species, which is inferred as sister to H. pellucidum. Conservation threats to H. yaku sp. n. include habitat destruction and/or pollution mainly because of oil and mining activities. PMID:28769670

  1. A marvelous new glassfrog (Centrolenidae, Hyalinobatrachium from Amazonian Ecuador

    Directory of Open Access Journals (Sweden)

    Juan M. Guayasamin

    2017-05-01

    Full Text Available Hyalinobatrachium is a behaviorally and morphologically conserved genus of Neotropical anurans, with several pending taxonomic problems. Using morphology, vocalizations, and DNA, a new species from the Amazonian lowlands of Ecuador is described and illustrated. The new species, Hyalinobatrachium yaku sp. n., is differentiated from all other congenerics by having small, middorsal, dark green spots on the head and dorsum, a transparent pericardium, and a tonal call that lasts 0.27–0.4 s, with a dominant frequency of 5219.3–5329.6 Hz. Also, a mitochondrial phylogeny for the genus is presented that contains the new species, which is inferred as sister to H. pellucidum. Conservation threats to H. yaku sp. n. include habitat destruction and/or pollution mainly because of oil and mining activities.

  2. Fast demographic traits promote high diversification rates of Amazonian trees

    Science.gov (United States)

    Baker, Timothy R; Pennington, R Toby; Magallon, Susana; Gloor, Emanuel; Laurance, William F; Alexiades, Miguel; Alvarez, Esteban; Araujo, Alejandro; Arets, Eric J M M; Aymard, Gerardo; de Oliveira, Atila Alves; Amaral, Iêda; Arroyo, Luzmila; Bonal, Damien; Brienen, Roel J W; Chave, Jerome; Dexter, Kyle G; Di Fiore, Anthony; Eler, Eduardo; Feldpausch, Ted R; Ferreira, Leandro; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje; Higuchi, Niro; Honorio, Eurídice; Huamantupa, Isau; Killeen, Tim J; Laurance, Susan; Leaño, Claudio; Lewis, Simon L; Malhi, Yadvinder; Marimon, Beatriz Schwantes; Marimon Junior, Ben Hur; Monteagudo Mendoza, Abel; Neill, David; Peñuela-Mora, Maria Cristina; Pitman, Nigel; Prieto, Adriana; Quesada, Carlos A; Ramírez, Fredy; Ramírez Angulo, Hirma; Rudas, Agustin; Ruschel, Ademir R; Salomão, Rafael P; de Andrade, Ana Segalin; Silva, J Natalino M; Silveira, Marcos; Simon, Marcelo F; Spironello, Wilson; ter Steege, Hans; Terborgh, John; Toledo, Marisol; Torres-Lezama, Armando; Vasquez, Rodolfo; Vieira, Ima Célia Guimarães; Vilanova, Emilio; Vos, Vincent A; Phillips, Oliver L; Wiens, John

    2014-01-01

    The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits – short turnover times – are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests. PMID:24589190

  3. Lipase Activity among Bacteria Isolated from Amazonian Soils

    Directory of Open Access Journals (Sweden)

    André Luis Willerding

    2011-01-01

    Full Text Available The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41% lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C. The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP. A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation.

  4. Emplacement and deformation of the A-type Madeira granite (Amazonian Craton, Brazil)

    Science.gov (United States)

    Siachoque, Astrid; Salazar, Carlos Alejandro; Trindade, Ricardo

    2017-04-01

    The Madeira granite is one of the Paleoproterozoic (1.82 Ga) A-type granite intrusions in the Amazonian Craton. It is elongated in the NE-SW direction and is composed of four facies. Classical structural techniques and the anisotropy of magnetic susceptibility (AMS) method were applied to the study of its internal fabric. Magnetic susceptibility measurements, thermomagnetic curves, remanent coercivity spectra, optical microscopy and SEM (scanning electron microscopy) analyses were carried out on the earlier and later facies of the Madeira granite: the rapakivi granite (RG) and the albite granite (AG) respectively. The last one is subdivided into the border albite granite (BAG) and the core albite granite (CAG) subfacies. AMS fabric pattern is controlled by pure magnetite in all facies, despite significant amounts of hematite in the BAG subfacies. Microstructural observations show that in almost all sites, magnetic fabric correlates to magmatic state fabrics that are defined by a weak NE-SW orientation of mafic and felsic silicates. However, strain mechanisms in both subfacies of AG also exhibit evidence for solid-state deformation at high to moderate temperatures. Pegmatite dyke, strike slip fault (SFA-B-C), hydrothermal vein, normal fault (F1-2) and joint (J) structures were observed and their orientation and kinematics is consistent with the magmatic and solid-state structures. Dykes, SFA-C and F1, are usually orientated along the N70°E/40°N plane, which is nearly parallel to the strike of AMS and magmatic foliations. In contrast, veins, SFB, F2 and some J are oriented perpendicular to the N70°E trend. Kinematic analysis in these structures shows evidence for a dextral sense of movement in the system in the brittle regime. The coherent structural pattern for the three facies of Madeira granite suggests that the different facies form a nested pluton. The coherence in orientation and kinematics from magmatic to high-temperature solid-state, and into the brittle

  5. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements.

    Science.gov (United States)

    Gatti, L V; Gloor, M; Miller, J B; Doughty, C E; Malhi, Y; Domingues, L G; Basso, L S; Martinewski, A; Correia, C S C; Borges, V F; Freitas, S; Braz, R; Anderson, L O; Rocha, H; Grace, J; Phillips, O L; Lloyd, J

    2014-02-06

    Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 ± 0.18 petagrams of carbon per year (Pg C yr(-1)) during the dry year but was carbon neutral (0.06 ± 0.1 Pg C yr(-1)) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 ± 0.14 Pg C yr(-1), which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 ± 0.10 Pg C yr(-1) previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.

  6. Large-scale degradation of Amazonian freshwater ecosystems.

    Science.gov (United States)

    Castello, Leandro; Macedo, Marcia N

    2016-03-01

    Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework

  7. Avian Communities in the Amazonian Cangas Vegetation: Biogeographic Affinities, Components of Beta-Diversity and Conservation.

    Science.gov (United States)

    Borges, Sérgio H; Santos, Marcos P D; Soares, Leonardo M S; Silva, Antonita S DA

    2017-08-14

    The Amazonian cangas is a vegetation type distributed as patches of open vegetation embedded in a matrix of tropical forest and that grows over iron-rich soils in the Serra dos Carajás region. To characterize cangas avifauna, we surveyed birds in eight patches varying from 43 to 1,366 hectares. Cangas avifauna has compositional affinities with savannas widespread throughout the Amazon and other biomes, and we estimate that more than 200 bird species occurs in this habitat. Species composition was relatively homogeneous, and the similarity among cangas patches was the dominant component of the beta-diversity. Bird communities in cangas patches exhibited statistically significant nested structure in respect to species richness and patch size. In contrast, the nested site arrangement was not affected by the isolation of patches. Number of species and composition are moderately affected by the area of cangas patches but not by its degree of isolation. To conserve this unique habitat are necessary a strict protection of carefully chosen patches of cangas and an investigation of the conservation value of secondary vegetation recovered by the mining companies.

  8. Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian

    Directory of Open Access Journals (Sweden)

    LEANDRO VALLE FERREIRA

    2013-09-01

    Full Text Available The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  9. Responses of squirrel monkeys to seasonal changes in food availability in an eastern Amazonian forest.

    Science.gov (United States)

    Stone, Anita I

    2007-02-01

    Tropical forests are characterized by marked temporal and spatial variation in productivity, and many primates face foraging problems associated with seasonal shifts in fruit availability. In this study, I examined seasonal changes in diet and foraging behaviors of two groups of squirrel monkeys (Saimiri sciureus), studied for 12 months in Eastern Brazilian Amazonia, an area characterized by seasonal rainfall. Squirrel monkeys were primarily insectivorous (79% of feeding and foraging time), with fruit consumption highest during the rainy season. Although monkeys fed from 68 plant species, fruit of Attalea maripa palms accounted for 28% of annual fruit-feeding records. Dietary shifts in the dry season were correlated with a decline in ripe A. maripa fruits. Despite pronounced seasonal variation in rainfall and fruit abundance, foraging efficiency, travel time, and distance traveled remained stable between seasons. Instead, squirrel monkeys at this Eastern Amazonian site primarily dealt with the seasonal decline in fruit by showing dietary flexibility. Consumption of insects, flowers, and exudates increased during the dry season. In particular, their foraging behavior at this time strongly resembled that of tamarins (Saguinus sp.) and consisted of heavy use of seed-pod exudates and specialized foraging on large-bodied orthopterans near the forest floor. Comparisons with squirrel monkeys at other locations indicate that, across their geographic range, Saimiri use a variety of behavioral tactics during reduced periods of fruit availability.

  10. Life history and environment of Cecropia latiloba in Amazonian floodplains

    Directory of Open Access Journals (Sweden)

    Pia Parolin

    2002-06-01

    Full Text Available Cecropia latiloba can be considered to be one of the most efficient colonizers of open areas in the nutrient-rich whitewater floodplains of the Amazon river. Its main strategy to be successful is the high tolerance towards waterlogging and submergence, and the fast vertical growth and reiteration capacity. This, and the tolerance of high irradiation and sediment deposition allow C. latiloba to form large monospecific stands on open sites, and thus the first closed canopy which represents the initial phase of a successional sequence which leads to highly diverse forests. This tree is extremely well adapted to the adverse growth conditions in Amazonian floodplains with prolongued periods of flooding and seedling submergence. The species occurs on the lowest levels in the flooding gradient. Although it belongs to the most often cited species under aspects of taxonomy, species distribution and general descriptions of the ecosystem, little has been published about its ecology. In the present paper the ecological, physiological and phenological characteristics of C. latiloba are described. It is an evergreen species which constantly produces new leaves. With flooding, leaf production is reduced but new leaves are flushed also with prolongued flooding. The peak of flowering and fruiting are in the flooded period. When mature, the fruits are dispersed mainly by water and fish. Seed germination occurs, without dormancy, within 5-13 days after water retreat. In the 7 months before the first flooded period seedlings reach 1 m of height, and height growth increases until a height of 15-20 m is achieved. Photosynthetic assimilation is high, with values of up to 21 mmol CO2m-2s-1 . C. latiloba is a very flood tolerant species, and waterlogged seedlings continuously produce new leaves and adventitiuos rootsCecropia latiloba puede ser considerada una de las especies colonizadoras más eficientes de áreas abiertas en las llanuras inundadas de agua dulce, rica

  11. First report of two species of scarab beetles (Coleoptera, Scarabaeidae inside nests of Azteca cf. chartifex Forel (Hymenoptera, Formicidae in Brazilian Amazonian Rainforest

    Directory of Open Access Journals (Sweden)

    João Rafael Alves-Oliveira

    Full Text Available ABSTRACT We report for the first time the occurrence of two species of scarab beetles, Phileurus carinatus declivis Prell, 1914 (Scarabaeidae: Dynastinae and Cyclidius elongatus (Olivier, 1789 (Cetoniinae: Cremastocheilini inside nests of Azteca cf. chartifex Forel, 1896, a neotropical arboreal ant species. This report indicates that these two beetle species are associated, at least as inquilines, to this ant species, although the nature of this relationship remains unclear.

  12. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species

    NARCIS (Netherlands)

    Lopez-Quintero, C.A.; Atanasova, L.; Franco-Molano, A.E.; Gams, W.; Komon-Zelazowska, M.; Theelen, B.; Muller, W.H.; Boekhout, T.; Druzhinina, I.

    2013-01-01

    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (

  13. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species.

    Science.gov (United States)

    López-Quintero, Carlos A; Atanasova, Lea; Franco-Molano, A Esperanza; Gams, Walter; Komon-Zelazowska, Monika; Theelen, Bart; Müller, Wally H; Boekhout, Teun; Druzhinina, Irina

    2013-11-01

    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution.

  14. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species

    NARCIS (Netherlands)

    Lopez-Quintero, C.A.; Atanasova, L.; Franco-Molano, A.E.; Gams, W.; Komon-Zelazowska, M.; Theelen, B.; Muller, W.H.; Boekhout, T.; Druzhinina, I.

    2013-01-01

    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2

  15. Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems

    NARCIS (Netherlands)

    Duarte, E.M.G.; Cardoso, I.M.; Stijnen, T.; Mendonça, M.A.F.C.; Coelho, M.S.; Cantarutti, R.B.; Kuyper, T.W.; Villani, E.M.A.; Mendonça, E.S.

    2013-01-01

    Aiming to support the use of native species from the Atlantic Rainforest in local agroforestry systems, we analysed chemical and biochemical components related to leaf decomposition of Inga subnuda, Senna macranthera, Erythrina verna, Luehea grandiflora, Zeyheria tuberculosa, Aegiphila sellowiana, a

  16. Altitude affects the reproductive performance in monoicous and dioicous bryophytes: examples from a Brazilian Atlantic rainforest

    OpenAIRE

    MACIEL-SILVA,ADAÍSES S.; Marques Valio, Ivany F.; Rydin, HÅkan

    2012-01-01

    Species traits, such as breeding system, phylum and growth form and habitat characteristics are shown to influence reproductive performance of liverworts and mosses in the Brazilian Atlantic Rainforest, and drive life-history differentiation among species and populations.

  17. Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems

    NARCIS (Netherlands)

    Duarte, E.M.G.; Cardoso, I.M.; Stijnen, T.; Mendonça, M.A.F.C.; Coelho, M.S.; Cantarutti, R.B.; Kuyper, T.W.; Villani, E.M.A.; Mendonça, E.S.

    2013-01-01

    Aiming to support the use of native species from the Atlantic Rainforest in local agroforestry systems, we analysed chemical and biochemical components related to leaf decomposition of Inga subnuda, Senna macranthera, Erythrina verna, Luehea grandiflora, Zeyheria tuberculosa, Aegiphila sellowiana,

  18. tree crown ratio models for tropical rainforests in oban division of the ...

    African Journals Online (AJOL)

    DR ADESOPE

    ... highly complex and diversity rich vegetation, which is evergreen throughout ... The vegetation is lowland, evergreen tropical rainforest and characteristic tree ..... tree age was not included since the age structure of an uneven-aged forest is.

  19. Responses of seed-dispersing birds to amount of rainforest in the landscape around fragments.

    Science.gov (United States)

    Moran, Cath; Catterall, Carla P

    2014-04-01

    Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation-induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1-139 ha in size across a 1800 km(2) region) provided bird assemblage data which were coupled with prior knowledge of bird species' particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species' responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed-dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed-dispersing birds, whether or not they are physically connected by vegetation. © 2014 Society for Conservation Biology.

  20. Bird Responses to Lowland Rainforest Conversion in Sumatran Smallholder Landscapes, Indonesia.

    OpenAIRE

    Walesa Edho Prabowo; Kevin Darras; Yann Clough; Manuel Toledo-Hernandez; Raphael Arlettaz; Yeni A Mulyani; Teja Tscharntke

    2016-01-01

    Rapid land-use change in the tropics causes dramatic losses in biodiversity and associated functions. In Sumatra, Indonesia, lowland rainforest has mainly been transformed by smallholders into oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) monocultures, interspersed with jungle rubber (rubber agroforests) and a few forest remnants. In two regions of the Jambi province, we conducted point counts in 32 plots of four different land-use types (lowland rainforest, jungle rubber, rubb...

  1. Constraints on Private Conservation: Some Challenges in Managing Australia's Tropical Rainforests

    OpenAIRE

    Byron, Neil Holland; Holland, Paula; Schuele, Michael

    2001-01-01

    On 14 November 2001 this paper, 'Constraints on Private Conservation: Some Challenges in Managing Australia's Tropical Rainforests', by Neil Byron, Paula Holland and Michael Schuele, was presented to the Annual Conference of the Rainforest Cooperative Research Centre in Cairns. The paper discusses the role of the private sector in biodiversity conservation and considers the constraints that restrict the private sector's contribution to biodiversity conservation. The views expressed in this pa...

  2. An Ancient Divide in a Contiguous Rainforest: Endemic Earthworms in the Australian Wet Tropics

    OpenAIRE

    Moreau, Corrie S.; Andrew F Hugall; McDonald, Keith R.; Jamieson, Barrie G. M.; Craig Moritz

    2015-01-01

    Understanding the factors that shape current species diversity is a fundamental aim of ecology and evolutionary biology. The Australian Wet Tropics (AWT) are a system in which much is known about how the rainforests and the rainforest-dependent organisms reacted to late Pleistocene climate changes, but less is known about how events deeper in time shaped speciation and extinction in this highly endemic biota. We estimate the phylogeny of a species-rich endemic genus of earthworms (Terrisswalk...

  3. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    Directory of Open Access Journals (Sweden)

    B. Schuldt

    2011-08-01

    Full Text Available A large-scale replicated throughfall exclusion experiment was conducted in a pre-montane perhumid rainforest in Sulawesi (Indonesia exposing the trees for two years to pronounced soil desiccation. The lack of regularly occurring dry periods and shallow rooting patterns distinguish this experiment from similar experiments conducted in the Amazonian rainforest. We tested the hypotheses that a tree's sun canopy is more affected by soil drought than its shade crown, making tall trees particularly vulnerable even under a perhumid climate, and that extended drought periods stimulate an acclimation in the hydraulic system of the sun canopy. In the abundant and tall tree species Castanopsis acuminatissima (Fagaceae, we compared 31 morphological, anatomical, hydraulic and chemical variables of leaves, branches and the stem together with stem diameter growth between drought and control plots.

    There was no evidence of canopy dieback. However, the drought treatment led to a 30 % reduction in sapwood-specific hydraulic conductivity of sun canopy branches, possibly caused by the formation of smaller vessels and/or vessel filling by tyloses. Drought caused an increase in leaf size, but a decrease in leaf number, and a reduction in foliar calcium content. The δ13C and δ18O signatures of sun canopy leaves gave no indication of a permanent down-regulation of stomatal conductance during the drought, indicating that pre-senescent leaf shedding may have improved the water status of the remaining leaves. Annual stem diameter growth decreased during the drought, while the density of wood in the recently produced xylem increased in both the stem and sun canopy branches (marginally significant. The sun canopy showed a more pronounced drought response than the shade crown indicating that tall trees with a large sun canopy are more vulnerable to drought stress.

    We conclude that the extended drought prompted a number of

  4. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    Science.gov (United States)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; van Straaten, O.; Barus, H.

    2011-08-01

    A large-scale replicated throughfall exclusion experiment was conducted in a pre-montane perhumid rainforest in Sulawesi (Indonesia) exposing the trees for two years to pronounced soil desiccation. The lack of regularly occurring dry periods and shallow rooting patterns distinguish this experiment from similar experiments conducted in the Amazonian rainforest. We tested the hypotheses that a tree's sun canopy is more affected by soil drought than its shade crown, making tall trees particularly vulnerable even under a perhumid climate, and that extended drought periods stimulate an acclimation in the hydraulic system of the sun canopy. In the abundant and tall tree species Castanopsis acuminatissima (Fagaceae), we compared 31 morphological, anatomical, hydraulic and chemical variables of leaves, branches and the stem together with stem diameter growth between drought and control plots. There was no evidence of canopy dieback. However, the drought treatment led to a 30 % reduction in sapwood-specific hydraulic conductivity of sun canopy branches, possibly caused by the formation of smaller vessels and/or vessel filling by tyloses. Drought caused an increase in leaf size, but a decrease in leaf number, and a reduction in foliar calcium content. The δ13C and δ18O signatures of sun canopy leaves gave no indication of a permanent down-regulation of stomatal conductance during the drought, indicating that pre-senescent leaf shedding may have improved the water status of the remaining leaves. Annual stem diameter growth decreased during the drought, while the density of wood in the recently produced xylem increased in both the stem and sun canopy branches (marginally significant). The sun canopy showed a more pronounced drought response than the shade crown indicating that tall trees with a large sun canopy are more vulnerable to drought stress. We conclude that the extended drought prompted a number of medium- to long-term responses in the leaves, branches and the trunk

  5. In situ measurements of isoprene and monoterpenes within a south-east Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    C. E. Jones

    2011-07-01

    Full Text Available Biogenic volatile organic compounds (BVOCs emitted from tropical rainforests comprise a substantial fraction of global atmospheric VOC emissions, however there are only relatively limited measurements of these species in tropical rainforest regions. We present observations of isoprene, α-pinene, camphene, Δ-3-carene, γ-terpinene and limonene, as well as oxygenated VOCs (OVOCs of biogenic origin such as methacrolein, in ambient air above a tropical rainforest in Malaysian Borneo during the Oxidant and Particle Photochemical Processes above a south-east Asian tropical rainforest (OP3 project in 2008. Daytime composition was dominated by isoprene, with an average mixing ratio of the order of ~1 ppb. γ-terpinene, limonene and camphene were the most abundant monoterpenes, with average daytime mixing ratios of 102, 71 and 66 ppt respectively, and with an average monoterpene toisoprene ratio of 0.3 during sunlit hours, compared to 2.0 at night. Limonene and camphene abundances were seen to be related to both temperature and light conditions. In contrast, γ-terpinene emission continued into the late afternoon/evening, under relatively low temperature and light conditions. The contributions of isoprene, monoterpenes and other classes of VOC to the volatile carbon budget and OH reactivity have been summarised for this rainforest location. We observe good agreement between surface and aircraft measurements of boundary layer isoprene and methacrolein above the natural rainforest, suggesting that the ground-level observations are broadly representative of isoprene emissions from this region.

  6. Simulating carbon, water and energy fluxes of a rainforest and an oil palm plantation using the Community Land Model (CLM4.5)

    Science.gov (United States)

    Fan, Yuanchao; Bernoux, Martial; Roupsard, Olivier; Panferov, Oleg; Le Maire, Guerric; Tölle, Merja; Knohl, Alexander

    2014-05-01

    Deforestation and forest degradation driven by the expansion of oil palm (Elaeis guineensis) plantations has become the major source of GHG emission in Indonesia. Changes of land surface properties (e.g. vegetation composition, soil property, surface albedo) associated with rainforest to oil palm conversion might alter the patterns of land-atmosphere energy, water and carbon cycles and therefore affect local or regional climate. Land surface modeling has been widely used to characterize the two-way interactions between climate and human disturbances on land surface. The Community Land Model (CLM) is a third-generation land model that simulates a wide range of biogeophysical and biogeochemical processes. This project utilizes the land-cover/land-use change (LCLUC) capability of the latest CLM versions 4/4.5 to characterize quantitatively how anthropogenic land surface dynamics in Indonesia affect land-atmosphere carbon, water and energy fluxes. Before simulating land use changes, the first objective is to parameterize and validate the CLM model at local rainforest and oil palm plantation sites through separate point simulations. This entails creation and parameterization of a new plant functional type (PFT) for oil palm, as well as sensitivity analysis and adaptation of model parameters for the rainforest PFTs. CLM modelled fluxes for the selected sites are to be compared with field observations from eddy covariance (EC) flux towers (e.g. a rainforest site in Bariri, Sulawesi; an oil palm site in Jambi, Sumatra). After validation, the project will proceed to parameterize land-use transformation system using remote sensing data and to simulate the impacts of historical LUCs on carbon, water and energy fluxes. Last but not least, the effects of future LUCs in Indonesia on the fluxes and carbon sequestration capacity will be investigated through scenario study. Historical land cover changes, especially oil palm coverage, are retrieved from Landsat or MODIS archival

  7. Herbivory on temperate rainforest seedlings in sun and shade: resistance, tolerance and habitat distribution.

    Directory of Open Access Journals (Sweden)

    Cristian Salgado-Luarte

    Full Text Available Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1 herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2 consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun and forest understory (shade in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory

  8. The oxygen isotopic composition of phytoliths from tropical rainforest soils (Queensland, Australia: application of a new paleoenvironmental tool

    Directory of Open Access Journals (Sweden)

    A. Alexandre

    2011-05-01

    Full Text Available Variations in the oxygen isotopic composition of precipitation (δ18Oprecipitation in inter-tropical areas mainly record variations in water sources, amounts of precipitation, and atmospheric temperature and provide information regarding local climate and regional atmospheric circulation changes. On continents, fossil biogenic minerals and speleothems formed in isotopic equilibrium with water can produce continuous δ18O records and are becoming increasingly valuable for reconstructing past climate changes. Here, we explore the efficiency and limitations of using the oxygen isotopic composition of wood phytoliths (δ18Owood phytolith from tropical rainforest soils as a suitable proxy for atmospheric temperature and δ18Oprecipitation values, under conditions that are assumed to be non-evaporative. Soil phytolith assemblages, that should contain 100s of years of phytolith production, were collected along four altitude, temperature, and precipitation gradients in the Queensland rainforests (Australia. Oxygen isotopic analyses were performed on 1.6 mg phytolith samples, after controlled isotopic exchange (CIE, using the IR Laser-Heating Fluorination Technique. Long-term mean annual precipitation (MAP and mean annual temperature (MAT values at the sampled sites were obtained using a regional GIS database. The δ18Oprecipitation values were estimated. The δ18Owood phytolith values from the leeward slopes were scattered but recorded the modern combination of weighted mean annual δ18Oprecipitation values and MAT. The empirical relationship was &Delta18Owood phytolith-precipitation (‰ vs. VSMOW = −0.4 (±0.2 t (°C + 46 (±3 (R2 = 0.4, p<0.05; n=12. δ18Oprecipitation estimates were close to estimates for δ18

  9. Geophysical and botanical monitoring of simulated graves in a tropical rainforest, Colombia, South America

    Science.gov (United States)

    Molina, Carlos Martin; Pringle, Jamie K.; Saumett, Miguel; Evans, Gethin T.

    2016-12-01

    In most Latin American countries there are significant numbers of missing people and forced disappearances, currently 80,000 only in Colombia. Successful detection of shallow buried human remains by forensic search teams is currently difficult in varying terrain and climates. Within this research we built four simulated clandestine burial styles in tropical rainforests, as this is a common scenario and depositional environment encountered in Latin America, to gain knowledge of optimum forensic geophysics detection techniques. The results of geophysically monitoring these burials using ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity are presented from one to forty three weeks post-burial. Radar survey results with both the 250 MHz and 500 MHz frequency antennae showed good detection of modern simulated burials on 2D profiles and horizontal time slices but poor detection on the other simulated graves. Magnetic susceptibility, bulk ground conductivity and electrical resistivity results were generally poor at detecting the simulated targets. Observations of botanical variations on the test site show rapid regrowth of Malvaceae and Petiveria alliacea vegetation over all burials that are common in these forests, which can make detection more difficult.

  10. Novel diesel-oil-degrading bacteria and fungi from the Ecuadorian Amazon rainforest.

    Science.gov (United States)

    Maddela, N R; Masabanda, M; Leiva-Mora, M

    2015-01-01

    Isolating new diesel-oil-degrading microorganisms from crude-oil contaminated sites and evaluating their degradation capacities are vitally important in the remediation of oil-polluted environments and crude-oil exploitation. In this research, new hydrocarbon-degrading bacteria and fungi were isolated from the crude-oil contaminated soil of the oil-fields in the Amazon rainforest of north-east Ecuador by using a soil enrichment technique. Degradation analysis was tracked by gas chromatography and a flame ionization detector. Under laboratory conditions, maximum degradability of the total n-alkanes reached up to 77.34 and 62.62 removal ratios after 30 days of incubation for the evaporated diesel oil by fungi (isolate-1) and bacteria (isolate-1), respectively. The 16S/18S rDNA sequence analysis indicated that the microorganisms were most closely (99-100%) related to Bacillus cereus (isolate-1), Bacillus thuringiensis (isolate-2), Geomyces pannorum (isolate-1), and Geomyces sp. (isolate-2). Therefore, these strains enable the degradation of hydrocarbons as the sole carbon source, and these findings will benefit these strains in the remediation of oil-polluted environments and oil exploitation.

  11. Miocene Fossils Reveal Ancient Roots for New Zealand's Endemic Mystacina (Chiroptera) and Its Rainforest Habitat.

    Science.gov (United States)

    Hand, Suzanne J; Lee, Daphne E; Worthy, Trevor H; Archer, Michael; Worthy, Jennifer P; Tennyson, Alan J D; Salisbury, Steven W; Scofield, R Paul; Mildenhall, Dallas C; Kennedy, Elizabeth M; Lindqvist, Jon K

    2015-01-01

    The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19-16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina.

  12. Bankfull Curves for the Temperate Rainforests in the Southern Appalachian Mountains of Western North Carolina

    Directory of Open Access Journals (Sweden)

    MICKEY B. HENSON

    2014-08-01

    Full Text Available Bankfull hydraulic geometry relationships, also called regional curves, relate bankfull stream channel dimensions and discharge to watershed drainage area. This paper describes results of bankfull curve relationships developed for the temperate rainforests of the Southern Appalachian Mountains primarily on Western North Carolina Mountain streams in the Southeastern United States. Gauge stations for small and larger catchments were selected with a range of 10 to 50 years of continuous or peak discharge measurements, no major impoundments, no significant change in land use over the past 10 years, and impervious cover ranges of <20%. Cross-sectional and longitudinal surveys were measured at each study reach to determine channel dimension, pattern, and profile information. Log-Pearson Type III distributions were used to analyze annual peak discharge data for nine small watersheds sites gauged by the United States Department of Agriculture (USDA, Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory and for eleven larger watersheds gauged by the United States Geological Survey (USGS. Power function relationships were developed using regression analyses for bankfull discharge, channel cross-sectional area, mean depth, and width as functions of watershed drainage area.

  13. Behaviour of Australian rainforest stream frogs may affect the transmission of chytridiomycosis.

    Science.gov (United States)

    Rowley, Jodi J L; Alford, Ross A

    2007-08-13

    The amphibian disease chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis, has been implicated in mass mortalities, population declines and extinctions of amphibians around the world. In almost all cases, amphibian species that have disappeared or declined due to chytridiomycosis coexist with non-declining species. One reason why some species decline from chytridiomycosis and others do not may be interspecific differences in behaviour. Host behaviour could either facilitate or hinder pathogen transmission, and transmission rates in the field are likely to vary among species according the frequency of factors such as physical contact between frogs, contact with infected water and contact with environmental substrates containing B. dendrobatidis. We tracked 117 frogs (28 Litoria nannotis, 27 L. genimaculata and 62 L. lesueuri) at 5 sites where B. dendrobatidis is endemic in the rainforest of tropical northern Queensland and recorded the frequency of frog-to-frog contact and the frequency of contact with stream water and environmental substrates. Frequency of contact with other frogs and with water were highest in L. nannotis, intermediate in L. genimaculata and lowest in L. lesueueri. Environmental substrate use also differed among species. These species-specific opportunities for disease transmission were correlated with conservation status: L. nannotis is the species most susceptible to chytridiomycosis-related declines and L. lesueuri is the least susceptible. Interspecific variation in transmission probability may, therefore, play a large role in determining why chytridiomycosis drives some populations to extinction and not others.

  14. Millennial-Scale ITCZ Variability in the Tropical Atlantic and Dynamics of Amazonian Rain Forest

    Science.gov (United States)

    Wang, X.; Auler, A. S.; Edwards, R. L.; Cheng, H.; Shen, C.; Smart, P. L.; Richards, D. A.

    2003-12-01

    Precipitation in the Amazon Basin is largely related to the intertropical convergence zone (ITCZ) in the tropical Atlantic which undergoes a regular seasonal migration. We chose a site south of the present day rainforest in semiarid northeastern Brazil, in order to study the timing of pluvial periods when the southern extend of the ITCZ would have been much further south than today. Shifts in the ITCZ position may have influenced the dynamics of rain forest and species diversity. We collected speleothems from northern Bahia state, located southeast of Amazonia. Age determinations with U-series dating methods show that samples grew rapidly during relatively short intervals (several hundreds of years) of glacial periods in the last 210 kyr. In addition, paleopluvial phases delineated by speleothem growth intervals show millennial-scale variations. Pluvial phases coincide with the timing of weak East Asian summer monsoon intensities (Wang et al., 2001, Science 294: 2345-2348), which have been correlated to the timing of stadials in Greenland ice core records and Heinrich events (Bond and Lotti, 1995, Science 267: 1005-1010). Furthermore, these intervals correspond to the periods of light color reflectance of Cariaco Basin sediments from ODP Hole 1002C (Peterson et al., 2000, Science, 290: 1947-1951), which was suggested to be caused by a southward shift of the northernmost position of the ITCZ and decreased rainfall in this region. Abrupt precipitation changes in northeastern Brazil may be due to the southward displacement of the southernmost position of the ITCZ associated with atmosphere-ocean circulation changes caused by (1) an increase in northern high latitude-tropical temperature gradient (Chiang et al., 2003, Paleoceanography, in press), and/or (2) the bipolar seesaw mechanism (Broecker et al., 1998, Paleoceanography 13: 119-121) during these Heinrich events. Pluvial phases are also coincident with higher insolation at 10° S during austral autumn. This

  15. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests.

    Science.gov (United States)

    Mayle, Francis E; Power, Mitchell J

    2008-05-27

    This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.

  16. Structure of a fragment of Atlantic Rainforest in regeneration with occurrence of Caesalpinia echinata Lam. (brazil-wood

    Directory of Open Access Journals (Sweden)

    Liliane Baldan Zani

    2012-11-01

    Full Text Available This study aimed to evaluate the phytosociological structure of a remaining fragment of Atlantic Rainforest undergoing regeneration in the town of Aracruz-ES in a forest board with natural occurrence of Caesalpinia echinata Lam. We installed 10 sample units (plots of 10 x 50m, sampling all individuals with DBH≥5cm and <10cm. Altogether, we sampled 500 individuals distributed into 181 species. The richest families were Leguminosae (35, Sapotaceae (18, and Myrtaceae (14. The most important species were Caesalpinia echinata Lam., Eugenia tinguyensis Cambess., and Pterocarpus rohrii Vahl. The Shannon index (H’ was 4.89 and the equability (J’ was 0.94. This area is one of the last remaining fragments with brazil-wood from the state of Espirito Santo and the population of this species is well preserved at the site, it occurs very frequently, emphasizing the importance of preserving small forest fragments to conserve biodiversity.

  17. Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia acuminata.

    Science.gov (United States)

    Côrtes, Marina C; Uriarte, María; Lemes, Maristerra R; Gribel, Rogério; Kress, W John; Smouse, Peter E; Bruna, Emilio M

    2013-11-01

    In theory, conservation genetics predicts that forest fragmentation will reduce gene dispersal, but in practice, genetic and ecological processes are also dependent on other population characteristics. We used Bayesian genetic analyses to characterize parentage and propagule dispersal in Heliconia acuminata L. C. Richard (Heliconiaceae), a common Amazonian understory plant that is pollinated and dispersed by birds. We studied these processes in two continuous forest sites and three 1-ha fragments in Brazil's Biological Dynamics of Forest Fragments Project. These sites showed variation in the density of H. acuminata. Ten microsatellite markers were used to genotype flowering adults and seedling recruits and to quantify realized pollen and seed dispersal distances, immigration of propagules from outside populations, and reproductive dominance among parents. We tested whether gene dispersal is more dependent on fragmentation or density of reproductive plants. Low plant densities were associated with elevated immigration rates and greater propagule dispersal distances. Reproductive dominance among inside-plot parents was higher for low-density than for high-density populations. Elevated local flower and fruit availability is probably leading to spatially more proximal bird foraging and propagule dispersal in areas with high density of reproductive plants. Nevertheless, genetic diversity, inbreeding coefficients and fine-scale spatial genetic structure were similar across populations, despite differences in gene dispersal. This result may indicate that the opposing processes of longer dispersal events in low-density populations vs. higher diversity of contributing parents in high-density populations balance the resulting genetic outcomes and prevent genetic erosion in small populations and fragments.

  18. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1

    Directory of Open Access Journals (Sweden)

    N. M. Fyllas

    2014-02-01

    Full Text Available Repeated long-term censuses have revealed large-scale spatial patterns in Amazon Basin forest structure and dynamism, with some forests in the west of the Basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the Basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAINFOR has been developed. The model incorporates variations in tree size distribution, functional traits and soil physical properties and runs at the stand level with four functional traits, leaf dry mass per area (Ma, leaf nitrogen (NL and phosphorus (PL content and wood density (DW used to represent a continuum of plant strategies found in tropical forests. We first applied the model to validate canopy-level water fluxes at three Amazon eddy flux sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for large trees. At the stand-level, simulations at 40 plots were used to explore the influence of climate and soil fertility on the gross (ΠG and net (ΠN primary production rates as well as the carbon use efficiency (CU. Simulated ΠG, ΠN and CU were not associated with temperature. However all three measures of stand level productivity were positively related to annual precipitation and soil fertility.

  19. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.

    Science.gov (United States)

    Emer, Carine; Venticinque, Eduardo Martins; Fonseca, Carlos Roberto

    2013-08-01

    Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams

  20. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest.

    Directory of Open Access Journals (Sweden)

    Rodrigo Marciente

    Full Text Available Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone.

  1. Mitochondrial DNA mapping of social-biological interactions in Brazilian Amazonian African-descendant populations

    Directory of Open Access Journals (Sweden)

    Bruno Maia Carvalho

    2008-01-01

    Full Text Available The formation of the Brazilian Amazonian population has historically involved three main ethnic groups, Amerindian, African and European. This has resulted in genetic investigations having been carried out using classical polymorphisms and molecular markers. To better understand the genetic variability and the micro-evolutionary processes acting in human groups in the Brazilian Amazon region we used mitochondrial DNA to investigate 159 maternally unrelated individuals from five Amazonian African-descendant communities. The mitochondrial lineage distribution indicated a contribution of 50.2% from Africans (L0, L1, L2, and L3, 46.6% from Amerindians (haplogroups A, B, C and D and a small European contribution of 1.3%. These results indicated high genetic diversity in the Amerindian and African lineage groups, suggesting that the Brazilian Amazonian African-descendant populations reflect a possible population amalgamation of Amerindian women from different Amazonian indigenous tribes and African women from different geographic regions of Africa who had been brought to Brazil as slaves. The present study partially mapped the historical biological and social interactions that had occurred during the formation and expansion of Amazonian African-descendant communities.

  2. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands

    Science.gov (United States)

    Salas-Gismondi, Rodolfo; Flynn, John J.; Baby, Patrice; Tejada-Lara, Julia V.; Wesselingh, Frank P.; Antoine, Pierre-Olivier

    2015-01-01

    Amazonia contains one of the world's richest biotas, but origins of this diversity remain obscure. Onset of the Amazon River drainage at approximately 10.5 Ma represented a major shift in Neotropical ecosystems, and proto-Amazonian biotas just prior to this pivotal episode are integral to understanding origins of Amazonian biodiversity, yet vertebrate fossil evidence is extraordinarily rare. Two new species-rich bonebeds from late Middle Miocene proto-Amazonian deposits of northeastern Peru document the same hyperdiverse assemblage of seven co-occurring crocodylian species. Besides the large-bodied Purussaurus and Mourasuchus, all other crocodylians are new taxa, including a stem caiman—Gnatusuchus pebasensis—bearing a massive shovel-shaped mandible, procumbent anterior and globular posterior teeth, and a mammal-like diastema. This unusual species is an extreme exemplar of a radiation of small caimans with crushing dentitions recording peculiar feeding strategies correlated with a peak in proto-Amazonian molluscan diversity and abundance. These faunas evolved within dysoxic marshes and swamps of the long-lived Pebas Mega-Wetland System and declined with inception of the transcontinental Amazon drainage, favouring diversification of longirostrine crocodylians and more modern generalist-feeding caimans. The rise and demise of distinctive, highly productive aquatic ecosystems substantially influenced evolution of Amazonian biodiversity hotspots of crocodylians and other organisms throughout the Neogene. PMID:25716785

  3. Overstory structure drives fine-scale coupling of understory light and vegetation in two temperate rainforest floodplains

    National Research Council Canada - National Science Library

    Saunders, Sari C; Lertzman, Ken P; MacKinnon, Andy; Giesbrecht, Ian J.W

    2017-01-01

    Riparian ecosystems, particularly floodplains, of temperate rainforest regions are productive, diverse, functionally important, and socially valued, yet we lack key information about their structure...

  4. Past Human Disturbance Effects upon Biodiversity are Greatest in the Canopy; A Case Study on Rainforest Butterflies: e0150520

    National Research Council Canada - National Science Library

    Andrew Whitworth; Jaime Villacampa; Alice Brown; Ruthmery Pillco Huarcaya; Roger Downie; Ross MacLeod

    2016-01-01

      A key part of tropical forest spatial complexity is the vertical stratification of biodiversity, with widely differing communities found in higher rainforest strata compared to terrestrial levels...

  5. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    Science.gov (United States)

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  6. Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest

    Science.gov (United States)

    Ivanov, Valeriy Y.; Hutyra, Lucy R.; Wofsy, Steven C.; Munger, J. William; Saleska, Scott R.; de Oliveira, Raimundo C., Jr.; de Camargo, Plínio B.

    2012-12-01

    Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajós National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented.

  7. Vertical stratification of the termite assemblage in a neotropical rainforest.

    Science.gov (United States)

    Roisin, Yves; Dejean, Alain; Corbara, Bruno; Orivel, Jerôme; Samaniego, Mirna; Leponce, Maurice

    2006-08-01

    The importance of termites as decomposers in tropical forests has long been recognized. Studies on the richness and diversity of termite species and their ecological function have flourished in more recent times, but these have been mostly conducted in a thin stratum within a standing man's reach. Our aims were to evaluate the specific richness and composition of the termite assemblage in the canopy of a tropical rainforest and to determine its originality with respect to the sympatric ground-level fauna. We conducted systematic searches for canopy termites, together with conventional sampling of the sympatric ground-level fauna, in the San Lorenzo forest, Panama. We hypothesized that (1) the canopy accommodates two categories of wood-feeding termites (long-distance foragers and small-colony "one-piece" species) and possibly soil-feeders in suspended soil-like habitats; (2) due to the abundance of soil-feeders, the overall diversity of the ground fauna is higher than that of the canopy; (3) differences in microclimate and resource accessibility favour vertical stratification among wood-feeders. Sixty-three canopy samples yielded ten species of termites, all wood-feeders. Five of these were not found at ground level, although a total of 243 ground samples were collected, representing 29 species. In addition to long-distance foragers (Microcerotermes and Nasutitermes spp.) and small-colony termites (mostly Kalotermitidae), the canopy fauna included Termes hispaniolae, a wood-feeding Termitidae from an allegedly soil-feeding genus, living in large dead branches. Soil-feeders were absent from the canopy, probably because large epiphytes were scarce. As predicted, the ground fauna was much richer than that of the canopy, but the species richness of both habitats was similar when only wood-feeders were considered. Vertical stratification was strongly marked among wood-feeders, as all common species, apart from the arboreal-nesting Microcerotermes arboreus, could

  8. Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia).

    Science.gov (United States)

    Schneider, Dominik; Engelhaupt, Martin; Allen, Kara; Kurniawan, Syahrul; Krashevska, Valentyna; Heinemann, Melanie; Nacke, Heiko; Wijayanti, Marini; Meryandini, Anja; Corre, Marife D; Scheu, Stefan; Daniel, Rolf

    2015-01-01

    Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use systems comprised rubber agroforests (jungle rubber), rubber plantations and oil palm plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 16,413 bacterial and 1679 archaeal operational taxonomic units at species level (97% genetic identity). Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota) dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to N ratio

  9. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia

    Directory of Open Access Journals (Sweden)

    Dominik eSchneider

    2015-12-01

    Full Text Available Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use system comprised rubber agroforests (jungle rubber, rubber plantation and oil plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 20,494 bacterial and 1,762 archaeal Operational Taxonomic Units at species level (97% genetic identity. Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to

  10. Children's perceptions of rainforest biodiversity: which animals have the lion's share of environmental awareness?

    Directory of Open Access Journals (Sweden)

    Jake L Snaddon

    Full Text Available Globally, natural ecosystems are being lost to agricultural land at an unprecedented rate. This land-use often results in significant reductions in abundance and diversity of the flora and fauna as well as alterations in their composition. Despite this, there is little public perception of which taxa are most important in terms of their total biomass, biodiversity or the ecosystem services they perform. Such awareness is important for conservation, as without appreciation of their value and conservation status, species are unlikely to receive adequate conservation protection. We investigated children's perceptions of rainforest biodiversity by asking primary-age children, visiting the University Museum of Zoology, Cambridge to draw their ideal rainforest. By recording the frequency at which children drew different climatic, structural, vegetative and faunal components of the rainforest, we were able to quantify children's understanding of a rainforest environment. We investigated children's perceptions of rainforest biodiversity by comparing the relative numbers of the taxa drawn with the actual contributions made by these taxa to total rainforest biomass and global biodiversity. We found that children have a sophisticated view of the rainforest, incorporating many habitat features and a diverse range of animals. However, some taxa were over-represented (particularly mammals, birds and reptiles and others under-represented (particularly insects and annelids relative to their contribution to total biomass and species richness. Scientists and naturalists must continue to emphasise the diversity and functional importance of lesser-known taxa through public communication and outdoor events to aid invertebrate conservation and to ensure that future generations are inspired to become naturalists themselves.

  11. Children's perceptions of rainforest biodiversity: which animals have the lion's share of environmental awareness?

    Science.gov (United States)

    Snaddon, Jake L; Turner, Edgar C; Foster, William A

    2008-07-02

    Globally, natural ecosystems are being lost to agricultural land at an unprecedented rate. This land-use often results in significant reductions in abundance and diversity of the flora and fauna as well as alterations in their composition. Despite this, there is little public perception of which taxa are most important in terms of their total biomass, biodiversity or the ecosystem services they perform. Such awareness is important for conservation, as without appreciation of their value and conservation status, species are unlikely to receive adequate conservation protection. We investigated children's perceptions of rainforest biodiversity by asking primary-age children, visiting the University Museum of Zoology, Cambridge to draw their ideal rainforest. By recording the frequency at which children drew different climatic, structural, vegetative and faunal components of the rainforest, we were able to quantify children's understanding of a rainforest environment. We investigated children's perceptions of rainforest biodiversity by comparing the relative numbers of the taxa drawn with the actual contributions made by these taxa to total rainforest biomass and global biodiversity. We found that children have a sophisticated view of the rainforest, incorporating many habitat features and a diverse range of animals. However, some taxa were over-represented (particularly mammals, birds and reptiles) and others under-represented (particularly insects and annelids) relative to their contribution to total biomass and species richness. Scientists and naturalists must continue to emphasise the diversity and functional importance of lesser-known taxa through public communication and outdoor events to aid invertebrate conservation and to ensure that future generations are inspired to become naturalists themselves.

  12. The Sound-Symbolic Expression of Animacy in Amazonian Ecuador

    Directory of Open Access Journals (Sweden)

    Janis B. Nuckolls

    2010-03-01

    Full Text Available Several anthropologists of Amazonian societies in Ecuador have claimed that for Achuar [1] and Quichua speaking Runa [2-4] there is no fundamental distinction between humans on the one hand, and plants and animals on the other. A related observation is that Runa and Achuar people share an animistic cosmology whereby animals, plants, and even seemingly inert entities such as rocks and stones are believed to have a life force or essence with a subjectivity that can be expressed. This paper will focus on Quichua speaking Runa to seek linguistic evidence for animacy by examining the sound-symbolic properties of a class of expressions called ideophones. I argue that structural features of ideophones such as canonical length and diversity of sound segments as well as type of sound segments, help express the animism of the Runa lifeworld. Moreover, although these features are not indicative of any essential distinctions between plants and animals, they may be indicative of a scalar view of animacy, along the lines suggested by Descola who first proposed a continuum or ‘ladder of animacy’ for the Achuar [1, pp. 321-326]. Ideophones, then, may be understood as one set of linguistic tools for coming to terms with the diversity of their ecological setting, a setting which spans highly animate humans and animals, through less animate plants, trees, and rocks.

  13. Poor prospects for avian biodiversity in Amazonian oil palm.

    Science.gov (United States)

    Lees, Alexander C; Moura, Nárgila G; de Almeida, Arlete Silva; Vieira, Ima C G

    2015-01-01

    Expansion of oil palm plantations across the humid tropics has precipitated massive loss of tropical forest habitats and their associated speciose biotas. Oil palm plantation monocultures have been identified as an emerging threat to Amazonian biodiversity, but there are no quantitative studies exploring the impact of these plantations on the biome's biota. Understanding these impacts is extremely important given the rapid projected expansion of oil palm cultivation in the basin. Here we investigate the biodiversity value of oil palm plantations in comparison with other dominant regional land-uses in Eastern Amazonia. We carried out bird surveys in oil palm plantations of varying ages, primary and secondary forests, and cattle pastures. We found that oil palm plantations retained impoverished avian communities with a similar species composition to pastures and agrarian land-uses and did not offer habitat for most forest-associated species, including restricted range species and species of conservation concern. On the other hand, the forests that the oil palm companies are legally obliged to protect hosted a relatively species-rich community including several globally-threatened bird species. We consider oil palm to be no less detrimental to regional biodiversity than other agricultural land-uses and that political pressure exerted by large landowners to allow oil palm to count as a substitute for native forest vegetation in private landholdings with forest restoration deficits would have dire consequences for regional biodiversity.

  14. Pesticide use and biodiversity conservation in the Amazonian agricultural frontier.

    Science.gov (United States)

    Schiesari, Luis; Waichman, Andrea; Brock, Theo; Adams, Cristina; Grillitsch, Britta

    2013-06-05

    Agricultural frontiers are dynamic environments characterized by the conversion of native habitats to agriculture. Because they are currently concentrated in diverse tropical habitats, agricultural frontiers are areas where the largest number of species is exposed to hazardous land management practices, including pesticide use. Focusing on the Amazonian frontier, we show that producers have varying access to resources, knowledge, control and reward mechanisms to improve land management practices. With poor education and no technical support, pesticide use by smallholders sharply deviated from agronomical recommendations, tending to overutilization of hazardous compounds. By contrast, with higher levels of technical expertise and resources, and aiming at more restrictive markets, large-scale producers adhered more closely to technical recommendations and even voluntarily replaced more hazardous compounds. However, the ecological footprint increased significantly over time because of increased dosage or because formulations that are less toxic to humans may be more toxic to other biodiversity. Frontier regions appear to be unique in terms of the conflicts between production and conservation, and the necessary pesticide risk management and risk reduction can only be achieved through responsibility-sharing by diverse stakeholders, including governmental and intergovernmental organizations, NGOs, financial institutions, pesticide and agricultural industries, producers, academia and consumers.

  15. Evidence for Middle Amazonian catastrophic flooding and glaciation on Mars

    Science.gov (United States)

    Rodríguez, J. Alexis P.; Gulick, Virginia C.; Baker, Victor R.; Platz, Thomas; Fairén, Alberto G.; Miyamoto, Hideaki; Kargel, Jeffrey S.; Rice, James W.; Glines, Natalie

    2014-11-01

    Early geologic investigations of Mars revealed some of the largest channels in the Solar System (outflow channels), which appear to have mostly developed ∼3 byr ago. These channels have been the subject of much scientific inquiry since the 1970s and proposed formative processes included surface erosion by catastrophic floods, glaciers, debris flows and lava flows. Based on the analysis of newly acquired Mars Reconnaissance Orbiter (MRO) Context (CTX, 5.15-5.91 m/pixel) and High Resolution Imaging Science Experiment (HiRISE, 25-50 cm/pixel) image data, we have identified a few locations contained within relatively narrow canyons of the southern circum-Chryse outflow channels that retain well-preserved decameter/hectometer-scale landform assemblages. These terrains include landforms consistent in shape, dimension and overall assemblage to those produced by catastrophic floods, and at one location, to glacial morphologies. Impact crater statistics for four of these surfaces, located within upstream, midstream and downstream outflow channel surfaces, yield an age estimate of ∼600 myr. This suggests that the southern circum-Chryse outflow channels were locally resurfaced by some of the most recent catastrophic floods on the planet, and that these floods coexisted within regional glacier environments as recently as during the Middle Amazonian.

  16. Carbon Dioxide and Methane Evasion from Amazonian Rivers and Lakes

    Science.gov (United States)

    Melack, J. M.; Barbosa, P.; Schofield, V.; Amaral, J.; Forsberg, B.; Farjalla, V.

    2013-12-01

    Floodplains, with their mosaic of aquatic habitats, constitute the majority of the wetlands of South America. We report 1) estimates of CH4 and CO2 flux from Amazonian floodplain lakes and rivers during low, rising and high water periods, and 2) identify environmental factors regulating these fluxes. We sampled 10 floodplain lakes, 4 tributaries of Solimões River, 6 stations on the Solimões main stem and 1 station on the Madeira, Negro and Amazonas rivers. Diffusive fluxes were measured with static floating chambers. CH4 fluxes were highly variable, with the majority of the values lower than 5 mmol m-2 d-1. For the lakes, no significant differences among the periods were found. CH4 concentration in the water and water temperature were the two main environmental factors regulating the diffusive flux. Our results highlight the importance of considering both the spatial and temporal scales when estimating CH4 fluxes for a region. CO2 fluxes from water to atmosphere ranged between 327 and -21 mmol m-2 d-1, averaging 58 mmol m-2 d-1. We found higher evasion rates in lakes than in rivers. For both systems the lowest rates were found in low water. pH and dissolved oxygen, phosphorous and organic carbon were the main factors correlated to CO2 evasion from the water bodies.

  17. Sensitivities of Amazonian clouds to aerosols and updraft speed

    Science.gov (United States)

    Cecchini, Micael A.; Machado, Luiz A. T.; Andreae, Meinrat O.; Martin, Scot T.; Albrecht, Rachel I.; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Fütterer, Daniel; Jurkat, Tina; Mahnke, Christoph; Minikin, Andreas; Molleker, Sergej; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Voigt, Christiane; Weinzierl, Bernadett; Wendisch, Manfred

    2017-08-01

    The effects of aerosol particles and updraft speed on warm-phase cloud microphysical properties are studied in the Amazon region as part of the ACRIDICON-CHUVA experiment. Here we expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution, putting the sensitivity quantifications into perspective in relation to in-cloud processing, and by considering the effects on droplet size distribution (DSD) shape. Our in situ aircraft measurements over the Amazon Basin cover a wide range of particle concentration and thermodynamic conditions, from the pristine regions over coastal and forested areas to the southern Amazon, which is highly polluted from biomass burning. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds, while updraft speeds have a modulating role in the latter and in total condensed water. The cloud microphysical properties were found to be highly variable with altitude above cloud base, which we used as a proxy for cloud evolution since it is a measure of the time droplets that were subject to cloud processing. We show that DSD shape is crucial in understanding cloud sensitivities. The aerosol effect on DSD shape was found to vary with altitude, which can help models to better constrain the indirect aerosol effect on climate.

  18. Mosquitoes of eastern Amazonian Ecuador: biodiversity, bionomics and barcodes

    Directory of Open Access Journals (Sweden)

    Yvonne-Marie Linton

    2013-01-01

    Full Text Available Two snapshot surveys to establish the diversity and ecological preferences of mosquitoes (Diptera: Culicidae in the terra firme primary rain forest surrounding the Tiputini Biodiversity Station in the UNESCO Yasuní Biosphere Reserve of eastern Amazonian Ecuador were carried out in November 1998 and May 1999. The mosquito fauna of this region is poorly known; the focus of this study was to obtain high quality link-reared specimens that could be used to unequivocally confirm species level diversity through integrated systematic study of all life stages and DNA sequences. A total of 2,284 specimens were preserved; 1,671 specimens were link-reared with associated immature exuviae, all but 108 of which are slide mounted. This study identified 68 unique taxa belonging to 17 genera and 27 subgenera. Of these, 12 are new to science and 37 comprise new country records. DNA barcodes [658-bp of the mtDNA cytochrome c oxidase ( COI I gene] are presented for 58 individuals representing 20 species and nine genera. DNA barcoding proved useful in uncovering and confirming new species and we advocate an integrated systematics approach to biodiversity studies in future. Associated bionomics of all species collected are discussed. An updated systematic checklist of the mosquitoes of Ecuador (n = 179 is presented for the first time in 60 years.

  19. Oxidative mitigation of aquatic methane emissions in large Amazonian rivers.

    Science.gov (United States)

    Sawakuchi, Henrique O; Bastviken, David; Sawakuchi, André O; Ward, Nicholas D; Borges, Clovis D; Tsai, Siu M; Richey, Jeffrey E; Ballester, Maria Victoria R; Krusche, Alex V

    2016-03-01

    The flux of methane (CH4 ) from inland waters to the atmosphere has a profound impact on global atmospheric greenhouse gas (GHG) levels, and yet, strikingly little is known about the dynamics controlling sources and sinks of CH4 in the aquatic setting. Here, we examine the cycling and flux of CH4 in six large rivers in the Amazon basin, including the Amazon River. Based on stable isotopic mass balances of CH4 , inputs and outputs to the water column were estimated. We determined that ecosystem methane oxidation (MOX) reduced the diffusive flux of CH4 by approximately 28-96% and varied depending on hydrologic regime and general geochemical characteristics of tributaries of the Amazon River. For example, the relative amount of MOX was maximal during high water in black and white water rivers and minimal in clear water rivers during low water. The abundance of genetic markers for methane-oxidizing bacteria (pmoA) was positively correlated with enhanced signals of oxidation, providing independent support for the detected MOX patterns. The results indicate that MOX in large Amazonian rivers can consume from 0.45 to 2.07 Tg CH4 yr(-1) , representing up to 7% of the estimated global soil sink. Nevertheless, climate change and changes in hydrology, for example, due to construction of dams, can alter this balance, influencing CH4 emissions to atmosphere.

  20. Branchfall dominates annual carbon flux across lowland Amazonian forests

    Science.gov (United States)

    Marvin, David C.; Asner, Gregory P.

    2016-09-01

    Tropical forests play an important role in the global carbon cycle, but knowledge of interannual variation in the total tropical carbon flux and constituent carbon pools is highly uncertain. One such pool, branchfall, is an ecologically important dynamic with links to nutrient cycling, forest productivity, and drought. Identifying and quantifying branchfall over large areas would reveal the role of branchfall in carbon and nutrient cycling. Using data from repeat airborne light detection and ranging campaigns across a wide array of lowland Amazonian forest landscapes totaling nearly 100 000 ha, we find that upper canopy gaps—driven by branchfall—are pervasive features of every landscape studied, and are seven times more frequent than full tree mortality. Moreover, branchfall comprises a major carbon source on a landscape basis, exceeding that of tree mortality by 21%. On a per hectare basis, branchfall and tree mortality result in 0.65 and 0.72 Mg C ha-1 yr-1 gross source of carbon to the atmosphere, respectively. Reducing uncertainties in annual gross rates of tropical forest carbon flux, for example by incorporating large-scale branchfall dynamics, is crucial for effective policies that foster conservation and restoration of tropical forests. Additionally, large-scale branchfall mapping offers ecologists a new dimension of disturbance monitoring and potential new insights into ecosystem structure and function.

  1. Deep plant-derived carbon storage in Amazonian podzols

    Directory of Open Access Journals (Sweden)

    C. R. Montes

    2010-10-01

    Full Text Available Equatorial podzols are soils characterized by thick sandy horizons overlying more clayey horizons. Organic matter produced in the topsoil is transferred in depth through the sandy horizons and accumulate at the transition, at a depth varying from 1 to more than 3 m, forming deep horizons rich in organic matter (Bh horizons. Although they cover great surfaces in the equatorial zone, these soils are still poorly known. Studying podzols from Amazonia, we found out that the deep Bh horizons in poorly drained podzol areas have a thickness higher than 1 m and store unexpected amounts of carbon. The average for the studied area was 66.7 ± 5.8 kg C m−2 for the deep Bh and 86.8 ± 7.1 kg C m−2 for the whole profile. Extrapolating to the podzol areas of the whole Amazonian Basin has been possible thanks to digital maps, giving an order of magnitude around 13.6 ± 1.1 Pg C, at least 12.3 Pg C higher than previous estimates. This assessment should be refined by additional investigations, not only in Amazonia but in all equatorial areas where podzols have been identified. Because of the lack of knowledge on the quality and behaviour of the podzol organic matter, the question of the feedback between the climate and the equatorial podzol carbon cycle is open.

  2. Biotransformations of terpenes by fungi from Amazonian citrus plants.

    Science.gov (United States)

    Moreno Rueda, Maria Gabriela; Guerrini, Alessandra; Giovannini, Pier Paolo; Medici, Alessandro; Grandini, Alessandro; Sacchetti, Gianni; Pedrini, Paola

    2013-10-01

    The biotransformations of (RS)-linalool (1), (S)-citronellal (2), and sabinene (3) with fungi isolated from the epicarp of fruits of Citrus genus of the Amazonian forest (i.e., C. limon, C. aurantifolia, C. aurantium, and C. paradisiaca) are reported. The more active strains have been characterized, and they belong to the genus Penicillium and Fusarium. Different biotransformation products have been obtained depending on fungi and substrates. (RS)-Linalool (1) afforded the (E)- and (Z)-furanlinalool oxides (7 and 8, resp.; 39 and 37% yield, resp.) with Fusarium sp. (1D2), 6-methylhept-5-en-2-one (4; 49%) with F. fujikuroi, and 1-methyl-1-(4-methypentyl)oxiranemethanol (6; 42%) with F. concentricum. (S)-Citronellal (2) gave (S)-citronellol (12; 36-76%) and (S)-citronellic acid (11; 5-43%) with Fusarium species, while diastereoisomeric p-menthane-3,8-diols 13 and 14 (20 and 50% yield, resp.) were obtained as main products with Penicillium paxilli. Finally, both Fusarium species and P. paxilli biotransformed sabinene (3) to give mainly 4-terpineol (19; 23-56%), and (Z)- and (E)-sabinene hydrates (17 (3-21%) and 18 (11-17%), resp.).

  3. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests

    Science.gov (United States)

    Graham, H. V.; Freeman, K. H.

    2013-12-01

    characteristics associated with canopy effect. A biomass flux-weighted model of alkane chain-length distribution and δ13Cleaf indicate n-alkanes extracted from bulk rock are consistent with inputs integrated over time from plants represented by fossil leaves. In a modern rainforest, we found leaf lipid amounts markedly higher in the shaded and moist understory, consistent with studies that show alkanes proffer fungal protection. Shade tolerance is associated with higher plant orders and, consistent with this, literature data for modern plants from 30 plant orders shows alkane production in asterids and rosids is 2 to 3 times greater than in basal angiosperms or gymnosperms. The lower clades tend to contain greater amounts of terpenoids and novel benzylisoquinoline alkaloids, rather than alkanes. For our three fossil floras, alkane abundance is strongly influenced by depositional setting, with preservation best in the lacustrine setting. Within each site, abundance patterns are potentially influenced by both taxonomic affiliation and by canopy structure as measured by δ13Cleaf values, and such relationships shed light on the combined influences of plant evolution, canopy structure and the function of biochemical resources on the geochemical record of the first rainforests.

  4. Ocurrence of Cryptosporidium spp. in Amazonian manatees (Trichechus inunguis, Natterer, 1883

    Directory of Open Access Journals (Sweden)

    Maria Aparecida da Glória Faustino

    2007-09-01

    Full Text Available The apicomplexa protozoa Cryptosporidium infects several mammals, including terrestrial and aquatic species. In the epidemiology of this infection, the ingestion of water and/or food contamined with oocysts comprises the main mechanism of transmission to susceptible animals. Among the Sirenians, the occurrence of this coccidium has been reported in dugongs (Dugong dugon and Antillean manatee (Trichechus manatus manatus. The present study was conducted with the aim of verifying the occurrence of Cryptosporidium spp. in Amazonian manatee. For this purpose, fecal samples were collected from ten free-ranging Amazonian manatees, two specimens in captivity, and 103 supernatants fecal samples. The samples were processed by the sedimentation method in formol-ether and Kinyoun stain technique for the presence of Cryptosporidium spp.. The positive samples were then submitted to Direct Immunoflorescence Test. The results showed 4.34% (05/115 of positive samples. This is the first report of Cryptosporidium spp. in the Amazonian manatee.

  5. The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest

    Directory of Open Access Journals (Sweden)

    T. A. M. Pugh

    2010-07-01

    sensitive to heterogeneities in NO at this remote site, unless they are correlated with those of isoprene, or to OH-recycling schemes in the isoprene oxidation mechanism, unless the recycling happens in the first reaction step. Segregation alone is therefore unlikely to be the sole cause of model-measurement discrepancies for isoprene and OH above a rainforest.

  6. The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest

    Directory of Open Access Journals (Sweden)

    T. A. M. Pugh

    2011-05-01

    measurements made in a deciduous forest in Germany. The effective rate constant reduction for the reaction of isoprene and OH over a South-East Asian rainforest is calculated to be typically <15 %. Although there are many unconstrained uncertainties, the likely nature of those processes suggests that this value represents an upper limit. The estimate is not sensitive to heterogeneities in NO at this remote site, unless they are correlated with those of isoprene, or to OH-recycling schemes in the isoprene oxidation mechanism, unless the recycling happens in the first reaction step. Segregation alone is therefore unlikely to be the sole cause of model-measurement discrepancies for isoprene and OH above a rainforest.

  7. Investigating Ecosystem Functional Development Along a Temperate Rainforest Chronosequence Using Stable Isotope Techniques

    Science.gov (United States)

    Barbour, M. M.; Hunt, J. E.; Richardson, S. J.; Peltzer, D. A.; Whitehead, D.

    2003-12-01

    Soil chronosequences are valuable systems for investigating ecosystem development by natural substitution of space for time. The Franz Josef chronosequence in New Zealand comprises temperate mixed conifer/hardwood rainforests formed on glacial surfaces of varying age. It is particularly useful as it includes both early build-up and decline phases over a relatively short time period (ca. 120 k years). Along the sequence, soil phosphorus decreases 8-fold, from 778 to 8 mg kg-1 soluble P. In contrast, nitrogen availability increases to peak at about 500 years, due to early successional N2-fixing shrubs, after which it slowly declines. Ecosystem development along the sequence is characterised by marked changes in both plant species richness and tree height, with progression up to 5 k years and retrogression at older sites (ie > 14 k years). The carbon isotope ratio (δ 13CL) of sunlit canopy leaves from three dominant species sampled from within each of six sites, representing the full length of the sequence, decreased from -26.2 to -31.0 per mil with increasing ecosystem age. Independent measurements of photosynthetic capacity confirmed that the decrease was due to declining maximum photosynthetic rate: N2-fixers > early successional angiosperms > late successional angiosperms > late successional conifers. Stable oxygen and nitrogen isotope ratios of canopy leaves are interpreted in terms of stomatal regulation of water loss and changing nitrogen source, respectively. Carbon isotope analysis of CO2 sampled at night at different heights within the canopy allowed estimation of ecosystem discrimination (δ 13CR) using Keeling plots. Similarly to δ 13CL, δ 13CR decreased with increasing soil age, suggesting that in high rainfall environments δ 13CR is a good integrator of ecosystem photosynthetic capacity.

  8. Seasonal Ecology and Behavior of an Endangered Rainforest Frog (Litoria rheocola) Threatened by Disease.

    Science.gov (United States)

    Roznik, Elizabeth A; Alford, Ross A

    2015-01-01

    One of the most devastating wildlife diseases ever recorded is chytridiomycosis, a recently emerged amphibian disease that is caused by the chytrid fungus Batrachochytrium dendrobatidis. Understanding, predicting, and managing the impacts of chytridiomycosis on any amphibian species will require detailed information on its ecology and behavior because this pathogen is transmitted by contact with water or other individuals, and pathogen growth rates are thermally sensitive. The common mistfrog (Litoria rheocola) is an endangered tropical rainforest frog that has declined due to chytridiomycosis. We tracked L. rheocola during the winter (cool/dry) and summer (warm/wet) seasons at a low- and high-elevation site. We found that seasonal differences in environmental temperatures and frog behavior should render this species most vulnerable to B. dendrobatidis during cooler months and at higher elevations, which matches observed patterns of infection prevalence in this species. During winter, frogs moved shorter distances than during summer, and they spent less time in vegetation and more time in the stream, which should increase exposure to aquatic B. dendrobatidis zoospores. At a low-elevation site (40 m ASL), estimated body temperatures were within the optimal range for B. dendrobatidis growth (15-25 °C) most of the time during winter, but they reached temperatures above this threshold frequently in summer. At a higher elevation (750 m ASL), estimated body temperatures were within the range most favorable for B. dendrobatidis year-round, and did not exceed 25 °C, even during summer. Our study provides the first detailed information on the ecology and behavior of L. rheocola and suggests ecological mechanisms for infection dynamics that have been observed in this endangered species.

  9. Seasonal Ecology and Behavior of an Endangered Rainforest Frog (Litoria rheocola Threatened by Disease.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Roznik

    Full Text Available One of the most devastating wildlife diseases ever recorded is chytridiomycosis, a recently emerged amphibian disease that is caused by the chytrid fungus Batrachochytrium dendrobatidis. Understanding, predicting, and managing the impacts of chytridiomycosis on any amphibian species will require detailed information on its ecology and behavior because this pathogen is transmitted by contact with water or other individuals, and pathogen growth rates are thermally sensitive. The common mistfrog (Litoria rheocola is an endangered tropical rainforest frog that has declined due to chytridiomycosis. We tracked L. rheocola during the winter (cool/dry and summer (warm/wet seasons at a low- and high-elevation site. We found that seasonal differences in environmental temperatures and frog behavior should render this species most vulnerable to B. dendrobatidis during cooler months and at higher elevations, which matches observed patterns of infection prevalence in this species. During winter, frogs moved shorter distances than during summer, and they spent less time in vegetation and more time in the stream, which should increase exposure to aquatic B. dendrobatidis zoospores. At a low-elevation site (40 m ASL, estimated body temperatures were within the optimal range for B. dendrobatidis growth (15-25 °C most of the time during winter, but they reached temperatures above this threshold frequently in summer. At a higher elevation (750 m ASL, estimated body temperatures were within the range most favorable for B. dendrobatidis year-round, and did not exceed 25 °C, even during summer. Our study provides the first detailed information on the ecology and behavior of L. rheocola and suggests ecological mechanisms for infection dynamics that have been observed in this endangered species.

  10. Ecosystem gross CO2 fluxes in a tropical rainforest estimated from carbonyl sulfide (COS)

    Science.gov (United States)

    Seibt, U. H.; Maseyk, K. S.; Lett, C.; Juarez, S.; Sun, W.

    2014-12-01

    Carbonyl sulfide (COS) is a promising new tracer to constrain the gross CO2 fluxes of land ecosystems, particularly in tropical forests where CO2 flux partitioning is often problematic due to the absence of turbulent flow at night. Since vegetation COS and CO2 uptake during photosynthesis is closely coupled, the gross fluxes of photosynthesis and respiration can be quantified through the concurrent measurements of COS and CO2. We measured ecosystem COS and CO2 exchange over four months in a tropical rainforest at La Selva, Costa Rica. We observed a strong ecosystem uptake of COS with a diel signal that was similar but not identical to net CO2 fluxes. Soils at the site mostly acted as COS sinks, correlated with soil moisture. The COS and CO2 data were used to calculate canopy photosynthesis (approx. GPP) from net ecosystem CO2 exchange (NEE) based on the empirical relationship of leaf relative uptake of COS and CO2. Mid-day COS-based GPP estimates ranged from -10 to -15 μmol m-2 s-1, compared to NEE of -5 to -10 μmol m-2 s-1. Ecosystem respiration, calculated as the difference of NEE and GPP, ranged from 5 to 10 μmol m-2 s-1, similar to previous estimates of 5 to 9 μmol m-2 s-1 from CO2 flux partitioning and respiration component measurements at the site. Our results support the application of COS as a new tool in ecosystem flux partitioning that may be particularly useful in tropical forests.

  11. Rainforests north of the Tropic of Cancer: Physiognomy, floristics and diversity in ‘lowland rainforests’ of Meghalaya, India

    Directory of Open Access Journals (Sweden)

    Uma Shankar

    2017-02-01

    Full Text Available The lowland rainforests of Meghalaya, India represent the westernmost limit of the rainforests north of the Tropic of Cancer. These forests, on the Shillong plateau, are akin to Whitmore's ‘tropical lowland evergreen rainforest’ formation and exhibit striking similarities and conspicuous differences with the equatorial rainforests in Asia-Pacific as well as tropical seasonal rainforests in southwestern China near the Tropic of Cancer. We found these common attributes of the rainforests in Meghalaya: familial composition with predominance of Euphorbiaceae, Lauraceae, Meliaceae, Moraceae, Myrsiticaceae, Myrtaceae and Rubiaceae; deciduousness in evergreen physiognomy; dominance of mega- and mesophanerophytic life-forms; abundance of species with low frequency of occurrence (rare and aggregated species; low proportional abundance of the abundant species; and truncated lognormal abundance distribution. The levels of stand density and stand basal area were comparable with seasonal rainforests in southwestern China, but were lower than equatorial rainforests. Tropical Asian species predominated flora, commanding 95% of the abundance. The differences include overall low stature (height of the forest, inconspicuous stratification in canopy, fewer species and individuals of liana, thicker understory, higher proportion of rare species, absence of locally endemic species and relatively greater dominance of Fagaceae and Theaceae. The richness of species per hectare (S was considerably lower at higher latitudes in Meghalaya than in equatorial rainforests, but was comparable with seasonal rainforests. Shannon's diversity index (H′ = 4.40 nats for ≥10 cm gbh and 4.25 nats for ≥30 cm gbh was lower on higher latitudes in Meghalaya in comparison to species-rich equatorial rainforests, but it was the highest among all lowland rainforests near the Tropic of Cancer.

  12. Rainforest-initiated wet season onset over the southern Amazon.

    Science.gov (United States)

    Wright, Jonathon S; Fu, Rong; Worden, John R; Chakraborty, Sudip; Clinton, Nicholas E; Risi, Camille; Sun, Ying; Yin, Lei

    2017-08-08

    Although it is well established that transpiration contributes much of the water for rainfall over Amazonia, it remains unclear whether transpiration helps to drive or merely responds to the seasonal cycle of rainfall. Here, we use multiple independent satellite datasets to show that rainforest transpiration enables an increase of shallow convection that moistens and destabilizes the atmosphere during the initial stages of the dry-to-wet season transition. This shallow convection moisture pump (SCMP) preconditions the atmosphere at the regional scale for a rapid increase in rain-bearing deep convection, which in turn drives moisture convergence and wet season onset 2-3 mo before the arrival of the Intertropical Convergence Zone (ITCZ). Aerosols produced by late dry season biomass burning may alter the efficiency of the SCMP. Our results highlight the mechanisms by which interactions among land surface processes, atmospheric convection, and biomass burning may alter the timing of wet season onset and provide a mechanistic framework for understanding how deforestation extends the dry season and enhances regional vulnerability to drought.

  13. Anthrax kills wild chimpanzees in a tropical rainforest.

    Science.gov (United States)

    Leendertz, Fabian H; Ellerbrok, Heinz; Boesch, Christophe; Couacy-Hymann, Emmanuel; Mätz-Rensing, Kerstin; Hakenbeck, Regine; Bergmann, Carina; Abaza, Pola; Junglen, Sandra; Moebius, Yasmin; Vigilant, Linda; Formenty, Pierre; Pauli, Georg

    2004-07-22

    Infectious disease has joined habitat loss and hunting as threats to the survival of the remaining wild populations of great apes. Nevertheless, relatively little is known about the causative agents. We investigated an unusually high number of sudden deaths observed over nine months in three communities of wild chimpanzees (Pan troglodytes verus) in the Taï National Park, Ivory Coast. Here we report combined pathological, cytological and molecular investigations that identified Bacillus anthracis as the cause of death for at least six individuals. We show that anthrax can be found in wild non-human primates living in a tropical rainforest, a habitat not previously known to harbour B. anthracis. Anthrax is an acute disease that infects ruminants, but other mammals, including humans, can be infected through contacting or inhaling high doses of spores or by consuming meat from infected animals. Respiratory and gastrointestinal anthrax are characterized by rapid onset, fever, septicaemia and a high fatality rate without early antibiotic treatment. Our results suggest that epidemic diseases represent substantial threats to wild ape populations, and through bushmeat consumption also pose a hazard to human health.

  14. Introduction and Overview of the AMazonian Aerosol characteriZation Experiment (AMAZE-08)

    Science.gov (United States)

    Martin, S. T.; Artaxo, P.; Team, A.

    2008-12-01

    The main objectives of AMAZE-08 were to understand the sources and regulators of organic particle mass in a pristine continental environment and the connections between particle chemistry and particle optical and hygroscopic properties. The AMAZE-08 tower measurements were conducted between February 7 and March 14, 2008 during the wet reason. The site was 60 km NNW of Manaus and located within a mostly pristine rainforest. The winds were predominantly from the ENE across 1600 km of mostly undeveloped forest. The site was mostly free of anthropogenic influences and allowed the study of pristine biological aerosol particles, although there were several episodes of long-range transport from Europe and Africa and more infrequent regional transport from Manaus and northerly biomass burning. Particle instrumentation included two high-resolution aerosol mass spectrometers (HR-ToF-AMS) with thermodenuder, two cloud condensation nuclei counters (CCNC), a continuous flow diffusion chamber (CFDC) for ice nuclei measurements, three optical particle counters (OPC), an ultraviolet aerodynamic particle sizer (UV-APS) for measurement of biologically active particles, two tapered element oscillating microbalances (TEOM), two scanning mobility particle sizers (SMPS), two multiwavelength nephelometers, three condensation particle counters (CPC), a multi-angle absorption photometer (MAAP), an athelometer, coarse- and fine-mode filters for elemental and ion analysis as well as particle imaging, an AERONET sun photometer including photosynthetically active radiation (PAR), and LIDAR system. Gas instrumentation included a proton-transfer mass spectrometer (PTR-MS), gas adsorption cartridge for off-line chromatographic analysis, and measurement of O3, CO, CO2, NO, and NOx. This talk will present an overview of AMAZE-08 and will highlight selected results.

  15. Species diversity and distribution patterns of the ants of Amazonian Ecuador.

    Directory of Open Access Journals (Sweden)

    Kari T Ryder Wilkie

    Full Text Available Ants are among the most diverse, abundant and ecologically significant organisms on earth. Although their species richness appears to be greatest in the New World tropics, global patterns of ant diversity and distribution are not well understood. We comprehensively surveyed ant diversity in a lowland primary rainforest in Western Amazonia, Ecuador using canopy fogging, pitfall traps, baits, hand collecting, mini-Winkler devices and subterranean probes to sample ants. A total of 489 ant species comprising 64 genera in nine subfamilies were identified from samples collected in only 0.16 square kilometers. The most species-rich genera were Camponotus, Pheidole, Pseudomyrmex, Pachycondyla, Brachymyrmex, and Crematogaster. Camponotus and Pseudomyrmex were most diverse in the canopy, while Pheidole was most diverse on the ground. The three most abundant ground-dwelling ant genera were Pheidole, Solenopsis and Pyramica. Crematogaster carinata was the most abundant ant species in the canopy; Wasmannia auropunctata was most abundant on the ground, and the army ant Labidus coecus was the most abundant subterranean species. Ant species composition among strata was significantly different: 80% of species were found in only one stratum, 17% in two strata, and 3% in all three strata. Elevation and the number of logs and twigs available as nest sites were significant predictors of ground-dwelling ant species richness. Canopy species richness was not correlated with any ecological variable measured. Subterranean species richness was negatively correlated with depth in the soil. When ant species were categorized using a functional group matrix based on diet, nest-site preference and foraging ecology, the greatest diversity was found in Omnivorous Canopy Nesters. Our study indicates ant species richness is exceptionally high at Tiputini. We project 647-736 ant species in this global hotspot of biodiversity. Considering the relatively small area surveyed, this

  16. Game depletion hypothesis of amazonian adaptation: data from a native community.

    Science.gov (United States)

    Vickers, W T

    1988-03-25

    The low population densities and impermanent settlements of Amazonian Indians are often interpreted as adaptations to a fauna that offers limited protein resources and is rapidly depleted by hunting. Data spanning the 10-year life cycle of one northwestern Amazonian settlement show that variations in hunt yields result from temporal variations in peccary (Tayassu pecari and T. tajacu) kills that appear extrinsic to native population size. After 10 years, hunting success remained high and the kill rates for most prey did not suggest depletion. An array of environmental factors accounts for the incipient settlement relocation observed.

  17. Commonness of Amazonian palm (Arecaceae) species: Cross-scale links and potential determinants

    DEFF Research Database (Denmark)

    Kristiansen, Thea; Svenning, J.-C.; Grández, César

    2009-01-01

    The mechanisms that cause variation in commonness (abundances and range sizes) of species remain debated in ecology, and a repeatedly observed pattern is the positive relation between local abundances and larger scale range sizes. We used the Amazonian palm species (Arecaceae) to investigate...... commonness in the Amazonian palm flora appear to be scale-dependent, with the unrelated local scale abundance and continental range size probably being controlled by different driving factors. Interestingly, commonness at the intermediate, landscape scale seems linked to both the smaller and the larger scale...

  18. Increasing risk of Amazonian drought due to decreasing aerosol pollution.

    Science.gov (United States)

    Cox, Peter M; Harris, Phil P; Huntingford, Chris; Betts, Richard A; Collins, Matthew; Jones, Chris D; Jupp, Tim E; Marengo, José A; Nobre, Carlos A

    2008-05-08

    The Amazon rainforest plays a crucial role in the climate system, helping to drive atmospheric circulations in the tropics by absorbing energy and recycling about half of the rainfall that falls on it. This region (Amazonia) is also estimated to contain about one-tenth of the total carbon stored in land ecosystems, and to account for one-tenth of global, net primary productivity. The resilience of the forest to the combined pressures of deforestation and global warming is therefore of great concern, especially as some general circulation models (GCMs) predict a severe drying of Amazonia in the twenty-first century. Here we analyse these climate projections with reference to the 2005 drought in western Amazonia, which was associated with unusually warm North Atlantic sea surface temperatures (SSTs). We show that reduction of dry-season (July-October) rainfall in western Amazonia correlates well with an index of the north-south SST gradient across the equatorial Atlantic (the 'Atlantic N-S gradient'). Our climate model is unusual among current GCMs in that it is able to reproduce this relationship and also the observed twentieth-century multidecadal variability in the Atlantic N-S gradient, provided that the effects of aerosols are included in the model. Simulations for the twenty-first century using the same model show a strong tendency for the SST conditions associated with the 2005 drought to become much more common, owing to continuing reductions in reflective aerosol pollution in the Northern Hemisphere.

  19. Can accelerometers detect mass variations in Amazonian trees?

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Gentine, Pierre; Guerin, Marceau; Hut, Rolf; Oliveira, Rafael; van de Giesen, Nick

    2016-04-01

    The mass of trees is influenced by physiological processes within the tree (e.g. transpiration and root water uptake), as well as external loads (e.g. intercepted precipitation). Recent studies have found diurnal variations in radar backscatter over vegetated areas, which might be attributed to mass changes of the vegetation layer. Field measurements are required to study the driving processes. This study aims to use measured three-dimensional displacement and acceleration of trees, to detect and quantify their diurnal (bio)mass variations. Accelerometers and dendrometers were installed on seven different tree species in the Amazon rainforest. Trees were selected to cover a broad range of wood density. Using spectral analysis, the governing frequencies in the acceleration time series were found. The governing frequencies showed a diurnal pattern, as well as a change during precipitation events. Our results suggest that we can separate and potentially quantify tree mass changes due to (1) internal water redistribution and (2) intercepted precipitation. This will allow further investigation of the effect of precipitation and water stress on tree dynamics in forest canopies.

  20. Revisiting Amazonian Plants for Skin Care and Disease

    Directory of Open Access Journals (Sweden)

    Bruno Burlando

    2017-07-01

    Full Text Available This review concerns five species of trees and palm trees that occur as dominant plants in different rainforest areas of the Amazon region. Due to their abundance, these species can be exploited as sustainable sources of botanical materials and include Carapa guianensis Aubl., family Meliaceae; Eperua falcata Aubl., family Fabaceae; Quassia amara L., family Simaroubaceae; and Attalea speciosa Mart. and Oenocarpus bataua Mart., family Arecaceae. For each species, the general features, major constituents, overall medicinal properties, detailed dermatological and skin care applications, and possible harmful effects have been considered. The major products include seed oils from A. speciosa and C. guianensis, fruit oil from O. bataua, and active compounds such as limonoids from C. guianensis, flavonoids from E. falcata, and quassinoids from Q. amara. The dermatologic and cosmetic applications of these plants are growing rapidly but are still widely based on empiric knowledge. Applications include skin rehydration and soothing; anti-inflammatory, antiage, and antiparasite effects; hair care; burn and wound healing; and the amelioration of rosacea and psoriasis conditions. Despite a limited knowledge about their constituents and properties, these species appear as promising sources of bioactive compounds for skin care and health applications. An improvement of knowledge about their properties will provide added value to the exploitation of these forest resources.

  1. Paleocene wind-dispersed fruits and seeds from Colombia and their implications for early Neotropical rainforests

    Directory of Open Access Journals (Sweden)

    Herrera Fabiany

    2014-12-01

    Full Text Available Extant Neotropical rainforests are well known for their remarkable diversity of fruit and seed types. Biotic agents disperse most of these disseminules, whereas wind dispersal is less common. Although wind-dispersed fruits and seeds are greatly overshadowed in closed rainforests, many important families in the Neotropics (e.g., Bignoniaceae, Fabaceae, Malvaceae, Orchidaceae, Sapindaceae show numerous morphological adaptations for anemochory (i.e. wings, accessory hairs. Most of these living groups have high to moderate levels of plant diversity in the upper levels of the canopy. Little is known about the fossil record of wind-dispersed fruits and seeds in the Neotropics. Six new species of disseminules with varied adaptations for wind dispersal are documented here. These fossils, representing extinct genera of Ulmaceae, Malvaceae, and some uncertain families, indicate that wind-dispersed fruit and seed syndromes were already common in the Neotropics by the Paleocene, coinciding with the early development of multistratal rainforests. Although the major families known to include most of the wind-dispersed disseminules in extant rainforests are still missing from the Paleogene fossil record of South and Central America, the new fossils imply that anemochory was a relatively important product and/or mechanism of plant evolution and diversification in early Neotropical rainforests.

  2. Calibração do "simplified simple biosphere model - SSiB" para áreas de pastagem e floresta na Amazônia com dados do LBA Calibration of the simplified simple biosphere model (SSiB for Amazonian pasture and forest sites using LBA data

    Directory of Open Access Journals (Sweden)

    Francis Wagner Silva Correia

    2005-06-01

    Full Text Available Os parâmetros do "Simplified Simple Biosphere Model"-SSiB foram validados e posteriormente calibrados para os sítios de pastagem da Fazenda Nossa Senhora Aparecida (62º22'W; 10º45'S e de floresta da Reserva Biológica do Jaru (62º22'W; 10º45'S, ambos situados no estado de Rondônia. Foram utilizadas medidas micrometeorológicas e hidrológicas obtidas durante o período seco de 2001, como parte do Experimento de Grande Escala da Biosfera-Atmosfera na Amazônia - LBA. Os resultados indicam que o modelo simulou bem o saldo de radiação, tanto na pastagem quanto na floresta. O fluxo de calor latente foi superestimado nos dois sítios nos períodos de simulação, o que deve estar relacionado aos parâmetros utilizados no cálculo dessa variável. O modelo subestimou o fluxo de calor sensível na pastagem e na floresta, principalmente no período noturno; porém, para a floresta, os valores foram mais próximos daqueles observados. Com os parâmetros ajustados, melhores estimativas dos fluxos de calor latente e de calor sensível foram geradas e, conseqüentemente, representou melhor as partições de energia na floresta e na pastagem.The parameters of the Simplified Simple Biosphere Model - SSiB were validated and subsequently calibrated for the Fazenda Nossa Senhora Aparecida (62º22'W; 10º45'S pasture site and the Reserva Biológica do Jaru (62º22'W; 10º45'S forest site, both located in the state of Rondônia. Micrometeorological and hydrological data collected during the dry period of 2001, as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - LBA, were used. The results showed that the model simulated well the net radiation, both at the pasture and at the forest. The latent heat flux was super-estimated in both sites. The model sub-estimated the sensible heat flux at the pasture and at the forest, mainly during the night period; notwithstanding, the values for the forest were nearer to the observed ones. With the

  3. Tropical rainforest biome of Biosphere 2. Structure, composition and results of the first 2 years of operation

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Linda S. [Systems Ecology and Energy Analysis Program, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL (United States); Burgess, Tony; Marino, Bruno D.V.; Wei, Yong Dan [Biosphere 2 Center, Inc. P.O. Box 689, Oracle, AZ (United States)

    1999-06-01

    The tropical rainforest biome in the Biosphere 2 mesocosm was managed with rainfall and temperature conditions to simulate a natural rainforest typical of the new world tropics. The establishment of the biome was based on the introduction of excessive numbers of species allowing self-organization of an ecologically unique rainforest. Over 282 species of plants from rainforest areas were planted within the topographically diverse rainforest biome (area of 1900 m{sup 2}, volume of 35,000 m{sup 3}), just before the Biosphere 2 closure in 1991. Approximately 61% of these species survived when counted in 1993, representing a plant species richness reduction to 172 species in 0.19 hectare. Rank order graphs show that a high diversity community resulted not unlike insular rainforests. The plants of the rainforest mesocosm, however, grew under anomalous conditions of soil (amended desert grassland soil), atmospheric composition (CO{sub 2} up to 4500 ppm by volume (ppmv)) and rainwater composition (high salinity and nutrients). Stem growth rates of a dominant canopy tree, Cecropia, were up to four times higher but had reduced diameter at breast height compared to natural counterparts. Human intervention in plant succession was also an important factor in shaping the ecology of the rainforest biome of Biosphere 2

  4. Amazonian Buriti oil: chemical characterization and antioxidant potential

    Directory of Open Access Journals (Sweden)

    Speranza, P.

    2016-06-01

    Full Text Available Buriti oil is an example of an Amazonian palm oil of economic importance. The local population uses this oil for the prevention and treatment of different diseases; however, there are few studies in the literature that evaluate its properties. In this study, detailed chemical and antioxidant properties of Buriti oil were determined. The predominant fatty acid was oleic acid (65.6% and the main triacylglycerol classes were tri-unsaturated (50.0% and di-unsaturated-mono-saturated (39.3% triacylglycerols. The positional distribution of the classes of fatty acids on the triacylglycerol backbone indicated a saturated and unsaturated fatty acid relationship similar in the three-triacylglycerol positions. All tocopherol isomers were present, with a total content of 2364.1 mg·kg−1. α-tocopherol constitutes 48% of the total tocopherol content, followed by γ- tocopherol (45%. Total phenolic (107.0 mg gallic acid equivalent·g−1 oil and β-carotene (781.6 mg·kg−1 were particularly high in this oil. The highest antioxidant activity against the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH was obtained at an oil concentration of 50 mg·mL−1 (73.15%. The antioxidant activity evaluated by the Oxygen Radical Absorbance Capacity (ORAC was 95.3 μmol Trolox equivalent·g−1 oil. These results serve to present Buriti oil as an Amazonian resource for cosmetic, food and pharmaceuticals purposes.El aceite de Buriti es un ejemplo de aceite de palma amazónica de gran importancia económica. La población local utiliza este aceite para la prevención y el tratamiento de diferentes enfermedades; sin embargo, hay pocos estudios científicos que evalúen sus propiedades. En este estudio, se determinaron las propiedades antioxidantes del aceite de Buriti. El ácido graso predominante fue el oleico (65,6 % y las principales clases de triglicéridos fueron tri-insaturadas (50,0 % y Di-insaturados-mono-saturada (39,3 %. La distribución posicional de las

  5. Thresholds of species loss in Amazonian deforestation frontier landscapes.

    Science.gov (United States)

    Ochoa-Quintero, Jose Manuel; Gardner, Toby A; Rosa, Isabel; Ferraz, Silvio Frosini de Barros; Sutherland, William J

    2015-04-01

    In the Brazilian Amazon, private land accounts for the majority of remaining native vegetation. Understanding how land-use change affects the composition and distribution of biodiversity in farmlands is critical for improving conservation strategies in the face of rapid agricultural expansion. Working across an area exceeding 3 million ha in the southwestern state of Rondônia, we assessed how the extent and configuration of remnant forest in replicate 10,000-ha landscapes has affected the occurrence of a suite of Amazonian mammals and birds. In each of 31 landscapes, we used field sampling and semistructured interviews with landowners to determine the presence of 28 large and medium sized mammals and birds, as well as a further 7 understory birds. We then combined results of field surveys and interviews with a probabilistic model of deforestation. We found strong evidence for a threshold response of sampled biodiversity to landscape level forest cover; landscapes with deforested landscapes many species are susceptible to extirpation following relatively small additional reductions in forest area. In the model of deforestation by 2030 the number of 10,000-ha landscapes under a conservative threshold of 43% forest cover almost doubled, such that only 22% of landscapes would likely to be able to sustain at least 75% of the 35 focal species we sampled. Brazilian law requires rural property owners in the Amazon to retain 80% forest cover, although this is rarely achieved. Prioritizing efforts to ensure that entire landscapes, rather than individual farms, retain at least 50% forest cover may help safeguard native biodiversity in private forest reserves in the Amazon. © 2015 Society for Conservation Biology.

  6. Are tortoises important seed dispersers in Amazonian forests?

    Science.gov (United States)

    Jerozolimski, Adriano; Ribeiro, Maria Beatriz N; Martins, Marcio

    2009-09-01

    According to most studies on seed dispersal in tropical forests, mammals and birds are considered the main dispersal agents and the role played by other animal groups remains poorly explored. We investigate qualitative and quantitative components of the role played by the tortoise Chelonoidis denticulata in seed dispersal in southeastern Amazon, and the influence of seasonal variation in tortoise movement patterns on resulting seed shadows. Seed shadows produced by this tortoise were estimated by combining information on seed passage times through their digestive tract, which varied from 3 to 17 days, with a robust dataset on movements obtained from 18 adult C. denticulata monitored with radio transmitters and spoon-and-line tracking devices. A total of 4,206 seeds were found in 94 collected feces, belonging to 50 seed morphotypes of, at least, 25 plant genera. Very low rates of damage to the external structure of the ingested seeds were observed. Additionally, results of germination trials suggested that passage of seeds through C. denticulata's digestive tract does not seem to negatively affect seed germination. The estimated seed shadows are likely to contribute significantly to the dispersal of seeds away from parent plants. During the dry season seeds were dispersed, on average, 174.1 m away from the location of fruit ingestion; during the rainy season, this mean dispersal distance increased to 276.7 m. Our results suggest that C. denticulata plays an important role in seed dispersal in Amazonian forests and highlight the influence of seasonal changes in movements on the resulting seed shadows.

  7. Environmental characteristics drive variation in Amazonian understorey bird assemblages.

    Science.gov (United States)

    Menger, Juliana; Magnusson, William E; Anderson, Marti J; Schlegel, Martin; Pe'er, Guy; Henle, Klaus

    2017-01-01

    Tropical bird assemblages display patterns of high alpha and beta diversity and, as tropical birds exhibit strong habitat specificity, their spatial distributions are generally assumed to be driven primarily by environmental heterogeneity and interspecific interactions. However, spatial distributions of some Amazonian forest birds are also often restricted by large rivers and other large-scale topographic features, suggesting that dispersal limitation may also play a role in driving species' turnover. In this study, we evaluated the effects of environmental characteristics, topographic and spatial variables on variation in local assemblage structure and diversity of birds in an old-growth forest in central Amazonia. Birds were mist-netted in 72 plots distributed systematically across a 10,000 ha reserve in each of three years. Alpha diversity remained stable through time, but species composition changed. Spatial variation in bird-assemblage structure was significantly related to environmental and topographic variables but not strongly related to spatial variables. At a broad scale, we found bird assemblages to be significantly distinct between two watersheds that are divided by a central ridgeline. We did not detect an effect of the ridgeline per se in driving these patterns, indicating that most birds are able to fly across it, and that differences in assemblage structure between watersheds may be due to unmeasured environmental variables or unique combinations of measured variables. Our study indicates that complex geography and landscape features can act together with environmental variables to drive changes in the diversity and composition of tropical bird assemblages at local scales, but highlights that we still know very little about what makes different parts of tropical forest suitable for different species.

  8. Environmental characteristics drive variation in Amazonian understorey bird assemblages

    Science.gov (United States)

    Magnusson, William E.; Anderson, Marti J.; Schlegel, Martin; Pe’er, Guy; Henle, Klaus

    2017-01-01

    Tropical bird assemblages display patterns of high alpha and beta diversity and, as tropical birds exhibit strong habitat specificity, their spatial distributions are generally assumed to be driven primarily by environmental heterogeneity and interspecific interactions. However, spatial distributions of some Amazonian forest birds are also often restricted by large rivers and other large-scale topographic features, suggesting that dispersal limitation may also play a role in driving species’ turnover. In this study, we evaluated the effects of environmental characteristics, topographic and spatial variables on variation in local assemblage structure and diversity of birds in an old-growth forest in central Amazonia. Birds were mist-netted in 72 plots distributed systematically across a 10,000 ha reserve in each of three years. Alpha diversity remained stable through time, but species composition changed. Spatial variation in bird-assemblage structure was significantly related to environmental and topographic variables but not strongly related to spatial variables. At a broad scale, we found bird assemblages to be significantly distinct between two watersheds that are divided by a central ridgeline. We did not detect an effect of the ridgeline per se in driving these patterns, indicating that most birds are able to fly across it, and that differences in assemblage structure between watersheds may be due to unmeasured environmental variables or unique combinations of measured variables. Our study indicates that complex geography and landscape features can act together with environmental variables to drive changes in the diversity and composition of tropical bird assemblages at local scales, but highlights that we still know very little about what makes different parts of tropical forest suitable for different species. PMID:28225774

  9. The future of South East Asian rainforests in a changing landscape and climate.

    Science.gov (United States)

    Hector, Andy; Fowler, David; Nussbaum, Ruth; Weilenmann, Maja; Walsh, Rory P D

    2011-11-27

    With a focus on the Danum Valley area of Sabah, Malaysian Borneo, this special issue has as its theme the future of tropical rainforests in a changing landscape and climate. The global environmental context to the issue is briefly given before the contents and rationale of the issue are summarized. Most of the papers are based on research carried out as part of the Royal Society South East Asia Rainforest Research Programme. The issue is divided into five sections: (i) the historical land-use and land management context; (ii) implications of land-use change for atmospheric chemistry and climate change; (iii) impacts of logging, forest fragmentation (particularly within an oil palm plantation landscape) and forest restoration on ecosystems and their functioning; (iv) the response and resilience of rainforest systems to climatic and land-use change; and (v) the scientific messages and policy implications arising from the research findings presented in the issue.

  10. Climate, nitrogen limitation, and nitrate losses from tropical rainforests

    Science.gov (United States)

    Brookshire, J.; Gerber, S.; Menge, D.

    2010-12-01

    Researchers have long observed that rates of plant growth, litter fall, and decomposition are generally higher in tropical forests than temperate forests. On one hand, this broad geographic pattern has a seemingly simple and intuitive explanation: perennially warm temperatures and ample rainfall in tropical latitudes promote luxuriant vegetative growth and rapid litter decomposition relative to temperate latitudes. However, temperature and moisture also affect other ecosystem processes, which are known to affect plant growth and decomposition. For example, nutrients necessary for biomass growth vary widely in availability across soils and climates and thus have the potential to constrain rates of primary production. In particular, researchers have long observed that many tropical forests accumulate, recycle, and export large amounts of nitrogen (N) relative to temperate forests. Here, we focus on the observation that hydrologic nitrate losses from unpolluted, humid, old-growth tropical forests can be considerably higher than from analogous temperate forests. We ask whether high nitrate losses from tropical forests are consistent with an N-limited ecosystem with proportionally greater inorganic leaks due to larger and faster cycling detrital pools under a warm, wet climate. We evaluate this question in the context of a simple analytical framework of terrestrial N cycling and compare our predictions to data of nitrate-N in stream waters of mature temperate and tropical rainforests. Our model describes the temporal tendency of mineral N pools (predominantly nitrate) in soils. We evaluate N losses under the hypothesis of N limitation, while allowing for parameters sensitive to climate to vary for temperate vs. tropical forests. According to our analysis, the observed 17 fold higher NO3- losses from tropical than temperate forests is only consistent with N limitation if the N uptake rate constant is 4 fold lower in tropical than temperate forests. Given that plant

  11. Late Paleocene fossils from the Cerrejon Formation, Colombia, are the earliest record of Neotropical rainforest.

    Science.gov (United States)

    Wing, Scott L; Herrera, Fabiany; Jaramillo, Carlos A; Gómez-Navarro, Carolina; Wilf, Peter; Labandeira, Conrad C

    2009-11-03

    Neotropical rainforests have a very poor fossil record, making hypotheses concerning their origins difficult to evaluate. Nevertheless, some of their most important characteristics can be preserved in the fossil record: high plant diversity, dominance by a distinctive combination of angiosperm families, a preponderance of plant species with large, smooth-margined leaves, and evidence for a high diversity of herbivorous insects. Here, we report on an approximately 58-my-old flora from the Cerrejón Formation of Colombia (paleolatitude approximately 5 degrees N) that is the earliest megafossil record of Neotropical rainforest. The flora has abundant, diverse palms and legumes and similar family composition to extant Neotropical rainforest. Three-quarters of the leaf types are large and entire-margined, indicating rainfall >2,500 mm/year and mean annual temperature >25 degrees C. Despite modern family composition and tropical paleoclimate, the diversity of fossil pollen and leaf samples is 60-80% that of comparable samples from extant and Quaternary Neotropical rainforest from similar climates. Insect feeding damage on Cerrejón fossil leaves, representing primary consumers, is abundant, but also of low diversity, and overwhelmingly made by generalist feeders rather than specialized herbivores. Cerrejón megafossils provide strong evidence that the same Neotropical rainforest families have characterized the biome since the Paleocene, maintaining their importance through climatic phases warmer and cooler than present. The low diversity of both plants and herbivorous insects in this Paleocene Neotropical rainforest may reflect an early stage in the diversification of the lineages that inhabit this biome, and/or a long recovery period from the terminal Cretaceous extinction.

  12. Reactive nitrogen deposition to South East Asian rainforest

    Science.gov (United States)

    di Marco, Chiara F.; Phillips, Gavin J.; Thomas, Rick; Tang, Sim; Nemitz, Eiko; Sutton, Mark A.; Fowler, David; Lim, Sei F.

    2010-05-01

    The supply of reactive nitrogen (N) to global terrestrial ecosystems has doubled since the 1960s as a consequence of human activities, such as fertilizer application and production of nitrogen oxides by fossil-fuel burning. The deposition of atmospheric N species constitutes a major nutrient input to the biosphere. Tropical forests have been undergoing a radical land use change by increasing cultivation of sugar cane and oil palms and the remaining forests are increasingly affected by anthropogenic activities. Yet, quantifications of atmospheric nitrogen deposition to tropical forests, and nitrogen cycling under near-pristine and polluted conditions are rare. The OP3 project ("Oxidant and Particle Photochemical Processes above a Southeast Asian Tropical Rainforest") was conceived to study how emissions of reactive trace gases from a tropical rain forest mediate the regional scale production and processing of oxidants and particles, and to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate. As part of this study we have measured reactive, nitrogen containing trace gas (ammonia, nitric acid) and the associated aerosol components (ammonium, nitrate) at monthly time resolution using a simple filter / denuder for 16 months. These measurements were made at the Bukit Atur Global Atmospheric Watch tower near Danum Valley in the Malaysian state of Sabah, Borneo. In addition, the same compounds were measured at hourly time-resolution during an intensive measurement period, with a combination of a wet-chemistry system based on denuders and steam jet aerosol collectors and an aerosol mass spectrometer (HR-ToF-AMS), providing additional information on the temporal controls. During this period, concentrations and fluxes of NO, NO2 and N2O were also measured. The measurements are used for inferential dry deposition modelling and combined with wet deposition data from the South East Asian Acid

  13. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves.

    Science.gov (United States)

    Martínez-Ramos, Miguel; Ortiz-Rodríguez, Iván A; Piñero, Daniel; Dirzo, Rodolfo; Sarukhán, José

    2016-05-10

    Anthropogenic disturbances affecting tropical forest reserves have been documented, but their ecological long-term cumulative effects are poorly understood. Habitat fragmentation and defaunation are two major anthropogenic threats to the integrity of tropical reserves. Based on a long-term (four decades) study, we document how these disturbances synergistically disrupt ecological processes and imperil biodiversity conservation and ecosystem functioning at Los Tuxtlas, the northernmost tropical rainforest reserve in the Americas. Deforestation around this reserve has reduced the reserve to a medium-sized fragment (640 ha), leading to an increased frequency of canopy-gap formation. In addition, hunting and habitat loss have caused the decline or local extinction of medium and large herbivores. Combining empirical, experimental, and modeling approaches, we support the hypothesis that such disturbances produced a demographic explosion of the long-lived (≈120 y old, maximum height of 7 m) understory palm Astrocaryum mexicanum, whose population has increased from 1,243-4,058 adult individuals per hectare in only 39 y (annual growth rate of ca 3%). Faster gap formation increased understory light availability, enhancing seed production and the growth of immature palms, whereas release from mammalian herbivory and trampling increased survival of seedlings and juveniles. In turn, the palm's demographic explosion was followed by a reduction of tree species diversity, changing forest composition, altering the relative contribution of trees to forest biomass, and disrupting litterfall dynamics. We highlight how indirect anthropogenic disturbances (e.g., palm proliferation) on otherwise protected areas threaten tropical conservation, a phenomenon that is currently eroding the planet's richest repositories of biodiversity.

  14. Bromeliad catchments as habitats for methanogenesis in tropical rainforest canopies

    Directory of Open Access Journals (Sweden)

    Shana K. Goffredi

    2011-12-01

    Full Text Available Tropical epiphytic plants within the family Bromeliaceae are unusual in that they possess foliage capable of retaining water and impounded material. This creates an acidic (pH 3.5-6.5 and anaerobic (< 1 ppm O2 environment suspended in the canopy. Results from a Costa Rican rainforest show that most bromeliads (n = 75/86 greater than ~20 cm in plant height or ~4-5 cm tank depth, showed presence of methanogens within the lower anoxic horizon of the tank. Archaea were dominated by methanogens (77-90% of recovered ribotypes and community structure, although variable, was generally comprised of a single type, closely related to either hydrogenotrophic Methanoregula or Methanocella, a specific clade of aceticlastic Methanosaeta, or Methanosarcina. Juvenile bromeliads, or those species, such as Guzmania, with shallow tanks, generally did not possess methanogens, as assayed by PCR specific for methanogen 16S rRNA genes, nor did artificial catchments (~ 100 ml volume, in place 6-12 months prior to sample collection. Methanogens were not detected in soil (n = 20, except in one case, in which the dominant ribotype was different from nearby bromeliads. Recovery of methyl coenzyme M reductase genes supported the occurrence of hydrogenotrophic and aceticlastic methanogens within bromeliad tanks, as well as the trend, via QPCR analysis of mcrA, of increased methanogenic capacity with increased plant height. Methane production rates of up to 300 nmol CH4 ml tank water -1 day-1 were measured in microcosm experiments. These results suggest that bromeliad-associated archaeal communities may play an important role in the cycling of carbon in neotropical forests.

  15. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1)

    Science.gov (United States)

    Fyllas, N. M.; Gloor, E.; Mercado, L. M.; Sitch, S.; Quesada, C. A.; Domingues, T. F.; Galbraith, D. R.; Torre-Lezama, A.; Vilanova, E.; Ramírez-Angulo, H.; Higuchi, N.; Neill, D. A.; Silveira, M.; Ferreira, L.; Aymard C., G. A.; Malhi, Y.; Phillips, O. L.; Lloyd, J.

    2014-07-01

    Repeated long-term censuses have revealed large-scale spatial patterns in Amazon basin forest structure and dynamism, with some forests in the west of the basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth, designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAINFOR), has been developed. The model allows for within-stand variations in tree size distribution and key functional traits and between-stand differences in climate and soil physical and chemical properties. It runs at the stand level with four functional traits - leaf dry mass per area (Ma), leaf nitrogen (NL) and phosphorus (PL) content and wood density (DW) varying from tree to tree - in a way that replicates the observed continua found within each stand. We first applied the model to validate canopy-level water fluxes at three eddy covariance flux measurement sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for larger trees. At the stand level, simulations at 40 plots were used to explore the influence of climate and soil nutrient availability on the gross (ΠG) and net (ΠN) primary production rates as well as the carbon use efficiency (CU). Simulated ΠG, ΠN and CU were not associated with temperature. On the other hand, all three measures of stand level productivity were positively related to both mean annual precipitation and soil nutrient status

  16. Soil-atmosphere carbonyl sulfide (COS) exchange in a tropical rainforest at La Selva, Costa Rica

    Science.gov (United States)

    Sun, W.; Maseyk, K. S.; Juarez, S.; Lett, C.; Seibt, U. H.

    2014-12-01

    Carbonyl sulfide (COS) has recently been proposed as a promising tracer for partitioning ecosystem carbon assimilation due to the close analogy between leaf uptake processes of COS and CO2. This emerging framework requires accurate characterization of the source and sink components of COS, including soil fluxes. Here we present the first direct, continuous observations of soil COS fluxes for 4 months at a tropical rainforest, La Selva Biological Station, Costa Rica. Three soil plots with contrasting water content were selected for chamber measurements. Our observations confirmed that soils are principally COS sinks, with daily mean COS fluxes averaged across all chambers ranging from -3 to 0 pmol m-2 s-1. When compared with net ecosystem COS uptake which peaks around -30 pmol m-2 s-1, their contributions should be considered in ecosystem COS balance. We did not find a temperature optimum, but soil COS uptake slightly increased with soil temperature, indicating biotic control on soil COS fluxes. Diurnal cycles of COS fluxes were observed during drying out periods after rain. The diel periodicity of COS fluxes was probably obscured by frequent raining at the site. Diffusional control of soil COS fluxes is shown from increasing soil COS uptake at lower soil water-filled pore space. These confirm that soil COS fluxes are mediated both by soil physical and biological factors. Using a depth-resolved diffusion-reaction model with data-driven enzyme activity parameterization, we simulated the COS fluxes from measured soil environmental variables, consistent with observations. This modeling scheme is useful for separating soil COS fluxes from net ecosystem COS fluxes, which lends support to the emergent COS-based approach of carbon flux partitioning.

  17. Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama

    Science.gov (United States)

    Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.

    2008-01-01

    Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K

  18. Recent (Late Amazonian) enhanced backweathering rates on Mars : Paracratering evidence from gully alcoves

    NARCIS (Netherlands)

    De Haas, Tjalling; Conway, Susan J.; Krautblatter, Michael

    2015-01-01

    Mars is believed to have been exposed to low planet-wide weathering and denudation since the Noachian. However, the widespread occurrence of alcoves at the rim of pristine impact craters suggests locally enhanced recent backweathering rates. Here we derive Late Amazonian backweathering rates from th

  19. Amazonian-aged fluvial system and associated ice-related features in Terra Cimmeria, Mars

    NARCIS (Netherlands)

    Adeli, Solmaz; Hauber, Ernst; Kleinhans, Maarten; Le Deit, Laetitia; Platz, Thomas; Fawdon, Peter; Jaumann, Ralf

    2016-01-01

    The Martian climate throughout the Amazonian is widely believed to have been cold and hyper-arid, very similar to the current conditions. However, ubiquitous evidence of aqueous and glacial activity has been recently reported, including channels that can be tens to hundreds of kilometres long, alluv

  20. Soil Fraction and Black Carbon Particles of Amazonian Dark Earth Harbor Different Fungal Abundance and Diversity

    NARCIS (Netherlands)

    Reis Lucheta, Adriano; Souza Cannavan, F.S.; Tsai, S.M.; Kuramae, E.E.

    2017-01-01

    Amazonian Dark Earth (ADE) is a highly fertile soil of anthropogenic origin characterized by higher amount of charred black carbon (BC). ADE is considered a fertility model, however knowledge about the fungal community structure and diversity inhabiting ADE and BC is scarce. Fungal community

  1. Effects of Amazonian Dark Earths on growth and leaf nutrient balance of tropical tree seedlings

    NARCIS (Netherlands)

    Quintero Vallejo, Estela; Pena Claros, M.; Bongers, F.; Toledo, M.; Poorter, L.

    2015-01-01

    Background and aims: Amazonian Dark Earths (ADE) are ancient anthropogenic soils distributed in the Amazon basin. They are characterized by high nutrients such as phosphorus, calcium, potassium and nitrogen. We studied the effect of ADE on growth, morphology and physiology of 17 tree species from a

  2. Effects of reduced-impact logging and forest physiognomy on bat populations of lowland Amazonian forest.

    Science.gov (United States)

    Steven J. Presley; Michael R. Willig; Wunderle Jr. Joseph M.; Luis Nélio. Saldanha

    2008-01-01

    1.As human population size increases, demand for natural resources will increase. Logging pressure related to increasing demands continues to threaten remote areas of Amazonian forest. A harvest protocol is required to provide renewable timber resources that meet consumer needs while minimizing negative effects on biodiversity and ecosystem services. Reduced-impact...

  3. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    Science.gov (United States)

    Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin. PMID:27651991

  4. Widespread loess-like deposit in the Martian northern lowlands identifies Middle Amazonian climate change

    Science.gov (United States)

    Skinner, James A.; Tanaka, Kenneth L.; Thomas Platz,

    2014-01-01

    Consistently mappable units critical to distinguishing the style and interplay of geologic processes through time are sparse in the Martian lowlands. This study identifies a previously unmapped Middle Amazonian (ca. 1 Ga) unit (Middle Amazonian lowland unit, mAl) that postdates the Late Hesperian and Early Amazonian lowland plains by >2 b.y. The unit is regionally defined by subtle marginal scarps and slopes, has a mean thickness of 32 m, and extends >3.1 × 106 km2 between lat 35°N and 80°N. Pedestal-type craterforms and nested, arcuate ridges (thumbprint terrain) tend to occur adjacent to unit mAl outcrops, suggesting that current outcrops are vestiges of a more extensive deposit that previously covered ∼16 × 106 km2. Exposed layers, surface pits, and the draping of subjacent landforms allude to a sedimentary origin, perhaps as a loess-like deposit emplaced rhythmically through atmospheric fallout. We propose that unit mAl accumulated coevally with, and at the expense of, the erosion of the north polar basal units, identifying a major episode of Middle Amazonian climate-driven sedimentation in the lowlands. This work links ancient sedimentary processes to climate change that occurred well before those implied by current orbital and spin axis models.

  5. Morphology, morphometry and ultrastructure of the Amazonian manatee (Sirenia: Trichechidae spermatozoa

    Directory of Open Access Journals (Sweden)

    Rodrigo S. Amaral

    2010-01-01

    Full Text Available This study describes the morphological, morphometric and ultrastructural characteristics of the Amazonian manatee Trichechus inunguis (Natterer, 1883 spermatozoon. The spermatozoa were obtained from a urine sample of an adult T. inunguis kept in captivity. The spermatozoa were analyzed by light and transmission electron microscopy. The head of Amazonian manatee spermatozoa had a flat oval shape and a well distinguishable midpiece. The mean dimensions of the spermatozoa were: head length, 7.49 ± 0.24 µm; head width, 3.53 ± 0.19 µm; head thickness, 1.61 ± 0.13 µm; midpiece length, 11.36 ± 0.34 µm; flagellum length, 40.91 ± 1.94 µm; total tail length, 52.16 ± 1.06 µm; total spermatozoon length, 60.08 ± 1.40 µm. The Amazonian manatee spermatozoa were similar in shape to other sirenian spermatozoa; however, presenting a different size. This study describes, for the first time, the morphometric and ultrastructural characteristics of the Amazonian manatee spermatozoa, and also demonstrates the possible use of spermatozoa retrieved from urine samples for biological studies.

  6. Recent (Late Amazonian) enhanced backweathering rates on Mars : Paracratering evidence from gully alcoves

    NARCIS (Netherlands)

    De Haas, Tjalling; Conway, Susan J.; Krautblatter, Michael

    2015-01-01

    Mars is believed to have been exposed to low planet-wide weathering and denudation since the Noachian. However, the widespread occurrence of alcoves at the rim of pristine impact craters suggests locally enhanced recent backweathering rates. Here we derive Late Amazonian backweathering rates from

  7. The role of Amazonian anthropogenic soils in shifting cultivation: learning from farmers’ rationales

    NARCIS (Netherlands)

    Braga Junqueira, A.; Almekinders, C.J.M.; Stomph, T.J.; Clement, C.R.; Struik, P.C.

    2016-01-01

    We evaluated farmers’ rationales to understand their decision making in relation to the use of fertile anthropogenic soils, i.e., Amazonian dark earths (ADE), and for dealing with changes in shifting cultivation in Central Amazonia. We analyzed qualitative information from 196 interviews with farmer

  8. Legacies of Amazonian dark earths on forest composition, structure and dynamics

    NARCIS (Netherlands)

    Quintero Vallejo, E.M.

    2015-01-01

    Summary

    Amazonian forest is seen as the archetype of pristine forests, untouched by humans, but this romantic view is far from reality. In recent years, there is increasing evidence of long and extensive landscape modification by humans. Processes of permanent inhabitation,

  9. Recent (Late Amazonian) enhanced backweathering rates on Mars : Paracratering evidence from gully alcoves

    NARCIS (Netherlands)

    De Haas, Tjalling; Conway, Susan J.; Krautblatter, Michael

    2015-01-01

    Mars is believed to have been exposed to low planet-wide weathering and denudation since the Noachian. However, the widespread occurrence of alcoves at the rim of pristine impact craters suggests locally enhanced recent backweathering rates. Here we derive Late Amazonian backweathering rates from th

  10. The Perceptions of Knowledge and Learning of Amazonian Indigenous Teacher Education Students

    Science.gov (United States)

    Veintie, Tuija; Holm, Gunilla

    2010-01-01

    This study focuses on the perceptions of knowledge and learning by indigenous students in an intercultural bilingual teacher education programme in Amazonian Ecuador. The study framed within postcolonial and critical theory attempts to create a space for the indigenous students to speak about their own views through the use of photography and…

  11. Climate, demography and lek stability in an Amazonian bird.

    Science.gov (United States)

    Ryder, Thomas B; Sillett, T Scott

    2016-01-27

    Lekking is a rare, but iconic mating system where polygynous males aggregate and perform group displays to attract females. Existing theory postulates that demographic and environmental stability are required for lekking to be an evolutionarily viable reproductive strategy. However, we lack empirical tests for the hypotheses that lek stability is facilitated by age-specific variation in demographic rates, and by predictable, abundant resources. To address this knowledge gap, we use multistate models to examine how two demographic elements of lek stability-male survival and recruitment-vary with age, social status and phase of the El Niño Southern Oscillation (ENSO) in a Neotropical frugivorous bird, the wire-tailed manakin (Pipra filicauda). Our results show that demographic and environmental conditions were related to lek stability in the Ecuadorean Amazon. Apparent annual survival probability of territorial males was higher than that of non-territorial floaters, and recruitment probability increased as males progressed in an age-graded queue. Moreover, annual survival of territorial males and body condition of both floaters and territory holders were higher following years with El Niño conditions, associated with reduced rainfall and probably higher fruit production in the northern Neotropics, and lower after years with wet, La Niña conditions that predominated our study. Recruitment probabilities varied annually, independent of ENSO phase, and increased over our study period, but the annual mean number of territorial males per lek declined. Our results provide empirical support for hypothesized demographic and environmental drivers of lek dynamics. This study also suggests that climate-mediated changes in resource availability can affect demography and subsequent lek stability in a relatively buffered, lowland rainforest.

  12. Climate, demography and lek stability in an Amazonian bird

    Science.gov (United States)

    Ryder, Thomas B.; Sillett, T. Scott

    2016-01-01

    Lekking is a rare, but iconic mating system where polygynous males aggregate and perform group displays to attract females. Existing theory postulates that demographic and environmental stability are required for lekking to be an evolutionarily viable reproductive strategy. However, we lack empirical tests for the hypotheses that lek stability is facilitated by age-specific variation in demographic rates, and by predictable, abundant resources. To address this knowledge gap, we use multistate models to examine how two demographic elements of lek stability—male survival and recruitment—vary with age, social status and phase of the El Niño Southern Oscillation (ENSO) in a Neotropical frugivorous bird, the wire-tailed manakin (Pipra filicauda). Our results show that demographic and environmental conditions were related to lek stability in the Ecuadorean Amazon. Apparent annual survival probability of territorial males was higher than that of non-territorial floaters, and recruitment probability increased as males progressed in an age-graded queue. Moreover, annual survival of territorial males and body condition of both floaters and territory holders were higher following years with El Niño conditions, associated with reduced rainfall and probably higher fruit production in the northern Neotropics, and lower after years with wet, La Niña conditions that predominated our study. Recruitment probabilities varied annually, independent of ENSO phase, and increased over our study period, but the annual mean number of territorial males per lek declined. Our results provide empirical support for hypothesized demographic and environmental drivers of lek dynamics. This study also suggests that climate-mediated changes in resource availability can affect demography and subsequent lek stability in a relatively buffered, lowland rainforest. PMID:26791615

  13. [Myths concerning malarial transmission among Amazonian Indians and their relation with 2 types of transmission encountered in the Amazonian forest].

    Science.gov (United States)

    Molez, J F

    1999-01-01

    Among the Indians Desana's (Tukano amerindians) in the Upper Rio Negro, the interseasonal variation of the malarial fevers were associated with two myths (localised in two distinguishable places). One myth associates the malarial with the rivers which contain "malaria pots". Conception based on an observation of localised water collection in the banks and the rocky rapids ("banks and rocky's fever"). The transmission and the anophelian density present variation between the seasons in relation to the river's level. Another myth associates malarial fevers in the forest, with the song of a frog ("fever's frog") and the flowering and fructification of a tree (Poaqueira sericea Thul.). There is in South America a particular type of forest malaria, known as "Bromelia malaria" and denounced in human and/or simian transmission. This forest malaria is transmitted by the a sub-genus anopheles (Kerteszia) which larval breeding are areal in the canopy. The breeding places are found in the forest in the epiphyte bromeliads. To understand this type of transmission, we must take reference to the previous endomological data at the Upper Oyapock Wayâpi (Tupi amerindians). This Bromelia malaria could fluctuated according larval density variation, related to washing of epiphytes (end of the rainy season) or to their flowering (end of the dry season). The "fever's frog" myth collected at the Desana's in the Upper Rio Negro can be related to the existence of Bromelia malaria in this amazonian habitat. These myths showed the perfect adaptation of the amerindians to their environment and their complete knowledge of the neotropical forest.

  14. Tree growth rates in an Amazonian evergreen forest: seasonal patterns and correlations with leaf phenology

    Science.gov (United States)

    Wu, J.; Silva Campos, K.; Prohaska, N.; Ferreira, M. L.; Nelson, B. W.; Saleska, S. R.; da Silva, R.

    2014-12-01

    Metabolism and phenology of tropical forests significantly influence global dynamics of climate, carbon and water. However, there is still lack of mechanistic understanding of the controls on tropical forest metabolism, particularly at individual tree level. In this study, we are interested in investigating (1) what is the seasonal pattern of woody growth for tropical trees and (2) what is the mechanistic controls onwoody growth at individual level?To explore the above questions,we use two data sources from an evergreen tropical forest KM67 site (near Santarem, Brazil). They are: (1) image time series from a tower mounted RGB imaging system, with images recordedin10 minutes interval since October 2013.Images near local noon homogeneous diffuse lighting were selectedfor leaf phenologymonitoring; (2) ground based bi-weekly biometry survey (via dendrometry band technique) for 25 trees from random sampling since September 2013. 12 among 25 trees are within the tower mounted camera image view. Our preliminary resultsdemonstrate that 20 trees among 25 trees surveyed significantly increase woody growth (or "green up") in dry season. Our results also find thatamong those 20 trees, 12 trees reaches the maximum woody increment rate in late dry season with a mean DBH (Diameter at Breast Height) around 30 cm,while 8 trees reaching the maximum in the middle of wet season, with a mean DBH around 90 cm. This study,though limited in the sample size, mightprovide another line of evidence that Amazon rainforests "green up" in dry season. As for mechanistic controls on tropical tree woody control, we hypothesize both climate and leaf phenology control individual woody growth. We would like to link both camera based leaf phenology and climate data in the next to explorethe reason as to the pattern found in this study that bigger trees might have different seasonal growth pattern as smaller trees.

  15. Biofilm and mercury availability as key factors for mercury accumulation in fish (Curimata cyprinoides) from a disturbed Amazonian freshwater system.

    Science.gov (United States)

    Dominique, Yannick; Maury-Brachet, Régine; Muresan, Bogdan; Vigouroux, Régis; Richard, Sandrine; Cossa, Daniel; Mariotti, André; Boudou, Alain

    2007-01-01

    The Petit-Saut hydroelectric reservoir was filled in 1994 on the Sinnamary River in French Guiana (Amazonian basin). Flooding of the equatorial rain forest led to anoxia in most of the water column and enhanced mercury methylation in the reservoir hypolimnion. We selected the benthivorous/omnivorous fish species Curimata cyprinoides to investigate total mercury and methylmercury (MeHg) bioavailability and bioaccumulation capacities in the reservoir and downstream in the Sinnamary River. Mercury concentrations in the dorsal skeletal muscle were 10-fold higher in fish from the downstream zone. Stomach contents and stable nitrogen and carbon isotope ratios showed that biofilms and the associated invertebrate communities represented important food sources at the two sites. The delta 13C measurements indicated that biofilms in the flooded forest zone of the reservoir consist of endogenous primary producers; downstream, they are based on exogenous organic matter and microorganisms, mainly from the anoxic layers of the reservoir. Total mercury and MeHg concentrations in the biofilms and associated invertebrates were much higher at the downstream site compared to concentrations at the reservoir. Our results clearly show the importance of MeHg export from the anoxic layers of this tropical reservoir. We conclude that differences between biofilm composition and MeHg concentrations in the ingested food could explain the marked differences observed between mercury levels in fish.

  16. Virus-Bacterium Coupling Driven by both Turbidity and Hydrodynamics in an Amazonian Floodplain Lake ▿ † ‡

    Science.gov (United States)

    Barros, Nathan; Farjalla, Vinicius F.; Soares, Maria C.; Melo, Rossana C. N.; Roland, Fábio

    2010-01-01

    The importance of viruses in aquatic ecosystem functioning has been widely described. However, few studies have examined tropical aquatic ecosystems. Here, we evaluated for the first time viruses and their relationship with other planktonic communities in an Amazonian freshwater ecosystem. Coupling between viruses and bacteria was studied, focusing both on hydrologic dynamics and anthropogenic forced turbidity in the system (Lake Batata). Samples were taken during four hydrologic seasons at both natural and impacted sites to count virus-like particles (VLP) and bacteria. In parallel, virus-infected bacteria were identified and quantified by transmission electron microscopy (TEM). Viral abundance ranged from 0.5 × 107 ± 0.2 × 107 VLP ml−1 (high-water season, impacted site) to 1.7 × 107 ± 0.4 × 107 VLP ml−1 (low-water season, natural site). These data were strongly correlated with the bacterial abundance (r2 = 0.84; P < 0.05), which ranged from 1.0 × 106 ± 0.5 × 106 cells ml−1 (high water, impacted site) to 3.4 × 106 ± 0.7 × 106 cells ml−1 (low water, natural site). Moreover, the viral abundance was weakly correlated with chlorophyll a, suggesting that most viruses were bacteriophages. TEM quantitative analyses revealed that the frequency of visibly infected cells was 20%, with 10 ± 3 phages per cell section. In general, we found a low virus-bacterium ratio (<7). Both the close coupling between the viral and bacterial abundances and the low virus-bacterium ratio suggest that viral abundance tends to be driven by the reduction of hosts for viral infection. Our results demonstrate that viruses are controlled by biological substrates, whereas in addition to grazing, bacteria are regulated by physical processes caused by turbidity, which affect underwater light distribution and dissolved organic carbon availability. PMID:20833790

  17. Understanding moisture recycling for atmospheric river management in Amazonian communities

    Science.gov (United States)

    Weng, Wei; Luedeke, Matthias; Zemp, Delphine-Clara; Lakes, Tobia; Pradhan, Prajal; Kropp, Juergen

    2017-04-01

    The invisible atmospheric transports of moisture have recently attracted more research efforts into understanding their structures, processes involved and their function as an ecosystem service. Current attention has been focused on larger scale analysis such as studying global or continental level moisture recycling. Here we applied a water balance model to backtrack the flying river that sustains two local communities in the Colombian and Peruvian Amazon where vulnerable communities rely highly on the rainfall for agricultural practices. By utilising global precipitation (TRMM Multisatillite Precipitation Analysis; TMPA) and evapotranspiration products (Moderate Resolution Imaging Spectroradiometer MODIS, MOD16ET) as input data in the present modelling experiments to compensate the sparse ground observation data in these regions, the moisture recycling process targeting the two amazonian communities which has not yet been explored quantitatively has been shown. The TMPA was selected because of its proved comparativeness with observation data in its precipitation estimations over Amazon regions while the MOD16ET data was chosen for being validated by previous studies in the Amazon basin and for reported good performance. In average, 45.5 % of the precipitation occurring to Caquetá region in Colombia is of terrestrial origin from the South American continent while 48.2% of the total rainfall received by Peruvian Yurimaguas is also from the South American land sources. The spatial distribution of the precipitationsheds (defined previously as the upwind contribution of evapotranspiration to a specific location's precipitation) shows transboundary and transnational shares in the moisture contributors of the precipitation for both regions. An interesting reversed upstream-downstream roles can be observed when the upstream regions in traditional watershed thinking become downstream areas considering precipitationsheds and flying rivers. Strong seasonal variations are

  18. Evidence for Amazonian mid-latitude glaciation on Mars from impact crater asymmetry

    Science.gov (United States)

    Conway, Susan J.; Mangold, Nicolas

    2013-07-01

    We find that crater slopes in the mid-latitudes of Mars have a marked north-south asymmetry, with the pole-facing slopes being shallower. We mapped impact craters in two southern hemisphere sites (Terra Cimmeria and Noachis Terra) and one northern hemisphere site (Acidalia Planitia) and used elevation data from the High Resolution Stereo Camera (HRSC) onboard Mars Express to find the maximum slope of impact crater walls in the four cardinal directions. Kreslavsky and Head (Kreslavsky, M.A., Head, J.W. [2003]. Geophys. Res. Lett. 30), using Mars Orbiter Laser Altimeter (MOLA) track data, also found that, in general, conjugate slopes are shallower in the pole-facing direction, but over a narrower (˜10°) and more constrained latitude band. They linked the asymmetry to active-layer formation (thaw) at high obliquity. However, Parsons and Nimmo (Parsons, R.A., Nimmo, F. [2009]. J. Geophys. Res. 114) studied crater asymmetry using MOLA gridded data and found no evidence of a relationship between crater asymmetry and latitude. Our work supports the observations of Kreslavsky and Head (Kreslavsky, M.A., Head, J.W. [2003]. Geophys. Res. Lett. 30), and shows that asymmetry is also found on conjugate crater slopes below the resolution of MOLA, over a wider latitude band than found in their work. We do not systematically find a sudden transition to asymmetric craters with latitude as expected for thaw-related processes, such as solifluction, gelifluction, or gully formation. The formation of gullies should produce the opposite sense of asymmetry to our observations, so cannot explain them despite the mid-latitude location and pole-facing preferences of gullies. We instead link this asymmetry to the deposition of ice-rich crater deposits, where the base of pole-facing slopes receive ten to hundreds of meters of additional net deposition, compared to equator-facing ones over the mid-latitudes. In support of this hypothesis we found that craters in Terra Cimmeria that have

  19. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome.

    NARCIS (Netherlands)

    Souza, de H.N.; Goede, de R.G.M.; Brussaard, L.; Cardoso, I.M.; Duarte, E.M.G.; Fernandes, R.B.A.; Gomes, L.C.; Pulleman, M.M.

    2012-01-01

    Sustainable production and biodiversity conservation can be mutually supportive in providing multiple ecosystem services to farmers and society. This study aimed to determine the contribution of agroforestry systems, as tested by family farmers in the Brazilian Rainforest region since 1993, to tree

  20. Biodiversity and key ecosystem services in agroforestry coffee systems in the Brazilian Atlantic Rainforest Biome

    NARCIS (Netherlands)

    Souza, de H.N.

    2012-01-01

    The thesis reports the results of long-term experimentation (since 1993) of family farmers with agroforestry (AF) coffee systems in the Brazilian Atlantic Rainforest region, a highly fragmented and threatened biodiversity hotspot. The farmers used native trees from forest fragments during a

  1. Ecological and socio-economic functions across tropical land use systems after rainforest conversion.

    Science.gov (United States)

    Drescher, Jochen; Rembold, Katja; Allen, Kara; Beckschäfer, Philip; Buchori, Damayanti; Clough, Yann; Faust, Heiko; Fauzi, Anas M; Gunawan, Dodo; Hertel, Dietrich; Irawan, Bambang; Jaya, I Nengah S; Klarner, Bernhard; Kleinn, Christoph; Knohl, Alexander; Kotowska, Martyna M; Krashevska, Valentyna; Krishna, Vijesh; Leuschner, Christoph; Lorenz, Wolfram; Meijide, Ana; Melati, Dian; Nomura, Miki; Pérez-Cruzado, César; Qaim, Matin; Siregar, Iskandar Z; Steinebach, Stefanie; Tjoa, Aiyen; Tscharntke, Teja; Wick, Barbara; Wiegand, Kerstin; Kreft, Holger; Scheu, Stefan

    2016-05-19

    Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes. © 2016 The Authors.

  2. The biodiversity of Aspergillus section Flavi in brazil nuts: From rainforest to consumer

    DEFF Research Database (Denmark)

    Calderari, Thaiane O.; Iamanaka, Beatriz T.; Frisvad, Jens Christian

    2013-01-01

    A total of 288 brazil nut samples (173 kernel and 115 shell) from the Amazon rainforest region and São Paulo State, Brazil were collected at different stages of brazil nut production. Samples were analysed for: percentages of aflatoxigenic fungal species and potential for aflatoxin production and...

  3. Photosynthetic induction responses of two rainforest tree species in relation to light environment

    NARCIS (Netherlands)

    Poorter, L.; Oberbauer, S.F.

    1993-01-01

    Photosynthetic induction of in situ saplings of two Costa Rican rainforest tree species wre compared in relation to their light environment, using infrared gas analysis and hemispherical photography. The species studied were Dipteryx panamensis, a climax species found in bright microsites, and

  4. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome.

    NARCIS (Netherlands)

    Souza, de H.N.; Goede, de R.G.M.; Brussaard, L.; Cardoso, I.M.; Duarte, E.M.G.; Fernandes, R.B.A.; Gomes, L.C.; Pulleman, M.M.

    2012-01-01

    Sustainable production and biodiversity conservation can be mutually supportive in providing multiple ecosystem services to farmers and society. This study aimed to determine the contribution of agroforestry systems, as tested by family farmers in the Brazilian Rainforest region since 1993, to tree

  5. Terrestrial water flux responses to global warming in tropical rainforest areas

    Science.gov (United States)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia; Kumar, Sanjiv

    2016-05-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 archives have been examined to explore the changes in normalized terrestrial water fluxes (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results show that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  6. Selection of native trees for intercropping with coffee in the Atlantic Rainforest biome

    NARCIS (Netherlands)

    Souza, de H.N.; Cardoso, I.M.; Fernandes, J.M.; Garcia, F.C.P.; Bonfim, V.R.; Santos, A.C.; Carvalho, A.F.; Mendonca, E.S.

    2010-01-01

    A challenge in establishing agroforestry systems is ensuring that farmers are interested in the tree species, and are aware of how to adequately manage these species. This challenge was tackled in the Atlantic Rainforest biome (Brazil), where a participatory trial with agroforestry coffee systems wa

  7. In situ measurements of isoprene and monoterpenes within a South-East Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    C. E. Jones

    2011-01-01

    Full Text Available Biogenic volatile organic compounds (BVOCs emitted from tropical rainforests comprise a substantial fraction of global atmospheric VOC emissions, however there are only relatively limited measurements of these species in tropical rainforest regions. We present observations of isoprene, α-pinene, camphene, Δ-3-carene, γ-terpinene and limonene, and oxygenated VOCs (OVOCs of biogenic origin such as methacrolein, in ambient air above a~tropical rainforest in Malaysian Borneo. Daytime composition was dominated by isoprene, with an average mixing ratio of the order of ~1 ppb. γ-terpinene, limonene and camphene were the most abundant monoterpenes, with average daytime mixing ratios of 102, 71 and 66 ppt, respectively, and with an average monoterpene to isoprene ratio of 0.3 during sunlight hours, compared to 2.0 at night. Limonene and camphene abundances were seen to be related to both temperature and light conditions. In contrast, γ-terpinene emission occurred into the late afternoon/evening, under relatively low temperature and light conditions. We observe good agreement between surface and aircraft measurements of boundary layer isoprene and methacrolein above the natural rainforest, suggesting that the ground-level observations are broadly representative of isoprene emissions from this region.

  8. The economic value of the climate regulation ecosystem service provided by the Amazon rainforest

    Science.gov (United States)

    Heil Costa, Marcos; Pires, Gabrielle; Fontes, Vitor; Brumatti, Livia

    2017-04-01

    The rainy Amazon climate allowed important activities to develop in the region as large rainfed agricultural lands and hydropower plants. The Amazon rainforest is an important source of moisture to the regional atmosphere and helps regulate the local climate. The replacement of forest by agricultural lands decreases the flux of water vapor into the atmosphere and changes the precipitation patterns, which may severely affect such economic activities. Assign an economic value to this ecosystem service may emphasize the significance to preserve the Amazon rainforest. In this work, we provide a first approximation of the quantification of the climate regulation ecosystem service provided by the Amazon rainforest using the marginal production method. We use climate scenarios derived from Amazon deforestation scenarios as input to crop and runoff models to assess how land use change would affect agriculture and hydropower generation. The effects of forest removal on soybean production and on cattle beef production can both be as high as US 16 per year per ha deforested, and the effects on hydropower generation can be as high as US 8 per year per ha deforested. We consider this as a conservative estimate of a permanent service provided by the rainforest. Policy makers and other Amazon agriculture and energy businesses must be aware of these numbers, and consider them while planning their activities.

  9. Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary.

    Science.gov (United States)

    Wang, Wei; Ortiz, Rosa Del C; Jacques, Frédéric M B; Xiang, Xiao-Guo; Li, Hong-Lei; Lin, Li; Li, Rui-Qi; Liu, Yang; Soltis, Pamela S; Soltis, Douglas E; Chen, Zhi-Duan

    2012-07-01

    • Modern tropical rainforests have the highest biodiversity of terrestrial biomes and are restricted to three low-latitude areas. However, the actual timeframe during which tropical rainforests began to appear on a global scale has been intensely disputed. Here, we used the moonseed family (Menispermaceae), an important physiognomic and structural component of tropical rainforests on a worldwide basis, to obtain new insights into the diversification of this biome. • We integrated phylogenetic, biogeographic and molecular dating methods to analyse temporal and spatial patterns of global diversification in Menispermaceae. • Importantly, a burst of moonseed diversification occurred in a narrow window of time, which coincides with the Cretaceous-Paleogene (K-Pg) boundary. Our data also suggest multiple independent migrations from a putative ancestral area of Indo-Malay into other tropical regions. • Our data for Menispermaceae suggest that modern tropical rainforests may have appeared almost synchronously throughout the three major tropical land areas close to, or immediately following, the K-Pg mass extinction.

  10. Leaf and whole-tree water use relations of Australian rainforest species

    Science.gov (United States)

    Ishida, Yoko; Laurance, Susan; Liddell, Michael; Lloyd, Jonathan

    2015-04-01

    Climate change induces drought events and may therefore cause significant impact on tropical rainforests, where most plants are reliant on high water availability - potentially affecting the distribution, composition and abundance of plant species. Using an experimental approach, we are studying the effects of a simulated drought on lowland rainforest plants at the Daintree Rainforest Observatory (DRO), in tropical northern Australia. Before to build up the rainout infrastructure, we installed sap flow meters (HRM) on 62 rainforest trees. Eight tree species were selected with diverse ecological strategies including wood density values ranging from 0.34 to 0.88 g/cm3 and could be replicated within a 1ha plot: Alstonia scholaris (Apocynaceae), Argyrondendron peralatum (Malvaceae), Elaeocarpus angustifolius (Elaeocarpaceae), Endiandra microneura (Lauraceae), Myristica globosa (Myristicaceae), Syzygium graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae), and Castanospermum australe (Fabaceae). Our preliminary results from sap flow data obtained from October 2013 to December of 2014 showed differences in the amount of water used by our trees varied in response to species, size and climate. For example Syzygium graveolens has used a maximum of 60 litres/day while Argyrondendrum peralatum used 13 litres/day. Other potential causes for differential water-use between species and the implications of our research will be discussed. We will continue to monitor sap flow during the rainfall exclusion (2014 to 2016) to determine the effects of plant physiological traits on water use strategies.

  11. Photosynthetic induction responses of two rainforest tree species in relation to light environment

    NARCIS (Netherlands)

    Poorter, L.; Oberbauer, S.F.

    1993-01-01

    Photosynthetic induction of in situ saplings of two Costa Rican rainforest tree species wre compared in relation to their light environment, using infrared gas analysis and hemispherical photography. The species studied were Dipteryx panamensis, a climax species found in bright microsites, and Cecro

  12. Hurricanes, coral reefs and rainforests: resistance, ruin and recovery in the Caribbean

    Science.gov (United States)

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some reefs from fully developed hurricane waves. While storms may produce dramatic local reef damage, they appear to have little impact on the ability of coral reefs to provide food or habitat for fish and other animals. Rainforests experience an enormous increase in wind energy during hurricanes with dramatic structural changes in the vegetation. The resulting changes in forest microclimate are larger than those on reefs and the loss of fruit, leaves, cover, and microclimate has a great impact on animal populations. Recovery of many aspects of rainforest structure and function is rapid, though there may be long-term changes in species composition. While resistance and repair have maintained reefs and rainforests in the past, human impacts may threaten their ability to survive.

  13. Post-Glacial Spatial Dynamics in a Rainforest Biodiversity Hot Spot

    Directory of Open Access Journals (Sweden)

    Rohan Mellick

    2013-03-01

    Full Text Available Here we investigate the interaction between ecology and climate concerning the distribution of rainforest species differentially distributed along altitudinal gradients of eastern Australia. The potential distributions of the two species closely associated with different rainforest types were modelled to infer the potential contribution of post-glacial warming on spatial distribution and altitudinal range shift. Nothofagus moorei is an integral element of cool temperate rainforest, including cloud forests at high elevation. This distinct climatic envelope is at increased risk with future global warming. Elaeocarpus grandis on the other hand is a lowland species and typical element of subtropical rainforest occupying a climatic envelope that may shift upwards into areas currently occupied by N. moorei. Climate envelope models were used to infer range shift differences between the two species in the past (21 thousand years ago, current and future (2050 scenarios, and to provide a framework to explain observed genetic diversity/structure of both species. The models suggest continuing contraction of the highland cool temperate climatic envelope and expansion of the lowland warm subtropical envelope, with both showing a core average increase in elevation in response to post-glacial warming. Spatial and altitudinal overlap between the species climatic envelopes was at a maximum during the last glacial maximum and is predicted to be a minimum at 2050.

  14. Use of Metagenomics and Isolation of Actinobacteria in Brazil's Atlantic Rainforest Soil for Antimicrobial Prospecting

    Science.gov (United States)

    Assis, Danyelle Alves Martins; Rezende, Rachel Passos; Dias, João Carlos Teixeira

    2014-01-01

    Modern techniques involving molecular biology, such as metagenomics, have the advantage of exploiting a higher number of microorganisms; however, classic isolation and culture methods used to obtain antimicrobials continue to be promising, especially in the isolation of Actinobacteria, which are responsible for the production of many of these compounds. In this work, two methodologies were used to search for antimicrobial substances—isolation of Actinobacteria and metagenomics of the Atlantic Rainforest soil and of the cultivation of cocoa intercropped with acai berry in the Atlantic Rainforest. The metagenomic libraries were constructed with the CopyControl Fosmid Library kit EPICENTRE, resulting in a total of 2688 clones, 1344 of each soil sample. None of the clones presented antimicrobial activity against the microorganisms tested: S. aureus, Bacillus subtilis, and Salmonella choleraesuis. A total of 46 isolates were obtained from the isolation of soil Actinobacteria: 24 isolates from Atlantic Rainforest soil and 22 isolates from the intercrop cultivation soil. Of these, two Atlantic Rainforest soil isolates inhibited the growth of S. aureus including a clinical isolate of S. aureus MRSA—a promising result, since it is an important multidrug-resistant human pathogen. PMID:25937991

  15. Influence of solar zenith angle on the enhanced vegetation index of a Guyanese rainforest

    NARCIS (Netherlands)

    Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Herold, M.

    2015-01-01

    In this study, the effect of solar zenith angle () on enhanced vegetation index (EVI) of a Guyanese tropical rainforest was studied. For this sub-crown resolution, hyperspectral data have been collected with an unmanned aerial vehicle (UAV) at five different solar zenith angles in a 1-day period. Th

  16. Synergistic effects of drought and deforestation on the resilience of the south-eastern Amazon rainforest

    NARCIS (Netherlands)

    Staal, Arie; Dekker, Stefan C.; Hirota, Marina; van Nes, Egbert H.

    2015-01-01

    The south-eastern Amazon rainforest is subject to ongoing deforestation and is expected to become drier due to climate change. Recent analyses of the distribution of tree cover in the tropics show three modes that have been interpreted as representing alternative stable states: forest, savanna and t

  17. Synergistic effects of drought and deforestation on the resilience of the south-eastern Amazon rainforest

    NARCIS (Netherlands)

    Staal, A.; Dekkers, S.; Hirota Magalhaes, M.; Nes, van E.H.

    2015-01-01

    The south-eastern Amazon rainforest is subject to ongoing deforestation and is expected to become drier due to climate change. Recent analyses of the distribution of tree cover in the tropics show three modes that have been interpreted as representing alternative stable states: forest, savanna and t

  18. Adult Learning in New Social Movements: Environmental Protest and the Struggle for the Clayoquot Sound Rainforest

    Science.gov (United States)

    Walter, Pierre

    2007-01-01

    During the summer of 1993, some 10,000 people, young and old, joined logging road blockades to protest the clear-cutting of old-growth temperate rainforest in Clayoquot Sound, British Columbia, Canada. By the end of the summer, more than 900 protestors had been arrested for acts of civil disobedience in refusing to leave the road. In subsequent…

  19. Butterfly, seedling, sapling and tree diversity and composition is a fire-affected Bornean rainforest

    NARCIS (Netherlands)

    Cleary, D.F.R.; Priadjati, A.; Suryokusumo, B.K.; Menken, S.B.J.

    2006-01-01

    Fire-affected forests are becoming an increasingly important component of tropical landscapes. The impact of wildfires on rainforest communities is, however, poorly understood. In this study the density, species richness and community composition of seedlings, saplings, trees and butterflies were as

  20. Butterfly, seedling, sapling and tree diversity and composition in a fire-affected Bornean rainforest

    NARCIS (Netherlands)

    Cleary, D.F.R.; Priadjati, A.; Suryokusumo, B.K.; Menken, S.B.J.

    2006-01-01

    Fire-affected forests are becoming an increasingly important component of tropical landscapes. The impact of wildfires on rainforest communities is, however, poorly understood. In this study the density, species richness and community composition of seedlings, saplings, trees and butterflies were as

  1. N2-fixing legumes are linked to enhanced mineral dissolution and microbiome modulations in Neotropical rainforests

    Science.gov (United States)

    Epihov, Dimitar; Batterman, Sarah; Hedin, Lars; Saltonstall, Kristin; Hall, Jefferson; Leake, Jonathan; Beerling, David

    2017-04-01

    Legumes represent the dominant family of many tropical forests with estimates of 120 billion legume trees in the Amazon basin alone. Many rainforest legume trees form symbioses with N2-fixing bacteria. In the process of atmospheric N2-fixation large amounts of nitrogen-rich litter are generated, supplying half of all nitrogen required to support secondary rainforest succession. However, it is unclear how N2-fixers affect the biogeochemical cycling of other essential nutrients by affecting the rates of mineral dissolution and rock weathering. Here we show that N2-fixing legumes in young Panamanian rainforests promote acidification and enhance silicate rock weathering by a factor of 2 compared to non-fixing trees. We report that N2-fixers also associate with enhanced dissolution of Al- and Fe-bearing secondary minerals native to tropical oxisols. In legume-rich neighbourhoods, non-fixers benefited from raised weathering rates relative to those of legume-free zones thus suggesting a positive community effect driven by N2-fixers. These changes in weathering potential were tracked by parallel functional and structural changes in the soil and rock microbiomes. Our findings support the view that N2-fixing legumes are central components of biogeochemical cycling, associated with enhanced release of Fe- and Al-bound P and primary mineral products (Mg, Mo). Rainforest legume services therefore bear important implications to short-term C cycling related to forest growth and the long-term C cycle related to marine carbonate deposition fuelled by silicate weathering.

  2. Ecological and socio-economic functions across tropical land use systems after rainforest conversion

    Science.gov (United States)

    Rembold, Katja; Allen, Kara; Beckschäfer, Philip; Buchori, Damayanti; Clough, Yann; Faust, Heiko; Fauzi, Anas M.; Gunawan, Dodo; Hertel, Dietrich; Irawan, Bambang; Jaya, I. Nengah S.; Klarner, Bernhard; Kleinn, Christoph; Knohl, Alexander; Kotowska, Martyna M.; Krashevska, Valentyna; Krishna, Vijesh; Leuschner, Christoph; Lorenz, Wolfram; Meijide, Ana; Melati, Dian; Nomura, Miki; Pérez-Cruzado, César; Qaim, Matin; Siregar, Iskandar Z.; Steinebach, Stefanie; Tjoa, Aiyen; Tscharntke, Teja; Wick, Barbara; Wiegand, Kerstin; Kreft, Holger; Scheu, Stefan

    2016-01-01

    Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes. PMID:27114577

  3. Biodiversity and key ecosystem services in agroforestry coffee systems in the Brazilian Atlantic Rainforest Biome

    NARCIS (Netherlands)

    Souza, de H.N.

    2012-01-01

    The thesis reports the results of long-term experimentation (since 1993) of family farmers with agroforestry (AF) coffee systems in the Brazilian Atlantic Rainforest region, a highly fragmented and threatened biodiversity hotspot. The farmers used native trees from forest fragments during a transiti

  4. Effect of food quality and availability on rainforest rodents of Sri Lanka

    Directory of Open Access Journals (Sweden)

    P.B. Ratnaweera

    2009-12-01

    Full Text Available Tropical rodent communities are highly diverse species assemblages, yet remain poorly studied. This investigation was conducted with the objective of examining the responses of rainforest rodents to food quality and availability. These factors were assessed through laboratory and field trials conducted in the Sinharaja and Kanneliya rainforests in Sri Lanka. The effect of food quality on the foraging behavior of rodents was examined through feeding experiments using natural rainforest fruits/seeds. In addition, the effect of food augmentation on the rodent population was also investigated. Diet choice experiments showed that rodents exhibited clear food preferences, with certain fruit types being preferentially consumed and others rejected. Tolerance tests where animals were provided with a single fruit type showed that some items that were avoided when offered with a range of food items were consumed when no alternatives were available. In the field a positive relationship was found between fruit/seed and rodent densities; seed addition resulted in marked increases in rodent numbers. These results suggest that tropical rodent populations are food limited, at least during seasons when fruits/seeds are in short supply. Food selectivity also means that populations of rainforest rodents might be adversely affected by changes in tree species composition resulting from habitat disturbance and fragmentation

  5. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest

    OpenAIRE

    2015-01-01

    1. Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. 2. Leaf water potential at wilting or turgor loss point (pi(tlp)) is a determinant of the tolerance of leaves to drought stress and contributes to plant-level physiological...

  6. Plant traits demonstrate that temperate and tropical giant eucalypt forests are ecologically convergent with rainforest not savanna.

    Science.gov (United States)

    Tng, David Y P; Jordan, Greg J; Bowman, David M J S

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.

  7. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica.

    Science.gov (United States)

    Fürnkranz, Michael; Wanek, Wolfgang; Richter, Andreas; Abell, Guy; Rasche, Frank; Sessitsch, Angela

    2008-05-01

    Leaf surfaces (phyllospheres) have been shown to provide appropriate conditions for colonization by microorganisms including diazotrophic bacteria that are able to fix atmospheric nitrogen (N(2)). In this study, we determined leaf-associated N(2) fixation of a range of rainforest plants in Costa Rica, under different environmental conditions, by tracing biomass N incorporation from (15)N(2). N(2)-fixing bacterial communities of the plant species Carludovica drudei, Grias cauliflora and Costus laevis were investigated in more detail by analysis of the nifH gene and leaf-associated bacteria were identified by 16S rRNA gene analysis. N(2) fixation rates varied among plant species, their growth sites (different microclimatic conditions) and light exposure. Leaf-associated diazotrophic bacterial communities detected on C. drudei and C. laevis were mainly composed of cyanobacteria (Nostoc spp.), whereas on the leaves of G. cauliflora gamma-proteobacteria were dominant in addition to cyanobacteria. The complexity of diazotrophic communities on leaves was not correlated with N(2) fixation activity. 16S rRNA gene sequence analysis suggested the presence of complex microbial communities in association with leaves, however, cyanobacteria showed only low abundance. Our findings suggest that cyanobacteria as well as gamma-proteobacteria associated with leaf-colonizing epiphytes may provide significant nitrogen input into this rainforest ecosystem.

  8. Regional Impacts of Climate Change on the Amazon Rainforest: 2080-2100

    Science.gov (United States)

    Cook, K. H.; Vizy, E. K.

    2006-12-01

    A regional climate model with resolution of 60 km is coupled with a potential vegetation model to simulate future climate over South America. The following steps are taken to effectively communicate the results across disciplines and to make them useful to the policy and impacts communities: the simulation is aimed at a particular time period (2081-2100), the climate change results are translated into changes in vegetation distribution, and the results are reported on regional space scales relative to political boundaries. In addition, the model validation in clearly presented to provide perspective on uncertainty for the prognosis. The model reproduces today's climate and vegetation over tropical and subtropical South America accurately. In simulations of the future, the model is forced by the IPCC's A2 scenario of future emissions, which assumes that CO2 emissions continue to grow at essentially today's rate throughout the 21st century, reaching 757 ppmv averaged over 2081-2100. The model is constrained on its lateral boundaries by atmospheric conditions simulated by a global climate model, applied as anomalies to present day conditions, and predicted changes in sea surface temperatures. The extent of the Amazon rainforest is reduced by about 70 per cent in the simulation, and the shrubland (caatinga) vegetation of Brazil's Nordeste region spreads westward and southward well into the continental interior. Bolivia, Paraguay, and Argentina lose all of their rainforest vegetation, and Brazil and Peru lose most of it. The surviving rain forest is concentrated near the equator. Columbia's rainforest survives largely intact and, along the northern coast, Venezuela and French Guiana suffer relatively small reductions. The loss in Guyana and Surinam is 30-50 per cent. Much of the rainforest in the central Amazon north of about 15S is replaced by savanna vegetation, but in southern Bolivia, northern Paraguay, and southern Brazil, grasslands take the place of the

  9. Possible mechanisms for the coexistence of congeneric (Pourouma, Cecropiaceae) Amazonian tree species

    DEFF Research Database (Denmark)

    Magård, Else

    2002-01-01

    The distribution, architecture, and foliar pest damage of ten species of Pourouma (Cecropiaceae) were investigated in a 50-ha plot of old-growth tropical rainforest in the Yasuní National Park, Ecuador. Individuals were censused and ecological and architectural data recorded along three 500 x 20...

  10. Establishing a Wild, Ex Situ Population of a Critically Endangered Shade-Tolerant Rainforest Conifer: A Translocation Experiment.

    Directory of Open Access Journals (Sweden)

    Heidi C Zimmer

    Full Text Available Translocation can reduce extinction risk by increasing population size and geographic range, and is increasingly being used in the management of rare and threatened plant species. A critical determinant of successful plant establishment is light environment. Wollemia nobilis (Wollemi pine is a critically endangered conifer, with a wild population of 83 mature trees and a highly restricted distribution of less than 10 km2. We used under-planting to establish a population of W. nobilis in a new rainforest site. Because its optimal establishment conditions were unknown, we conducted an experimental translocation, planting in a range of different light conditions from deeply shaded to high light gaps. Two years after the experimental translocation, 85% of plants had survived. There were two distinct responses: very high survival (94% but very low growth, and lower survival (69% and higher growth, associated with initial plant condition. Overall survival of translocated W. nobilis was strongly increased in planting sites with higher light, in contrast to previous studies demonstrating long-term survival of wild W. nobilis juveniles in deep shade. Translocation by under-planting may be useful in establishing new populations of shade-tolerant plant species, not least by utilizing the range of light conditions that occur in forest understories.

  11. Can a global model chemical mechanism reproduce NO, NO2, and O3 measurements above a tropical rainforest?

    Directory of Open Access Journals (Sweden)

    C. N. Hewitt

    2009-12-01

    Full Text Available A cross-platform field campaign, OP3, was conducted in the state of Sabah in Malaysian Borneo between April and July of 2008. Among the suite of observations recorded, the campaign included measurements of NOx and O3–crucial outputs of any model chemistry mechanism. We describe the measurements of these species made from both the ground site and aircraft. We examine the output from the global model p-TOMCAT at two resolutions for this location during the April campaign period. The models exhibit reasonable ability in capturing the NOx diurnal cycle, but ozone is overestimated. We use a box model containing the same chemical mechanism to explore the weaknesses in the global model and the ability of the simplified global model chemical mechanism to capture the chemistry at the rainforest site. We achieve a good fit to the data for all three species (NO, NO2, and O3, though the model is much more sensitive to changes in the treatment of physical processes than to changes in the chemical mechanism. Indeed, without some parameterization of the nighttime boundary layer-free troposphere mixing, a time dependent box model will not reproduce the observations. The final simulation uses this mixing parameterization for NO and NO2 but not O3, as determined by the vertical structure of each species, and matches the measurements well.

  12. Habitat fragmentation and ecological traits influence the prevalence of avian blood parasites in a tropical rainforest landscape.

    Directory of Open Access Journals (Sweden)

    Susan G W Laurance

    Full Text Available In the tropical rainforests of northern Australia, we investigated the effects of habitat fragmentation and ecological parameters on the prevalence of blood-borne parasites (Plasmodium and Haemoproteus in bird communities. Using mist-nets on forest edges and interiors, we sampled bird communities across six study sites: 3 large fragments (20-85 ha and 3 continuous-forest sites. From 335 mist-net captures, we recorded 28 bird species and screened 299 bird samples with PCR to amplify and detect target DNA. Of the 28 bird species sampled, 19 were infected with Plasmodium and/or Haemoproteus and 9 species were without infection. Over one third of screened birds (99 individuals were positive for Haemoproteus and/or Plasmodium. In forest fragments, bird capture rates were significantly higher than in continuous forests, but bird species richness did not differ. Unexpectedly, we found that the prevalence of the dominant haemosporidian infection, Haemoproteus, was significantly higher in continuous forest than in habitat fragments. Further, we found that ecological traits such as diet, foraging height, habitat specialisation and distributional ranges were significantly associated with blood-borne infections.

  13. Establishing a Wild, Ex Situ Population of a Critically Endangered Shade-Tolerant Rainforest Conifer: A Translocation Experiment.

    Science.gov (United States)

    Zimmer, Heidi C; Offord, Catherine A; Auld, Tony D; Baker, Patrick J

    2016-01-01

    Translocation can reduce extinction risk by increasing population size and geographic range, and is increasingly being used in the management of rare and threatened plant species. A critical determinant of successful plant establishment is light environment. Wollemia nobilis (Wollemi pine) is a critically endangered conifer, with a wild population of 83 mature trees and a highly restricted distribution of less than 10 km2. We used under-planting to establish a population of W. nobilis in a new rainforest site. Because its optimal establishment conditions were unknown, we conducted an experimental translocation, planting in a range of different light conditions from deeply shaded to high light gaps. Two years after the experimental translocation, 85% of plants had survived. There were two distinct responses: very high survival (94%) but very low growth, and lower survival (69%) and higher growth, associated with initial plant condition. Overall survival of translocated W. nobilis was strongly increased in planting sites with higher light, in contrast to previous studies demonstrating long-term survival of wild W. nobilis juveniles in deep shade. Translocation by under-planting may be useful in establishing new populations of shade-tolerant plant species, not least by utilizing the range of light conditions that occur in forest understories.

  14. Habitat fragmentation and ecological traits influence the prevalence of avian blood parasites in a tropical rainforest landscape.

    Science.gov (United States)

    Laurance, Susan G W; Jones, Dean; Westcott, David; McKeown, Adam; Harrington, Graham; Hilbert, David W

    2013-01-01

    In the tropical rainforests of northern Australia, we investigated the effects of habitat fragmentation and ecological parameters on the prevalence of blood-borne parasites (Plasmodium and Haemoproteus) in bird communities. Using mist-nets on forest edges and interiors, we sampled bird communities across six study sites: 3 large fragments (20-85 ha) and 3 continuous-forest sites. From 335 mist-net captures, we recorded 28 bird species and screened 299 bird samples with PCR to amplify and detect target DNA. Of the 28 bird species sampled, 19 were infected with Plasmodium and/or Haemoproteus and 9 species were without infection. Over one third of screened birds (99 individuals) were positive for Haemoproteus and/or Plasmodium. In forest fragments, bird capture rates were significantly higher than in continuous forests, but bird species richness did not differ. Unexpectedly, we found that the prevalence of the dominant haemosporidian infection, Haemoproteus, was significantly higher in continuous forest than in habitat fragments. Further, we found that ecological traits such as diet, foraging height, habitat specialisation and distributional ranges were significantly associated with blood-borne infections.

  15. Mechanisms driving carbon allocation in tropical rainforests: allometric constraints and environmental responses

    Science.gov (United States)

    Hofhansl, Florian; Schnecker, Jörg; Singer, Gabriel; Wanek, Wolfgang

    2014-05-01

    Tropical forest ecosystems play a major role in global water and carbon cycles. However, mechanisms of C allocation in tropical forests and their response to environmental variation are largely unresolved as, due to the scarcity of data, they are underrepresented in global syntheses of forest C allocation. Allocation of gross primary production to wood production exerts a key control on forest C residence time and biomass C turnover, and therefore is of special interest for terrestrial ecosystem research and earth system science. Here, we synthesize pantropical data from 105 old-growth rainforests to investigate relationships between climate (mean annual precipitation, mean annual temperature, dry season length and cloud cover), soil nutrient relations (soil N:P) and the partitioning of aboveground net primary production (ANPP) to wood production (WPart) using structural equation modelling. Our results show a strong increase of WPart with ANPP, pointing towards allometric scaling controls on WPart, with increasing light competition in more productive forests triggering greater ANPP allocation to wood production. ANPP itself was positively affected by mean annual temperature and soil N:P. Beyond these allometric controls on WPart we found direct environmental controls. WPart increased with dry season length in tropical montane rainforests and with mean annual precipitation in lowland tropical rainforests. We discuss different trade-offs between plant traits, such as community-wide changes along the wood economics spectrum, the leaf economics spectrum and the plant resource economics spectrum, as underlying mechanisms for direct climatic controls on WPart. We thereby provide new insights into mechanisms driving carbon allocation to WPart in tropical rainforests and show that low and high productive tropical rainforests may respond differently to projected global changes.

  16. Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    M. Itoh

    2010-09-01

    Full Text Available To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil

  17. Evaluation of Landsat-Based METRIC Modeling to Provide High-Spatial Resolution Evapotranspiration Estimates for Amazonian Forests

    Directory of Open Access Journals (Sweden)

    Izaya Numata

    2017-01-01

    Full Text Available While forest evapotranspiration (ET dynamics in the Amazon have been studied both as point estimates using flux towers, as well as spatially coarse surfaces using satellite data, higher resolution (e.g., 30 m resolution ET estimates are necessary to address finer spatial variability associated with forest biophysical characteristics and their changes by natural and human impacts. The objective of this study is to evaluate the potential of the Landsat-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration model to estimate high-resolution (30 m forest ET by comparing to flux tower ET (FT ET data collected over seasonally dry tropical forests in Rondônia, the southwestern region of the Amazon. Analyses were conducted at daily, monthly and seasonal scales for the dry seasons (June–September for Rondônia of 2000–2002. Overall daily ET comparison between FT ET and METRIC ET across the study site showed r2 = 0.67 with RMSE = 0.81 mm. For seasonal ET comparison, METRIC-derived ET estimates showed an agreement with FT ET measurements during the dry season of r2 >0.70 and %MAE <15%. We also discuss some challenges and potential applications of METRIC for Amazonian forests.

  18. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    Science.gov (United States)

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falcão, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de Índio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change.

  19. Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamic vegetation model

    Directory of Open Access Journals (Sweden)

    N. Delbart

    2010-10-01

    Full Text Available Dynamic Vegetation Models (DVMs simulate energy, water and carbon fluxes between the ecosystem and the atmosphere, between the vegetation and the soil, and between plant organs. They also estimate the potential biomass of a forest in equilibrium having grown under a given climate and atmospheric CO2 level. In this study, we evaluate the Above Ground Woody Biomass (AGWB and the above ground woody Net Primary Productivity (NPPAGW simulated by the DVM ORCHIDEE across Amazonian forests, by comparing the simulation results to a large set of ground measurements (220 sites for biomass, 104 sites for NPPAGW. We found that the NPPAGW is on average overestimated by 63%. We also found that the fraction of biomass that is lost through mortality is 85% too high. These model biases nearly compensate each other to give an average simulated AGWB close to the ground measurement average. Nevertheless, the simulated AGWB spatial distribution differs significantly from the observations. Then, we analyse the discrepancies in biomass with regards to discrepancies in NPPAGW and those in the rate of mortality. When we correct for the error in NPPAGW, the errors on the spatial variations in AGWB are exacerbated, showing clearly that a large part of the misrepresentation of biomass comes from a wrong modelling of mortality processes.

    Previous studies showed that Amazonian forests with high productivity have a higher mortality rate than forests with lower productivity. We introduce this relationship, which results in strongly improved modelling of biomass and of its spatial variations. We discuss the possibility of modifying the mortality modelling in ORCHIDEE, and the opportunity to improve forest productivity modelling through the integration of biomass measurements, in particular from remote sensing.

  20. Patterns of energy allocation to reproduction in three Amazonian fish species

    Directory of Open Access Journals (Sweden)

    Rodrigo N. dos Santos

    Full Text Available The study considered the influence of the hydrological cycle and gonadal development on the accumulation and use of energy in three fish species from an Amazonian flooded area. Fishes were sampled over a 24 hour period at monthly intervals between July 2004 and June 2005 using gillnets of different mesh sizes. Body cavity fat and gonadosomatic indices were determined, as well as energy content of gonads and muscles. Amongst the studied species, different means of energy allocation for reproduction were found: Acestrorhynchus falcirostris allocate energy from body cavity fat to its gonads; Pygocentrus nattereri uses mainly energy accumulated in the muscles for the process of gonadal maturation; and Hoplosternum littorale uses energy accumulated in their muscles and body cavity fat for reproductive processes. It is quite clear that the flood pulse regulates the gain and use of the energy reserves in fishes from the Amazonian floodplain.

  1. Occurrence of Cryptosporidium spp. in Antillean manatees (Trichechus manatus) and Amazonian manatees (Trichechus inunguis) from Brazil.

    Science.gov (United States)

    Borges, Joāo Carlos Gomes; Alves, Leucio Câmara; Faustino, Maria Aparecida da Gloria; Marmontel, Miriam

    2011-12-01

    Infections by Cryptosporidium spp. in aquatic mammals is a major concern due to the possibility of the waterborne transmission of oocysts. The aim of the present study was to report the occurrence of Cryptosporidium spp. in Antillean manatees (Trichechus manatus) and Amazonian manatees (Trichechus inunguis) from Brazil. Fecal samples were collected and processed using Kinyoun's method. Positive samples were also submitted to the direct immunofluorescence test. The results revealed the presence of Cryptosporidium spp. oocysts in 12.5% (17/136) of the material obtained from the Antillean manatees and in 4.3% (05/115) of the samples from the Amazonian manatees. Cryptosporidium spp. infection was more prevalent in captive animals than in free-ranging specimens.

  2. Phenolic constituents and antioxidant activity of geopropolis from two species of amazonian stingless bees

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ellen Cristina Costa da; Muniz, Magno Perea; Nunomura, Rita de Cassia Saraiva, E-mail: ellensilva@yahoo.com.br [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal do Amazonas, Manaus, AM (Brazil); Nunomura, Sergio Massayoshi [Departamento de Produtos Naturais, Instituto Nacional de Pesquisas da Amazonia, Manaus, AM (Brazil); Zilse, Gislene Almeida Carvalho [Departamento de Biodiversidade, Instituto Nacional de Pesquisas da Amazonia, Manaus, AM (Brazil)

    2013-09-01

    We investigated the phenolic constituents and antioxidant activity of geopropolis from two species of stingless Amazonian bees, Melipona interrupta and Melipona seminigra. The chemical investigation of geopropolis from Melipona interrupta led to the isolation of 5,7,4'-trihydroxyflavonone, 3,5,6,7,4'-pentahydroxyflavonol, naringenine-4'-O-{beta}-D-glucopyranoside and myricetin-3-O-{beta}-D-glucopyranoside. Their structures were assigned based on spectroscopic analyses, including two-dimensional NMR techniques. Antioxidant activity of methanol and ethanol extracts of M. interrupta and M. seminigra were measured using the 1,2-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging assay. This is also the first work reporting the chemical investigation of stingless bee species from the Amazonian region. (author)

  3. Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals

    Science.gov (United States)

    Saavedra, Marlon P.; Bickersmith, Sara A.; Prussing, Catharine; Michalski, Adrian; Tong Rios, Carlos; Vinetz, Joseph M.; Conn, Jan E.

    2017-01-01

    Anopheles darlingi, the main malaria vector in the Neotropics, has been considered to be highly anthropophilic. However, many behavioral aspects of this species remain unknown, such as the range of blood-meal sources. Barrier screens were used to collect resting Anopheles darlingi mosquitoes from 2013 to 2015 in three riverine localities (Lupuna, Cahuide and Santa Emilia) in Amazonian Peru. Overall, the Human Blood Index (HBI) ranged from 0.58–0.87, with no significant variation among years or sites. Blood-meal analysis revealed that humans are the most common blood source, followed by avian hosts (Galliformes-chickens and turkeys), and human/Galliforme mixed-meals. The Forage Ratio and Selection Index both show a strong preference for Galliformes over humans in blood-fed mosquitoes. Our data show that 30% of An. darlingi fed on more than one host, including combinations of dogs, pigs, goats and rats. There appears to be a pattern of host choice in An. darlingi, with varying proportions of mosquitoes feeding only on humans, only on Galliformes and some taking mixed-meals of blood (human plus Galliforme), which was detected in the three sites in different years, indicating that there could be a structure to these populations based on blood-feeding preferences. Mosquito age, estimated in two localities, Lupuna and Cahuide, ranged widely between sites and years. This variation may reflect the range of local environmental factors that influence longevity or possibly potential changes in the ability of the mosquito to transmit the parasite. Of 6,204 resting An. darlingi tested for Plasmodium infection, 0.42% were infected with P. vivax. This study provides evidence for the first time of the usefulness of barrier screens for the collection of blood-fed resting mosquitoes to calculate the Human Blood Index (HBI) and other blood-meal sources in a neotropical malaria endemic setting. PMID:28231248

  4. Did the martian outflow channels mostly form during the Amazonian Period?

    Science.gov (United States)

    Rodriguez, J. Alexis P.; Platz, Thomas; Gulick, Virginia; Baker, Victor R.; Fairén, Alberto G.; Kargel, Jeffrey; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-09-01

    Simud, Tiu, and Ares Valles comprise some of the largest outflow channels on Mars. Their excavation has been attributed variously to (or a combination of) erosion by catastrophic floods, glaciers, and debris flows. Numerous investigations indicate that they formed largely during the Late Hesperian (3.61-3.37 Ga). However, these studies mostly equate the ages of the outflow channel floors to those of the flows that generated mesoscale (several hundred meters to a few kilometers) bedforms within them. To improve the statistical accuracy in the age determinations of these flow events, we have used recently acquired high-resolution image and topographic data to map and date portions of Simud, Tiu and Ares Valles, which are extensively marked by these bedforms. Our results, which remove the statistical effects of older and younger outflow channel floor surfaces on the generation of modeled ages, reveal evidence for major outflow channel discharges occurring during the Early (3.37-1.23 Ga) and Middle (1.23-0.328 Ga) Amazonian, with activity significantly peaking during the Middle Amazonian stages. We also find that during the documented stages of Middle Amazonian discharges, the floor of Tiu Valles underwent widespread collapse, resulting in chaotic terrain formation. In addition, we present evidence showing that following the outflow channel discharges, collapse within northern Simud Valles generated another chaotic terrain. This younger chaos region likely represents the latest stage of large-scale outflow channel resurfacing within the study area. Our findings imply that in southern circum-Chryse the martian hydrosphere experienced large-scale drainage during the Amazonian, which likely led to periodic inundation and sedimentation within the northern plains.

  5. Amazonian dark earths and Caboclo subsistence on the middle Madeira River, Brazil

    OpenAIRE

    Fraser, James Angus

    2010-01-01

    This thesis examines the relationship between Amazonian Dark Earths (ADE) and Caboclo subsistence on the Middle Madeira River, Brazil. ADE are fertile anthropogenic (man-made) soils formed through practices of burning and waste disposal by pre-Columbian Amerindian populations. “Caboclo” is a social category that refers to the people of diverse origins that form the majority of the contemporary rural population of Brazilian Amazonia. Bitter manioc fields (roças) and homegardens (sítios) are th...

  6. Population dynamics of the yellow piranha Serrasalmus spilopleura Kner, 1858 (Characidae, Serrasalminae) in Amazonian floodplain lakes

    OpenAIRE

    Fabricio Barros Sousa; Luiza Prestes; Maria Gercilia Mota Soares

    2013-01-01

    Fish is the main source of protein in the Amazon and fishing is one of the most important sources of income for the Amazonian population. Serrasalmus spilopleura is a species that have been increasingly consumed by riverside communities, although it is only occasionally commercialized at regional markets. Therefore, this work sought to generate information about the population biology of S. spilopleura captured in floodplain lakes, jaiteua and Sao Lourenco, in Manacapuru, Amazonas State. The ...

  7. Wood decomposition in Amazonian hydropower reservoirs: An additional source of greenhouse gases

    Science.gov (United States)

    Abril, Gwenaël; Parize, Marcelo; Pérez, Marcela A. P.; Filizola, Naziano

    2013-07-01

    Amazonian hydroelectric reservoirs produce abundant carbon dioxide and methane from large quantities of flooded biomass that decompose anaerobically underwater. Emissions are extreme the first years after impounding and progressively decrease with time. To date, only water-to-air fluxes have been considered in these estimates. Here, we investigate in two Amazonian reservoirs (Balbina and Petit Saut) the fate of above water standing dead trees, by combining a qualitative analysis of wood state and density through time and a quantitative analysis of the biomass initially flooded. Dead wood was much more decomposed in the Balbina reservoir 23 years after flooding than in the Petit Saut reservoir 10 years after flooding. Termites apparently played a major role in wood decomposition, occurring mainly above water, and resulting in a complete conversion of this carbon biomass into CO2 and CH4 at a timescale much shorter than reservoir operation. The analysis of pre-impounding wood biomass reveals that above-water decomposition in Amazonian reservoirs is a large, previously unrecognized source of carbon emissions to the atmosphere, representing 26-45% of the total reservoir flux integrated over 100 years. Accounting for both below- and above-water fluxes, we could estimate that each km2 of Amazonian forest converted to reservoir would emit over 140 Gg CO2-eq in 100 years. Hydropower plants in the Amazon should thus generate 0.25-0.4 MW h per km2 flooded area to produce lower greenhouse gas emissions than gas power plants. They also have the disadvantage to emit most of their greenhouse gases the earliest years of operation.

  8. Diversity and genetic structure analysis of three Amazonian Amerindian populations of Colombia.

    Science.gov (United States)

    Braga, Yamid; Arias B, Leonardo; Barreto, Guillermo

    2012-04-01

    In the departments of the Vaupés and Guaviare, in southeastern Colombia, in a transitional area between Amazonia and the eastern plains, inhabit indigenous groups belonging to the Tukanoan (East) and Guahiban linguistic families. Although some studies have dealt with the culture and the cosmology description of these groups, little research has been done on the biological diversity and genetic relationships of such groups. To estimate the diversity, the structure, and the genetic relationships of one Guahiban and two Tukanoan groups of the Colombian Amazonian region. Samples were collected (n = 106) from unrelated individuals belonging to the Vaupés native indigenous communities. The DNA was extracted and nine autosomal microsatellites were typed. Several measures of diversity, FST, pairwise FST, and population differentiation between groups were calculated. Finally, it was estimated the genetic distances of the groups studied in relation with other Amazonian, Andean and Central American indigenous people. 1. The genetic diversity found stands within the range of other Amazonian populations, whereas compared to the mestizo and afro-descendant Colombian populations, such diversity showed to be lower. 2. The structure and population differentiation tests showed two clusters; one consisting of the Vaupés Tukanoan and Guaviare Tukanoan groups, and a second one formed by the Guayabero. 3. Tukanoan groups are found to be closer related to the Brazilian Amazonian populations than to the Guayabero. The results of this study suggest that the Guayabero group from Guaviare, are genetically differentiated from those Tukanoan groups of the Vaupés and Guaviare.

  9. Controls of Nazca ridge subduction on the Amazonian foreland basin geometry

    Science.gov (United States)

    Espurt, N.; Baby, P.; Brusset, S.; Roddaz, M.; Hermoza, W.; Regard, V.; Martinod, J.; Bolaños, R.

    2006-12-01

    In the central Andes, the Nazca ridge subduction imprints can be tracked on the eastern side of the Andes. The western part of the Amazonian basin is currently an atypical foreland basin because the Amazonian foreland basin 3-D geometry does not follow the foreland basin system model of DeCelles and Giles [1]. The Amazonian foreland basin consists of two main subsiding basins separated by the NE-SW trending structural/morphologic Fitzcarrald Arch. Geomorphic and lithospheric data provide evidence that the large wavelength Fitzcarrald Arch uplift at 750 kilometers ahead of the trench results from the Nazca ridge flat subduction. The flexure of the South American lithosphere is overcompensated by the buoyancy of the Nazca ridge impeaching a four-component foreland basin system. The recent deformations of the Amazon basin are characterized by vertical motions as recorded by the radial modern drainage network and the deformation of Pliocene to recent fluvial deposits on both sides of the arch, according to the kinematics of the Nazca ridge subduction. In addition, analogue lithospheric experiments similarly show that the ridge buoyancy induces uplift above the flat-slab segment in the foreland basin separating two subsiding sub-basins resulting from the flexure of the continental lithosphere. [1] DeCelles, P.G., and Giles, K.A.(1996)Foreland basin systems: Basin Research, 8, 105-123.

  10. Extremely long-distance seed dispersal by an overfished Amazonian frugivore.

    Science.gov (United States)

    Anderson, Jill T; Nuttle, Tim; Saldaña Rojas, Joe S; Pendergast, Thomas H; Flecker, Alexander S

    2011-11-22

    Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337-552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700-2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants.

  11. Estimating the global conservation status of more than 15,000 Amazonian tree species

    Science.gov (United States)

    ter Steege, Hans; Pitman, Nigel C. A.; Killeen, Timothy J.; Laurance, William F.; Peres, Carlos A.; Guevara, Juan Ernesto; Salomão, Rafael P.; Castilho, Carolina V.; Amaral, Iêda Leão; de Almeida Matos, Francisca Dionízia; de Souza Coelho, Luiz; Magnusson, William E.; Phillips, Oliver L.; de Andrade Lima Filho, Diogenes; de Jesus Veiga Carim, Marcelo; Irume, Mariana Victória; Martins, Maria Pires; Molino, Jean-François; Sabatier, Daniel; Wittmann, Florian; López, Dairon Cárdenas; da Silva Guimarães, José Renan; Mendoza, Abel Monteagudo; Vargas, Percy Núñez; Manzatto, Angelo Gilberto; Reis, Neidiane Farias Costa; Terborgh, John; Casula, Katia Regina; Montero, Juan Carlos; Feldpausch, Ted R.; Honorio Coronado, Euridice N.; Montoya, Alvaro Javier Duque; Zartman, Charles Eugene; Mostacedo, Bonifacio; Vasquez, Rodolfo; Assis, Rafael L.; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Camargo, José Luís; Laurance, Susan G. W.; Nascimento, Henrique Eduardo Mendonça; Marimon, Beatriz S.; Marimon, Ben-Hur; Costa, Flávia; Targhetta, Natalia; Vieira, Ima Célia Guimarães; Brienen, Roel; Castellanos, Hernán; Duivenvoorden, Joost F.; Mogollón, Hugo F.; Piedade, Maria Teresa Fernandez; Aymard C., Gerardo A.; Comiskey, James A.; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Diaz, Pablo Roberto Stevenson; Vincentini, Alberto; Emilio, Thaise; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Alonso, Alfonso; Dallmeier, Francisco; Ferreira, Leandro Valle; Neill, David; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Carvalho, Fernanda Antunes; Souza, Fernanda Coelho; do Amaral, Dário Dantas; Gribel, Rogerio; Luize, Bruno Garcia; Pansonato, Marcelo Petrati; Venticinque, Eduardo; Fine, Paul; Toledo, Marisol; Baraloto, Chris; Cerón, Carlos; Engel, Julien; Henkel, Terry W.; Jimenez, Eliana M.; Maas, Paul; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Revilla, Juan David Cardenas; Silveira, Marcos; Stropp, Juliana; Thomas-Caesar, Raquel; Baker, Tim R.; Daly, Doug; Paredes, Marcos Ríos; da Silva, Naara Ferreira; Fuentes, Alfredo; Jørgensen, Peter Møller; Schöngart, Jochen; Silman, Miles R.; Arboleda, Nicolás Castaño; Cintra, Bruno Barçante Ladvocat; Valverde, Fernando Cornejo; Di Fiore, Anthony; Phillips, Juan Fernando; van Andel, Tinde R.; von Hildebrand, Patricio; Barbosa, Edelcilio Marques; de Matos Bonates, Luiz Carlos; de Castro, Deborah; de Sousa Farias, Emanuelle; Gonzales, Therany; Guillaumet, Jean-Louis; Hoffman, Bruce; Malhi, Yadvinder; de Andrade Miranda, Ires Paula; Prieto, Adriana; Rudas, Agustín; Ruschell, Ademir R.; Silva, Natalino; Vela, César I. A.; Vos, Vincent A.; Zent, Eglée L.; Zent, Stanford; Cano, Angela; Nascimento, Marcelo Trindade; Oliveira, Alexandre A.; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Sierra, Rodrigo; Tirado, Milton; Medina, Maria Natalia Umaña; van der Heijden, Geertje; Torre, Emilio Vilanova; Vriesendorp, Corine; Wang, Ophelia; Young, Kenneth R.; Baider, Claudia; Balslev, Henrik; de Castro, Natalia; Farfan-Rios, William; Ferreira, Cid; Mendoza, Casimiro; Mesones, Italo; Torres-Lezama, Armando; Giraldo, Ligia Estela Urrego; Villarroel, Daniel; Zagt, Roderick; Alexiades, Miguel N.; Garcia-Cabrera, Karina; Hernandez, Lionel; Huamantupa-Chuquimaco, Isau; Milliken, William; Cuenca, Walter Palacios; Pansini, Susamar; Pauletto, Daniela; Arevalo, Freddy Ramirez; Sampaio, Adeilza Felipe; Valderrama Sandoval, Elvis H.; Gamarra, Luis Valenzuela

    2015-01-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century. PMID:26702442

  12. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars.

    Science.gov (United States)

    Tanaka, Kenneth L

    2005-10-13

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago.

  13. Siliceous spicules enhance fracture-resistance and stiffness of pre-colonial Amazonian ceramics

    Science.gov (United States)

    Natalio, Filipe; Corrales, Tomas P.; Wanka, Stephanie; Zaslansky, Paul; Kappl, Michael; Lima, Helena Pinto; Butt, Hans-Jürgen; Tremel, Wolfgang

    2015-08-01

    Pottery was a traditional art and technology form in pre-colonial Amazonian civilizations, widely used for cultural expression objects, utensils and as cooking vessels. Abundance and workability of clay made it an excellent choice. However, inferior mechanical properties constrained their functionality and durability. The inclusion of reinforcement particles is a possible route to improve its resistance to mechanical and thermal damage. The Amazonian civilizations incorporated freshwater tree sponge spicules (cauixí) into the clay presumably to prevent shrinkage and crack propagation during drying, firing and cooking. Here we show that isolated siliceous spicules are almost defect-free glass fibres with exceptional mechanical stability. After firing, the spicule Young’s modulus increases (from 28 ± 5 GPa to 46 ± 8 GPa) inferring a toughness increment. Laboratory-fabricated ceramic models containing different inclusions (sand, glass-fibres, sponge spicules) show that mutually-oriented siliceous spicule inclusions prevent shrinkage and crack propagation leading to high stiffness clays (E = 836 ± 3 MPa). Pre-colonial amazonian potters were the first civilization known to employ biological materials to generate composite materials with enhanced fracture resistance and high stiffness in the history of mankind.

  14. Estimating the global conservation status of more than 15,000 Amazonian tree species.

    Science.gov (United States)

    Ter Steege, Hans; Pitman, Nigel C A; Killeen, Timothy J; Laurance, William F; Peres, Carlos A; Guevara, Juan Ernesto; Salomão, Rafael P; Castilho, Carolina V; Amaral, Iêda Leão; de Almeida Matos, Francisca Dionízia; de Souza Coelho, Luiz; Magnusson, William E; Phillips, Oliver L; de Andrade Lima Filho, Diogenes; de Jesus Veiga Carim, Marcelo; Irume, Mariana Victória; Martins, Maria Pires; Molino, Jean-François; Sabatier, Daniel; Wittmann, Florian; López, Dairon Cárdenas; da Silva Guimarães, José Renan; Mendoza, Abel Monteagudo; Vargas, Percy Núñez; Manzatto, Angelo Gilberto; Reis, Neidiane Farias Costa; Terborgh, John; Casula, Katia Regina; Montero, Juan Carlos; Feldpausch, Ted R; Honorio Coronado, Euridice N; Montoya, Alvaro Javier Duque; Zartman, Charles Eugene; Mostacedo, Bonifacio; Vasquez, Rodolfo; Assis, Rafael L; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Camargo, José Luís; Laurance, Susan G W; Nascimento, Henrique Eduardo Mendonça; Marimon, Beatriz S; Marimon, Ben-Hur; Costa, Flávia; Targhetta, Natalia; Vieira, Ima Célia Guimarães; Brienen, Roel; Castellanos, Hernán; Duivenvoorden, Joost F; Mogollón, Hugo F; Piedade, Maria Teresa Fernandez; Aymard C, Gerardo A; Comiskey, James A; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Diaz, Pablo Roberto Stevenson; Vincentini, Alberto; Emilio, Thaise; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Alonso, Alfonso; Dallmeier, Francisco; Ferreira, Leandro Valle; Neill, David; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Carvalho, Fernanda Antunes; Souza, Fernanda Coelho; do Amaral, Dário Dantas; Gribel, Rogerio; Luize, Bruno Garcia; Pansonato, Marcelo Petrati; Venticinque, Eduardo; Fine, Paul; Toledo, Marisol; Baraloto, Chris; Cerón, Carlos; Engel, Julien; Henkel, Terry W; Jimenez, Eliana M; Maas, Paul; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Revilla, Juan David Cardenas; Silveira, Marcos; Stropp, Juliana; Thomas-Caesar, Raquel; Baker, Tim R; Daly, Doug; Paredes, Marcos Ríos; da Silva, Naara Ferreira; Fuentes, Alfredo; Jørgensen, Peter Møller; Schöngart, Jochen; Silman, Miles R; Arboleda, Nicolás Castaño; Cintra, Bruno Barçante Ladvocat; Valverde, Fernando Cornejo; Di Fiore, Anthony; Phillips, Juan Fernando; van Andel, Tinde R; von Hildebrand, Patricio; Barbosa, Edelcilio Marques; de Matos Bonates, Luiz Carlos; de Castro, Deborah; de Sousa Farias, Emanuelle; Gonzales, Therany; Guillaumet, Jean-Louis; Hoffman, Bruce; Malhi, Yadvinder; de Andrade Miranda, Ires Paula; Prieto, Adriana; Rudas, Agustín; Ruschell, Ademir R; Silva, Natalino; Vela, César I A; Vos, Vincent A; Zent, Eglée L; Zent, Stanford; Cano, Angela; Nascimento, Marcelo Trindade; Oliveira, Alexandre A; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Sierra, Rodrigo; Tirado, Milton; Medina, Maria Natalia Umaña; van der Heijden, Geertje; Torre, Emilio Vilanova; Vriesendorp, Corine; Wang, Ophelia; Young, Kenneth R; Baider, Claudia; Balslev, Henrik; de Castro, Natalia; Farfan-Rios, William; Ferreira, Cid; Mendoza, Casimiro; Mesones, Italo; Torres-Lezama, Armando; Giraldo, Ligia Estela Urrego; Villarroel, Daniel; Zagt, Roderick; Alexiades, Miguel N; Garcia-Cabrera, Karina; Hernandez, Lionel; Huamantupa-Chuquimaco, Isau; Milliken, William; Cuenca, Walter Palacios; Pansini, Susamar; Pauletto, Daniela; Arevalo, Freddy Ramirez; Sampaio, Adeilza Felipe; Valderrama Sandoval, Elvis H; Gamarra, Luis Valenzuela

    2015-11-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world's >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.

  15. Comparison of automatic traps to capture mosquitoes (Diptera: Culicidae in rural areas in the tropical Atlantic rainforest

    Directory of Open Access Journals (Sweden)

    Ivy Luizi Rodrigues de Sa

    2013-12-01

    Full Text Available In several countries, surveillance of insect vectors is accomplished with automatic traps. This study addressed the performance of Mosquito Magnet® Independence (MMI in comparison with those of CDC with CO2 and lactic acid (CDC-A and CDC light trap (CDC-LT. The collection sites were in a rural region located in a fragment of secondary tropical Atlantic rainforest, southeastern Brazil. Limatus durhami and Limatus flavisetosus were the dominant species in the MMI, whereas Ochlerotatus scapularis was most abundant in CDC-A. Culex ribeirensis and Culex sacchettae were dominant species in the CDC-LT. Comparisons among traps were based on diversity indices. Results from the diversity analyses showed that the MMI captured a higher abundance of mosquitoes and that the species richness estimated with it was higher than with CDC-LT. Contrasting, difference between MMI and CDC-A was not statistically significant. Consequently, the latter trap seems to be both an alternative for the MMI and complementary to it for ecological studies and entomological surveillance.

  16. Comparison of automatic traps to capture mosquitoes (Diptera: Culicidae) in rural areas in the tropical Atlantic rainforest.

    Science.gov (United States)

    Sá, Ivy Luizi Rodrigues de; Sallum, Maria Anice Mureb

    2013-12-01

    In several countries, surveillance of insect vectors is accomplished with automatic traps. This study addressed the performance of Mosquito Magnet® Independence (MMI) in comparison with those of CDC with CO2 and lactic acid (CDC-A) and CDC light trap (CDC-LT). The collection sites were in a rural region located in a fragment of secondary tropical Atlantic rainforest, southeastern Brazil. Limatus durhami and Limatus flavisetosus were the dominant species in the MMI, whereas Ochlerotatus scapularis was most abundant in CDC-A. Culex ribeirensis and Culex sacchettae were dominant species in the CDC-LT. Comparisons among traps were based on diversity indices. Results from the diversity analyses showed that the MMI captured a higher abundance of mosquitoes and that the species richness estimated with it was higher than with CDC-LT. Contrasting, difference between MMI and CDC-A was not statistically significant. Consequently, the latter trap seems to be both an alternative for the MMI and complementary to it for ecological studies and entomological surveillance.

  17. Herpetofauna of an Atlantic rainforest area (Morro São João) in Rio de Janeiro State, Brazil.

    Science.gov (United States)

    Almeida-Gomes, Mauricio; Vrcibradic, Davor; Siqueira, Carla C; Kiefer, Mara C; Klaion, Thaís; Almeida-Santos, Patrícia; Nascimento, Denise; Ariani, Cristina V; Borges-Junior, Vitor N T; Freitas-Filho, Ricardo F; van Sluys, Monique; Rocha, Carlos F D

    2008-06-01

    We studied the herpetofaunal community from the Atlantic forest of Morro São João, in Rio de Janeiro State, Brazil, and present data on species composition, richness, relative abundance and densities. We combined three sampling methods: plot sampling, visual encounter surveys and pit-fall traps. We recorded sixteen species of amphibians and nine of reptiles. The estimated densities (based on results of plot sampling) were 4.5 ind/100 m2 for amphibians and 0.8 ind/100 m2 for lizards, and the overall density (amphibians and lizards) was 5.3 ind/100 m2. For amphibians, Eleutherodactylus and Scinax were the most speciose genera with three species each, and Eleutherodactylus binotatus was the most abundant species (mean density of 3.0 frogs/100 m2). The reptile community of Morro São João was dominated by species of the families Gekkonidae and Gymnophtalmidae (Lacertilia) and Colubridae (Serpentes). The gymnophtalmid lizard Leposoma scincoides was the most abundant reptile species (mean density of 0.3 ind/100 m2). We compare densities obtained in our study data with those of other studied rainforest sites in various tropical regions of the world.

  18. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Science.gov (United States)

    Hoffmann, Constanze; Zimmermann, Fee; Biek, Roman; Kuehl, Hjalmar; Nowak, Kathrin; Mundry, Roger; Agbor, Anthony; Angedakin, Samuel; Arandjelovic, Mimi; Blankenburg, Anja; Brazolla, Gregory; Corogenes, Katherine; Couacy-Hymann, Emmanuel; Deschner, Tobias; Dieguez, Paula; Dierks, Karsten; Düx, Ariane; Dupke, Susann; Eshuis, Henk; Formenty, Pierre; Yuh, Yisa Ginath; Goedmakers, Annemarie; Gogarten, Jan F.; Granjon, Anne-Céline; McGraw, Scott; Grunow, Roland; Hart, John; Jones, Sorrel; Junker, Jessica; Kiang, John; Langergraber, Kevin; Lapuente, Juan; Lee, Kevin; Leendertz, Siv Aina; Léguillon, Floraine; Leinert, Vera; Löhrich, Therese; Marrocoli, Sergio; Mätz-Rensing, Kerstin; Meier, Amelia; Merkel, Kevin; Metzger, Sonja; Murai, Mizuki; Niedorf, Svenja; de Nys, Hélène; Sachse, Andreas; van Schijndel, Joost; Thiesen, Ulla; Ton, Els; Wu, Doris; Wieler, Lothar H.; Boesch, Christophe; Klee, Silke R.; Wittig, Roman M.; Calvignac-Spencer, Sébastien; Leendertz, Fabian H.

    2017-08-01

    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation.

  19. Structural attributes of individual trees for identifying homogeneous patches in a tropical rainforest

    Science.gov (United States)

    Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.

    2017-03-01

    Mapping and monitoring tropical rainforests and quantifying their carbon stocks are important, both for devising strategies for their conservation and mitigating the effects of climate change. Airborne Laser Scanning (ALS) has advantages over other remote sensing techniques for describing the three-dimensional structure of forests. This study identifies forest patches using ALS-based structural attributes in a tropical rainforest in Sumatra, Indonesia. A method to group trees with similar attributes into forest patches based on Thiessen polygons and k-medoids clustering is developed, combining the advantages of both raster and individual tree-based methods. The structural composition of the patches could be an indicator of habitat type and quality. The patches could also be a basis for developing allometric models for more accurate estimation of carbon stock than is currently possible with generalised models.

  20. Respiration characteristics in temperate rainforest tree species differ along a long-term soil-development chronosequence.

    Science.gov (United States)

    Turnbull, Matthew H; Tissue, David T; Griffin, Kevin L; Richardson, Sarah J; Peltzer, Duane A; Whitehead, David

    2005-03-01

    We measured the response of dark respiration (R(d)) to temperature and foliage characteristics in the upper canopies of tree species in temperate rainforest communities in New Zealand along a soil chronosequence (six sites from 6 years to 120,000 years). The chronosequence provided a vegetation gradient characterised by significant changes in soil nutrition. This enabled us to examine the extent to which changes in dark respiration can be applied across forest biomes and the utility of scaling rules in whole-canopy carbon modelling. The response of respiration to temperature in the dominant tree species differed significantly between sites along the sequence. This involved changes in both R(d) at a reference temperature (R(10)) and the extent to which R(d) increased with temperature (described by E(o), a parameter related to the energy of activation, or the change in R(d) over a 10 degrees C range, Q(10)). Site averaged E(o) ranged from 44.4 kJ mol(-1) K(-1) at the 60-year-old site to 26.0 kJ mol(-1) K(-1) at the oldest, most nutrient poor, site. Relationships between respiratory and foliage characteristics indicated that both the temperature response of respiration (E(o) or Q(10)) and the instantaneous rate of respiration increased with both foliar nitrogen and phosphorus content. The ratio of photosynthetic capacity (Whitehead et al. in Oecologia 2005) to respiration (A(max)/R(d)) attained values in excess of 15 for species in the 6- to 120-year-old sites, but thereafter decreased significantly to around five at the 120,000-year-old site. This indicates that shoot carbon acquisition is regulated by nutrient limitations in the retrogressing ecosystems on the oldest sites. Our findings indicate that respiration and its temperature response will vary according to soil age and, therefore, to soil nutrient availability and the stage of forest development. Thus, variability in respiratory characteristics for canopies should be considered when using models to integrate

  1. Eddy covariance fluxes of the NO-O3-NO2 triad above the forest canopy at the ATTO Site in the Amazon Basin

    Science.gov (United States)

    Tsokankunku, Anywhere; Wolff, Stefan; Sörgel, Matthias; Berger, Martina; Zelger, Michael; Dlugi, Ralf

    2017-04-01

    measurements of NO, NO2 and O3 were available at 8 levels on the INSTANT tower from a reactive trace gas profile system which has been operational at the site since 2012. From these measurements, we present eddy covariance fluxes of the NO-O3-NO2 triad. We relate the fluxes to the canopy-atmosphere exchange of the trace gases and other scalars using the profile data along the tower. Chemical and turbulent transport timescales of the triad constituents are also presented. Coherent structures and canopy-atmosphere coupling is discussed, particularly in relation to the dynamics of O3 and its subsequent influence on the NOx fluxes. As far as we know, these are the first full simultaneous measurements of NO, NO2 and O3 fluxes using the eddy covariance method above an Amazonian rainforest.

  2. Predicting effects of rainforest fragmentation from live trapping studies of small mammals in Sri Lanka

    OpenAIRE

    M.R. Wijesinghe

    2012-01-01

    This paper examines the impact of forest fragmentation on small mammals inhabiting the rainforests of Sri Lanka. Fifteen forests ranging in size from 145 to 11000 ha were live-trapped for five to eight nights each in both interior and edge habitats, yielding a total of 18400 trap nights. A total of 444 individuals belonging to 10 species of small mammals were captured. Multiple-regression analysis incorporating three indicators of fragmentation: patch area, shape index (perimeter/area) and...

  3. Collective action to save the ancient temperate rainforest: social networks and environmental activism in Clayoquot Sound

    OpenAIRE

    David B. Tindall; Joanna L. Robinson

    2017-01-01

    In 1993 over 850 people were arrested for engaging in civil disobedience to prevent the clear-cut logging of pristine ancient temperate rainforests in Clayoquot Sound, Canada. This was the largest incident of this type in Canadian history, and has arguably been Canada's most visible mobilization over a specific environmental issue. This study examines the factors that explain the ongoing participation of individuals in the environmental movement (more broadly, beyond participation in civil di...

  4. Populations, pools, and peccaries: simulating the impact of ecosystem engineers on rainforest frogs

    OpenAIRE

    Ringler, Max; Hödl, Walter; Ringler, Eva

    2015-01-01

    “Ecosystem engineering” describes habitat alteration by an organism that affects another organism; such nontrophic interactions between organisms are a current focus in ecological research. Our study quantifies the actual impact an ecosystem engineer can have on another species by using a previously identified model system—peccaries and rainforest frogs. In a 4-year experiment, we simulated the impact of peccaries on a population of Allobates femoralis (Dendrobatidae) by installing an array o...

  5. Semi-forest coffee cultivation and the conservation of Ethiopian Afromontane rainforest fragments

    OpenAIRE

    Aerts, Raf; Hundera, K; Berecha, G; Gijbels, Pieter; Baeten, Marieke; Van Mechelen, Maarten; Hermy, Martin; Muys, Bart; Honnay, Olivier

    2011-01-01

    Coffea arabica shrubs are indigenous to the understorey of the moist evergreen montane rainforest of Ethiopia. Semi-forest coffee is harvested from semi-wild plants in forest fragments where farmers thin the upper canopy and annually slash the undergrowth. This traditional method of coffee cultivation is a driver for preservation of indigenous forest cover, differing from other forms of agriculture and land use which tend to reduce forest cover. Because coffee farmers are primarily interes...

  6. Primate DNA suggests long-term stability of an African rainforest

    OpenAIRE

    Allen, Julie M.; Miyamoto, Michael M.; Wu, Chieh-Hsi; E Carter, Tamar; Ungvari-Martin, Judit; Magrini, Kristin; Chapman, Colin A.

    2012-01-01

    Red colobus monkeys, due to their sensitivity to environmental change, are indicator species of the overall health of their tropical rainforest habitats. As a result of habitat loss and overhunting, they are among the most endangered primates in the world, with very few viable populations remaining. Traditionally, extant indicator species have been used to signify the conditions of their current habitats, but they have also been employed to track past environmental conditions by detecting pre...

  7. Infection of Amblyomma ovale by Rickettsia sp. strain Atlantic rainforest, Colombia.

    Science.gov (United States)

    Londoño, Andrés F; Díaz, Francisco J; Valbuena, Gustavo; Gazi, Michal; Labruna, Marcelo B; Hidalgo, Marylin; Mattar, Salim; Contreras, Verónica; Rodas, Juan D

    2014-10-01

    Our goal was to understand rickettsial spotted fevers' circulation in areas of previous outbreaks reported from 2006 to 2008 in Colombia. We herein present molecular identification and isolation of Rickettsia sp. Atlantic rainforest strain from Amblyomma ovale ticks, a strain shown to be pathogenic to humans. Infected ticks were found on dogs and a rodent in Antioquia and Córdoba Provinces. This is the first report of this rickettsia outside Brazil, which expands its known range considerably.

  8. Habitat fragmentation threatens wild populations of Carica papaya (Caricaceae) in a lowland rainforest.

    Science.gov (United States)

    Chávez-Pesqueira, Mariana; Suárez-Montes, Pilar; Castillo, Guillermo; Núñez-Farfán, Juan

    2014-07-11

    • Premise of the study: Wild populations of domesticated species constitute a genetic reservoir and are fundamental to the evolutionary potential of species. Wild papaya (Carica papaya) is a rare, short-lived, gap-colonizing, dioecious tree that persists in the forest by continuous dispersal. Theoretically, these life-history characteristics render wild papaya highly susceptible to habitat fragmentation, with anticipated negative effects on its gene pool. Further, species dioecy may cause founder effects to generate local biases in sex ratio, decreasing effective population size.• Methods: We contrasted the genetic diversity and structure of C. papaya between wild populations from rainforest fragments and continuous forest at Los Tuxtlas, Mexico. We evaluated recent migration rates among populations as well as landscape resistance to gene flow. Finally, we calculated the sex ratio of the populations in both habitats.• Key results: Populations of wild papaya in rainforest fragments showed lower genetic diversity and higher population differentiation than populations in continuous rainforest. Estimates of recent migration rates showed a higher percentage of migrants moving from the continuous forest to the forest fragments than in the opposite direction. Agricultural land and cattle pasture were found to be the most resistant matrices to gene flow. Finally, biased sex ratios were seen to affect the effective population size in both habitats.• Conclusions: The mating system, rarity, and short life cycle of C. papaya are exacerbating the effects of rainforest fragmentation on its genetic diversity, threatening the persistence of its natural populations in the proposed place of origin as well as its genetic reservoir.

  9. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    OpenAIRE

    JARDINE, KOLBY J.; CHAMBERS, JEFFREY Q.; Jennifer Holm; Angela B. Jardine; Clarissa G. Fontes; Zorzanelli, Raquel F.; Kimberly T. Meyers; Vinicius Fernadez de Souza; Sabrina Garcia; Gimenez,Bruno O.; Luani R. de O. Piva; Niro Higuchi; Paulo Artaxo; Scot Martin; Manzi, Antônio O.

    2015-01-01

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxid...

  10. Energetic planning in isolated Amazonian communities using geographical information system; Planejamento energetico em regioes isoladas da Amazonia utilizando sistemas de informacoes geograficas

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Arthur [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Programa de Pos-Graduacao de Engenharia Eletrica; Rocha, Brigida R.P.; Monteiro, Jose H.A.; Gaspar, Gabriella C.M. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Dept. de Engenharia Eletrica e de Computacao; Aarao Junior, Raimundo N.N. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Dept. de Engenharia Mecanica

    2004-07-01

    This paper proposes a system of electric planning in isolated Amazonian communities. For those communities, we propose the use of decentralized systems of electric energy with biomass as fuel. We also propose a computer system of electric planning with geographical information systems for its facilities of integrating geographical information, so useful in an Amazonian context. (author)

  11. Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis.

    Science.gov (United States)

    Amézquita, Adolfo; Hödl, Walter; Lima, Albertina Pimentel; Castellanos, Lina; Erdtmann, Luciana; de Araújo, Maria Carmozina

    2006-09-01

    The efficacy of communication relies on detection of species-specific signals against the background noise. Features affecting signal detection are thus expected to evolve under selective pressures represented by masking noise. Spectral partitioning between the auditory signals of co-occurring species has been interpreted as the outcome of the selective effects of masking interference. However, masking interference depends not only on signal's frequency but on receiver's range of frequency sensitivity; moreover, selection on signal frequency can be confounded by selection on body size, because these traits are often correlated. To know whether geographic variation in communication traits agrees with predictions about masking interference effects, we tested the hypothesis that variation in the male-male communication system of the Amazonian frog, Allobates femoralis, is correlated with the occurrence of a single species calling within an overlapping frequency range, Epipedobates trivittatus. We studied frogs at eight sites, four where both species co-occur and four where A. femoralis occurs but E. trivittatus does not. To study the sender component of the communication system of A. femoralis and to describe the use of the spectral range, we analyzed the signal's spectral features of all coactive species at each site. To study the receiver component, we derived frequency-response curves from playback experiments conducted on territorial males of A. femoralis under natural conditions. Most geographic variation in studied traits was correlated with either call frequency or with response frequency range. The occurrence of E. trivittatus significantly predicted narrower and asymmetric frequency-response curves in A. femoralis, without concomitant differences in the call or in body size. The number of acoustically coactive species did not significantly predict variation in any of the studied traits. Our results strongly support that the receiver but not the sender

  12. Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements

    Science.gov (United States)

    Martinez, M.; Harder, H.; Kubistin, D.; Rudolf, M.; Bozem, H.; Eerdekens, G.; Fischer, H.; Klüpfel, T.; Gurk, C.; Königstedt, R.; Parchatka, U.; Schiller, C. L.; Stickler, A.; Williams, J.; Lelieveld, J.

    2010-04-01

    Direct measurements of OH and HO2 over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy), adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO2 mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO2 were encountered in the boundary layer over the rainforest. The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission.

  13. Soil functioning in a toposequence under rainforest in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Miguel Cooper

    2013-04-01

    Full Text Available Studies of soil-water dynamics using toposequences are essential to improve the understanding of soil-water-vegetation relationships. This study assessed the hydro-physical and morphological characteristics of soils of Atlantic Rainforest in the Parque Estadual de Carlos Botelho, state of São Paulo, Brazil. The study area of 10.24 ha (320 x 320 m was covered by dense tropical rainforest (Atlantic Rainforest. Based on soil maps and topographic maps of the area, a representative transect of the soil in this plot was chosen and five soil trenches were opened to determine morphological properties. To evaluate the soil hydro-physical functioning, soil particle size distribution, bulk density (r, particle density (r s, soil water retention curves (SWRC, field saturated hydraulic conductivity (Ks, macroporosity (macro, and microporosity (micro and total porosity (TP were determined. Undisturbed samples were collected for micromorphometric image analysis, to determine pore size, shape, and connectivity. The soils in the study area were predominantly Inceptisols, and secondly Entisols and Epiaquic Haplustult. In the soil hydro-physical characterization of the selected transect, a change was observed in Ks between the surface and subsurface layers, from high/intermediate to intermediate/low permeability. This variation in soil-water dynamics was also observed in the SWRC, with higher water retention in the subsurface horizons. The soil hydro-physical behavior was influenced by the morphogenetic characteristics of the soils.

  14. Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity

    Science.gov (United States)

    Nölscher, A. C.; Yañez-Serrano, A. M.; Wolff, S.; de Araujo, A. Carioca; Lavrič, J. V.; Kesselmeier, J.; Williams, J.

    2016-01-01

    The hydroxyl radical (OH) removes most atmospheric pollutants from air. The loss frequency of OH radicals due to the combined effect of all gas-phase OH reactive species is a measureable quantity termed total OH reactivity. Here we present total OH reactivity observations in pristine Amazon rainforest air, as a function of season, time-of-day and height (0-80 m). Total OH reactivity is low during wet (10 s-1) and high during dry season (62 s-1). Comparison to individually measured trace gases reveals strong variation in unaccounted for OH reactivity, from 5 to 15% missing in wet-season afternoons to mostly unknown (average 79%) during dry season. During dry-season afternoons isoprene, considered the dominant reagent with OH in rainforests, only accounts for ~20% of the total OH reactivity. Vertical profiles of OH reactivity are shaped by biogenic emissions, photochemistry and turbulent mixing. The rainforest floor was identified as a significant but poorly characterized source of OH reactivity.

  15. Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest

    Science.gov (United States)

    Gerken, Tobias; Wei, Dandan; Chase, Randy J.; Fuentes, Jose D.; Schumacher, Courtney; Machado, Luiz A. T.; Andreoli, Rita V.; Chamecki, Marcelo; Ferreira de Souza, Rodrigo A.; Freire, Livia S.; Jardine, Angela B.; Manzi, Antonio O.; Nascimento dos Santos, Rosa M.; von Randow, Celso; dos Santos Costa, Patrícia; Stoy, Paul C.; Tóta, Julio; Trowbridge, Amy M.

    2016-01-01

    From April 2014 to January 2015, ozone (O3) dynamics were investigated as part of GoAmazon 2014/5 project in the central Amazon rainforest of Brazil. Just above the forest canopy, maximum hourly O3 mixing ratios averaged 20 ppbv (parts per billion on a volume basis) during the June-September dry months and 15 ppbv during the wet months. Ozone levels occasionally exceeded 75 ppbv in response to influences from biomass burning and regional air pollution. Individual convective storms transported O3-rich air parcels from the mid-troposphere to the surface and abruptly enhanced the regional atmospheric boundary layer by as much as 25 ppbv. In contrast to the individual storms, days with multiple convective systems produced successive, cumulative ground-level O3 increases. The magnitude of O3 enhancements depended on the vertical distribution of O3 within storm downdrafts and origin of downdrafts in the troposphere. Ozone mixing ratios remained enhanced for > 2 h following the passage of storms, which enhanced chemical processing of rainforest-emitted isoprene and monoterpenes. Reactions of isoprene and monoterpenes with O3 are modeled to generate maximum hydroxyl radical formation rates of 6 × 106 radicals cm-3s-1. Therefore, one key conclusion of the present study is that downdrafts of convective storms are estimated to transport enough O3 to the surface to initiate a series of reactions that reduce the lifetimes of rainforest-emitted hydrocarbons.

  16. Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements

    Directory of Open Access Journals (Sweden)

    M. Martinez

    2010-04-01

    Full Text Available Direct measurements of OH and HO2 over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy, adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO2 mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO2 were encountered in the boundary layer over the rainforest.

    The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission.

  17. Climate change impacts on the water balance of coastal and montane rainforests in northern Queensland, Australia

    Science.gov (United States)

    Wallace, Jim; McJannet, Dave

    2012-12-01

    SummaryHow the water balance of coastal and montane rainforests in northern Queensland could change in response to climate change was examined using physically based models of interception and transpiration along with long term weather records. Future rainfall and temperature changes were based on the most recent climate modelling for the region and were assumed to fall within the range ±20% for rainfall with a temperature increase of 1-3 K. Climate change will affect the water balance of Australian rainforests primarily via rainfall changes rather than temperature. Any given change in rainfall produces a greater change in downstream runoff, the amplification ranging from 1.1 to 1.5 in the wet season to a factor of 12 in the dry season. Changes in wet season rainfall (80% of the annual total) dominate the total annual amount of water released for downstream flow, but dry season rainfall (20% of the annual total) changes are also very important as they affect onset and the duration of the period when there is no runoff. This period is currently ˜110 days and this would change by ±30 days under the above climate scenarios. There are also potential in situ impacts of climate change that affect how long the rainforest canopy is wet, which may have important implications for the epiphytes and mosses that depend on these wet canopy conditions. Similarly there may be significant impacts on downstream freshwater species whose life cycles are adapted to the current dry season flow regime.

  18. Origin of the Hawaiian rainforest and its transition states in long-term primary succession

    Science.gov (United States)

    Mueller-Dombois, D.; Boehmer, H. J.

    2013-07-01

    This paper addresses the question of transition states in the Hawaiian rainforest ecosystem with emphasis on their initial developments. Born among volcanoes in the north central Pacific about 4 million years ago, the Hawaiian rainforest became assembled from spores of algae, fungi, lichens, bryophytes, ferns and from seeds of about 275 flowering plants that over the millennia evolved into ca. 1000 endemic species. Outstanding among the forest builders were the tree ferns (Cibotium spp.) and the 'ōhi'a lehua trees (Metrosideros spp.), which still dominate the Hawaiian rainforest ecosystem today. The structure of this forest is simple. The canopy in closed mature rainforests is dominated by cohorts of Metrosideros polymorpha and the undergrowth by tree fern species of Cibotium. When a new lava flow cuts through this forest, kipuka are formed, i.e., islands of remnant vegetation. On the new volcanic substrate, the assemblage of plant life forms is similar to the assemblage during the evolution of this system. In open juvenile forests, a mat-forming fern, the uluhe fern (Dicranopteris linearis), becomes established. It inhibits further regeneration of the dominant 'ōhi'a tree, thereby reinforcing the cohort structure of the canopy guild. In the later part of its life cycle, the canopy guild breaks down often in synchrony. The trigger is hypothesized to be a climatic perturbation. After the disturbance, the forest becomes reestablished in about 30-40 yr. As the volcanic surfaces age, they go from a mesotrophic to a eutrophic phase, reaching a biophilic nutrient climax by about 1-25 K yr. Thereafter, a regressive oligotrophic phase follows; the soils become exhausted of nutrients. The shield volcanoes break down. Marginally, forest habitats change into bogs and stream ecosystems. The broader 'ōhi'a rainforest redeveloping in the more dissected landscapes of the older islands loses stature, often forming large gaps that are invaded by the aluminum tolerant uluhe fern

  19. Origin of the Hawaiian rainforest and its transition states in long-term primary succession

    Directory of Open Access Journals (Sweden)

    D. Mueller-Dombois

    2013-07-01

    Full Text Available This paper addresses the question of transition states in the Hawaiian rainforest ecosystem with emphasis on their initial developments. Born among volcanoes in the north central Pacific about 4 million years ago, the Hawaiian rainforest became assembled from spores of algae, fungi, lichens, bryophytes, ferns and from seeds of about 275 flowering plants that over the millennia evolved into ca. 1000 endemic species. Outstanding among the forest builders were the tree ferns (Cibotium spp. and the 'ōhi'a lehua trees (Metrosideros spp., which still dominate the Hawaiian rainforest ecosystem today. The structure of this forest is simple. The canopy in closed mature rainforests is dominated by cohorts of Metrosideros polymorpha and the undergrowth by tree fern species of Cibotium. When a new lava flow cuts through this forest, kipuka are formed, i.e., islands of remnant vegetation. On the new volcanic substrate, the assemblage of plant life forms is similar to the assemblage during the evolution of this system. In open juvenile forests, a mat-forming fern, the uluhe fern (Dicranopteris linearis, becomes established. It inhibits further regeneration of the dominant 'ōhi'a tree, thereby reinforcing the cohort structure of the canopy guild. In the later part of its life cycle, the canopy guild breaks down often in synchrony. The trigger is hypothesized to be a climatic perturbation. After the disturbance, the forest becomes reestablished in about 30–40 yr. As the volcanic surfaces age, they go from a mesotrophic to a eutrophic phase, reaching a biophilic nutrient climax by about 1–25 K yr. Thereafter, a regressive oligotrophic phase follows; the soils become exhausted of nutrients. The shield volcanoes break down. Marginally, forest habitats change into bogs and stream ecosystems. The broader 'ōhi'a rainforest redeveloping in the more dissected landscapes of the older islands loses stature, often forming large gaps that are invaded by the aluminum

  20. The Chemical and Isotopic Signature of Old Groundwater and Magmatic Solutes in a Costa Rican Rainforest: Evidence From Carbon, Helium, and Chlorine

    Science.gov (United States)

    Webb, M. D.; Genereux, D. P.; Solomon, D. K.

    2008-12-01

    Major ion, 18O, and water budget data from previous hydrologic studies at a Costa Rica lowland rainforest site, La Selva Biological station at the foot of Volcan Barva, indicate the presence and mixing of two distinct groundwaters: - bedrock groundwater: relatively high-solute groundwater that represents interbasin groundwater flow into the lowland rainforest watersheds, and - local groundwater: more dilute groundwater recharged locally in the lowlands. In this study we found that C, He, and Cl concentrations and isotope data (ä13C, 14C, 3He/4He, 36Cl/Cl), in groundwater and surface water at La Selva and upslope in Braulio Carillo National Park, are strongly consistent with the mixing hypothesis and provide insight into the age and origin of the two groundwaters. Highly significant linear trends on plots of isotopic abundance vs. the inverse of concentration support the mixing of two groundwaters. High ä13C (-4.89), low 14C (7.98 pmC), high R/RA for He (6.88), and low 36Cl/Cl (17 x 10-15) of bedrock groundwater indicate that elevated C, He, and Cl concentrations in this groundwater are derived from magmatic outgassing and/or weathering of volcanic rock, most likely beneath nearby Volcan Barva. The estimated ä13C of magmatic CO2 was -2.6 , almost identical to the previously- measured ä13C of CO2 in high-temperature gases from two volcanoes in the region (-2.9 at Momotombo in Nicaragua and -2.7 at Arenal in Costa Rica). Concentrations and isotopic ratios of C, He, and Cl in local water are consistent with atmospheric/precipitation sources for He and Cl and a biogenic soil-gas CO2 source for DIC. 14C dating, using NETPATH (a geochemical mass-balance model), indicate an apparent age of bedrock groundwater in the range 2700-4300 years. Local groundwater has 14C concentrations >100 pmC, indicating the presence of anthropogenic "bomb carbon" and thus ages less than ~55 years for these samples collected in 2006. Overall the data are fully consistent with the conceptual

  1. Non-specific Patterns of Vector, Host, and Avian Malaria Parasite Associations in a Central African Rainforest

    Science.gov (United States)

    Njabo, Kevin Y; Cornel, Anthony J.; Bonneaud, Camille; Toffelmier, Erin; Sehgal, R.N.M.; Valkiūnas, Gediminas; Russell, Andrew F.; Smith, Thomas B.

    2010-01-01

    Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex, and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species. PMID:21134011

  2. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange

    Science.gov (United States)

    Miller, Scott D.; Goulden, Michael L.; Hutyra, Lucy R.; Keller, Michael; Saleska, Scott R.; Wofsy, Steven C.; Figueira, Adelaine Michela Silva; da Rocha, Humberto R.; de Camargo, Plinio B.

    2011-01-01

    We used eddy covariance and ecological measurements to investigate the effects of reduced impact logging (RIL) on an old-growth Amazonian forest. Logging caused small decreases in gross primary production, leaf production, and latent heat flux, which were roughly proportional to canopy loss, and increases in heterotrophic respiration, tree mortality, and wood production. The net effect of RIL was transient, and treatment effects were barely discernable after only 1 y. RIL appears to provide a strategy for managing tropical forest that minimizes the potential risks to climate associated with large changes in carbon and water exchange. PMID:22087005

  3. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange.

    Science.gov (United States)

    Miller, Scott D; Goulden, Michael L; Hutyra, Lucy R; Keller, Michael; Saleska, Scott R; Wofsy, Steven C; Figueira, Adelaine Michela Silva; da Rocha, Humberto R; de Camargo, Plinio B

    2011-11-29

    We used eddy covariance and ecological measurements to investigate the effects of reduced impact logging (RIL) on an old-growth Amazonian forest. Logging caused small decreases in gross primary production, leaf production, and latent heat flux, which were roughly proportional to canopy loss, and increases in heterotrophic respiration, tree mortality, and wood production. The net effect of RIL was transient, and treatment effects were barely discernable after only 1 y. RIL appears to provide a strategy for managing tropical forest that minimizes the potential risks to climate associated with large changes in carbon and water exchange.

  4. Elements of metacommunity structure in Amazonian Zygoptera among streams under different spatial scales and environmental conditions.

    Science.gov (United States)

    Brasil, Leandro Schlemmer; Vieira, Thiago Bernardi; de Oliveira-Junior, José Max Barbosa; Dias-Silva, Karina; Juen, Leandro

    2017-05-01

    An important aspect of conservation is to understand the founding elements and characteristics of metacommunities in natural environments, and the consequences of anthropogenic disturbance on these patterns. In natural Amazonian environments, the interfluves of the major rivers play an important role in the formation of areas of endemism through the historical isolation of species and the speciation process. We evaluated elements of metacommunity structure for Zygoptera (Insecta: Odonata) sampled in 93 Amazonian streams distributed in two distinct biogeographic regions (areas of endemism). Of sampled streams, 43 were considered to have experienced negligible anthropogenic impacts, and 50 were considered impacted by anthropogenic activities. Our hypothesis was that preserved ("negligible impact") streams would present a Clementsian pattern, forming clusters of distinct species, reflecting the biogeographic pattern of the two regions, and that anthropogenic streams would present random patterns of metacommunity, due to the loss of more sensitive species and dominance of more tolerant species, which have higher dispersal ability and environmental tolerance. In negligible impact streams, the Clementsian pattern reflected a strong biogeographic pattern, which we discuss considering the areas of endemism of Amazonian rivers. As for communities in human-impacted streams, a biotic homogenization was evident, in which rare species were suppressed and the most common species had become hyper-dominant. Understanding the mechanisms that trigger changes in metacommunities is an important issue for conservation, because they can help create mitigation measures for the impacts of anthropogenic activities on biological communities, and so should be expanded to studies using other taxonomic groups in both tropical and temperate systems, and, wherever possible, at multiple spatial scales.

  5. Fish are central in the diet of Amazonian riparians: should we worry about their mercury concentrations?

    Science.gov (United States)

    Dorea, Jose G

    2003-07-01

    The Amazon rain forest extends over an area of 7.8x10(6)km(2) in nine countries. It harbors a diverse human population distributed in dense cities and isolated communities with extreme levels of infrastructure. Amazonian forest people, either autochthons or frontier riparians (ribeirinhos) living in isolated areas, share the same environment for survival and nutritional status. The peculiarities of the hydrological cycle determine disease patterns, agricultural conditions, and food availability. Feeding strategies depend heavily on cassava products and fish. These two foods carry toxic substances such as linamarin (naturally present in cassava) and monomethyl mercury (MMHg) (bioconcentrated in fish flesh) that cause neurotoxic diseases in other parts of the world but not in Amazonia, where neurotoxic cases of food origin are rare and not related to these staples. While cassava detoxification processes may partly explain its safe consumption, the Hg concentrations in Amazonian fish are within traditionally safe limits for this population and contribute to an important metabolic interaction with cassava. The gold rush of the 1970s and 1980s brought large-scale environmental disruption and physical destruction of ecosystems at impact points, along with a heavy discharge of metallic Hg. The discharged Hg has not yet impacted on MMHg concentrations in fish or in hair of fish consumers. Hair Hg concentration, used as a biomarker of fish consumption, indicates that the Amazonian riparians are acquiring an excellent source of protein carrying important nutrients, the lack of which could aggravate their existing health problems. Therefore, in a scenario of insufficient health services and an unhealthy environment, food habits based on fish consumption are part of a successful survival strategy and recommendations for changes are not yet justifiable.

  6. The role of tectonics and climate in the late Quaternary evolution of a northern Amazonian River

    Science.gov (United States)

    Cremon, Édipo Henrique; Rossetti, Dilce de Fátima; Sawakuchi, André de Oliveira; Cohen, Marcelo Cancela Lisboa

    2016-10-01

    The Amazon basin has most of the largest rivers of the world. However, works focusing the geological evolution of the trunk river or its tributaries have been only partly approached. The Branco River constitutes one of the main northern Amazonian tributaries. A previous work proposed that, before flowing southward into the Negro-Amazon Rivers, the Branco River had a southwest to northeast course into the Caribbean Sea. The present work aimed to establish if the proposed change in the course of this river is supported by morphological and sedimentological data. Other goals were to discuss the factors influencing river development and establish its evolution over time within the chronological framework provided by radiocarbon and optically stimulated luminescence dating. The work considered the entire course of the Branco River downstream of the Precambrian Guiana Shield, where the river presumably did not exist in ancient times. The river valley is incised into fluvial sedimentary units displaying ages between 100 and 250 ky old, which record active and abandoned channels, crevasse splay/levees, and point bars. The sedimentary deposits in the valley include two alluvial plain units as old as 18.7 ky and which intersects a Late Pleistocene residual megafan. These characteristics suggest that a long segment of the Branco River was established only a few thousand years ago. Together with several structural anomalies, these data are consistent with a mega-capture at the middle reach of this river due to tectonic reactivation in the Late Pleistocene. This integrated approach can be applied to other Amazonian tributaries to unravel how and when the Amazonian drainage basin became established.

  7. Endocrine monitoring of the ovarian cycle in captive female Amazonian manatees (Trichechus inunguis).

    Science.gov (United States)

    Amaral, Rodrigo S; Rosas, Fernando C W; da Silva, Vera M F; Nichi, Marcilio; Oliveira, Claudio A

    2013-11-01

    The Amazonian manatee (Trichechus inunguis; Mammalia: Sirenia), a threatened aquatic mammal endemic to the Amazon basin, is the only sirenian that lives exclusively in fresh water. Information about the reproductive endocrinology of the Amazonian manatee is scarce; therefore, the aim of this study was to monitor salivary progesterone and estradiol patterns during the ovarian cycle in T. inunguis. Salivary samples were collected daily during a 12-week period of two consecutive years from two captive adult females. The salivary estradiol and progesterone were measured by enzyme immunoassay. The results were analyzed in an iterative process of excluding values that were higher than the mean plus 2 standard deviations until the basal values were determined. The interval between two peaks of salivary estradiol followed by a rise of progesterone was considered as one complete cycle for the calculation of the cycle length. We observed only three complete cycles in all samples analyzed. The cycle length ranged from 42 to 48 days (mean of 44.67 days). We also observed two distinct salivary estradiol peaks during all cycles analyzed, with the first peak occurring before the rise in salivary progesterone and the second occurred followed by a return to basal progesterone levels. This is the first in-depth study of the ovarian cycle in Amazonian manatees. Our results demonstrate that salivary samples can be a useful tool in the endocrine monitoring of this species and suggest that T. inunguis shows a peculiar hormonal pattern during the ovarian cycle, a finding that may have physiological and ecological significance in the reproductive strategy of these animals.

  8. Investigation of host candidate malaria-associated risk/protective SNPs in a Brazilian Amazonian population.

    Directory of Open Access Journals (Sweden)

    Simone da Silva Santos

    Full Text Available The Brazilian Amazon is a hypo-endemic malaria region with nearly 300,000 cases each year. A variety of genetic polymorphisms, particularly in erythrocyte receptors and immune response related genes, have been described to be associated with susceptibility and resistance to malaria. In order to identify polymorphisms that might be associated with malaria clinical outcomes in a Brazilian Amazonian population, sixty-four human single nucleotide polymorphisms in 37 genes were analyzed using a Sequenom massARRAY iPLEX platform. A total of 648 individuals from two malaria endemic areas were studied, including 535 malaria cases (113 individuals with clinical mild malaria, 122 individuals with asymptomatic infection and 300 individuals with history of previous mild malaria and 113 health controls with no history of malaria. The data revealed significant associations (p<0.003 between one SNP in the IL10 gene (rs1800896 and one SNP in the TLR4 gene (rs4986790 with reduced risk for clinical malaria, one SNP in the IRF1 gene (rs2706384 with increased risk for clinical malaria, one SNP in the LTA gene (rs909253 with protection from clinical malaria and one SNP in the TNF gene (RS1800750 associated with susceptibility to clinical malaria. Also, a new association was found between a SNP in the CTL4 gene (rs2242665, located at the major histocompatibility complex III region, and reduced risk for clinical malaria. This study represents the first association study from an Amazonian population involving a large number of host genetic polymorphisms with susceptibility or resistance to Plasmodium infection and malaria outcomes. Further studies should include a larger number of individuals, refined parameters and a fine-scale map obtained through DNA sequencing to increase the knowledge of the Amazonian population genetic diversity.

  9. Amazonian-aged fluvial system and associated ice-related features in Terra Cimmeria, Mars

    Science.gov (United States)

    Adeli, Solmaz; Hauber, Ernst; Kleinhans, Maarten; Le Deit, Laetitia; Platz, Thomas; Fawdon, Peter; Jaumann, Ralf

    2016-10-01

    The Martian climate throughout the Amazonian is widely believed to have been cold and hyper-arid, very similar to the current conditions. However, ubiquitous evidence of aqueous and glacial activity has been recently reported, including channels that can be tens to hundreds of kilometres long, alluvial and fluvial deposits, ice-rich mantles, and glacial and periglacial landforms. Here we study a ∼340 km-long fluvial system located in the Terra Cimmeria region, in the southern mid-latitudes of Mars. The fluvial system is composed of an upstream catchment system with narrow glaciofluvial valleys and remnants of ice-rich deposits. We observe depositional features including fan-shaped deposits, and erosional features such as scour marks and streamlined islands. At the downstream section of this fluvial system is an outflow channel named Kārūn Valles, which displays a unique braided alluvial fan and terminates on the floor of the Ariadnes Colles basin. Our observations point to surface runoff of ice/snow melt as the water source for this fluvial activity. According to our crater size-frequency distribution analysis the entire fluvial system formed during early to middle Amazonian, between ∼ 1.8-0.2+0.2 Ga to 510-40+40 Ma. Hydraulic modelling indicates that the Kārūn Valles and consequently the alluvial fan formation took place in geologically short-term event(s). We conclude that liquid water was present in Terra Cimmeria during the early to middle Amazonian, and that Mars during that time may have undergone several episodic glacial-related events.

  10. Impacts of selective logging on inbreeding and gene flow in two Amazonian timber species with contrasting ecological and reproductive characteristics.

    Science.gov (United States)

    Vinson, C C; Kanashiro, M; Harris, S A; Boshier, D H

    2015-01-01

    Selective logging in Brazil allows for the removal of up to 90% of trees above 50 cm diameter of a given timber species, independent of a species' life history characteristics or how quickly it will recover. The genetic and demographic effects of selective logging on two Amazonian timber species (Dipteryx odorata Leguminosae, Jacaranda copaia Bignoniaceae) with contrasting ecological and reproductive characteristics were assessed in the same forest. Genetic diversity and gene flow were characterized by genotyping adults and seed sampled before and after logging, using hypervariable microsatellite markers. Overall, there were no short-term genetic impacts on the J. copaia population, with commercial application of current Brazilian forest management regulations. In contrast, for D. Odorata, selective logging showed a range of genetic impacts, with a 10% loss of alleles, and reductions in siring by pollen from trees within the 546-ha study area (23-11%) and in the number of pollen donors per progeny array (2.8-1.6), illustrating the importance of the surrounding landscape. Asynchrony in flowering between D. odorata trees led to trees with no breeding partners, which could limit the species reproduction and regeneration under current regulations. The results are summarized with other published studies from the same site and the implications for forest management discussed. The different types and levels of impacts associated with each species support the idea that ecological and genetic information by species, ecological guild or reproductive group is essential in helping to derive sustainable logging guidelines for tropical forests.

  11. How does the Nazca Ridge subduction influence the modern Amazonian foreland basin?

    Science.gov (United States)

    Espurt, N.; Baby, P.; Brusset, S.; Roddaz, M.; Hermoza, W.; Regard, V.; Antoine, P.-O.; Salas-Gismondi, R.; Bolaños, R.

    2007-06-01

    The subduction of an aseismic ridge has important consequences on the dynamics of the overriding upper plate. In the central Andes, the Nazca Ridge subduction imprint can be tracked on the eastern side of the Andes. The Fitzcarrald arch is the long-wavelength topography response of the Nazca Ridge flat subduction, 750 km inboard of the trench. This uplift is responsible for the atypical three-dimensional shape of the Amazonian foreland basin. The Fitzcarrald arch uplift is no older than Pliocene as constrained by the study of Neogene sediments and geomorphic markers, according to the kinematics of the Nazca Ridge subduction.

  12. The mammary glands of the Amazonian manatee, Trichechus inunguis (Mammalia: Sirenia): morphological characteristics and microscopic anatomy.

    Science.gov (United States)

    Rodrigues, Fernanda Rosa; da Silva, Vera Maria Ferreira; Barcellos, José Fernando Marques

    2014-08-01

    The mammaries from carcasses of two female Amazonian manatees were examined. Trichechus inunguis possesses two axillary mammaries beneath the pectoral fins, one on each side of the body. Each papilla mammae has a small hole on its apex--the ostium papillare. The mammaries are covered by a stratified squamous keratinized epithelium. The epithelium of the mammary ducts became thinner more deeply in the tissue and varied from stratified to simple cuboidal. There was no evidence of glandular activity or secretion into the ducts of the mammary glands.

  13. Noninvasive monitoring of androgens in male Amazonian manatee (Trichechus inunguis): biologic validation.

    Science.gov (United States)

    Amaral, Rodrigo de Souza; Rosas, Fernando Cesar Weber; Viau, Priscila; d'Affonsêca Neto, José Anselmo; da Silva, Vera Maria Ferreira; de Oliveira, Cláudio Alvarenga

    2009-09-01

    The Amazonian manatee (Trichechus inunguis) is endemic in the Amazonian basin and is the only exclusively fresh water sirenian. Historically hunted on a large scale, this species is now considered endangered, and studies on the reproductive physiology are critical for the improvement of reproductive management of captive and wild populations of manatees. The aim of this study was to verify the viability of androgen measurement in saliva, lacrimal, urine, and fecal samples of the Amazonian manatee by conducting a hormone challenge. Two adult male manatees (A-1 and A-2) were submitted to an experimentation protocol of 12 day (D1 to D10). On D0, the animals received an intramuscular injection of gonadotropin-releasing hormone (GnRH)-analogue. Salivary, lacrimal, urinary, and fecal samples were collected daily (between 0800 hours and 0900 hours) and frozen at -20 degrees C until assayed. Fecal samples were lyophilized, extracted with 80% methanol, and diluted in buffer before the radioimmunoassay (RIA). Urine samples underwent acid hydrolysis and were diluted in depleted bovine serum. Salivary and lacrimal samples were assayed without the extraction step. Hormonal assays were conducted with a commercial testosterone RIA kit. An androgen peak (> median + 2 interquartile range [IQR]) was observed in all matrices of both animals, although it was less prominent in the lacrimal samples of A-2. However, the fecal androgen peak (A-1 peak = 293.78 ng/g dry feces, median [IQR] = 143.58 [32.38] ng/g dry feces; A-2 peak = 686.72 ng/g dry feces, median [IQR] = 243.82 [193.16] ng/g dry feces) occurred later than urinary (A-1 peak = 648.16 ng/mg creatinine [Cr], median [IQR] = 23.88 [30.44] ng/mg Cr; A-2 peak = 370.44 ng/mg Cr, median [IQR] = 113.87 [117.73] ng/mg Cr) and salivary (A-1 peak = 678.89 pg/ml, median [IQR] = 103.69 [119.86] pg/ml; A-2 peak = 733.71 pg/ml, median [IQR] = 262.92 [211.44] pg/ml) androgen peaks. These intervals appear to be correlated with the long digesta

  14. Changes in Structure and Functioning of Protist (Testate Amoebae) Communities Due to Conversion of Lowland Rainforest into Rubber and Oil Palm Plantations.

    Science.gov (United States)

    Krashevska, Valentyna; Klarner, Bernhard; Widyastuti, Rahayu; Maraun, Mark; Scheu, Stefan

    2016-01-01

    Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil. Similar abundances of species of high and low trophic level in rainforest suggest that trophic interactions are more balanced, with a high number of functionally redundant species, than in rubber and oil palm. In contrast, plantations had a low density of high trophic level species indicating losses of functions. This was particularly so in oil palm plantations. In addition, the relative density of species with siliceous shells was >50% lower in the litter layer of oil palm and rubber compared to rainforest and jungle rubber. This difference suggests that rainforest conversion changes biogenic silicon pools and increases silicon losses. Overall, the lower species richness, density and biomass in plantations than in rainforest, and the changes in the functional composition of the testate amoebae community, indicate detrimental effects of rainforest conversion on the structure and functioning of microbial food webs.

  15. Changes in Structure and Functioning of Protist (Testate Amoebae) Communities Due to Conversion of Lowland Rainforest into Rubber and Oil Palm Plantations

    Science.gov (United States)

    Krashevska, Valentyna; Klarner, Bernhard; Widyastuti, Rahayu; Maraun, Mark; Scheu, Stefan

    2016-01-01

    Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil. Similar abundances of species of high and low trophic level in rainforest suggest that trophic interactions are more balanced, with a high number of functionally redundant species, than in rubber and oil palm. In contrast, plantations had a low density of high trophic level species indicating losses of functions. This was particularly so in oil palm plantations. In addition, the relative density of species with siliceous shells was >50% lower in the litter layer of oil palm and rubber compared to rainforest and jungle rubber. This difference suggests that rainforest conversion changes biogenic silicon pools and increases silicon losses. Overall, the lower species richness, density and biomass in plantations than in rainforest, and the changes in the functional composition of the testate amoebae community, indicate detrimental effects of rainforest conversion on the structure and functioning of microbial food webs. PMID:27463805

  16. Hydrology and Soil Erosion in Tropical Rainforests and Pasture Lands on the Atherton Tablelands, North Queensland, Australia - a rainfall simulator study

    Science.gov (United States)

    Joanne, Joanne; Ciesiolka, Cyril

    2010-05-01

    The Barron and Johnstone Rivers rise in the basaltic Atherton Tableland, North Queensland, Australia, and flow into the Coral Sea and Great Barrier Reef World Heritage Area (GBRWHA). Natural rainforest in this region was cleared for settlement in the early 20th century. Rapid decline in soil fertility during the 1940's and 50's forced landholders to turn to pasture based industries from row crop agriculture. Since then, these pasture based industries have intensified. The intensified land use has been linked to increases in sediment and nutrient levels in terrestrial runoff and identified as a major environmental threat to the GBRWHA, which has raised alarm for the tourist industry and resource managers. Studies linking land-use to pollutant discharge are often based on measurements and modelling of end of catchment measurements of water quality. Whilst such measurements can be a reasonable indicator of the effects of land use on pollutant discharge to waterways, they are often a gross assessment. This project used rainfall simulations to investigate the relationship between land use and management with sources and sinks of runoff and soil erosion within the Barron and Johnstone Rivers catchments. Rainfall simulations were conducted and pollutant loads measured in natural rainforest, as well as dairy and beef farming systems. The dairy farming systems included an effluent fed pasture, a high mineral fertilizer and supplementary irrigation farm, and a rainfed organic pasture that relied on tropical legumes and introduced grasses and returned organic material to the soil. One of the beef farming systems used a 7-10 day rotation with a low fertilizer regime (kikuyu mostly), while the other, used a long period- two paddock-rotation with no fertiliser and paspalum pastures. The rainforests were generally small isolated enclaves with a well developed shrub layer (1-3 m), and a presence of scattered, deciduous trees. Simulations were carried out on sites which were

  17. The shrinking rainforest, and the need for accurate data a satellite radar approach to quantifying Indonesia's palm oil obsession

    Science.gov (United States)

    Trischan, John

    Rapid deforestation has been occurring in Southeast Asia for majority of the last quarter century. This is due in large by the expansion of oil palm plantations. These plantations fill the need globally for the palm oil they provide. On the other hand, they are removing some of the last remaining primary rainforests on the planet. The issue concerning the ongoing demise of rainforests in the region involves the availability of data in order to monitor the expansion of palm, at the cost of rainforest. Providing a simplified approach to mapping oil palm plantations in hopes of spreading palm analysis regionally in an effort to obtain a better grasp on the land use dynamics. Using spatial filtering techniques, the complexity of radar data are simplified in order to use for palm detection.

  18. Did the savannah « flourished » 3000 years ago in the so-called Sangha River Interval of the Guineo-Congolian rainforest ? A retrospective study using stable isotopes and phytoliths.

    Science.gov (United States)

    Bentaleb, Ilham; Freycon, Vincent; Gillet, Jean-François; Oslisly, Richard; Brémond, Laurent; Favier, Charly; Fontugne, Michel; Droissart, Vincent; Gourlet-Fleury, Sylvie; Guillou, Gaël; Martin, Céline; Morin-Rivat, Julie; Ngomanda, Alfred; de Saulieu, Geoffroy; Sebag, David; Subitani, Sandrine; Wonkam, Christelle; Ngeutchoua, Gabriel

    2015-04-01

    We aim to improve our knowledge of the dynamic of the vegetation in Central Africa during the last 5 kyrs and to discuss the main hypothesis described in the literature - humans versus climatic impacts- both suggested as responsible of the Congo basin rainforest decline observed between 3 and 2.5 kyrs. We use the carbon isotopic composition of well-dated Central African soils to reconstruct the dynamic of the vegetation cover. We will discuss the carbon isotopic composition of the soil organic carbon methodology for reconstructing palaeovegetation in the light of Rayleigh distillation model. We showed that numerous sites exhibit a carbon isotopic ratios reflecting the Rayleigh distillation but few sites recorded real vegetation changes. Our study suggests that the vegetation of the Guineo-Congolian Region was disturbed between 3000 and 2000 BP (Before Present) without an extreme savannah expansion. We discussed the two hypotheses human versus climate impacts that may conduct to such new physiography of the vegetation. We suggest that the climate hypothesis is more likely than the human impact to explain the reduction of the Guineo-Congolian rainforest 3000 years ago.

  19. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K.; Schmidl, Jürgen; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Lewinsohn, Thomas M.; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  20. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle.

    Directory of Open Access Journals (Sweden)

    Yves Basset

    Full Text Available Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species, obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days, the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1 models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2 it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3 given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.

  1. Carbon stock and turnover in riparian soils under lowland rainforest transformation systems on Sumatra, Indonesia

    Science.gov (United States)

    Hennings, Nina; Kuzyakov, Yakov

    2017-04-01

    In many tropical areas, rainforests are being cleared in order to exploit timber and other forest products as well as plant crops for food, feed and fuel use. The determinants of different patterns of deforestation and the roles of resulting transformation systems of tropical riparian rainforests for ecological functions have yet received little attention in scientific research. Especially C stocks in riparian zones are strongly affected by climate and land use changes that lead to changes in water regime and ground water level drops. We investigated the effects of land transformations in riparian ecosystems of Sumatra, on soil C content, stocks and decomposability at the landscape scale. We compare C losses in transformation systems and rainforests and estimate the contribution of soil erosion and organic matter mineralization. Further, these losses are related to changing water level and temperature increase along increasing distance to the stream. This approach is based on changing δ13C values of SOC in the topsoil as compared to those in subsoil. The shift of δ13C of SOC in the topsoil from the linear regression calculated by δ13C value with log(SOC) in the topsoil represents the modification of the C turnover rate in the top soil. Erosion is estimated by the shift of the δ13C value of SOC in the subsoil under plantations. Further, the δ13C and δ15N soil profiles and their comparison with litter of local vegetation, can be used to estimate the contribution of autochthonous and allochthonous organics to soil C stocks. Preliminary results show strong increase of erosive losses, increased decomposition with land-use transformation and decrease of C stocks with decreasing water table.

  2. Hydrologically transported dissolved organic carbon influences soil respiration in a tropical rainforest

    Science.gov (United States)

    Zhou, Wen-Jun; Lu, Hua-Zheng; Zhang, Yi-Ping; Sha, Li-Qing; Schaefer, Douglas Allen; Song, Qing-Hai; Deng, Yun; Deng, Xiao-Bao

    2016-10-01

    To better understand the effect of dissolved organic carbon (DOC) transported by hydrological processes (rainfall, throughfall, litter leachate, and surface soil water; 0-20 cm) on soil respiration in tropical rainforests, we detected the DOC flux in rainfall, throughfall, litter leachate, and surface soil water (0-20 cm), compared the seasonality of δ13CDOC in each hydrological process, and δ13C in leaves, litter, and surface soil, and analysed the throughfall, litter leachate, and surface soil water (0-20 cm) effect on soil respiration in a tropical rainforest in Xishuangbanna, south-west China. Results showed that the surface soil intercepted 94.4 ± 1.2 % of the annual litter leachate DOC flux and is a sink for DOC. The throughfall and litter leachate DOC fluxes amounted to 6.81 and 7.23 % of the net ecosystem exchange respectively, indicating that the DOC flux through hydrological processes is an important component of the carbon budget, and may be an important link between hydrological processes and soil respiration in a tropical rainforest. Even the variability in soil respiration is more dependent on the hydrologically transported water than DOC flux insignificantly, soil temperature, and soil-water content (at 0-20 cm). The difference in δ13C between the soil, soil water (at 0-20 cm), throughfall, and litter leachate indicated that DOC is transformed in the surface soil and decreased the sensitivity indices of soil respiration of DOC flux to water flux, which suggests that soil respiration is more sensitive to the DOC flux in hydrological processes, especially the soil-water DOC flux, than to soil temperature or soil moisture.

  3. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Directory of Open Access Journals (Sweden)

    Sebastian Doetterl

    Full Text Available African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors.Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock were only half compared to an area with lower tree height (= smaller aboveground carbon stock. This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system.We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  4. DOAS measurements of formaldehyde and glyoxal above a south-east Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    S. M. MacDonald

    2012-07-01

    Full Text Available Tropical rainforests act as a huge contributor to the global emissions of biogenic volatile organic compounds (BVOCs. Measurements of their oxidation products, such as formaldehyde (HCHO and glyoxal (CHOCHO, provide useful indicators of fast photochemistry occurring in the lower troposphere. However, measurements of these species in tropical forest locations are extremely limited. To redress this, HCHO and CHOCHO were measured using the long-path (LP and multi-axis (MAX differential optical absorption spectroscopy (DOAS techniques above the rainforest canopy in Borneo during two campaigns in spring and summer 2008, as part of the Oxidant and Particle Photochemical Processes above a south-east Asian tropical rainforest (OP3 project. The results were compared with concurrent measurements of hydroxyl radical (OH, isoprene (C5H8 (which was the dominant organic species emitted in this forest environment, and various meteorological parameters. Formaldehyde was observed at a maximum concentration of 4.5 ppb and glyoxal at a maximum of 1.6 ppb, significantly higher than previous measurements in rural locations. A 1-D chemistry model was then used to assess the diurnal evolution of formaldehyde and glyoxal throughout the boundary layer. The results, which compare well with the LP-DOAS and MAX-DOAS observations, suggest that the majority of the glyoxal and formaldehyde is confined to the first 500 m of the boundary layer, and that the measured ratio of these species is reproduced using currently accepted product yields for the oxidation of isoprene by OH. An important conclusion is that the measured levels of glyoxal are consistent with the surprisingly high concentrations of OH measured in this environment.

  5. DOAS measurements of formaldehyde and glyoxal above a South-East Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    S. M. MacDonald

    2012-02-01

    Full Text Available Tropical rainforests act as a huge contributor to the global emissions of biogenic volatile organic compounds (BVOCs. Measurements of their oxidation products, such as formaldehyde (HCHO and glyoxal (CHOCHO, provide useful indicators of fast photochemistry occurring in the lower troposphere. However, measurements of these species in tropical forest locations are extremely limited. To redress this, HCHO and CHOCHO were measured using the long-path (LP and multi-axis (MAX differential optical absorption spectroscopy (DOAS techniques above the rainforest canopy in Borneo during two campaigns in spring and summer 2008, as part of the Oxidant and Particle Photochemical Processes above a South-East Asian tropical rainforest (OP3 project. The results were compared with concurrent measurements of hydroxyl radical (OH, isoprene (C5H8 (which was the dominant organic species emitted in this forest environment, and various meteorological parameters. Formaldehyde was observed at a maximum concentration of 4.5 ppb and glyoxal at a maximum of 1.6 ppb, significantly higher than previous measurements in rural locations. A 1-D chemistry model was then used to assess the diurnal evolution of formaldehyde and glyoxal throughout the boundary layer. The results, which compare well with the LP-DOAS and MAX-DOAS observations, suggest that the majority of the glyoxal and formaldehyde is confined to the first 500 m of the boundary layer, and that the measured ratio of these species is reproduced using currently accepted product yields for the oxidation of isoprene by OH. An important conclusion is that the measured levels of glyoxal are consistent with the surprisingly high concentrations of OH measured in this environment.

  6. DOAS measurements of formaldehyde and glyoxal above a south-east Asian tropical rainforest

    Science.gov (United States)

    MacDonald, S. M.; Oetjen, H.; Mahajan, A. S.; Whalley, L. K.; Edwards, P. M.; Heard, D. E.; Jones, C. E.; Plane, J. M. C.

    2012-07-01

    Tropical rainforests act as a huge contributor to the global emissions of biogenic volatile organic compounds (BVOCs). Measurements of their oxidation products, such as formaldehyde (HCHO) and glyoxal (CHOCHO), provide useful indicators of fast photochemistry occurring in the lower troposphere. However, measurements of these species in tropical forest locations are extremely limited. To redress this, HCHO and CHOCHO were measured using the long-path (LP) and multi-axis (MAX) differential optical absorption spectroscopy (DOAS) techniques above the rainforest canopy in Borneo during two campaigns in spring and summer 2008, as part of the Oxidant and Particle Photochemical Processes above a south-east Asian tropical rainforest (OP3) project. The results were compared with concurrent measurements of hydroxyl radical (OH), isoprene (C5H8) (which was the dominant organic species emitted in this forest environment), and various meteorological parameters. Formaldehyde was observed at a maximum concentration of 4.5 ppb and glyoxal at a maximum of 1.6 ppb, significantly higher than previous measurements in rural locations. A 1-D chemistry model was then used to assess the diurnal evolution of formaldehyde and glyoxal throughout the boundary layer. The results, which compare well with the LP-DOAS and MAX-DOAS observations, suggest that the majority of the glyoxal and formaldehyde is confined to the first 500 m of the boundary layer, and that the measured ratio of these species is reproduced using currently accepted product yields for the oxidation of isoprene by OH. An important conclusion is that the measured levels of glyoxal are consistent with the surprisingly high concentrations of OH measured in this environment.

  7. Are Nontimber Forest Products the Antidote to Rainforest Degradation? Brazil Nut Extraction in Madre De Dios, Peru

    NARCIS (Netherlands)

    Escobal, J.A.; Aldana, U.

    2003-01-01

    This study explores the relationship between poverty and Amazonian forest management by Brazil nut harvesters in southeastern Peru. Although the poor rely more upon natural resource-based income than the rich, wealthier households use more forest wood and land than poorer ones. Contrary to the belie

  8. Biological aerosol particle concentrations and size distributions measured in pristine tropical rainforest air during AMAZE-08

    OpenAIRE

    J. A. Huffman; Sinha, B.; R. M. Garland; A. Snee-Pollmann; Gunthe, S. S.; Artaxo, P.; S. T. Martin; Andreae, M. O.; U. Pöschl

    2012-01-01

    As a part of the AMAZE-08 campaign during the wet season in the rainforest of Central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 μm) the campaign median and quartiles of FBAP number and mass concentration were 7.3 × 104 m−3 (4.0–13.2 × 104 m&m...

  9. Origin of the Hawaiian rainforest ecosystem and its evolution in long-term primary succession

    Directory of Open Access Journals (Sweden)

    D. Mueller-Dombois

    2013-02-01

    Full Text Available Born among volcanoes in the north central Pacific about 4 million years ago, the Hawaiian rainforest became assembled from spores of algae, fungi, lichens, bryophytes, ferns and from seeds of about 275 flowering plants that over the millenia evolved into ca. 1000 endemic species. Outstanding among the forest builders were the tree ferns (Cibotium spp. and the 'Ōhi'a lehua trees (Metrosideros spp., which still dominate the Hawaiian rainforest ecosystem today. The structure of this forest is simple. The canopy in closed mature rainforests is dominated by cohorts of Metrosideros polymorpha and the undergrowth by tree fern species of Cibotium. When a new lava flow cuts through this forest, kipuka are formed, i.e. islands of remnant vegetation. On the new volcanic substrate, the assemblage of plant life-forms is similar as during the evolution of this system. In open juvenile forests, a mat-forming fern, the uluhe fern (Dicranopteris lineraris becomes established. It inhibits further regeneration of the dominant 'Ōhi'a tree, thereby reinforcing the cohort structure of the canopy guild. In the later part of its life cycle, the canopy guild breaks down often in synchrony. The trigger is hypothesized to be a climatic perturbation. After that disturbance the forest becomes reestablished in about 30–40 yr. As the volcanic surfaces age, they go from a mesotrophic to a eutrophic phase, reaching a biophilic nutrient climax by about 1–25 K yr. Thereafter, a regressive oligotrophic phase follows; the soils become exhausted of nutrients. The shield volcanoes break down. Marginally, forest habitats change into bogs and stream ecosystems. The broader 'Ōhi'a rainforest redeveloping in the more dissected landscapes of the older islands looses stature, often forming large gaps that are invaded by the aluminum tolerant uluhe fern. The 'Ōhi'a trees still thrive on soils rejuvenated from landslides and from Asian dust on the

  10. Origin of the Hawaiian rainforest ecosystem and its evolution in long-term primary succession

    Science.gov (United States)

    Mueller-Dombois, D.; Boehmer, H. J.

    2013-02-01

    Born among volcanoes in the north central Pacific about 4 million years ago, the Hawaiian rainforest became assembled from spores of algae, fungi, lichens, bryophytes, ferns and from seeds of about 275 flowering plants that over the millenia evolved into ca. 1000 endemic species. Outstanding among the forest builders were the tree ferns (Cibotium spp.) and the 'Ōhi'a lehua trees (Metrosideros spp.), which still dominate the Hawaiian rainforest ecosystem today. The structure of this forest is simple. The canopy in closed mature rainforests is dominated by cohorts of Metrosideros polymorpha and the undergrowth by tree fern species of Cibotium. When a new lava flow cuts through this forest, kipuka are formed, i.e. islands of remnant vegetation. On the new volcanic substrate, the assemblage of plant life-forms is similar as during the evolution of this system. In open juvenile forests, a mat-forming fern, the uluhe fern (Dicranopteris lineraris) becomes established. It inhibits further regeneration of the dominant 'Ōhi'a tree, thereby reinforcing the cohort structure of the canopy guild. In the later part of its life cycle, the canopy guild breaks down often in synchrony. The trigger is hypothesized to be a climatic perturbation. After that disturbance the forest becomes reestablished in about 30-40 yr. As the volcanic surfaces age, they go from a mesotrophic to a eutrophic phase, reaching a biophilic nutrient climax by about 1-25 K yr. Thereafter, a regressive oligotrophic phase follows; the soils become exhausted of nutrients. The shield volcanoes break down. Marginally, forest habitats change into bogs and stream ecosystems. The broader 'Ōhi'a rainforest redeveloping in the more dissected landscapes of the older islands looses stature, often forming large gaps that are invaded by the aluminum tolerant uluhe fern. The 'Ōhi'a trees still thrive on soils rejuvenated from landslides and from Asian dust on the oldest (5 million year old) island Kaua'i but their

  11. Land use intensity trajectories on Amazonian pastures derived from Landsat time series

    Science.gov (United States)

    Rufin, Philippe; Müller, Hannes; Pflugmacher, Dirk; Hostert, Patrick

    2015-09-01

    Monitoring changes in land use intensity of grazing systems in the Amazon is an important prerequisite to study the complex political and socio-economic forces driving Amazonian deforestation. Remote sensing offers the potential to map pasture vegetation over large areas, but mapping pasture conditions consistently through time is not a trivial task because of seasonal changes associated with phenology and data gaps from clouds and cloud shadows. In this study, we tested spectral-temporal metrics derived from intra-annual Landsat time series to distinguish between grass-dominated and woody pastures. The abundance of woody vegetation on pastures is an indicator for management intensity, since the duration and intensity of land use steer secondary succession rates, apart from climate and soil conditions. We used the developed Landsat-based metrics to analyze pasture intensity trajectories between 1985 and 2012 in Novo Progresso, Brazil, finding that woody vegetation cover generally decreased after four to ten years of grazing activity. Pastures established in the 80s and early 90s showed a higher fraction of woody vegetation during their initial land use history than pastures established in the early 2000s. Historic intensity trajectories suggested a trend towards more intensive land use in the last decade, which aligns well with regional environmental policies and market dynamics. This study demonstrates the potential of dense Landsat time series to monitor land-use intensification on Amazonian pastures.

  12. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    Energy Technology Data Exchange (ETDEWEB)

    Mayorga, E; Aufdenkampe, A K; Masiello, C A; Krusche, A V; Hedges, J I; Quay, P D; Richey, J E; Brown, T A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C and {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.

  13. Enzymes of energy metabolism in hatchlings of amazonian freshwater turtles (Testudines, Podocnemididae).

    Science.gov (United States)

    Duncan, W P; Marcon, J L

    2009-05-01

    The metabolic profiles of selected tissues were analyzed in hatchlings of the Amazonian freshwater turtles Podocnemis expansa, P. unifilis and P. sextuberculata. Metabolic design in these species was judged based on the key enzymes of energy metabolism, with special emphasis on carbohydrate, lipid, amino acid and ketone body metabolism. All species showed a high glycolytic potential in all sampled tissues. Based on low levels of hexokinase, glycogen may be an important fuel for these species. The high lactate dehydrogenase activity in the liver may play a significant role in carbohydrate catabolism, possibly during diving. Oxidative metabolism in P. sextuberculata appears to be designed for the use of lipids, amino acids and ketone bodies. The maximal activities of 3-hydroxyacyl-CoA dehydrogenase, malate dehydrogenase, glutamine dehydrogenase, alanine aminotransferase and succinyl-CoA keto transferase display high aerobic potential, especially in muscle and liver tissues of this species. Although amino acids and ketone bodies may be important fuels for oxidative metabolism, carbohydrates and lipids are the major fuels used by P. expansa and P. unifilis. Our results are consistent with the food habits and lifestyle of Amazonian freshwater turtles. The metabolic design, based on enzyme activities, suggests that hatchlings of P. unifilis and P. expansa are predominately herbivorous, whereas P. sextuberculata rely on a mixed diet of animal matter and vegetation.

  14. Scale dependence of the simulated impact of Amazonian deforestation on regional climate

    Science.gov (United States)

    Pitman, A. J.; Lorenz, R.

    2016-09-01

    Using a global climate model, Amazonian deforestation experiments are conducted perturbing 1, 9, 25, 81 and 121 grid points, each with 5 ensemble members. All experiments show warming and drying over Amazonia. The impact of deforestation on temperature, averaged either over the affected area or a wider area, decreases by a factor of two as the scale of the perturbation increases from 1 to 121 grid points. This is associated with changes in the surface energy balance and consequential impacts on the atmosphere above the regions deforested. For precipitation, as the scale of deforestation increases from 9 to 121 grid points, the reduction in rainfall over the perturbed area decreases from ˜1.5 to ˜1 mm d-1. However, if the surrounding area is considered and large deforestation perturbations made, compensatory increases in precipitation occur such that there is little net change. This is largely associated with changes in horizontal advection of moisture. Disagreements between climate model experiments on how Amazonian deforestation affects precipitation and temperature are, at least in part, due to the spatial scale of the region deforested, differences in the areas used to calculate averages and whether areas surrounding deforestation are included in the overall averages.

  15. Seasonal variation in urinary and salivary reproductive hormone levels in Amazonian manatees (Trichechus inunguis).

    Science.gov (United States)

    Amaral, Rodrigo S; Rosas, Fernando C W; da Silva, Vera M F; Graham, Laura H; Viau, Priscila; Nichi, Marcilio; Oliveira, Claudio A

    2015-09-01

    The Amazonian manatee (Trichechus inunguis) is a threatened aquatic mammal endemic to the Amazon basin. The aim of this study was to evaluate the urinary and salivary reproductive hormone levels of captive Amazonian manatees collected during two seasons of the year. Salivary samples from four males and urinary and salivary samples from three females were collected during two seasons (March-June and September-November) over two consecutive years. Salivary testosterone in males was measured by radioimmunoassay and reproductive hormones in females (salivary progesterone and oestradiol and urinary progestogens, oestrogens and luteinising hormone) were measured by enzyme immunoassay. The data were analysed in a 2×2 factorial design, where the factors were year and season. There was no effect of year or season for salivary testosterone. All female hormones showed a seasonal effect (higher hormone levels during March-June than September-November) or an interaction between year and season (Pmanatees; however, apparently only females exhibit reproductive quiescence during the non-breeding season. Further long-term studies are necessary to elucidate which environmental parameters are related to reproductive seasonality in T. inunguis and how this species responds physiologically to those stimuli.

  16. Organic matter in the Neoproterozoic cap carbonate from the Amazonian Craton, Brazil

    Science.gov (United States)

    Sousa Júnior, Gustavo R.; Nogueira, Afonso C. R.; Santos Neto, Eugênio V.; Moura, Candido A. V.; Araújo, Bruno Q.; Reis, Francisco de A. M.

    2016-12-01

    Bitumen found in Neoproterozoic carbonates from the southern Amazonian Craton, Brazil, represents a great challenge for its geochemical characterization (origin, thermal maturity and the degree of preservation) within a context of petroleum system. This organic material occurs in the basal Araras Group, considered as a Neoproterozoic cap carbonate, composed of dolostones (Mirassol d'Oeste Formation) overlaid by limestones and shales (Guia Formation). Geochemical analyses in samples of carbonate with bitumen from two open pits (Terconi and Tangará quarries) have shown low to very low total organic carbon content. Analyses of representative samples of Guia and Mirassol d'Oeste formations allowed us to obtain Gas chromatography (GC) traces and diagnostic biomarkers. n-C14 to n-C37 alkane distribution patterns in all samples suggests a major contribution of marine algae. Mid-chain monomethyl alkanes (C14sbnd C25) identified in both sets of samples were also reported in all mid to late Proterozoic oils and source rocks. However, there are significant differences among terpane distribution between the Mirassol d'Oeste and Tangará da Serra regions. The integration of organic geochemistry data and geological information suggests an indigenous origin for studied bitumen, primarily accumulated as hydrocarbon fluids migrated to carbonate rocks with higher porosity and permeability, and afterwards, altered to bitumen or migrabitumen. Although further investigations are required, this work provides a significant contribution to the knowledge about the remnant of this hypothetical Neoproterozoic petroleum system developed in the Southern Amazonian Craton.

  17. Do soil fertilization and forest canopy foliage affect the growth and photosynthesis of Amazonian saplings?

    Directory of Open Access Journals (Sweden)

    Nilvanda dos Santos Magalhães

    2014-02-01

    Full Text Available Most Amazonian soils are highly weathered and poor in nutrients. Therefore, photosynthesis and plant growth should positively respond to the addition of mineral nutrients. Surprisingly, no study has been carried out in situ in the central Amazon to address this issue for juvenile trees. The objective of this study was to determine how photosynthetic rates and growth of tree saplings respond to the addition of mineral nutrients, to the variation in leaf area index of the forest canopy, and to changes in soil water content associated with rainfall seasonality. We assessed the effect of adding a slow-release fertilizer. We determined plant growth from 2010 to 2012 and gas exchange in the wet and dry season of 2012. Rainfall seasonality led to variations in soil water content, but it did not affect sapling growth or leaf gas exchange parameters. Although soil amendment increased phosphorus content by 60 %, neither plant growth nor the photosynthetic parameters were influenced by the addition of mineral nutrients. However, photosynthetic rates and growth of saplings decreased as the forest canopy became denser. Even when Amazonian soils are poor in nutrients, photosynthesis and sapling growth are more responsive to slight variations in light availability in the forest understory than to the availability of nutrients. Therefore, the response of saplings to future increases in atmospheric [CO2] will not be limited by the availability of mineral nutrients in the soil.

  18. Acute necrotizing colitis with pneumatosis intestinalis in an Amazonian manatee calf.

    Science.gov (United States)

    Guerra Neto, Guilherme; Galvão Bueno, Marina; Silveira Silva, Rodrigo Otavio; Faria Lobato, Francisco Carlos; Plácido Guimarães, Juliana; Bossart, Gregory D; Marmontel, Miriam

    2016-08-09

    On 25 January 2014, a 1 mo old female Amazonian manatee Trichechus inunguis calf weighing 12 kg was rescued by air transport in Guajará, Brazil, and transferred to Mamirauá Institute's Community-based Amazonian Manatee Rehabilitation Center. The calf presented piercing/cutting lesions on the back, neck, and head, in addition to dehydration and intermittent involuntary buoyancy. X-ray analysis revealed a large amount of gases in the gastrointestinal tract. Daily procedures included wound cleaning and dressing, clinical and laboratory monitoring, treatment for intestinal tympanism, and artificial feeding. Adaptation to the nursing formula included 2 kinds of whole milk. Up to 20 d post-rescue the calf presented appetite, was active, and gained weight progressively. Past this period the calf started losing weight and presented constant involuntary buoyancy and died after 41 d in rehabilitation. The major findings at necropsy were pneumatosis intestinalis in cecum and colon, pulmonary edema, and hepatomegaly. The microscopic examination revealed pyogranulomatous and necrohemohrragic colitis with multinucleated giant cells, acute multifocal lymphadenitis with lymphoid depletion in cortical and paramedullary regions of mesenteric lymph nodes, and diffuse severe acinar atrophy of the pancreas. Anaerobic cultures of fragments of cecum and colon revealed colonies genotyped as Clostridium perfringens type A. We speculate that compromised immunity, thermoregulatory failu