WorldWideScience

Sample records for amazon carbon stocks

  1. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    International Nuclear Information System (INIS)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-01-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km 2 and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m −2 , respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m −2 , respectively. • SOC stocks were 34 and 16%, respectively

  2. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ceddia, Marcos Bacis, E-mail: marcosceddia@gmail.com [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Villela, André Luis Oliveira [Colégio Técnico da UFRRJ, RJ, Seropédica 23890-000 (Brazil); Pinheiro, Érika Flávia Machado [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Wendroth, Ole [Department of Plant & Soil Sciences, University of Kentucky, College of Agriculture, Lexington, KY (United States)

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km{sup 2} and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m{sup −2}, respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m{sup −2}, respectively. • SOC stocks were 34 and 16

  3. High-resolution forest carbon stocks and emissions in the Amazon.

    Science.gov (United States)

    Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint

    2010-09-21

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.

  4. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  5. High-resolution forest carbon stocks and emissions in the Amazon

    Science.gov (United States)

    G. P. Asner; George V. N. Powell; Joseph Mascaro; David E. Knapp; John K. Clark; James Jacobson; Ty Kennedy-Bowdoin; Aravindh Balaji; Guayana Paez-Acosta; Eloy Victoria; Laura Secada; Michael Valqui; R. Flint. Hughes

    2010-01-01

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at...

  6. Soil Carbon Stock and Particle Size Fractions in the Central Amazon Predicted from Remotely Sensed Relief, Multispectral and Radar Data

    Directory of Open Access Journals (Sweden)

    Marcos B. Ceddia

    2017-02-01

    Full Text Available Soils from the remote areas of the Amazon Rainforest in Brazil are poorly mapped due to the presence of dense forest and lack of access routes. The use of covariates derived from multispectral and radar remote sensors allows mapping large areas and has the potential to improve the accuracy of soil attribute maps. The objectives of this study were to: (a evaluate the addition of relief, and vegetation covariates derived from multispectral images with distinct spatial and spectral resolutions (Landsat 8 and RapidEye and L-band radar (ALOS PALSAR for the prediction of soil organic carbon stock (CS and particle size fractions; and (b evaluate the performance of four geostatistical methods to map these soil properties. Overall, the results show that, even under forest coverage, the Normalized Difference Vegetation Index (NDVI and ALOS PALSAR backscattering coefficient improved the accuracy of CS and subsurface clay content predictions. The NDVI derived from RapidEye sensor improved the prediction of CS using isotopic cokriging, while the NDVI derived from Landsat 8 and backscattering coefficient were selected to predict clay content at the subsurface using regression kriging (RK. The relative improvement of applying cokriging and RK over ordinary kriging were lower than 10%, indicating that further analyses are necessary to connect soil proxies (vegetation and relief types with soil attributes.

  7. Transferrin polymorphism in Amazon turtle (Podocnemis expansa) stocks

    OpenAIRE

    Teixeira, Aylton Saturnino; Jamieson, Alan; Raposo, José Carlos Paula; Vieira, Alvaro Alves

    1996-01-01

    The transferrin gene locus (Tf) was investigated in five populations of the Amazon turtle (Podocnemis expansa) sampled from five geographical areas in the Amazon region. This locus was polymorphic, showing three genotypes (Tfª Tfª, Tfª Tf b and Tf b Tf b), presumably encoded by two co-dominant alleles, Tfª and Tf b. All populations showed good genetic balance according to Hardy-Weinberg expectations, and may sustain the hypothesis of a single stock in the area investigated. The data are consi...

  8. GoAmazon – Scaling Amazon Carbon Water Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Manvendra Krishna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-06

    Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1) moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st century is largely unknown. Rainforests are the most active ecosystems with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We will resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional scale high frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O and CO at the T3 site in Manacupuru, Brazil as part of DOE's GoAmazon project. Our data will be used to inform and develop DOE's CLM on the tropical carbon-water couplings at the appropriate grid scale (10-50km). Our measurements will also validate the CO2 data from Japan's GOSAT and NASA's imminent OCO-2 satellite (launch date July 2014).

  9. Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.

    Science.gov (United States)

    Phillips, Oliver L; Brienen, Roel J W

    2017-12-01

    Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale

  10. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions

    Directory of Open Access Journals (Sweden)

    Oliver L. Phillips

    2017-02-01

    Full Text Available Abstract Background Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. Results The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Conclusions Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations

  11. Carbon Stock and Carbon Cycle of Wetland Ecosystem

    OpenAIRE

    Zeng, Zhangquan; Zhang, Canming; Li, Jiao; Yang, Nan; Li, Xiquan; Niu, Yandong; Wu, Zijian

    2014-01-01

    Wetland ecosystem is an essential ecosystem in the world. Its organic carbon stock and carbon cycle are important basis of global carbon cycle researches and also major contents of global climate change researches. Researches have shown that wetland protection and restoration can promote carbon accumulation and reduce emission of greenhouse gases. This paper discussed influence of carbon stock and carbon balance of wetland ecosystem and emission of greenhouse gases, as well as the relationshi...

  12. CARBON STOCKS AND STOCK CHANGES IN AGROFORESTRY PRACTICES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Humphrey Agevi

    2017-05-01

    Full Text Available Trees on farmlands and agricultural lands play a crucial role in small holder farmers’ livelihoods in addition to carbon regulation through carbon sequestration. These trees have received much attention recently due to their contribution to climate change mitigation through carbon storage. Quantification of carbon stocks in these trees has always proven difficult due to the spatial extent of these trees and methodological difficulties encountered during measurement. This paper reviews a number of studies done in quantification of biomass and soil carbon stocks in agroforestry within tropics. Most appropriate method employed in determination of carbon stock changes is through use of allometric equations. The equations use parameters like diameter at breast height (DBH, height, crown area which can be measured during field inventory. DBH has always proven to be the best parameter to be used in the equation since it is easy to measure and it does not need expensive equipments.  Apart from trees, soils in agricultural lands have the capacity to store carbon and help mitigate effects of climate change. It then identifies the gap that future research can be done for accurate carbon quantification.

  13. Community monitoring of carbon stocks for REDD+

    DEFF Research Database (Denmark)

    Brofeldt, Søren; Theilade, Ida; Burgess, Neil David

    2014-01-01

    Reducing emissions from deforestation and forest degradation in developing countries, and the role of conservation, sustainable management of forests, and enhancement of forest carbon stocks in developing countries (REDD+) is a potentially powerful international policy mechanism that many tropica...

  14. Green Ocean Amazon 2014/15 – Scaling Amazon Carbon Water Couplings Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Manvendra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parket, Harrison [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rahn, Thom [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Christoffersson, B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wunch, Debra [California Inst. of Technology (CalTech), Pasadena, CA (United States); Wennberg, Paul [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-08-01

    Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1), moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st Century is largely unknown. Rainforests are the most active ecosystems, with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We set out to resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional-scale high-frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O, and CO at the T3 site in Manacupuru, Brazil, as part of DOE's GoAmazon 2014/15 project. Our data will be used to inform and develop DOE's Community Land Model (CLM) on the tropical carbon-water couplings at the appropriate grid scale (10-50 km). Our measurements will also validate the CO2 data from Japan's Greenhouse gases Observing Satellite (GOSAT) and NASA's Orbiting Carbon Observatory (OCO)-2 satellite (launched in July, 2014). Our data addresses these science questions: 1. How does ecosystem heterogeneity and climate variability influence the rainforest carbon cycle? 2. How well do current tropical ecosystem models simulate the observed regional carbon cycle? 3. Does nitrogen deposition (from the Manaus, Brazil, plume) enhance rainforest carbon uptake?

  15. Carbon Tetrachloride Emissions from the Amazon Forest

    Science.gov (United States)

    Jardine, K.; Chambers, J. Q.; Higuchi, N.; Jardine, A. B.; Martin, S. T.; Manzi, A. O.

    2014-12-01

    As a chemically inert greenhouse gas in the troposphere with lifetimes up to 50 years but active in ozone destruction in the stratosphere, carbon tetrachloride (CCl4) plays a major role in the atmospheric chlorine budget and is widely considered strictly of anthropogenic origin deriving from numerous industrial processes and products. However, satellite remote sensing studies have shown higher concentrations at the Equator, and earlier work has suggested possible biogenic sources. Here we present highly vertically-resolved atmospheric gradients of CCl4 within and above a primary rainforest ecosystem from three towers in the Central Amazon. The observed buildup of CCl4 mixing ratios near the top of the main canopies provides new evidence for a potentially large biogenic source from the Basin. By demonstrating the need to represent tropical forests as biogenic sources of CCl4, our study may help narrow the gap between remote sensing observations of CCl4 and emission, chemistry, and transport models and therefore lead to improved predictions of its role in atmospheric chemistry and climate.

  16. Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost

    2017-04-01

    Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights

  17. Conversion of cerrado into agricultural land in the south-western Amazon: carbon stocks and soil fertility Conversão do cerrado em agricultura no sudoeste da Amazônia: estoques de carbono e fertilidade do solo

    Directory of Open Access Journals (Sweden)

    João Luís Nunes Carvalho

    2009-04-01

    Full Text Available Land use change and land management practices can modify soil carbon (C dynamics and soil fertility. This study evaluated the effect of tillage systems (no-tillage - NT and conventional tillage - CT on soil C and nutrient stocks in an Oxisol from an Amazonian cerrado following land use change. The study also identified relationships between these stocks and other soil attributes. Carbon, P, K, Ca and Mg stocks, adjusted to the equivalent soil mass in the cerrado (CE, were higher under NT. After adoption of all but one of the NT treatments, C stocks were higher than they were in the other areas we considered. Correlations between C and nutrient stocks showed positive correlations with Ca and Mg under NT due to continuous liming, higher crop residue inputs and lack of soil disturbance, associated with positive correlations with cation exchange capacity (CEC, base saturation and pH. The positive correlation (r = 0.91, p Mudanças de uso da terra e práticas de manejo modificam a dinâmica do C e a fertilidade do solo. Este estudo avaliou as implicações dos sistemas de cultivo (NT e CT nos estoques de C e de nutrientes e identificou inter-relações entre estes estoques e outros atributos da fertilidade do solo em Latossolo após a mudança do uso da terra no cerrado amazônico. Os estoques de C e de nutrientes (P, K, Ca e Mg ajustados pela massa equivalente do solo sob cerrado (CE, foram maiores principalmente sob NT. Após a adoção do NT, exceto em 2NT, os estoques de C foram maiores em relação às demais áreas avaliadas. Correlações entre estoques de C e de nutrientes revelaram algumas correlações positivas com Ca e Mg nas áreas sob NT, devido ao uso continuo de calcário, à maior quantidade de resíduos culturais e ao não revolvimento do solo, associado à correlações positivas com CTC, saturação por bases e pH. A correlação positiva (r = 0,91, p < 0,05 entre estoques de C e CTC em CE indica a importante contribuição da MOS

  18. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    Science.gov (United States)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  19. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    Science.gov (United States)

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  20. Estimating carbon stock in secondary forests

    DEFF Research Database (Denmark)

    Breugel, Michiel van; Ransijn, Johannes; Craven, Dylan

    2011-01-01

    of trees and species for destructive biomass measurements. We assess uncertainties associated with these decisions using data from 94 secondary forest plots in central Panama and 244 harvested trees belonging to 26 locally abundant species. AGB estimates from species-specific models were used to assess......Secondary forests are a major terrestrial carbon sink and reliable estimates of their carbon stocks are pivotal for understanding the global carbon balance and initiatives to mitigate CO2 emissions through forest management and reforestation. A common method to quantify carbon stocks in forests...... is the use of allometric regression models to convert forest inventory data to estimates of aboveground biomass (AGB). The use of allometric models implies decisions on the selection of extant models or the development of a local model, the predictor variables included in the selected model, and the number...

  1. Long-term decline of the Amazon carbon sink.

    Science.gov (United States)

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  2. Ecosystem carbon stocks of micronesian mangrove forests

    Science.gov (United States)

    J. Boone Kauffman; Chris Heider; Thomas G. Cole; Kathleen A. Dwire; Daniel C. Donato

    2011-01-01

    Among the least studied ecosystem services of mangroves is their value as global carbon (C) stocks. This is significant as mangroves are subject to rapid rates of deforestation and therefore could be significant sources of atmospheric emissions. Mangroves could be key ecosystems in strategies addressing the mitigation of climate change though reduced deforestation. We...

  3. Ecosystem carbon stocks in Pinus palustris forests

    Science.gov (United States)

    Lisa Samuelson; Tom Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Pete Anderson; Jason Jackson; Lorenzo Ferrari; Tim A. Martin; Wendell P. Cropper

    2014-01-01

    Longleaf pine (Pinus palustris Mill.) restoration in the southeastern United States offers opportunities for carbon (C) sequestration. Ecosystem C stocks are not well understood in longleaf pine forests, which are typically of low density and maintained by prescribed fire. The objectives of this research were to develop allometric equations for...

  4. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  5. Carbon stocks and flux in French forests

    International Nuclear Information System (INIS)

    Dupouey, Jean-Luc; Pignard, Gerome; Badeau, Vincent; Thimonier, A.; Dhote, Jean-Francois; Nepveu, G.; Berges, L.; Augusto, L.; Belkacem, S.; Nys, C.

    2000-01-01

    Forests contain most of the carbon stored in the earth's biomass (81 %) and could play a role in CO 2 mitigation to a certain extent. We estimate French forest carbon stocks in biomass to be 860 MtC on 14.5 million hectares of forests, and 1,140 MtC in forest soils. Total carbon in the 14.5 million hectares of French forests is estimated at 2,000 MtC. Average annual flux for the 1979/91 period is 10.5 MtC/y, i.e. 10 % of national fossil fuel emissions. The main causes of this net carbon uptake are the rapid increase of forest area, increasing productivity due to environmental changes, ageing or, in some localized areas, more intensive silviculture practices. These carbon sinks are not offset by the harvesting level which remains low on average (61 % of the annual volume growth). Forestry carbon mitigation options applicable in France are discussed. The need for global economic and ecological budgets (including carbon stocks, soil fertility and biodiversity) of the possible alternatives is stressed. (authors)

  6. Impacts of stocking on the genetic diversity of Colossoma macropomum in central Amazon, Brazil.

    Science.gov (United States)

    de Queiroz, C A; Sousa, N R; da Silva, G F; Inoue, L A K A

    2016-04-07

    Tambaqui (Colossoma macropomum) is the main fish species farmed on a commercial scale in northern Brazil. In view of the current scenario of Brazilian aquaculture, studies on the genetic improvement and reproductive management of captive tambaqui are crucial in identifying the genetic variability of broodstocks and devising management practices. Genetic diversity of three tambaqui broodstocks in western Amazon was evaluated using molecular markers. Fin samples were collected from 89 fish; 38 from Balbina, 30 from a hatchery in Rio Preto da Eva, and 21 from the experimental farm of the Federal University of Amazonas (UFAM). Ten primers were used for the analysis of diversity and genetic structure. Of the 152 bands produced, 146 were polymorphic. The proportion of polymorphic loci showed little variation among the three stocks. The lowest and highest rates were found in the Rio Preto da Eva (80.92%) and Balbina (85.53%) stocks, respectively. Heterozygosity (H) and Shannon (I) indices were similar among the stocks; the lowest values were found in Balbina (H = 0.279 and I = 0.419), and the highest in UFAM (H = 0.294 and I = 0.439). Following analysis of the genetic structure and relationship, the sample was divided into two groups, with the Balbina stock clearly deviating from the others. The results suggest that, to increase genetic variability, molecular information may be used instead of replacement of wild breeders. The groups characterized here can be used in genetic improvement programs with other tambaqui broodstocks from different areas of South America.

  7. Soil carbon stocks in Sarawak, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, E., E-mail: Eswaran_padmanabhan@petronas.com.my [Department of Geosciences, Faculty of Geosciences and Petroleum Engineering, Universiti Teknologi PETRONAS, Tronoh, 31750, Perak (Malaysia); Eswaran, H.; Reich, P.F. [USDA-Natural Resources Conservation Service, Washington, DC 20250 (United States)

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO{sub 2}, CH{sub 4}, and N{sub 2}O have an anthropic source and of these CO{sub 2} is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m{sup −2} m{sup −1}), while Oxisols and Ultisols rate second (about 10–15 kg m{sup −2} m{sup −1}). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1 m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m{sup −2} m{sup −1}. Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. - Highlights: • Soil carbon stocks in different soils in Sarawak • In depth discussion of

  8. Soil carbon stocks in Sarawak, Malaysia.

    Science.gov (United States)

    Padmanabhan, E; Eswaran, H; Reich, P F

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Amazon River carbon dioxide outgassing fuelled by wetlands.

    Science.gov (United States)

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  10. Analysis of results of biomass forest inventory in northeastern Amazon for development of REDD+ carbon project

    Directory of Open Access Journals (Sweden)

    LEONEL N.C. MELLO

    2016-03-01

    Full Text Available ABSTRACT In Brazil, a significant reduction in deforestation rates occurred during the last decade. In spite of that fact, the average annual rates are still too high, approximately 400.000 ha/year (INPE/Prodes. The projects of emissions reduction through avoided deforestation (REED+ are an important tool to reduce deforestation rates in Brazil. Understanding the amazon forest structure, in terms of biomass stock is key to design avoided deforestation strategies. In this work, we analyze data results from aboveground biomass of 1,019.346,27 hectares in the state of Pará. It was collected data from 16,722 trees in 83 random independent plots. It was tested 4 allometric equations, for DBH > 10cm: Brown et al. (1989, Brown and Lugo (1999, Chambers et al. (2000, Higuchi et al. (1998. It revealed that the biggest carbon stock of above ground biomass is stocked on the interval at DBH between 30cm and 80cm. This biomass compartment stocks 75.70% of total biomass in Higuchi et al. (1998 equation, 75.56% of total biomass in Brown et al. (1989 equation, 78.83% of total biomass in Chambers et al. (2000 equation, and 73.22% in Brown and Lugo (1999 equation.

  11. The zero inflation of standing dead tree carbon stocks

    Science.gov (United States)

    Christopher W. Woodall; David W. MacFarlane

    2012-01-01

    Given the importance of standing dead trees in numerous forest ecosystem attributes/processes such as carbon (C) stocks, the USDA Forest Service’s Forest Inventory and Analysis (FIA) program began consistent nationwide sampling of standing dead trees in 1999. Modeled estimates of standing dead tree C stocks are currently used as the official C stock estimates for the...

  12. Biological behavior of Trypanosoma cruzi stocks obtained from the State of Amazonas, Western Brazilian Amazon, in mice.

    Science.gov (United States)

    Monteiro, Wuelton Marcelo; Magalhães, Laylah Kelre Costa; Oliveira, Josué Costa; Guerra, Jorge Augusto de Oliveira; Silveira, Henrique; Ferreira, Luiz Carlos de Lima; Toledo, Max Jean de Ornelas; Barbosa, Maria das Graças Vale

    2012-01-01

    The biological diversity of circulating Trypanosoma cruzi stocks in the Amazon region most likely plays an important role in the peculiar clinic-epidemiological features of Chagas disease in this area. Seven stocks of T. cruzi were recently isolated in the State of Amazonas, Brazil, from humans, wild mammals, and triatomines. They belonged to the TcI and Z3 genotypes and were biologically characterized in Swiss mice. Parasitological and histopathological parameters were determined. Four stocks did not promote patent parasitemia in mice. Three stocks produced low parasitemia, long pre-patent periods, and a patent period of 1 day or oscillating parasitemia. Maximum parasitemia ranged from 1,400 to 2,800 trypomastigotes/0.1 mL blood. Mice inoculated with the T. cruzi stocks studied showed low positivity during fresh blood examinations, ranging from 0% to 28.6%. In hemoculture, positivity ranged from 0% to 100%. Heart tissue parasitism was observed in mice inoculated with stocks AM49 and AM61. Stock AM49 triggered a moderate inflammatory process in heart tissue. A mild inflammatory process was observed in heart tissue for stocks AM28, AM38, AM61, and AM69. An inflammatory process was frequently observed in skeletal muscle. Examinations of brain tissue revealed inflammatory foci and gliosis in mice inoculated with stock AM49. Biological and histopathological characterization allowed us to demonstrate the low infectivity and virulence of T. cruzi stocks isolated from the State of Amazonas.

  13. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    Science.gov (United States)

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  14. Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America

    NARCIS (Netherlands)

    Laan-Luijkx, van der I.T.; Velde, van der I.R.; Krol, M.C.; Gatti, L.V.; Domingues, L.G.; Correia, C.S.C.; Miller, J.B.; Gloor, M.; Leeuwen, van T.T.; Kaiser, J.W.; Wiedinmyer, C.; Basu, S.; Clerbaux, C.; Peters, W.

    2015-01-01

    Two major droughts in the past decade had large impacts on carbon exchange in the Amazon. Recent analysis of vertical profile measurements of atmospheric CO2 and CO by Gatti et al. (2014) suggests that the 2010 drought turned the normally close-to-neutral annual Amazon carbon balance into a

  15. Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes.

    Science.gov (United States)

    Schaefer, C E G R; do Amaral, E F; de Mendonça, B A F; Oliveira, H; Lani, J L; Costa, L M; Fernandes Filho, E I

    2008-05-01

    The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east-west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There

  16. Biodiversity, carbon stocks and community monitoring in traditional agroforestry practices

    DEFF Research Database (Denmark)

    Hartoyo, Adisti Permatasari Putri; Siregar, Iskandar Z.; Supriyanto

    2016-01-01

    Traditional agroforestry practices in Berau, East Kalimantan, are suitable land use types to conserve that potentially support the implementation of REDD+. The objectives of this research are to assess biodiversity and carbon stock in various traditional agroforestry practices, also to determine...... the accuracy of the ability levels of local community in biodiversity and carbon stock monitoring. This paper presents the implementation plan and preliminary data in Kampung Birang and Kampung Merabu, in Berau district. Professional forester-led methods of biodiversity and carbon stock assessment follow...

  17. Carbon Stock Stratification of Peat Soils in South Kalimantan, Indonesia

    OpenAIRE

    Siti Nurzakiah; Muhammad Noor; Dedi Nursyamsi

    2015-01-01

    Carbon stock in peat soils is very high, it is necessary to prudent in its management because peat soils is emitting greenhouse gases such as CO2 during land clearing due to oxidation of peat layer.  This research was conducted to study soil carbon stock stratification in relation to soil physical and chemical properties. The carbon stock stratification was based on maturity degrees of peat.  The study was conducted in Pulau Damar Village, Hulu Sungai Utara District, South Kalimantan Province...

  18. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A.; Ferreira, Joice; Aragão, Luiz E. O. C.; Camargo, Plínio B.; Cerri, Carlos E.; Durigan, Mariana; Oliveira Junior, Raimundo C.; Vieira, Ima C. G.; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor—an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  19. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A; Ferreira, Joice; Aragão, Luiz E O C; Camargo, Plínio B; Cerri, Carlos E; Durigan, Mariana; Oliveira Junior, Raimundo C; Vieira, Ima C G; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  20. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Erika Berenguer

    Full Text Available Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH, which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85 whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human

  1. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  2. Monitoring of soil organic carbon and nitrogen stocks in different ...

    African Journals Online (AJOL)

    Soil organic carbon (SOC) and soil nitrogen (SN) are the principal components in soil quality assessment, and in mitigation the global greenhouse effect. In Iran, little information exists on the stocks of SOC and SN. SOC and SN stocks are a function of the SOC and SN concentrations and the bulk density of the soil that are ...

  3. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.

    1992-01-01

    The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.

  4. Effects of vegetation's degradation on carbon stock, morphological ...

    African Journals Online (AJOL)

    Effects of vegetation's degradation on carbon stock, morphological, physical and chemical characteristics of soils within the mangrove forest of the Rio del Rey Estuary: Case study – Bamusso (South-West Cameroon)

  5. Forest Carbon Stocks in Woody Plants of Tara Gedam Forest ...

    African Journals Online (AJOL)

    The overall objective of this study was to estimate the carbon stock potentials of Tara Gedam forest as potential sink for climate change mitigation. Forest plays an important role in the global carbon cycle as carbon sinks of the terrestrial ecosystem. The data was collected from the field by measuring plants with a DBH of ...

  6. Carbon Stock Stratification of Peat Soils in South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2015-05-01

    Full Text Available Carbon stock in peat soils is very high, it is necessary to prudent in its management because peat soils is emitting greenhouse gases such as CO2 during land clearing due to oxidation of peat layer.  This research was conducted to study soil carbon stock stratification in relation to soil physical and chemical properties. The carbon stock stratification was based on maturity degrees of peat.  The study was conducted in Pulau Damar Village, Hulu Sungai Utara District, South Kalimantan Province on land use rubber.  The location of the study area was determined by using the purposive sampling method.  All data obtained were analyzed by Excel spreadsheets and drawn on a CorelDraw 12. The results showed that the amount of carbon stock was influenced by the maturity degrees of peats, peat sapric degres has higher carbon stock than of hemik and fibric with a ratio of  2.0: 1.5: 1.  The relationship between soil carbon stock with soil physic (Bulk Density, BD and chemical properties (pH, Eh, Fe, and total-N were not significantly.

  7. Partitioning Uncertainty In Aboveground Carbon Density Estimates: Relative Contributions From Lidar and Forest Inventory In The Brazilian Amazon.

    Science.gov (United States)

    Duffy, P.; Keller, M. M.; Morton, D. C.

    2016-12-01

    Carbon accounting for REDD+ requires knowledge of deforestation, degradation, and associated changes in forest carbon stocks. Degradation is more difficult to detect than deforestation so SilvaCarbon, an US inter-agency effort, has set a priority to better characterize forest degradation effects on carbon loss. By combining information from forest inventory and lidar data products, impacts of deforestation, degradation, and associated changes in forest carbon stocks can be more accurately characterized across space. Our approach employs a hierarchical Bayesian modeling (HBM) framework where the assimilation of information from multiple sources is accomplished using a change of support (COS) technique. The COS formulation allows data from multiple spatial resolutions to be assimilated into an intermediate resolution. This approach is being applied in Paragominas, a jurisdiction in the eastern Brazilian Amazon with a high proportion of logged and burned degraded forests where political change has opened the way for REDD+. We build on a long history of research including our extensive studies of logging damage. Our primary objective is to quantify above-ground carbon stocks and corresponding uncertainty in a spatially explicit manner. A secondary objective is to quantify the relative contribution of lower level data products to the overall uncertainty, allowing for more focused subsequent data collection in the context of uncertainty reduction. This approach provides a mechanism to assimilate information from multiple sources to produce spatially-explicit maps of carbon stocks and changes with corresponding spatially explicit maps of uncertainty. Importantly, this approach also provides a mechanism that can be used to assess the value of information from specific data products.

  8. The Neoproterozoic Puga (Varanger) cap carbonate, Amazon Craton, Brazil

    Science.gov (United States)

    Riccomini, C.; Nogueira, A. C.; Sial, A. N.; Moura, C. A.; Fairchild, T. R.

    2003-04-01

    Based on stratigraphic and isotopic data the basal carbonates of the Araras Group overlying diamictites of the Puga Formation at the southwest margin of the Amazon Craton are interpreted as a Neoproterozoic cap carbonate. Deposited below wavebase on a carbonate platform, this cap consists of two units separated by a transgressive erosional surface. The lower unit comprises moderately deep to shallow-water pinkish dolomudstone with stratiform fenestrate stromatolites, fenestrate planar lamination, ridge ("tepee-like structures") and tubiform structures. The upper unit includes deep-water bituminous lime mudstones with terrigenous grains, and subordinate shales. Alternating thin calcite crusts and lime mudstone laminae are commonly disrupted by calcite crystal fans (pseudomorphs after aragonite). Brecciated, faulted, and slumped limestone beds with multiple generations of cement indicate localized synsedimentary deformation. Negative excursions of δ13C and variations in 87Sr/86Sr are consistent with a Varanger age. However, unlike other cap carbonates, the basal contact with diamictites exhibits soft-sediment deformation, providing unequivocal sedimentological evidence of rapid dolostone precipitation after ice-melting. This fact confirms the existence of an abrupt change from icehouse to extreme greenhouse conditions, as proposed in the snowball earth hypothesis for Neoproterozoic glaciation. (Financial support: FAPESP grant 00/02903-8, CNPq and Pró-Reitoria de Pós-Graduação, USP).

  9. Carbon stocks and fluxes in the high latitudes

    DEFF Research Database (Denmark)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp

    2017-01-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks...... from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which...

  10. Deforestation and Carbon Stock Loss in Brazil's Amazonian Settlements.

    Science.gov (United States)

    Yanai, Aurora Miho; Nogueira, Euler Melo; de Alencastro Graça, Paulo Maurício Lima; Fearnside, Philip Martin

    2017-03-01

    We estimate deforestation and the carbon stock in 2740 (82 %) of the 3325 settlements in Brazil's Legal Amazonia region. Estimates are made both using available satellite data and a carbon map for the "pre-modern" period (prior to 1970). We used data from Brazil's Project for Monitoring Deforestation in Amazonia updated through 2013 and from the Brazilian Biomes Deforestation Monitoring Project (PMDBBS) updated through 2010. To obtain the pre-modern and recent carbon stocks we performed an intersection between a carbon map and a map derived from settlement boundaries and deforestation data. Although the settlements analyzed occupied only 8 % of Legal Amazonia, our results indicate that these settlements contributed 17 % (160,410 km 2 ) of total clearing (forest + non-forest) in Legal Amazonia (967,003 km 2 ). This represents a clear-cutting of 41 % of the original vegetation in the settlements. Out of this total, 72 % (115,634 km 2 ) was in the "Federal Settlement Project" (PA) category. Deforestation in settlements represents 20 % (2.6 Pg C) of the total carbon loss in Legal Amazonia (13.1 Pg C). The carbon stock in remaining vegetation represents 3.8 Pg C, or 6 % of the total remaining carbon stock in Legal Amazonia (58.6 Pg C) in the periods analyzed. The carbon reductions in settlements are caused both by the settlers and by external actors. Our findings suggest that agrarian reform policies contributed directly to carbon loss. Thus, the implementation of new settlements should consider potential carbon stock losses, especially if settlements are created in areas with high carbon stocks.

  11. Pre-LBA Carbon in the Amazon River Experiment (CAMREX) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of CAMREX (Carbon in the Amazon River Experiment) project which was conducted from 1982 through 1991, was been to define by mass balances and direct...

  12. Pre-LBA Carbon in the Amazon River Experiment (CAMREX) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The objective of CAMREX (Carbon in the Amazon River Experiment) project which was conducted from 1982 through 1991, was been to define by mass balances and...

  13. Carbon emissions risk map from deforestation in the tropical Amazon

    Science.gov (United States)

    Ometto, J.; Soler, L. S.; Assis, T. D.; Oliveira, P. V.; Aguiar, A. P.

    2011-12-01

    Assis, Pedro Valle This work aims to estimate the carbon emissions from tropical deforestation in the Brazilian Amazon associated to the risk assessment of future land use change. The emissions are estimated by incorporating temporal deforestation dynamics, accounting for the biophysical and socioeconomic heterogeneity in the region, as well secondary forest growth dynamic in abandoned areas. The land cover change model that supported the risk assessment of deforestation, was run based on linear regressions. This method takes into account spatial heterogeneity of deforestation as the spatial variables adopted to fit the final regression model comprise: environmental aspects, economic attractiveness, accessibility and land tenure structure. After fitting a suitable regression models for each land cover category, the potential of each cell to be deforested (25x25km and 5x5 km of resolution) in the near future was used to calculate the risk assessment of land cover change. The carbon emissions model combines high-resolution new forest clear-cut mapping and four alternative sources of spatial information on biomass distribution for different vegetation types. The risk assessment map of CO2 emissions, was obtained by crossing the simulation results of the historical land cover changes to a map of aboveground biomass contained in the remaining forest. This final map represents the risk of CO2 emissions at 25x25km and 5x5 km until 2020, under a scenario of carbon emission reduction target.

  14. Edaphic controls on soil organic carbon stocks in restored grasslands

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Sarah L.; Jastrow, Julie D.; Grimley, David A.; Gonzalez-Meler, Miquel A.

    2015-08-01

    Cultivation of undisturbed soils dramatically depletes organic carbon stocks at shallow depths, releasing a substantial quantity of stored carbon to the atmosphere. Restoration of native ecosystems can help degraded soils rebuild a portion of the depleted soil organic matter. However, the rate and magnitude of soil carbon accrual can be highly variable from site to site. Thus, a better understanding of the mechanisms controlling soil organic carbon stocks is necessary to improve predictions of soil carbon recovery. We measured soil organic carbon stocks and a suite of edaphic factors in the upper 10 cm of a series of restored tallgrass prairies representing a range of drainage conditions. Our findings suggest that factors related to soil organic matter stabilization mechanisms (texture, polyvalent cations) were key predictors of soil organic carbon, along with variables that influence plant and microbial biomass (available phosphorus, pH) and soil moisture. Exchangeable soil calcium was the strongest single predictor, explaining 74% of the variation in soil organic carbon, followed by clay content,which explained 52% of the variation. Our results demonstrate that the cumulative effects of even relatively small differences in these edaphic properties can have a large impact on soil carbon stocks when integrated over several decades.

  15. Measuring Biomass and Carbon Stock in Resprouting Woody Plants

    Science.gov (United States)

    Matula, Radim; Damborská, Lenka; Nečasová, Monika; Geršl, Milan; Šrámek, Martin

    2015-01-01

    Resprouting multi-stemmed woody plants form an important component of the woody vegetation in many ecosystems, but a clear methodology for reliable measurement of their size and quick, non-destructive estimation of their woody biomass and carbon stock is lacking. Our goal was to find a minimum number of sprouts, i.e., the most easily obtainable, and sprout parameters that should be measured for accurate sprout biomass and carbon stock estimates. Using data for 5 common temperate woody species, we modelled carbon stock and sprout biomass as a function of an increasing number of sprouts in an interaction with different sprout parameters. The mean basal diameter of only two to five of the thickest sprouts and the basal diameter and DBH of the thickest sprouts per stump proved to be accurate estimators for the total sprout biomass of the individual resprouters and the populations of resprouters, respectively. Carbon stock estimates were strongly correlated with biomass estimates, but relative carbon content varied among species. Our study demonstrated that the size of the resprouters can be easily measured, and their biomass and carbon stock estimated; therefore, resprouters can be simply incorporated into studies of woody vegetation. PMID:25719601

  16. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows

    DEFF Research Database (Denmark)

    Rohr, Maria Emilia; Bostrom, Christoffer; Canal-Vergés, Paula

    2016-01-01

    in Finland and 10 in Denmark to explore seagrass carbon stocks (C-org stock) and carbon accumulation rates (C-org accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation....... The C-org stock integrated over the top 25 cm of the sediment averaged 627 g C m(-2) in Finland, while in Denmark the average C-org stock was over 6 times higher (4324 g Cm-2). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha(-1). Our results...... suggest that the Finnish eelgrass meadows are minor carbon sinks compared to the Danish meadows, and that majority of the C-org produced in the Finnish meadows is exported. Our analysis further showed that >40% of the variation in the C-org stocks was explained by sediment characteristics, i.e. dry...

  17. Black carbon over the Amazon during SAMBBA: it gets everywhere

    Science.gov (United States)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Liu, D.; Szpek, K.; Langridge, J.; Johnson, B. T.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2014-12-01

    Biomass burning represents a major source of Black Carbon (BC) aerosol to the atmosphere, which can result in major perturbations to weather, climate and ecosystem development. Large uncertainties in these impacts prevail, particularly on regional scales. One such region is the Amazon Basin, where large, intense and frequent burning occurs on an annual basis during the dry season. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to BC aerosol properties. Results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by a DMT Single Particle Soot Photometer (SP2) and an Aerodyne Aerosol Mass Spectrometer (AMS). The physical, chemical and optical properties of BC-containing particles across the region will be characterised, with particular emphasis on the vertical distribution. BC was ubiquitous across the region, with measurements extending from heavily deforested regions in the Western Amazon Basin, through to agricultural fires in the Cerrado (Savannah-like) region and more pristine areas over the Amazon Rainforest. Measurements in the vicinity of Manaus (a city located deep into the jungle) were also conducted. BC concentrations peaked within the boundary layer at a height of around 1.5km. BC-containing particles were found to be rapidly coated in the near-field, with little evidence for additional coating upon advection and dilution. Biomass burning layers within the free troposphere were routinely observed. BC-containing particles within such layers were typically associated with less coating than those within the boundary layer, suggestive of wet removal of more coated BC particles. The importance of such properties in relation to the

  18. Carbon stocks and dynamics under improved tropical pasture and silvopastoral

    NARCIS (Netherlands)

    Mosquera Vidal, O.; Buurman, P.; Ramirez, B.L.; Amezquita, M.C.

    2012-01-01

    To evaluate the effect of land use change on soil organic carbon, the carbon contents and stocks of primary forest, degraded pasture, and four improved pasture systems in Colombian Amazonia were compared in a flat and a sloping landscape. The improved pastures were Brachiaria humidicola, and

  19. Estimating forest carbon stocks in tropical dry forests of Zimbabwe ...

    African Journals Online (AJOL)

    Estimation and mapping of forest dendrometric characteristics such as carbon stocks using remote sensing techniques is fundamental for improved understanding of the role of forests in the carbon cycle and climate change. In this study, we tested whether and to what extent spectral transforms, i.e. vegetation indices ...

  20. Forest Carbon Stocks in Woody Plants of Mount Zequalla Monastery ...

    African Journals Online (AJOL)

    Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.The present study was undertaken to estimate forest carbon stock along altitudinal gradient in Mount Zequalla Monastery forest.

  1. Climate legacies drive global soil carbon stocks in terrestrial ecosystems.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Eldridge, David J; Maestre, Fernando T; Karunaratne, Senani B; Trivedi, Pankaj; Reich, Peter B; Singh, Brajesh K

    2017-04-01

    Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere and stored in the soil. However, legacy impacts of past climates on current soil C stocks are poorly understood. We used data from more than 5000 terrestrial sites from three global and regional data sets to identify the relative importance of current and past (Last Glacial Maximum and mid-Holocene) climatic conditions in regulating soil C stocks in natural and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative predictions of global C stocks under different climatic scenarios.

  2. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows

    DEFF Research Database (Denmark)

    Rohr, Maria Emilia; Bostrom, Christoffer; Canal-Vergés, Paula

    2016-01-01

    Although seagrasses cover only a minor fraction of the ocean seafloor, their carbon sink capacity accounts for nearly one-fifth of the total oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems. We sampled 10 eelgrass (Zostera marina) meadows...... in Finland and 10 in Denmark to explore seagrass carbon stocks (C-org stock) and carbon accumulation rates (C-org accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation....... The C-org stock integrated over the top 25 cm of the sediment averaged 627 g C m(-2) in Finland, while in Denmark the average C-org stock was over 6 times higher (4324 g Cm-2). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha(-1). Our results...

  3. Temporal Assessment of Growing Stock, Biomass and Carbon Stock of Indian Forests

    Energy Technology Data Exchange (ETDEWEB)

    Manhas, R.K.; Negi, J.D.S.; Chauhan, P.S. [Forest Ecology and Environment Division, Forest Research Institute, Dehradun, 248 006, Uttaranchal (India); Kumar, R. [Forest Survey of India, Dehradun, 248 001, Uttaranchal (India)

    2006-01-15

    The dynamics of terrestrial ecosystems depends on interactions between carbon, nutrient and hydrological cycles. Terrestrial ecosystems retain carbon in live biomass (aboveground and belowground), decomposing organic matter, and soil. Carbon is exchanged naturally between these systems and the atmosphere through photosynthesis, respiration, decomposition, and combustion. Human activities change carbon stock in these pools and exchanges between them and the atmosphere through land-use, land-use change, and forestry. In the present study we estimated the wood (stem) biomass, growing stock (GS) and carbon stock of Indian forests for 1984 and 1994. The forest area, wood biomass, GS, and carbon stock were 63.86 Mha, 4327.99 Mm{sup 3}, 2398.19 Mt and 1085.06 Mt respectively in 1984 and with the reduction in forest area, 63.34 Mha, in 1994, wood biomass (2395.12 Mt) and carbon stock (1083.69 Mt) also reduced subsequently. The Conifers, of temperate region, stocked maximum carbon in their woods, 28.88 to 65.21 t C/ha, followed by Mangrove forests, 28.24 t C/ha, Dipterocarp forests, 28.00 t C/ha, and Shorea robusta forests, 24.07 t C/ha. Boswellia serrata, with 0.22 Mha forest area, stocked only 3.91 t C/ha. To have an idea of rate of carbon loss the negative changes (loss of forest area) in forest area occurred during 1984-1994 (10yrs) and 1991-1994 (4yrs) were also estimated. In India, land-use changes and fuelwood requirements are the main cause of negative change. Total 24.75 Mt C was lost during 1984-1994 and 21.35 Mt C during 1991-94 at a rate of 2.48 Mt C/yr and 5.35 Mt C/yr respectively. While in other parts of India negative change is due to multiple reasons like fuelwood, extraction of non-wood forest products (NWFPs), illicit felling etc., but in the northeastern region of the country shifting cultivation is the only reason for deforestation. Decrease in forest area due to shifting cultivation accounts for 23.0% of the total deforestation in India, with an annual

  4. Environmental analyse of soil organic carbon stock changes in Slovakia

    Science.gov (United States)

    Koco, Š.; Barančíková, G.; Skalský, R.; Tarasovičová, Z.; Gutteková, M.; Halas, J.; Makovníková, J.; Novákova, M.

    2012-04-01

    The content and quality of soil organic matter is one of the basic soil parameters on which soil production functioning depends as well as it is active in non production soil functions like an ecological one especially. Morphologic segmentation of Slovakia has significant influence of structure in using agricultural soil in specific areas of our territory. Also social changes of early 90´s of 20´th century made their impact on change of using of agricultural soil (transformation from large farms to smaller ones, decreasing the number of livestock). This research is studying changes of development of soil organic carbon stock (SOC) in agricultural soil of Slovakia as results of climatic as well as social and political changes which influenced agricultury since last 40 years. The main goal of this research is an analysis of soil organic carbon stock since 1970 until now at specific agroclimatic regions of Slovakia and statistic analysis of relation between modelled data of SOC stock and soil quality index value. Changes of SOC stock were evaluated on the basis SOC content modeling using RothC-26.3 model. From modeling of SOC stock results the outcome is that in that time the soil organic carbon stock was growing until middle 90´s years of 20´th century with the highest value in 1994. Since that year until new millennium SOC stock is slightly decreasing. After 2000 has slightly increased SOC stock so far. According to soil management SOC stock development on arable land is similar to overall evolution. In case of grasslands after slight growth of SOC stock since 1990 the stock is in decline. This development is result of transformational changes after 1989 which were specific at decreasing amount of organic carbon input from organic manure at grassland areas especially. At warmer agroclimatic regions where mollic fluvisols and chernozems are present and where are soils with good quality and steady soil organic matter (SOM) the amount of SOC in monitored time is

  5. THE Eucalyptus sp. AGE PLANTATIONS INFLUENCING THE CARBON STOCKS

    Directory of Open Access Journals (Sweden)

    Charlote Wink

    2013-06-01

    Full Text Available http://dx.doi.org/10.5902/198050989279The tree growth and biomass accumulation, as well as the maintenance of forest residue at the soil surface can act in the removal of carbon from the atmosphere through the cycling process of plant material. The objective was to study the influence of Eucalyptus sp. Plantations with 20, 44 and 240 months of age on the variation of carbon in soil and biomass. The carbon in the soil depth was determined by CHNS auto-analyzer and carbon in the vegetation was determined by the biomass in each forest, considering a factor of 0.45 of the dry mass. We determined the density and particle size distribution of soil. For the comparison between plantations, there was analysis of variance and comparison of means of carbon in vegetation and soil, considering the 5% level of probability. The carbon content and stock in the soil were low, indicating that a natural feature of the category of Paleuldt, or the growth of eucalyptus forests, replacing the field native vegetation did not aggregate a significant increase in the carbon. Although, there was a significant increase carbon in aboveground biomass. It includes forest biomass and litter. So, despite the values ​​of carbon stocks are low, it identified a greater average total in the soil compared to the stock aboveground. Furthermore, this increase aboveground (tree and litter compartments can be considered significant between the eucalyptus plantations of different ages.

  6. Trypanosoma cruzi I and IV stocks from Brazilian Amazon are divergent in terms of biological and medical properties in mice.

    Directory of Open Access Journals (Sweden)

    Wuelton Marcelo Monteiro

    Full Text Available In the Brazilian Amazon, clinical and epidemiological frameworks of Chagas disease are very dissimilar in relation to the endemic classical areas of transmission, possibly due to genetic and biological characteristics of the circulating Trypanosoma cruzi stocks. Twenty six T. cruzi stocks from Western Amazon Region attributed to the TcI and TcIV DTUs were comparatively studied in Swiss mice to test the hypothesis that T. cruzi clonal structure has a major impact on its biological and medical properties.Seventeen parameters were assayed in mice infected with 14 T. cruzi strains belonging to DTU TcI and 11 strains typed as TcIV. In comparison with TcI, TcIV stocks promoted a significantly shorter pre-patent period (p<0.001, a longer patent period (p<0.001, higher values of mean daily parasitemia (p = 0.009 and maximum of parasitemia (p = 0.015, earlier days of maximum parasitemia (p<0.001 and mortality (p = 0.018, higher mortality rates in the acute phase (p = 0.047, higher infectivity rates (p = 0.002, higher positivity in the fresh blood examination (p<0.001, higher positivity in the ELISA at the early chronic phase (p = 0.022, and a higher positivity in the ELISA at the late chronic phase (p = 0.003. On the other hand TcI showed higher values of mortality rates in the early chronic phase (p = 0.014, higher frequency of mice with inflammatory process in any organ (p = 0.005, higher frequency of mice with tissue parasitism in any organ (p = 0.027 and a higher susceptibility to benznidazole (p = 0.002 than TcIV. Survival analysis showing the time elapsed from the day of inoculation to the beginning of the patent period was significantly shorter for TcIV strains and the death episodes triggered following the infection with TcI occurred significantly later in relation to TcIV. The notable exceptions come from positivity in the hemocultures and PCR, for which the results were similar.T. cruzi stocks

  7. Northern peatland carbon stocks and dynamics: a review

    Directory of Open Access Journals (Sweden)

    Z. C. Yu

    2012-10-01

    Full Text Available Peatlands contain a large belowground carbon (C stock in the biosphere, and their dynamics have important implications for the global carbon cycle. However, there are still large uncertainties in C stock estimates and poor understanding of C dynamics across timescales. Here I review different approaches and associated uncertainties of C stock estimates in the literature, and on the basis of the literature review my best estimate of C stocks and uncertainty is 500 ± 100 (approximate range gigatons of C (Gt C in northern peatlands. The greatest source of uncertainty for all the approaches is the lack or insufficient representation of data, including depth, bulk density and carbon accumulation data, especially from the world's large peatlands. Several ways to improve estimates of peat carbon stocks are also discussed in this paper, including the estimates of C stocks by regions and further utilizations of widely available basal peat ages.

    Changes in peatland carbon stocks over time, estimated using Sphagnum (peat moss spore data and down-core peat accumulation records, show different patterns during the Holocene, and I argue that spore-based approach underestimates the abundance of peatlands in their early histories. Considering long-term peat decomposition using peat accumulation data allows estimates of net carbon sequestration rates by peatlands, or net (ecosystem carbon balance (NECB, which indicates more than half of peat carbon (> 270 Gt C was sequestrated before 7000 yr ago during the Holocene. Contemporary carbon flux studies at 5 peatland sites show much larger NECB during the last decade (32 ± 7.8 (S.E. g C m−2 yr–1 than during the last 7000 yr (∼ 11 g C m−2 yr–1, as modeled from peat records across northern peatlands. This discrepancy highlights the urgent need for carbon accumulation data and process understanding, especially at decadal and centennial timescales

  8. Global patterns in mangrove soil carbon stocks and losses

    Science.gov (United States)

    Atwood, Trisha B.; Connolly, Rod M.; Almahasheer, Hanan; Carnell, Paul E.; Duarte, Carlos M.; Ewers Lewis, Carolyn J.; Irigoien, Xabier; Kelleway, Jeffrey J.; Lavery, Paul S.; Macreadie, Peter I.; Serrano, Oscar; Sanders, Christian J.; Santos, Isaac; Steven, Andrew D. L.; Lovelock, Catherine E.

    2017-07-01

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr-1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr-1) and Malaysia (1,288 Gg CO2e yr-1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  9. Global patterns in mangrove soil carbon stocks and losses

    KAUST Repository

    Atwood, Trisha B.

    2017-06-26

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  10. Grassland management impacts on soil carbon stocks: a new synthesis.

    Science.gov (United States)

    Conant, Richard T; Cerri, Carlos E P; Osborne, Brooke B; Paustian, Keith

    2017-03-01

    Grassland ecosystems cover a large portion of Earths' surface and contain substantial amounts of soil organic carbon. Previous work has established that these soil carbon stocks are sensitive to management and land use changes: grazing, species composition, and mineral nutrient availability can lead to losses or gains of soil carbon. Because of the large annual carbon fluxes into and out of grassland systems, there has been growing interest in how changes in management might shift the net balance of these flows, stemming losses from degrading grasslands or managing systems to increase soil carbon stocks (i.e., carbon sequestration). A synthesis published in 2001 assembled data from hundreds of studies to document soil carbon responses to changes in management. Here we present a new synthesis that has integrated data from the hundreds of studies published after our previous work. These new data largely confirm our earlier conclusions: improved grazing management, fertilization, sowing legumes and improved grass species, irrigation, and conversion from cultivation all tend to lead to increased soil C, at rates ranging from 0.105 to more than 1 Mg C·ha -1 ·yr -1 . The new data include assessment of three new management practices: fire, silvopastoralism, and reclamation, although these studies are limited in number. The main area in which the new data are contrary to our previous synthesis is in conversion from native vegetation to grassland, where we find that across the studies the average rate of soil carbon stock change is low and not significant. The data in this synthesis confirm that improving grassland management practices and conversion from cropland to grassland improve soil carbon stocks. © 2016 by the Ecological Society of America.

  11. Climate change mitigation by carbon stocking

    DEFF Research Database (Denmark)

    Lykke, Anne Mette; Barfod, Anders S.; Svendsen, Gert Tinggaard

    2009-01-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) ...

  12. Distribution, stock, and influencing factors of soil organic carbon in ...

    Indian Academy of Sciences (India)

    40

    Distribution, stock, and influencing factors of soil organic carbon. 1 in an alpine meadow in the hinterland of the Qinghai-Tibetan. 2. Plateau. 3. XUCHAO ZHU1 and MING'AN SHAO2,3,*. 4. 1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science,. 5. Chinese Academy of Sciences, 210008, Nanjing, ...

  13. Carbon stock in topsoil, standing floor litter and above ground ...

    African Journals Online (AJOL)

    This paper provides information on carbon stock at the habitat level in the above ground biomass (ABG), standing floor litter and soils in a 10 year-old Tectona grandis plantation following restoration of a degraded secondary forest at Obafemi Awolowo University, Ile-Ife Nigeria. Four sample plots 25 m x 25 m, two in Tectona ...

  14. Soil organic carbon and nitrogen stocks along a seasonal wetland ...

    African Journals Online (AJOL)

    Ecosystems of central and southern Africa are occupied by some of the largest seasonal wetlands commonly called dambos. Dambos are likely to store huge stocks of soil organic carbon (SOC) because of their saturated conditions. However, most available literature report average SOC concentrations while ignoring ...

  15. Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices.

    Science.gov (United States)

    Navarrete, Diego; Sitch, Stephen; Aragão, Luiz E O C; Pedroni, Lucio

    2016-10-01

    Strategies to mitigate climate change by reducing deforestation and forest degradation (e.g. REDD+) require country- or region-specific information on temporal changes in forest carbon (C) pools to develop accurate emission factors. The soil C pool is one of the most important C reservoirs, but is rarely included in national forest reference emission levels due to a lack of data. Here, we present the soil organic C (SOC) dynamics along 20 years of forest-to-pasture conversion in two subregions with different management practices during pasture establishment in the Colombian Amazon: high-grazing intensity (HG) and low-grazing intensity (LG) subregions. We determined the pattern of SOC change resulting from the conversion from forest (C3 plants) to pasture (C4 plants) by analysing total SOC stocks and the natural abundance of the stable isotopes (13) C along two 20-year chronosequences identified in each subregion. We also analysed soil N stocks and the natural abundance of (15) N during pasture establishment. In general, total SOC stocks at 30 cm depth in the forest were similar for both subregions, with an average of 47.1 ± 1.8 Mg C ha(-1) in HG and 48.7 ± 3.1 Mg C ha(-1) in LG. However, 20 years after forest-to-pasture conversion SOC in HG decreased by 20%, whereas in LG SOC increased by 41%. This net SOC decrease in HG was due to a larger reduction in C3-derived input and to a comparatively smaller increase in C4-derived C input. In LG both C3- and C4-derived C input increased along the chronosequence. N stocks were generally similar in both subregions and soil N stock changes during pasture establishment were correlated with SOC changes. These results emphasize the importance of management practices involving low-grazing intensity in cattle activities to preserve SOC stocks and to reduce C emissions after land-cover change from forest to pasture in the Colombian Amazon. © 2016 John Wiley & Sons Ltd.

  16. A Canadian upland forest soil profile and carbon stocks database.

    Science.gov (United States)

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve

  17. Analysis of results of biomass forest inventory in northeastern Amazon for development of REDD+ carbon project

    OpenAIRE

    MELLO, LEONEL N.C.; SALES, MARCIO H.R.; ROSA, LUIZ P.

    2016-01-01

    ABSTRACT In Brazil, a significant reduction in deforestation rates occurred during the last decade. In spite of that fact, the average annual rates are still too high, approximately 400.000 ha/year (INPE/Prodes). The projects of emissions reduction through avoided deforestation (REED+) are an important tool to reduce deforestation rates in Brazil. Understanding the amazon forest structure, in terms of biomass stock is key to design avoided deforestation strategies. In this work, we analyze da...

  18. Local involvement in measuring and governing carbon stocks in China, Vietnam, Indonesia and Laos

    Science.gov (United States)

    Michael Køie. Poulsen

    2013-01-01

    An important element of MRV is to ensure accurate measurements of carbon stocks. Measuring trees on the ground may be needed for ground truthing of remote sensing results. It can also provide more accurate carbon stock monitoring than remote sensing alone. Local involvement in measuring trees for monitoring of carbon stocks may be advantageous in several ways....

  19. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    John B. Bradford; Shawn Fraver; Amy M. Milo; Anthony W. D' Amato; Brian J. Palik

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing...

  20. Chemical and carbon isotope composition of Varzeas sediments and its interactions with some Amazon basin rivers

    International Nuclear Information System (INIS)

    Martinelli, L.A.

    1986-01-01

    Varzea sediment samples were collected on the banks of Amazon rivers and in the most important tributaires. The samples were taken in three different river stages. The major cations, pH, total nitrogen, total phosphorus, carbon and δ 13 C values were determined. The concentration of major basic cations - Ca,Mg,K e Na were greater in the main channel sediments than in the tributaires. Probably the differences in the substrats geology and erosion regimes of the basins account for this patterns, generally. The major basic cation, total phosphorus and carbon concentration were lower in the low Amazon Varzeas. Between the three differents sampling periods, pratically the elements concentration in Varzea sediment was constant. Finally, the datas showed that the most parts of Varzea carbon sediment had it's origin in the fine particulated organic matter transported by the Amazon river. (C.D.G.) [pt

  1. Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought

    Science.gov (United States)

    Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.

  2. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Christopher [NASA Ames Research Center, Moffett Field, CA (United States); Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa [California State University Monterey Bay, Seaside, CA (United States); Castilla-Rubio, Juan Carlos, E-mail: chris.potter@nasa.gov [Planetary Skin Institute, Silicon Valley, CA (United States)

    2011-07-15

    Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO{sub 2} uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO{sub 2} to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains.

  3. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought

    International Nuclear Information System (INIS)

    Potter, Christopher; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubio, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO 2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO 2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains.

  4. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2011-05-01

    Full Text Available Precise determination of changes in organic carbon (OC stocks is prerequisite to understand the role of soils in the global cycling of carbon and to verify changes in stocks due to management. A large dataset was collected to form base to repeated soil inventories at 12 CarboEurope sites under different climate and land-use, and with different soil types. Concentration of OC, bulk density (BD, and fine earth fraction were determined to 60 cm depth at 100 sampling points per site. We investigated (1 time needed to detect changes in soil OC, assuming future re-sampling of 100 cores; (2 the contribution of different sources of uncertainties to OC stocks; (3 the effect of OC stock calculation on mass rather than volume base for change detection; and (4 the potential use of pedotransfer functions (PTF for estimating BD in repeated inventories.

    The period of time needed for soil OC stocks to change strongly enough to be detectable depends on the spatial variability of soil properties, the depth increment considered, and the rate of change. Cropland sites, having small spatial variability, had lower minimum detectable differences (MDD with 100 sampling points (105 ± 28 gC m−2 for the upper 10 cm of the soil than grassland and forest sites (206 ± 64 and 246 ± 64 gC m−2 for 0–10 cm, respectively. Expected general trends in soil OC indicate that changes could be detectable after 2–15 yr with 100 samples if changes occurred in the upper 10 cm of stone-poor soils. Error propagation analyses showed that in undisturbed soils with low stone contents, OC concentrations contributed most to OC stock variability while BD and fine earth fraction were more important in upper soil layers of croplands and in stone rich soils. Though the calculation of OC stocks based on equivalent soil masses slightly decreases the chance to detect changes with time at most sites except for the croplands, it is still recommended to

  5. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010

    Science.gov (United States)

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S.; Hansen, Matthew C.; Townshend, John R.

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates―critical inputs for setting reference emission levels for REDD+―are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr−1 and 0.18 ± 0.07 Pg C•yr−1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha−1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha−1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha−1•yr−1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts

  6. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.

    Science.gov (United States)

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.

  7. Land use change and terrestrial carbon stocks in Senegal

    Science.gov (United States)

    Woomer, P.L.; Tieszen, L.L.; Tappan, G.; Toure, A.; Sall, M.

    2004-01-01

    Environmental degradation resulting from long-term drought and land use change has affected terrestrial carbon (C) stocks within Africa's Sahel. We estimated Senegal's terrestrial carbon stocks in 1965, 1985, and 2000 using an inventory procedure involving satellite images revealing historical land use change, and recent field measurements of standing carbon stocks occurring in soil and plants. Senegal was divided into eight ecological zones containing 11 land uses. In 2000, savannas, cultivated lands, forests, and steppes were the four largest land uses in Senegal, occupying 70, 22, 2.7, and 2.3 percent of Senegal's 199,823 km2. System C stocks ranged from 9 t C ha−1 in degraded savannas in the north, to 113 t C ha−1 in the remnant forests of the Senegal River Valley. This approach resulted in estimated total C stocks of 1019 and 727 MT C between 1965 and 2000, respectively, indicating a loss of 292 MT C over 35 years. The proportion of C residing in biomass decreased with time, from 55 percent in 1965 to 38 percent in 2000. Calculated terrestrial C flux for 1993 was −7.5 MT C year−1 and had declined by 17 percent over the previous 18 years. Most of the terrestrial C flux in 1993 was attributed to biomass C reduction. Human disturbance accounted for only 22 percent of biomass C loss in 1993, suggesting that the effects of long-term Sahelian drought continue to play an overriding role in ecosystem change. Some carbon mitigation strategies for Senegal were investigated, including potential C sequestration levels. Opportunities for C mitigation exist but are constrained by available knowledge and access to resources.

  8. Carbon Fluxes at the AmazonFACE Research Site

    Science.gov (United States)

    Norby, R.; De Araujo, A. C.; Cordeiro, A. L.; Fleischer, K.; Fuchslueger, L.; Garcia, S.; Hofhansl, F.; Garcia, M. N.; Grandis, A.; Oblitas, E.; Pereira, I.; Pieres, N. M.; Schaap, K.; Valverde-Barrantes, O.

    2017-12-01

    The free-air CO2 enrichment (FACE) experiment to be implemented in the Amazon rain forest requires strong pretreatment characterization so that eventual responses to elevated CO2 can be detected against a background of substantial species diversity and spatial heterogeneity. Two 30-m diameter plots have been laid out for initial characterization in a 30-m tall, old-growth, terra firme forest. Intensive measurements have been made of aboveground tree growth, leaf area, litter production, and fine-root production; these data sets together support initial estimates of plot-scale net primary productivity (NPP). Leaf-level measurements of photosynthesis throughout the canopy and over a daily time course in both the wet and dry season, coupled with meterological monitoring, support an initial estimate of gross primary productivity (GPP) and carbon-use efficiency (CUE = NPP/GPP). Monthly monitoring of CO2 efflux from the soil, partitioned into autotrophic and heterotrophic components, supports an estimate of net ecosystem production (NEP). Our estimate of NPP in the two plots (1.2 and 1.4 kg C m-2 yr-1) is 16-38% greater than previously reported for the site, primarily due to our more complete documentation of fine-root production, including root production deeper than 30 cm. The estimate of CUE of the ecosystem (0.52) is greater than most others in Amazonia; this discrepancy reflects large uncertainty in GPP, which derived from just two days of measurement, or to underestimates of the fine-root component of NPP in previous studies. Estimates of NEP (0 and 0.14 kg C m-2 yr-1) are generally consistent with a landscape-level estimate from flux tower data. Our C flux estimates, albeit very preliminary, provide initial benchmarks for a 12-model a priori evaluation of this forest. The model means of GPP, NPP, and NEP are mostly consistent with our field measurements. Predictions of C flux responses to elevated CO2 from the models become hypotheses to be tested in the FACE

  9. Impact of priming on global soil carbon stocks.

    Science.gov (United States)

    Guenet, Bertrand; Camino-Serrano, Marta; Ciais, Philippe; Tifafi, Marwa; Maignan, Fabienne; Soong, Jennifer L; Janssens, Ivan A

    2018-01-24

    Fresh carbon input (above and belowground) contributes to soil carbon sequestration, but also accelerates decomposition of soil organic matter through biological priming mechanisms. Currently, poor understanding precludes the incorporation of these priming mechanisms into the global carbon models used for future projections. Here, we show that priming can be incorporated based on a simple equation calibrated from incubation and verified against independent litter manipulation experiments in the global land surface model, ORCHIDEE. When incorporated into ORCHIDEE, priming improved the model's representation of global soil carbon stocks and decreased soil carbon sequestration by 51% (12 ± 3 Pg C) during the period 1901-2010. Future projections with the same model across the range of CO 2 and climate changes defined by the IPCC-RCP scenarios reveal that priming buffers the projected changes in soil carbon stocks - both the increases due to enhanced productivity and new input to the soil, and the decreases due to warming-induced accelerated decomposition. Including priming in Earth system models leads to different projections of soil carbon changes, which are challenging to verify at large spatial scales. © 2018 John Wiley & Sons Ltd.

  10. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu

    2015-01-01

    confirmed global patterns reported for forest soils: ~ 50% of SOC was stored in the upper 20 cm, and ~ 55–65% in the upper 30 cm of soil. Assuming 163 Mha of European forest cover and by using various scaling up procedures, we estimated total stocks at 3.50–3.94 Gt C in forest floors and 21.4–22.7 Gt C......Soil organic carbon (SOC) stocks in forest floors and in mineral and peat forest soils were estimated at the European scale. The assessment was based on measured C concentration, bulk density, coarse fragments and effective soil depth data originating from 4914 plots in 22 EU countries belonging...... to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...

  11. Carbon stocks assessment in subtropical forest types of Kashmir Himalayas

    International Nuclear Information System (INIS)

    Shaheen, H.; Khan, R.W.A.; Hussain, K.; Ullah, T.S.; Mehmood, A.

    2016-01-01

    Estimation of carbon sequestration in forest ecosystem is necessary to mitigate impacts of climate change. Current research project was focused to assess the Carbon contents in standing trees and soil of different subtropical forest sites in Kashmir. Tree biomass was estimated by using allometric equations whereas Soil carbon was calculated by Walkey-Black titration method. Total carbon stock was computed as 186.27 t/ha with highest value of 326 t/ha recorded from Pinus roxburghii forest whereas lowest of 75.86 t/ha at mixed forest. Average biomass carbon was found to be 151.38 t/ha with a maximum value of 294.7 t/ha and minimum of 43.4 t/ha. Pinus roxburghii was the most significant species having biomass value of 191.8 t/ha, followed by Olea cuspidata (68.9 t/ha), Acacia modesta (12.71 t/ha), Dalbergia sissoo (12.01 t/ha), Broussonetia papyrifera (5.93 t/ha), Punica granatum (2.27 t/ha), Mallotus philippensis (2.2 t/ha), Albizia lebbeck (1.8t/ha), Ficus palmata (1.51 t/ha), Acacia arabica (1.4 t/ha), Melia azedarach, (1.14 t/ha) and Ficus carica (1.07 t/ha) respectively. Recorded value of tree density was 492/ha; average DBH was 87.27 cm; tree height was 13.3m; and regeneration value was 83 seedlings/ha. Soil carbon stocks were found to be 34.89 t/ha whereas agricultural soil carbon was calculated as 27.18 t/ha. Intense deforestation was represented by a stump density of 147.4/ha. The results of Principal Component Analysis (PCA) revealed the distinct species clusters on the basis of location, biomass and Carbon stock values. Pinus roxburghii and Olea cuspidata were found to be the major contributors of carbon stock having maximum vector lengths in the PCA Biplot. Forest in the area needs to be managed in a sustainable manner to increase its carbon sequestration potential. (author)

  12. Carbon stock loss from deforestation through 2013 in Brazilian Amazonia.

    Science.gov (United States)

    Nogueira, Euler Melo; Yanai, Aurora M; Fonseca, Frederico O R; Fearnside, Philip Martin

    2015-03-01

    The largest carbon stock in tropical vegetation is in Brazilian Amazonia. In this ~5 million km(2) area, over 750,000 km(2) of forest and ~240,000 km(2) of nonforest vegetation types had been cleared through 2013. We estimate current carbon stocks and cumulative gross carbon loss from clearing of premodern vegetation in Brazil's 'Legal Amazonia' and 'Amazonia biome' regions. Biomass of 'premodern' vegetation (prior to major increases in disturbance beginning in the 1970s) was estimated by matching vegetation classes mapped at a scale of 1 : 250,000 and 29 biomass means from 41 published studies for vegetation types classified as forest (2317 1-ha plots) and as either nonforest or contact zones (1830 plots and subplots of varied size). Total biomass (above and below-ground, dry weight) underwent a gross reduction of 18.3% in Legal Amazonia (13.1 Pg C) and 16.7% in the Amazonia biome (11.2 Pg C) through 2013, excluding carbon loss from the effects of fragmentation, selective logging, fires, mortality induced by recent droughts and clearing of forest regrowth. In spite of the loss of carbon from clearing, large amounts of carbon were stored in stands of remaining vegetation in 2013, equivalent to 149 Mg C ha(-1) when weighted by the total area covered by each vegetation type in Legal Amazonia. Native vegetation in Legal Amazonia in 2013 originally contained 58.6 Pg C, while that in the Amazonia biome contained 56 Pg C. Emissions per unit area from clearing could potentially be larger in the future because previously cleared areas were mainly covered by vegetation with lower mean biomass than the remaining vegetation. Estimates of original biomass are essential for estimating losses to forest degradation. This study offers estimates of cumulative biomass loss, as well as estimates of premodern carbon stocks that have not been represented in recent estimates of deforestation impacts. © 2014 John Wiley & Sons Ltd.

  13. Biomass and Carbon Stocks of Sofala Bay Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Almeida A. Sitoe

    2014-08-01

    Full Text Available Mangroves could be key ecosystems in strategies addressing the mitigation of climate changes through carbon storage. However, little is known regarding the carbon stocks of these ecosystems, particularly below-ground. This study was carried out in the mangrove forests of Sofala Bay, Central Mozambique, with the aim of quantifying carbon stocks of live and dead plant and soil components. The methods followed the procedures developed by the Center for International Forestry Research (CIFOR for mangrove forests. In this study, we developed a general allometric equation to estimate individual tree biomass and soil carbon content (up to 100 cm depth. We estimated the carbon in the whole mangrove ecosystem of Sofala Bay, including dead trees, wood debris, herbaceous, pneumatophores, litter and soil. The general allometric equation for live trees derived was [Above-ground tree dry weight (kg = 3.254 × exp(0.065 × DBH], root mean square error (RMSE = 4.244, and coefficient of determination (R2 = 0.89. The average total carbon storage of Sofala Bay mangrove was 218.5 Mg·ha−1, of which around 73% are stored in the soil. Mangrove conservation has the potential for REDD+ programs, especially in regions like Mozambique, which contains extensive mangrove areas with high deforestation and degradation rates.

  14. Evaluation of Four Methods for Predicting Carbon Stocks of Korean Pine Plantations in Heilongjiang Province, China.

    Science.gov (United States)

    Gao, Huilin; Dong, Lihu; Li, Fengri; Zhang, Lianjun

    2015-01-01

    A total of 89 trees of Korean pine (Pinus koraiensis) were destructively sampled from the plantations in Heilongjiang Province, P.R. China. The sample trees were measured and calculated for the biomass and carbon stocks of tree components (i.e., stem, branch, foliage and root). Both compatible biomass and carbon stock models were developed with the total biomass and total carbon stocks as the constraints, respectively. Four methods were used to evaluate the carbon stocks of tree components. The first method predicted carbon stocks directly by the compatible carbon stocks models (Method 1). The other three methods indirectly predicted the carbon stocks in two steps: (1) estimating the biomass by the compatible biomass models, and (2) multiplying the estimated biomass by three different carbon conversion factors (i.e., carbon conversion factor 0.5 (Method 2), average carbon concentration of the sample trees (Method 3), and average carbon concentration of each tree component (Method 4)). The prediction errors of estimating the carbon stocks were compared and tested for the differences between the four methods. The results showed that the compatible biomass and carbon models with tree diameter (D) as the sole independent variable performed well so that Method 1 was the best method for predicting the carbon stocks of tree components and total. There were significant differences among the four methods for the carbon stock of stem. Method 2 produced the largest error, especially for stem and total. Methods 3 and Method 4 were slightly worse than Method 1, but the differences were not statistically significant. In practice, the indirect method using the mean carbon concentration of individual trees was sufficient to obtain accurate carbon stocks estimation if carbon stocks models are not available.

  15. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories

    NARCIS (Netherlands)

    Schulp, Catharina J E; Nabuurs, Gert Jan; Verburg, Peter H.; de Waal, Rein W.

    2008-01-01

    Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many

  16. Towards a global harmonized permafrost soil organic carbon stock estimates.

    Science.gov (United States)

    Hugelius, G.; Mishra, U.; Yang, Y.

    2017-12-01

    Permafrost affected soils store disproportionately large amount of organic carbon stocks due to multiple cryopedogenic processes. Previous permafrost soil organic carbon (SOC) stock estimates used a variety of approaches and reported substantial uncertainty in SOC stocks of permafrost soils. Here, we used spatially referenced data of soil-forming factors (topographic attributes, land cover types, climate, and bedrock geology) and SOC pedon description data (n = 2552) in a regression kriging approach to predict the spatial and vertical heterogeneity of SOC stocks across the Northern Circumpolar and Tibetan permafrost regions. Our approach allowed us to take into account both environmental correlation and spatial autocorrelation to separately estimate SOC stocks and their spatial uncertainties (95% CI) for three depth intervals at 250 m spatial resolution. In Northern Circumpolar region, our results show 1278.1 (1009.33 - 1550.45) Pg C in 0-3 m depth interval, with 542.09 (451.83 - 610.15), 422.46 (306.48 - 550.82), and 313.55 (251.02 - 389.48) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. In Tibetan region, our results show 26.68 (9.82 - 79.92) Pg C in 0 - 3 m depth interval, with 13.98 (6.2 - 32.96), 6.49 (1.73 - 25.86), and 6.21 (1.889 - 20.90) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. Our estimates show large spatial variability (50 - 100% coefficient of variation, depending upon the study region and depth interval) and higher uncertainty range in comparison to existing estimates. We will present the observed controls of different environmental factors on SOC at the AGU meeting.

  17. Size and frequency of natural forest disturbances and the Amazon forest carbon balance

    Science.gov (United States)

    F.D.B. Espirito-Santo; M. Gloor; M. Keller; Y. Malhi; S. Saatchi; B. Nelson; R.C. Oliveira Junior; C. Pereira; J. Lloyd; S. Frolking; M. Palace; Y.E. Shimabukuro; V. Duarte; A. Monteagudo Mendoza; G. Lopez-Gonzalez; T.R. Baker; T.R. Feldpausch; R.J.W. Brienen; G.P. Asner; D.S. Boyd; O.L. Phillips

    2014-01-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel...

  18. Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models.

    NARCIS (Netherlands)

    Breugel, van M.; Ransijn, J.; Craven, D.; Bongers, F.; Hall, J.

    2011-01-01

    Secondary forests are a major terrestrial carbon sink and reliable estimates of their carbon stocks are pivotal for understanding the global carbon balance and initiatives to mitigate CO2 emissions through forest management and reforestation. A common method to quantify carbon stocks in forests is

  19. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    Science.gov (United States)

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  20. Deforestation, floodplain dynamics, and carbon biogeochemistry in the Amazon Basin

    Science.gov (United States)

    Bryan, M. L.; Dunne, T.; Richey, J.; Melack, J.; Simonett, D. S.; Woodwell, G.

    1984-01-01

    Three aspects of the physical geographic environment of the Amazon Basin are considered: (1) deforestation and reforestation, (2) floodplain dynamics, and (3) fluvial geomorphology. Three independent projects are coupled in this experiment to improve the in-place research and to ensure that the Shuttle Imaging Radar-B (SIR-B) experiment stands on a secure base of ongoing work. Major benefits to be obtained center on: (1) areal and locational information, (2) data from various depression angles, and (3) digital radar signatures. Analysis will be conducted for selected sites to define how well SIR-B data can be used for: (1) definition of extent and location of deforestation in a tropical moist forest, (2) definition and quantification of the nature of the vegetation and edaphic conditions on the (floodplain) of the Amazon River, and (3) quantification of the accuracy with which the geometry and channel shifting of the Amazon River may be mapped using SIR-B imagery in conjunction with other remote sensing data.

  1. CMS: Forest Carbon Stocks, Emissions, and Net Flux for the Conterminous US: 2005-2010

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides maps of estimated carbon in forests of the 48 continental states of the US for the years 2005-2010. Carbon (termed committed carbon) stocks...

  2. Predicting future UK housing stock and carbon emissions

    International Nuclear Information System (INIS)

    Natarajan, Sukumar; Levermore, Geoffrey J.

    2007-01-01

    This paper presents a novel method for exploring future transformations in the UK housing stock. The method is shown to be more robust and faster than existing methods through various tests. A Java-based implementation of the method in a new model of the UK housing stock, DECarb, is examined using a back-cast scenario from 1970 to 1996. The results show an average difference of -5.4% between predicted and actual energy demand. Comparison with predicted carbon emissions from the BRE's BREHOMES model shows a difference of around -0.9% for the same period. These results suggest that DECarb is likely to be an effective tool in examining future scenarios since the same objects and processes used in back-casting in the model are also used in forecasting. The model has an open framework and could therefore significantly benefit ongoing domestic and non-domestic climate futures research

  3. A New Modeling Application of Legacy Data on Ecosystem Stocks and Fluxes in Multiple Land Uses in the Eastern Amazon

    Science.gov (United States)

    Nifong, R. L.; Davidson, E. A.

    2015-12-01

    Land-use change and its interaction with climate change remain significant threats to the integrity of Amazonian ecosystems. The responses and feedbacks of biogeochemical cycles to these changes play an important role in determining ecosystem responses to possible future trajectories for land stewardship through effects on rates of secondary forest regrowth, soil emissions of greenhouse gases, inputs of nutrients to groundwater and streamwater, and nutrient management in agroecosystems. The Terrestrial Ecology program at NASA supported numerous studies on these topics in the Amazon and Cerrado regions, both before and during the LBA-ECO project. Here we present analyses of data from this body of work on nutrient cycling in cattle pastures, secondary forests, and mature forests of the Paragominas area, where we are developing a stoichiometric model relating C-N-P interactions during land use change, constrained by multiple observations of ecosystem stocks and fluxes in each land use. Whereas P is conservatively cycled in all land uses, we demonstrate how pyrolyzation of N during pasture formation and management depletes available-N pools, consistent with observations of lower rates of N leaching and trace gas emission and consistent with secondary forest growth responses to experimental N amendments. Although the soils store large stocks of N and P, our parameterization of available forms of these nutrients for steady-state dynamics in the mature forest yield reasonable estimates of net N and P mineralization available for grasses and secondary forest species at rates consistent with observed biomass accumulation and productivity in these modified ecosystems. The multiple data constraints from measurements made by the type of integrated studies supported by the NASA TE program provide an important legacy that continues to support exploration of the functions, vulnerabilities, and resiliencies of these ecosystems.

  4. The uncertainty of modeled soil carbon stock change for Finland

    Science.gov (United States)

    Lehtonen, Aleksi; Heikkinen, Juha

    2013-04-01

    Countries should report soil carbon stock changes of forests for Kyoto Protocol. Under Kyoto Protocol one can omit reporting of a carbon pool by verifying that the pool is not a source of carbon, which is especially tempting for the soil pool. However, verifying that soils of a nation are not a source of carbon in given year seems to be nearly impossible. The Yasso07 model was parametrized against various decomposition data using MCMC method. Soil carbon change in Finland between 1972 and 2011 were simulated with Yasso07 model using litter input data derived from the National Forest Inventory (NFI) and fellings time series. The uncertainties of biomass models, litter turnoverrates, NFI sampling and Yasso07 model were propagated with Monte Carlo simulations. Due to biomass estimation methods, uncertainties of various litter input sources (e.g. living trees, natural mortality and fellings) correlate strongly between each other. We show how original covariance matrices can be analytically combined and the amount of simulated components reduce greatly. While doing simulations we found that proper handling correlations may be even more essential than accurate estimates of standard errors. As a preliminary results, from the analysis we found that both Southern- and Northern Finland were soil carbon sinks, coefficient of variations (CV) varying 10%-25% when model was driven with long term constant weather data. When we applied annual weather data, soils were both sinks and sources of carbon and CVs varied from 10%-90%. This implies that the success of soil carbon sink verification depends on the weather data applied with models. Due to this fact IPCC should provide clear guidance for the weather data applied with soil carbon models and also for soil carbon sink verification. In the UNFCCC reporting carbon sinks of forest biomass have been typically averaged for five years - similar period for soil model weather data would be logical.

  5. Carbon stock in different ages and plantation systemof cocoa: allometric approach

    Directory of Open Access Journals (Sweden)

    Fitria Yuliasmara

    2009-08-01

    Full Text Available Indonesia has 1.5 million hectare of cocoa plantation in 2008. which hasstrategic position in carbon dioxide absorption to decrease global warming. Biomass approach method in plants carbon stock estimation specific for cocoa is still not available. The aim of this research is to determine carbon stock in 1—30 years ages of cocoa plants and to measure carbon stock in various cocoa planting systems using specific allometric formula of carbon stock estimation. Regression model on plant biomass estimation was estimated based on height, diameter, and their combination. Carbon stock estimation in different ages and plan tation system of cocoa was conducted by randomized completely block design with 3 replications. The result showed that model Y:áDâ as the best allometric formula, where Y is plant biomass, D is diameter at the breast hight, â is a constant with a value of 0.1208 and á was a constant of 1.98. Increasing of carbon stock in cocoa plantations was proportional to the ages of the plants according to the polinomial equation Y=0.0518X2+2.8976X–4.524. Agroforestry system increased carbon stock in cocoa plantation. Cocoa-Paraserianthes falcataria plantation system produce highest of carbon stock in 7 years. Key words : Carbon stock, allometric, cocoa, ages of plant, planting system.

  6. Accounting for Biomass Carbon Stock Change Due to Wildfire in Temperate Forest Landscapes in Australia

    Science.gov (United States)

    Keith, Heather; Lindenmayer, David B.; Mackey, Brendan G.; Blair, David; Carter, Lauren; McBurney, Lachlan; Okada, Sachiko; Konishi-Nagano, Tomoko

    2014-01-01

    Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha−1, which represented 6–7% and 9–14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha−1 depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities

  7. Accounting for biomass carbon stock change due to wildfire in temperate forest landscapes in Australia.

    Science.gov (United States)

    Keith, Heather; Lindenmayer, David B; Mackey, Brendan G; Blair, David; Carter, Lauren; McBurney, Lachlan; Okada, Sachiko; Konishi-Nagano, Tomoko

    2014-01-01

    Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha(-1), which represented 6-7% and 9-14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha(-1) depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities.

  8. Separating the Effects of Tropical Atlantic and Pacific SST-driven Climate Variability on Amazon Carbon Exchange

    Science.gov (United States)

    Liptak, J.; Keppel-Aleks, G.

    2016-12-01

    Amazon forests store an estimated 25% percent of global terrestrial carbon per year1, 2, but the responses of Amazon carbon uptake to climate change is highly uncertain. One source of this uncertainty is tropical sea surface temperature variability driven by teleconnections. El Nino-Southern Oscillation (ENSO) is a key driver of year-to-year Amazon carbon exchange, with associated temperature and precipitation changes favoring net carbon storage in La Nina years, and net carbon release during El Nino years3. To determine how Amazon climate and terrestrial carbon fluxes react to ENSO alone and in concert with other SST-driven teleconnections such as the Atlantic Multidecadal Oscillation (AMO), we force the atmosphere (CAM5) and land (CLM4) components of the CESM(BGC) with prescribed monthly SSTs over the period 1950—2014 in a Historical control simulation. We then run an experiment (PAC) with time-varying SSTs applied only to the tropical equatorial Pacific Ocean, and repeating SST seasonal cycle climatologies elsewhere. Limiting SST variability to the equatorial Pacific indicates that other processes enhance ENSO-driven Amazon climate anomalies. Compared to the Historical control simulation, warming, drying and terrestrial carbon loss over the Amazon during El Nino periods are lower in the PAC simulation, especially prior to 1990 during the cool phase of the AMO. Cooling, moistening, and net carbon uptake during La Nina periods are also reduced in the PAC simulation, but differences are greater after 1990 during the warm phase of the AMO. By quantifying the relationships among climate drivers and carbon fluxes in the Historical and PAC simulations, we both assess the sensitivity of these relationships to the magnitude of ENSO forcing and quantify how other teleconnections affect ENSO-driven Amazon climate feedbacks. We expect that these results will help us improve hypotheses for how Atlantic and Pacific climate trends will affect future Amazon carbon carbon

  9. Irrigating grazed pasture decreases soil carbon and nitrogen stocks.

    Science.gov (United States)

    Mudge, Paul L; Kelliher, Francis M; Knight, Trevor L; O'Connell, Denis; Fraser, Scott; Schipper, Louis A

    2017-02-01

    The sustainability of using irrigation to produce food depends not only on the availability of sufficient water, but also on the soil's 'response' to irrigation. Stocks of carbon (C) and nitrogen (N) are key components of soil organic matter (SOM), which is important for sustainable agricultural production. While there is some information about the effects of irrigation on soil C stocks in cropping systems, there is a paucity of such studies in pastoral food production systems. For this study, we sampled soils from 34 paired, irrigated and unirrigated pasture sites across New Zealand (NZ) and analysed these for total C and N. On average, irrigated pastures had significantly (P stocks and the length of time under irrigation. This study suggests SOM will decrease when pastures under a temperate climate are irrigated. On this basis, increasing the area of temperate pasture land under irrigation would result in more CO 2 in the atmosphere and may directly and indirectly increase N leaching to groundwater. Given the large and increasing area of land being irrigated both in NZ and on a global scale, there is an urgent need to determine whether the results found in this study are also applicable in other regions and under different land management systems (e.g. arable). © 2016 John Wiley & Sons Ltd.

  10. Amazon River carbon dioxide outgassing fuelled by wetlands

    NARCIS (Netherlands)

    Abril, G.; Martinez, J.M.; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M.F.; Vidal, L.; Meziane, T.; Kim, J.-H.; Bernardes, M.C.; Savoye, N.; Deborde, J.; Souza, E.L.; Alberic, P.; de Souza, M.F.L.; Roland, F.

    2014-01-01

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial

  11. Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States

    Science.gov (United States)

    Christopher W. Woodall; Anthony W. D' Amato; John B. Bradford; Andrew O. Finley

    2011-01-01

    There is expanding interest in management strategies that maximize forest carbon (C) storage to mitigate increased atmospheric carbon dioxide. The tremendous tree species diversity and range of stand stocking found across the eastern United States presents a challenge for determining optimal combinations for the maximization of standing tree C storage. Using a...

  12. Rapid tree carbon stock recovery in managed Amazonian forests.

    Science.gov (United States)

    Rutishauser, Ervan; Hérault, Bruno; Baraloto, Christopher; Blanc, Lilian; Descroix, Laurent; Sotta, Eleneide Doff; Ferreira, Joice; Kanashiro, Milton; Mazzei, Lucas; d'Oliveira, Marcus V N; de Oliveira, Luis C; Peña-Claros, Marielos; Putz, Francis E; Ruschel, Ademir R; Rodney, Ken; Roopsind, Anand; Shenkin, Alexander; da Silva, Katia E; de Souza, Cintia R; Toledo, Marisol; Vidal, Edson; West, Thales A P; Wortel, Verginia; Sist, Plinio

    2015-09-21

    While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.

    Science.gov (United States)

    Kauffman, J Boone; Heider, Chris; Norfolk, Jennifer; Payton, Frederick

    2014-04-01

    Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions from their conversion, and the other important functions and services they provide, their

  14. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

    NARCIS (Netherlands)

    Mitchard, Edward T. A.; Feldpausch, Ted R.; Brienen, Roel J. W.; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R.; Lewis, Simon L.; Lloyd, Jon; Quesada, Carlos A.; Gloor, Manuel; ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragao, Luiz E. O. C.; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I.; Ceron, Carlos E.; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A.; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R. C.; Di Fiore, Anthony; Domingues, Tomas F.; Erwin, Terry L.; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N.; Levis, Carolina; Killeen, Tim J.; Laurance, William F.; Magnusson, William E.; Marimon, Beatriz S.; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T.; Neill, David; Nunez Vargas, Mario P.; Palacios, Walter A.; Parada, Alexander; Pardo Molina, Guido; Pena-Claros, Marielos; Pitman, Nigel; Peres, Carlos A.; Prieto, Adriana; Poorter, Lourens; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H.; Rudas, Agustin; Salomao, Rafael P.; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F.; Steininger, Marc K.; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R.; van der Heijden, Geertje M. F.; Vieira, Ima C. G.; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A.; Wang, Ophelia; Zartman, Charles E.; Malhi, Yadvinder; Phillips, Oliver L.; Cruz, A.P.; Cuenca, W.P.; Espejo, J.E.; Ferreira, L.; Germaine, A.; Penuela, M.C.; Silva, N.; Valenzuela Gamarra, L.

    Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass

  15. A Simulation Model of Carbon Cycling and Methane Emissions in Amazon Wetlands

    Science.gov (United States)

    Potter, C.; Melack, J.; Hess, L.; Forsberg, B.; Novo, E. M.; Klooster, S.

    2004-12-01

    An integrative carbon study is investigating the hypothesis that measured fluxes of methane from wetlands in the Amazon region can be predicted accurately using a combination of process modeling of ecosystem carbon cycles and remote sensing of regional floodplain dynamics. A new simulation model has been build using the NASA-CASA concept for predicting methane production and emission fluxes in Amazon river and floodplain ecosystems. Numerous innovations area being made to model Amazon wetland ecosystems, including: (1) prediction of wetland net primary production (NPP) as the source for plant litter decomposition and accumulation of sediment organic matter in two major vegetation classes -- flooded forests (varzea or igapo) and floating macrophytes, (2) representation of controls on carbon processing and methane evasion at the diffusive boundary layer, through the lake water column, and in wetland sediments as a function of changes in floodplain water level, (3) inclusion of surface emissions controls on wetland methane fluxes, including variations in daily surface temperature and of hydrostatic pressure linked to water level fluctuations. A model design overview and early simulation results are presented.

  16. A Simulation Model of Carbon Cycling and Methane Emissions in Amazon Wetlands

    Science.gov (United States)

    Potter, Christopher; Melack, John; Hess, Laura; Forsberg, Bruce; Novo, Evlyn Moraes; Klooster, Steven

    2004-01-01

    An integrative carbon study is investigating the hypothesis that measured fluxes of methane from wetlands in the Amazon region can be predicted accurately using a combination of process modeling of ecosystem carbon cycles and remote sensing of regional floodplain dynamics. A new simulation model has been build using the NASA- CASA concept for predicting methane production and emission fluxes in Amazon river and floodplain ecosystems. Numerous innovations area being made to model Amazon wetland ecosystems, including: (1) prediction of wetland net primary production (NPP) as the source for plant litter decomposition and accumulation of sediment organic matter in two major vegetation classes - flooded forests (varzea or igapo) and floating macrophytes, (2) representation of controls on carbon processing and methane evasion at the diffusive boundary layer, through the lake water column, and in wetland sediments as a function of changes in floodplain water level, (3) inclusion of surface emissions controls on wetland methane fluxes, including variations in daily surface temperature and of hydrostatic pressure linked to water level fluctuations. A model design overview and early simulation results are presented.

  17. Contribution of dead wood to biomass and carbon stocks in the Caribbean: St. John, U.S. Virgin Islands

    Science.gov (United States)

    Sonja N. Oswalt; Thomas J. Brandeis

    2008-01-01

    Dead wood is a substantial carbon stock in terrestrial forest ecosystems and hence a critical component of global carbon cycles. Given the limited amounts of dead wood biomass and carbon stock information for Caribbean forests, our objectives were to: (1) describe the relative contribution of down woody materials (DWM) to carbon stocks on the island of St. John; (2)...

  18. Carbon and Nitrogen Stocks and Humic Fractions in Brazilian Organosols

    Directory of Open Access Journals (Sweden)

    Gustavo Souza Valladares

    Full Text Available ABSTRACT Despite limited geographic expression of Organosols in Brazil, their high carbon storage capacity and natural environmental vulnerability justifies further studies on C and N stocks in these soils and their relationship to the nature of organic matter. Evaluation of physical and chemical properties of organic soils and their ability to store C is important so as to develop sustainable management practices for their preservation. The objectives of the study were to measure the total organic carbon stock (OCst, total nitrogen stock (Nst, and humic fractions in Organosols from different environments and regions of Brazil, and to correlate the data with soil chemical (pH, P, K, Ca2+, Mg2+, Al3+, H+Al, CEC, V and physical properties (soil bulk density, Bd; organic matter density, OMd; total pore space, TPS; minimum residue, MinR; and proportion of mineral matter, MM, and degree of organic matter decomposition (rubbed fiber content; pyrophosphate index, PyI; and von Post index. For that purpose, 18 Organosol profiles, in a total of 49 horizons, were sampled under different land usage and plant coverage conditions. The profiles were located in the following Brazilian states - Alagoas, Bahia, Distrito Federal, Espírito Santo, Mato Grosso do Sul, Minas Gerais, Paraná, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, and São Paulo. The OCst and Nst varied significantly among horizons and profiles. The Organosols exhibited, on average, 203.59 Mg ha-1 OCst and 8.30 Mg ha-1 Nst, and the highest values were found in profiles with pasture usage. The content of the humic fraction (humin, HUM; fulvic acid, FAF; and humic acid, HAF and C storage varied in the soil horizons and profiles according to the degree of decomposition and other factors of soil formation. The OCst, Nst, OMd and the C stocks in the humic fractions were positively correlated. The values of acidity were lower in the soils with higher contents of mineral material, and low p

  19. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations.

    Science.gov (United States)

    Avelar, Silvania; van der Voort, Tessa S; Eglinton, Timothy I

    2017-12-01

    Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG)-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm-particularly over continental margins-could be considered as part of national GHG inventories. This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The latter carries potential implications for the management of

  20. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations

    Directory of Open Access Journals (Sweden)

    Silvania Avelar

    2017-05-01

    Full Text Available Abstract Background Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm—particularly over continental margins—could be considered as part of national GHG inventories. Conclusions This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The

  1. Altitudinal analysis of carbon stocks in the Antisana páramo, Ecuadorian Andes

    NARCIS (Netherlands)

    Minaya Maldonado, Veronica; Corzo, Gerald; Romero-Saltos, Hugo; Van Der Kwast, Johannes; Lantinga, Egbert; Galárraga-Sánchez, Remigio; Mynett, A.E.

    2016-01-01

    Aims The importance of quantifying carbon stocks in terrestrial ecosystems is crucial for determining climate change dynamics. However, the present regional assessments of carbon stocks in tropical grasslands are extrapolated to unsampled areas with a high degree of uncertainty and without

  2. Altitudinal analysis of carbon stocks in the Antisana páramo, Ecuadorian Andes

    NARCIS (Netherlands)

    Minaya, Verónica; Corzo, Gerald; Romero-Saltos, Hugo; Kwast, van der J.; Lantinga, E.A.; Galärraga-Sánchez, Remigio; Mynett, Arthur

    2016-01-01


    Aims The importance of quantifying carbon stocks in terrestrial ecosystems is crucial for determining climate change dynamics. However, the present regional assessments of carbon stocks in tropical grasslands are extrapolated to unsampled areas with a high degree of uncertainty and without

  3. Carbon stocks on forestland of the United States, with emphaisis on USDA Forest Service ownership

    Science.gov (United States)

    Linda S. Heath; James E. Smith; Christopher W. Woodall; Dave Azuma; Karen L. Waddell

    2011-01-01

    The U.S. Department of Agriculture Forest Service (USFS) manages one-fifth of the area of forestland in the United States. The Forest Service Roadmap for responding to climate change identified assessing and managing carbon stocks and change as a major element of its plan. This study presents methods and results of estimating current forest carbon stocks and change in...

  4. Carbon stocks on forestland of the United States, with emphasis on USDA Forest Service ownership

    Science.gov (United States)

    Linda S. Heath; James E. Smith; Christopher W. Woodall; David L. Azuma; Karen L. Waddell

    2011-01-01

    The U.S. Department of Agriculture Forest Service (USFS) manages one-fifth of the area of forestland in the United States. The Forest Service Roadmap for responding to climate change identified assessing and managing carbon stocks and change as a major element of its plan. This study presents methods and results of estimating current forest carbon stocks and change in...

  5. Agricultural management explains historic changes in regional soil carbon stocks

    Science.gov (United States)

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-01-01

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194

  6. Agricultural management explains historic changes in regional soil carbon stocks.

    Science.gov (United States)

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-08-17

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.

  7. Global socioeconomic carbon stocks in long-lived products 1900-2008

    Science.gov (United States)

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-09-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900-2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr-1 in 1900 to a maximum of 247 MtC yr-1 in 2007, corresponding to 2.2%-3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks.

  8. Impact of mooring activities on carbon stocks in seagrass meadows

    KAUST Repository

    Serrano, O.

    2016-03-16

    Boating activities are one of the causes that threaten seagrass meadows and the ecosystem services they provide. Mechanical destruction of seagrass habitats may also trigger the erosion of sedimentary organic carbon (Corg) stocks, which may contribute to increasing atmospheric CO2. This study presents the first estimates of loss of Corg stocks in seagrass meadows due to mooring activities in Rottnest Island, Western Australia. Sediment cores were sampled from seagrass meadows and from bare but previously vegetated sediments underneath moorings. The Corg stores have been compromised by the mooring deployment from 1930s onwards, which involved both the erosion of existing sedimentary Corg stores and the lack of further accumulation of Corg. On average, undisturbed meadows had accumulated ~6.4 Kg Corg m−2 in the upper 50 cm-thick deposits at a rate of 34 g Corg m−2 yr−1. The comparison of Corg stores between meadows and mooring scars allows us to estimate a loss of 4.8 kg Corg m−2 in the 50 cm-thick deposits accumulated over ca. 200 yr as a result of mooring deployments. These results provide key data for the implementation of Corg storage credit offset policies to avoid the conversion of seagrass ecosystems and contribute to their preservation.

  9. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    Bradford, J.B.; Fraver, S.; Milo, A.M.; D'Amato, A.W.; Palik, B.; Shinneman, D.J.

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing blowdown and wildfire, both individually and in combination with and without post-disturbance salvage operations, in a sub-boreal jack pine ecosystem. Individually, blowdown or fire caused similar decreases in live carbon and total ecosystem carbon. However, whereas blowdown increased carbon in down woody material and forest floor, fire increased carbon in standing snags, a difference that may have consequences for long-term carbon cycling patterns. Fire after the blowdown caused substantial additional reduction in ecosystem carbon stocks, suggesting that potential increases in multiple disturbance events may represent a challenge for sustaining ecosystem carbon stocks. Salvage logging, as examined here, decreased carbon stored in snags and down woody material but had no significant effect on total ecosystem carbon stocks.

  10. Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments

    Science.gov (United States)

    Sun, Shuwen; Schefuß, Enno; Mulitza, Stefan; Chiessi, Cristiano M.; Sawakuchi, André O.; Zabel, Matthias; Baker, Paul A.; Hefter, Jens; Mollenhauer, Gesine

    2017-05-01

    The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al / Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S / V) and cinnamyl to vanillyl (C / V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon

  11. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    International Nuclear Information System (INIS)

    Numata, Izaya; Cochrane, Mark A; Souza, Carlos M Jr; Sales, Marcio H

    2011-01-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  12. Amazons woods carbonization; Carbonizacao de madeiras da Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, T.C.M.; Okino, E.Y.A.; Pastore Junior, F. [Instituto Brasileiro de Desenvolvimento Florestal, Brasilia, DF (Brazil)

    1987-12-31

    It was made charcoal, in laboratory at 450 deg C, from wood of twenty species naturally occurring in Tapajos National Forest, Pa. Besides the weight yield it was determined the calorific value, the density and percentage of fixed carbon ashes and volatile matter of the charcoal produced. These were correlated with the specific gravity, and the lignin and alcohol-benzene extractive of the respective woods.Thirteen species presented weight yield more then 30%, among then Cuiarama and Ucuubarana showed 37% and 35% respectively. The species Quaruba-verdadeira presented the uncommon value of 86% of fixed carbon. (author). 8 refs., 2 figs., 3 tabs

  13. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks.

    Science.gov (United States)

    John B. Bradford; Nicholas R. Jensen; Grant M. Domke; Anthony W. D' Amato

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior...

  14. Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration

    Science.gov (United States)

    D.C. Donato; J.B. Kauffman; R.A. Mackenzie; A. Ainsworth; A.Z. Pfleeger

    2012-01-01

    Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced...

  15. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  16. Scenarios in tropical forest degradation: carbon stock trajectories for REDD+

    Directory of Open Access Journals (Sweden)

    Rafael B. de Andrade

    2017-03-01

    Full Text Available Abstract Background Human-caused disturbance to tropical rainforests—such as logging and fire—causes substantial losses of carbon stocks. This is a critical issue to be addressed in the context of policy discussions to implement REDD+. This work reviews current scientific knowledge about the temporal dynamics of degradation-induced carbon emissions to describe common patterns of emissions from logging and fire across tropical forest regions. Using best available information, we: (i develop short-term emissions factors (per area for logging and fire degradation scenarios in tropical forests; and (ii describe the temporal pattern of degradation emissions and recovery trajectory post logging and fire disturbance. Results Average emissions from aboveground biomass were 19.9 MgC/ha for logging and 46.0 MgC/ha for fire disturbance, with an average period of study of 3.22 and 2.15 years post-disturbance, respectively. Longer-term studies of post-logging forest recovery suggest that biomass accumulates to pre-disturbance levels within a few decades. Very few studies exist on longer-term (>10 years effects of fire disturbance in tropical rainforests, and recovery patterns over time are unknown. Conclusions This review will aid in understanding whether degradation emissions are a substantial component of country-level emissions portfolios, or whether these emissions would be offset by forest recovery and regeneration.

  17. Long-term Carbon Loss and Recovery Following Selective Logging in Amazon Forests

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Maoyi; Asner, Gregory P.

    2010-09-30

    Amazon deforestation contributes significantly to global carbon (C) emissions. In comparison, the contribution from selective logging to atmospheric CO2 emissions, and its impact on regional C dynamics, is highly uncertain. Using a new geographically-based modeling approach in combination with high resolution remote sensing data from 1999-2002, we estimate that C emissions were 0.04 – 0.05 Pg C yr-1 due to selective logging from a ~2,664,960 km2 region of the Brazilian Amazon. Selective logging was responsible for 15-19% higher carbon emissions than reported from deforestation (clear-cutting) alone. Our simulations indicated that forest carbon lost via selective logging lasts two to three decades following harvest, and that the original live biomass takes up to a century to recover, if the forests are not subsequently cleared. The two- to three-decade loss of carbon results from the biomass damaged by logging activities, including leaves, wood, and roots, estimated to be 89.1 Tg C yr-1 from 1999-2002 over the study region, leaving 70.0 Tg C yr-1 and 7.9 Tg C yr-1 to accumulate as coarse woody debris and soil C, respectively. While avoided deforestation is central to crediting rainforest nations for reduced carbon emissions, the extent and intensity of selective logging are also critical to determining carbon emissions in the context of Reduced Emissions from Deforestation and Forest Degradation (REDD). We show that a combination of automated high-resolution satellite monitoring and detailed forest C modeling can yield spatially explicit estimates of harvest related C losses and subsequent recovery in support of REDD and other international carbon market mechanisms.

  18. Inverted edge effects on carbon stocks in human-dominated landscapes

    Science.gov (United States)

    Romitelli, I.; Keller, M.; Vieira, S. A.; Metzger, J. P.; Reverberi Tambosi, L.

    2017-12-01

    Although the importance of tropical forests to regulate greenhouse gases is well documented, little is known about what factors affect the ability of these forests to store carbon in human-dominated landscapes. Among those factors, the landscape structure, particularly the amount of forest cover, the type of matrix and edge effects, can have important roles. We tested how carbon stock is influenced by a combination of factors of landscape composition (pasture and forest cover), landscape configuration (edge effect) and relief factors (slope, elevation and aspect). To test those relationships, we performed a robust carbon stock estimation with inventory and LiDAR data in human-dominated landscapes from the Brazilian Atlantic forest region. The study area showed carbon stock mean 45.49 ± 9.34 Mg ha-1. The interaction between forest cover, edge effect and slope was the best combination explanatory of carbon stock. We observed an inverted edge effect pattern where carbon stock is higher close to the edges of the studied secondary forests. This inverted edge effect observed contradicts the usual pattern reported in the literature for mature forests. We suppose this pattern is related with a positive effect that edge conditions can have stimulating forest regeneration, but the underlying processes to explain the observed pattern should still be tested. Those results suggest that Carbon stocks in human-dominated and fragmented landscapes can be highly affected by the landscape structure, and particularly that edges conditions can favor carbon sequestration in regenerating tropical forests.

  19. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean.

    Science.gov (United States)

    Subramaniam, A; Yager, P L; Carpenter, E J; Mahaffey, C; Björkman, K; Cooley, S; Kustka, A B; Montoya, J P; Sañudo-Wilhelmy, S A; Shipe, R; Capone, D G

    2008-07-29

    The fresh water discharged by large rivers such as the Amazon is transported hundreds to thousands of kilometers away from the coast by surface plumes. The nutrients delivered by these river plumes contribute to enhanced primary production in the ocean, and the sinking flux of this new production results in carbon sequestration. Here, we report that the Amazon River plume supports N(2) fixation far from the mouth and provides important pathways for sequestration of atmospheric CO(2) in the western tropical North Atlantic (WTNA). We calculate that the sinking of carbon fixed by diazotrophs in the plume sequesters 1.7 Tmol of C annually, in addition to the sequestration of 0.6 Tmol of C yr(-1) of the new production supported by NO(3) delivered by the river. These processes revise our current understanding that the tropical North Atlantic is a source of 2.5 Tmol of C to the atmosphere [Mikaloff-Fletcher SE, et al. (2007) Inverse estimates of the oceanic sources and sinks of natural CO(2) and the implied oceanic carbon transport. Global Biogeochem Cycles 21, doi:10.1029/2006GB002751]. The enhancement of N(2) fixation and consequent C sequestration by tropical rivers appears to be a global phenomenon that is likely to be influenced by anthropogenic activity and climate change.

  20. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, K. [Department of Oceanography, SOEST, University of Hawaii, Honolulu, HI (United States); Capone, D.G. [University of Southern California, Los Angeles, CA (United States). Wrigley Institute for Environmental Studies and Department of Biological Sciences; Carpenter, E.J. [San Francisco State University, Tiburon, CA (United States). Romberg Tiburon Center; Cooley, S. [University of Georgia, Athens, GA (United States). Department of Marine Sciences; Kustka, A.B. [Ruters, The State University of New Jersey, New Brunswick, NJ (United States). Institute of Marine and Coastal Sciences; Mahaffey, C. [University of Liverpool (United Kingdom). Department of Earth and Ocean Science; Montoya, J.P. [Georgia Institute of Technology, Atlanta, GA (United States). School of Biology; Sanudo-Wilhelmy, S.A. [University of Southern California, Los Angeles, CA (United States). Wrigley Institute for Environmental Studies and Department of Biological Sciences; Shipe, R. [University of California, Los Angeles, CA (United States). Department of Ecology and Evolutionary Biology and Institute of the Environment; Subramaniam, A. [Columbia University, Palisades, NY (United States). Lamont-Doherty Earth Observatory; Yager, P.L. [University of Georgia, Athens, GA (United States). Department of Marine Sciences

    2008-07-15

    The fresh water discharged by large rivers such as the Amazon is transported hundreds to thousands of kilometers away from the coast by surface plumes. The nutrients delivered by these river plumes contribute to enhanced primary production in the ocean, and the sinking flux of this new production results in carbon sequestration. Here, we report that the Amazon River plume supports N2 fixation far from the mouth and provides important pathways for sequestration of atmospheric CO2 in the western tropical North Atlantic (WTNA). We calculate that the sinking of carbon fixed by diazotrophs in the plume sequesters 1.7 Tmol of C annually, in addition to the sequestration of 0.6 Tmol of C yr-1 of the new production supported by NO3 delivered by the river. These processes revise our current understanding that the tropical North Atlantic is a source of 2.5 Tmol of C to the atmosphere [Mikaloff-Fletcher SE, et al. (2007) Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochem Cycles 21, doi:10.1029/2006GB002751]. The enhancement of N2 fixation and consequent C sequestration by tropical rivers appears to be a global phenomenon that is likely to be influenced by anthropogenic activity and climate change.

  1. The changing Amazon forest.

    Science.gov (United States)

    Phillips, Oliver L; Lewis, Simon L; Baker, Timothy R; Chao, Kuo-Jung; Higuchi, Niro

    2008-05-27

    Long-term monitoring of distributed, multiple plots is the key to quantify macroecological patterns and changes. Here we examine the evidence for concerted changes in the structure, dynamics and composition of old-growth Amazonian forests in the late twentieth century. In the 1980s and 1990s, mature forests gained biomass and underwent accelerated growth and dynamics, all consistent with a widespread, long-acting stimulation of growth. Because growth on average exceeded mortality, intact Amazonian forests have been a carbon sink. In the late twentieth century, biomass of trees of more than 10cm diameter increased by 0.62+/-0.23tCha-1yr-1 averaged across the basin. This implies a carbon sink in Neotropical old-growth forest of at least 0.49+/-0.18PgCyr-1. If other biomass and necromass components are also increased proportionally, then the old-growth forest sink here has been 0.79+/-0.29PgCyr-1, even before allowing for any gains in soil carbon stocks. This is approximately equal to the carbon emissions to the atmosphere by Amazon deforestation. There is also evidence for recent changes in Amazon biodiversity. In the future, the growth response of remaining old-growth mature Amazon forests will saturate, and these ecosystems may switch from sink to source driven by higher respiration (temperature), higher mortality (as outputs equilibrate to the growth inputs and periodic drought) or compositional change (disturbances). Any switch from carbon sink to source would have profound implications for global climate, biodiversity and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions among millions of species.

  2. Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape.

    Science.gov (United States)

    Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin

    2013-10-01

    Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010-2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710-6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.

  3. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture

    NARCIS (Netherlands)

    Batlle-Bayer, L.; Batjes, N.H.; Bindraban, P.S.

    2010-01-01

    This paper reviews current knowledge on changes in carbon stocks upon land use conversion in the Brazilian Cerrado. First, we briefly characterize the savanna ecosystem and summarize the main published data on C stocks under natural conditions. The effects of increased land use pressure in the

  4. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility

    DEFF Research Database (Denmark)

    Greve, Michelle; Reyers, Belinda; Lykke, Anne Mette

    2013-01-01

    Carbon (C) offset projects through forestation are employed within the emissions trading framework to store C. Yet, information about the potential of landscapes to stock C, essential to the design of offset projects, is often lacking. Based on data on vegetation C, climate and soil we quantified...... the potential for C storage in woody vegetation across tropical Africa. The ability for offset projects to produce co-benefits for ecosystems and local communities was also investigated. When co-benefits such as biodiversity conservation were considered, the top-ranked sites were often different to sites...... selected purely for their C stocking potential, but they still possessed 68% of the latter’s C stocking potential. This work provides the first continental-scale assessment of which areas may provide the greatest direct and indirect benefits from C storage reforestation projects at the smallest costs...

  5. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi

    2017-08-13

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications have dominated the SOC stock mapping at regional scale so far. However, the community has hardly ever attempted to implement Quantile Regression (QR) to spatially predict the SOC distribution. In this contribution, we test QR to estimate SOC stock (0-30 $cm$ depth) in the agricultural areas of a highly variable semi-arid region (Sicily, Italy, around 25,000 $km2$) by using topographic and remotely sensed predictors. We also compare the results with those from available SOC stock measurement. The QR models produced robust performances and allowed to recognize dominant effects among the predictors with respect to the considered quantile. This information, currently lacking, suggests that QR can discern predictor influences on SOC stock at specific sub-domains of each predictors. In this work, the predictive map generated at the median shows lower errors than those of the Joint Research Centre and International Soil Reference, and Information Centre benchmarks. The results suggest the use of QR as a comprehensive and effective method to map SOC using legacy data in agro-ecosystems. The R code scripted in this study for QR is included.

  6. Biomass models to estimate carbon stocks for hardwood tree species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Montero, G.; Rio, M. del

    2012-11-01

    To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data. (Author) 45 refs.

  7. Assessing soil carbon stocks under pastures through orbital remote sensing

    Directory of Open Access Journals (Sweden)

    Gabor Gyula Julius Szakács

    2011-10-01

    Full Text Available The growing demand of world food and energy supply increases the threat of global warming due to higher greenhouse gas emissions by agricultural activity. Therefore, it is widely admitted that agriculture must establish a new paradigm in terms of environmental sustainability that incorporate techniques for mitigation of greenhouse gas emissions. This article addresses to the scientific demand to estimate in a fast and inexpensive manner current and potential soil organic carbon (SOC stocks in degraded pastures, using remote sensing techniques. Four pastures on sandy soils under Brazilian Cerrado vegetation in São Paulo state were chosen due to their SOC sequestration potential, which was characterized for the soil depth 0-50 cm. Subsequently, a linear regression analysis was performed between SOC and Leaf Area Index (LAI measured in the field (LAIfield and derived by satellite (LAIsatellite as well as SOC and pasture reflectance in six spectra from 450 nm - 2350 nm, using the Enhanced Thematic Mapper (ETM+ sensor of satellite Landsat 7. A high correlation between SOC and LAIfield (R² = 0.9804 and LAIsatellite (R² = 0.9812 was verified. The suitability of satellite derived LAI for SOC determination leads to the assumption, that orbital remote sensing is a very promising SOC estimation technique from regional to global scale.

  8. LBA-ECO ND-04 Secondary Forest Carbon and Nutrient Stocks, Central Amazonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the carbon and nutrient stocks of above-ground vegetation and soil pools at three locations where post-pasture secondary forest...

  9. LBA-ECO ND-04 Secondary Forest Carbon and Nutrient Stocks, Central Amazonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the carbon and nutrient stocks of above-ground vegetation and soil pools at three locations where post-pasture secondary forest recovery ranged...

  10. Carbon stocks in a 50-year-old Eucalyptus camaldulensis stand in ...

    African Journals Online (AJOL)

    Carbon stocks in a 50-year-old Eucalyptus camaldulensis stand in Sicily, Italy. Riccardo Scalenghe, Luisella Celi, Giovanna Costa, V Armando Laudicina, Stefania Santoni, Dario Vespertino, Tommaso La Mantia ...

  11. Carbon Stock and Carbon Accumulation Rates in the Delaware Bay Salt Marshes

    Science.gov (United States)

    O'Hara, B.; Nikitina, D.; Jennings, D.; Geyer, A.

    2017-12-01

    Salt marshes provide numerous benefits and services that are essential for mitigation and adaptation to climate change and resilience along the coast. They are also large carbon (C)-storing ecosystems, sequestering significant amounts of C from the atmosphere and oceans and storing it in the below ground sediments (Murray et al., 2011). When these systems are degraded, either through natural or anthropogenic impacts, they become a potential source of C emissions. The Delaware Bay salt marshes, which been developing for 2000 years, are being lost at a rate of an acre/day (PDE, 2012). However, no studies have accurately estimated the amount of C stored in its salt marshes. Assessments of salt-marsh C pools and carbon accumulation rates (CAR) typically focus on the top meter of sediment. Sediments accumulated at depths CAR to be 191.8 gC/m2/yr, and 82.18 gC/m2/yr, respectively. This study documents variation in sediment and CAR through time due to changes in depositional environments, quantifies degradation in the depositional environments, and calculates C content through the entire sediment sequence. Estimates of C stock ranged from 0.0369 MgC/m2 (1 m depth) to 0.1147 MgC/m2 (3 m depth). The results show that the Delaware Bay salt marshes sequester significant amounts of C, suggesting that C stock assessments focused on the top 1 m of sediment underestimate the total C stock by more than three-fold.

  12. Forest wildfire, fuel reduction treatments, and landscape carbon stocks: a sensitivity analysis

    Science.gov (United States)

    John L. Campbell; Alan A. Ager

    2013-01-01

    Fuel reduction treatments prescribed in fire-suppressed forests of western North America pose an apparent paradox with respect to terrestrial carbon management. Such treatments have the immediate effect of reducing forest carbon stocks but likely reduce future carbon losses through the combustion and mortality caused by high-severity wildfires. Assessing the long-term...

  13. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  14. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen. Richardson

    2014-01-01

    The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...

  15. Fire suppression and fuels treatment effects on mixed-conifer carbon stocks and emissions

    Science.gov (United States)

    M. North; M Hurteau; J Innes

    2009-01-01

    Depending on management, forests can be an important sink or source of carbon that if released as CO2 could contribute to global warming. Many forests in the western United States are being treated to reduce fuels, yet the effects of these treatments on forest carbon are not well understood. We compared the immediate effects of fuels treatments on carbon stocks and...

  16. Vulnerability of wetland soil carbon stocks to climate warming in the perhumid coastal temperate rainforest

    Science.gov (United States)

    Jason B. Fellman; David V. D’Amore; Eran Hood; Pat Cunningham

    2017-01-01

    The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest soil organic carbon (SOC) stocks in the world (>300 Mg C ha-1) but the fate of this SOC with continued warming remains largely unknown. We quantified dissolved organic carbon (DOC) and carbon dioxide (CO2) yields from four...

  17. Carbon Stocks in the Small Estuarine Mangroves of Geza and Mtimbwani, Tanga, Tanzania

    Directory of Open Access Journals (Sweden)

    Edmond Alavaisha

    2016-01-01

    Full Text Available Mangrove forests offer important ecosystem services, including their high capacity for carbon sequestration and stocking. However, they face rapid degradation and loss of ecological resilience particularly at local scales due to human pressure. We conducted inventory of mangrove forests to characterise forest stand structure and estimate carbon stocks in the small estuarine mangroves of Geza and Mtimbwani in Tanga, Tanzania. Forest structure, above-ground carbon (AGC, and below-ground carbon (BGC were characterised. Soil carbon was estimated to 1 m depth using loss on ignition procedure. Six common mangrove species were identified dominated by Avicennia marina (Forsk. Vierh. and Rhizophora mucronata Lamarck. Forest stand density and basal area were 1740 stems ha−1 and 17.2 m2 ha−1 for Geza and 2334 stems ha−1 and 30.3 m2 ha−1 for Mtimbwani. Total ecosystem carbon stocks were 414.6 Mg C ha−1 for Geza and 684.9 Mg C ha−1 for Mtimbwani. Soil carbon contributed over 65% of these stocks, decreasing with depth. Mid zones of the mangrove stands had highest carbon stocks. These data demonstrate that studied mangroves are potential for carbon projects and provide the baseline for monitoring, reporting, and verification (MRV to support the projects.

  18. Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems.

    Science.gov (United States)

    Xu, Lin; Shi, Yongjun; Fang, Huiyun; Zhou, Guomo; Xu, Xiaojun; Zhou, Yufeng; Tao, Jixing; Ji, Biyong; Xu, Jun; Li, Chong; Chen, Liang

    2018-03-10

    Subtropical forests play an important role in global carbon cycle and in mitigating climate change. Knowledge on the abiotic and biotic driving factors that affect vegetation carbon stocks in subtropical forest ecosystems is needed to take full advantage of the carbon sequestration potential. We used a large-scale database from national forest continuous inventory in Zhejiang Province, and combined the Random Forest analysis (RF) and structural equation modeling (SEM) to quantify the contribution of biotic and abiotic driving factors on vegetation carbon stocks, and to evaluate the direct and indirect effects of the main driving factors. The RF model explained 50% of the variation in vegetation carbon stocks; canopy density accounted for 17.9%, and forest age accounted for 7.0%. Moreover, the SEM explained 52% of the variation in vegetation carbon stocks; the value of standardized total effects of canopy density and forest age were 0.469 and 0.327, respectively, suggesting that they were the most crucial driving factors of vegetation carbon stocks. Since the forests in our study were relatively young, the forests had a large potential for carbon sequestration. Overall, our study provided new insights into the sensitivity and potential response of subtropical forest ecosystems carbon cycle to climate change. Copyright © 2018. Published by Elsevier B.V.

  19. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Directory of Open Access Journals (Sweden)

    Sebastian Doetterl

    Full Text Available African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors.Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock were only half compared to an area with lower tree height (= smaller aboveground carbon stock. This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system.We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  20. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Science.gov (United States)

    Doetterl, Sebastian; Kearsley, Elizabeth; Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  1. The Changes of Carbon Stocks on Rejuvenation of Smallholder Rubber Plantation

    OpenAIRE

    Supriadi, Handi; Ferry, Yulius

    2014-01-01

    Rejuvenation of rubber tree (Hevea Brasiliensis) can lead to a reduction of carbon stocks. Therefore, appropriate methods are needed to minimize such losses. The objective of this study was to analyze the changes on carbon stocks in the rejuvenation of rubber with logging system of 30%, 50%, 70%, and 100% and intercrops between the young rubber plantation (maize and peanuts). The research was conducted from January to December 2013 at smallholder rubber plantation in Way Tuba District, Way Ka...

  2. Carbon stocks and potential carbon storage in the mangrove forests of China.

    Science.gov (United States)

    Liu, Hongxiao; Ren, Hai; Hui, Dafeng; Wang, Wenqing; Liao, Baowen; Cao, Qingxian

    2014-01-15

    Mangrove forests provide important ecosystem services, and play important roles in terrestrial and oceanic carbon (C) cycling. Although the C stocks or storage in terrestrial ecosystems in China have been frequently assessed, the C stocks in mangrove forests have often been overlooked. In this study, we estimated the C stocks and the potential C stocks in China's mangrove forests by combining our own field data with data from the National Mangrove Resource Inventory Report and from other published literature. The results indicate that mangrove forests in China store about 6.91 ± 0.57 Tg C, of which 81.74% is in the top 1 m soil, 18.12% in the biomass of mangrove trees, and 0.08% in the ground layer (i.e. mangrove litter and seedlings). The potential C stocks are as high as 28.81 ± 4.16 Tg C. On average, mangrove forests in China contain 355.25 ± 82.19 Mg C ha(-1), which is consistent with the global average of mangrove C density at similar latitudes, but higher than the average C density in terrestrial forests in China. Our results suggest that C storage in mangroves can be increased by selecting high C-density species for afforestation and stand improvement, and even more by increasing the mangrove area. The information gained in this study will facilitate policy decisions concerning the restoration of mangrove forests in China. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Benchmark map of forest carbon stocks in tropical regions across three continents.

    Science.gov (United States)

    Saatchi, Sassan S; Harris, Nancy L; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T A; Salas, William; Zutta, Brian R; Buermann, Wolfgang; Lewis, Simon L; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra

    2011-06-14

    Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ± 6% to ± 53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ± 5% and ca. ± 1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.

  4. First Assessment of Carbon Stock in the Belowground Biomass of Brazilian Mangroves

    Directory of Open Access Journals (Sweden)

    DANIEL M.C. SANTOS

    2017-08-01

    Full Text Available ABSTRACT Studies on belowground roots biomass have increasingly reported the importance of the contribution of this compartment in carbon stock maintenance in mangrove forests. To date, there are no estimates of this contribution in Brazilian mangrove forests, although the country has the second largest area of mangroves worldwide. For this study, trenches dug in fringing forests in Guaratiba State Biological Reserve (Rio de Janeiro, Brazil were used to evaluate the contribution of the different classes of roots and the vertical stratification of carbon stock. The total carbon stock average in belowground roots biomass in these forests was 104.41 ± 20.73 tC.ha−1. From that, an average of 84.13 ± 21.34 tC.ha−1 corresponded to the carbon stock only in fine roots, which have diameters smaller than 5 mm and are responsible for over 80% of the total belowground biomass. Most of the belowground carbon stock is concentrated in the first 40 cm below the surface (about 70%. The root:shoot ratio in this study is 1.14. These estimates demonstrate that the belowground roots biomass significantly contributes, more than 50%, to the carbon stock in mangrove forests. And the mangrove root biomass can be greater than that of other Brazilian ecosystems.

  5. Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations.

    Science.gov (United States)

    de Blécourt, Marleen; Brumme, Rainer; Xu, Jianchu; Corre, Marife D; Veldkamp, Edzo

    2013-01-01

    Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha(-1) in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha(-1) to an increase of 8 Mg C ha(-1). In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes.

  6. Seasonal and spatial contrasts of sedimentary organic carbon in floodplain lakes of the central Amazon basin.

    Science.gov (United States)

    Sobrinho, Rodrigo; Kim, Jung-Hyun; Abril, Gwenaël; Zell, Claudia; Moreira-Turcq, Patricia; Mortillaro, Jean-Michel; Meziane, Tarik; Damsté, Jaap; Bernardes, Marcelo

    2014-05-01

    Three-quarters of the area of flooded land in the world are temporary wetlands (Downing, 2009), which play a significant role in the global carbon cycle(Einsele et al., 2001; Cole et al., 2007; Battin et al., 2009; Abril et al., 2013). Previous studies of the Amazonian floodplain lakes (várzeas), one important compartment of wetlands, showed that the sedimentation of organic carbon (OC) in the floodplain lakes is strongly linked to the periodical floods and to the biogeography from upstream to downstream(Victoria et al., 1992; Martinelli et al., 2003). However, the main sources of sedimentary OC remain uncertain. Hence, the study of the sources of OC buried in floodplain lake sediments can enhance our understanding of the carbon balance of the Amazon ecosystems. In this study, we investigated the seasonal and spatial pattern of sedimentary organic matter in five floodplain lakes of the central Amazon basin (Cabaliana, Janauaca, Canaçari, Miratuba, and Curuai) which have different morphologies, hydrodynamics and vegetation coverage. Surface sediments were collected in four hydrological seasons: low water (LW), rising water (RW), high water (HW) and falling water (FW) in 2009 and 2010. We investigated commonly used bulk geochemical tracers such as C:N ratio and stable isotopic composition of organic carbon (δ13COC). These results were compared with lignin-phenol parameters as an indicator of vascular plant detritus (Hedges and Ertel, 1982) and branched glycerol dialkyl glycerol tetraethers (brGDGTs) to trace the soil OC from land to the aquatic settings (Hopmans et al., 2004). Our data showed that during the RW and FW seasons, the concentration of lignin and brGDGTs were higher in comparison to other seasons. Our study also indicated that floodplain lake sediments primarily consisted of a mixture of C3 plant detritus and soil OC. However, a downstream increase in C4 plant-derived OC contribution was observed along the gradient of increasingly open waters, i

  7. Long rotation swidden systems maintain higher carbon stocks than rubber plantations

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Berry, Nicholas; De Neergaard, Andreas

    2018-01-01

    are poorly quantified. We undertook a chronosequence study to quantify changes in ecosystem carbon stocks following conversion from swidden agriculture to rubber plantations in Northern Laos. We measured above-ground biomass stocks and collected volume specific soil samples across rubber plantations......Conversion of shifting cultivation to rubber (Hevea brasiliensis) plantations is one of the dominant land use changes in montane mainland areas of Southeast Asia, with the area of rubber expected to quadruple by 2050. However, the impacts of this transition on total ecosystem carbon stocks...... established between 2 and 18 years prior to the study, and fallows used in a swidden system. The carbon stock in the upper 40 cm of the soil was almost 20% lower after 18 years of rubber than in the swidden system fallows, suggesting a SOC loss of 0.74 ± 0.2 Mg C ha−1 yr−1. Rates of biomass accumulation...

  8. Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties

    NARCIS (Netherlands)

    Kim, J.-H.; Zell, C.; Moreira-Turcq, P.; Pérez, M.A.P.; Abril, G.; Mortillaro, J.-M.; Weijers, J.W.H.; Meziane, T.; Sinninghe Damsté, J.S.

    2012-01-01

    In order to trace the transport of soil organic carbon (OC) in the lower Amazon basin, we investigated the distributions of crenarchaeol and branched glycerol dialkyl glycerol tetraethers (GDGTs) by analyzing riverbed sediments and river suspended particulate matter (SPM) collected in the

  9. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  10. Radiative effects of biomass burning aerosols and cloudiness on seasonal carbon cycle in the Amazon region

    Science.gov (United States)

    Moreira, D. S.; Longo, K.; Freitas, S.; Mercado, L. M.; Miller, J. B.; Rosario, N. M. E. D.; Gatti, L.; Yamasoe, M. A.

    2017-12-01

    The Amazon region is characterized by high cloudiness, mainly due to convective clouds during most of the year due to the high humidity, and heat availability. However, during the Austral winter, the northward movement of the inter-tropical convergence zone (ITCZ) from its climatological position, significantly reducing cloudiness and precipitation, facilitating vegetation fires. Consequently, during these dry months, biomass burning aerosols contribute to relatively high values of aerosol optical depth (AOD) in Amazonia, typically exceeding 1.0 in the 550 nm wavelength. Both clouds and aerosols scatter solar radiation, reducing the direct irradiance and increasing the diffuse fraction that reaches the surface, decreasing near surface temperature and increasing photosynthetically active radiation (PAR) availability. This, in turn, affects energy and CO2 fluxes within the vegetation canopy. We applied an atmospheric model fully coupled to terrestrial carbon cycle model to assess the relative impact of biomass burning aerosols and clouds on CO2 fluxes in the Amazon region. Our results indicate that during most of the year, gross primary productivity (GPP) is high mainly due to high soil moisture and high values of the diffuse fraction of solar irradiation due to cloudiness. Therefore, heterotrophic and autotrophic respiration are both high, increasing the NEE values (i.e. reducing the net land sink). On the other hand, during the dry season, with a significant reduction of cloudiness, the biomass burning aerosol is mainly responsible for the increase in the diffuse fraction of solar irradiation and the GPP of the forest. However, the low soil moisture during the dry season, especially in the eastern Amazon, reduces heterotrophic and autotrophic respiration and thus compensates for reduced GPP compared to the wet season. Different reasons, an anthropogenic one (human induced fires during the dry season) and a natural one (cloudiness), lead to a somewhat stable value

  11. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem.

    Science.gov (United States)

    Mikhailova, Elena A; Post, Christopher J

    2006-01-01

    Little is known about changes in soil inorganic carbon (SIC) stocks with depth and with land use in grassland ecosystems. This study was conducted to determine SIC stocks under different management regimes in the Mollisol, one of the typical soils in grasslands. Four sites were sampled: a native grassland field (not cultivated for at least 300 yr), an adjacent 50-yr continuous fallow field, a yearly cut hay field in the V.V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. Significant differences occurred in SIC stocks between cultivated and grassland soil. The inorganic carbon stocks in the top 2 m were 107 Mg ha(-1) for the native grassland, 91 Mg ha(-1) for the yearly cut hay field, 242 Mg ha(-1) for the continuously cropped field, and 196 Mg ha(-1) for the 50-yr continuous fallow. The SIC was in the form of calcium carbonate and was mostly stored below the 1-m depth. The largest difference between inorganic carbon stocks was observed between the continuously cropped field and native grassland. The increase in inorganic carbon in the continuously cropped field and continuous fallow was attributed to initial cultivation and fertilization. Soil inorganic carbon in Mollisols is not accounted for in the current global carbon estimates.

  12. Quantifying the uncertainty of regional and national estimates of soil carbon stocks

    Science.gov (United States)

    Papritz, Andreas

    2013-04-01

    At regional and national scales, carbon (C) stocks are frequently estimated by means of regression models. Such statistical models link measurements of carbons stocks, recorded for a set of soil profiles or soil cores, to covariates that characterize soil formation conditions and land management. A prerequisite is that these covariates are available for any location within a region of interest G because they are used along with the fitted regression coefficients to predict the carbon stocks at the nodes of a fine-meshed grid that is laid over G. The mean C stock in G is then estimated by the arithmetic mean of the stock predictions for the grid nodes. Apart from the mean stock, the precision of the estimate is often also of interest, for example to judge whether the mean C stock has changed significantly between two inventories. The standard error of the estimated mean stock in G can be computed from the regression results as well. Two issues are thereby important: (i) How large is the area of G relative to the support of the measurements? (ii) Are the residuals of the regression model spatially auto-correlated or is the assumption of statistical independence tenable? Both issues are correctly handled if one adopts a geostatistical block kriging approach for estimating the mean C stock within a region and its standard error. In the presentation I shall summarize the main ideas of external drift block kriging. To compute the standard error of the mean stock, one has in principle to sum the elements a potentially very large covariance matrix of point prediction errors, but I shall show that the required term can be approximated very well by Monte Carlo techniques. I shall further illustrated with a few examples how the standard error of the mean stock estimate changes with the size of G and with the strenght of the auto-correlation of the regression residuals. As an application a robust variant of block kriging is used to quantify the mean carbon stock stored in the

  13. Mapping soil organic carbon stock in the area of Neamtu Catchment, Northeastern Romania

    Science.gov (United States)

    Breaban, Ana-Ioana; Bobric, Elena-Diana; Breaban, Iuliana-Gabriela; Rusu, Eugen

    2017-04-01

    The quantification of soil organic carbon stocks and its spatial extent is directly influenced by the land cover. The aim of the study is to quantify both the spatial distribution of soil organic carbon and stocks under different soil types and land uses in an area of 41.808,04 ha in northeastern part of Romania. It has been studied the evolution of carbon stocks over time, taking into account the change of land use between 1990-2012 under 5 classes: forests, pastures, arable land, orchard and built spaces. Common soils are Cambisols, Fluvisols, Phaezems, and Luvisols, forest being the predominant land use. The most important loss of soil organic carbon occurs as a result of changes in the supply of biomass supplying litter and therefore the process of bioaccumulation. The samples were collected from 100 representative soil profiles and analyzed with Analytik Jena multi N/C 2100 with HT 1300 solid module. Based on the soil organic carbon, C/N ratio and texture the values of those parameters varied from high values in Ao and Bv horizons to lower values in C horizon. In order to model soil organic carbon concentration were used different interpolation techniques (regression and ordinary -kriging, IDW) at different sampling densities for each depth to 100 cm, using a Gaussian approach to estimate the uncertainty. It is noticeable that soil organic carbon had a positive correlation with different types of land uses and a negative correlation with the elevation, being a decreasing trend of the carbon stocks sequestered in biomass, litter and soil. In the upper part of the profiles, the soil organic carbon stock considerably varied for forest land between 6.5-7.23 kg C/sqm) and agricultural land (3.67-4.65 kg C/sqm). The kriging regression evidenced a good variability of the calculated root mean square errors of the predicted soil organic carbon stocks.

  14. Monitoring and estimating tropical forest carbon stocks: making REDD a reality

    International Nuclear Information System (INIS)

    Gibbs, Holly K; Brown, Sandra; Niles, John O; Foley, Jonathan A

    2007-01-01

    Reducing carbon emissions from deforestation and degradation in developing countries is of central importance in efforts to combat climate change. Key scientific challenges must be addressed to prevent any policy roadblocks. Foremost among the challenges is quantifying nations' carbon emissions from deforestation and forest degradation, which requires information on forest clearing and carbon storage. Here we review a range of methods available to estimate national-level forest carbon stocks in developing countries. While there are no practical methods to directly measure all forest carbon stocks across a country, both ground-based and remote-sensing measurements of forest attributes can be converted into estimates of national carbon stocks using allometric relationships. Here we synthesize, map and update prominent forest biomass carbon databases to create the first complete set of national-level forest carbon stock estimates. These forest carbon estimates expand on the default values recommended by the Intergovernmental Panel on Climate Change's National Greenhouse Gas Inventory Guidelines and provide a range of globally consistent estimates

  15. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil

    Science.gov (United States)

    Sanders, Luciana M.; Taffs, Kathryn; Stokes, Debra; Sanders, Christian J.; Enrich-Prast, Alex; Amora-Nogueira, Leonardo; Marotta, Humberto

    2018-01-01

    Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers). A sediment accumulation rate of ˜ 4 mm yr-1 for the previous ˜ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m-2 yr-1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC) burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer) during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer) during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in the floodplain of the Amazon Basin.

  16. The Role of Composition, Invasives, and Maintenance Emissions on Urban Forest Carbon Stocks

    Science.gov (United States)

    Horn, Josh; Escobedo, Francisco J.; Hinkle, Ross; Hostetler, Mark; Timilsina, Nilesh

    2015-02-01

    There are few field-based, empirical studies quantifying the effect of invasive trees and palms and maintenance-related carbon emissions on changes in urban forest carbon stocks. We estimated carbon (C) stock changes and tree maintenance-related C emissions in a subtropical urban forest by re-measuring a subsample of residential permanent plots during 2009 and 2011, using regional allometric biomass equations, and surveying residential homeowners near Orlando, FL, USA. The effect of native, non-native, invasive tree species and palms on C stocks and sequestration was also quantified. Findings show 17.8 tC/ha in stocks and 1.2 tC/ha/year of net sequestration. The most important species both by frequency of C stocks and sequestration were Quercus laurifolia Michx. and Quercus virginiana Mill., accounting for 20 % of all the trees measured; 60 % of carbon stocks and over 75 % of net C sequestration. Palms contributed to less than 1 % of the total C stocks. Natives comprised two-thirds of the tree population and sequestered 90 % of all C, while invasive trees and palms accounted for 5 % of net C sequestration. Overall, invasive and exotic trees had a limited contribution to total C stocks and sequestration. Annual tree-related maintenance C emissions were 0.1 % of total gross C sequestration. Plot-level tree, palm, and litter cover were correlated to C stocks and net sequestration. Findings can be used to complement existing urban forest C offset accounting and monitoring protocols and to better understand the role of invasive woody plants on urban ecosystem service provision.

  17. The role of composition, invasives, and maintenance emissions on urban forest carbon stocks.

    Science.gov (United States)

    Horn, Josh; Escobedo, Francisco J; Hinkle, Ross; Hostetler, Mark; Timilsina, Nilesh

    2015-02-01

    There are few field-based, empirical studies quantifying the effect of invasive trees and palms and maintenance-related carbon emissions on changes in urban forest carbon stocks. We estimated carbon (C) stock changes and tree maintenance-related C emissions in a subtropical urban forest by re-measuring a subsample of residential permanent plots during 2009 and 2011, using regional allometric biomass equations, and surveying residential homeowners near Orlando, FL, USA. The effect of native, non-native, invasive tree species and palms on C stocks and sequestration was also quantified. Findings show 17.8 tC/ha in stocks and 1.2 tC/ha/year of net sequestration. The most important species both by frequency of C stocks and sequestration were Quercus laurifolia Michx. and Quercus virginiana Mill., accounting for 20% of all the trees measured; 60% of carbon stocks and over 75% of net C sequestration. Palms contributed to less than 1% of the total C stocks. Natives comprised two-thirds of the tree population and sequestered 90% of all C, while invasive trees and palms accounted for 5 % of net C sequestration. Overall, invasive and exotic trees had a limited contribution to total C stocks and sequestration. Annual tree-related maintenance C emissions were 0.1% of total gross C sequestration. Plot-level tree, palm, and litter cover were correlated to C stocks and net sequestration. Findings can be used to complement existing urban forest C offset accounting and monitoring protocols and to better understand the role of invasive woody plants on urban ecosystem service provision.

  18. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  19. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  20. Tropical Soil Carbon Stocks do not Reflect Aboveground Forest Biomass Across Geological and Rainfall Gradients

    Science.gov (United States)

    Cusack, D. F.; Markesteijn, L.; Turner, B. L.

    2016-12-01

    Soil organic carbon (C) dynamics present a large source of uncertainty in global C cycle models, and inhibit our ability to predict effects of climate change. Tropical wet and seasonal forests exert a disproportionate influence on the global C cycle relative to their land area because they are the most C-rich ecosystems on Earth, containing 25-40% of global terrestrial C stocks. While significant advances have been made to map aboveground C stocks in tropical forests, determining soil C stocks using remote sensing technology is still not possible for closed-canopy forests. It is unclear to what extent aboveground C stocks can be used to predict soil C stocks across tropical forests. Here we present 1-m-deep soil organic C stocks for 42 tropical forest sites across rainfall and geological gradients in Panama. We show that soil C stocks do not correspond to aboveground plant biomass or to litterfall productivity in these humid tropical forests. Rather, soil C stocks were strongly and positively predicted by fine root biomass, soil clay content, and rainfall (R2 = 0.47, p chemical characteristics form an important basis for improving model estimates of soil C stocks and predictions of climate change effects on tropical C storage.

  1. Effects of Deforestation and Forest Degradation on Forest Carbon Stocks in Collaborative Forests, Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2012-12-01

    Full Text Available There are some key drivers that favor deforestation and forest degradation. Consequently, levels of carbon stock are affected in different parts of same forest types. But the problem lies in exploring the extent of the effects on level of carbon stocking. This paper highlights the variations in levels of carbon stocks in three different collaborative forests of same forest type i.e. tropical sal (Shorea robusta forest in Mahottari district of the central Terai in Nepal. Three collaborative forests namely Gadhanta-Bardibas Collaborative Forest (CFM, Tuteshwarnath CFM and Banke- Maraha CFM were selected for research site. Interview and workshops were organized with the key informants that include staffs, members and representatives of CFMs to collect the socio-economic data and stratified random sampling was applied to collect the bio-physical data to calculate the carbon stocks. Analysis was carried out using statistical tools. It was found five major drivers namely grazing, fire, logging, growth of invasive species and encroachment. It was found highest carbon 269.36 ton per ha in Gadhanta- Bardibash CFM. The findings showed that the levels of carbon stocks in the three studied CFMs are different depending on how the drivers of deforestation and forest degradation influence over them.

  2. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal.

    Science.gov (United States)

    Dangal, Shambhu Prasad; Das, Abhoy Kumar; Paudel, Shyam Krishna

    2017-07-01

    Nepal has successfully established more than 370,000 ha of plantations, mostly with Pinus patula, in the last three and a half decades. However, intensive management of these planted forests is very limited. Despite the fact that the Kyoto Convention in 1997 recognized the role of plantations for forest-carbon sequestration, there is still limited knowledge on the effects of management practices and stand density on carbon-sequestration of popular plantation species (i.e. Pinus patula) in Nepal. We carried out case studies in four community forests planted between 1976 and 1990 to assess the impacts of management on forest carbon stocks. The study found that the average carbon stock in the pine plantations was 217 Mg C ha -1 , and was lower in forests with intensively managed plantations (214.3 Mg C ha -1 ) than in traditionally managed plantations (219 Mg C ha -1 ). However, it was the reverse in case of soil carbon, which was higher (78.65 Mg C ha -1 ) in the forests with intensive management. Though stand density was positively correlated with carbon stock, the proportionate increment in carbon stock was lower with increasing stand density, as carbon stock increased by less than 25% with a doubling of stand density (300-600). The total carbon stock was higher in plantations aged between 25 and 30 years compared to those aged between 30 and 35 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Carbon Stocks of Fine Woody Debris in Coppice Oak Forests at Different Development Stages

    Directory of Open Access Journals (Sweden)

    Ender Makineci

    2017-06-01

    Full Text Available Dead woody debris is a significant component of the carbon cycle in forest ecosystems. This study was conducted in coppice-originated oak forests to determine carbon stocks of dead woody debris in addition to carbon stocks of different ecosystem compartments from the same area and forests which were formerly elucidated. Weight and carbon stocks of woody debris were determined with recent samplings and compared among development stages (diameter at breast height (DBH, D1.3m, namely small-diameter forests (SDF = 0–8 cm, medium diameter forests (MDF = 8–20 cm, and large-diameter forests (LDF = 20–36 cm. Total woody debris was collected in samplings; as bilateral diameters of all woody debris parts were less than 10 cm, all woody parts were in the “fine woody debris (FWD” class. The carbon concentrations of FWD were about 48% for all stages. Mass (0.78–4.92 Mg·ha−1 and carbon stocks (0.38–2.39 Mg·ha−1 of FWD were significantly (p > 0.05 different among development stages. FWD carbon stocks were observed to have significant correlation with D1.3m, age, basal area, and carbon stocks of aboveground biomass (Spearman rank correlation coefficients; 0.757, 0.735, 0.709, and 0.694, respectively. The most important effects on carbon budgets of fine woody debris were determined to be coppice management and intensive utilization. Also, national forestry management, treatments of traditional former coppice, and conversion to high forest were emphasized as having substantial effects.

  4. Carbon Stock Assesment on Mangrove Forest Ecosystem in Jorong Ujuang Labuang District Agam West Sumatera Province

    OpenAIRE

    Oktaviona, Silvi; Amin, Bintal; Ghalib, Musrifin

    2017-01-01

    Mangrove is a tree that normally grows in the intertidal zone of marine coastal environments. This study aims to estimate the carbon content of mangrove forest ecosystems within a certain area, to analyze biomass differences, carbon stocks and CO2 uptake and to analyze the effect of mangrove density on biomass, carbon stock and CO2 uptake. This research held on February 2017 by survey method and used the data of mangrove species, it's number and diameter of breast height (DBH) on each sub plo...

  5. Maximizing Amazonia's Ecosystem Services: Juggling the potential for carbon storage, agricultural yield and biodiversity in the Amazon

    Science.gov (United States)

    O'Connell, C. S.; Foley, J. A.; Gerber, J. S.; Polasky, S.

    2011-12-01

    The Amazon is not only an exceptionally biodiverse and carbon-rich tract of tropical forest, it is also a case study in land use change. Over the next forty years it will continue to experience pressure from an urbanizing and increasingly affluent populace: under a business-as-usual scenario, global cropland, pasture and biofuels systems will carry on expanding, while the Amazon's carbon storage potential will likely become another viable revenue source under REDD+. Balancing those competing land use pressures ought also take into account Amazonia's high - but heterogeneous - biodiversity. Knowing where Amazonia has opportunities to make efficient or optimal trade offs between carbon storage, agricultural production and biodiversity can allow policymakers to direct or influence LUC drivers. This analysis uses a spatially-explicit model that takes climate and management into account to quantify the potential agricultural yield of both the Amazon's most important agricultural commodities - sugar, soy and maize - as well as several that are going to come into increasing prominence, including palm oil. In addition, it maps the potential for carbon to be stored in forest biomass and relative species richness across Amazonia. We then compare carbon storage, agricultural yield and species richness and identify areas where efficient trade offs occur between food, carbon, and biodiversity - three critical ecosystem goods and services provided by the world's largest tropical forest.

  6. Determining forest carbon stock losses due to wildfire disturbance in the Western United States

    Science.gov (United States)

    John M. Zobel; John W. Coulston

    2015-01-01

    Quantifying carbon stock losses after wildfire events is challenging due to the lack of detailed information before and after the disturbance. We propose to use the extensive Western FIA database (including periodic and annual inventories) to recreate pre- and post-fire conditions to better estimate actual carbon losses. Methods include using remeasurement date where...

  7. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012

    Science.gov (United States)

    Hamilton, Stuart E.; Friess, Daniel A.

    2018-02-01

    Mangrove forests store high densitie of organic carbon, which, when coupled with high rates of deforestation, means that mangroves have the potential to contribute substantially to carbon emissions. Consequently, mangroves are strong candidates for inclusion in nationally determined contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and payments for ecosystem services (PES) programmes that financially incentivize the conservation of forested carbon stocks. This study quantifies annual mangrove carbon stocks from 2000 to 2012 at the global, national and sub-national levels, and global carbon emissions resulting from deforestation over the same time period. Globally, mangroves stored 4.19 Pg of carbon in 2012, with Indonesia, Brazil, Malaysia and Papua New Guinea accounting for more than 50% of the global stock. 2.96 Pg of the global carbon stock is contained within the soil and 1.23 Pg in the living biomass. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of 316,996,250 t of CO2 emissions.

  8. Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere's Reserve, Mexico

    NARCIS (Netherlands)

    Balderas Torres, Arturo; Lovett, Jonathan Cranidge

    2012-01-01

    Increasing use of woody plants for greenhouse gas mitigation has led to demand for rapid, cost-effective estimation of forest carbon stocks. Bole diameter is readily measured and basal area can be correlated to biomass and carbon through application of allometric equations. We explore different

  9. Improving national-scale carbon stock inventories using knowledge on land use history

    NARCIS (Netherlands)

    Schulp, C.J.E.; Verburg, P.H.; Kuikman, P.J.; Nabuurs, G.J; Olivier, J.G.J.; de Vries, W.; Veldkamp, A.

    2013-01-01

    National-scale inventories of soil organic carbon (SOC) and forest floor carbon (FFC) stocks have a high uncertainty. Inventories are often based on the interpolation of sampled information, often using a number of covariables to help such interpolation. The rationale for the choice of these

  10. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    Science.gov (United States)

    Benjamin Bright; J. A. Hicke; A. T. Hudak

    2012-01-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field...

  11. Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin

    Science.gov (United States)

    Bing Xu; Yude Pan; Alain F. Plante; Arthur Johnson; Jason Cole; Richard Birdsey

    2016-01-01

    Quantifying forest biomass carbon (C) stock change is important for understanding forest dynamics and their feedbacks with climate change. Forests in the northeastern U.S. have been a net carbon sink in recent decades, but C accumulation in some northern hardwood forests has been halted due to the impact of emerging stresses such as invasive pests, land use change and...

  12. Spatial distribution of regional whole tree carbon stocks and fluxes of forests in Europe

    NARCIS (Netherlands)

    Schelhaas, M.J.; Nabuurs, G.J.

    2001-01-01

    This report presents carbon stocks and fluxes of the whole-tree biomass of European forests and other wooded land, distinguished into coniferous, deciduous and mixed forests. The results are presented at the European, the national and (where possible)the regional level. Results concerning carbon

  13. Forest Carbon Stocks in Woody Plants of Arba Minch Ground Water ...

    African Journals Online (AJOL)

    The role of forests in mitigating the effect of climate change depends on the carbon sequestration potential and management. This study was conducted to estimate the carbon stock and its variation along environmental gradients in Arba Minch Ground Water Forest. The data was collected from the field by measuring plants ...

  14. Structural Break, Stock Prices of Clean Energy Firms and Carbon Market

    Science.gov (United States)

    Wang, Yubao; Cai, Junyu

    2018-03-01

    This paper uses EU ETS carbon future price and Germany/UK clean energy firms stock indices to study the relationship between carbon market and clean energy market. By structural break test, it is found that the ‘non-stationary’ variables judged by classical unit root test do own unit roots and need taking first difference. After analysis of VAR and Granger causality test, no causal relationships are found between the two markets. However, when Hsiao’s version of causality test is employed, carbon market is found to have power in explaining the movement of stock prices of clean energy firms, and stock prices of clean energy firms also affect the carbon market.

  15. Past and prospective carbon stocks in forests of northern Wisconsin: a report from the Chequamegon-Nicolet National Forest Climate Change Response Framework

    Science.gov (United States)

    Richard Birdsey; Yude Pan; Maria Janowiak; Susan Stewart; Sarah Hines; Linda Parker; Stith Gower; Jeremy Lichstein; Kevin McCullough; Fangmin Zhang; Jing Chen; David Mladenoff; Craig Wayson; Chris. Swanston

    2014-01-01

    This report assesses past and prospective carbon stocks for 4.5 million ha of forest land in northern Wisconsin, including a baseline assessment and analysis of the impacts of disturbance and management on carbon stocks. Carbon density (amount of carbon stock per unit area) averages 237 megagrams (Mg) per ha, with the National Forest lands having slightly higher carbon...

  16. Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils

    Science.gov (United States)

    Beem-Miller, Jeffrey P.; Kong, Angela Y. Y.; Ogle, Stephen; Wolfe, David

    2016-01-01

    Coring methods commonly employed in soil organic C (SOC) stock assessment may not accurately capture soil rock fragment (RF) content or soil bulk density (rho (sub b)) in rocky agricultural soils, potentially biasing SOC stock estimates. Quantitative pits are considered less biased than coring methods but are invasive and often cost-prohibitive. We compared fixed-depth and mass-based estimates of SOC stocks (0.3-meters depth) for hammer, hydraulic push, and rotary coring methods relative to quantitative pits at four agricultural sites ranging in RF content from less than 0.01 to 0.24 cubic meters per cubic meter. Sampling costs were also compared. Coring methods significantly underestimated RF content at all rocky sites, but significant differences (p is less than 0.05) in SOC stocks between pits and corers were only found with the hammer method using the fixed-depth approach at the less than 0.01 cubic meters per cubic meter RF site (pit, 5.80 kilograms C per square meter; hammer, 4.74 kilograms C per square meter) and at the 0.14 cubic meters per cubic meter RF site (pit, 8.81 kilograms C per square meter; hammer, 6.71 kilograms C per square meter). The hammer corer also underestimated rho (sub b) at all sites as did the hydraulic push corer at the 0.21 cubic meters per cubic meter RF site. No significant differences in mass-based SOC stock estimates were observed between pits and corers. Our results indicate that (i) calculating SOC stocks on a mass basis can overcome biases in RF and rho (sub b) estimates introduced by sampling equipment and (ii) a quantitative pit is the optimal sampling method for establishing reference soil masses, followed by rotary and then hydraulic push corers.

  17. Estimating litter carbon stocks on forest land in the United States.

    Science.gov (United States)

    Domke, Grant M; Perry, Charles H; Walters, Brian F; Woodall, Christopher W; Russell, Matthew B; Smith, James E

    2016-07-01

    Forest ecosystems are the largest terrestrial carbon sink on earth, with more than half of their net primary production moving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon (C) pool have important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter accounts for an estimated 5% of all forest ecosystem carbon stocks worldwide. Given the cost and time required to measure litter attributes, many of the signatory nations to the United Nations Framework Convention on Climate Change report estimates of litter carbon stocks and stock changes using default values from the Intergovernmental Panel on Climate Change or country-specific models. In the United States, the country-specific model used to predict litter C stocks is sensitive to attributes on each plot in the national forest inventory, but these predictions are not associated with the litter samples collected over the last decade in the national forest inventory. Here we present, for the first time, estimates of litter carbon obtained using more than 5000 field measurements from the national forest inventory of the United States. The field-based estimates mark a 44% reduction (2081±77Tg) in litter carbon stocks nationally when compared to country-specific model predictions reported in previous United Framework Convention on Climate Change submissions. Our work suggests that Intergovernmental Panel on Climate Change defaults and country-specific models used to estimate litter carbon in temperate forest ecosystems may grossly overestimate the contribution of this pool in national carbon budgets. Published by Elsevier B.V.

  18. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.

    Science.gov (United States)

    Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E

    2017-10-01

    Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across

  19. quantifying the stock of soil organic carbon using multiple regression

    African Journals Online (AJOL)

    Osondu

    2012-03-15

    Mar 15, 2012 ... Depending on the changes in the level of soil organic matter, soils can act as sinks of carbon concentration in the atmosphere, thereby increasing the concentration of carbon in the soil. (Dey, 2005). Therefore, soils according to Lal,. (2005) are the largest carbon reservoir of the terrestrial carbon cycle, this is ...

  20. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    Science.gov (United States)

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Influence of stocking, site quality, stand age, low-severity canopy disturbance, and forest composition on sub-boreal aspen mixedwood carbon stocks

    Science.gov (United States)

    Reinikainen, Michael; D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Low-severity canopy disturbance presumably influences forest carbon dynamics during the course of stand development, yet the topic has received relatively little attention. This is surprising because of the frequent occurrence of such events and the potential for both the severity and frequency of disturbances to increase as a result of climate change. We investigated the impacts of low-severity canopy disturbance and average insect defoliation on forest carbon stocks and rates of carbon sequestration in mature aspen mixedwood forests of varying stand age (ranging from 61 to 85 years), overstory composition, stocking level, and site quality. Stocking level and site quality positively affected the average annual aboveground tree carbon increment (CAAI), while stocking level, site quality, and stand age positively affected tree carbon stocks (CTREE) and total ecosystem carbon stocks (CTOTAL). Cumulative canopy disturbance (DIST) was reconstructed using dendroecological methods over a 29-year period. DIST was negatively and significantly related to soil carbon (CSOIL), and it was negatively, albeit marginally, related to CTOTAL. Minima in the annual aboveground carbon increment of trees (CAI) occurred at sites during defoliation of aspen (Populus tremuloides Michx.) by forest tent caterpillar (Malacosoma disstria Hubner), and minima were more extreme at sites dominated by trembling aspen than sites mixed with conifers. At sites defoliated by forest tent caterpillar in the early 2000s, increased sequestration by the softwood component (Abies balsamea (L.) Mill. and Picea glauca (Moench) Voss) compensated for overall decreases in CAI by 17% on average. These results underscore the importance of accounting for low-severity canopy disturbance events when developing regional forest carbon models and argue for the restoration and maintenance of historically important conifer species within aspen mixedwoods to enhance stand-level resilience to disturbance agents and maintain

  2. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  3. Climate warming can accelerate carbon fluxes without changing soil carbon stocks

    Science.gov (United States)

    Ziegler, Susan E.; Benner, Ronald; Billings, Sharon A.; Edwards, Kate A.; Philben, Michael; Zhu, Xinbiao; Laganière, Jerome

    2017-02-01

    Climate warming enhances multiple ecosystem C fluxes, but the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal to centennial time scales remains unclear. We investigated the effects of climate on C fluxes and soil C stocks using space-for-time substitution along a boreal forest climate gradient encompassing spatially replicated sites at each of three latitudes. All regions had similar SOC concentrations and stocks (5.6 to 6.7 kg C m-2). The three lowest latitude forests exhibited the highest productivity across the transect, with tree biomass:age ratios and litterfall rates 300% and 125% higher than those in the highest latitude forests, respectively. Likewise, higher soil respiration rates ( 55%) and dissolved organic C fluxes ( 300%) were observed in the lowest latitude forests compared to those in the highest latitude forests. The mid-latitude forests exhibited intermediate values for these indices and fluxes. The mean radiocarbon content (∆14C) of mineral-associated SOC (+9.6 ‰) was highest in the lowest latitude forests, indicating a more rapid turnover of soil C compared to the mid- and highest latitude soils (∆14C of -35 and -30 ‰, respectively). Indicators of the extent of soil organic matter decomposition, including C:N, δ13C, and amino acid and alkyl-C:O-alkyl-C indices, revealed highly decomposed material across all regions. These data indicate that the lowest latitude forests experience accelerated C fluxes that maintain relatively young but highly decomposed SOC. Collectively, these observations of within-biome soil C responses to climate demonstrate that the enhanced rates of SOC loss that typically occur with warming can be balanced by enhanced rates of C inputs.

  4. Carbon stock of oil palm plantations and tropical forests in Malaysia

    DEFF Research Database (Denmark)

    Kho, Lip Khoon; Jepsen, Martin Rudbeck

    2015-01-01

    cultivation (fallow forests) and 3) oil palm plantations. The forest ecosystems are classified by successional stage and edaphic conditions and represent samples along a forest succession continuum spanning pioneer species in shifting cultivation fallows to climax vegetation in old-growth forests. Total......In Malaysia, the main land change process is the establishment of oil palm plantations on logged-over forests and areas used for shifting cultivation, which is the traditional farming system. While standing carbon stocks of old-growth forest have been the focus of many studies, this is less...... the case for Malaysian fallow systems and oil palm plantations. Here, we collate and analyse Malaysian datasets on total carbon stocks for both above- and below-ground biomass. We review the current knowledge on standing carbon stocks of 1) different forest ecosystems, 2) areas subject to shifting...

  5. Climate change mitigation by carbon stock - the case of semi-arid West Africa

    Science.gov (United States)

    Lykke, A. M.; Barfod, A. S.; Tinggaard Svendsen, G.; Greve, M.; Svenning, J.-C.

    2009-11-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.

  6. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean.

    Science.gov (United States)

    Adame, Maria Fernanda; Kauffman, J Boone; Medina, Israel; Gamboa, Julieta N; Torres, Olmo; Caamal, Juan P; Reza, Miriam; Herrera-Silveira, Jorge A

    2013-01-01

    Coastal wetlands can have exceptionally large carbon (C) stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR) in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes), and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N) and phosphorus (P) from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1)) followed by medium mangroves (623±41 Mg ha(-1)), dwarf mangroves (381±52 Mg ha(-1)) and marshes (177±73 Mg ha(-1)). At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%). Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.

  7. Correlation of Carbon Stock and Biodiversity Index at the Small Scale Agroforestry Landscape in Ciliwung Watershed

    Science.gov (United States)

    Choliq, M. B. S.; Kaswanto, R. L.

    2017-10-01

    Pekarangan is part of a complex of small-scale agroforestry landscape. Pekarangan have 3 functions i.e. ecological, economic, and social. ecological function, for providing landscape services such as carbon stock and biodiversity; economic function, can supplies foods and nutrition; and social function, for building low carbon communities and increasing the environmental awareness. Therefore, this research aims to correlate carbon stocks and biodiversity index of Pekarangan in Ciliwung Watershed. This study has measured 48 samples which were divided in three stream, namely upstream, midstream, and downstream. The samples were divided into four groups, G1 (pekarangan size less than 120 m2 and doesn’t have other agricultural land (no other agricultural land - OAL), G2 (<120 m2 with OAL < 1000 m2), G3 (120-400 m2 with no OAL) and G4 (120-400 m2 with OAL < 1000 m2). The results show that correlation between carbon stock and biodiversity index value is R2 = 0.05. The results showed no correlation between carbon stocks and biodiversity index could be due to the amount of Pekarangan owners who prefer potted plants than plant a tree, so that the carbon sequestered in the Pekarangan only slightly.

  8. PHYTOSOCIOLOGICAL AND CARBON STOCK ANALYSIS IN THE TREE LAYER OF A SEMIDECIDUOUS FOREST FRAGMENT

    Directory of Open Access Journals (Sweden)

    Ricardo de Oliveira Gaspar

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814569The studies directed to quantify the carbon fixed stocks by natural forests are in ample evidence, as well as discussion about the effectiveness of the recovery of degraded areas as a strategy to reduce atmospheric CO2 levels. In this sense, this study had two purposes: i quantify the carbon stocks present in the shoot biomass of a tropical semi-deciduous Montana fragment, which belongs to the Atlantic Forest biome in Minas Gerais state and; ii incorporate the variable carbon stock in the horizontal phytosociological analysis structure and compare the results to those obtained by the standard methodology without using the variable in the calculation of the species importance value. The results indicate that the carbon stock equals to the fragments found at the intermediate succession stage, and that the carbon variable use greatly influences the species importance value. This methodology serves as a support for the selection of species which present the greatest potential to sequester carbon and may support programs for the remnant restoration of the Atlantic Forest biome.

  9. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  10. The U.S. forest carbon accounting framework: stocks and stock change, 1990-2016

    Science.gov (United States)

    Christopher W. Woodall; John W. Coulston; Grant M. Domke; Brian F. Walters; David N. Wear; James E. Smith; Hans-Erik Andersen; Brian J. Clough; Warren B. Cohen; Douglas M. Griffith; Stephen C. Hagen; Ian S. Hanou; Michael C. Nichols; Charles H. (Hobie) Perry; Matthew B. Russell; Jim Westfall; Barry T. (Ty) Wilson

    2015-01-01

    As a signatory to the United Nations Framework Convention on Climate Change, the United States annually prepares an inventory of carbon that has been emitted and sequestered among sectors (e.g., energy, agriculture, and forests). For many years, the United States developed an inventory of forest carbon by comparing contemporary forest inventories to inventories that...

  11. Sampling protocol recommendations for measuring soil organic carbon stocks in the tropics

    Science.gov (United States)

    van Straaten, Oliver; Veldkamp, Edzo; Corre, Marife D.

    2013-04-01

    In the tropics, there is an urgent need for cost effective sampling approaches to quantify soil organic carbon (SOC) changes associated with land-use change given the lack of reliable data. The tropics are especially important considering the high deforestation rates, the huge belowground carbon pool and the fast soil carbon turnover rates. In the framework of a pan-tropic (Peru, Cameroon and Indonesia) land-use change study, some highly relevant recommendations on the SOC stocks sampling approaches have emerged. In this study, where we focused on deeply weathered mineral soils, we quantified changes in SOC stock following land-use change (deforestation and subsequent establishment of other land-uses). We used a space-for-time substitution sampling approach, measured SOC stocks in the top three meters of soil and compared recently converted land-uses with adjacent reference forest plots. In each respective region we investigated the most predominant land-use trajectories. In total 157 plots were established across the three countries, where soil samples were taken to a depth of three meters from a central soil pit and from the topsoil (to 0.5m) from 12 pooled composite samples. Finding 1 - soil depth: despite the fact that the majority of SOC stock from the three meter profile is found below one meter depth (50 to 60 percent of total SOC stock), the significant changes in SOC were only measured in the top meter of soil, while the subsoil carbon stock remained relatively unchanged by the land-use conversion. The only exception was for older (>50 yrs) cacao plantations in Cameroon where significant decreases were found below one meter. Finding 2 - pooled composite samples taken across the plot provided more spatially representative estimates of SOC stocks than samples taken from the central soil pit.

  12. Impacto da conversão floresta - pastagem nos estoques e na dinâmica do carbono e substâncias húmicas do solo no bioma Amazônico Impact of forest-pasture conversion on stocks and dynamics of soil carbon and humic substances in the Amazon

    Directory of Open Access Journals (Sweden)

    Edson Alves de Araújo

    2011-03-01

    of Rio Branco and comprises an area of bamboo- and palm-dominated open forest with two B. brizantha pastures of 3 and 10 years old. The second site, dominated by a dystrophic Red Yellow Latosol (Oxisol, is located in the municipality of Senador Guiomard and comprises an area of dense forest and a 20-year old B. brizantha pasture. In each site soil samples were collected in triplicate at depths of 0-5, 5-10, 10-20 and 20-40 cm. Samples were evaluated for physical and chemical characteristics, C of humic substances and light organic matter, and the isotopic composition of soil and its organic fractions to 1 m depth, determining the percentage of C derived of both grassland and forest. There were increases in stocks of soil C and δ13C soil with the time of grazing in both sites. The percentage of C derived from pasture was much higher in the surface layer of the Senador Guiomard site following 20 years of grazing, with proportions that reached 70% of the total C. δ13C values for the humic acids ranged from -12.19 to -17.57 ‰, indicating a higher proportion of C derived from pasture. The MOS structural stability inferred by the relationship of the humin with both fulvic acid and humic acid fractions (HUM / FAF + FAH tended to decrease in grassland ecosystems when compared with native forests.

  13. Eelgrass Blue Carbon-Quantification of Carbon Stocks and Sequestration Rates in Zostera Marina Beds in the Salish Sea

    Science.gov (United States)

    Lutz, M. D.; Rybczyk, J.; Poppe, K.; Johnson, C.; Kaminsky, M.; Lanphear, M.

    2017-12-01

    Seagrass meadows provide more than habitat, biodiversity support, wave abatement, and water quality improvement; they help mitigate climate change by taking up and storing (sequestering) carbon (C), reportedly at rates only surpassed worldwide by salt marsh and mangrove ecosystems. Now that their climate mitigation capacity has earned seagrass ecosystems a place in the Verified Carbon Standard voluntary greenhouse gas program, accurate ecosystem carbon accounting is essential. Though seagrasses vary in carbon storage and accumulation greatly across species and geography, the bulk of data included in calculating global averages involves tropical and subtropical seagrasses. We know little regarding carbon stocks nor sequestration rates for eelgrass (Zostera marina) meadows in the Pacific Northwest. The intent of our study was to quantify carbon stocks and sequestration rates in the central Salish Sea of Washington State. We gathered sediment cores over three bays, as close to 1 m in depth as possible, both on foot and while scuba diving. We measured bulk density, carbon concentration, carbon stock, grain size, and carbon accumulation rate with depth. Results from our study show lower estimated Corg concentration (mean = 0.39% C, SE=0.01, range=0.11-1.75, SE=0.01), Corg stock (mean=24.46 Mg ha-1, SE=0.00, range=16.31-49.99.70), and C sequestration rates (mean=33.96 g m-2yr-1, range=11.4-49.5) than those reported in published studies from most other locations. Zostera marina is highly productive, yet does not seem to have the capacity to store C in its sediments like seagrasses in warmer climes. These data have implications in carbon market trading, when determining appropriate seagrass restoration site dimensions to offset emissions from transportation, industry, and seagrass habitat disturbance. Awareness of lower rates could prevent underestimating the area appropriate for mitigation or restoration.

  14. Carbon stocks and fluxes in managed peatlands in northern Borneo

    Science.gov (United States)

    Arn Teh, Yit; Manning, Frances; Cook, Sarah; Zin Zawawi, Norliyana; Sii, Longwin; Hill, Timothy; Page, Susan; Whelan, Mick; Evans, Chris; Gauci, Vincent; Chocholek, Melanie; Khoon Kho, Lip

    2017-04-01

    Oil palm is the largest agricultural crop in the tropics and accounts for 13 % of current tropical land area. Patterns of land-atmosphere exchange from oil palm ecosystems therefore have potentially important implications for regional and global C budgets due to the large scale of land conversion. This is particularly true for oil palm plantations on peat because of the large C stocks held by tropical peat soils that are potential sensitivity to human disturbance. Here we report preliminary findings on C stocks and fluxes from a long-term, multi-scale project in Sarawak, Malaysia that aims to quantify the impacts of oil palm conversion on C and greenhouse gas fluxes from oil palm recently established on peat. Land-atmosphere fluxes were determined using a combination of top-down and bottom-up methods (eddy covariance, canopy/stem and soil flux measurements, net primary productivity). Fluvial fluxes were determined by quantifying rates of dissolved and particulate organic C export. Ecosystem C dynamics were determined using the intensive C plot method, which quantified all major C stocks and fluxes, including plant and soil stocks, leaf litterfall, aboveground biomass production, root production, stem/canopy respiration, root-rhizosphere respiration, and heterotrophic soil respiration. Preliminary analysis indicates that vegetative aboveground biomass in these 7 year old plantations was 8.9-11.9 Mg C ha-1, or approximately one-quarter of adjacent secondary forest. Belowground biomass was 5.6-6.5 Mg C ha-1; on par with secondary forests. Soil C stocks in the 0-30 cm depth was 233.1-240.8 Mg C ha-1, or 32-36% greater than soil C stocks in secondary forests at the same depth (176.8 Mg C ha-1). Estimates of vegetative aboveground and belowground net primary productivity were 1.3-1.7 Mg C ha-1 yr-1 and 0.8-0.9 Mg C ha-1 yr-1, respectively. Fruit brunch production was approximately 67 Mg C ha-1over 7 yearsor 9.6 Mg C ha-1 yr-1. Total soil respiration rates were 18 Mg C ha

  15. From berries to blocks: carbon stock quantification of a California vineyard.

    Science.gov (United States)

    Morandé, Jorge Andres; Stockert, Christine M; Liles, Garrett C; Williams, John N; Smart, David R; Viers, Joshua H

    2017-12-01

    Quantifying terrestrial carbon (C) stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California's northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal. Total vine C was estimated at 12.3 Mg C ha -1 , of which 8.9 Mg C ha -1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha -1 from leaves and canes and 1.7 Mg C ha -1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R 2  = 0.85), pruning weights and leaf and fruit C stocks (R 2  = 0.93), and between fruit weight and annual C stocks (R 2  = 0.96). Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks.

  16. From berries to blocks: carbon stock quantification of a California vineyard

    Directory of Open Access Journals (Sweden)

    Jorge Andres Morandé

    2017-02-01

    Full Text Available Abstract Background Quantifying terrestrial carbon (C stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California’s northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal. Results Total vine C was estimated at 12.3 Mg C ha−1, of which 8.9 Mg C ha−1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha−1 from leaves and canes and 1.7 Mg C ha−1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R2 = 0.85, pruning weights and leaf and fruit C stocks (R2 = 0.93, and between fruit weight and annual C stocks (R2 = 0.96. Conclusions Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks.

  17. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States

    Directory of Open Access Journals (Sweden)

    Liknes Greg C

    2008-06-01

    Full Text Available Abstract Background Coarse and fine woody debris are substantial forest ecosystem carbon stocks; however, there is a lack of understanding how these detrital carbon stocks vary across forested landscapes. Because forest woody detritus production and decay rates may partially depend on climatic conditions, the accumulation of coarse and fine woody debris carbon stocks in forests may be correlated with climate. This study used a nationwide inventory of coarse and fine woody debris in the United States to examine how these carbon stocks vary by climatic regions and variables. Results Mean coarse and fine woody debris forest carbon stocks vary by Köppen's climatic regions across the United States. The highest carbon stocks were found in regions with cool summers while the lowest carbon stocks were found in arid desert/steppes or temperate humid regions. Coarse and fine woody debris carbon stocks were found to be positively correlated with available moisture and negatively correlated with maximum temperature. Conclusion It was concluded with only medium confidence that coarse and fine woody debris carbon stocks may be at risk of becoming net emitter of carbon under a global climate warming scenario as increases in coarse or fine woody debris production (sinks may be more than offset by increases in forest woody detritus decay rates (emission. Given the preliminary results of this study and the rather tenuous status of coarse and fine woody debris carbon stocks as either a source or sink of CO2, further research is suggested in the areas of forest detritus decay and production.

  18. Digital mapping of soil organic carbon contents and stocks in Denmark.

    Science.gov (United States)

    Adhikari, Kabindra; Hartemink, Alfred E; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B; Greve, Mogens H

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0-5, 5-15, 15-30, 30-60 and 60-100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg(-1) was reported for 0-5 cm soil, whereas there was on average 2.2 g SOC kg(-1) at 60-100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg(-1) was found at 60-100 cm soil depth. Average SOC stock for 0-30 cm was 72 t ha(-1) and in the top 1 m there was 120 t SOC ha(-1). In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories.

  19. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems.

    Science.gov (United States)

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-13

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha(-1) yr(-1), with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  20. Organic carbon stocks and sequestration rates of forest soils in Germany

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-01-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha−1 yr−1. Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. PMID:24616061

  1. Organic carbon stocks and sequestration rates of forest soils in Germany.

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  2. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard...... soil depth intervals (025, 5215, 15230, 30260 and 602 100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content...

  3. Patterning between urban soil color and carbon stocks

    Science.gov (United States)

    Schifman, L. A.; Herrmann, D.; Shuster, W.

    2017-12-01

    Urban soils are extensively modified compared to their non-urban counterparts. These modifications are expected to affect the vertical distribution of total soil carbon as well as its constituent pools - soil organic carbon, black carbon, and inorganic carbon. Assigning color to soil horizons using the Munsell color system is a standard field method employed by soil scientists that can also reveal generalizable information about various environmental metrics. A new dataset on urban soils and their reference counterparts that cover 11 regions in the United States and advances in quantitative pedology allowed us to construct a log-linear model that relates Value, the lightness of a color hue, to the concentration of total carbon throughout a soil column of up to 450 cm depth. Overall, the relationship between 671 points resulted in an r2 of 0.23 with a p<0.001. As expected, organic carbon, shifted values to the lower end of the scale (darker), whereas inorganic carbon increased soil color values (lighter). These findings allow for a simplified understanding of shifts in carbon pools throughout a soil profile.

  4. Effects of vegetation's degradation on carbon stock, morphological ...

    African Journals Online (AJOL)

    ndema

    properties are highly disturbed due to vegetation degradation. Deforestation release not only carbon in atmosphere but has also negative effects on biodiversity, soils protection and local climate regulation. More also, use land for urbanization and agriculture activities contribute gradually to release soils and plants carbon.

  5. Total and pyrogenic carbon stocks in black spruce forest floors from eastern Canada

    Science.gov (United States)

    Soucemarianadin, Laure; Quideau, Sylvie; MacKenzie, M. Derek; Munson, Alison; Boiffin, Juliette; Bernard, Guy; Wasylishen, Roderick

    2016-04-01

    In boreal forests, pyrogenic carbon (PyC), a by-product of recurrent wildfires, is an important component of the global soil C pool, although precise assessment of boreal PyC stock is scarce. In this study including 14 fire sites spreading over 600 km in the Quebec province, our aim was to better estimate total C stock and PyC stock in forest floors of Eastern Canada boreal forests. We also investigated the environmental conditions controlling the stocks and characterized the composition of the various forest floor layers. We analyzed the forest floor samples that were collected from mesic black spruce sites recently affected by fire (3-5 years) using elemental analysis and solid state 13C nuclear magnetic resonance (NMR) spectroscopy. PyC content was further estimated using a molecular mixing model on the 13C NMR data. Total C stock in forest floors averaged 5.7 ± 2.9 kg C/m2 and PyC stock 0.6 ± 0.3 kg C/m2. Total C stock was under control of the position in the landscape, with a greater accumulation of organic material on northern aspects and lower slope positions. In addition, total stock was significantly higher in spruce-dominated forest floors than in stands where jack pine was dominant. The PyC stock was significantly related to the atomic H/C ratio (R2 = 0.84) of the different organic layers. 13C NMR spectroscopy revealed a large increase in aromatic carbon in the deepest forest floor layer (humified H horizon) at the organic-mineral soil interface. The majority of the PyC stock was located in this horizon and had been formed during past high severity fires rather than during the most recent fire event. Conversely, the superficial "fresh" PyC layer, produced by early-season wildfires in 2005-2007, had NMR spectra fairly similar to unburned forest floors and comparatively low PyC stocks.

  6. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils

    NARCIS (Netherlands)

    Khasanah, N.; Noordwijk, van M.; Ningsih, H.

    2015-01-01

    The carbon (C) footprint of palm oil production is needed to judge emissions from potential biofuel use. Relevance includes wider sustainable palm oil debates. Within life cycle analysis, aboveground C debt is incurred if the vegetation replaced had a higher C stock than oil palm plantations. Our

  7. Increasing carbon sinks in European forests: effect of afforestation and changes in mean growing stock volume

    NARCIS (Netherlands)

    Vilén, T.; Cienciala, E.; Schelhaas, M.; Verkerk, P.J.; Lindner, M.; Peltola, H.

    2016-01-01

    In Europe, both forest area and growing stock have increased since the 1950s, and European forests have acted as a carbon sink during the last six decades. However, the contribution of different factors affecting the sink is not yet clear. In this study, historical inventory data were combined with

  8. Trends in management of the world's forests and impacts on carbon stocks

    Science.gov (United States)

    Richard Birdsey; Yude. Pan

    2015-01-01

    Global forests are increasingly affected by land-use change, fragmentation, changing management objectives, and degradation. In this paper we broadly characterize trends in global forest area by intensity of management, and provide an overview of changes in global carbon stocks associated with managed forests. We discuss different interpretations of "management...

  9. Enhancing Carbon Stocks and Reducing CO2 Emissions in Agriculture and Natural Resource Management Projects : Toolkit

    OpenAIRE

    World Bank

    2012-01-01

    There is global interest in promoting mitigation and adaptation in agriculture, forest, and other land-use (AFOLU) sectors to address the twin goals of climate change and sustainable development. This guideline deals with how to enhance carbon stocks in general in all land-based projects and its specific relationship with agriculture productivity. It outlines specific steps and procedures ...

  10. Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods

    Science.gov (United States)

    Zhaodi Guo; Jingyun Fang; Yude Pan; Richard. Birdsey

    2010-01-01

    Several studies have reported different estimates for forest biomass carbon (C) stocks in China. The discrepancy among these estimates may be largely attributed to the methods used. In this study, we used three methods [mean biomass density method (MBM), mean ratio method (MRM), and continuous biomass expansion factor (BEF) method (abbreviated as CBM)] applied to...

  11. Biomasse et stocks de carbone des forêts tropicales africaines (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Loubota Panzou, GJ.

    2016-01-01

    Full Text Available Biomass and carbon stocks of tropical African forests. A review. Introduction. Quantifying the biomass and carbon stocks contained in tropical forests has become an international priority for the implementation of the REDD+ mechanism. Forest biomass is estimated at three successive levels: the tree, the stand and the region level. This paper reviews the state of the art regarding the estimation of biomass and carbon stocks in tropical African forests. Literature. This review highlights the fact that very few allometric equations, equations used for estimating the biomass of the tree using non-destructive measurements (diameter, height, have been established for tropical African forests. At the stand level, the review highlights the spatial and temporal variations in biomass between forest types in Central and Eastern Africa. While biomass recovery after a disturbance (logging, for instance is rather quick, a great deal of uncertainty still remains regarding the spatial variation in biomass, and there is no consensus on a regional biomass map. The quality of biomass mapping in tropical Africa strongly depends on the type of remotely-sensed data being used (optical, RADAR or LIDAR, and the allometric equation used to convert forest inventory data into biomass. Conclusions. Based on the lack of precision of the available allometric equations and forest inventory data and the large spatial scale involved, many uncertainties persist in relation to the estimation of the biomass and carbon stocks contained in African tropical forests.

  12. Data for developing allometric models and evaluating carbon stocks of the Zambezi Teak Forests in Zambia

    NARCIS (Netherlands)

    Ngoma, Justine; Moors, E.J.; Kruijt, B.; Speer, James H.; Vinya, Royd; Chidumayo, Emmanuel N.; Leemans, H.B.J.

    2018-01-01

    This paper presents data on carbon stocks of tropical tree species along a rainfall gradient. The data was generated from the Sesheke, Namwala, and Kabompo sites in Zambia. Though above-ground data was generated for all these three sites, we uprooted trees to determine below-ground biomass from the

  13. Carbon and nitrogen stocks in the soils of Central and Eastern Europe

    NARCIS (Netherlands)

    Batjes, N.H.

    2002-01-01

    Soil organic carbon and total nitrogen stocks are presented for Central and Eastern Europe. The study uses the soil geographic and attribute data held in a 1:2 500 000 scale Soil and Terrain (SOTER) database, covering Belarus, Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Moldova,

  14. Linking carbon stock change from land-use change to consumption of agricultural products: Alternative perspectives

    NARCIS (Netherlands)

    Goh, Chun Sheng; Wicke, Birka; Faaij, André; Bird, David Neil; Schwaiger, Hannes; Junginger, Martin

    2016-01-01

    Abstract Agricultural expansion driven by growing demand has been a key driver for carbon stock change as a consequence of land-use change (CSC-LUC). However, its relative role compared to non-agricultural and non-productive drivers, as well as propagating effects were not clearly addressed. This

  15. An empirical assessment of forest floor carbon stock components across the United States

    Science.gov (United States)

    Christopher W. Woodall; Charles H. Perry; James A. Westfall

    2012-01-01

    Despite its prevalent reporting in regional/national greenhouse gas inventories (NGHGI), forest floor (FF) carbon (C) stocks (including litter, humus, and fine woody debris [FWD]) have not been empirically measured using a consistent approach across forests of the US. The goal of this study was to use the first national field inventory of litter and humic layer depths...

  16. High-severity wildfire effects on carbon stocks and emissions in fuels treated and untreated forest

    Science.gov (United States)

    Malcolm P. North; Matthew D. Hurteau

    2011-01-01

    Forests contain the world's largest terrestrial carbonstocks, but in seasonally dry environments stock stability can be compromised if burned by wildfire, emitting carbon back to the atmosphere. Treatments to reduce wildfireseverity can reduce emissions, but with an immediate cost of reducing carbonstocks. In this study we examine the tradeoffs in...

  17. Comparing a Carbon Budget for the Amazon Basin Derived from Aircraft Observations

    Science.gov (United States)

    Chow, V. Y.; Dayalu, A.; Wofsy, S. C.; Gerbig, C.

    2015-12-01

    We present and compare a carbon budget for the Brazilian Amazon Basin based on the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program, which occurred in November 2008 & May 2009, to other published carbon budgets. In particular, we compare our budget and analysis to others also derived from aircraft observations. Using mesoscale meteorological fields from ECMWF and WRF, we drive the Stochastic Time-Inverted Lagrangian Transport (STILT) model and couple the footprint, or influence, to a biosphere model represented by the Vegetation Photosynthesis Respiration Model (VPRM). Since it is the main driver for the VPRM, we use observed shortwave radiation from towers in Brazil and French Guyana to examine the modeled shortwave radiation data from GL 1.2 (a global radiation model based on GOES 8 visible imagery), ECMWF, and WRF to determine if there are any biases in the modeled shortwave radiation output. We use WRF-STILT and ECMWF-STILT, GL 1.2 shortwave radiation, temperature, and vegetation maps (IGBP and SYNMAP) updated by landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil, to compute hourly a priori CO2 fluxes by calculating Gross Ecosystem Exchange and Respiration for the 4 significant vegetation types across two (wet and dry) seasons as defined by 10-years of averaged TRIMM precipitation data. SF6 from stations and aircraft observations are used to determine the anthropogenic CO2 background and the lateral boundary conditions are taken from CarbonTracker2013B. The BARCA aircraft mixing ratios are then used as a top down constraint in an inversion framework that solves for the parameters controlling the fluxes for each vegetation type. The inversion provides scaling factors for GEE and R for each vegetation type in each season. From there, we derive a budget for the Basin and compare/contrast with other published basinwide CO2 fluxes.

  18. Soil carbon stocks and carbon sequestration rates in seminatural grassland in Aso region, Kumamoto, Southern Japan.

    Science.gov (United States)

    Toma, Yo; Clifton-Brown, John; Sugiyama, Shinji; Nakaboh, Makoto; Hatano, Ryusuke; Fernández, Fabián G; Ryan Stewart, J; Nishiwaki, Aya; Yamada, Toshihiko

    2013-06-01

    Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well-informed, land-use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km(2) (767-937 m asl.) from the surface down to the k-Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using (14) C dating) and δ(13) C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C-sequestration rates. The mean total C stock of all six sites was 232 Mg C ha(-1) (28-417 Mg C ha(-1) ), which equates to a soil C sequestration rate of 32 kg C ha(-1)  yr(-1) over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha(-1)  yr(-1) , respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ(13) C abundance. We conclude that the seminatural, C4 -dominated grassland system serves as an important C sink, and worthy of future conservation. © 2013 Blackwell Publishing Ltd.

  19. Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China.

    Science.gov (United States)

    Xu, Mengjie; Ji, Haibao; Zhuang, Shunyao

    2018-01-01

    Latitude is an important factor that influences the carbon stock of Moso bamboo (Phyllostachys pubescens) forests. Accurate estimation of the carbon stock of Moso bamboo forest can contribute to sufficient evaluation of forests in carbon sequestration worldwide. Nevertheless, the effect of latitude on the carbon stock of Moso bamboo remains unclear. In this study, a field survey with 36 plots of Moso bamboo forests along a latitude gradient was conducted to investigate carbon stock. Results showed that the diameter at breast height (DBH) of Moso bamboo culms increased from 8.37 cm to 10.12 cm that well fitted by Weibull model, whereas the bamboo culm density decreased from 4722 culm ha-1 to 3400 culm ha-1 with increasing latitude. The bamboo biomass carbon decreased from 60.58 Mg C ha-1 to 48.31 Mg C ha-1 from north to south. The total carbon stock of Moso bamboo forests, which comprises soil and biomass carbon, ranged from 87.83 Mg C ha-1 to 119.5 Mg C ha-1 and linearly increased with latitude. As a fast-growing plant, Moso bamboo could be harvested amounts of 6.0 Mg C ha-1 to 7.6 Mg C ha-1 annually, which indicates a high potential of this species for carbon sequestration. Parameters obtained in this study can be used to accurately estimate the carbon stock of Moso bamboo forest to establish models of the global carbon balance.

  20. Biophysical Controls over Carbon and Nitrogen Stocks in Desert Playa Wetlands

    Science.gov (United States)

    McKenna, O. P.; Sala, O. E.

    2014-12-01

    Playas are ephemeral desert wetlands situated at the bottom of closed catchments. Desert playas in the Southwestern US have not been intensively studied despite their potential importance for the functioning of desert ecosystems. We want to know which geomorphic and ecological variables control of the stock size of soil organic carbon, and soil total nitrogen in playas. We hypothesize that the magnitude of carbon and nitrogen stocks depends on: (a) catchment size, (b) catchment slope, (d) catchment vegetation cover, (e) bare-ground patch size, and (f) catchment soil texture. We chose thirty playas from across the Jornada Basin (Las Cruces, NM) ranging from 0.5-60ha in area and with varying catchment characteristics. We used the available 5m digital elevation map (DEM) to calculate the catchment size and catchment slope for these thirty playas. We measured percent cover, and patch size using the point-intercept method with three 10m transects in each catchment. We used the Bouyoucos-hydrometer soil particle analysis to determine catchment soil texture. Stocks of organic carbon and nitrogen were measured from soil samples at four depths (0-10 cm, 10-30 cm, 30-60 cm, 60-100 cm) using C/N combustion analysis. In terms of nitrogen and organic carbon storage, we found soil nitrogen values in the top 10cm ranging from 41.963-214.365 gN/m2, and soil organic carbon values in the top 10cm ranging from 594.339-2375.326 gC/m2. The results of a multiple regression analysis show a positive relationship between catchment slope and both organic carbon and nitrogen stock size (nitrogen: y= 56.801 +47.053, R2=0.621; organic carbon: y= 683.200 + 499.290x, R2= 0.536). These data support our hypothesis that catchment slope is one of factors controlling carbon and nitrogen stock in desert playas. We also applied our model to the 69 other playas of the Jornada Basin and estimated stock sizes (0-10cm) between 415.07-447.97 Mg for total soil nitrogen and 4627.99-5043.51 Mg for soil organic

  1. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  2. Contrasts in Areas of Rubber Tree Clones in Regard to Soil and Biomass Carbon Stocks

    Directory of Open Access Journals (Sweden)

    Anderson Ribeiro Diniz

    2015-10-01

    Full Text Available ABSTRACT Rubber tree (Hevea brasiliensis crop may accumulate significant amounts of carbon either in biomass or in the soil. However, a comprehensive understanding of the potential of the C stock among different rubber tree clones is still distant, since clones are typically developed to exhibit other traits, such as better yield and disease tolerance. Thus, the aim of this study was to address differences among different areas planted to rubber clones. We hypothesized that different rubber tree clones, developed to adapt to different environmental and biological constrains, diverge in terms of soil and plant biomass C stocks. Clones were compared in respect to soil C stocks at four soil depths and the total depth (0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.00-0.40 m, and in the different compartments of the tree biomass. Five different plantings of rubber clones (FX3864, FDR 5788, PMB 1, MDX 624, and CDC 312 of seven years of age were compared, which were established in a randomized block design in the experimental field in Rio de Janeiro State. No difference was observed among plantings of rubber tree clones in regard to soil C stocks, even considering the total stock from 0.00-0.40 m depth. However, the rubber tree clones were different from each other in terms of total plant C stocks, and this contrast was predominately due to only one component of the total C stock, tree biomass. For biomass C stock, the MDX 624 rubber tree clone was superior to other clones, and the stem was the biomass component which most accounted for total C biomass. The contrast among rubber clones in terms of C stock is mainly due to the biomass C stock; the aboveground (tree biomass and the belowground (soil compartments contributed differently to the total C stock, 36.2 and 63.8 %, respectively. Rubber trees did not differ in relation to C stocks in the soil, but the right choice of a rubber clone is a reliable approach for sequestering C from the air in the

  3. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil

    Directory of Open Access Journals (Sweden)

    L. M. Sanders

    2018-01-01

    Full Text Available Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers. A sediment accumulation rate of  ∼ 4 mm yr−1 for the previous  ∼ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m−2 yr−1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in

  4. The Effectiveness of Ameliorant to Increase Carbon Stock of Oilpalm and Rubber Plantation on Peatland

    Directory of Open Access Journals (Sweden)

    Ai Dariah

    2015-05-01

    Full Text Available Application of peatland amelioration can improve soil quality, reduce GHG emissions, and increase carbon sequestration. The research aimed to study the effect of peatland amelioration on oil palm and rubber carbon stock improvement. Research was conducted from August 2013 until June 2014. The researches on oil palm were done in Arang-arang Village, Kumpeh Subdistrict, Muaro Jambi District, and in Lubuk Ogong Village, Bandar Seikijang Sub-district, Pelalawan District. Both sites are in Jambi and Riau Province. The research on rubber was done in Jabiren Village, Jabiren Raya Subdistrict, Pulang Pisau District, Central Kalimantan Province. The study used a Randomized Completely Block Design (RCBD, in four treatments and four replications. The treatments were pugam (peat fertilizer enriched by polyvalent cation, manure; empty fruit bunch compost, and control (no application. The measurement of C stock was performed 10 months after application using nondestructive methods. The results showed that peatland amelioration treatments had no significant effect to improve C stock on oil palm in 6 years old and 7 years old of rubber. After 10 months of amelioration application, the treatments increased C - stock of oil palm and rubber were 2.1-2.4 Mg ha-1 and 5-11 Mg ha-1, respectively. Longer time observation may be needed to study the effect of ameliorant on C-stock of annual crops.

  5. Ameliorant Application on Variation of Carbon Stock and Ash Content on Peatland South Kalimantan

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2013-03-01

    Full Text Available Carbon stock on peatlands are large and will be easily emitted if the land is opened or drained, therefore the measurements of carbon stocks and ash content are important to know the amount of emissions and agricultural sustainability in peatlands. This study aimed to determine carbon stock and ash content on peatlands in the Indonesia Climate Change Trust Fund (ICCTF located in South Kalimantan on the geographic position S. 03°25’52" and E. 114°47’6.5". The experiment consisted of six treatments of ameliorant materials namely; mineral soil, peat fertilizer A, peat fertilizer T, manure, ash, and control. The results showed that the variation of peat soil properties was very high at this location. Peat thickness ranged from 36-338 cm, and this led to high variations in carbon stocks ranged between 161.8 – 1142.2 Mg ha-1. Besides ash contents of the soil were also highly varied ranged from 3.4 – 28.5%. This natural variation greatly affected the ICCTF study design. Mineral soil treatment had a mean carbon stock (961.3 ± 61.5 Mg ha-1 which was higher and different from other treatments. High ash content was obtained in the ash treatment (18.6 ± 2.5% and manure (15.7 ± 3.6%. It is recommended that the analysis of plant responses and greenhouse gas emissions using a single regression analysis and multiple regression with ash content as one of the independent variables are needed.

  6. Carbon balance variability in the Amazon Basin with climate change based on regular atmospheric profiling of greenhouse gases

    Science.gov (United States)

    Gatti, L.; Domingues, L. G.; Gloor, M.; Miller, J. B.; Peters, W.; Silva, M. G.; Correia, C. S. D. C.; Basso, L. S.; Alden, C. B.; Borges, V. F.; Marani, L.; Santos, R. S.; Crispim, S. P.; Sanches, A.; Costa, W. R.

    2017-12-01

    Net carbon exchange between tropical land and the atmosphere is potentially important because the vast amounts of carbon in forests and soils can be released on short time-scales e.g. via deforestation or changes in temperature and precipitation. Such changes may thus cause feedbacks on global climate as have been predicted in earth system models. The Amazon is the most significant region in the global carbon cycle, hosting by far the largest carbon vegetation and soil carbon pools ( 200 PgC). From 2010 onwards we have extended an earlier greenhouse gas measurement program to include regular vertical profiles of CO2 from the ground up to 4.5 km height at four sites along the main air-stream over the Amazon Basin. Our measurements demonstrate that surface flux signals are primarily concentrated to the lower 2 km and thus vertical profile measurements are ideally suited to estimate greenhouse gas balances. To understand the role of Amazon in global carbon budget it is important to maintain a long period of measurements that can represent the whole region. Our results already permit a range of insights about the magnitude, seasonality, inter-annual variation of carbon fluxes and their climate controls. Most recent years have been anomalously hot with the southern part of the Basin having warmed the most. Precipitation regimes also seem to have shifted with an increase in extreme floods. For the specific period we will discuss the period of 2010 to 2016, where the years 2010 and 2015/16 were anomalously dry and hot (both El Nino years) and the year 2013 was the wettest and coldest year. This period provides an interesting contrast of climatic conditions in a warming world with increasing human pressures and we will present the carbon balance for the basin during the last 7 years. We will analyze the effect of this climate variability on annual and seasonal carbon balances for these seven years using our atmospheric data. Our data permit us not only to estimate net CO2

  7. Organic Carbon Stocks, Dynamics and Restoration in Relation to Soils of Agroecosystems in Ethiopia: A Review

    Directory of Open Access Journals (Sweden)

    Getaneh Gebeyehu

    2017-02-01

    Full Text Available Soils represent the largest carbon pool and play important roles for carbon storage for prolonged periods in agroecosystems. A number of studies were conducted to quantify soil organic carbon (SOC worldwide. The objective of this review was to evaluate organic carbon stocks, dynamics and restoration in soils of agroecosystems in Ethiopia. Soil data from 32 different observations, representing four different agroecosystems, were analysed. The mean SOC stocks in the four agroecosystems varied and ranged from 25.66 (sub-humid agroecosystem to 113.17 (humid mid-highland agroecosystems Mg C ha-1 up to one meter depth. The trend of mean SOC followed (in descending order: humid mid-highland (113.17 Mg C ha-1 > per-humid highland (57.14 Mg C ha-1 > semi-arid (25.77 Mg C ha-1 > sub-humid (25.66 Mg C ha-1. Compared with soils of tropical countries, those in Ethiopian agroecosystems contained low SOC storage potential. This might be associated with differences in measurement and analysis methods as 53.1% of the studies employed the Walkley-Black Method, which is known to underestimate carbon stocks in addition to ecological and management effects. However, shifts of land management from rain-fed to irrigation farming systems exhibited progress in the improvement of mean SOC storage potential. The analyses showed that farming systems involving irrigation sequestered more carbon than rain-fed farm systems. The mean SOC in the various agricultural land uses followed the following trend (in descending order: agroforestry (153.57 Mg C ha-1 > grazing land (34.61 Mg C ha-1 > cereal cultivation (24.18 Mg C ha-1. Therefore, the possible solutions for improvement of organic carbon stocks would be implementation of appropriate restoration strategies based on agroecosystems.INTERNATIONAL JOURNAL OF ENVIRONMENT Volume-6, Issue-1, Dec-Feb 2016/17, page: 1-22 

  8. A cost-efficient method to assess carbon stocks in tropical peat soil

    Science.gov (United States)

    Warren, M. W.; Kauffman, J. B.; Murdiyarso, D.; Anshari, G.; Hergoualc'h, K.; Kurnianto, S.; Purbopuspito, J.; Gusmayanti, E.; Afifudin, M.; Rahajoe, J.; Alhamd, L.; Limin, S.; Iswandi, A.

    2012-11-01

    Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m-3; Cd) as a function of bulk density (gC cm-3; Bd), which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151) for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm-3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.

  9. Soil carbon stock change following afforestation in Northern Europe

    DEFF Research Database (Denmark)

    Bárcena, Teresa G; Kiær, Lars Pødenphant; Vesterdal, Lars

    2014-01-01

    of afforestation. Therefore, we conducted a meta-analysis of SOC stock change following afforestation in Northern Europe. Response ratios were calculated for forest floors and mineral soils (0–10 cm and 0–20/30 cm layers) based on paired control (former land use) and afforested plots. We analyzed the influence...... was a major factor contributing to changes in SOC after afforestation. In former croplands, SOC change differed between soil layers and was significantly positive (20%) in the 0–10 cm layer. Afforestation of former grasslands had a small negative (nonsignificant) effect indicating limited SOC change following...... indicated that meta-estimates in former land-use, forest type, and soil textural class alone were either offset or enhanced when confounding effects among variable classes were considered. Furthermore, effect sizes were slightly overestimated if sample dependence was not accounted for and if no mass...

  10. Oxidation and reduction rates for organic carbon in the Amazon mainstream tributary and floodplain, inferred from distributions of dissolved gases

    Science.gov (United States)

    Richey, Jeffrey E.; Devol, Allan H.; Wofsy, Steven C.; Victoria, Reynaldo; Riberio, Maria N. G.

    1986-01-01

    Concentrations of CO2, O2, CH4, and N2O in the Amazon River system reflect an oxidation-reduction sequence in combination with physical mixing between the floodplain and the mainstem. Concentrations of CO2 ranged from 150 microM in the Amazon mainstem to 200 to 300 microM in aerobic waters of the floodplain, and up to 1000 microM in oxygen-depleted environments. Apparent oxygen utilization (AOU) ranged from 80 to 250 microM. Methane was highly supersaturated, with concentrations ranging from 0.06 microM in the mainstem to 100 microM on the floodplain. Concentrations of N2O were slightly supersaturated in the mainstem, but were undersaturated on the floodplain. Fluxes calculated from these concentrations indicated decomposition of 1600 g C sq m y(-1) of organic carbon in Amazon floodplain waters. Analysis of relationships between CH4, O2, and CO2 concentrations indicated that approximately 50 percent of carbon mineralization on the floodplain is anaerobic, with 20 percent lost to the atmoshphere as CH4. The predominance of anaerobic metabolism leads to consumption of N2O on the flood plane. Elevated concentrations of CH4 in the mainstem probably reflect imput from the floodplain, while high levels of CO2 in the mainstem are derived from a combination of varzea drainage and in situ respiration.

  11. Organic carbon stock modelling for the quantification of the carbon sinks in terrestrial ecosystems

    Science.gov (United States)

    Durante, Pilar; Algeet, Nur; Oyonarte, Cecilio

    2017-04-01

    Given the recent environmental policies derived from the serious threats caused by global change, practical measures to decrease net CO2 emissions have to be put in place. Regarding this, carbon sequestration is a major measure to reduce atmospheric CO2 concentrations within a short and medium term, where terrestrial ecosystems play a basic role as carbon sinks. Development of tools for quantification, assessment and management of organic carbon in ecosystems at different scales and management scenarios, it is essential to achieve these commitments. The aim of this study is to establish a methodological framework for the modeling of this tool, applied to a sustainable land use planning and management at spatial and temporal scale. The methodology for carbon stock estimation in ecosystems is based on merger techniques between carbon stored in soils and aerial biomass. For this purpose, both spatial variability map of soil organic carbon (SOC) and algorithms for calculation of forest species biomass will be created. For the modelling of the SOC spatial distribution at different map scales, it is necessary to fit in and screen the available information of soil database legacy. Subsequently, SOC modelling will be based on the SCORPAN model, a quantitative model use to assess the correlation among soil-forming factors measured at the same site location. These factors will be selected from both static (terrain morphometric variables) and dynamic variables (climatic variables and vegetation indexes -NDVI-), providing to the model the spatio-temporal characteristic. After the predictive model, spatial inference techniques will be used to achieve the final map and to extrapolate the data to unavailable information areas (automated random forest regression kriging). The estimated uncertainty will be calculated to assess the model performance at different scale approaches. Organic carbon modelling of aerial biomass will be estimate using LiDAR (Light Detection And Ranging

  12. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  13. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  14. Terrestrial carbon sinks in the Brazilian Amazon and Cerrado region predicted from MODIS satellite data and ecosystem modeling

    Directory of Open Access Journals (Sweden)

    C. Potter

    2009-06-01

    Full Text Available A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000–2004. Net ecosystem production (NEP flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondônia and the northern portions of the state of Pará. These areas were not significantly impacted by the 2002–2003 El Niño event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhão and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  15. ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial-aquatic continuum of the Amazon basin

    Science.gov (United States)

    Lauerwald, Ronny; Regnier, Pierre; Camino-Serrano, Marta; Guenet, Bertrand; Guimberteau, Matthieu; Ducharne, Agnès; Polcher, Jan; Ciais, Philippe

    2017-10-01

    Lateral transfer of carbon (C) from terrestrial ecosystems into the inland water network is an important component of the global C cycle, which sustains a large aquatic CO2 evasion flux fuelled by the decomposition of allochthonous C inputs. Globally, estimates of the total C exports through the terrestrial-aquatic interface range from 1.5 to 2.7 Pg C yr-1 (Cole et al., 2007; Battin et al., 2009; Tranvik et al., 2009), i.e. of the order of 2-5 % of the terrestrial NPP. Earth system models (ESMs) of the climate system ignore these lateral transfers of C, and thus likely overestimate the terrestrial C sink. In this study, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems), the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin, the world's largest river system with regard to discharge and one of the most productive ecosystems in the world. With ORCHILEAK, we are able to reproduce observed terrestrial and aquatic fluxes of DOC and CO2 in the Amazon basin, both in terms of mean values and seasonality. In addition, we are able to resolve the spatio-temporal variability in C fluxes along the canopy-soil-water continuum at high resolution (1°, daily) and to quantify the different terrestrial contributions to the aquatic C fluxes. We simulate that more than two-thirds of the Amazon's fluvial DOC export are contributed by the decomposition of submerged litter. Throughfall DOC fluxes from canopy to ground are about as high as the total DOC inputs to inland waters. The latter

  16. Impact of deforestation on soil carbon stock and its spatial distribution in the Western Black Sea Region of Turkey.

    Science.gov (United States)

    Kucuker, Mehmet Ali; Guney, Mert; Oral, H Volkan; Copty, Nadim K; Onay, Turgut T

    2015-01-01

    Land use management is one of the most critical factors influencing soil carbon storage and the global carbon cycle. This study evaluates the impact of land use change on the soil carbon stock in the Karasu region of Turkey which in the last two decades has undergone substantial deforestation to expand hazelnut plantations. Analysis of seasonal soil data indicated that the carbon content decreased rapidly with depth for both land uses. Statistical analyses indicated that the difference between the surface carbon stock (defined over 0-5 cm depth) in agricultural and forested areas is statistically significant (Agricultural = 1.74 kg/m(2), Forested = 2.09 kg/m(2), p = 0.014). On the other hand, the average carbon stocks estimated over the 0-1 m depth were 12.36 and 12.12 kg/m(2) in forested and agricultural soils, respectively. The carbon stock (defined over 1 m depth) in the two land uses were not significantly different which is attributed in part to the negative correlation between carbon stock and bulk density (-0.353, p < 0.01). The soil carbon stock over the entire study area was mapped using a conditional kriging approach which jointly uses the collected soil carbon data and satellite-based land use images. Based on the kriging map, the spatially soil carbon stock (0-1 m dept) ranged about 2 kg/m(2) in highly developed areas to more than 23 kg/m(2) in intensively cultivated areas as well as the averaged soil carbon stock (0-1 m depth) was estimated as 10.4 kg/m(2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Aboveground carbon in Quebec forests: stock quantification at the provincial scale and assessment of temperature, precipitation and edaphic properties effects on the potential stand-level stocking.

    Science.gov (United States)

    Duchesne, Louis; Houle, Daniel; Ouimet, Rock; Lambert, Marie-Claude; Logan, Travis

    2016-01-01

    Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km(2) of managed forests in Quebec, Canada. Our analysis resulted in an area-weighted average aboveground carbon stock for productive forestland of 37.6 Mg ha(-1), which is lower than commonly reported values for similar environment. Models capable of predicting the influence of mean annual temperature, annual precipitation, and soil physical environment on maximum stand-level aboveground carbon stock (MSAC) were developed. These models were then used to project the future MSAC in response to climate change. Our results indicate that the MSAC was significantly related to both mean annual temperature and precipitation, or to the interaction of these variables, and suggest that Quebec's managed forests MSAC may increase by 20% by 2041-2070 in response to climate change. Along with changes in climate, the natural disturbance regime and forest management practices will nevertheless largely drive future carbon stock at the landscape scale. Overall, our results allow accurate accounting of carbon stock in aboveground live tree biomass of Quebec's forests, and provide a better understanding of possible feedbacks between climate change and carbon storage in temperate and boreal forests.

  18. Spatial Variability of Soil Carbon Stocks in a Subtropical Mangrove in Hong Kong

    Science.gov (United States)

    Lai, D. Y. F.; Neogi, S.; Law, M. S. M.; Xu, J.; Glatzel, S.; Buczko, U.; Karstens, S.

    2015-12-01

    "Blue carbon", a term used for carbon (C) sequestered in vegetated coastal wetlands, has received increasing attention recently as a potential option for mitigating future climate change. While coastal mangrove is considered as one of the most carbon-rich ecosystems of the world, there is a need to better characterize and compare the magnitude of carbon storage among mangroves in different geographical regions. In this study, we quantified the spatial variability of soil carbon stocks in a subtropical mangrove wetland in Hong Kong, and examined the effects of land cover change on soil carbon storage. Bare mudflats contained significantly lower amount of carbon than mangroves in the top 1 m soils (94.7 vs. 130.7-163.8 Mg C ha-1), indicating the importance of vegetation in enhancing C sequestration. Moreover, we observed higher soil C storage in sites dominated by Avicennia marina than those dominated by Kandelia obovata. Conversion of natural mangroves into freshwater marshes and brackish ponds with shallow islands significantly reduced the amount of C stored in the top 30 cm soils by 24-58%, when compared to sites dominated by mangrove trees. Our findings suggest that consideration should be given to plant species and land cover type in determining the overall magnitude of carbon stocks in subtropical mangrove soils.

  19. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.

    Science.gov (United States)

    Ahmad Dar, Javid; Somaiah, Sundarapandian

    2015-02-01

    Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.

  20. Modelling soil carbon flows and stocks following a carbon balance approach at regional scale for the EU-27

    Science.gov (United States)

    Lesschen, Jan Peter; Sikirica, Natasa; Bonten, Luc; Dibari, Camilla; Sanchez, Berta; Kuikman, Peter

    2014-05-01

    Soil Organic Carbon (SOC) is a key parameter to many soil functions and services. SOC is essential to support water retention and nutrient buffering and mineralization in the soil as well as to enhance soil biodiversity. Consequently, loss of SOC or low SOC levels might threaten soil productivity or even lead to a collapse of a farming system. Identification of areas in Europe with critically low SOC levels or with a negative carbon balance is a challenge in order to apply the appropriate strategies to restore these areas or prevent further SOC losses. The objective of this study is to assess current soil carbon flows and stocks at a regional scale; we follow a carbon balance approach which we developed within the MITERRA-Europe model. MITERRA-Europe is an environmental impact assessment model and calculates nitrogen and greenhouse emission on a deterministic and annual basis using emission and leaching factors at regional level (NUTS2, comparable to province level) in the EU27. The model already contained a soil carbon module based on the IPCC stock change approach. Within the EU FP7 SmartSoil project we developed a SOC balance approach, for which we quantified the input of carbon (manure, crop residues, other organic inputs) and the losses of carbon (decomposition, leaching and erosion). The calculations rules from the Roth-C model were used to estimate SOC decomposition. For the actual soil carbon stocks we used the data from the LUCAS soil sample survey. LUCAS collected soil samples in 2009 at about 22000 locations across the EU, which were analysed for a range of soil properties. Land management practices are accounted for, based on data from the EU wide Survey on Agricultural Production Methods in the 2010 Farm Structure Survey. The survey comprises data on the application of soil tillage, soil cover, crop rotation and irrigation. Based on the simulated soil carbon balance and the actual carbon stocks from LUCAS we now can identify regions within the EU that

  1. Quantifying the Stock of Soil Organic Carbon using Multiple ...

    African Journals Online (AJOL)

    The stepwise multiple regression model was employed to identify ecological variables that explained significant variation of carbon in fallow soils. Using fallow genealogical cycles of 1st, 2nd, 3rd, 4th and 5th generations, soil and vegetation variables from 30 sampling plots were collected and subjected to linear regression ...

  2. Stocks of carbon and nitrogen and partitioning between above- and belowground pools in the Brazilian coastal Atlantic Forest elevation range.

    Science.gov (United States)

    Vieira, Simone A; Alves, Luciana F; Duarte-Neto, Paulo J; Martins, Susian C; Veiga, Larissa G; Scaranello, Marcos A; Picollo, Marisa C; Camargo, Plinio B; do Carmo, Janaina B; Neto, Eráclito Sousa; Santos, Flavio A M; Joly, Carlos A; Martinelli, Luiz A

    2011-11-01

    We estimated carbon and nitrogen stocks in aboveground biomass (AGB) and belowground biomass (BGB) along an elevation range in forest sites located on the steep slopes of the Serra do Mar on the north coast of the State of São Paulo, southeast Brazil. In elevations of 100 m (lowland), 400 m (submontane), and 1000 m (montane) four 1-ha plots were established, and above- (live and dead) and belowground (live and dead) biomass were determined. Carbon and nitrogen concentrations in each compartment were determined and used to convert biomass into carbon and nitrogen stocks. The carbon aboveground stock (C(AGB)) varied along the elevation range from approximately 110 to 150 Mg·ha(-1), and nitrogen aboveground stock (N(AGB)), varied from approximately 1.0 to 1.9 Mg·ha(-1). The carbon belowground stock (C(BGB)) and the nitrogen belowground stock (N(BGB)) were significantly higher than the AGB and varied along the elevation range from approximately 200-300 Mg·ha(-1), and from 14 to 20 Mg·ha(-1), respectively. Finally, the total carbon stock (C(TOTAL)) varied from approximately 320 to 460 Mg·ha(-1), and the nitrogen total stock (N(TOTAL)) from approximately 15 to 22 Mg·ha(-1). Most of the carbon and nitrogen stocks were found belowground and not aboveground as normally found in lowland tropical forests. The above- and belowground stocks, and consequently, the total stocks of carbon and nitrogen increased significantly with elevation. As the soil and air temperature also decreased significantly with elevation, we found a significantly inverse relationship between carbon and nitrogen stocks and temperature. Using this inverse relationship, we made a first approach estimate that an increase of 1°C in soil temperature would decrease the carbon and nitrogen stocks in approximately 17 Mg·ha(-1) and 1 Mg·ha(-1) of carbon and nitrogen, respectively.

  3. Carbon content of Amazon forest biomass and changes after burning; Conteudo de carbono na biomassa florestal da Amazonia e alteracoes apos a queima

    Energy Technology Data Exchange (ETDEWEB)

    Graca, Paulo Mauricio Lima de Alencastro

    1997-04-01

    The carbon contained in the various types of vegetation in the Brazilian legal Amazon was estimated in 80 Pg, based on data from the literature. Transformations of biomass caused by burning took place in an open forest located in Nova Vida Ranch, Arquimedes, Roraima state. The direct and indirect method to estimate the biomass and charcoal after burning were compared and correlation coefficients are presented. Based on combustion efficiency from the above mentioned location and other localities in the Amazon, the carbon released upon burning was calculated. The annual contribution of carbon emitted to the atmosphere was also calculated and presented 119 refs., 18 figs., 16 tabs.

  4. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks

    KAUST Repository

    Arias-Ortiz, A.

    2018-03-29

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system.

  5. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.

    2009-01-01

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199

  6. Alaskan soil carbon stocks: spatial variability and dependence on environmental factors

    Directory of Open Access Journals (Sweden)

    U. Mishra

    2012-09-01

    Full Text Available The direction and magnitude of soil organic carbon (SOC changes in response to climate change depend on the spatial and vertical distributions of SOC. We estimated spatially resolved SOC stocks from surface to C horizon, distinguishing active-layer and permafrost-layer stocks, based on geospatial analysis of 472 soil profiles and spatially referenced environmental variables for Alaska. Total Alaska state-wide SOC stock was estimated to be 77 Pg, with 61% in the active-layer, 27% in permafrost, and 12% in non-permafrost soils. Prediction accuracy was highest for the active-layer as demonstrated by highest ratio of performance to deviation (1.5. Large spatial variability was predicted, with whole-profile, active-layer, and permafrost-layer stocks ranging from 1–296 kg C m−2, 2–166 kg m−2, and 0–232 kg m−2, respectively. Temperature and soil wetness were found to be primary controllers of whole-profile, active-layer, and permafrost-layer SOC stocks. Secondary controllers, in order of importance, were found to be land cover type, topographic attributes, and bedrock geology. The observed importance of soil wetness rather than precipitation on SOC stocks implies that the poor representation of high-latitude soil wetness in Earth system models may lead to large uncertainty in predicted SOC stocks under future climate change scenarios. Under strict caveats described in the text and assuming temperature changes from the A1B Intergovernmental Panel on Climate Change emissions scenario, our geospatial model indicates that the equilibrium average 2100 Alaska active-layer depth could deepen by 11 cm, resulting in a thawing of 13 Pg C currently in permafrost. The equilibrium SOC loss associated with this warming would be highest under continuous permafrost (31%, followed by discontinuous (28%, isolated (24.3%, and sporadic (23.6% permafrost areas. Our high-resolution mapping of soil carbon stock reveals the

  7. Relationships between plant community functioning and soil carbon stocks in permanent mowed grasslands

    Science.gov (United States)

    Masson, Solène; Tasseta, Elise; Morvan-Bertrand, Annette; Amiaud, Bernard; Cliquet, Jean-Bernard; Klumpp, Katja; Louault, Frédérique; Lemauviel-Lavenant, Servane

    2017-04-01

    Grasslands represent the most widespread ecosystems on the surface of the earth and provide many ecosystem services. They are managed by farmers in order to produce provisioning services through forage production. They also offer regulation services for the humankind such as carbon (C) storage. According to their management, grasslands may constitute a C source or a sink. Plants control both C input through photosynthesis and C output release directly via their own respiration and indirectly via soil microflora respiration through organic matter mineralization. Plants can thus be considered as a gas stream center. To better understand the role of vegetation on soil C stocks, the P2C "Plant Pilot Carbon" project aims at evaluate C stocks in mowed permanent grasslands characterized by various edaphic and climatic conditions and identify the drivers (vegetation composition, plant community functioning, management, history) of soil C stocks. We focused on 32 grasslands selected over two French Regional Natural Parks (Normandy-Maine / Lorraine) and an experimental farm (ACBB SOERE, Theix, Auvergne). We measured then their floristic composition as well as their functional composition through a trait based approach. Leaf traits (SLA, LDMC, LNC, LC/N) were measured at the plant community level (community weighed mean traits) and soil C stocks were analyzed in the top soil (0-10 cm) and in a deeper layer (10-30 cm). The grassland sampling has allowed to obtain a great variability of both soil C stocks and plant community functioning which give the opportunity to assess the relationships between C stocks and vegetation considering climatic, edaphic and management parameters

  8. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Science.gov (United States)

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3)) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1). Higher SOC contents (320 g kg(-1)) were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1)). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth) account for 10.4 kg m(-2), compared to 3.4 kg m(-2) in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  9. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Corina Dörfer

    Full Text Available The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA and continuous permafrost (site Wudaoliang, WUD. Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3 of mineral associated organic matter (MOM. The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1. Higher SOC contents (320 g kg(-1 were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1. Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA and 22% (WUD to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth account for 10.4 kg m(-2, compared to 3.4 kg m(-2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  10. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

    Directory of Open Access Journals (Sweden)

    Xiaoqiong Li

    Full Text Available Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR and a second rotation (SR stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC did not significantly differ between rotations, while understory vegetation (UC and soil organic matter (SOC stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1 and 70.68 vs. 81.08 Mg. ha(-1, respectively and forest floor carbon (FFC conversely stored more (2.80 vs. 2.34 Mg. ha(-1. The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential.

  11. Simulation of the Effect of Artificial Water Transfer on Carbon Stock ofPhragmites australisin the Baiyangdian Wetland, China.

    Science.gov (United States)

    Chen, Xinyong; Wang, Fengyi; Lu, Jianjian; Li, Hongbo; Zhu, Jing; Lv, Xiaotong

    2017-01-01

    How to explain the effect of seasonal water transfer on the carbon stocks of Baiyangdian wetland is studied. The ecological model of the relationship between the carbon stocks and water depth fluctuation of the reed was established by using STELLA software. For the first time the Michaelis-Menten equation (1) introduced the relation function between the water depth and reed environmental carrying capacity, (2) introduced the concept of suitable growth water depth, and (3) simulated the variation rules of water and reed carbon stocks of artificial adjustment. The model could be used to carry out the research on the optimization design of the ecological service function of the damaged wetland.

  12. Pyrogenic Carbon Erosion: Implications for Stock and Persistence of Pyrogenic Carbon in Soil

    Directory of Open Access Journals (Sweden)

    Rebecca B. Abney

    2018-03-01

    Full Text Available Pyrogenic carbon (PyC constitutes an important pool of soil organic matter (SOM, particularly for its reactivity and because of its assumed long residence times in soil. In the past, research on the dynamics of PyC in the soil system has focused on quantifying stock and mean residence time (MRT of PyC in soil, as well as determining both PyC stabilization mechanisms and loss pathways. Much of this research has focused on decomposition as the most important loss pathway for PyC from soil. However, the low density of PyC and its high concentration on the soil surface after fire indicates that a significant proportion of PyC formed or deposited on the soil surface is likely laterally transported away from the site of production by wind and water erosion. Here, we present a synthesis of available data and literature to compare the magnitude of the water-driven erosional PyC flux with other important loss pathways, including leaching and decomposition, of PyC from soil. Furthermore, we use a simple first-order kinetic model of soil PyC dynamics to assess the effect of erosion and deposition on residence time of PyC in eroding landscapes. Current reports of PyC MRT range from 250 to 660 years. Using a specific example-based model system, we find that ignoring the role of erosion may lead to the under- or over-estimation of PyC MRT on the centennial time scale. Furthermore, we find that, depending on the specific landform positions, timescales considered, and initial concentrations of PyC in soil, ignoring the role of erosion in distributing PyC across a landscape can lead to discrepancies in PyC concentrations on the order of several 100 g PyC m−2. Erosion is an important PyC flux that can act as a significant control on the stock and residence time of PyC in the soil system.

  13. Pyrogenic carbon erosion: implications for stock and persistence of pyrogenic carbon in soil

    Science.gov (United States)

    Abney, Rebecca B.; Berhe, Asmeret Asefaw

    2018-03-01

    Pyrogenic carbon (PyC) constitutes an important pool of soil organic matter, particularly for its reactivity and because of its assumed long residence times in soil. In the past, research on the dynamics of PyC in the soil system has focused on quantifying stock and mean residence time of PyC in soil, as well as determining both PyC stabilization mechanisms and loss pathways. Much of this research has focused on decomposition as the most important loss pathway for PyC from soil. However, the low density of PyC and its high concentration on the soil surface after fire indicates that a significant proportion of PyC formed or deposited on the soil surface is likely laterally transported away from the site of production by wind and water erosion. Here, we present a synthesis of available data and literature to compare the magnitude of the water-driven erosional PyC flux with other important loss pathways, including leaching and decomposition, of PyC from soil. Furthermore, we use a simple first-order kinetic model of soil PyC dynamics to assess the effect of erosion and deposition on residence time of PyC in eroding landscapes. Current reports of PyC mean residence time (MRT) range from 250 to 660 years. Using a specific example-based model system, we find that ignoring the role of erosion may lead to the under- or over-estimation of PyC MRT on the centennial time scale. Furthermore, we find that, depending on the specific landform positions, timescales considered, and initial concentrations of PyC in soil, ignoring the role of erosion in distributing PyC across a landscape can lead to discrepancies in PyC concentrations on the order of several hundred g PyC m-2. Erosion is an important PyC flux that can act as a significant control on the stock and residence time of PyC in the soil system.

  14. The soil classification and the subsurface carbon stock estimation with a ground-penetrating radar

    International Nuclear Information System (INIS)

    Onishi, K.; Rokugawa, S.; Kato, Y.

    2002-01-01

    One of the serious problems of the Kyoto Protocol is that we have no effective method to estimate the carbon stock of the subsurface. To solve this problem, we propose the application of ground-penetrating radar (GPR) to the subsurface soil survey. As a result, it is shown that GPR can detect the soil horizons, stones and roots. The fluctuations of the soil horizons in the forest are cleanly indicated as the reflection pattern of the microwaves. Considering the fact that the physical, chemical, and biological characteristics of each soil layer is almost unique, GPR results can be used to estimate the carbon stock in soil by combining with the vertical soil sample survey at one site. Then as a trial, we demonstrate to estimate the carbon content fixed in soil layers based on the soil samples and GPR survey data. we also compare this result with the carbon stock for the flat horizon case. The advantages of GPR usage for this object are not only the reduction of uncertainty and the cost, but also the environmental friendliness of survey manner. Finally, we summarize the adaptabilities of various antennas having different predominant frequencies for the shallow subsurface zone. (author)

  15. The rapid measurement of soil carbon stock using near-infrared technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono; Bustan

    2018-03-01

    As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.

  16. CONTRIBUTION OF AGROFORESTRY SYSTEM IN MAINTAINING CARBON STOCKS AND REDUCING EMISSION RATE AT JANGKOK WATERSHED, LOMBOK ISLAND

    Directory of Open Access Journals (Sweden)

    Markum

    2014-02-01

    Full Text Available Agroforestry systems under rules of community-based forest management support local livelihoods in the Jangkok watershed, Lombok Island. One of the conditions from the forest authoritiesfor allowing agroforestry system is that it should maintain forest conditions. Since 1995 the Jangkok watershed has undergone rapid land use change, especially in the forest area. These changes led to a reduction of carbon stocks and thus to emission of CO2. This research aimed to: (1 Measure the carbon stocks in several land use system within the Jangkok watershed, (2 Assess the contribution of agroforestry systems in maintaining carbon stocks and reducing emissions. The assesment was performed based on the RaCSA (Rapid Carbon Stock Appraisal method using three phases: (1 Classify land use change applying TM5 Landsat Satellite images for the period 1995-2009, (2 Measure carbon stock in the main land uses identified, (3 Quantify the contribution of agroforestry practices. Results showed that (1 The total amount of carbon stock at Jangkok watershed (19,088ha was 3.69 Mt (193 Mg ha-1; about 23% of this stock found in the agroforestry systems (32% of the area,(2 Gross CO2 emission from the Jangkok watershed was 8.41 Mg ha-1 yr-1, but due to the net gain in agroforestry of 2.55 Mg ha-1 yr-1 the net emission became 5.86 Mg ha-1 yr-1

  17. Correlation analysis between forest carbon stock and spectral vegetation indices in Xuan Lien Nature Reserve, Thanh Hoa, Viet Nam

    Science.gov (United States)

    Dung Nguyen, The; Kappas, Martin

    2017-04-01

    In the last several years, the interest in forest biomass and carbon stock estimation has increased due to its importance for forest management, modelling carbon cycle, and other ecosystem services. However, no estimates of biomass and carbon stocks of deferent forest cover types exist throughout in the Xuan Lien Nature Reserve, Thanh Hoa, Viet Nam. This study investigates the relationship between above ground carbon stock and different vegetation indices and to identify the most likely vegetation index that best correlate with forest carbon stock. The terrestrial inventory data come from 380 sample plots that were randomly sampled. Individual tree parameters such as DBH and tree height were collected to calculate the above ground volume, biomass and carbon for different forest types. The SPOT6 2013 satellite data was used in the study to obtain five vegetation indices NDVI, RDVI, MSR, RVI, and EVI. The relationships between the forest carbon stock and vegetation indices were investigated using a multiple linear regression analysis. R-square, RMSE values and cross-validation were used to measure the strength and validate the performance of the models. The methodology presented here demonstrates the possibility of estimating forest volume, biomass and carbon stock. It can also be further improved by addressing more spectral bands data and/or elevation.

  18. Pedogenic knowledge-aided modelling of soil inorganic carbon stocks in an alpine environment.

    Science.gov (United States)

    Yang, Ren-Min; Yang, Fan; Yang, Fei; Huang, Lai-Ming; Liu, Feng; Yang, Jin-Ling; Zhao, Yu-Guo; Li, De-Cheng; Zhang, Gan-Lin

    2017-12-01

    Accurate estimation of soil carbon is essential for accounting carbon cycling on the background of global environment change. However, previous studies made little contribution to the patterns and stocks of soil inorganic carbon (SIC) in large scales. In this study, we defined the structure of the soil depth function to fit vertical distribution of SIC based on pedogenic knowledge across various landscapes. Soil depth functions were constructed from a dataset of 99 soil profiles in the alpine area of the northeastern Tibetan Plateau. The parameters of depth functions were mapped from environmental covariates using random forest. Finally, SIC stocks at three depth intervals in the upper 1m depth were mapped across the entire study area by applying predicted soil depth functions at each location. The results showed that the soil depth functions were able to improve accuracy for fitting the vertical distribution of the SIC content, with a mean determination coefficient of R 2 =0.93. Overall accuracy for predicted SIC stocks was assessed on training samples. High Lin's concordance correlation coefficient values (0.84-0.86) indicate that predicted and observed values were in good agreement (RMSE: 1.52-1.67kgm -2 and ME: -0.33 to -0.29kgm -2 ). Variable importance showed that geographic position predictors (longitude, latitude) were key factors predicting the distribution of SIC. Terrain covariates were important variables influencing the three-dimensional distribution of SIC in mountain areas. By applying the proposed approach, the total SIC stock in this area is estimated at 75.41Tg in the upper 30cm, 113.15Tg in the upper 50cm and 190.30Tg in the upper 1m. We concluded that the methodology would be applicable for further prediction of SIC stocks in the Tibetan Plateau or other similar areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. How can soil organic carbon stocks in agriculture be maintained or increased?

    Science.gov (United States)

    Don, Axel; Leifeld, Jens

    2015-04-01

    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  20. Changes in carbon stocks of Danish agricultural mineral soils between 1986 and 2009

    DEFF Research Database (Denmark)

    Taghizadeh-Toosi, Arezoo; Olesen, Jørgen E; Kristensen, Kristian

    2014-01-01

    To establish a national inventory of soil organic carbon (SOC) stocks and their change over time, soil was sampled in 1986, 1997 and 2009 in a Danish nation-wide 7-km grid and analysed for SOC content. The average SOC stock in 0–100-cm depth soil was 142 t C ha−1, with 63, 41 and 38 t C ha−1 in t......, confirming that inventories based only on top-soils are incomplete. We found no significant effects in 50–100 cm. Our study indicates a small annual loss of 0.2 t C ha−1 from the 0–100 cm soil layer between 1986 and 2009.......To establish a national inventory of soil organic carbon (SOC) stocks and their change over time, soil was sampled in 1986, 1997 and 2009 in a Danish nation-wide 7-km grid and analysed for SOC content. The average SOC stock in 0–100-cm depth soil was 142 t C ha−1, with 63, 41 and 38 t C ha−1...... in the 0–25, 25–50 and 50–100 cm depths, respectively. Changes at 0–25 cm were small. During 1986–97, SOC in the 25–50-cm layer increased in sandy soils while SOC decreased in loam soils. In the subsequent period (1997–2009), most soils showed significant losses of SOC. From 1986 to 2009, SOC at 0–100 cm...

  1. Influence of the Tussock Growth Form on Arctic Ecosystem Carbon Stocks

    Science.gov (United States)

    Curasi, S.; Rocha, A. V.; Sonnentag, O.; Wullschleger, S. D.; Myers-Smith, I. H.; Fetcher, N.; Mack, M. C.; Natali, S.; Loranty, M. M.; Parker, T.

    2015-12-01

    The influence of plant growth forms on ecosystem carbon (C) cycling has been under appreciated. In arctic tundra, environmental factors and plant traits of the sedge Eriophorum vaginatum cause the formation of mounds that are dense amalgamations of belowground C called tussocks. Tussocks have important implications for arctic ecosystem biogeochemistry and C stocks, but the environmental and biological factors controlling their size and distribution across the landscape are poorly understood. In order to better understand how landscape variation in tussock size and density impact ecosystem C stocks, we formed the Carbon in Arctic Tussock Tundra (CATT) network and recruited an international team to sample locations across the arctic. The CATT network provided a latitudinal and longitudinal gradient along which to improve our understanding of tussocks' influence on ecosystem structure and function. CATT data revealed important insights into tussock formation across the arctic. Tussock density generally declined with latitude, and tussock size exhibited substantial variation across sites. The relationship between height and diameter was similar across CATT sites indicating that both biological and environmental factors control tussock formation. At some sites, C in tussocks comprised a substantial percentage of ecosystem C stocks that may be vulnerable to climate change. It is concluded that the loss of this growth form would offset C gains from projected plant functional shifts from graminoid to shrub tundra. This work highlights the role of plant growth forms on the magnitude and retention of ecosystem C stocks.

  2. Soil carbon stocks along an altitudinal gradient in different land-use categories in Lesser Himalayan foothills of Kashmir

    Science.gov (United States)

    Shaheen, H.; Saeed, Y.; Abbasi, M. K.; Khaliq, A.

    2017-04-01

    The carbon sequestration potential of soils plays an important role in mitigating the effect of climate change, because soils serve as sinks for atmospheric carbon. The present study was conducted to estimate the carbon stocks and their variation with altitudinal gradient in the Lesser Himalayan foothills of Kashmir. The carbon stocks were estimated in different land use categories, namely: closed canopy forests, open forests, disturbed forests, and agricultural lands within the altitudinal range from 900 to 2500 m. The soil carbon content was determined by the Walkley-Black titration method. The average soil carbon stock was found to be 2.59 kg m-2. The average soil carbon stocks in closed canopy forests, open forests, and disturbed forests were 3.39, 2.06, and 2.86 kg m-2, respectively. The average soil carbon stock in the agricultural soils was 2.03 kg m-2. The carbon stocks showed a significant decreasing trend with the altitudinal gradient with maximum values of 4.13 kg m-2 at 900-1200 m a.s.l. and minimum value of 1.55 kg m-2 at 2100-2400 m a.s.l. The agricultural soil showed the least carbon content values indicating negative impacts of soil plowing, overgrazing, and soil degradation. Lower carbon values at higher altitudes attest to the immature character of forest stands, as well as to degradation due to immense fuel wood extraction, timber extraction, and harsh climatic conditions. The study indicates that immediate attention is required for the conservation of rapidly declining carbon stocks in agricultural soils, as well as in the soils of higher altitudes.

  3. From Models to Measurements: Comparing Downed Dead Wood Carbon Stock Estimates in the U.S. Forest Inventory

    Science.gov (United States)

    Grant M. Domke; Christopher W. Woodall; Brian F. Walters; James E. Smith

    2013-01-01

    The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C...

  4. Soil Carbon and Nitrogen Stocks of Different Hawaiian Sugarcane Cultivars

    Directory of Open Access Journals (Sweden)

    Rebecca Tirado-Corbalá

    2015-06-01

    Full Text Available Sugarcane has been widely used as a biofuel crop due to its high biological productivity, ease of conversion to ethanol, and its relatively high potential for greenhouse gas reduction and lower environmental impacts relative to other derived biofuels from traditional agronomic crops. In this investigation, we studied four sugarcane cultivars (H-65-7052, H-78-3567, H-86-3792 and H-87-4319 grown on a Hawaiian commercial sugarcane plantation to determine their ability to store and accumulate soil carbon (C and nitrogen (N across a 24-month growth cycle on contrasting soil types. The main study objective establish baseline parameters for biofuel production life cycle analyses; sub-objectives included (1 determining which of four main sugarcane cultivars sequestered the most soil C and (2 assessing how soil C sequestration varies among two common Hawaiian soil series (Pulehu-sandy clay loam and Molokai-clay. Soil samples were collected at 20 cm increments to depths of up to 120 cm using hand augers at the three main growth stages (tillering, grand growth, and maturity from two experimental plots at to observe total carbon (TC, total nitrogen (TN, dissolved organic carbon (DOC and nitrates (NO−3 using laboratory flash combustion for TC and TN and solution filtering and analysis for DOC and NO−3. Aboveground plant biomass was collected and subsampled to determine lignin and C and N content. This study determined that there was an increase of TC with the advancement of growing stages in the studied four sugarcane cultivars at both soil types (increase in TC of 15–35 kg·m2. Nitrogen accumulation was more variable, and NO−3 (<5 ppm were insignificant. The C and N accumulation varies in the whole profile based on the ability of the sugarcane cultivar’s roots to explore and grow in the different soil types. For the purpose of storing C in the soil, cultivar H-65-7052 (TC accumulation of ~30 kg·m−2 and H-86-3792 (25 kg·m−2 rather H-78

  5. A comparison of soil organic carbon stock in ancient and modern land use systems in Denmark

    DEFF Research Database (Denmark)

    Breuning-Madsen, Henrik; Elberling, Bo; Balstrøm, Thomas

    2009-01-01

    . A comparison of the organic matter content in these mound cores and the plough layer in modern farmland offers an opportunity to compare the soil organic carbon (SOC) stocks in ancient and modern land use systems and to evaluate the long-term trends in carbon (C) sequestration in relation to modern farmland...... with varying inputs of manure and inorganic fertilizers. In the present paper we compare SOC stocks based on integrated horizon-specific densities and SOC contents in three 3300-year-old buried farmland soils, representing the land use system at that time, with results from soil surveys representing modern...... land use systems with low and high inputs of manure. Results show that, within the upper 0.28 m, which is the average depth of present day plough layers in Denmark, soils receiving manure from intensive pig or cattle production hold c. 60% more SOC than the ancient soils from the South Scandinavian...

  6. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-01-01

    Tibet’s forests, in contrast to China’s other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet’s forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr−1 between 2001 and 2010 and a decrease of 1.9 Tg C yr−1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet’s mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity. PMID:27703215

  7. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    International Nuclear Information System (INIS)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-01-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m - 2 yr - 1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59±0.43 g kg - 1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha - 1 yr - 1. (Author) 20 refs.

  8. Long term net gains in coastal blue carbon stocks: A search for terrestrial drivers?

    Science.gov (United States)

    Clarke, Jessica; Austin, William; Smeaton, Craig; Winterton, Cathy; Bresnan, Eileen; Davidson, Keith; Lo Giudice Cappelli Lo Giudice Cappelli, Elena; Green, Jade

    2017-04-01

    Peat and Organic soils covers nearly 66% of Scotland, representing over 50% of the UK's soil carbon stocks. Natural processes such as peatland erosion are accelerated by human activities, such as land management and potentially by the impacts of climate change. We present evidence from the isle of Shetland's west coast voes (sea lochs or fjords) to suggest this process may have accelerated since medieval times. This work is supported by the analyses of short sediment Craib cores (triplicate coring) recovered from 17 sites. We present preliminary chronologies supported by radiocarbon dating and sediment characteristics that highlight both changes in the rate of accumulation and source of sedimentary organic carbon to the west coast Shetland voes during the late Holocene. Scottish coastal sediments contain a significant blue carbon stock, a significant proportion of which derives directly from terrestrial sources. The loss of peatland carbon represents a potentially important contribution (i.e. net gain) in refractory carbon within the marine environment and we present preliminary estimates to assess the significance of these large scale transfers and the subsidy of carbon to the coastal ocean.

  9. Remote SST Forcing and Local Land-Atmosphere Moisture Coupling as Drivers of Amazon Temperature and Carbon Cycle Variability

    Science.gov (United States)

    Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.

    2017-12-01

    Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes

  10. Urban soils as hotspots of anthropogenic carbon accumulation: Review of stocks, mechanisms and factors

    Science.gov (United States)

    Vasenev, Viacheslav; Kuzyakov, Yakov

    2017-04-01

    Urban soils and cultural layers accumulate carbon (C) over centuries and consequently large C stocks are sequestered below the cities. These C stocks as well as the full range of processes and mechanisms leading to high C accumulation in urban soils remain unknown. We collected data on organic (SOC), inorganic (SOC) and black (pyrogenic) (BC) C content in urban and natural soils from 100 papers based on Scopus and Web-of-Knowledge databases. The yielded database includes 770 values on SOC, SIC and BC stocks from 118 cities worldwide. The collected data were analyzed considering the effects of climatic conditions and urban-specific factors: city size, age and functional zoning. For the whole range of climatic conditions, the C contents in urban soils were 1.5-3 times higher than in respective natural soils. This higher C content and much deeper C accumulation in urban soils resulted in 3 to 5 times higher C stocks compared to natural soils. Urban SOC stocks were positively correlated with latitude, whereas SIC stocks were less affected by climate. The city size and age were the main factors controlling intra-city variability of C stocks with higher stocks in small cities compared to megapolises and in medieval compared to new cities. The inter-city variability of C stocks was dominated by functional zoning: large SOC and N stocks in residential areas and large SIC and BC stocks in industrial zones and roadsides were similar for all climates and for cities of different size and age. Substantial stocks of SOC, SIC and N were sequestered for long-term in the subsoils and cultural layers of the sealed soils, which underline the importance of these 'hidden' stocks for C assessments. Typical and specific for urban soils is that the anthropogenic factor overshadows the other five factors of soil formation. Substantial C stocks in urban soils and cultural layers result from specific mechanisms of C accumulation in cities: i) large and long-term C inputs from outside the

  11. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    Science.gov (United States)

    Smeaton, Craig; Austin, William E. N.; Davies, Althea L.; Baltzer, Agnes; Howe, John A.; Baxter, John M.

    2017-12-01

    Fjords are recognised as hotspots for the burial and long-term storage of carbon (C) and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  12. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    Directory of Open Access Journals (Sweden)

    C. Smeaton

    2017-12-01

    Full Text Available Fjords are recognised as hotspots for the burial and long-term storage of carbon (C and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  13. Combining satellite, aerial and ground measurements to assess forest carbon stocks in Democratic Republic of Congo

    Science.gov (United States)

    Beaumont, Benjamin; Bouvy, Alban; Stephenne, Nathalie; Mathoux, Pierre; Bastin, Jean-François; Baudot, Yves; Akkermans, Tom

    2015-04-01

    Monitoring tropical forest carbon stocks changes has been a rising topic in the recent years as a result of REDD+ mechanisms negotiations. Such monitoring will be mandatory for each project/country willing to benefit from these financial incentives in the future. Aerial and satellite remote sensing technologies offer cost advantages in implementing large scale forest inventories. Despite the recent progress made in the use of airborne LiDAR for carbon stocks estimation, no widely operational and cost effective method has yet been delivered for central Africa forest monitoring. Within the Maï Ndombe region of Democratic Republic of Congo, the EO4REDD project develops a method combining satellite, aerial and ground measurements. This combination is done in three steps: [1] mapping and quantifying forest cover changes using an object-based semi-automatic change detection (deforestation and forest degradation) methodology based on very high resolution satellite imagery (RapidEye), [2] developing an allometric linear model for above ground biomass measurements based on dendrometric parameters (tree crown areas and heights) extracted from airborne stereoscopic image pairs and calibrated using ground measurements of individual trees on a data set of 18 one hectare plots and [3] relating these two products to assess carbon stocks changes at a regional scale. Given the high accuracies obtained in [1] (> 80% for deforestation and 77% for forest degradation) and the suitable, but still to be improved with a larger calibrating sample, model (R² of 0.7) obtained in [2], EO4REDD products can be seen as a valid and replicable option for carbon stocks monitoring in tropical forests. Further improvements are planned to strengthen the cost effectiveness value and the REDD+ suitability in the second phase of EO4REDD. This second phase will include [A] specific model developments per forest type; [B] measurements of afforestation, reforestation and natural regeneration processes and

  14. Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view

    OpenAIRE

    Cerri, Carlos Eduardo Pellegrino; Galdos, Marcelo Valadares; Carvalho, João Luís Nunes; Feigl, Brigitte Josefine; Cerri, Carlos Clemente

    2013-01-01

    Strategies to mitigate climate change through the use of biofuels (such as ethanol) are associated not only to the increase in the amount of C stored in soils but also to the reduction of GHG emissions to the atmosphere.This report mainly aimed to propose appropriate methodologies for the determinations of soil organic carbon stocks and greenhouse gas fluxes in agricultural phase of the sugarcane production. Therefore, the text is a piece of contribution that may help to obtain data not only ...

  15. Ground cover rice production system facilitates soil carbon and nitrogen stocks at regional scale

    Science.gov (United States)

    Liu, M.; Dannenmann, M.; Lin, S.; Saiz, G.; Yan, G.; Yao, Z.; Pelster, D.; Tao, H.; Sippel, S.; Tao, Y.; Zhang, Y.; Zheng, X.; Zuo, Q.; Butterbach-Bahl, K.

    2015-02-01

    Rice production is increasingly challenged by irrigation water scarcity, however covering paddy rice soils with films (ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the vegetation period resulting in increased grain yields in colder regions of rice production with seasonal water shortages. It has been speculated that the increased soil aeration and temperature under GCRPS may result in losses of soil organic carbon and nitrogen stocks. Here we report on a regional scale experiment, conducted by sampling paired adjacent Paddy and GCRPS fields at 49 representative sites in the Shiyan region, which is typical for many mountainous areas across China. Parameters evaluated included soil C and N stocks, soil physical and chemical properties, potential carbon mineralization rates, fractions of soil organic carbon and stable carbon isotopic composition of plant leaves. Furthermore, root biomass was quantified at maximum tillering stage at one of our paired sites. Against expectations the study showed that: (1) GCRPS significantly increased soil organic C and N stocks 5-20 years following conversion of production systems, (2) there were no differences between GCRPS and Paddy in soil physical and chemical properties for the various soil depths with the exception of soil bulk density, (3) GCRPS had lower mineralization potential for soil organic C compared with Paddy over the incubation period, (4) GCRPS showed lower δ15N in the soils and plant leafs indicating less NH3 volatilization in GCRPS than in Paddy; and (5) GCRPS increased yields and root biomass in all soil layers down to 40 cm depth. Our results suggest that GCRPS is an innovative rice production technique that not only increases yields using less irrigation water, but that it also is environmentally beneficial due to increased soil C and N stocks at regional scale.

  16. Carbon stock in forest aboveground biomass –comparison based on Landsat data

    Czech Academy of Sciences Publication Activity Database

    Pechanec, V.; Stržínek, F.; Purkyt, Jan; Štěrbová, Lenka; Cudlín, Pavel

    2017-01-01

    Roč. 63, 2-3 (2017), s. 126-132 ISSN 2454-0358 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:EHP,MF ČR(CZ) EHP-CZ02-OV-1-014-2014 Program:CZ02 Institutional support: RVO:67179843 Keywords : aboveground biomass * carbon stock * remote sensing data * vegetation indices * Czech Republic Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)

  17. Carbon Stock in Integrated Field Laboratory Faculty of Agriculture University of Lampung

    OpenAIRE

    Irwan Sukri Banuwa; Tika Mutiasari; Henrie Buchori; Muhajir Utomo

    2016-01-01

    This study aimed to determine the amount of carbon stock and CO2 plant uptake in the Integrated Field Laboratory (IFL) Faculty of Agriculture University of Lampung. The research was conducted from April to November 2015. The study was arranged in a completely randomized block design (CRBD), consisting of five land units as treatment with four replications for each treatment. Biomass of woody plants was estimated using allometric equation, biomass of understorey plants was estimate...

  18. Carbon Stock Assessment Using Remote Sensing and Forest Inventory Data in Savannakhet, Lao PDR

    Directory of Open Access Journals (Sweden)

    Phutchard Vicharnakorn

    2014-06-01

    Full Text Available Savannakhet Province, Lao People’s Democratic Republic (PDR, is a small area that is connected to Thailand, other areas of Lao PDR, and Vietnam via road No. 9. This province has been increasingly affected by carbon dioxide (CO2 emitted from the transport corridors that have been developed across the region. To determine the effect of the CO2 increases caused by deforestation and emissions, the total above-ground biomass (AGB and carbon stocks for different land-cover types were assessed. This study estimated the AGB and carbon stocks (t/ha of vegetation and soil using standard sampling techniques and allometric equations. Overall, 81 plots, each measuring 1600 m2, were established to represent samples from dry evergreen forest (DEF, mixed deciduous forest (MDF, dry dipterocarp forest (DDF, disturbed forest (DF, and paddy fields (PFi. In each plot, the diameter at breast height (DBH and height (H of the overstory trees were measured. Soil samples (composite n = 2 were collected at depths of 0–30 cm. Soil carbon was assessed using the soil depth, soil bulk density, and carbon content. Remote sensing (RS; Landsat Thematic Mapper (TM image was used for land-cover classification and development of the AGB estimation model. The relationships between the AGB and RS data (e.g., single TM band, various vegetation indices (VIs, and elevation were investigated using a multiple linear regression analysis. The results of the total carbon stock assessments from the ground data showed that the MDF site had the highest value, followed by the DEF, DDF, DF, and PFi sites. The RS data showed that the MDF site had the highest area coverage, followed by the DDF, PFi, DF, and DEF sites. The results indicated significant relationships between the AGB and RS data. The strongest correlation was found for the PFi site, followed by the MDF, DDF, DEF, and DF sites.

  19. Greenness and Carbon Stocks of Mangroves: A climate-driven Effect

    Science.gov (United States)

    Lule, A. V.; Colditz, R. R.; Herrera-Silveira, J.; Guevara, M.; Rodriguez-Zuniga, M. T.; Cruz, I.; Ressl, R.; Vargas, R.

    2017-12-01

    Mangroves cover less than 1% of the earth's surface and are one o­­­f the most productive ecosystems of the world. They are highly vulnerable to climate variability due to their sensitivity to environmental changes; therefore, there are scientific and societal needs to designed frameworks to assess mangrove's vulnerability. We study the relationship between climate drivers, canopy greenness and carbon stocks to quantify a potential climate-driven effect on mangrove carbon dynamics. We identify greenness trends and their relationships with climate drivers and carbon stocks throughout 15 years (2001-2015) across mangrove forests of Mexico. We defined several categories for mangroves: a) Arid mangroves with superficial water input (ARsw); b) Humid mangroves with interior or underground water input (HUiw); and c) Humid mangroves with superficial water input (HUsw). We found a positive significant trend of greenness for ARsw and HUsw categories (p 0.69). Precipitation and temperature drive canopy greenness only across HUsw. Regarding carbon stocks, the HUiw shows the lower amount of aboveground carbon (AGC; 12.7 Mg C ha-1) and the higher belowground carbon (BGC; 219 Mg C ha-1). The HUsw shows the higher amount of AGC (169.5 Mg C ha-1) and the ARsw the lower of BGC (92.4 Mg C ha-1). Climate drivers are better related with canopy greenness and AGC for both humid mangrove categories (r2 > 0.48), while the relationship of BGC and canopy greenness is lower for all categories (r2 < 0.21). Our results have implications for better understanding mangrove's ecosystem function and environmental services, as well as their potential vulnerability to climate variability.

  20. Terrestrial Carbon Fluxes from Deforestation in the Brazilian Amazon and Cerrado Regions Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Klooster, S.; Potter, C.; Genovese, V.

    2008-12-01

    The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate tropical forest and savanna (Cerrado) carbon pools for the Brazilian Amazon region over the period 2000-2004. Adjustments for mean age of forest stands were carried out across the region, resulting in a new mapping of aboveground biomass pools based on MODIS satellite data. Yearly maps of newly deforested lands from the Brazilian PRODES (Programa de calculo do desflorestamento da Amazonia ) project were combined with these NASA-CASA biomass predictions to generate seasonal budgets of potential carbon and nitrogen trace gas losses from biomass burning events. Simulations of plant residue and soil carbon decomposition were conducted in the NASA-CASA model during and following deforestation events to track the fate of aboveground biomass pools that were cut and burned each year across the region.

  1. A framework for assessing global change risks to forest carbon stocks in the United States.

    Directory of Open Access Journals (Sweden)

    Christopher W Woodall

    Full Text Available Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C, but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and evaluated a basic risk framework which combined the magnitude of C stocks and their associated probability of stock change in the context of global change across the US. For the purposes of this analysis, forest C was divided into five pools, two live (aboveground and belowground biomass and three dead (dead wood, soil organic matter, and forest floor with a risk framework parameterized using the US's national greenhouse gas inventory and associated forest inventory data across current and projected future Köppen-Geiger climate zones (A1F1 scenario. Results suggest that an initial forest C risk matrix may be constructed to focus attention on short- and long-term risks to forest C stocks (as opposed to implementation in decision making using inventory-based estimates of total stocks and associated estimates of variability (i.e., coefficient of variation among climate zones. The empirical parameterization of such a risk matrix highlighted numerous knowledge gaps: 1 robust measures of the likelihood of forest C stock change under climate change scenarios, 2 projections of forest C stocks given unforeseen socioeconomic conditions (i.e., land-use change, and 3 appropriate social responses to global change events for which there is no contemporary climate/disturbance analog (e.g., severe droughts in the Lake States. Coupling these current technical/social limits of developing a risk matrix to the biological processes of forest ecosystems (i.e., disturbance events and interaction among diverse forest C pools, potential positive feedbacks, and forest resiliency/recovery suggests an operational

  2. Carbon stock and humification index of organic matter affected by sugarcane straw and soil management

    Directory of Open Access Journals (Sweden)

    Aline Segnini

    2013-10-01

    Full Text Available The maintenance of sugarcane (Saccharum spp. straw on a soil surface increases the soil carbon (C stocks, but at lower rates than expected. This fact is probably associated with the soil management adopted during sugarcane replanting. This study aimed to assess the impact on soil C stocks and the humification index of soil organic matter (SOM of adopting no-tillage (NT and conventional tillage (CT for sugarcane replanting. A greater C content and stock was observed in the NT area, but only in the 0-5 cm soil layer (p < 0.05. Greater soil C stock (0-60 cm was found in soil under NT, when compared to CT and the baseline. While C stock of 116 Mg ha-1 was found in the baseline area, in areas under CT and NT systems the values ranged from 120 to 127 Mg ha-1. Carbon retention rates of 0.67 and 1.63 Mg C ha-1 year-1 were obtained in areas under CT and NT, respectively. Laser-Induced Fluorescence Spectroscopy showed that CT makes the soil surface (0-20 cm more homogeneous than the NT system due to the effect of soil disturbance, and that the SOM humification index (H LIF is larger in CT compared to NT conditions. In contrast, NT had a gradient of increasing H LIF, showing that the entry of labile organic material such as straw is also responsible for the accumulation of C in this system. The maintenance of straw on the soil surface and the adoption of NT during sugarcane planting are strategies that can increase soil C sequestration in the Brazilian sugarcane sector.

  3. Carbon stock and its responses to climate change in Central Asia.

    Science.gov (United States)

    Li, Chaofan; Zhang, Chi; Luo, Geping; Chen, Xi; Maisupova, Bagila; Madaminov, Abdullo A; Han, Qifei; Djenbaev, Bekmamat M

    2015-05-01

    Central Asia has a land area of 5.6 × 10(6) km(2) and contains 80-90% of the world's temperate deserts. Yet it is one of the least characterized areas in the estimation of the global carbon (C) stock/balance. This study assessed the sizes and spatiotemporal patterns of C pools in Central Asia using both inventory (based on 353 biomass and 284 soil samples) and process-based modeling approaches. The results showed that the C stock in Central Asia was 31.34-34.16 Pg in the top 1-m soil with another 10.42-11.43 Pg stored in deep soil (1-3 m) of the temperate deserts. They amounted to 18-24% of the global C stock in deserts and dry shrublands. The C stock was comparable to that of the neighboring regions in Eurasia or major drylands around the world (e.g. Australia). However, 90% of Central Asia C pool was stored in soil, and the fraction was much higher than in other regions. Compared to hot deserts of the world, the temperate deserts in Central Asia had relatively high soil organic carbon density. The C stock in Central Asia is under threat from dramatic climate change. During a decadal drought between 1998 and 2008, which was possibly related to protracted La Niña episodes, the dryland lost approximately 0.46 Pg C from 1979 to 2011. The largest C losses were found in northern Kazakhstan, where annual precipitation declined at a rate of 90 mm decade(-1) . The regional C dynamics were mainly determined by changes in the vegetation C pool, and the SOC pool was stable due to the balance between reduced plant-derived C influx and inhibited respiration. © 2015 John Wiley & Sons Ltd.

  4. Modeling changes in organic carbon stocks for distinct soils in southeastern brazil after four eucalyptus rotations using the century model

    OpenAIRE

    Augusto Miguel Nascimento Lima; Ivo Ribeiro da Silva; Jose Luis Stape; Eduardo Sá Mendonça; Roberto Ferreira Novais; Nairam Félix de Barros; Júlio César Lima Neves; Keryn Paul; Fernanda Schulthais; Phill Polglase; John Raison; Emanuelle Mercês Barros Soares

    2011-01-01

    Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated b...

  5. Simulation of the Effect of Artificial Water Transfer on Carbon Stock of Phragmites australis in the Baiyangdian Wetland, China

    OpenAIRE

    Chen, Xinyong; Wang, Fengyi; Lu, Jianjian; Li, Hongbo; Zhu, Jing; Lv, Xiaotong

    2017-01-01

    How to explain the effect of seasonal water transfer on the carbon stocks of Baiyangdian wetland is studied. The ecological model of the relationship between the carbon stocks and water depth fluctuation of the reed was established by using STELLA software. For the first time the Michaelis-Menten equation (1) introduced the relation function between the water depth and reed environmental carrying capacity, (2) introduced the concept of suitable growth water depth, and (3) simulated the variat...

  6. Carbon stocks in Norwegian forested systems. Preliminary data

    Directory of Open Access Journals (Sweden)

    Oyen BH.

    2000-01-01

    Full Text Available Between 1990 and 2010 the projected emissions of greenhouse gases in Norway is assumed to increase 24%. As a signatory to the Kyoto Protocol, Norway is supposed to limit the greenhouse gas emissions in the period 2008–2012 to 1% above the 1990 level. Potentially, forestry activities may contribute as a means to achieve the set target of emission reductions. The initial Norwegian views and proposals for definitions and accounting framework for activities under Articles 3.3 and 3.4 of the Kyoto Protocol was reported to the UNFCCC August 1 2000 by the Norwegian Ministry of Environment. There was also an annex to the submission with preliminary data and information on Articles 3.3 and 3.4 of the Kyoto Protocol. This paper is based on this annex, and focuses mainly on data for forests and other woodlands. Preliminary data indicate that approximately 85% of the carbon (C pool of forested systems is found in the soil. The major part of the annual C sequestration takes place in living biomass and soil, while sequestration in wood products and landfills etc. has been found to be of minor importance. It must be noted that the reported data are preliminary and contain large uncertainties.

  7. A preliminary assessment of the impact of landslide, earthflow, and gully erosion on soil carbon stocks in New Zealand

    Science.gov (United States)

    Basher, Les; Betts, Harley; Lynn, Ian; Marden, Mike; McNeill, Stephen; Page, Mike; Rosser, Brenda

    2018-04-01

    In geomorphically active landscapes such as New Zealand, quantitative data on the relationship between erosion and soil carbon (C) are needed to establish the effect of erosion on past soil C stocks and future stock changes. The soil C model currently used in New Zealand for soil C stock reporting does not account for erosion. This study developed an approach to characterise the effect of erosion suitable for soil C stock reporting and provides an initial assessment of the magnitude of the effect of erosion. A series of case studies were used to establish the local effect of landslide, earthflow, and gully erosion on soil C stocks and to compare field measurements of soil C stocks with model estimates. Multitemporal erosion mapping from orthophotographs was used to characterise erosion history, identify soil sampling plot locations, and allow soil C stocks to be calculated accounting for erosion. All eroded plots had lower soil C stocks than uneroded (by mass movement and gully erosion) plots sampled at the same sites. Landsliding reduces soil C stocks at plot and landscape scale, largely as a result of individual large storms. After about 70 years, soil C stocks were still well below the value measured for uneroded plots (by 40% for scars and 20-30% for debris tails) indicating that the effect of erosion is very persistent. Earthflows have a small effect on estimates of baseline (1990) soil C stocks and reduce soil C stocks at landscape scale. Gullies have local influence on soil C stocks but because they cover a small proportion of the landscape have little influence at landscape scale. At many of the sites, the soil C model overestimates landscape-scale soil C stocks.

  8. Soil Carbon Stocks in Two Hybrid Poplar-Hay Crop Systems in Southern Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Kiara Winans

    2014-08-01

    Full Text Available Tree-based intercropping (TBI systems, consisting of a medium to fast-growing woody species planted in widely-spaced rows with crops cultivated between tree rows, are a potential sink for atmospheric carbon dioxide (CO2. TBI systems contribute to farm income in the long-term by improving soil quality, as indicated by soil carbon (C storage, generating profits from crop plus tree production and potentially through C credit trading. The objectives of the current study were: (1 to evaluate soil C and nitrogen (N stocks in soil depth increments in the 0–30 cm layer between tree rows of nine-year old hybrid poplar-hay intercropping systems, to compare these to C and N stocks in adjacent agricultural systems; and (2 to determine how hay yield, litterfall and percent total light transmittance (PTLT were related to soil C and N stocks between tree rows and in adjacent agricultural systems. The two TBI study sites (St. Edouard and St. Paulin had a hay intercrop with alternating rows of hybrid poplar clones and hardwoods and included an adjacent agricultural system with no trees (i.e., the control plots. Soil C and N stocks were greater in the 0–5 cm depth increment of the TBI system within 1 m of the hardwood row, to the west of the poplar row, compared to the sampling point 1 m east of poplar at St. Edouard (p = 0.02. However, the agricultural system stored more soil C than the nine-year old TBI system in the 20–30 cm and 0–30 cm depth increments. Accumulation of soil C in the 20–30 cm depth increment could be due to tillage-induced burial of non-harvested crop residues at the bottom of the plow-pan. Soil C and N stocks were similar at all depth increments in TBI and agricultural systems at St. Paulin. Soil C and N stocks were not related to hay yield, litterfall and PTLT at St. Paulin, but hay yield and PTLT were significantly correlated (R = 0.87, p < 0.05, n = 21, with lower hay yield in proximity to trees in the TBI system and similar hay

  9. Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale

    Science.gov (United States)

    Liu, M.; Dannenmann, M.; Lin, S.; Saiz, G.; Yan, G.; Yao, Z.; Pelster, D. E.; Tao, H.; Sippel, S.; Tao, Y.; Zhang, Y.; Zheng, X.; Zuo, Q.; Butterbach-Bahl, K.

    2015-08-01

    Rice production is increasingly limited by water scarcity. Covering paddy rice soils with films (so-called ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the growing season, which results in greater grain yields in relatively cold regions and also in those suffering from seasonal water shortages. However, it has been speculated that both increased soil aeration and temperature under GCRPS result in lower soil organic carbon and nitrogen stocks. Here we report on a regional-scale experiment conducted in Shiyan, a typical rice-producing mountainous area of China. We sampled paired adjacent paddy and GCRPS fields at 49 representative sites. Measured parameters included soil carbon (C) and nitrogen (N) stocks (to 1 m depth), soil physical and chemical properties, δ15N composition of plants and soils, potential C mineralization rates, and soil organic carbon (SOC) fractions at all sampling sites. Root biomass was also quantified at one intensively monitored site. The study showed that: (1) GCRPS increased SOC and N stocks 5-20 years following conversion from traditional paddy systems; (2) there were no differences between GCRPS and paddy systems in soil physical and chemical properties for the various soil depths, with the exception of soil bulk density; (3) GCRPS increased above-ground and root biomass in all soil layers down to a 40 cm depth; (4) δ15N values were lower in soils and plant leaves indicating lower NH3 volatilization losses from GCRPS than in paddy systems; and (5) GCRPS had lower C mineralization potential than that observed in paddy systems over a 200-day incubation period. Our results suggest that GCRPS is an innovative production technique that not only increases rice yields using less irrigation water, but that it also increases SOC and N stocks.

  10. A cost-efficient method to assess carbon stocks in tropical peat soil

    Directory of Open Access Journals (Sweden)

    M. W. Warren

    2012-11-01

    Full Text Available Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m−3; Cd as a function of bulk density (gC cm−3; Bd, which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151 for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm−3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.

  11. 110 Years of change in urban tree stocks and associated carbon storage.

    Science.gov (United States)

    Díaz-Porras, Daniel F; Gaston, Kevin J; Evans, Karl L

    2014-04-01

    Understanding the long-term dynamics of urban vegetation is essential in determining trends in the provision of key resources for biodiversity and ecosystem services and improving their management. Such studies are, however, extremely scarce due to the lack of suitable historical data. We use repeat historical photographs from the 1900s, 1950s, and 2010 to assess general trends in the quantity and size distributions of the tree stock in urban Sheffield and resultant aboveground carbon storage. Total tree numbers declined by a third from the 1900s to the 1950s, but increased by approximately 50% from the 1900s-2010, and by 100% from the 1950s-2010. Aboveground carbon storage in urban tree stocks had doubled by 2010 from the levels present in the 1900s and 1950s. The initial decrease occurred at a time when national and regional tree stocks were static and are likely to be driven by rebuilding following bombing of the urban area during the Second World War and by urban expansion. In 2010, trees greater than 10 m in height comprised just 8% of those present. The increases in total tree numbers are thus largely driven by smaller trees and are likely to be associated with urban tree planting programmes. Changes in tree stocks were not constant across the urban area but varied with the current intensity of urbanization. Increases from 1900 to 2010 in total tree stocks, and smaller sized trees, tended to be greatest in the most intensely urbanized areas. In contrast, the increases in the largest trees were more marked in areas with the most green space. These findings emphasize the importance of preserving larger fragments of urban green space to protect the oldest and largest trees that contribute disproportionately to carbon storage and other ecosystem services. Maintaining positive trends in urban tree stocks and associated ecosystem service provision will require continued investment in urban tree planting programmes in combination with additional measures, such as

  12. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  13. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  14. Decadal Change in Forest Carbon Stocks in the Delaware River Basin

    Science.gov (United States)

    Xu, B.; Plante, A. F.; Pan, Y.; Johnson, A. H.

    2013-12-01

    Forest carbon dynamics at different scales are controlled by different factors, which may alter the forest structure and processes. Long-term measurements of biomass and soil carbon stocks in a nested watershed DRB provide good opportunity for monitoring forest carbon dynamics at multiple scale, calibrating a regional forest process model, and exploring the carbon-water interaction. The Delaware River Basin (DRB) is an ideal watershed for forest carbon cycle research because the basin features diverse forest types and land-use history, and includes physiographic provinces representative of the eastern US. In 2001-2003, the Delaware River Basin Monitoring and Research Initiative established 66 forest plots in three intensive monitoring research sites (nested sub-watersheds in DRB) using Forest Service inventory protocols and enhanced measurements. Mean biomass carbon density was 235.7 × 93.7 Mg C ha-1 in French Creek, 193.2 × 83.9 Mg C ha-1 in Delaware Water Gap, and 264.7 × 74.4 Mg C ha-1 in Neversink River Basin. Soil carbon density (including forest floor and mineral soil to depth of 20 cm) was 80.1 Mg C ha-1, 85.4 Mg C ha-1, and 88.6 Mg C ha-1, respectively. These plots were revisited and re-measured in 2012-2013. In French Creek, where the biomass remeasurement was conducted in fall 2012, results show that, the average biomass carbon density increased by 17.9 Mg C ha-1 over the past decade. Changes in live biomass (live tree, sapling, shrub, herb etc.) and dead biomass (dead tree, coarse woody debris, litter, duff etc.) contribute equally to the total biomass change. However, in a few plots total biomass carbon density decreased by 7.6 to 43.1 Mg C ha-1 due to disturbance from logging or invasive species. Based on the preliminary result, the different effects of climatic, topographic and geological factors on carbon stocks could be detected among the small watersheds. But within a watershed, changes in biomass and soil carbon stocks may depend mainly on

  15. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France

    Science.gov (United States)

    Cardinael, Rémi; Chevallier, Tiphaine; Cambou, Aurélie; Beral, Camille; Barthes, Bernard; Dupraz, Christian; Kouakoua, Ernest; Chenu, Claire

    2017-04-01

    Introduction: Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. Methods: This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. Results: In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09-0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004-1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30-50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in

  16. ORGANIC CARBON AND CARBON STOCK: RELATIONS WITH PHYSICAL INDICATORS AND SOIL AGGREGATION IN AREAS CULTIVATED WITH SUGAR CANE

    Directory of Open Access Journals (Sweden)

    Diego Tolentino de Lima

    2017-08-01

    Full Text Available Soil organic carbon and carbon stock influence, directly or indirectly, most of soil aggregate stability indicators. The objective of this study was to quantify the production of dry biomass (DB, total organic carbon (TOC and carbon stock (CStk in soil, and to evaluate their influence on some indicators of aggregation in an Oxisol at a Cerrado biome in Uberaba-MG, Brazil. The design was completely randomized blocks, in two evaluation periods: three and six cuts, at six depths (0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5 and 0.5-0.6 m. It was evaluated: soil density (SD, volumetric humidity (VH, aggregate stability index (AEI, weighted mean diameter (WDA, mean diameter (GDA, index of aggregates with diameter greater than 2 mm (AI and sensitivity index (SI, replicated by 4. The best AEI of the soil and the highest TOC contents were found in the most superficial layers, 0 to 0.2 m, for both cuttings. The greater values of TOC and CStk, occurred at the sixth cut area, where there was a higher amount of DB on soil surface. The higher levels of organic matter did not provide higher AEI in the area of sixth cut, when compared to that of the third cut. The TOC and CStk levels in both areas generally had a positive influence on soil aggregation indicators for both cuts.

  17. Current and potential carbon stocks in Moso bamboo forests in China.

    Science.gov (United States)

    Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Lu, Dengsheng; Mo, Lufeng; Xu, Xiaojun; Shi, Yongjun; Zhou, Yufeng

    2015-06-01

    Bamboo forests provide important ecosystem services and play an important role in terrestrial carbon cycling. Of the approximately 500 bamboo species in China, Moso bamboo (Phyllostachys pubescens) is the most important one in terms of distribution, timber value, and other economic values. In this study, we estimated current and potential carbon stocks in China's Moso bamboo forests and in their products. The results showed that Moso bamboo forests in China stored about 611.15 ± 142.31 Tg C, 75% of which was in the top 60 cm soil, 22% in the biomass of Moso bamboos, and 3% in the ground layer (i.e., bamboo litter, shrub, and herb layers). Moso bamboo products store 10.19 ± 2.54 Tg C per year. The potential carbon stocks reach 1331.4 ± 325.1 Tg C, while the potential C stored in products is 29.22 ± 7.31 Tg C a(-1). Our results indicate that Moso bamboo forests and products play a critical role in C sequestration. The information gained in this study will facilitate policy decisions concerning carbon sequestration and management of Moso bamboo forests in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Carbon Stock in Integrated Field Laboratory Faculty of Agriculture University of Lampung

    Directory of Open Access Journals (Sweden)

    Irwan Sukri Banuwa

    2016-05-01

    Full Text Available This study aimed to determine the amount of carbon stock and CO2 plant uptake in the Integrated Field Laboratory (IFL Faculty of Agriculture University of Lampung. The research was conducted from April to November 2015. The study was arranged in a completely randomized block design (CRBD, consisting of five land units as treatment with four replications for each treatment. Biomass of woody plants was estimated using allometric equation, biomass of understorey plants was estimated using plant dry weight equation, and organic C content in plants and soils were analyzed using a Walkey and Black method. The results showed that land unit consisting of densely woody plants significantly affects total biomass of woody plants, organic C content in woody plants and total carbon content (above and below ground. The highest amount of woody plant biomass was observed in land unit 5, i.e. 1,196.88 Mg ha-1, and above ground total carbon was 437.19 Mg ha-1. IFL Faculty of Agriculture University of Lampung has a total carbon stock of 2,051.90 Mg and capacity to take up total CO2 of 6,656.88 Mg.

  19. Climatic and topographical factors affecting the vegetative carbon stock of rangelands in arid and semiarid regions of China

    Science.gov (United States)

    Zhengchao, Ren; Huazhong, Zhu; Shi, Hua; Xiaoni, Liu

    2016-01-01

    Rangeland systems play an important role in ecological stabilization and the terrestrial carbon cycle in arid and semiarid regions. However, little is known about the vegetative carbon dynamics and climatic and topographical factors that affect vegetative carbon stock in these rangelands. Our goal was to assess vegetative carbon stock by examining meteorological data in conjunction with NDVI (normalized difference vegetation index) time series datasets from 2001–2012. An improved CASA (Carnegie Ames Stanford Approach) model was then applied to simulate the spatiotemporal dynamic variation of vegetative carbon stock, and analyze its response to climatic and topographical factors. We estimated the vegetative carbon stock of rangeland in Gansu province, China to be 4.4× 1014 gC, increasing linearly at an annual rate of 9.8×1011 gC. The mean vegetative carbon density of the whole rangeland was 136.5 gC m-2. Vegetative carbon density and total carbon varied temporally and spatially and were highly associated with temperature, precipitation and solar radiation. Vegetative carbon density reached the maximal value on elevation at 2500–3500 m, a slope of >30°and easterly aspect. The effect of precipitation, temperature and solar radiation on the vegetative carbon density of five rangeland types (desert and salinized meadow, steppe, alpine meadow, shrub and tussock, and marginal grassland in the forest) depends on the acquired quantity of water and heat for rangeland plants at all spatial scales. The results of this study provide new evidence for explaining spatiotemporal heterogeneity in vegetative carbon dynamics and responses to global change for rangeland vegetative carbon stock, and offer a theoretical and practical basis for grassland agriculture management in arid and semiarid regions.

  20. Carbon stocks in mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA: Vegetative and soil characteristics.

    Science.gov (United States)

    Moyer, R. P.; Radabaugh, K.; Chappel, A. R.; Powell, C.; Bociu, I.; Smoak, J. M.

    2017-12-01

    When compared to other terrestrial environments, coastal "blue carbon" habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and sedimentary peat deposits. This study quantified total carbon stocks in vegetation and soil of 17 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. The average vegetative carbon stock in mangrove forests was 60.1 ± 2.7 Mg ha-1. Mangrove forests frequently consisted of a few large Avicennia germinans trees with smaller, abundant Rhizophora mangle and/or Laguncularia racemosa trees. The average vegetative carbon stock was 11.8 ± 3.7 Mg ha-1 for salt marshes and 2.0 ± 1.2 Mg ha-1 for salt barrens. Vegetative carbon did not significantly differ between natural and newly created salt marsh habitats, indicating that mature restored wetlands can be included with natural wetlands for the calculation of vegetative carbon in coastal blue carbon assessments. Peat deposits were generally less than 50 cm thick and organic content rapidly decreased with depth in all habitats. Soil in this study was analyzed in 1 cm intervals; the accuracy of subsampling or binning soil into depth intervals of 2-5 cm was also assessed. In most cases, carbon stock values obtained from these larger sampling intervals were not statistically different from values obtained from sampling at 1 cm intervals. In the first 15 cm, soil in mangrove forests contained an average of 15.1% organic carbon by weight, salt marshes contained 6.5%, and salt barrens contained 0.8%. Total carbon stock in mangroves was 187.1±17.3 Mg ha-1, with 68% of that carbon stored in soil. Salt marshes contained an average of 65.2±25.3 Mg ha-1 (82% soil carbon) and salt barrens had carbon stocks of 21.4±7.4 Mg ha-1 (89% soil carbon). These values were much lower than global averages for

  1. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in

  2. Urbanization has a positive net effect on soil carbon stocks: modelling outcomes for the Moscow region

    Science.gov (United States)

    Vasenev, Viacheslav; Stoorvogel, Jetse; Leemans, Rik; Valentini, Riccardo

    2016-04-01

    Urbanization is responsible for large environmental changes worldwide. Urbanization was traditionally related to negative environmental impacts, but recent research highlights the potential to store soil carbon (C) in urban areas. The net effect of urbanization on soil C is, however, poorly understood. Negative influences of construction and soil sealing can be compensated by establishing of green areas. We explored possible net effects of future urbanization on soil C-stocks in the Moscow Region. Urbanization was modelled as a function of environmental, socio-economic and neighbourhood factors. This yielded three alternative scenarios: i) including neighbourhood factors; ii) excluding neighbourhood factors and focusing on environmental drivers; and iii) considering the New Moscow Project, establishing 1500km2 of new urbanized area following governmental regulation. All three scenarios showed substantial urbanization on 500 to 2000km2 former forests and arable lands. Our analysis shows a positive net effect on SOC stocks of 5 to 11 TgC. The highest increase occurred on the less fertile Orthic Podzols and Eutric Podzoluvisols, whereas C-storage in Orthic Luvisols, Luvic Chernozems, Dystric Histosols and Eutric Fluvisols increased less. Subsoil C-stocks were much more affected with an extra 4 to 10 TgC than those in the topsoils. The highest increase of both topsoil and subsoil C stocks occurred in the New Moscow scenario with the highest urbanization. Even when the relatively high uncertainties of the absolute C-values are considered, a clear positive net effect of urbanization on C-stocks is apparent. This highlights the potential of cities to enhance C-storage. This will progressively become more important in the future following the increasing world-wide urbanization.

  3. Assessment of Carbon Stocks in the Topsoil Using Random Forest and Remote Sensing Images.

    Science.gov (United States)

    Kim, Jongsung; Grunwald, Sabine

    2016-11-01

    Wetland soils are able to exhibit both consumption and production of greenhouse gases, and they play an important role in the regulation of the global carbon (C) cycle. Still, it is challenging to accurately evaluate the actual amount of C stored in wetlands. The incorporation of remote sensing data into digital soil models has great potential to assess C stocks in wetland soils. Our objectives were (i) to develop C stock prediction models utilizing remote sensing images and environmental ancillary data, (ii) to identify the prime environmental predictor variables that explain the spatial distribution of soil C, and (iii) to assess the amount of C stored in the top 20-cm soils of a prominent nutrient-enriched wetland. We collected a total of 108 soil cores at two soil depths (0-10 cm and 10-20 cm) in the Water Conservation Area 2A, FL. We developed random forest models to predict soil C stocks using field observation data, environmental ancillary data, and spectral data derived from remote sensing images, including Satellite Pour l'Observation de la Terre (spatial resolution: 10 m), Landsat Enhanced Thematic Mapper Plus (30 m), and Moderate Resolution Imaging Spectroradiometer (250 m). The random forest models showed high performance to predict C stocks, and variable importance revealed that hydrology was the major environmental factor explaining the spatial distribution of soil C stocks in Water Conservation Area 2A. Our results showed that this area stores about 4.2 Tg (4.2 Mt) of C in the top 20-cm soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Fire severity alters the distribution of pyrogenic carbon stocks across ecosystem pools in a Californian mixed-conifer forest

    Science.gov (United States)

    Maestrini, Bernardo; Alvey, Erin C.; Hurteau, Matthew D.; Safford, Hugh; Miesel, Jessica R.

    2017-09-01

    Pyrogenic carbon (PyC) is hypothesized to play an important role in the carbon (C) cycle due to its resistance to decomposition; however, much uncertainty still exists regarding the stocks of PyC that persist on-site after the initial erosion in postfire forests. Therefore, understanding how fire characteristics influence PyC stocks is vital, particularly in the context of California forests for which an increase of high-severity fires is predicted over the next decades. We measured forest C and persistent PyC stocks in areas burned by low-to-moderate and high-severity fire, as well as in adjacent unburned areas in a California mixed-conifer forest, 2 to 3 years after wildfire. We measured C and PyC stocks in the following compartments: standing trees, downed wood, forest floor, and mineral soil (0-5 cm), and we identified PyC using the weak nitric acid digestion method. We found that the total stock of PyC did not differ among fire severity classes (overall mean 248 ± 30 g C m-2); however, fire severity influenced the distribution of PyC in the individual compartments. Areas burned by high-severity fire had 2.5 times more PyC stocked in the coarse woody debris (p stocked in standing trees (p stock in the forest floor (-22%, p losses through erosion.

  5. Estimating soil organic carbon stocks and spatial patterns with statistical and GIS-based methods.

    Science.gov (United States)

    Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D; Wu, Jiaping

    2014-01-01

    Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1∶50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure.

  6. Clay content drives carbon stocks in soils under a plantation of Eucalyptus saligna Labill. in southern Brazil

    Directory of Open Access Journals (Sweden)

    Tanise Luisa Sausen

    2014-06-01

    Full Text Available Soil carbon accumulation is largely dependent on net primary productivity. To our knowledge, there have been no studies investigating the dynamics of carbon accumulation in weathered subtropical soils, especially in managed eucalyptus plantations. We quantified the seasonal input of leaf litter, the leaf decomposition rate and soil carbon stocks in an commercial plantation of Eucalyptus saligna Labill. in southern Brazil. Our goal was to evaluate, through multiple linear regression, the influence that certain chemical characteristics of litter, as well as chemical and physical characteristics of soil, have on carbon accumulation in soil organic matter fractions. Variables related to the chemical composition of litter were not associated with the soil carbon stock in the particulate and mineral fractions. However, certain soil characteristics were significantly associated with the carbon stock in both fractions. The concentrations of nutrients associated with plant growth and productivity, such as phosphorus, sulfur, copper and zinc, were associated with variations in the labile carbon pool (particulate fraction. Clay content was strongly associated with the carbon stock in the mineral fraction. The carbon accumulation and stabilization in weathered subtropical Ultisol seems to be mainly associated with the intrinsic characteristics of the soil, particularly clay content, rather than with the quantity, chemical composition or decomposition rate of the litter.

  7. Rationally Managed Pastures Stock More Carbon than No-Tillage Fields

    Directory of Open Access Journals (Sweden)

    Hizumi L. S. Seó

    2017-12-01

    Full Text Available A significant share of Greenhouse Gases (GHG produced from agriculture comes from cattle farming. The reduction in GHG emissions from ruminants fed with grains has led some researchers to recommend such a diet as a means of mitigating emissions in the sector. A more accurate balance of emissions, however, must include the carbon (C stocked by feed crops. Within the grain production system, no-tillage (NT cultivation systems have a greater capacity to increase and store soil organic carbon (SOC. Within grazing management systems, the rotation used in Voisin's Rational Grazing (VRG allows the accumulation of SOC through root growth. The objective of this study was to assess the C stock of pasture under VRG and compare soil C stock between VRG pasture and fields under no-tillage management, in two seasons over a period of 1 year. The study included five dairy farms in Santa Catarina State, Brazil. In each property, we collected soil to quantify SOC from VRG pasture and NT fields, in summer and winter. In the pasture, to determine the total stock, we also collected samples from the aerial parts of plants and the roots. Further, we estimated how efficient would be producing milk from those pastures or from those crops. The VRG pasture showed a greater capacity to stock C in the soil than the no-tillage fields (VRG = 115.0 Mg C ha−1; NT = 92.5 Mg C ha−1; p < 0.00009, with the greatest difference at a depth of 0–10 cm (VRG = 41 Mg C ha−1; NT = 32 Mg C ha−1; p < 0.00008. In VRG, 95% of C was in the soil, 1% in the aerial part of plants, and 4% in the roots. On pasture was produced 0.15 kg of milk.kg−1 of C stored, and on NT system 0.13 kg of milk.kg−1 of C stored. In this study, we conclude that independent of season, the soil in well managed pastures had a greater stock of C, produced more milk and produced more milk.kg−1 of stored C than fields under NT management. Therefore, when comparing GHG emissions of ruminants with different

  8. Land-cover effects on soil organic carbon stocks in a European city.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2014-02-15

    Soil is the vital foundation of terrestrial ecosystems storing water, nutrients, and almost three-quarters of the organic carbon stocks of the Earth's biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a growing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces across a typical mid-sized U.K. city (Leicester, 73 km(2), 56% greenspace), and map citywide distribution of this ecosystem service. SOC was measured in topsoil and compared to surrounding extra-urban agricultural land. Average SOC storage in the city's greenspace was 9.9 kg m(-2), to 21 cm depth. SOC concentrations under trees and shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m(-2) to 21 cm depth, more than 3 kg m(-2) greater than any other land-cover class in domestic and non-domestic greenspace and 5 kg m(-2) greater than in arable land. Land-cover did not significantly affect SOC concentrations in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land, whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We conclude that although differences in greenspace management affect SOC stocks, trees only marginally increase these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and driveways. Copyright

  9. New views on "old" carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian Andes

    Science.gov (United States)

    Clark, K. E.; Hilton, R. G.; West, A. J.; Malhi, Y.; Gröcke, D. R.; Bryant, C. L.; Ascough, P. L.; Robles Caceres, A.; New, M.

    2013-05-01

    rivers play a key role in the delivery of particulate organic carbon (POC) to large river systems and the ocean. Due to the extent of its drainage area and runoff, the Amazon River is one of Earth's most important biogeochemical systems. However, the source of POC eroded from the humid region of the Eastern Andes and the input of fossil POC from sedimentary rocks (POCfossil) remains poorly constrained. Here we collected suspended sediments from the Kosñipata River during flood events to better characterize Andean POC, measuring the nitrogen to organic carbon ratio (N/C), stable carbon isotopes (δ13Corg) and radiocarbon (Δ14Corg). Δ14Corg values ranged from -711‰ to -15‰, and significant linear trends between Δ14Corg, N/C and δ13Corg suggested that this reflects the mixing of POCfossil with very young organic matter (Δ14Corg 50‰) from the terrestrial biosphere (POCnon-fossil). Using N/C and Δ14Corg in an end-member mixing analysis, we quantify the fraction of POCfossil (to within 0.1) and find that it contributes a constant proportion of the suspended sediment mass (0.37 ± 0.03%) and up to 80% of total POC. In contrast, the relative contribution of POCnon-fossil was variable, being most important during the rising limb and peak discharges of flood events. The new data shed light on published measurements of "old" POC (low Δ14Corg) in Andean-fed tributaries of the Amazon River, with their Δ14Corg and δ13Corg values consistent with variable addition of POCfossil. The findings suggest a greater persistence of Andean POC in the lowland Amazon than previously recognized.

  10. Improved model calculation of atmospheric CO2 increment in affecting carbon stock of tropical mangrove forest

    Directory of Open Access Journals (Sweden)

    Raghab Ray

    2013-04-01

    Full Text Available Because of the difficulties in setting up arrangements in the intertidal zone for free-air carbon dioxide enrichment experimentation, the responses to increasing atmospheric carbon dioxide in mangrove forests are poorly studied. This study applied box model to overcome this limitation, and the relative changes in present level of reservoirs organic carbon contents in response to the future increase of atmospheric carbon dioxide were examined in the Avicennia-dominated mangrove forest at the land–ocean boundary of the northeast coast of the Bay of Bengal. The above- and below-ground biomass (AGB+BGB and sediment held different carbon stock (53.20±2.87Mg C ha−1 (mega gram carbon per hectare versus 18.52±2.77Mg C ha−1. Carbon uptake (0.348mg C m−2s−1 is more than offset by losses from plant emission (0.257mg C m−2s−1, and litter fall (13.52µg C m−2s−1 was more than soil CO2 and CH4 emission (8.36 and 1.39µg C m−2s−1, respectively. Across inventory plots, Sundarban mangrove forest carbon storage in above- and below-ground live trees and soil increased by 18.89 and 5.94Mg C ha−1 between June 2009 and December 2011. Box model well predicted the dynamics of above- and below-ground biomass and soil organic carbon, and increasing atmospheric carbon dioxide concentrations could be the cause of 1.1- and 1.57-fold increases in carbon storage in live biomass and soil, respectively, across Sundarban mangrove forest rather than recovery from past disturbances.

  11. Aquatic export of young dissolved and gaseous carbon from a pristine boreal fen: Implications for peat carbon stock stability.

    Science.gov (United States)

    Campeau, Audrey; Bishop, Kevin H; Billett, Michael F; Garnett, Mark H; Laudon, Hjalmar; Leach, Jason A; Nilsson, Mats B; Öquist, Mats G; Wallin, Marcus B

    2017-12-01

    The stability of northern peatland's carbon (C) store under changing climate is of major concern for the global C cycle. The aquatic export of C from boreal peatlands is recognized as both a critical pathway for the remobilization of peat C stocks as well as a major component of the net ecosystem C balance (NECB). Here, we present a full year characterization of radiocarbon content ( 14 C) of dissolved organic carbon (DOC), carbon dioxide (CO 2 ), and methane (CH 4 ) exported from a boreal peatland catchment coupled with 14 C characterization of the catchment's peat profile of the same C species. The age of aquatic C in runoff varied little throughout the year and appeared to be sustained by recently fixed C from the atmosphere (export to forecasted hydroclimatic changes. © 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  12. Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    Science.gov (United States)

    Neigh, Christopher S. R.; Nelson, Ross F.; Ranson, K. Jon; Margolis, Hank A.; Montesano, Paul M.; Sun, Guoqing; Kharuk, Viacheslav; Naesset, Erik; Wulder, Michael A.; Andersen, Hans-Erik

    2013-01-01

    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content.

  13. Species diversity, biomass, and carbon stock assessments of a natural mangrove forest in palawan, philippines

    International Nuclear Information System (INIS)

    Abino, A.C.; Lee, Y.J.; Castillo, J.A.A

    2014-01-01

    Philippines claims international recognition for its mangrove-rich ecosystem which play significant functions from the viewpoint of ecosystem services and climate change mitigation. In this study, we assessed the species diversity of the natural mangrove forest of Bahile, Puerto Princesa City, Palawan and evaluated its potential to sequester and store carbon. Sixteen plots with a size of 10 m * 10 m were established using quadrat sampling technique to identify, record, and measure the trees. Diversity index and allometric equations were utilized to determine species diversity, and biomass and carbon stocks. Sediment samples in undisturbed portions using a 30 cm high and 5 cm diameter corer were collected in all plots to determine near-surface sediment carbon. The diversity index (H = 0.9918) was very low having a total of five true mangrove species identified dominated by Rhizophora apiculata Bl. with an importance value index of 148.1%. Among the stands, 74% of the total biomass was attributed to the above-ground (561.2 t ha-1) while 26% was credited to the roots (196.5 t ha-1). The total carbon sequestered and stored in the above-ground and root biomass were 263.8 t C ha-1 (50%) and 92.3 t C ha-1 (17%), respectively. Sediments contained 33% (173.75 t C ha-1) of the mangrove C-stocks. Stored carbon was equivalent to 1944.5 t CO/sub 2/ ha-1. These values suggest that Bahile natural mangrove forest has a potential to sequester and store substantial amounts of atmospheric carbon, hence the need for sustainable management and protection of this important coastal ecosystem. (author)

  14. Vegetation Structure and Carbon Stocks of Two Protected Areas within the South-Sudanian Savannas of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Mohammad Qasim

    2016-09-01

    Full Text Available Savannas and adjacent vegetation types like gallery forests are highly valuable ecosystems contributing to several ecosystem services including carbon budgeting. Financial mechanisms such as REDD+ (Reduced Emissions from Deforestation and Forest Degradation can provide an opportunity for developing countries to alleviate poverty through conservation of its forestry resources. However, for availing such opportunities carbon stock assessments are essential. Therefore, a research study for this purpose was conducted at two protected areas (Nazinga Game Ranch and Bontioli Nature Reserve in Burkina Faso. Similarly, analysis of various vegetation parameters was also conducted to understand the overall vegetation structure of these two protected areas. For estimating above ground biomass, existing allometric equations for dry tropical woody vegetation types were used. Compositional structure was described by applying tree species and family importance indices. The results show that both sites collectively contain a mean carbon stock of 3.41 ± 4.98 Mg·C·ha−1. Among different savanna vegetation types, gallery forests recorded the highest mean carbon stock of 9.38 ± 6.90 Mg·C·ha−1. This study was an attempt at addressing the knowledge gap particularly on carbon stocks of protected savannas—it can serve as a baseline for carbon stocks for future initiatives such as REDD+ within these areas.

  15. Trade-offs between forest carbon stocks and harvests in a steady state - A multi-criteria analysis.

    Science.gov (United States)

    Pingoud, Kim; Ekholm, Tommi; Sievänen, Risto; Huuskonen, Saija; Hynynen, Jari

    2018-03-15

    This paper provides a perspective for comparing trade-offs between harvested wood flows and forest carbon stocks with different forest management regimes. A constant management regime applied to a forest area with an even age-class distribution leads to a steady state, in which the annual harvest and carbon stocks remain constant over time. As both are desirable - carbon stocks for mitigating climate change and harvests for the economic use of wood and displacing fossil fuels - an ideal strategy should be chosen from a set of management regimes that are Pareto-optimal in the sense of multi-criteria decision-making. When choosing between Pareto-optimal alternatives, the trade-off between carbon stock and harvests is unavoidable. This trade-off can be described e.g. in terms of carbon payback times or carbon returns. As numerical examples, we present steady-state harvest levels and carbon stocks in a Finnish boreal forest region for different rotation periods, thinning intensities and collection patterns for harvest residues. In the set of simulated management practices, harvest residue collection presents the most favorable trade-off with payback times around 30-40 years; while Pareto-optimal changes in rotation or thinnings exhibited payback times over 100 years, or alternatively carbon returns below 1%. By extending the rotation period and using less-intensive thinnings compared to current practices, the steady-state carbon stocks could be increased by half while maintaining current harvest levels. Additional cases with longer rotation periods should be also considered, but were here excluded due to the lack of reliable data on older forest stands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. MODELING THE EFFECTS OF CLIMATE AND LAND USE CHANGE ON CARBON AND TRACE GAS BUDGETS OVER THE AMAZON REGION USING NASA SATELLITE PRODUCTS

    Science.gov (United States)

    As part of the LBA-ECO Phase III synthesis efforts for remote sensing and predictive modeling of Amazon carbon, water, and trace gas fluxes, we are evaluating results from the regional ecosystem model called NASA-CASA (Carnegie-Ames Stanford Approach). The NASA-CASA model has bee...

  17. A meta-analysis of soil carbon stock change following afforestation in Northern Europe.

    Science.gov (United States)

    Bárcena, Teresa G.; Vesterdal, Lars; Kiær, Lars P.; Marta Stefánsdóttir, Helena; Gundersen, Per; Sigurdsson, Bjarni D.

    2013-04-01

    Studies of soil organic carbon (SOC) stock change after afforestation have shown different patterns in terms of magnitude, direction (gain, loss or no change) and duration. Due to data shortage at regional or national scales, global datasets have commonly been evaluated by meta-analysis to address the effects of land-use changes on SOCs. Few syntheses on afforestation effects have been conducted at more constrained spatial scales where the influence of site-specific factors is smaller. Here, we present a meta-analysis of relative change in SOC within the Northern European region (including 123 observations), which has not been well represented in previous syntheses. Effect sizes were determined by log response ratios (RR) for each control-afforested pair. The first objective was to quantify effects of afforestation on SOC stocks in forest floors and mineral soils (0-10 cm and 0-20/30 cm). We tested the influence of different former land use classes, such as croplands and grasslands, forest age and forest type on the estimated SOC stock changes. The second objective was to address the influence of study design. SOC stock estimates from control/afforested plots have an implicit spatial dependency according to the experimental approach used (e.g. paired site studies, chronosequences sharing a common control site and repeated sampling design), however, this has not been accounted for in meta-analyses of afforested soils. In addition, changes in SOC stocks (in 0-10 cm) were expressed on equivalent soil mass and equivalent soil volume to estimate possible differences in effect size originating from these two SOC accounting methods. Preliminary results indicate an overall positive effect of afforestation on SOC accumulation with age, supported by the oldest age classes (>30 years). This effect was enhanced when the forest floor was included in the total SOC stock, in particular for coniferous forests, highlighting the importance of this layer in soil C sequestration

  18. Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming

    Energy Technology Data Exchange (ETDEWEB)

    Khvorostyanov, D.V.; Ciais, G. (Laboratoire des Sciences du Climat et l' Environnement, Saclay (France)); Krinner, G. (Laboratoire de Glaciologie et Geophysique de l' Environnement, St Martin d' Heres (France)). e-mail: Dimitry.Khvorostiyanov@lsce.ipsl.fr; Zimov, S.A. (Northeast Science Station, Cherskii (RU)); Corradi, C. (UNITUS, Univ. of Tuscia, Veterbo (Italy)); Guggenberger, G. (Inst. of Soil Science and Plant Nutrition, Martin-Luther-Univ., Halle-Wittenberg (DE))

    2008-07-01

    In the companion paper (Part I), we presented a model of permafrost carbon cycle to study the sensitivity of frozen carbon stocks to future climate warming. The mobilization of deep carbon stock of the frozen Pleistocene soil in the case of rapid stepwise increase of atmospheric temperature was considered. In this work, we adapted the model to be used also for floodplain tundra sites and to account for the processes in the soil active layer. The new processes taken into account are litter input and decomposition, plant-mediated transport of methane, and leaching of exudates from plant roots. The SRES-A2 transient climate warming scenario of the IPSL CM4 climate model is used to study the carbon fluxes from the carbon-rich Pleistocene soil with seasonal active-layer carbon cycling on top of it. For a point to the southwest from the western branch of Yedoma Ice Complex, where the climate warming is strong enough to trigger self-sustainable decomposition processes, about 256 kg C/m2, or 70% of the initial soil carbon stock under present-day climate conditions, are emitted to the atmosphere in about 120 yr, including 20 kg C/m2 released as methane. The total average flux of CO{sub 2} and methane emissions to the atmosphere during this time is of 2.1 kg C/m2/yr. Within the Yedoma, whose most part of the territory remains relatively cold, the emissions are much smaller: 0.2 kg C/m2/yr between 2050 and 2100 for Yakutsk area. In a test case with saturated upper-soil meter, when the runoff is insufficient to evacuate the meltwater, 0.05 kg CH{sub 4}/m2/yr on average are emitted as methane during 250 yr starting from 2050. The latter can translate to the upper bound of 1 GtC/yr in CO{sub 2} equivalent from the 1 million km2 area of the Yedoma

  19. Estimating Forest Carbon Stock in Alpine and Arctic Ecotones of the Urals

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2014-10-01

    Full Text Available This paper reports on measured carbon stocks in the forests of two tree line ecotones of the Ural region where climate change might improve growing conditions. The first is an alpine ecotone that is represented by an altitudinal gradient of the spruce-dominated forests on the Western slope of the Tylaiskii Kamen Mountain (Western part of the Konzhakovskii-Tylaiskii-Serebryanskii Mountain system, 59°30′N, 59°00′E, at the alpine timber line that has risen from 864 to 960 m above sea level in the course of the last 100 years. The second is an arctic ecotone in larch-dominated forests at the lower course of the Pur river (67°N, 78°E, at the transition zone between closed floodplain forests and open or island-like communities of upland forests on tundra permafrost. According to our results, there are large differences in the carbon of the aboveground biomass of both ecotones across environmental gradients. In the alpine tree line ecotone, a 19-fold drop of the carbon stocks was detected between the lower and higher altitudinal levels. In the arctic ecotone the aboveground biomass carbon stock of forests of similar densities (1300 to 1700 trees per ha was 7 times as much in the river flood bed, and 5 times as much in mature, dense forests as the low density forests at higher elevations. Twelve regression equations describing dependencies of the aboveground tree biomass (stems, branches, foliage, total aboveground part upon stem diameter of the tree are proposed, which can be used to estimating the biological productivity (carbon of spruce and larch forests on Tylaiskii Kamen Mountain and the lower Pur river and on surrounding areas on the base of traditional forest mensuration have been proposed. In order to reduce the labor intensity of a coming determination of forest biomass the average values of density and dry matter content in the biomass fractions are given that were obtained by taking our sample trees.The results can be useful in

  20. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models.

    Science.gov (United States)

    Vieilledent, G; Vaudry, R; Andriamanohisoa, S F D; Rakotonarivo, O S; Randrianasolo, H Z; Razafindrabe, H N; Rakotoarivony, C Bidaud; Ebeling, J; Rasamoelina, M

    2012-03-01

    Allometric equations allow aboveground tree biomass and carbon stock to be estimated from tree size. The allometric scaling theory suggests the existence of a universal power-law relationship between tree biomass and tree diameter with a fixed scaling exponent close to 8/3. In addition, generic empirical models, like Chave's or Brown's models, have been proposed for tropical forests in America and Asia. These generic models have been used to estimate forest biomass and carbon worldwide. However, tree allometry depends on environmental and genetic factors that vary from region to region. Consequently, theoretical models that include too few ecological explicative variables or empirical generic models that have been calibrated at particular sites are unlikely to yield accurate tree biomass estimates at other sites. In this study, we based our analysis on a destructive sample of 481 trees in Madagascar spiny dry and moist forests characterized by a high rate of endemism (> 95%). We show that, among the available generic allometric models, Chave's model including diameter, height, and wood specific gravity as explicative variables for a particular forest type (dry, moist, or wet tropical forest) was the only one that gave accurate tree biomass estimates for Madagascar (R2 > 83%, bias allometric models. When biomass allometric models are not available for a given forest site, this result shows that a simple height-diameter allometry is needed to accurately estimate biomass and carbon stock from plot inventories.

  1. Spatial variability of aggregate stability and carbon stock in Cambisol and Argisol

    Directory of Open Access Journals (Sweden)

    Leandro Coutinho Alho

    2014-09-01

    Full Text Available The advancement of agricultural activities without considering the soil structural conditions ceases at the expense of those environments. This study aimed at evaluating the spatial variability of aggregate stability, bulk density, total organic carbon (TOC and carbon stock in areas of natural grassland and forest, in the region of Humaitá, Amazonas State, Brazil. The soils were sampled at the crossing points of a grid with 70 m x 70 m, at regular intervals of 10 m, at the depths of 0.0-0.05 m, 0.05-0.10 m and 0.10-0.20 m, totaling 64 samples per depth. The results of the geostatistical analysis showed spatial dependence of attributes. The smaller ranges resulted from the constant variations in the relief of the natural grassland area. The mean values for mean weight diameter (MWD and TOC were respectively around 3.0 mm and 29.0 g kg-1 of the surface layer, similarly to natural grassland and forest areas, confirming the proportional correlation between TOC and MWD. However, the bulk density greater than 1.40 kg dm-3 expresses the inefficiency of soil structural functions in the natural grassland area. The carbon stock contents at the different depths were more favored by TOC than by the different densification levels of the soils evaluated.

  2. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador

    NARCIS (Netherlands)

    Tonneijck, F.H.; Jansen, B.; Nierop, K.G.J.; Verstraten, J.M.; Sevink, J.; de Lange, L.

    2010-01-01

    Volcanic ash soils contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute potential sources or sinks for the greenhouse gas carbon dioxide. Whether soils become a net carbon source or sink with climate and/or land-use change depends on the stability of

  3. Mapping aboveground carbon stocks using LiDAR data in Eucalyptus spp. plantations in the state of Sao Paulo, Brazil

    Science.gov (United States)

    Carlos Alberto Silva; Carine Klauberg; Samuel de Padua Chaves e Carvalho; Andrew T. Hudak; e Luiz Carlos Estraviz. Rodriguez

    2014-01-01

    Fast growing plantation forests provide a low-cost means to sequester carbon for greenhouse gas abatement. The aim of this study was to evaluate airborne LiDAR (Light Detection And Ranging) to predict aboveground carbon (AGC) stocks in Eucalyptus spp. plantations. Biometric parameters (tree height (Ht) and diameter at breast height (DBH)) were collected from...

  4. Measuring and modeling carbon stock change estimates for US forests and uncertainties from apparent inter-annual variability

    Science.gov (United States)

    James E. Smith; Linda S. Heath

    2015-01-01

    Our approach is based on a collection of models that convert or augment the USDA Forest Inventory and Analysis program survey data to estimate all forest carbon component stocks, including live and standing dead tree aboveground and belowground biomass, forest floor (litter), down deadwood, and soil organic carbon, for each inventory plot. The data, which include...

  5. Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates

    Science.gov (United States)

    Grant M. Domke; Christopher W. Woodall; James E. Smith; James A. Westfall; Ronald E. McRoberts

    2012-01-01

    Forest ecosystems are the largest terrestrial carbon sink on earth and their management has been recognized as a relatively cost-effective strategy for offsetting greenhouse gas emissions. Forest carbon stocks in the U.S. are estimated using data from the USDA Forest Service, Forest Inventory and Analysis (FIA) program. In an attempt to balance accuracy with...

  6. Modeling climate and fuel reduction impacts on mixed-conifer forest carbon stocks in the Sierra Nevada, California

    Science.gov (United States)

    Matthew D. Hurteau; Timothy A. Robards; Donald Stevens; David Saah; Malcolm North; George W. Koch

    2014-01-01

    Quantifying the impacts of changing climatic conditions on forest growth is integral to estimating future forest carbon balance. We used a growth-and-yield model, modified for climate sensitivity, to quantify the effects of altered climate on mixed-conifer forest growth in the Lake Tahoe Basin, California. Estimates of forest growth and live tree carbon stocks were...

  7. Linking carbon stock change from land-use change to consumption of agricultural products: Alternative perspectives.

    Science.gov (United States)

    Goh, Chun Sheng; Wicke, Birka; Faaij, André; Bird, David Neil; Schwaiger, Hannes; Junginger, Martin

    2016-11-01

    Agricultural expansion driven by growing demand has been a key driver for carbon stock change as a consequence of land-use change (CSC-LUC). However, its relative role compared to non-agricultural and non-productive drivers, as well as propagating effects were not clearly addressed. This study contributed to this subject by providing alternative perspectives in addressing these missing links. A method was developed to allocate historical CSC-LUC to agricultural expansions by land classes (products), trade, and end use. The analysis for 1995-2010 leads to three key trends: (i) agricultural land degradation and abandonment is found to be a major (albeit indirect) driver for CSC-LUC, (ii) CSC-LUC is spurred by the growth of cross-border trade, (iii) non-food use (excluding liquid biofuels) has emerged as a significant contributor of CSC-LUC in the 2000's. In addition, the study demonstrated that exact values of CSC-LUC at a single spatio-temporal point may change significantly with different methodological settings. For example, CSC-LUC allocated to 'permanent oil crops' changed from 0.53 Pg C (billion tonne C) of carbon stock gain to 0.11 Pg C of carbon stock loss when spatial boundaries were changed from global to regional. Instead of comparing exact values for accounting purpose, key messages for policymaking were drawn from the main trends. Firstly, climate change mitigation efforts pursued through a territorial perspective may ignore indirect effects elsewhere triggered through trade linkages. Policies targeting specific commodities or types of consumption are also unable to quantitatively address indirect CSC-LUC effects because the quantification changes with different arbitrary methodological settings. Instead, it is recommended that mobilising non-productive or under-utilised lands for productive use should be targeted as a key solution to avoid direct and indirect CSC-LUC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales

    DEFF Research Database (Denmark)

    Vanguelova, E. I.; Bonifacio, E.; De Vos, B.

    2016-01-01

    Spatially explicit knowledge of recent and past soil organic carbon (SOC) stocks in forests will improve our understanding of the effect of human- and non-human-induced changes on forest C fluxes. For SOC accounting, a minimum detectable difference must be defined in order to adequately determine...... and temporal distribution (such as soil type, topography, climate and vegetation) are needed to optimise sampling depths and numbers of samples, thereby ensuring that samples accurately reflect the distribution of SOC at a site. Furthermore, the appropriate scales related to the research question need...

  9. Carbon stock assessment of two agroforestry systems in a tropical forest reserve in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lasco, R.D.; Sales, R.F.; Estrella, R.; Saplaco, S.R.; Castillo, A.S.A.; Cruz, R.V.O.; Pulhin, F.B. [University of Philippines Los Banos, Laguna (Philippines). College of Forestry & Natural Resources Environmental Forestry Programme

    2001-07-01

    Carbon dioxide is the most abundant greenhouse gas (GHG) that causes global warming. Thus, land uses such as an agroforestry system have a significant role in moderating climate change since they can be sources and sinks of carbon. The aim of the study was to generate data on the carbon stocks of two agroforestry systems, specifically a Gmelina arborea-Theobroma cacao multistorey system and an alley cropping system with Gliricidia sepium hedges at the agroforestry research and demonstration area inside a forest reserve in Southern Luzon, Philippines. The multistorey system had a mean biomass of 258 Mg C ha{sup -1} and a carbon density of 185 Mg C ha{sup -1}. Carbon was stored in the various pools in the following order of magnitude: soil > tree biomass (above-ground) > necromass > understorey vegetation > roots. The Gliricidia hedgerow had a biomass density of 3.8 Mg C ha{sup -1}; total carbon density was 93 Mg C ha{sup -1}, of which 92 Mg C ha{sup -1} was in the soil.

  10. Soil, vegetation and total organic carbon stock development in self-restoring abandoned vineyards

    Science.gov (United States)

    József Novák, Tibor; Incze, József; Spohn, Marie; Giani, Luise

    2016-04-01

    Abandoned vineyard's soil and vegetation development was studied on Tokaj Nagy-Hill, which is one of the traditional wine-producing regions of Hungary, it is declared as UNESCO World Heritage site as cultural landscape. Spatial distribution and pattern of vineyards were changing during the last several hundreds of years, therefore significant part of abandoned vineyards were subjected to long-term spontaneous secondary succession of vegetation and self-restoration of soils in absence of later cultivation. Two chronosequences of spontaneously regenerating vineyard abandonments, one on south (S-sequence) and one on southwest (SW-sequence) slope with differing times since their abandonment (193, 142, 101, 63, 39 and 14 years), were compiled and studied. The S-sequence was 25-35% sloped and strongly eroded, and the SW-sequence was 17-25% sloped and moderately eroded. The sites were investigated in respect of vegetation characteristics, soil physico-chemical characteristics, total organic carbon stocks (TOC stocks), accumulation rates of total organic carbon (TOC accumulation rates), and soil profiles, which were classified according to the World Reference Base (WRB) 2014. Vegetation development resulted in shrub-grassland mosaics, supplemented frequently by protected forb species and forest development at the earliest abandonment in S-sequence, and predominantly to forest vegetation in SW-sequence, where trees were only absent at the 63 and 14 years old abandonment sites. In all sites soils on level of reference groups according to WRB were classified, and Cambisols, Regosols, Calcisols, Leptosols, Chernozems and Phaeozems were found. Soils of the S-sequence show shallow remnants of loess cover with colluvic and redeposited soil materials containing 15-65% skeletal volcanic rock of weathering products coated by secondary calcium carbonates. The SW-sequence profiles are developed on deep loess or loess derivatives. The calcium-carbonate content was higher in profiles of

  11. Simulation of salinity effects on past, present, and future soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo

    2012-02-07

    Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study. Both sets of results suggest that saline soils have lost carbon and will continue to lose carbon under future climate. This demonstrates the importance of both reduced decomposition

  12. Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests

    Directory of Open Access Journals (Sweden)

    A. T. Trugman

    2018-01-01

    Full Text Available Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2 with (i a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests, and (ii plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.

  13. Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests

    Science.gov (United States)

    Trugman, Anna T.; Medvigy, David; Hoffmann, William A.; Pellegrini, Adam F. A.

    2018-01-01

    Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.

  14. Modelling carbon stocks and fluxes in the wood product sector: a comparative review.

    Science.gov (United States)

    Brunet-Navarro, Pau; Jochheim, Hubert; Muys, Bart

    2016-07-01

    In addition to forest ecosystems, wood products are carbon pools that can be strategically managed to mitigate climate change. Wood product models (WPMs) simulating the carbon balance of wood production, use and end of life can complement forest growth models to evaluate the mitigation potential of the forest sector as a whole. WPMs can be used to compare scenarios of product use and explore mitigation strategies. A considerable number of WPMs have been developed in the last three decades, but there is no review available analysing their functionality and performance. This study analyses and compares 41 WPMs. One surprising initial result was that we discovered the erroneous implementation of a few concepts and assumptions in some of the models. We further described and compared the models using six model characteristics (bucking allocation, industrial processes, carbon pools, product removal, recycling and substitution effects) and three model-use characteristics (system boundaries, model initialization and evaluation of results). Using a set of indicators based on the model characteristics, we classified models using a hierarchical clustering technique and differentiated them according to their increasing degrees of complexity and varying levels of user support. For purposes of simulating carbon stock in wood products, models with a simple structure may be sufficient, but to compare climate change mitigation options, complex models are needed. The number of models has increased substantially over the last ten years, introducing more diversity and accuracy. Calculation of substitution effects and recycling has also become more prominent. However, the lack of data is still an important constraint for a more realistic estimation of carbon stocks and fluxes. Therefore, if the sector wants to demonstrate the environmental quality of its products, it should make it a priority to provide reliable life cycle inventory data, particularly regarding aspects of time and

  15. Impact of a Historical Fire Event on Pyrogenic Carbon Stocks and Dissolved Pyrogenic Carbon in Spodosols in Northern Michigan

    Directory of Open Access Journals (Sweden)

    Fernanda Santos

    2017-10-01

    Full Text Available Inventories of fire-derived (pyrogenic C (PyC stocks in soils remain incomplete for many parts of the world, yet are critical to reduce uncertainties in global PyC estimates. Additionally, PyC dynamics in soils remain poorly understood. For example, dissolved PyC (DPyC fluxes from soil horizons, as well as the influence of historical fire events on these fluxes and soil PyC stocks remain poorly quantified. In this study, we examined stock and concentration differences in soil PyC and leached DPyC, respectively, between two forest types in the Great Lakes region (USA: (1 a red pine (Pinus resinosa forest planted after the site had experienced post-logging slash burning in the late nineteenth century (100 year-burned site, and (2 a sugar maple (Acer saccharum forest that showed no evidence of burning in the past 250 years (unburned site. We hypothesized that the 100 year-burned site would have greater PyC stocks and concentrations of DPyC compared to the unburned site. We measured PyC in soil, as well as DPyC in soil water leaching from O and E horizons following a spring snowmelt event in both 100 year-burned and unburned sites. Additionally, we measured DPyC drained from B horizons in 100 year-burned site. In organic horizons, PyC stocks were 1.8 (Oi and 2.3 (Oe times greater in the 100 year-burned site than in the unburned site. Contrary to our initial hypothesis, DPyC concentrations did not differ between sites. On average, DPyC leached from all sites contributed 3.11 ± 0.27% of the total dissolved organic carbon pool. In the 100 year-burned site, a significant decline in concentrations of DPyC leaving the B horizon was attributed to the immobilization of this C pool in the Al and Fe oxides-rich subsoil. Even though PyC stock in O horizons was higher in 100 year-burned than in unburned site, our results did not support our initial hypothesis that the 100 year-burned site would have greater DPyC concentrations than the unburned site

  16. Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management.

    Science.gov (United States)

    Bhomia, R K; MacKenzie, R A; Murdiyarso, D; Sasmito, S D; Purbopuspito, J

    2016-07-01

    Globally, mangrove forests represents only 0.7% of world's tropical forested area but are highly threatened due to susceptibility to climate change, sea level rise, and increasing pressures from human population growth in coastal regions. Our study was carried out in the Bhitarkanika Conservation Area (BCA), the second-largest mangrove area in eastern India. We assessed total ecosystem carbon (C) stocks at four land use types representing varying degree of disturbances. Ranked in order of increasing impacts, these sites included dense mangrove forests, scrub mangroves, restored/planted mangroves, and abandoned aquaculture ponds. These impacts include both natural and/or anthropogenic disturbances causing stress, degradation, and destruction of mangroves. Mean vegetation C stocks (including both above- and belowground pools; mean ± standard error) in aquaculture, planted, scrub, and dense mangroves were 0, 7 ± 4, 65 ± 11 and 100 ± 11 Mg C/ha, respectively. Average soil C pools for aquaculture, planted, scrub, and dense mangroves were 61 ± 8, 92 ± 20, 177 ± 14, and 134 ± 17 Mg C/ha, respectively. Mangrove soils constituted largest fraction of total ecosystem C stocks at all sampled sites (aquaculture [100%], planted [90%], scrub [72%], and dense mangrove [57%]). Within BCA, the four studied land use types covered an area of ~167 km 2 and the total ecosystem C stocks were 0.07 Tg C for aquaculture (~12 km 2 ), 0.25 Tg C for planted/ restored mangrove (~24 km 2 ), 2.29 teragrams (Tg) Tg C for scrub (~93 km 2 ), and 0.89 Tg C for dense mangroves (~38 km 2 ). Although BCA is protected under Indian wildlife protection and conservation laws, ~150 000 people inhabit this area and are directly or indirectly dependent on mangrove resources for sustenance. Estimates of C stocks of Bhitarkanika mangroves and recognition of their role as a C repository could provide an additional reason to support conservation and restoration of Bhitarkanika

  17. Combined influence of sedimentation and vegetation on the soil carbon stocks of a coastal wetland in the Changjiang estuary

    Science.gov (United States)

    Zhang, Tianyu; Chen, Huaipu; Cao, Haobing; Ge, Zhenming; Zhang, Liquan

    2017-07-01

    Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the expansion of saltmarsh vegetation, and carbon sequestration. In this study, using the Chongming Dongtan Wetland in the Changjiang estuary as the study area, the spatial and temporal distribution of soil organic carbon (SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013. There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area, and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southern area. More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat. The total organic carbon (TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter; in the below-ground biomass, they gradually increased from spring to winter. The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P. australis and Spartina alterniflora marshes, but were lower in the below-ground biomass in S. mariqueter marsh. Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter. The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order: P. australis marsh > S. alterniflora marsh > S. mariqueter marsh > bare mudflat. The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect. These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.

  18. Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing

    Science.gov (United States)

    Grinand, C.; Maire, G. Le; Vieilledent, G.; Razakamanarivo, H.; Razafimbelo, T.; Bernoux, M.

    2017-02-01

    Soil organic carbon (SOC) plays an important role in climate change regulation notably through release of CO2 following land use change such a deforestation, but data on stock change levels are lacking. This study aims to empirically assess SOC stocks change between 1991 and 2011 at the landscape scale using easy-to-access spatially-explicit environmental factors. The study area was located in southeast Madagascar, in a region that exhibits very high rate of deforestation and which is characterized by both humid and dry climates. We estimated SOC stock on 0.1 ha plots for 95 different locations in a 43,000 ha reference area covering both dry and humid conditions and representing different land cover including natural forest, cropland, pasture and fallows. We used the Random Forest algorithm to find out the environmental factors explaining the spatial distribution of SOC. We then predicted SOC stocks for two soil layers at 30 cm and 100 cm over a wider area of 395,000 ha. By changing the soil and vegetation indices derived from remote sensing images we were able to produce SOC maps for 1991 and 2011. Those estimates and their related uncertainties where combined in a post-processing step to map estimates of significant SOC variations and we finally compared the SOC change map with published deforestation maps. Results show that the geologic variables, precipitation, temperature, and soil-vegetation status were strong predictors of SOC distribution at regional scale. We estimated an average net loss of 10.7% and 5.2% for the 30 cm and the 100 cm layers respectively for deforested areas in the humid area. Our results also suggest that these losses occur within the first five years following deforestation. No significant variations were observed for the dry region. This study provides new solutions and knowledge for a better integration of soil threats and opportunities in land management policies.

  19. Differences on soil organic carbon stock estimation according to sampling type in Mediterranean areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2016-04-01

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Consequently, the scientific community is researching the fate of the organic carbon in the ecosystems. In this line, soil organic matter configuration plays an important role in the Soil System (Parras-Alcántara and Lozano García, 2014). Internationally it is known that soil C sequestration is a strategy to mitigate climate change. In this sense, many soil researchers have studied this parameter (SOC). However, many of these studies were carried out arbitrarily using entire soil profiles (ESP) by pedogenetic horizons or soil control sections (SCS) (edaphic controls to different thickness). As a result, the indiscriminate use of both methodologies implies differences with respect to SOC stock (SOCS) quantification. This scenario has been indicated and warned for different researchers (Parras-Alcántara et al., 2015a; Parras-Alcántara et al., 2015b). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in the Cardeña and Montoro Natural Park (Spain). This nature reserve is a forested area with 385 km2 in southern Spain. Thirty-seven sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The results obtained show an overestimation of SOCS when SCS sampling approach is used compared to ESP. This supports that methodology selection is very important to SOCS quantification. This research is an assessment for modeling SOCS at the regional level in Mediterranean natural areas. References Parras-Alcántara, L., Lozano-García, B., 2014

  20. Ecological carbon sequestration via wood harvest and storage (WHS): Can it be a viable climate mitigation and adaptation strategy for the Amazon?

    Science.gov (United States)

    Zeng, N.

    2015-12-01

    A carbon sequestration strategy is proposed in which forests are sustainably managed to optimal carbon productivity, and a fraction of the wood is selectively harvested and stored to prevent decomposition under anaerobic, dry or cold conditions. Because a large flux of CO2 is constantly assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. The live trees serve as a 'carbon scrubber' or 'carbon remover' that provides continuous sequestration (negative emissions). The stored wood is a semi-permanent carbon sink, but also serves as a 'biomass/bioenergy reserve' that could be utilized in the future. We discuss the particular relevance of this strategy to the Amazon which is under the double threat of climate change and deforestation. As an alternative to REDD, we propose mixed-use of peripheral Amazon basin while keeping the core of the Amazon intact. We argue that this may be a more practical solution in light of the likely climate change impact and human activities.

  1. Carbon stocks, tree diversity and their relation to soil properties in a Neotropical rainforest of South-East Mexico

    Science.gov (United States)

    Navarrete-Segueda, Armando; Siebe-Grabach, Christina; Ibarra-Manríquez, Guillermo; Martínez-Ramos, Miguel; Vázquez-Selem, Lorenzo

    2015-04-01

    Site heterogeneity at the local scale is an important factor for the generation of ecosystem services across the landscape. Several investigations at regional or local scale have identified the important role of soil properties and topography to determine tree diversity and productivity in tropical forests. We studied how the characteristics of soils affect the tree richness and carbon storage in the tropical rain forest of south-east Mexico. We compared carbon stocks on above-ground dry biomass of living trees, litter and soil organic carbon in 9 plots of 5000 m2 distributed in three contrasting soil-topographic units in neotropical forest (Floodplains/Low altitude hills/Steep slopes) all under the same climate. In each plot, landform features and soil properties to rooting depths were determined. We obtained richness and biomass values of trees with diameter at breast height (DBH) ≥ 10 cm. In each plot, litter and soil samples were taken for quantifying carbon in laboratory and allometric equations were applied to relate tree biomass (root and aerial) with carbon. We used cluster analysis as classification technique to compare richness between units. The relationship between soil properties and tree richness was obtained based on a canonical correspondence analysis. Both the classification and ordination techniques showed that plant diversity and richness respond to soil conditions. The variation was positively correlated with pH, total nitrogen, soil aeration, water retention capacity and exchange aluminum. The richness is smaller in floodplains, but this unit, with higher water and nutrient storage capacity, shows the largest carbon stocks. In contrast, limiting site for tree growth have less total carbon. Low altitude hills are much more heterogeneous in soil properties but also richer in tree species. The soil in this land unit has small rooting depth and available water holding capacity. Additionally, in this soil carbon stock is greater than the carbon

  2. Diminishing soil carbon stocks caused by the land-use change from secondary forests to terraced rubber plantations

    Science.gov (United States)

    de Blecourt, Marleen; Brumme, Rainer; Haensel, Maria V.; Corre, Marife D.; Xu, Jianchu; Veldkamp, Edzo

    2013-04-01

    Conversion from forest to rubber plantations (Hevea Brasiliensis) is an important recent land-use change in the Upper Mekong Region in Southeast Asia, for which the impacts on soil carbon stocks have hardly been studied. Due to the mountainous topography most of the established rubber plantations include narrow terraces. Terrace bench construction involves redistribution of the soil within the plantations. The objectives of our study in Xishuangbanna prefecture, Yunnan province, China were: to quantify the changes in soil carbon stocks (1) upon the conversion from secondary forest to rubber plantations, and (2) induced by terrace bench construction. We selected seven randomly selected clusters. Each cluster contained between one and three rubber plantations and one secondary forest which was the immediate reference land-use type. In total, there were 11 rubber plantations ranging in age from 5 to 46 years. In each land-use type, we measured soil carbon stock from a 20-m x 20-m plot down to 1.2-m depth. To gain insight into the effects of terracing, we additionally sampled the terrace benches in three rubber plantations aged 5, 29 and 44 years. In each plantation, six transect were positioned perpendicularly to terrace benches. Each transect consisted of 4 sampling points on the terrace bench and one sampling point on the undisturbed terrace riser, the latter is our reference position. All rubber plantations had lower soil carbon stocks than the forests with a mean difference of 37.4 Mg C ha-1 in the entire 1.2-m depth, which equals a 19% loss of the initial soil carbon stock. Strongest decrease was found in the top 0.15-m of the soil, exhibiting a mean loss of 27%. In the topsoil the soil carbon stock declined exponentially with years since land-use conversion and reached a steady state after ~20 years. The soil carbon losses observed in this study are much larger than published estimates on changes in aboveground carbon stocks. Results from the terracing case

  3. Modelling soil organic carbon stocks along topographic transects under climate change scenarios using CarboSOIL

    Science.gov (United States)

    Kotb Abd-Elmabod, Sameh; Muñoz-Rojas, Miriam; Jordán, Antonio; Anaya-Romero, María; de la Rosa, Diego

    2014-05-01

    CarboSOIL is a land evaluation model for soil organic carbon (SOC) accounting under global change scenarios (Muñoz-Rojas et al., 2013a; 2013b) and is a new component of the MicroLEIS Decision Support System. MicroLEIS is a tool for decision-makers dealing with specific agro-ecological problems as, for example, soil contamination risks (Abd-Elmabod et al., 2010; Abd-Elmabod et al., 2012)which has been designed as a knowledge-based approach incorporating a set of interlinked data bases. Global change and land use changes in recent decades have caused relevant impacts in vegetation carbon stocks (Muñoz-Rojas et al., 2011) and soil organic carbon stocks, especially in sensible areas as the Mediterranean region (Muñoz-Rojas et al., 2012a; 2012b). This study aims to investigate the influence of topography, climate, land use and soil factors on SOC stocks by the application of CarboSOIL in a representative area of the Mediterranean region (Seville, Spain). Two topographic transects (S-N and W-E oriented) were considered, including 63 points separated 4 km each. These points are associated to 41 soil profiles extracted from the SDBm soil data base (De la Rosa et al., 2001) and climatic information (average minimum temperature, average maximum temperature and average rainfall per month) extracted from raster data bases (Andalusian Environmental Information Network, REDIAM). CarboSOIL has been applied along topographic transects at different soil depths and under different climate change scenarios. Climate scenarios have been calculated according to the global climate model (CNRMCM3) by extracting spatial climate data under IPCC A1B scenario for the current period (average data from 1960-2000), 2040, 2070 and 2100. In the current scenario, results show that the highest SOC stock values located on Typic Haploxeralfs under olive groves for soil sections 0-25 cm and for 25-50 cm, but the highest values were determined on fruit-cropped Rendolic Xerothent in the 50-75cm

  4. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons.

    Directory of Open Access Journals (Sweden)

    J Boone Kauffman

    Full Text Available Globally, it is recognized that blue carbon ecosystems, especially mangroves, often sequester large quantities of carbon and are of interest for inclusion in climate change mitigation strategies. While 19% of the world's mangroves are in Africa, they are among the least investigated of all blue carbon ecosystems. We quantified total ecosystem carbon stocks in 33 different mangrove stands along the Atlantic coast of West-Central Africa from Senegal to Southern Gabon spanning large gradients of latitude, soil properties, porewater salinity, and precipitation. Mangrove structure ranged from low and dense stands that were 35,000 trees ha-1 to tall and open stands >40m in height and 1,000 Mg C ha-1. The lowest carbon stocks were found in the low mangroves of the semiarid region of Senegal (463 Mg C ha-1 and in mangroves on coarse-textured soils in Gabon South (541 Mg C ha-1. At the scale of the entirety of West-Central Africa, total ecosystem carbon stocks were poorly correlated to aboveground ecosystem carbon pools, precipitation, latitude and soil salinity (r2 = ≤0.07 for all parameters. Based upon a sample of 158 sites from Africa, Asia and Latin America that were sampled in a similar manner to this study, the global mean of carbon stocks for mangroves is 885 Mg C ha-1. The ecosystem carbon stocks of mangroves for West-Central Africa are slightly lower than those of Latin America (940 Mg C ha-1 and Asia (1049 Mg C ha-1 but substantially higher than the default Intergovernmental Panel on Climate Change (IPCC values for mangroves (511 Mg C ha-1. This study provides an improved estimation of default estimates (Tier 1 values of mangroves for Asia, Latin America, and West Central Africa.

  5. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.

    2015-01-01

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  6. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    International Nuclear Information System (INIS)

    Bright, B C; Hicke, J A; Hudak, A T

    2012-01-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40–50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75–89% of the study area had >25% AGC in killed trees and 3–6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale. (letter)

  7. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States.

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L; Wu, Yiping; Young, Claudia J

    2015-10-13

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands' contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency's land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  8. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia

    NARCIS (Netherlands)

    Khasanah, N.; Noordwijk, van M.; Ningsih, H.; Rahayu, S.

    2015-01-01

    Sustainability criteria for palm oil production guide new planting toward non-forest land cover on mineral soil, avoiding carbon debts caused by forest and peat conversion. Effects on soil carbon stock (soil Cstock) of land use change trajectories from forest and non-forest to oil palm on mineral

  9. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.

    Directory of Open Access Journals (Sweden)

    Shuaifeng Li

    Full Text Available The objectives of this study were to estimate changes of tree carbon (C and soil organic carbon (SOC stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0-1 m. The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1 with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0-0.1 m contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded.

  10. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.

    Science.gov (United States)

    Li, Shuaifeng; Su, Jianrong; Liu, Wande; Lang, Xuedong; Huang, Xiaobo; Jia, Chengxinzhuo; Zhang, Zhijun; Tong, Qing

    2015-01-01

    The objectives of this study were to estimate changes of tree carbon (C) and soil organic carbon (SOC) stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF) in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0-1 m). The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1) with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0-0.1 m) contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded.

  11. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison.

    Science.gov (United States)

    Restrepo-Coupe, Natalia; Levine, Naomi M; Christoffersen, Bradley O; Albert, Loren P; Wu, Jin; Costa, Marcos H; Galbraith, David; Imbuzeiro, Hewlley; Martins, Giordane; da Araujo, Alessandro C; Malhi, Yadvinder S; Zeng, Xubin; Moorcroft, Paul; Saleska, Scott R

    2017-01-01

    To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of other fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, 'soil water stress' and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (R e ) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and R e consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model

  12. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons.

    Science.gov (United States)

    Kauffman, J Boone; Bhomia, Rupesh K

    2017-01-01

    Globally, it is recognized that blue carbon ecosystems, especially mangroves, often sequester large quantities of carbon and are of interest for inclusion in climate change mitigation strategies. While 19% of the world's mangroves are in Africa, they are among the least investigated of all blue carbon ecosystems. We quantified total ecosystem carbon stocks in 33 different mangrove stands along the Atlantic coast of West-Central Africa from Senegal to Southern Gabon spanning large gradients of latitude, soil properties, porewater salinity, and precipitation. Mangrove structure ranged from low and dense stands that were 35,000 trees ha-1 to tall and open stands >40m in height and Africa was 799 Mg C ha-1. Soils comprised an average of 86% of the total carbon stock. The greatest carbon stocks were found in the tall mangroves of Liberia and Gabon North with a mean >1,000 Mg C ha-1. The lowest carbon stocks were found in the low mangroves of the semiarid region of Senegal (463 Mg C ha-1) and in mangroves on coarse-textured soils in Gabon South (541 Mg C ha-1). At the scale of the entirety of West-Central Africa, total ecosystem carbon stocks were poorly correlated to aboveground ecosystem carbon pools, precipitation, latitude and soil salinity (r2 = ≤0.07 for all parameters). Based upon a sample of 158 sites from Africa, Asia and Latin America that were sampled in a similar manner to this study, the global mean of carbon stocks for mangroves is 885 Mg C ha-1. The ecosystem carbon stocks of mangroves for West-Central Africa are slightly lower than those of Latin America (940 Mg C ha-1) and Asia (1049 Mg C ha-1) but substantially higher than the default Intergovernmental Panel on Climate Change (IPCC) values for mangroves (511 Mg C ha-1). This study provides an improved estimation of default estimates (Tier 1 values) of mangroves for Asia, Latin America, and West Central Africa.

  13. Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks

    International Nuclear Information System (INIS)

    Elliott Campbell, J.; Moen, Jeremie C.; Ney, Richard A.; Schnoor, Jerald L.

    2008-01-01

    Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively. - Large differences in estimates of soil organic carbon stocks and annual changes in stocks for Wisconsin forestlands indicate a need for validation from forthcoming forest surveys

  14. Soil organic carbon stocks in estuarine and marine mangrove ecosystems are driven by nutrient colimitation of P and N.

    Science.gov (United States)

    Weiss, Christian; Weiss, Joanna; Boy, Jens; Iskandar, Issi; Mikutta, Robert; Guggenberger, Georg

    2016-07-01

    Mangroves play an important role in carbon sequestration, but soil organic carbon (SOC) stocks differ between marine and estuarine mangroves, suggesting differing processes and drivers of SOC accumulation. Here, we compared undegraded and degraded marine and estuarine mangroves in a regional approach across the Indonesian archipelago for their SOC stocks and evaluated possible drivers imposed by nutrient limitations along the land-to-sea gradients. SOC stocks in natural marine mangroves (271-572 Mg ha(-1) m(-1)) were much higher than under estuarine mangroves (100-315 Mg ha(-1) m(-1)) with a further decrease caused by degradation to 80-132 Mg ha(-1) m(-1). Soils differed in C/N ratio (marine: 29-64; estuarine: 9-28), δ (15)N (marine: -0.6 to 0.7‰; estuarine: 2.5 to 7.2‰), and plant-available P (marine: 2.3-6.3 mg kg(-1); estuarine: 0.16-1.8 mg kg(-1)). We found N and P supply of sea-oriented mangroves primarily met by dominating symbiotic N2 fixation from air and P import from sea, while mangroves on the landward gradient increasingly covered their demand in N and P from allochthonous sources and SOM recycling. Pioneer plants favored by degradation further increased nutrient recycling from soil resulting in smaller SOC stocks in the topsoil. These processes explained the differences in SOC stocks along the land-to-sea gradient in each mangrove type as well as the SOC stock differences observed between estuarine and marine mangrove ecosystems. This first large-scale evaluation of drivers of SOC stocks under mangroves thus suggests a continuum in mangrove functioning across scales and ecotypes and additionally provides viable proxies for carbon stock estimations in PES or REDD schemes.

  15. Relationships between forest fine and coarse woody debris carbon stocks across latitudinal gradients in the United States as an indicator of climate change effects

    Science.gov (United States)

    C.W. Woodall; G.C. Liknes

    2008-01-01

    Coarse and fine woody materials (CWD and FWD) are substantial forest ecosystem carbon (C) stocks. There is a lack of understanding how these detritus C stocks may respond to climate change. This study used a nation-wide inventory of CWD and FWD in the United States to examine how these C stocks vary by latitude. Results indicate that the highest CWD and FWD C stocks...

  16. Evaluating the Potential of Commercial Forest Inventory Data to Report on Forest Carbon Stock and Forest Carbon Stock Changes for REDD+ under the UNFCCC

    Directory of Open Access Journals (Sweden)

    Danae Maniatis

    2011-01-01

    Full Text Available In the context of the adoption at the 16th Conference of the Parties in 2010 on the REDD+ mitigation mechanism, it is important to obtain reliable data on the spatiotemporal variation of forest carbon stocks and changes (called Emission Factor, EF. A re-occurring debate in estimating EF for REDD+ is the use of existing field measurement data. We provide an assessment of the use of commercial logging inventory data and ecological data to estimate a conservative EF (REDD+ phase 2 or to report on EF following IPCC Guidance and Guidelines (REDD+ phase 3. The data presented originate from five logging companies dispersed over Gabon, totalling 2,240 plots of 0.3 hectares.We distinguish three Forest Types (FTs in the dataset based on floristic conditions. Estimated mean aboveground biomass (AGB in the FTs ranges from 312 to 333 Mg ha−1. A 5% accuracy is reached with the number of plots put in place for the FTs and a low sampling uncertainty obtained (± 10 to 13 Mg ha−1. The data could be used to estimate a conservative EF in REDD+ phase 2 and only partially to report on EF following tier 2 requirements for a phase 3.

  17. Mapping soil organic carbon stocks by robust geostatistical and boosted regression models

    Science.gov (United States)

    Nussbaum, Madlene; Papritz, Andreas; Baltensweiler, Andri; Walthert, Lorenz

    2013-04-01

    Carbon (C) sequestration in forests offsets greenhouse gas emissions. Therefore, quantifying C stocks and fluxes in forest ecosystems is of interest for greenhouse gas reporting according to the Kyoto protocol. In Switzerland, the National Forest Inventory offers comprehensive data to quantify the aboveground forest biomass and its change in time. Estimating stocks of soil organic C (SOC) in forests is more difficult because the variables needed to quantify stocks vary strongly in space and precise quantification of some of them is very costly. Based on data from 1'033 plots we modeled SOC stocks of the organic layer and the mineral soil to depths of 30 cm and 100 cm for the Swiss forested area. For the statistical modeling a broad range of covariates were available: Climate data (e. g. precipitation, temperature), two elevation models (resolutions 25 and 2 m) with respective terrain attributes and spectral reflectance data representing vegetation. Furthermore, the main mapping units of an overview soil map and a coarse scale geological map were used to coarsely represent the parent material of the soils. The selection of important covariates for SOC stocks modeling out of a large set was a major challenge for the statistical modeling. We used two approaches to deal with this problem: 1) A robust restricted maximum likelihood method to fit linear regression model with spatially correlated errors. The large number of covariates was first reduced by LASSO (Least Absolute Shrinkage and Selection Operator) and then further narrowed down to a parsimonious set of important covariates by cross-validation of the robustly fitted model. To account for nonlinear dependencies of the response on the covariates interaction terms of the latter were included in model if this improved the fit. 2) A boosted structured regression model with componentwise linear least squares or componentwise smoothing splines as base procedures. The selection of important covariates was done by the

  18. LBA-ECO CD-06 Isotopic Composition of Carbon Fractions, Amazon Basin River Water

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes measurements of standard geochemical variables, dissolved CO2, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), fine...

  19. LBA-ECO CD-06 Isotopic Composition of Carbon Fractions, Amazon Basin River Water

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set includes measurements of standard geochemical variables, dissolved CO2, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC),...

  20. Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks.

    Science.gov (United States)

    Campbell, J Elliott; Moen, Jeremie C; Ney, Richard A; Schnoor, Jerald L

    2008-03-01

    Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively.

  1. Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo.

    Directory of Open Access Journals (Sweden)

    Philippe Saner

    Full Text Available Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+ good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha⁻¹±3.8 (SD, including: Total aboveground (TAGC: 55%; 91.9 Mg C ha⁻¹±2.9 SEM and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha⁻¹±0.5 SEM, deadwood (8%; 13.2 Mg C ha⁻¹±3.5 SEM and soil organic matter (SOM: 24%; 39.6 Mg C ha⁻¹±0.9 SEM, understory vegetation (3%; 5.1 Mg C ha⁻¹±1.7 SEM, standing litter (<1%; 0.7 Mg C ha⁻¹±0.1 SEM and fine root biomass (<1%; 0.9 Mg C ha⁻¹±0.1 SEM. Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha⁻¹ yr⁻¹±0.1 SEM, and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha⁻¹ yr⁻¹±1.2 SEM. The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration.Twenty-two years after logging TAGC stocks were 28% lower compared to unlogged forest (128 Mg C ha⁻¹±13.4 SEM; a combined weighted average mean reduction due to selective logging of -57.8 Mg C ha⁻¹ (with 95% CI -75.5 to -40.2. Based on the findings we conclude that selective logging decreased the dipterocarp stock by 55-66%. Silvicultural treatments may have the potential to accelerate the recovery of dipterocarp C stocks to pre-logging levels.

  2. Carbon Stocks and Fluxes in Tropical Lowland Dipterocarp Rainforests in Sabah, Malaysian Borneo

    Science.gov (United States)

    Saner, Philippe; Loh, Yen Yee; Ong, Robert C.; Hector, Andy

    2012-01-01

    Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+) good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha−1±3.8 (SD), including: Total aboveground (TAGC: 55%; 91.9 Mg C ha−1±2.9 SEM) and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha−1±0.5 SEM), deadwood (8%; 13.2 Mg C ha−1±3.5 SEM) and soil organic matter (SOM: 24%; 39.6 Mg C ha−1±0.9 SEM), understory vegetation (3%; 5.1 Mg C ha−1±1.7 SEM), standing litter (<1%; 0.7 Mg C ha−1±0.1 SEM) and fine root biomass (<1%; 0.9 Mg C ha−1±0.1 SEM). Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha−1 yr−1±0.1 SEM), and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha−1 yr−1±1.2 SEM). The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration. Twenty-two years after logging TAGC stocks were 28% lower compared to unlogged forest (128 Mg C ha−1±13.4 SEM); a combined weighted average mean reduction due to selective logging of −57.8 Mg C ha−1 (with 95% CI −75.5 to −40.2). Based on the findings we conclude that selective logging decreased the dipterocarp stock by 55–66%. Silvicultural treatments may have the potential to accelerate the recovery of dipterocarp C stocks to pre-logging levels. PMID:22235319

  3. Ecological Variability and Carbon Stock Estimates of Mangrove Ecosystems in Northwestern Madagascar

    Directory of Open Access Journals (Sweden)

    Trevor G. Jones

    2014-01-01

    Full Text Available Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Despite their value, world-wide, mangroves are being rapidly degraded and deforested. Madagascar contains approximately 2% of the world’s mangroves, >20% of which has been deforested since 1990 from increased extraction for charcoal and timber and conversion to small to large-scale agriculture and aquaculture. Loss is particularly prominent in the northwestern Ambaro and Ambanja bays. Here, we focus on Ambaro and Ambanja bays, presenting dynamics calculated using United States Geological Survey (USGS national-level mangrove maps and the first localized satellite imagery derived map of dominant land-cover types. The analysis of USGS data indicated a loss of 7659 ha (23.7% and a gain of 995 ha (3.1% from 1990–2010. Contemporary mapping results were 93.4% accurate overall (Kappa 0.9, with producer’s and user’s accuracies ≥85%. Classification results allowed partitioning mangroves in to ecologically meaningful, spectrally distinct strata, wherein field measurements facilitated estimating the first total carbon stocks for mangroves in Madagascar. Estimates suggest that higher stature closed-canopy mangroves have average total vegetation carbon values of 146.8 Mg/ha (±10.2 and soil organic carbon of 446.2 (±36.9, supporting a growing body of studies that mangroves are amongst the most carbon-dense tropical forests.

  4. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia.

    Science.gov (United States)

    Jaquetti, Roberto K; Gonçalves, José Francisco C

    2017-01-01

    Amazonia is crucial to global carbon cycle. Deforestation continues to be one of the main causes of the release of C into the atmosphere, but forest restoration plantations can reverse this scenario. However, there is still diffuse information about the C and nutrient stocks in the vegetation biomass. We investigated the carbon and nutrient stocks of Fabaceae trees (Inga edulis, Schizolobium amazonicum and Dipteryx odorata) subjected to fertilization treatments (T1 - no fertilization; T2 - chemical; T3 - organic; and T4 - organic and chemical fertilization) in a degraded area of the Balbina Hydroelectric Dam, AM - Brazil. As an early successional species, I. edulis stocked more C and nutrients than the other two species independent of the fertilization treatment, and S. amazonicum stocked more C than D. odorata under T1 and T4. The mixed species plantation had the potential to stock 4.1 Mg C ha-1 year-1, while I. edulis alone could stock 9.4 Mg C ha-1 year-1. Mixing species that rapidly assimilate C and are of significant ecological and commercial value (e.g., Fabaceae trees) represents a good way to restore degraded areas. Our results suggest that the tested species be used for forest restoration in Amazonia.

  5. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia

    Directory of Open Access Journals (Sweden)

    ROBERTO K. JAQUETTI

    2017-08-01

    Full Text Available ABSTRACT Amazonia is crucial to global carbon cycle. Deforestation continues to be one of the main causes of the release of C into the atmosphere, but forest restoration plantations can reverse this scenario. However, there is still diffuse information about the C and nutrient stocks in the vegetation biomass. We investigated the carbon and nutrient stocks of Fabaceae trees (Inga edulis, Schizolobium amazonicum and Dipteryx odorata subjected to fertilization treatments (T1 - no fertilization; T2 - chemical; T3 - organic; and T4 - organic and chemical fertilization in a degraded area of the Balbina Hydroelectric Dam, AM - Brazil. As an early successional species, I. edulis stocked more C and nutrients than the other two species independent of the fertilization treatment, and S. amazonicum stocked more C than D. odorata under T1 and T4. The mixed species plantation had the potential to stock 4.1 Mg C ha-1 year-1, while I. edulis alone could stock 9.4 Mg C ha-1 year-1. Mixing species that rapidly assimilate C and are of significant ecological and commercial value (e.g., Fabaceae trees represents a good way to restore degraded areas. Our results suggest that the tested species be used for forest restoration in Amazonia.

  6. Comparisons of allometric and climate-derived estimates of tree coarse root carbon stocks in forests of the United States.

    Science.gov (United States)

    Russell, Matthew B; Domke, Grant M; Woodall, Christopher W; D'Amato, Anthony W

    2015-12-01

    Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Specifically, belowground C stocks are currently estimated in the United States' national greenhouse gas inventory (US NGHGI) using nationally consistent species- and diameter-specific equations applied to individual trees. Recent scientific evidence has pointed to the importance of climate as a driver of belowground C stocks. This study estimates belowground C using current methods applied in the US NGHGI and describes a new approach for merging both allometric models with climate-derived predictions of belowground C stocks. Climate-adjusted predictions were variable depending on the region and forest type of interest, but represented an increase of 368.87 Tg of belowground C across the US, or a 6.4 % increase when compared to currently-implemented NGHGI estimates. Random forests regressions indicated that aboveground biomass, stand age, and stand origin (i.e., planted versus artificial regeneration) were useful predictors of belowground C stocks. Decreases in belowground C stocks were modeled after projecting mean annual temperatures at various locations throughout the US up to year 2090. By combining allometric equations with trends in temperature, we conclude that climate variables can be used to adjust the US NGHGI estimates of belowground C stocks. Such strategies can be used to determine the effects of future global change scenarios within a C accounting framework.

  7. Mixed-species allometric equations and estimation of aboveground biomass and carbon stocks in restoring degraded landscape in northern Ethiopia

    Science.gov (United States)

    Mokria, Mulugeta; Mekuria, Wolde; Gebrekirstos, Aster; Aynekulu, Ermias; Belay, Beyene; Gashaw, Tadesse; Bräuning, Achim

    2018-02-01

    Accurate biomass estimation is critical to quantify the changes in biomass and carbon stocks following the restoration of degraded landscapes. However, there is lack of site-specific allometric equations for the estimation of aboveground biomass (AGB), which consequently limits our understanding of the contributions of restoration efforts in mitigating climate change. This study was conducted in northwestern Ethiopia to develop a multi-species allometric equation and investigate the spatial and temporal variation of C-stocks following the restoration of degraded landscapes. We harvested and weighed 84 trees from eleven dominant species from six grazing exclosures and adjacent communal grazing land. We observed that AGB correlates significantly with diameter at stump height D 30 (R 2 = 0.78 P Ethiopia over space and time. The estimated C-stocks can be used as a reference against which future changes in C-stocks can be compared.

  8. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Directory of Open Access Journals (Sweden)

    H. Portner

    2010-11-01

    Full Text Available Models of carbon cycling in terrestrial ecosystems contain formulations for the dependence of respiration on temperature, but the sensitivity of predicted carbon pools and fluxes to these formulations and their parameterization is not well understood. Thus, we performed an uncertainty analysis of soil organic matter decomposition with respect to its temperature dependency using the ecosystem model LPJ-GUESS.

    We used five temperature response functions (Exponential, Arrhenius, Lloyd-Taylor, Gaussian, Van't Hoff. We determined the parameter confidence ranges of the formulations by nonlinear regression analysis based on eight experimental datasets from Northern Hemisphere ecosystems. We sampled over the confidence ranges of the parameters and ran simulations for each pair of temperature response function and calibration site. We analyzed both the long-term and the short-term heterotrophic soil carbon dynamics over a virtual elevation gradient in southern Switzerland.

    The temperature relationship of Lloyd-Taylor fitted the overall data set best as the other functions either resulted in poor fits (Exponential, Arrhenius or were not applicable for all datasets (Gaussian, Van't Hoff. There were two main sources of uncertainty for model simulations: (1 the lack of confidence in the parameter estimates of the temperature response, which increased with increasing temperature, and (2 the size of the simulated soil carbon pools, which increased with elevation, as slower turn-over times lead to higher carbon stocks and higher associated uncertainties. Our results therefore indicate that such projections are more uncertain for higher elevations and hence also higher latitudes, which are of key importance for the global terrestrial carbon budget.

  9. [Tree above-ground biomass allometries for carbon stocks estimation in the Caribbean mangroves in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Zapata, Mauricio; Bolivar, Jhoanata; Monsalve, Alejandra; Espinosa, Sandra Milena; Sierra-Correa, Paula Cristina; Sierra, Andrés

    2016-06-01

    The distribution of carbon in “Blue Carbon” ecosystems such as mangroves is little known, when compared with the highly known terrestrial forests, despite its particular and recognized high productivity and carbon storage capacity. The objective of this study was to analyze the above ground biomass (AGB) of the species Rhizophora mangle and Avicennia germinans from the Marine Protected Area of Distrito de Manejo Integrado (DMI), Cispatá-Tinajones-La Balsa, Caribbean Colombian coast. With official authorization, we harvested and studied 30 individuals of each species, and built allometric models in order to estimate AGB. Our AGB results indicated that the studied mangrove forests of the DMI Colombian Caribbean was of 129.69 ± 20.24 Mg/ha, equivalent to 64.85 ± 10.12 MgC/ha. The DMI has an area of 8 570.9 ha in mangrove forests, and we estimated that the total carbon potential stored was about 555 795.93 Mg C. The equations generated in this study can be considered as an alternative for the assessment of carbon stocks in AGB of mangrove forests in Colombia; as other available AGB allometric models do not discriminate mangrove forests, despite being particular ecosystems. They can be used for analysis at a more detailed scale and are considered useful to determine the carbon storage potential of mangrove forests, as a country alternative to support forest conservation and emission reduction strategies. In general, the potential of carbon storage from Colombian Caribbean mangrove forests is important and could promote the country leadership of the “blue carbon” stored.

  10. Spatial distribution of whole-tree carbon stocks and fluxes across the forests of Europe: where are the options for bio-energy?

    NARCIS (Netherlands)

    Nabuurs, G.J.; Schelhaas, M.J.

    2003-01-01

    This paper presents carbon stocks and fluxes of the whole-tree biomass of European forests and other wooded land, distinguished by coniferous, deciduous and mixed forests. The results are presented at the European, national and (where possible) regional level. Results concerning carbon stocks, and

  11. Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China

    Directory of Open Access Journals (Sweden)

    Hailiang Lv

    2016-09-01

    Full Text Available Society has placed greater focus on the ecological service of urban forests; however, more information is required on the variation of carbon (C in trees and soils in different functional forest types, administrative districts, and urban-rural gradients. To address this issue, we measured various tree and soil parameters by sampling 219 plots in the urban forest of the Harbin city region. Averaged tree and soil C stock density (C stocks per unit tree cover for Harbin city were 7.71 (±7.69 kg C·m−2 and 5.48 (±2.86 kg C·m−2, respectively. They were higher than those of other Chinese cities (Shenyang and Changchun, but were much lower than local natural forests. The tree C stock densities varied 2.3- to 3.2-fold among forest types, administrative districts, and ring road-based urban-rural gradients. In comparison, soil organic C (SOC densities varied by much less (1.4–1.5-fold. We found these to be urbanization-dependent processes, which were closely related to the urban-rural gradient data based on ring-roads and settlement history patterns. We estimated that SOC accumulation during the 100-year urbanization of Harbin was very large (5 to 14 thousand tons, accounting for over one quarter of the stored C in trees. Our results provide new insights into the dynamics of above- and below-ground C (especially in soil during the urbanization process, and that a city’s ability to provide C-related ecosystem services increases as it ages. Our findings highlight that urbanization effects should be incorporated into calculations of soil C budgets in regions subject to rapid urban expansion, such as China.

  12. GRANULOMETRIC AND HUMIC FRACTIONS CARBON STOCKS OF SOIL ORGANIC MATTER UNDER NO-TILLAGE SYSTEM IN UBERABA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Marcos Gervasio Pereira

    2011-12-01

    Full Text Available The cover plant use preceding grain crops in Cerrado soil can increase the carbon stocks of chemical and physical fractions of soil organic matter (SOM. The present study aimed to quantify the carbon stocks of SOM granulometric and humic fractions in a Cerrado area under no-tillage system with different cover plant, and compare the results with those from conventional tillage and fallow areas, in Uberaba, MG, Brazil. The implemented cover crops were: millet, tropical grass and sunn hemp. Furthermore, an area was used in fallow and another as a control area (conventional tillage. After cover crop removal, the areas were subdivided for the corn and soybean plantation. Soil samples were collected in the 0.0-0.025, 0.025-0.05, 0.05-0.10 and 0.10-0.20 m depths, with posterior quantification of total organic carbon (TOC levels and chemical and granulometric fractionation of SOM. Humic acid carbon (C-HAF, fulvic acids (C-FAF and humin (C-HUM were quantified through these fractionations. The granulometric fractions consisted in particulate organic matter (POM and mineral organic matter (MOM. Using the carbon levels for each fraction, the respective stocks for each depth were calculated, including the 0.0-0.20 m layer. In the 0.0-0.20 m layer, TOC had the highest stocks for the millet area. The highest POM stocks were found for the corn plantation over sunn hemp and the fallow and soybean area over millet and tropical grass (0.0-0.20 m. In relation to the MOM stocks, the highest values were observed in the areas with millet, sunn hemp and tropical (palisade grass, all superior to those found in the conventional tillage and fallow areas, independent of evaluated culture (0.10-0.20 m. The highest C-HUM stocks were observed in the area with tropical grass (0.025-0.05 m and areas with tropical grass and sunn hemp (0.10-0.20 m, when compared to conventional tillage, independent of evaluated culture (corn and soybean. The highest C-FAH stocks in the depth of 0

  13. Estimation of Carbon Stock Stands using EVI and NDVI Vegetation Index in Production Forest of Lembah Seulawah Sub-District, Aceh Indonesia

    Directory of Open Access Journals (Sweden)

    Jhon Pandapotan Situmorang

    2016-12-01

    Full Text Available This study aims to determine the distribution of the vegetation indexes to estimate the carbon stocks of forest stands in the Production Forest of Lembah Seulawah sub-district. Aceh Province, Indonesia. A non-destructive method using allometric equations and landscape scale method were applied, where in carbon stocks at the points of samples are correlated with the index values of each transformation of the vegetation indexes; EVI and NDVI.  Results show that EVI values of study area from 0.05 to 0.90 and NDVI values from 0.17 to 0.85. The regression analysis between EVI with carbon stock value of sample locations equation is Y = 151.7X-39.76. with the coefficient of determination (R2 is 0.83. From this calculation, the total carbon stocks in the Production Forest area of Lembah Seulawah sub-district using EVI is estimated 790.344.41 tonnes, and the average value of carbon stocks in average is 51.48 tons per hectare.  Regression analysis between NDVI values at the research locations for the carbon stack measured samples is Y = 204.Xx-102.1 with coefficient of determination (R2 is 0.728. Total carbon stocks in production forest of Lembah Seulawah sub-district using NDVI is estimated 711.061.81 tones. and the average value of carbon stocks is 46.32 tons per hectare. From the above results it can be concluded that the vegetation indexes: EVI and NDVI are vegetation indexed that have a very close correlation with carbon stocks stands estimation. The correlation between EVI with carbon stock and the correlation between NDVI with carbon stock is not significantly different

  14. A Study of Phytolith-occluded Carbon Stock in Monopodial Bamboo in China

    Science.gov (United States)

    Yang, Jie; Wu, Jiasen; Jiang, Peikun; Xu, Qiufang; Zhao, Peiping; He, Shanqiong

    2015-08-01

    Bamboo plants have been proven to be rich in phytolith-occluded carbon (PhytOC) and play an important role in reducing atmospheric concentrations of CO2. The object of this paper was to obtain more accurate methods for estimation of PhytOC stock in monopodial bamboo because previous studies may have underestimated it. Eight monopodial bamboo species, widely distributed across China, were selected and sampled for this study in their own typical distribution areas. There were differences (P  branch > culm. The average PhytOC stored in aboveground biomass and PhytOC production flux contributed by aboveground biomass varied substantially, and they were 3.28 and 1.57 times corresponding dates in leaves, with the highest in Phyllostachys glauca McClure and lowest in Indocalamus tessellatus (Munro) Keng f. It can be concluded that it could be more accurate to estimate PhytOC stock or PhytOC production flux by basing on whole aboveground biomass rather than on leaf or leaf litter only. The whole biomass should be collected for more estimation of bamboo PhytOC sequestration capacity in the future.

  15. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Directory of Open Access Journals (Sweden)

    Lucía Gaitán

    Full Text Available Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1, compared with adjacent secondary forests (43 Mg C ha-1. We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA out of 16 farms had highest milk yields (6.2 kg cow-1day-1 and lowest emissions (1.7 kg CO2-eq. per kg milk produced. Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  16. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Science.gov (United States)

    Gaitán, Lucía; Läderach, Peter; Graefe, Sophie; Rao, Idupulapati; van der Hoek, Rein

    2016-01-01

    Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG) emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1), compared with adjacent secondary forests (43 Mg C ha-1). We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA) out of 16 farms had highest milk yields (6.2 kg cow-1day-1) and lowest emissions (1.7 kg CO2-eq. per kg milk produced). Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  17. How do soil properties and soil carbon stocks change after land abandonment in Mediterranean mountain areas?

    Science.gov (United States)

    Nadal Romero, Estela; Cammeraat, Erik; Pérez Cardiel, Estela; Lasanta, Teodoro

    2016-04-01

    Land abandonment and subsequent revegetation processes (due to secondary succession and afforestation practices) are global issues with important implications in Mediterranean mountain areas. Moreover, the effects of land use changes on soil carbon stocks are a matter of concern stated in international policy agendas on the mitigation of greenhouse emissions, and afforestation practices are increasingly viewed as an environmental restorative land use change prescription and are considered one of the most efficient carbon sequestration strategies currently available. The MED-AFFOREST project aims to gain more insight into the discussion by exploring the following central research questions: (i) what is the impact of land abandonment on soil properties? and (ii) how do soil organic carbon change after land abandonment? The main objective of this study is to assess the effects of land abandonment, land use change and afforestation practices on soil properties and soil organic carbon (SOC) dynamics. For this aim, five different land covers (bare soil, meadows, secondary succession, Pinus sylvestris (PS) and Pinus nigra (PN) afforestation), in the Central Spanish Pyrenees were analysed. Results showed that changes in soil properties after land abandonment were limited, even if afforestation practices were carried out and no differences were observed between natural succession and afforestation. The results on SOC dynamics showed that: (i) SOC contents were higher in the PN sites in the topsoil (10 cm), (ii) when all the profile was considered no significant differences were observed between meadows and PN, (iii) SOC accumulation under secondary succession is a slow process, and (iv) meadows should also be considered due to the relative importance in SOC stocks. The first step of SOC stabilization after afforestation is the formation of macro-aggregates promoted by large inputs of SOC, with a high contribution of labile organic matter. However, our respiration

  18. Above- and below-ground carbon stocks in an indigenous tree (Mytilaria laosensis) plantation chronosequence in subtropical China.

    Science.gov (United States)

    Ming, Angang; Jia, Hongyan; Zhao, Jinlong; Tao, Yi; Li, Yuanfa

    2014-01-01

    More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account.

  19. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya

    Directory of Open Access Journals (Sweden)

    Kumar Munesh

    2009-08-01

    Full Text Available Abstract Background The Himalayan zones, with dense forest vegetation, cover a fifth part of India and store a third part of the country reserves of soil organic carbon (SOC. However, the details of altitudinal distribution of these carbon stocks, which are vulnerable to forest management and climate change impacts, are not well known. Results This article reports the results of measuring the stocks of SOC along altitudinal gradients. The study was carried out in the coniferous subtropical and broadleaf temperate forests of Garhwal Himalaya. The stocks of SOC were found to be decreasing with altitude: from 185.6 to 160.8 t C ha-1 and from 141.6 to 124.8 t C ha-1 in temperature (Quercus leucotrichophora and subtropical (Pinus roxburghii forests, respectively. Conclusion The results of this study lead to conclusion that the ability of soil to stabilize soil organic matter depends negatively on altitude and call for comprehensive theoretical explanation

  20. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Science.gov (United States)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.

    2017-11-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that

  1. Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area.

    Science.gov (United States)

    Lozano-García, Beatriz; Muñoz-Rojas, Miriam; Parras-Alcántara, Luis

    2017-02-01

    A thorough knowledge of the effects of climate and land use changes on the soil carbon pool is critical to planning effective strategies for adaptation and mitigation in future scenarios of global climate and land use change. In this study, we used CarboSOIL model to predict changes in soil organic carbon stocks in a semi-natural area of Southern Spain in three different time horizons (2040, 2070, 2100), considering two general circulation models (BCM2 and ECHAM5) and three IPCC scenarios (A1b, A2, B2). The effects of potential land use changes from natural vegetation (Mediterranean evergreen oak woodland) to agricultural land (olive grove and cereal) on soil organic carbon stocks were also evaluated. Predicted values of SOC contents correlated well those measured (R2 ranging from 0.71 at 0-25cm to 0.97 at 50-75cm) showing the efficiency of the model. Results showed substantial differences among time horizons, climate and land use scenarios and soil depth with larger decreases of soil organic carbon stocks in the long term (2100 time horizon) and particularly in olive groves. The combination of climate and land use scenarios (in particular conversion from current 'dehesa' to olive groves) resulted in yet higher losses of soil organic carbon stocks, e.g. -30, -15 and -33% in the 0-25, 25-50 and 50-75cm sections respectively. This study shows the importance of soil organic carbon stocks assessment under both climate and land use scenarios at different soil sections and point towards possible directions for appropriate land use management in Mediterranean semi natural areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Soil Carbon Stocks in a Shifting Ecosystem; Climate Induced Migration of Mangroves into Salt Marsh

    Science.gov (United States)

    Simpson, L.; Osborne, T.; Feller, I. C.

    2015-12-01

    Across the globe, coastal wetland vegetation distributions are changing in response to climate change. The increase in global average surface temperature has already caused shifts in the structure and distribution of many ecological communities. In parts of the southeastern United States, increased winter temperatures have resulted in the poleward range expansion of mangroves at the expense of salt marsh habitat. Our work aims to document carbon storage in the salt marsh - mangrove ecotone and any potential changes in this reservoir that may ensue due to the shifting range of this habitat. Differences in SOM and C stocks along a latitudinal gradient on the east coast of Florida will be presented. The gradient studied spans 342 km and includes pure mangrove habitat, the salt marsh - mangrove ecotone, and pure salt marsh habitat.This latitudinal gradient gives us an exceptional opportunity to document and investigate ecosystem soil C modifications as mangroves transgress into salt marsh habitat due to climatic change.

  3. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina.

    Science.gov (United States)

    Villarino, Sebastián Horacio; Studdert, Guillermo Alberto; Baldassini, Pablo; Cendoya, María Gabriela; Ciuffoli, Lucía; Mastrángelo, Matias; Piñeiro, Gervasio

    2017-01-01

    Land use change affects soil organic carbon (SOC) and generates CO 2 emissions. Moreover, SOC depletion entails degradation of soil functions that support ecosystem services. Large areas covered by dry forests have been cleared in the Semiarid Chaco Region of Argentina for cropping expansion. However, deforestation impacts on the SOC stock and its distribution in the soil profile have been scarcely reported. We assessed these impacts based on the analysis of field data along a time-since-deforestation-for-cropping chronosequence, and remote sensing indices. Soil organic C was determined up to 100cm depth and physically fractionated into mineral associated organic carbon (MAOC) and particulate organic C (POC). Models describing vertical distribution of SOC were fitted. Total SOC, POC and MAOC stocks decreased markedly with increasing cropping age. Particulate organic C was the most sensitive fraction to cultivation. After 10yr of cropping SOC loss was around 30%, with greater POC loss (near 60%) and smaller MAOC loss (near 15%), at 0-30cm depth. Similar relative SOC losses were observed in deeper soil layers (30-60 and 60-100cm). Deforestation and subsequent cropping also modified SOC vertical distribution. Soil organic C loss was negatively associated with the proportion of maize in the rotation and total crop biomass inputs, but positively associated with the proportion of soybean in the rotation. Without effective land use polices, deforestation and agricultural expansion can lead to rapid soil degradation and reductions in the provision of important ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity

    Science.gov (United States)

    Mercedes M. C. Bustamante; Iris Roitman; T. Mitchell Aide; Ane Alencar; Liana O. Anderson; Luiz Aragao; Gregory P. Asner; Jos Barlow; Erika Berenguer; Jeffrey Chambers; Marcos H. Costa; Thierry Fanin; Laerte G. Ferreira; Joice Ferreira; Michael Keller; William E. Magnusson; Lucia Morales-Barquero; Douglas Morton; Jean P. H. B. Ometto; Michael Palace; Carlos A. Peres; Divino Silverio; Susan Trumbore; Ima C. G. Vieira

    2015-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks...

  5. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States

    Science.gov (United States)

    Eric M. Pfeifer; Jeffrey A. Hicke; Arjan J.H. Meddens

    2011-01-01

    Bark beetle epidemics result in tree mortality across millions of hectares in North America. However, few studies have quantified impacts on carbon (C) cycling. In this study, we quantified the immediate response and subsequent trajectories of stand-level aboveground tree C stocks and fluxes using field measurements and modeling for a location in central Idaho, USA...

  6. Recent changes in the estimation of standing dead tree biomass and carbon stocks in the U.S. forest inventory

    Science.gov (United States)

    Grant M. Domke; Christopher W. Woodall; James E. Smith

    2012-01-01

    Until recently, standing dead tree biomass and carbon (C) has been estimated as a function of live tree growing stock volume in the U.S. Forest Service, Forest Inventory and Analysis (FIA) Program. Traditional estimates of standing dead tree biomass/C attributes were based on merchantability standards that did not reflect density reductions or structural loss due to...

  7. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Science.gov (United States)

    Portner, H.; Wolf, A.; Bugmann, H.

    2009-04-01

    function of Lloyd&Taylor therefore is an adequate choice to model the temperature dependency of soil organic matter decomposition. The Ticino catchment (300-2300m) in Southern Switzerland was used to study the sensitivity of long-term changes (100 years) in the prediction of carbon storage. The uncertainty in temperature response introduced into the model lead to high uncertainties in long-term soil carbon stocks. Interestingly, the uncertainty increased with decreasing temperature and increasing elevation. The carbon pools in lower elevations (mean annual temperature > 15 °C) turned over faster and little carbon accumulated in the soil. The carbon pools in higher elevations and hence in higher latitudes experiencing colder temperature (mean annual temperature < 15 °C) turned over slower and therefore accumulated more carbon over the simulation period. Therefore, the high elevation soils stored more carbon, but the prediction of the carbon pool size had a much higher uncertainty than the low elevation soils. We concluded that with our model, the predictions of the potential loss of soil carbon in cold temperature regimes is more uncertain than the carbon loss in warmer regions, both due to the higher soil carbon pools, but also due to the higher uncertainty found in our simulations.

  8. The effect of cassava-based bioethanol production on above-ground carbon stocks: A case study from Southern Mali

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Birch-Thomsen, Torben; Kristensen, Søren B.P.; Traoré, Oumar

    2012-01-01

    Increasing energy use and the need to mitigate climate change make production of liquid biofuels a high priority. Farmers respond worldwide to this increasing demand by converting forests and grassland into biofuel crops, but whether biofuels offer carbon savings depends on the carbon emissions that occur when land use is changed to biofuel crops. This paper reports the results of a study on cassava-based bioethanol production undertaken in the Sikasso region in Southern Mali. The paper outlines the estimated impacts on above-ground carbon stocks when land use is changed to increase cassava production. The results show that expansion of cassava production for bioethanol will most likely lead to the conversion of fallow areas to cassava. A land use change from fallow to cassava creates a reduction in the above-ground carbon stocks in the order of 4–13 Mg C ha −1 , depending on (a) the age of the fallow, (b) the allometric equation used and (c) whether all trees are removed or the larger, useful trees are preserved. This ‘carbon debt’ associated with the above-ground biomass loss would take 8–25 years to repay if fossil fuels are replaced with cassava-based bioethanol. - Highlights: ► Demands for biofuels make production of cassava-based bioethanol a priority. ► Farmers in Southern Mali are likely to convert fallow areas to cassava production. ► Converting fallow to cassava creates reductions in above-ground carbon stocks. ► Estimates of carbon stock reductions include that farmers preserve useful trees. ► The carbon debt associated with above-ground biomass loss takes 8–25 years to repay.

  9. Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations.

    Science.gov (United States)

    Curtarelli, Marcelo Pedroso; Ogashawara, Igor; de Araújo, Carlos Alberto Sampaio; Lorenzzetti, João Antônio; Leão, Joaquim Antônio Dionísio; Alcântara, Enner; Stech, José Luiz

    2016-05-01

    We used a three-dimensional model to assess the dynamics of diffusive carbon dioxide flux (F(CO2)) from a hydroelectric reservoir located at Amazon rainforest. Our results showed that for the studied periods (2013 summer/wet and winter/dry seasons) the surface averaged F(CO2) presented similar behaviors, with regular emissions peaks. The mean daily surface averaged F(CO2) showed no significant difference between the seasons (p>0.01), with values around -1338mg Cm-2day-1 (summer/wet) and -1395mg Cm-2day-1 (winter/dry). At diel scale, the F(CO2) was large during the night and morning and low during the afternoon in both seasons. Regarding its spatial distribution, the F(CO2) showed to be more heterogeneous during the summer/wet than during the winter/dry season. The highest F(CO2) were observed at transition zone (-300mg Cm-2h-1) during summer and at littoral zone (-55mg Cm-2h-1) during the winter. The total CO2 emitted by the reservoir along 2013 year was estimated to be 1.1Tg C year-1. By extrapolating our results we found that the total carbon emitted by all Amazonian reservoirs can be around 7Tg C year-1, which is 22% lower than the previous published estimate. This significant difference should not be neglected in the carbon inventories since the carbon emission is a key factor when comparing the environmental impacts of different sources of electricity generation and can influences decision makers in the selection of the more appropriate source of electricity and, in case of hydroelectricity, the geographical position of the reservoirs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Impact of Afforestation on the Carbon Stocks of Mineral Soils Across the Republic of Ireland.

    Science.gov (United States)

    Wellock, M.; Laperle, C.; Kiely, G.; Reidy, B.; Duffy, C.; Tobin, B.

    2009-04-01

    At the beginning of the twentieth century forests accounted for only 1% of the total Irish land cover (Pilcher & Mac an tSaoir, 1995). However, due to the efforts of successive governments there has been rapid afforestation since the 1960s resulting in a 10.0% forest land cover as of 2007 (The Department of Agriculture, Fisheries, and Food, 2007). A large proportion of this afforestation took place after the mid-1980s and was fueled by government grant incentive schemes targeted at private landowners (Renou & Farrell 2005). Consequently, 54% of forests are less than 20 years old (Byrne, 2006). This specific land use change provides an opportunity for Ireland to meet international obligations set forth by the United Nations Framework Convention on Climate Change (UNFCCC, 1992). These obligations include the limitation of greenhouse gas emissions to 13% above 1990 levels. In order to promote accountability for these commitments, the UNFCCC treaty and the Kyoto Protocol (Kyoto Protocol, 1997) mandate signatories to publish greenhouse gas (GHG) emissions inventories for both greenhouse gas sources and removals by sinks. Article 3.3 of the Kyoto Protocol allows changes in C stocks due to afforestation, reforestation, and deforestation since 1990 to be used to offset inventory emissions. Therefore, due to the rapid rate of afforestation and its increased carbon sequestration since 1990, Ireland has the potential to significantly offset GHG emissions. There is little known as to the impacts of afforestation on the carbon stocks in soils over time, and even less known about the impact on Irish soils. The FORESTC project aims to analyse this impact by undertaking a nationwide study using a method similar to that of the paired plot method in Davis and Condron, 2002. The study will examine 42 forest sites across Ireland selected randomly from the National Forest Inventory (National Forest Inventory, 2007). These 42 sites will be grouped based on the forest type which includes

  11. Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw

    Science.gov (United States)

    Caitlin E. Hicks Pries; Edward A.G. Schuur; K. Grace Crummer

    2012-01-01

    Permafrost soils are a significant global store of carbon (C) with the potential to become a large C source to the atmosphere. Climate change is causing permafrost to thaw, which can affect primary production and decomposition, therefore affecting ecosystem C balance. We modeled decadal and millennial soil C inputs, decomposition constants, and C accumulation rates by...

  12. Effects of bark beetle outbreaks and wildfire in the western US on carbon stocks during recent decades

    Science.gov (United States)

    Hicke, J. A.; Meddens, A. J.; Allen, C. D.

    2012-12-01

    Bark beetle outbreaks and wildfires are significant forest disturbances that respond strongly to climate and affect future climate through carbon cycling. Extensive tree mortality has occurred in western North America as a result of these disturbances. Here we present an analysis that quantifies impacts of these two disturbances to tree carbon stocks. Mortality area from bark beetles was derived from aerial surveys in 1997-2010 in the western US and 2001-2010 in British Columbia that were converted to mortality area by multiplying by species-specific crown areas and, in the case of the US, adjusted for underestimation. We summed moderate- and high-severity burned areas in forests from the Monitoring Trends in Burn Severity (MTBS) database from 1984-2009 to estimate mortality area from forest fires. Mortality area was then combined with spatially explicit maps of carbon stocks to estimate the amount of carbon in killed trees. Notable findings include that the mortality area from bark beetle outbreaks in the western US was comparable to the mortality area in British Columbia during the last few decades. In the western US, mortality area from bark beetles was similar to or exceeded that from forest fires. Carbon stocks in trees killed by these two disturbance types (beetles and fire) had similar spatial and temporal patterns as tree mortality, illustrating the importance of each of these disturbances in governing regional forest carbon fluxes.

  13. ForC: a global database of forest carbon stocks and fluxes.

    Science.gov (United States)

    Anderson-Teixeira, Kristina J; Wang, Maria M H; McGarvey, Jennifer C; Herrmann, Valentine; Tepley, Alan J; Bond-Lamberty, Ben; LeBauer, David S

    2018-03-30

    Forests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO 2 ) emitted by anthropogenic activities. Yet, scaling up from field-based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open-access global Forest Carbon database (ForC) containing previously published records of field-based measurements of ecosystem-level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using For

  14. Conservation tillage versus conventional tillage on carbon stock in a Mediterranean dehesa (southern Spain)

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    Understanding soil dynamics is essential for making appropriate land management decisions, as soils can affect the carbon content from the atmosphere, emitting large quantities of CO2 or storing carbon. This property is essential for climate change mitigation strategies as agriculture and forestry soil management can affect the carbon cycle. The dehesa is a Mediterranean silvopastoral system formed by grasslands with scattered oaks (Quercus ilex or Q. suber). The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. In addition, the dehesa is a practice dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork, as well as hunting. The dehesa is characterized by the preservation of forest oaks. In this work, we compared two management practices such as organic farming (OF) and conventional tillage (CT) on soil organic carbon stocks (SOC-S) in Cambisols (CM) and Leptosols (LP), and we analyzed the quality of these soils based on stratification ratio (SR) in a Mediterranean dehesa. MATERIAL AND METHODS An analysis of 85 soil profiles was performed in 2009 in Los Pedroches Valley (Cordoba, southern Spain). Two soil management practices were selected: OF (isolated trees of variable densities —15-25— trees ha-1, mostly holm and cork oaks, and patches of shrubs — cistaceae, fabaceae and lamiaceae— with a herbaceous pasture layer mostly composed of therophytic species and livestock are introduced to provide organic fertilizer to the soil, without ploughing and animal manure from the farms may be incorporated) for 20 years and CT (similar to OF, with ploughing —annual passes with a disc harrow and/or cultivator— is aimed at growing grain for livestock or at clearing the encroaching shrubs) in CM and LP. The dehesas studied were silvopastoral systems without cropping. Soil properties

  15. Land-use conversion and changing soil carbon stocks in China's 'Grain-for-Green' Program: a synthesis.

    Science.gov (United States)

    Deng, Lei; Liu, Guo-Bin; Shangguan, Zhou-Ping

    2014-11-01

    The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the 'Grain-for-Green' Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0-100 cm soil layer showed an initial decrease in soil C during the early stage (5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0-20 cm) than in deeper soil (20-100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long-term, and therefore, the large scale of land-use change under the 'Grain-for-Green' Program will significantly increase China's C stocks. © 2014 John Wiley & Sons Ltd.

  16. Greater carbon stocks and faster turnover rates with increasing agricultural productivity

    Science.gov (United States)

    Sanderman, J.; Fallon, S.; Baisden, T. W.

    2013-12-01

    H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to

  17. Content and carbon stocks in labile and recalcitrant organic matter of the soil under crop-livestock integration in Cerrado

    Directory of Open Access Journals (Sweden)

    Itaynara Batista

    2013-12-01

    Full Text Available The study of organic matter and its compartments and their relationship with management, aims to develop strategies for increasing their levels in soils and better understanding of its dynamics. This work aimed to evaluate the fractions of soil organic matter and their carbon stocks in different soil cover system in crop-livestock integration and native Cerrado vegetation. The study was conducted at the farm Cabeceira, Maracajú – MS, sample area have the following history: soybean/corn + brachiaria/cotton/oat + pasture/soybean/formation of pasture/grazing, sampling was carried out in two seasons, dry (May/2009 and rainy (March 2010, in the dry season, crops present were: pasture, corn and cotton + brachiaria and in the rainy season were corn, cotton and soybeans, so the areas in the two evaluation periods were: pasture / maize + brachiaria / cotton, cotton / soybean area and a native of Savanna. Was performed to determine the exchangeable cations, particle size analysis, bulk density, organic carbon, particle size fractionation of organic matter of the soil with the quantification of particulate organic carbon (POC and organic carbon associated with minerals (OCam. Was also quantified the carbon stock and size fractions. The area of pasture / maize showed higher carbon stock in the particulate fraction in the topsoil. The area of cotton / soy due to its lower clay, showed the greatest loss of carbon. Because of the areas have the same history, the stock of more recalcitrant fraction was not sensitive to variations in coverage. The POC fraction appears more sensitive to different soil covers and seasonality.

  18. Exploring the ecosystem engineering ability of Red Sea shallow benthic habitats using stocks and fluxes in carbon biogeochemistry

    KAUST Repository

    Baldry, Kimberlee

    2017-12-01

    The coastal ocean is a marginal region of the global ocean, but is home to metabolically intense ecosystems which increase the structural complexity of the benthos. These ecosystems have the ability to alter the carbon chemistry of surrounding waters through their metabolism, mainly through processes which directly release or consume carbon dioxide. In this way, coastal habitats can engineer their environment by acting as sources or sinks of carbon dioxide and altering their environmental chemistry from the regional norm. In most coastal water masses, it is difficult to resolve the ecosystem effect on coastal carbon biogeochemistry due to the mixing of multiple offshore end members, complex geography or the influence of variable freshwater inputs. The Red Sea provides a simple environment for the study of ecosystem processes at a coastal scale as it contains only one offshore end-member and negligible freshwater inputs due to the arid climate of adjacent land. This work explores the ability of three Red Sea benthic coastal habitats (coral reefs, seagrass meadows and mangrove forests) to create characteristic ecosystem end-members, which deviate from the biogeochemistry of offshore source waters. This is done by both calculating non-conservative deviations in carbonate stocks collected over each ecosystem, and by quantifying net carbonate fluxes (in seagrass meadows and mangrove forests only) using 24 hour incubations. Results illustrate that carbonate stocks over ecosystems conform to broad ecosystem trends, which are different to the offshore end-member, and are influenced by inherited properties from surrounding ecosystems. Carbonate fluxes also show ecosystem dependent trends and further illustrate the importance of sediment processes in influencing CaCO3 fluxes in blue carbon benthic habitats, which warrants further attention. These findings show the respective advantages of studying both carbonate stocks and fluxes of coastal benthic ecosystems in order to

  19. Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica.

    Directory of Open Access Journals (Sweden)

    Philip Taylor

    Full Text Available Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO Light Detection and Ranging (LiDAR system to detect top-of-canopy tree height (TCH and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors

  20. Impact of vegetation types on soil organic carbon stocks SOC-S in Mediterranean natural areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Cantudo-Pérez, Marta

    2015-04-01

    Soils play a key role in the carbon geochemical cycle because they can either emit large quantities of CO2 or on the contrary they can act as a store for carbon. Agriculture and forestry are the only activities that can achieve this effect through photosynthesis and the carbon incorporation into carbohydrates (Parras-Alcántara et al., 2013). The Mediterranean evergreen oak Woodland (MEOW - dehesa) is a type of pasture with scattered evergreen and deciduous oak stands in which cereals are often grown under the tree cover. It is a system dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork as well as to hunting. These semi-natural areas still preserve some of the primitive vegetation of the Mediterranean oak forests. The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. These Iberian open woodland rangelands (dehesas) have been studied from different points of view: hydrologically, with respect to soil organic matter content, as well as in relation to gully erosion, topographical thresholds, soil erosion and runoff production, soil degradation and management practices…etc, among others. The soil organic carbon stock capacity depends not only on abiotic factors such as the mineralogical composition and the climate, but also on soil use and management (Parras et al., 2014 and 2015). In Spanish soils, climate, use and management strongly affect the carbon variability, mainly in soils in dry Mediterranean climates characterized by low organic carbon content, weak structure and readily degradable soils. Hontoria et al. (2004) emphasized that the climate and soil use are two factors that greatly influence carbon content in the Mediterranean climate. This research sought to analyze the SOC stock (SOCS) variability in MEOW - dehesa with cereals, olive grove and Mediterranean oak forest

  1. ABILITY OF LANDSAT-8 OLI DERIVED TEXTURE METRICS IN ESTIMATING ABOVEGROUND CARBON STOCKS OF COPPICE OAK FORESTS

    Directory of Open Access Journals (Sweden)

    A. Safari

    2016-06-01

    Full Text Available The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9, and four different offsets ([0,1], [1,1], [1,0], and [1,-1] to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance from four bands (blue, green, red, and infrared. Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived

  2. Ability of LANDSAT-8 Oli Derived Texture Metrics in Estimating Aboveground Carbon Stocks of Coppice Oak Forests

    Science.gov (United States)

    Safari, A.; Sohrabi, H.

    2016-06-01

    The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived texture metrics

  3. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses.

    Science.gov (United States)

    S. R. Saleska; S. D. Miller; D. M. Matross; M. L. Goulden; S. C. Wofsy; H. R. da Rocha; P. B. de Camargo; P. Crill; B. C. Daube; H. C. de Freitas; L. Hutyra; M. Keller; V. Kirchhoff; M. Menton; J. W. Munger; H. E. Pyle; A. H. Rice; H. Silva

    2003-01-01

    The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarém, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence...

  4. A comparison of soil organic carbon stocks in Viking Age and modern land use systems in Denmark

    DEFF Research Database (Denmark)

    Breuning-Madsen, Henrik; Kristensen, J.Aa.; Holst, M.K.

    2013-01-01

    in modern farmlands during thousands of years in relation to inputs of manure, fertilizers, liming and drainage. In this paper the SOC stocks from anaerobic soil horizons in two big loamy burial mounds from the Viking Age, representing the land use system 1000 years ago, are compared with results from...... of manure, contain a SOC stock of roughly 60% of the level in the loamy Viking Age soils. The carbon loss since the Viking Age in the surrounding soils is believed to be due to liming and drainage that has increased the decomposition of organic matter in the soils. This loss can be balanced by present day...

  5. Mapping afforestation and its carbon stock using time-series Landsat stacks

    Science.gov (United States)

    Liu, L.; Wu, Y.

    2015-12-01

    The Three Norths Shelter Forest Programme (TNSFP) is the largest afforestation reconstruction project in the world. Remote sensing is a crucial tool to map land cover and cover changes, but it is still challenging to accurately quantify the plantation and its carbon stock from time-series satellite images. In this paper, the Yulin district, Shaanxi province, representing a typical afforestation area in the TNSFP region, was selected as the study area, and there were twenty-nine Landsat MSS/TM/ETM+ epochs were collected from 1974 to 2012 to reconstruct the forest changes and carbon stock in last 40 years. Firstly, the Landsat ground surface reflectance (GSR) images from 1974 to 2013 were collected and processed based on 6S atmospheric transfer code and a relative reflectance normalization algorithm. Subsequently, we developed a vegetation change tracking method to reconstruct the forest change history (afforestation and deforestation) from the dense time-series Landsat GSR images based on the integrated forest z-score (IFZ) model, and the afforestation age was successfully retrieved from the Landsat time-series stacks in the last forty years and shown to be consistent with the surveyed tree ages, with a RMSE value of 4.32 years and a determination coefficient (R²) of 0.824. Then, the AGB regression models were successfully developed by integrating vegetation indices and tree age. The simple ratio vegetation index (SR) is the best candidate of the commonly used vegetation indices for estimating forest AGB, and the forest AGB model was significantly improved using the combination of SR and tree age, with R² values from 0.50 to 0.727. Finally, the forest AGB images were mapped at eight epochs from 1985 to 2013 using SR and afforestation age. The total forest AGB in six counties of Yulin District increased by 20.8 G kg, from 5.8 G kg in 1986 to 26.6 G kg in 2013, a total increase of 360%. For the forest area since 1974, the forest AGB density increased from 15.72 t

  6. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage

    Directory of Open Access Journals (Sweden)

    Wilson Barry Tyler

    2013-01-01

    Full Text Available Abstract The U.S. has been providing national-scale estimates of forest carbon (C stocks and stock change to meet United Nations Framework Convention on Climate Change (UNFCCC reporting requirements for years. Although these currently are provided as national estimates by pool and year to meet greenhouse gas monitoring requirements, there is growing need to disaggregate these estimates to finer scales to enable strategic forest management and monitoring activities focused on various ecosystem services such as C storage enhancement. Through application of a nearest-neighbor imputation approach, spatially extant estimates of forest C density were developed for the conterminous U.S. using the U.S.’s annual forest inventory. Results suggest that an existing forest inventory plot imputation approach can be readily modified to provide raster maps of C density across a range of pools (e.g., live tree to soil organic carbon and spatial scales (e.g., sub-county to biome. Comparisons among imputed maps indicate strong regional differences across C pools. The C density of pools closely related to detrital input (e.g., dead wood is often highest in forests suffering from recent mortality events such as those in the northern Rocky Mountains (e.g., beetle infestations. In contrast, live tree carbon density is often highest on the highest quality forest sites such as those found in the Pacific Northwest. Validation results suggest strong agreement between the estimates produced from the forest inventory plots and those from the imputed maps, particularly when the C pool is closely associated with the imputation model (e.g., aboveground live biomass and live tree basal area, with weaker agreement for detrital pools (e.g., standing dead trees. Forest inventory imputed plot maps provide an efficient and flexible approach to monitoring diverse C pools at national (e.g., UNFCCC and regional scales (e.g., Reducing Emissions from Deforestation and Forest

  7. Impacts of fire management on aboveground tree carbon stocks in Yosemite and Sequoia & Kings Canyon National Parks

    Science.gov (United States)

    Matchett, John R.; Lutz, James A.; Tarnay, Leland W.; Smith, Douglas G.; Becker, Kendall M.L.; Brooks, Matthew L.

    2015-01-01

    Forest biomass on Sierra Nevada landscapes constitutes one of the largest carbon stocks in California, and its stability is tightly linked to the factors driving fire regimes. Research suggests that fire suppression, logging, climate change, and present management practices in Sierra Nevada forests have altered historic patterns of landscape carbon storage, and over a century of fire suppression and the resulting accumulation in surface fuels have been implicated in contributing to recent increases in high severity, stand-replacing fires. For over 30 years, fire management at Yosemite (YOSE) and Sequoia & Kings Canyon (SEKI) national parks has led the nation in restoring fire to park landscapes; however, the impacts on the stability and magnitude of carbon stocks have not been thoroughly examined.

  8. Influence of windthrows and tree species on forest soil plant biomass and carbon stocks

    Science.gov (United States)

    Veselinovic, B.; Hager, H.

    2012-04-01

    The role of forests has generally been recognized in climate change mitigation and adaptation strategies and policies (e.g. Kyoto Protocol within articles 3.3 and 3.4, RES-E Directive of EU, Country Biomass Action Plans etc.). Application of mitigation actions, to decrease of CO2-emissions and, as the increase of carbon(C)-stocks and appropriate GHG-accounting has been hampered due to a lack of reliable data and good statistical models for the factors influencing C-sequestration in and its release from these systems (e.g. natural and human induced disturbances). Highest uncertainties are still present for estimation of soil C-stocks, which is at the same time the second biggest C-reservoir on earth. Spruce monocultures have been a widely used management practice in central Europe during the past century. Such stands are in lower altitudes (e.g. submontane to lower montane elevation zone) and on heavy soils unstable and prone to disturbances, especially on blowdown. As the windthrow-areas act as CO2-source, we hypothesize that conversion to natural beech and oak forests will provide sustainable wood supply and higher stability of stands against blowdown, which simultaneously provides the long-term belowground C-sequestration. This work focuses on influence of Norway spruce, Common beech and Oak stands on belowground C-dynamics (mineral soil, humus and belowground biomass) taking into consideration the increased impact of windthrows on spruce monocultures as a result of climate change. For this purpose the 300-700m altitude and pseudogley (planosols/temporally logged) soils were chosen in order to evaluate long-term impacts of the observed tree species on belowground C-dynamics and human induced disturbances on secondary spruce stands. Using the false chronosequence approach, the C-pools have been estimated for different compartments and age classes. The sampling of forest floor and surface vegetation was done using 30x30 (homogenous plots) and 50x50cm (inhomogeneous

  9. Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2012-07-01

    Full Text Available We present the results of airborne measurements of carbon monoxide (CO and aerosol particle number concentration (CN made during the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA program. The experiment consisted of two aircraft campaigns during November–December 2008 (BARCA-A and May–June 2009 (BARCA-B, which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin.

    Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008 originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009 low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm−3; the highest values were in the southern part of the Basin at altitudes of 1–3 km. The ΔCN/ΔCO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires.

    During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300–500 cm−3 prevailed basinwide, and CO mixing ratios were enhanced

  10. Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons

    Science.gov (United States)

    Andreae, M. O.; Artaxo, P.; Beck, V.; Bela, M.; Freitas, S.; Gerbig, C.; Longo, K.; Munger, J. W.; Wiedemann, K. T.; Wofsy, S. C.

    2012-07-01

    We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm-3; the highest values were in the southern part of the Basin at altitudes of 1-3 km. The ΔCN/ΔCO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300-500 cm-3) prevailed basinwide, and CO mixing ratios were enhanced by only ~10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no

  11. Multitemporal mapping of peri-urban carbon stocks and soil sealing from satellite data.

    Science.gov (United States)

    Villa, Paolo; Malucelli, Francesco; Scalenghe, Riccardo

    2018-01-15

    Peri-urbanisation is the expansion of compact urban areas towards low-density settlements. This phenomenon directly challenges the agricultural landscape multifunctionality, including its carbon (C) storage capacity. Using satellite data, we mapped peri-urban C stocks in soil and built-up surfaces over three areas from 1993 to 2014 in the Emilia-Romagna region, Italy: a thinly populated area around Piacenza, an intermediate-density area covering the Reggio Emilia-Modena conurbation and a densely anthropized area developing along the coast of Rimini. Satellite-derived maps enabled the quantitative analysis of spatial and temporal features of urban growth and soil sealing, expressed as the ratio between C in built-up land and organic C in soils (Cc/Co). The three areas show substantial differences in C stock balance and soil sealing evolution. In Piacenza (Cc/Co=0.07 in 1993), although questioned by late industrial expansion and connected residential sprawl (Cc/Co growth by 38%), most of the new urbanisation spared the best rural soils. The Reggio Emilia-Modena conurbation, driven by the polycentricism of the area and the heterogeneity of economic sectors (Cc/Co rising from 0.08 to 0.14 from 1993 to 2014), balances sprawl and densification. Rimini, severely sealed since the 1960s (Cc/Co=0.23 in 1993), densifies its existing settlements and develops an industrial expansion of the hinterland, with Cc/Co growth accelerating from +15% before 2003 to +36% for the last decade. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Carbon Stocks in Permafrost-Affected Soils of the Lena River Delta

    Science.gov (United States)

    Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.

    2012-12-01

    The soil organic carbon stock (SSOC) of soils in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies report mainly the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 29) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 7 kg m-2 and 48 kg m-2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 29 kg m-2 (n = 22) for the first terrace and 14 kg m-2 (n = 7) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions a mean SSOC of 27 kg m-2 (min: 0.1 kg m-2, max: 126 kg m-2) for a depth of 1 m was reported [1]. For up-scaling solely over the soil-covered areas of the Lena River Delta, we excluded all water bodies >3,600 m2 from the geomorphological units studied (first river terrace and the active floodplains) and

  13. Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon

    Science.gov (United States)

    Fearnside, Philip M.; Leal, Niwton; Fernandes, Fernando Moreira

    1993-01-01

    Biomass present before and after burning was measured in forest cleared for pasture in a cattle ranch (Fazenda Dimona) near Manaus, Amazonas, Brazil. Aboveground dry weight biomass loading averaged 265 t ha-1 (standard deviation (SD) = 110, n = 6 quadrats) at Fazenda Dimona, which corresponds to approximately 311 t ha-1 total dry weight biomass. A five-category visual classification at 200 points showed highly variable burn quality. Postburn aboveground biomass loading was evaluated by cutting and weighing of 100 m2 quadrats and by line intersect sampling. Quadrats had a mean dry weight of 187 t ha-1 (SD = 69, n = 10), a 29.3% reduction from the preburn mean in the same clearing. Line intersect estimates in 1.65 km of transects indicated that 265 m3 ha-1 (approximately 164 t ha-1 of aboveground dry matter) survived burning. Using carbon contents measured for different biomass components (all ˜50% carbon) and assuming a carbon content of 74.8% for charcoal (from other studies near Manaus), the destructive measurements imply a 27.6% reduction of aboveground carbon pools. Charcoal composed 2.5% of the dry weight of the remains in the postburn destructive quadrats and 2.8% of the volume in the line intersect transects. Thus approximately 2.7% of the preburn aboveground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models. The findings confirm high values for biomass in central Amazonia. High variability indicates the need for further studies in many localities and for making maximum use of less laborious indirect methods of biomass estimation. While indirect methods are essential for regional estimates of average biomass, only direct weighing such as that reported here can yield information on combustion efficiency and charcoal formation. Both high biomass and low percentage of charcoal formation suggest the significant potential contribution of forest burning to global climate changes from CO2 and trace gases.

  14. Impacts of land use and cover change on terrestrial carbon stocks and the micro-climate over urban surface: a case study in Shanghai, China

    Science.gov (United States)

    Zhang, F.; Zhan, J.; Bai, Y.

    2016-12-01

    Land use and cover change is the key factor affecting terrestrial carbon stocks and micro-climate, and their dynamics not only in regional ecosystems but also in urbanized areas. Using the typical fast-growing city of Shanghai, China as a case study, this paper explored the relationships between terrestrial carbon stocks, micro-climate and land cover within an urbanized area. The main objectives were to assess variation in soil carbon stocks and local climate conditions across terrestrial land covers with different intensities of urban development, and quantify spatial distribution and dynamic variation of carbon stocks and microclimate in response to urban land use and cover change. On the basis of accurate spatial datasets derived from a series of Landsat TM images during the years 1988 to 2010 and reliable estimates of urban climate and soil carbon stocks using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, our results showed that carbon stocks per unit area in terrestrial land covers decreased and urban temperature increased with increasing intensity of urban development. Urban land use and cover change and sealing of the soil surface created hotspots for losses in carbon stocks. Total carbon stocks in Shanghai decreased by about 30%-35%, representing a 1.5% average annual decrease, and the temperature increased by about 0.23-0.4°/10a during the past 20 years. We suggested potential policy measures to mitigate negative effects of land use and cover change on carbon stocks and microclimate in urbanized areas.

  15. Assessing soil carbon vulnerability in the Western USA by geospatial modeling of pyrogenic and particulate carbon stocks

    Science.gov (United States)

    Ahmed, Zia U.; Woodbury, Peter B.; Sanderman, Jonathan; Hawke, Bruce; Jauss, Verena; Solomon, Dawit; Lehmann, Johannes

    2017-02-01

    To predict how land management practices and climate change will affect soil carbon cycling, improved understanding of factors controlling soil organic carbon fractions at large spatial scales is needed. We analyzed total soil organic (SOC) as well as pyrogenic (PyC), particulate (POC), and other soil organic carbon (OOC) fractions in surface layers from 650 stratified-sampling locations throughout Colorado, Kansas, New Mexico, and Wyoming. PyC varied from 0.29 to 18.0 mg C g-1 soil with a mean of 4.05 mg C g-1 soil. The mean PyC was 34.6% of the SOC and ranged from 11.8 to 96.6%. Both POC and PyC were highest in forests and canyon bottoms. In the best random forest regression model, normalized vegetation index (NDVI), mean annual precipitation (MAP), mean annual temperature (MAT), and elevation were ranked as the top four important variables determining PyC and POC variability. Random forests regression kriging (RFK) with environmental covariables improved predictions over ordinary kriging by 20 and 7% for PyC and POC, respectively. Based on RFK, 8% of the study area was dominated (≥50% of SOC) by PyC and less than 1% was dominated by POC. Furthermore, based on spatial analysis of the ratio of POC to PyC, we estimated that about 16% of the study area is medium to highly vulnerable to SOC mineralization in surface soil. These are the first results to characterize PyC and POC stocks geospatially using stratified sampling scheme at the scale of 1,000,000 km2, and the methods are scalable to other regions.

  16. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Oostra, Swantje [Swedish Univ. of Agricultural Sciences, Alnarp (Sweden). Dept. of Landscape Planning; Majdi, Hooshang [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Sciences; Olsson, Mats [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Soils

    2006-10-15

    The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinusbetulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20 cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction < 2 mm. Root biomass <5 mm in diameter) and its proportion in the forest floor and mineral soil varied between tree species. There was a vertical gradient under all species, with the highest concentrations of SOC, TN and base cations in the O-horizon and the lowest in the 10-20 cm layer. The tree species differed with respect to SOC, TN and soil acidity in the O-horizon and mineral soil. For SOC and TN, the range in the O-horizon was spruce> hornbeam > oak > beech > ash > elm. The pH in the O-horizon ranged in the order elm > ash > hornbeam > beech > oak > spruce. In the mineral soil, SOC and TN ranged in the order elm > oak > ash = hornbeam > spruce > beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate.

  17. The effect of long-term changes in plant inputs on soil carbon stocks

    Science.gov (United States)

    Georgiou, K.; Li, Z.; Torn, M. S.

    2017-12-01

    Soil organic carbon (SOC) is the largest actively-cycling terrestrial reservoir of C and an integral component of thriving natural and managed ecosystems. C input interventions (e.g., litter removal or organic amendments) are common in managed landscapes and present an important decision for maintaining healthy soils in sustainable agriculture and forestry. Furthermore, climate and land-cover change can also affect the amount of plant C inputs that enter the soil through changes in plant productivity, allocation, and rooting depth. Yet, the processes that dictate the response of SOC to such changes in C inputs are poorly understood and inadequately represented in predictive models. Long-term litter manipulations are an invaluable resource for exploring key controls of SOC storage and validating model representations. Here we explore the response of SOC to long-term changes in plant C inputs across a range of biomes and soil types. We synthesize and analyze data from long-term litter manipulation field experiments, and focus our meta-analysis on changes to total SOC stocks, microbial biomass carbon, and mineral-associated (`protected') carbon pools and explore the relative contribution of above- versus below-ground C inputs. Our cross-site data comparison reveals that divergent SOC responses are observed between forest sites, particularly for treatments that increase C inputs to the soil. We explore trends among key variables (e.g., microbial biomass to SOC ratios) that inform soil C model representations. The assembled dataset is an important benchmark for evaluating process-based hypotheses and validating divergent model formulations.

  18. An assessment of the carbon stocks and sodicity tolerance of disturbed Melaleuca forests in Southern Vietnam.

    Science.gov (United States)

    Tran, Da B; Hoang, Tho V; Dargusch, Paul

    2015-12-01

    In the lower Mekong Basin and coastal zones of Southern Vietnam, forests dominated by the genus Melaleuca have two notable features: most have been substantially disturbed by human activity and can now be considered as degraded forests; and most are subject to acute pressures from climate change, particularly in regards to changes in the hydrological and sodicity properties of forest soil. Data was collected and analyzed from five typical Melaleuca stands including: (1) primary Melaleuca forests on sandy soil (VS1); (2) regenerating Melaleuca forests on sandy soil (VS2); (3) degraded secondary Melaleuca forests on clay soil with peat (VS3); (4) regenerating Melaleuca forests on clay soil with peat (VS4); and (5) regenerating Melaleuca forests on clay soil without peat (VS5). Carbon densities of VS1, VS2, VS3, VS4, and VS5 were found to be 275.98, 159.36, 784.68, 544.28, and 246.96 tC/ha, respectively. The exchangeable sodium percentage of Melaleuca forests on sandy soil showed high sodicity, while those on clay soil varied from low to moderate sodicity. This paper presents the results of an assessment of the carbon stocks and sodicity tolerance of natural Melaleuca cajuputi communities in Southern Vietnam, in order to gather better information to support the improved management of forests in the region. The results provide important information for the future sustainable management of Melaleuca forests in Vietnam, particularly in regards to forest carbon conservation initiatives and the potential of Melaleuca species for reforestation initiatives on degraded sites with highly sodic soils.

  19. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A

    2009-01-01

    Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... mesic-dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular...... hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most...

  20. Impacts of Jatropha-based biodiesel production on above and below-ground carbon stocks: A case study from Mozambique

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Bech Bruun, Thilde

    2012-01-01

    The need to mitigate climate change makes production of liquid biofuels a high priority. Substituting fossil fuels by biodiesel produced from Jatropha curcas has gained widespread attention as Jatropha cultivation is claimed to offer green house gas emission reductions. Farmers respond worldwide to this increasing demand by converting forests into Jatropha, but whether Jatropha-based biodiesel offers carbon savings depends on the carbon emissions that occur when land use is changed to Jatropha. This paper provides an impact assessment of a small-scale Jatropha project in Cabo Delgado, Mozambique. The paper outlines the estimated impacts on above and below-ground carbon stocks when land use is changed to increase Jatropha production. The results show that expansion of Jatropha production will most likely lead to the conversion of miombo forest areas to Jatropha, which implies a reduction in above and below-ground carbon stocks. The carbon debts created by the land use change can be repaid by replacing fossil fuels with Jatropha-based biodiesel. A repayment time of almost two centuries is found with optimistic estimates of the carbon debt, while the use of pessimistic values results in a repayment time that approaches the millennium. - Highlights: ► Demands for biofuels make production of Jatropha-based biodiesel a priority. ► Farmers in Northern Mozambique are likely to convert un-logged miombo to Jatropha. ► Converting miombo to Jatropha creates reductions in above and below-ground carbon. ► It takes 187–966 years to repay emissions from above and below-ground carbon stocks.

  1. Co-assessment of biomass and soil organic carbon stocks in a future reservoir area located in Southeast Asia.

    Science.gov (United States)

    Descloux, Stéphane; Chanudet, Vincent; Poilvé, Hervé; Grégoire, Alain

    2011-02-01

    An assessment of the organic carbon stock present in living or dead vegetation and in the soil on the 450 km2 of the future Nam Theun 2 hydroelectric reservoir in Lao People's Democratic Republic was made. Nine land cover types were defined on the studied area: dense, medium, light, degraded, and riparian forests; agricultural soil; swamps; water; and others (roads, construction sites, and so on). Their geographical distribution was assessed by remote sensing using two 2008 SPOT 5 images. The area is mainly covered by dense and light forests (59%), while agricultural soil and swamps account for 11% and 2%, respectively. For each of these cover types, except water, organic carbon density was measured in the five pools defined by the Intergovernmental Panel on Climate Change: aboveground biomass, litter, deadwood, belowground biomass, and soil organic carbon. The area-weighted mean carbon densities for these pools were estimated at 45.4, 2.0, 2.2, 3.4, and 62.2 tC/ha, respectively, i.e., a total of about 115±15 tC/ha for a soil thickness of 30 cm, corresponding to a total flooded organic carbon stock of 5.1±0.7 MtC. This value is much lower than the carbon density for some South American reservoirs for example where total organic carbon stocks range from 251 to 326 tC/ha. It can be mainly explained by (1) the higher biomass density of South American tropical primary rainforest than of forests in this study and (2) the high proportion of areas with low carbon density, such as agricultural or slash-and-burn zones, in the studied area.

  2. Alpine grassland soil organic carbon stock and its uncertainty in the three rivers source region of the Tibetan Plateau.