WorldWideScience

Sample records for amazon carbon stocks

  1. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil.

    Science.gov (United States)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0-30 and the 0-100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km(2) and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m(-2), respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ceddia, Marcos Bacis, E-mail: marcosceddia@gmail.com [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Villela, André Luis Oliveira [Colégio Técnico da UFRRJ, RJ, Seropédica 23890-000 (Brazil); Pinheiro, Érika Flávia Machado [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Wendroth, Ole [Department of Plant & Soil Sciences, University of Kentucky, College of Agriculture, Lexington, KY (United States)

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km{sup 2} and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m{sup −2}, respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m{sup −2}, respectively. • SOC stocks were 34 and 16

  3. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    International Nuclear Information System (INIS)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-01-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km 2 and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m −2 , respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m −2 , respectively. • SOC stocks were 34 and 16%, respectively

  4. High-resolution forest carbon stocks and emissions in the Amazon.

    Science.gov (United States)

    Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint

    2010-09-21

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.

  5. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  6. High-resolution forest carbon stocks and emissions in the Amazon

    Science.gov (United States)

    G. P. Asner; George V. N. Powell; Joseph Mascaro; David E. Knapp; John K. Clark; James Jacobson; Ty Kennedy-Bowdoin; Aravindh Balaji; Guayana Paez-Acosta; Eloy Victoria; Laura Secada; Michael Valqui; R. Flint. Hughes

    2010-01-01

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at...

  7. Amazon soil charcoal: Pyrogenic carbon stock depends of ignition source distance and forest type in Roraima, Brazil.

    Science.gov (United States)

    da Silva Carvalho, Lidiany C; Fearnside, Philip M; Nascimento, Marcelo T; Barbosa, Reinaldo I

    2018-04-18

    Pyrogenic carbon (PyC) derived from charcoal particles (paleo + modern) deposited in the soil column has been little studied in the Amazon, and our understanding of the factors that control the spatial and vertical distribution of these materials in the region's forest soils is still unclear. The objective of this study was to test the effect of forest type and distance from the ignition source on the PyC stocks contained in macroscopic particles of soil charcoal (≥2 mm; 1 m depth) dispersed in ecotone forests of the northern Brazilian Amazon. Thirty permanent plots were set up near a site that had been occupied by pre-Columbian and by modern populations until the late 1970s. The sampled plots represent seasonal and ombrophilous forests that occur under different hydro-edaphic restrictions. Our results indicate that the largest PyC stock was spatially dependent on distance to the ignition source ( 50 cm) in seasonal forests was limited by hydro-edaphic impediments that restricted the occurrence of charcoal. These results suggest that PyC stocks derived from macroscopic charcoal particles in the soil of this Brazilian Amazon ecotone region are controlled by the distance from the ignition source of the fire, and that forest types with higher hydro-edaphic restrictions can inhibit formation and accumulation of charcoal. Making use of these distinctions reduces uncertainty and improves our ability to understand the variability of PyC stocks in forests with a history of fire in the Amazon. © 2018 John Wiley & Sons Ltd.

  8. Soil Carbon Stock and Particle Size Fractions in the Central Amazon Predicted from Remotely Sensed Relief, Multispectral and Radar Data

    Directory of Open Access Journals (Sweden)

    Marcos B. Ceddia

    2017-02-01

    Full Text Available Soils from the remote areas of the Amazon Rainforest in Brazil are poorly mapped due to the presence of dense forest and lack of access routes. The use of covariates derived from multispectral and radar remote sensors allows mapping large areas and has the potential to improve the accuracy of soil attribute maps. The objectives of this study were to: (a evaluate the addition of relief, and vegetation covariates derived from multispectral images with distinct spatial and spectral resolutions (Landsat 8 and RapidEye and L-band radar (ALOS PALSAR for the prediction of soil organic carbon stock (CS and particle size fractions; and (b evaluate the performance of four geostatistical methods to map these soil properties. Overall, the results show that, even under forest coverage, the Normalized Difference Vegetation Index (NDVI and ALOS PALSAR backscattering coefficient improved the accuracy of CS and subsurface clay content predictions. The NDVI derived from RapidEye sensor improved the prediction of CS using isotopic cokriging, while the NDVI derived from Landsat 8 and backscattering coefficient were selected to predict clay content at the subsurface using regression kriging (RK. The relative improvement of applying cokriging and RK over ordinary kriging were lower than 10%, indicating that further analyses are necessary to connect soil proxies (vegetation and relief types with soil attributes.

  9. Quantifying edge effect extent and its impacts on carbon stocks across a degraded landscape in the Amazon using airborne lidar.

    Science.gov (United States)

    dos-Santos, M. N.; Keller, M.; Morton, D. C.; Longo, M.; Scaranello, M. A., Sr.; Pinagé, E. R.; Correa Pabon, R.

    2017-12-01

    Ongoing tropical forest degradation and forest fragmentation increases forest edge area. Forest edges experience hotter, drier, and windier conditions and greater exposure to fires compared to interior areas, which elevate rates of tree mortality. Previous studies have suggested that forests within 100 m from the edge may lose 36% of biomass during the first two decades following fragmentation, although such estimates are based on a limited number of experimental plots. Degraded forests behave differently from intact forests and quantifying edge effect extension in a degraded forest landscape is more challenging compared to experimental studies. To overcome these limitations, we used airborne lidar data to quantify changes in forest structure near 91 edges in a heavily degraded tropical forest in Paragominas Municipality, eastern Brazilian Amazon. Paragominas was a center of timber production in the 1990s. Today, the landscape is a mosaic of different agricultural uses, degraded, secondary and unmanaged forests. A total of 3000 ha of high density (mean density of 17.9 points/m2) lidar data were acquired in August/September 2013 and June/July 2014 over 30 transects (200 x 5000m), systematically distributed over the study area, using the Optech Orion M-200 laser scanning system. We adopted lidar-measured forest heights as the edge effect criteria and found that mean extent of edge effect was highly variable across degraded forests (150 ± 354m) and secondary forest fragments (265 ± 365m). We related the extent of forest edges to the historical disturbances identified in Landsat imagery since 1984. Contrary to previous studies, we found that carbon stocks along forest edges were not significantly lower than forest core biomass when edges were defined by previously estimated range of 100 and 300m. In frontier forests, ecological edge effect may be masked by the cumulative impact of historic forest degradation - an anthropogenic edge effect that extends beyond the

  10. GoAmazon – Scaling Amazon Carbon Water Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Manvendra Krishna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-06

    Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1) moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st century is largely unknown. Rainforests are the most active ecosystems with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We will resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional scale high frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O and CO at the T3 site in Manacupuru, Brazil as part of DOE's GoAmazon project. Our data will be used to inform and develop DOE's CLM on the tropical carbon-water couplings at the appropriate grid scale (10-50km). Our measurements will also validate the CO2 data from Japan's GOSAT and NASA's imminent OCO-2 satellite (launch date July 2014).

  11. Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.

    Science.gov (United States)

    Phillips, Oliver L; Brienen, Roel J W

    2017-12-01

    Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale

  12. Increased topsoil carbon stock across China's forests.

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; Ding, Jinzhi; Zhao, Xia; Ma, Wenhong; Ji, Chengjun; Fang, Jingyun

    2014-08-01

    Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon-climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large-scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon-climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s-2000s, with an overall rate of 20.0 g C m(-2) yr(-1) (95% confidence interval, 14.1-25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine-textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon-climate models

  13. Community monitoring of carbon stocks for REDD+

    DEFF Research Database (Denmark)

    Brofeldt, Søren; Theilade, Ida; Burgess, Neil David

    2014-01-01

    Reducing emissions from deforestation and forest degradation in developing countries, and the role of conservation, sustainable management of forests, and enhancement of forest carbon stocks in developing countries (REDD+) is a potentially powerful international policy mechanism that many tropica...

  14. Green Ocean Amazon 2014/15 – Scaling Amazon Carbon Water Couplings Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Manvendra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parket, Harrison [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rahn, Thom [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Christoffersson, B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wunch, Debra [California Inst. of Technology (CalTech), Pasadena, CA (United States); Wennberg, Paul [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-08-01

    Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1), moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st Century is largely unknown. Rainforests are the most active ecosystems, with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We set out to resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional-scale high-frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O, and CO at the T3 site in Manacupuru, Brazil, as part of DOE's GoAmazon 2014/15 project. Our data will be used to inform and develop DOE's Community Land Model (CLM) on the tropical carbon-water couplings at the appropriate grid scale (10-50 km). Our measurements will also validate the CO2 data from Japan's Greenhouse gases Observing Satellite (GOSAT) and NASA's Orbiting Carbon Observatory (OCO)-2 satellite (launched in July, 2014). Our data addresses these science questions: 1. How does ecosystem heterogeneity and climate variability influence the rainforest carbon cycle? 2. How well do current tropical ecosystem models simulate the observed regional carbon cycle? 3. Does nitrogen deposition (from the Manaus, Brazil, plume) enhance rainforest carbon uptake?

  15. Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost

    2017-04-01

    Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights

  16. Conversion of cerrado into agricultural land in the south-western Amazon: carbon stocks and soil fertility Conversão do cerrado em agricultura no sudoeste da Amazônia: estoques de carbono e fertilidade do solo

    Directory of Open Access Journals (Sweden)

    João Luís Nunes Carvalho

    2009-04-01

    Full Text Available Land use change and land management practices can modify soil carbon (C dynamics and soil fertility. This study evaluated the effect of tillage systems (no-tillage - NT and conventional tillage - CT on soil C and nutrient stocks in an Oxisol from an Amazonian cerrado following land use change. The study also identified relationships between these stocks and other soil attributes. Carbon, P, K, Ca and Mg stocks, adjusted to the equivalent soil mass in the cerrado (CE, were higher under NT. After adoption of all but one of the NT treatments, C stocks were higher than they were in the other areas we considered. Correlations between C and nutrient stocks showed positive correlations with Ca and Mg under NT due to continuous liming, higher crop residue inputs and lack of soil disturbance, associated with positive correlations with cation exchange capacity (CEC, base saturation and pH. The positive correlation (r = 0.91, p Mudanças de uso da terra e práticas de manejo modificam a dinâmica do C e a fertilidade do solo. Este estudo avaliou as implicações dos sistemas de cultivo (NT e CT nos estoques de C e de nutrientes e identificou inter-relações entre estes estoques e outros atributos da fertilidade do solo em Latossolo após a mudança do uso da terra no cerrado amazônico. Os estoques de C e de nutrientes (P, K, Ca e Mg ajustados pela massa equivalente do solo sob cerrado (CE, foram maiores principalmente sob NT. Após a adoção do NT, exceto em 2NT, os estoques de C foram maiores em relação às demais áreas avaliadas. Correlações entre estoques de C e de nutrientes revelaram algumas correlações positivas com Ca e Mg nas áreas sob NT, devido ao uso continuo de calcário, à maior quantidade de resíduos culturais e ao não revolvimento do solo, associado à correlações positivas com CTC, saturação por bases e pH. A correlação positiva (r = 0,91, p < 0,05 entre estoques de C e CTC em CE indica a importante contribuição da MOS

  17. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    Science.gov (United States)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  18. Long-term decline of the Amazon carbon sink.

    Science.gov (United States)

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  19. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    Science.gov (United States)

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  20. Climate change mitigation by carbon stocking

    DEFF Research Database (Denmark)

    Lykke, Anne Mette; Barfod, Anders S.; Svendsen, Gert Tinggaard

    2009-01-01

    with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely...... primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potentials to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking...

  1. Ecosystem carbon stocks in Pinus palustris forests

    Science.gov (United States)

    Lisa Samuelson; Tom Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Pete Anderson; Jason Jackson; Lorenzo Ferrari; Tim A. Martin; Wendell P. Cropper

    2014-01-01

    Longleaf pine (Pinus palustris Mill.) restoration in the southeastern United States offers opportunities for carbon (C) sequestration. Ecosystem C stocks are not well understood in longleaf pine forests, which are typically of low density and maintained by prescribed fire. The objectives of this research were to develop allometric equations for...

  2. Ecosystem carbon stocks of micronesian mangrove forests

    Science.gov (United States)

    J. Boone Kauffman; Chris Heider; Thomas G. Cole; Kathleen A. Dwire; Daniel C. Donato

    2011-01-01

    Among the least studied ecosystem services of mangroves is their value as global carbon (C) stocks. This is significant as mangroves are subject to rapid rates of deforestation and therefore could be significant sources of atmospheric emissions. Mangroves could be key ecosystems in strategies addressing the mitigation of climate change though reduced deforestation. We...

  3. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  4. Carbon stocks and flux in French forests

    International Nuclear Information System (INIS)

    Dupouey, Jean-Luc; Pignard, Gerome; Badeau, Vincent; Thimonier, A.; Dhote, Jean-Francois; Nepveu, G.; Berges, L.; Augusto, L.; Belkacem, S.; Nys, C.

    2000-01-01

    Forests contain most of the carbon stored in the earth's biomass (81 %) and could play a role in CO 2 mitigation to a certain extent. We estimate French forest carbon stocks in biomass to be 860 MtC on 14.5 million hectares of forests, and 1,140 MtC in forest soils. Total carbon in the 14.5 million hectares of French forests is estimated at 2,000 MtC. Average annual flux for the 1979/91 period is 10.5 MtC/y, i.e. 10 % of national fossil fuel emissions. The main causes of this net carbon uptake are the rapid increase of forest area, increasing productivity due to environmental changes, ageing or, in some localized areas, more intensive silviculture practices. These carbon sinks are not offset by the harvesting level which remains low on average (61 % of the annual volume growth). Forestry carbon mitigation options applicable in France are discussed. The need for global economic and ecological budgets (including carbon stocks, soil fertility and biodiversity) of the possible alternatives is stressed. (authors)

  5. US forest carbon calculation tool: forest-land carbon stocks and net annual stock change

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Michael C. Nichols

    2007-01-01

    The Carbon Calculation Tool 4.0, CCTv40.exe, is a computer application that reads publicly available forest inventory data collected by the U.S. Forest Service's Forest Inventory and Analysis Program (FIA) and generates state-level annualized estimates of carbon stocks on forest land based on FORCARB2 estimators. Estimates can be recalculated as...

  6. Geography of Global Forest Carbon Stocks & Dynamics

    Science.gov (United States)

    Saatchi, S. S.; Yu, Y.; Xu, L.; Yang, Y.; Fore, A.; Ganguly, S.; Nemani, R. R.; Zhang, G.; Lefsky, M. A.; Sun, G.; Woodall, C. W.; Naesset, E.; Seibt, U. H.

    2014-12-01

    Spatially explicit distribution of carbon stocks and dynamics in global forests can greatly reduce the uncertainty in the terrestrial portion of the global carbon cycle by improving estimates of emissions and uptakes from land use activities, and help with green house gas inventory at regional and national scales. Here, we produce the first global distribution of carbon stocks in living woody biomass at ~ 100 m (1-ha) resolution for circa 2005 from a combination of satellite observations and ground inventory data. The total carbon stored in live woody biomass is estimated to be 337 PgC with 258 PgC in aboveground and 79 PgC in roots, and partitioned globally in boreal (20%), tropical evergreen (50%), temperate (12%), and woodland savanna and shrublands (15%). We use a combination of satellite observations of tree height, remote sensing data on deforestation and degradation to quantify the dynamics of these forests at the biome level globally and provide geographical distribution of carbon storage dynamics in terms sinks and sources globally.

  7. Soil carbon stocks in Sarawak, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, E., E-mail: Eswaran_padmanabhan@petronas.com.my [Department of Geosciences, Faculty of Geosciences and Petroleum Engineering, Universiti Teknologi PETRONAS, Tronoh, 31750, Perak (Malaysia); Eswaran, H.; Reich, P.F. [USDA-Natural Resources Conservation Service, Washington, DC 20250 (United States)

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO{sub 2}, CH{sub 4}, and N{sub 2}O have an anthropic source and of these CO{sub 2} is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m{sup −2} m{sup −1}), while Oxisols and Ultisols rate second (about 10–15 kg m{sup −2} m{sup −1}). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1 m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m{sup −2} m{sup −1}. Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. - Highlights: • Soil carbon stocks in different soils in Sarawak • In depth discussion of

  8. Soil carbon stocks in Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Padmanabhan, E.; Eswaran, H.; Reich, P.F.

    2013-01-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO 2 , CH 4 , and N 2 O have an anthropic source and of these CO 2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m −2 m −1 ), while Oxisols and Ultisols rate second (about 10–15 kg m −2 m −1 ). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1 m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m −2 m −1 . Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. - Highlights: • Soil carbon stocks in different soils in Sarawak • In depth discussion of soil carbon pools in Histosols • Strategies

  9. Implication of Forest-Savanna Dynamics on Biomass and Carbon Stock: Effectiveness of an Amazonian Ecological Station

    Science.gov (United States)

    Couto-Santos, F. R.; Luizao, F. J.

    2014-12-01

    The forests-savanna advancement/retraction process seems to play an important role in the global carbon cycle and in the climate-vegetation balance maintenance in the Amazon. To contribute with long term carbon dynamics and assess effectiveness of a protected area in reduce carbon emissions in Brazilian Amazon transitional areas, variations in forest-savanna mosaics biomass and carbon stock within Maraca Ecological Station (MES), Roraima/Brazil, and its outskirts non-protected areas were compared. Composite surface soil samples and indirect methods based on regression models were used to estimate aboveground tree biomass accumulation and assess vegetation and soil carbon stock along eleven 0.6 ha transects perpendicular to the forest-savanna limits. Aboveground biomass and carbon accumulation were influenced by vegetation structure, showing higher values within protected area, with great contribution of trees above 40 cm in diameter. In the savanna environments of protected areas, a higher tree density and carbon stock up to 30 m from the border confirmed a forest encroachment. This pointed that MES acts as carbon sink, even under variations in soil fertility gradient, with a potential increase of the total carbon stock from 9 to 150 Mg C ha-1. Under 20 years of fire and disturbance management, the results indicated the effectiveness of this protected area to reduce carbon emissions and mitigate greenhouse and climate change effects in a forest-savanna transitional area in Brazilian Northern Amazon. The contribution of this study in understanding rates and reasons for biomass and carbon variation, under different management strategies, should be considered the first approximation to assist policies of reducing emissions from deforestation and forest degradation (REDD) from underresearched Amazonian ecotone; despite further efforts in this direction are still needed. FINANCIAL SUPPORT: Boticário Group Foundation (Fundação Grupo Boticário); National Council for

  10. Amazon River carbon dioxide outgassing fuelled by wetlands.

    Science.gov (United States)

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  11. Soil carbon stocks in Sarawak, Malaysia.

    Science.gov (United States)

    Padmanabhan, E; Eswaran, H; Reich, P F

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The zero inflation of standing dead tree carbon stocks

    Science.gov (United States)

    Christopher W. Woodall; David W. MacFarlane

    2012-01-01

    Given the importance of standing dead trees in numerous forest ecosystem attributes/processes such as carbon (C) stocks, the USDA Forest Service’s Forest Inventory and Analysis (FIA) program began consistent nationwide sampling of standing dead trees in 1999. Modeled estimates of standing dead tree C stocks are currently used as the official C stock estimates for the...

  13. Global patterns of aboveground carbon stock and sequestration in mangroves

    Directory of Open Access Journals (Sweden)

    GUSTAVO C.D. ESTRADA

    Full Text Available ABSTRACT In order to contribute to understand the factors that control the provisioning of the ecosystem service of carbon storage by mangroves, data on carbon stock and sequestration in the aboveground biomass (AGB from 73 articles were averaged and tested for the dependence on latitude, climatic parameters, physiographic types and age. Global means of carbon stock (78.0 ± 64.5 tC.ha-1 and sequestration (2.9 ± 2.2 tC.ha-1.yr-1 showed that mangroves are among the forest ecosystems with greater capacity of carbon storage in AGB per area. On the global scale, carbon stock increases toward the equator (R²=0.22 and is dependent on 13 climatic parameters, which can be integrated in the following predictive equation: Carbon Stock in AGB = -16.342 + (8.341 x Isothermality + (0.021 x Annual Precipitation [R²=0.34; p < 0.05]. It was shown that almost 70% of carbon stock variability is explained by age. Carbon stock and sequestration also vary according to physiographic types, indicating the importance of hydroperiod and edaphic parameters to the local variability of carbon stock. By demonstrating the contribution of local and regional-global factors to carbon stock, this study provides information to the forecast of the effects of future climate changes and local anthropogenic forcings on this ecosystem service.

  14. Effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Trumbore, Susan E.; Davidson, Eric A.

    1994-01-01

    The overall goal of this study was to provide a quantitative understanding of the cycling of carbon in the soils associated with deep-rooting Amazon forests. In particular, we wished to apply the understanding gained by answering two questions: (1) what changes will accompany the major land use change in this region, the conversion of forest to pasture? and (2) what is the role of carbon stored deeper than one meter in depth in these soils? To construct carbon budgets for pasture and forest soils we combined the following: measurements of carbon stocks in above-ground vegetation, root biomass, detritus, and soil organic matter; rates of carbon inputs to soil and detrital layers using litterfall collection and sequential coring to estimate fine root turnover; C-14 analyses of fractionated SOM and soil CO2 to estimate residence times; C-13 analyses to estimate C inputs to pasture soils from C-4 grasses; soil pCO2, volumetric water content, and radon gradients to estimate CO2 production as a function of soil depth; soil respiration to estimate total C outputs; and a model of soil C dynamics that defines SOM fractions cycling on annual, decadal, and millennial time scales.

  15. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    OpenAIRE

    Druffel, E. R. M; Bauer, J. E; Griffin, S.

    2005-01-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters...

  16. Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes.

    Science.gov (United States)

    Schaefer, C E G R; do Amaral, E F; de Mendonça, B A F; Oliveira, H; Lani, J L; Costa, L M; Fernandes Filho, E I

    2008-05-01

    The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east-west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There

  17. Ecosystem Carbon Stocks of Intertidal Wetlands in Singapore

    Science.gov (United States)

    Phang, V. X. H.; Friess, D.; Chou, L. M.

    2014-12-01

    Mangrove forests and seagrass meadows provide numerous ecosystem services, with huge recent interest in their carbon sequestration and storage value. Mangrove forests and seagrass meadows as well as mudflats and sandbars form a continuum of intertidal wetlands, but studies that consider these spatially-linked habitats as a whole are limited. This paper presents the results of a field-based and remote sensing carbon stock assessment, including the first study of the ecosystem carbon stocks of these adjacent habitats in the tropics. Aboveground, belowground and soil organic carbon pools were quantified at Chek Jawa, an intertidal wetland in Singapore. Total ecosystem carbon stocks averaged 499 Mg C ha-1 in the mangrove forest and 140 Mg C ha-1 in the seagrass meadow. Soil organic carbon dominated the total storage in both habitats. In the adjacent mudflats and sandbars, soil organic carbon averaged 143 and 124 Mg C ha-1 respectively. High amount of carbon stored in soil demonstrate the role of intertidal wetlands in sequestering large amount of carbon in sediments accumulated over millennia. High-resolution remote sensing imagery was used to create spatial models that upscaled field-based carbon measurements to the national scale. Field-based data and spatial modeling of ecosystem carbon stocks to the entire island through remote sensing provides a large-scale and holistic carbon stock value, important for the understanding and management of these threatened intertidal ecosystems.

  18. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A; Ferreira, Joice; Aragão, Luiz E O C; Camargo, Plínio B; Cerri, Carlos E; Durigan, Mariana; Oliveira Junior, Raimundo C; Vieira, Ima C G; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  19. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Erika Berenguer

    Full Text Available Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH, which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85 whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human

  20. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  1. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.

    1992-01-01

    The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.

  2. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  3. Monitoring Forest Carbon Stocks and Fluxes in the Congo Basin

    OpenAIRE

    2010-01-01

    The Central African Forests Commission (COMIFAC) and its partners (OFAC, USAID, EC-JRC, OSFAC, WWF, WRI, WCS, GOFC-GOLD, START, UN-FAO) organized an international conference on "Monitoring of Carbon stocks and fluxes in the Congo Basin" in Brazzaville, Republic of Congo, 2-4 February 2010. The conference brought together leading international specialists to discuss approaches for quantifying stocks and flows of carbon in tropical forests of the Congo Basin. The conference provided a unique op...

  4. Partitioning Uncertainty In Aboveground Carbon Density Estimates: Relative Contributions From Lidar and Forest Inventory In The Brazilian Amazon.

    Science.gov (United States)

    Duffy, P.; Keller, M. M.; Morton, D. C.

    2016-12-01

    Carbon accounting for REDD+ requires knowledge of deforestation, degradation, and associated changes in forest carbon stocks. Degradation is more difficult to detect than deforestation so SilvaCarbon, an US inter-agency effort, has set a priority to better characterize forest degradation effects on carbon loss. By combining information from forest inventory and lidar data products, impacts of deforestation, degradation, and associated changes in forest carbon stocks can be more accurately characterized across space. Our approach employs a hierarchical Bayesian modeling (HBM) framework where the assimilation of information from multiple sources is accomplished using a change of support (COS) technique. The COS formulation allows data from multiple spatial resolutions to be assimilated into an intermediate resolution. This approach is being applied in Paragominas, a jurisdiction in the eastern Brazilian Amazon with a high proportion of logged and burned degraded forests where political change has opened the way for REDD+. We build on a long history of research including our extensive studies of logging damage. Our primary objective is to quantify above-ground carbon stocks and corresponding uncertainty in a spatially explicit manner. A secondary objective is to quantify the relative contribution of lower level data products to the overall uncertainty, allowing for more focused subsequent data collection in the context of uncertainty reduction. This approach provides a mechanism to assimilate information from multiple sources to produce spatially-explicit maps of carbon stocks and changes with corresponding spatially explicit maps of uncertainty. Importantly, this approach also provides a mechanism that can be used to assess the value of information from specific data products.

  5. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu

    2015-01-01

    Soil organic carbon (SOC) stocks in forest floors and in mineral and peat forest soils were estimated at the European scale. The assessment was based on measured C concentration, bulk density, coarse fragments and effective soil depth data originating from 4914 plots in 22 EU countries belonging...... to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...... to 22 WRB Reference Soil Groups (RSGs) and 8 humus forms to provide European scale benchmark values. Average SOC stocks amounted to 22.1 t C ha− 1 in forest floors, 108 t C ha− 1 in mineral soils and 578 t C ha− 1 in peat soils, to 1 m depth. Relative to 1-m stocks, the vertical SOC distribution...

  6. Deforestation and Carbon Stock Loss in Brazil's Amazonian Settlements.

    Science.gov (United States)

    Yanai, Aurora Miho; Nogueira, Euler Melo; de Alencastro Graça, Paulo Maurício Lima; Fearnside, Philip Martin

    2017-03-01

    We estimate deforestation and the carbon stock in 2740 (82 %) of the 3325 settlements in Brazil's Legal Amazonia region. Estimates are made both using available satellite data and a carbon map for the "pre-modern" period (prior to 1970). We used data from Brazil's Project for Monitoring Deforestation in Amazonia updated through 2013 and from the Brazilian Biomes Deforestation Monitoring Project (PMDBBS) updated through 2010. To obtain the pre-modern and recent carbon stocks we performed an intersection between a carbon map and a map derived from settlement boundaries and deforestation data. Although the settlements analyzed occupied only 8 % of Legal Amazonia, our results indicate that these settlements contributed 17 % (160,410 km 2 ) of total clearing (forest + non-forest) in Legal Amazonia (967,003 km 2 ). This represents a clear-cutting of 41 % of the original vegetation in the settlements. Out of this total, 72 % (115,634 km 2 ) was in the "Federal Settlement Project" (PA) category. Deforestation in settlements represents 20 % (2.6 Pg C) of the total carbon loss in Legal Amazonia (13.1 Pg C). The carbon stock in remaining vegetation represents 3.8 Pg C, or 6 % of the total remaining carbon stock in Legal Amazonia (58.6 Pg C) in the periods analyzed. The carbon reductions in settlements are caused both by the settlers and by external actors. Our findings suggest that agrarian reform policies contributed directly to carbon loss. Thus, the implementation of new settlements should consider potential carbon stock losses, especially if settlements are created in areas with high carbon stocks.

  7. Carbon emissions risk map from deforestation in the tropical Amazon

    Science.gov (United States)

    Ometto, J.; Soler, L. S.; Assis, T. D.; Oliveira, P. V.; Aguiar, A. P.

    2011-12-01

    Assis, Pedro Valle This work aims to estimate the carbon emissions from tropical deforestation in the Brazilian Amazon associated to the risk assessment of future land use change. The emissions are estimated by incorporating temporal deforestation dynamics, accounting for the biophysical and socioeconomic heterogeneity in the region, as well secondary forest growth dynamic in abandoned areas. The land cover change model that supported the risk assessment of deforestation, was run based on linear regressions. This method takes into account spatial heterogeneity of deforestation as the spatial variables adopted to fit the final regression model comprise: environmental aspects, economic attractiveness, accessibility and land tenure structure. After fitting a suitable regression models for each land cover category, the potential of each cell to be deforested (25x25km and 5x5 km of resolution) in the near future was used to calculate the risk assessment of land cover change. The carbon emissions model combines high-resolution new forest clear-cut mapping and four alternative sources of spatial information on biomass distribution for different vegetation types. The risk assessment map of CO2 emissions, was obtained by crossing the simulation results of the historical land cover changes to a map of aboveground biomass contained in the remaining forest. This final map represents the risk of CO2 emissions at 25x25km and 5x5 km until 2020, under a scenario of carbon emission reduction target.

  8. Ecosystem-Level Carbon Stocks in Costa Rican Mangrove Forests

    Science.gov (United States)

    Cifuentes, M.

    2012-12-01

    Tropical mangroves provide a wide variety of ecosystem services, including atmospheric carbon sequestration. Because of their high rates of carbon accumulation, the large expected size of their total stocks (from 2 to 5 times greater than those of upland tropical forests), and the alarming rates at which they are being converted to other uses (releasing globally from 0.02 to 0.12 Pg C yr-1), mangroves are receiving increasing attention as additional tools to mitigate climate change. However, data on whole ecosystem-level carbon in tropical mangroves is limited. Here I present the first estimate of ecosystem level carbon stocks in mangrove forests of Central America. I established 28, 125 m-long, sampling transects along the 4 main rivers draining the Térraba-Sierpe National Wetland in the southern Pacific coast of Costa Rica. This area represents 39% of all remaining mangroves in the country (48300 ha). A circular nested plot was placed every 25 m along each transect. Carbon stocks of standing trees, regeneration, the herbaceous layer, litter, and downed wood were measured following internationally-developed methods compatible with IPCC "Good Practice Guidelines". In addition, total soil carbon stocks were determined down to 1 m depth. Together, these carbon estimates represent the ecosystem-carbon stocks of these forests. The average aboveground carbon stocks were 72.5 ± 3.2 MgC ha-1 (range: 9 - 241 MgC ha-1), consistent with results elsewhere in the world. Between 74 and 92% of the aboveground carbon is stored in trees ≥ 5cm dbh. I found a significant correlation between basal area of trees ≥ 5cm dbh and total aboveground carbon. Soil carbon stocks to 1 m depth ranged between 141 y 593 MgC ha-1. Ecosystem-level carbon stocks ranged from 391 MgC ha-1 to 438 MgC ha-1, with a slight increase from south to north locations. Soil carbon stocks represent an average 76% of total ecosystem carbon stocks, while trees represent only 20%. These Costa Rican mangroves

  9. Measuring Biomass and Carbon Stock in Resprouting Woody Plants

    Science.gov (United States)

    Matula, Radim; Damborská, Lenka; Nečasová, Monika; Geršl, Milan; Šrámek, Martin

    2015-01-01

    Resprouting multi-stemmed woody plants form an important component of the woody vegetation in many ecosystems, but a clear methodology for reliable measurement of their size and quick, non-destructive estimation of their woody biomass and carbon stock is lacking. Our goal was to find a minimum number of sprouts, i.e., the most easily obtainable, and sprout parameters that should be measured for accurate sprout biomass and carbon stock estimates. Using data for 5 common temperate woody species, we modelled carbon stock and sprout biomass as a function of an increasing number of sprouts in an interaction with different sprout parameters. The mean basal diameter of only two to five of the thickest sprouts and the basal diameter and DBH of the thickest sprouts per stump proved to be accurate estimators for the total sprout biomass of the individual resprouters and the populations of resprouters, respectively. Carbon stock estimates were strongly correlated with biomass estimates, but relative carbon content varied among species. Our study demonstrated that the size of the resprouters can be easily measured, and their biomass and carbon stock estimated; therefore, resprouters can be simply incorporated into studies of woody vegetation. PMID:25719601

  10. Estimating forest carbon stocks in tropical dry forests of Zimbabwe ...

    African Journals Online (AJOL)

    Estimation and mapping of forest dendrometric characteristics such as carbon stocks using remote sensing techniques is fundamental for improved understanding of the role of forests in the carbon cycle and climate change. In this study, we tested whether and to what extent spectral transforms, i.e. vegetation indices ...

  11. Carbon stocks and dynamics under improved tropical pasture and silvopastoral

    NARCIS (Netherlands)

    Mosquera Vidal, O.; Buurman, P.; Ramirez, B.L.; Amezquita, M.C.

    2012-01-01

    To evaluate the effect of land use change on soil organic carbon, the carbon contents and stocks of primary forest, degraded pasture, and four improved pasture systems in Colombian Amazonia were compared in a flat and a sloping landscape. The improved pastures were Brachiaria humidicola, and

  12. Forest Carbon Stocks in Woody Plants of Mount Zequalla Monastery ...

    African Journals Online (AJOL)

    Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.The present study was undertaken to estimate forest carbon stock along altitudinal gradient in Mount Zequalla Monastery forest.

  13. Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.

    2016-12-01

    Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.

  14. Degradation in carbon stocks near tropical forest edges.

    Science.gov (United States)

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M; Gerber, James S; West, Paul C; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-12-18

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels.

  15. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows

    DEFF Research Database (Denmark)

    Rohr, Maria Emilia; Bostrom, Christoffer; Canal-Vergés, Paula

    2016-01-01

    Although seagrasses cover only a minor fraction of the ocean seafloor, their carbon sink capacity accounts for nearly one-fifth of the total oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems. We sampled 10 eelgrass (Zostera marina) meadows....... The C-org stock integrated over the top 25 cm of the sediment averaged 627 g C m(-2) in Finland, while in Denmark the average C-org stock was over 6 times higher (4324 g Cm-2). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha(-1). Our results...... in Finland and 10 in Denmark to explore seagrass carbon stocks (C-org stock) and carbon accumulation rates (C-org accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation...

  16. Deadwood biomass: an underestimated carbon stock in degraded tropical forests?

    Science.gov (United States)

    Pfeifer, Marion; Lefebvre, Veronique; Turner, Edgar; Cusack, Jeremy; Khoo, MinSheng; Chey, Vun K.; Peni, Maria; Ewers, Robert M.

    2015-04-01

    Despite a large increase in the area of selectively logged tropical forest worldwide, the carbon stored in deadwood across a tropical forest degradation gradient at the landscape scale remains poorly documented. Many carbon stock studies have either focused exclusively on live standing biomass or have been carried out in primary forests that are unaffected by logging, despite the fact that coarse woody debris (deadwood with ≥10 cm diameter) can contain significant portions of a forest’s carbon stock. We used a field-based assessment to quantify how the relative contribution of deadwood to total above-ground carbon stock changes across a disturbance gradient, from unlogged old-growth forest to severely degraded twice-logged forest, to oil palm plantation. We measured in 193 vegetation plots (25 × 25 m), equating to a survey area of >12 ha of tropical humid forest located within the Stability of Altered Forest Ecosystems Project area, in Sabah, Malaysia. Our results indicate that significant amounts of carbon are stored in deadwood across forest stands. Live tree carbon storage decreased exponentially with increasing forest degradation 7-10 years after logging while deadwood accounted for >50% of above-ground carbon stocks in salvage-logged forest stands, more than twice the proportion commonly assumed in the literature. This carbon will be released as decomposition proceeds. Given the high rates of deforestation and degradation presently occurring in Southeast Asia, our findings have important implications for the calculation of current carbon stocks and sources as a result of human-modification of tropical forests. Assuming similar patterns are prevalent throughout the tropics, our data may indicate a significant global challenge to calculating global carbon fluxes, as selectively-logged forests now represent more than one third of all standing tropical humid forests worldwide.

  17. Trypanosoma cruzi I and IV stocks from Brazilian Amazon are divergent in terms of biological and medical properties in mice.

    Directory of Open Access Journals (Sweden)

    Wuelton Marcelo Monteiro

    Full Text Available In the Brazilian Amazon, clinical and epidemiological frameworks of Chagas disease are very dissimilar in relation to the endemic classical areas of transmission, possibly due to genetic and biological characteristics of the circulating Trypanosoma cruzi stocks. Twenty six T. cruzi stocks from Western Amazon Region attributed to the TcI and TcIV DTUs were comparatively studied in Swiss mice to test the hypothesis that T. cruzi clonal structure has a major impact on its biological and medical properties.Seventeen parameters were assayed in mice infected with 14 T. cruzi strains belonging to DTU TcI and 11 strains typed as TcIV. In comparison with TcI, TcIV stocks promoted a significantly shorter pre-patent period (p<0.001, a longer patent period (p<0.001, higher values of mean daily parasitemia (p = 0.009 and maximum of parasitemia (p = 0.015, earlier days of maximum parasitemia (p<0.001 and mortality (p = 0.018, higher mortality rates in the acute phase (p = 0.047, higher infectivity rates (p = 0.002, higher positivity in the fresh blood examination (p<0.001, higher positivity in the ELISA at the early chronic phase (p = 0.022, and a higher positivity in the ELISA at the late chronic phase (p = 0.003. On the other hand TcI showed higher values of mortality rates in the early chronic phase (p = 0.014, higher frequency of mice with inflammatory process in any organ (p = 0.005, higher frequency of mice with tissue parasitism in any organ (p = 0.027 and a higher susceptibility to benznidazole (p = 0.002 than TcIV. Survival analysis showing the time elapsed from the day of inoculation to the beginning of the patent period was significantly shorter for TcIV strains and the death episodes triggered following the infection with TcI occurred significantly later in relation to TcIV. The notable exceptions come from positivity in the hemocultures and PCR, for which the results were similar.T. cruzi stocks

  18. THE Eucalyptus sp. AGE PLANTATIONS INFLUENCING THE CARBON STOCKS

    Directory of Open Access Journals (Sweden)

    Charlote Wink

    2013-06-01

    Full Text Available http://dx.doi.org/10.5902/198050989279The tree growth and biomass accumulation, as well as the maintenance of forest residue at the soil surface can act in the removal of carbon from the atmosphere through the cycling process of plant material. The objective was to study the influence of Eucalyptus sp. Plantations with 20, 44 and 240 months of age on the variation of carbon in soil and biomass. The carbon in the soil depth was determined by CHNS auto-analyzer and carbon in the vegetation was determined by the biomass in each forest, considering a factor of 0.45 of the dry mass. We determined the density and particle size distribution of soil. For the comparison between plantations, there was analysis of variance and comparison of means of carbon in vegetation and soil, considering the 5% level of probability. The carbon content and stock in the soil were low, indicating that a natural feature of the category of Paleuldt, or the growth of eucalyptus forests, replacing the field native vegetation did not aggregate a significant increase in the carbon. Although, there was a significant increase carbon in aboveground biomass. It includes forest biomass and litter. So, despite the values ​​of carbon stocks are low, it identified a greater average total in the soil compared to the stock aboveground. Furthermore, this increase aboveground (tree and litter compartments can be considered significant between the eucalyptus plantations of different ages.

  19. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    Science.gov (United States)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p forests.

  20. Northern peatland carbon stocks and dynamics: a review

    Directory of Open Access Journals (Sweden)

    Z. C. Yu

    2012-10-01

    Full Text Available Peatlands contain a large belowground carbon (C stock in the biosphere, and their dynamics have important implications for the global carbon cycle. However, there are still large uncertainties in C stock estimates and poor understanding of C dynamics across timescales. Here I review different approaches and associated uncertainties of C stock estimates in the literature, and on the basis of the literature review my best estimate of C stocks and uncertainty is 500 ± 100 (approximate range gigatons of C (Gt C in northern peatlands. The greatest source of uncertainty for all the approaches is the lack or insufficient representation of data, including depth, bulk density and carbon accumulation data, especially from the world's large peatlands. Several ways to improve estimates of peat carbon stocks are also discussed in this paper, including the estimates of C stocks by regions and further utilizations of widely available basal peat ages.

    Changes in peatland carbon stocks over time, estimated using Sphagnum (peat moss spore data and down-core peat accumulation records, show different patterns during the Holocene, and I argue that spore-based approach underestimates the abundance of peatlands in their early histories. Considering long-term peat decomposition using peat accumulation data allows estimates of net carbon sequestration rates by peatlands, or net (ecosystem carbon balance (NECB, which indicates more than half of peat carbon (> 270 Gt C was sequestrated before 7000 yr ago during the Holocene. Contemporary carbon flux studies at 5 peatland sites show much larger NECB during the last decade (32 ± 7.8 (S.E. g C m−2 yr–1 than during the last 7000 yr (∼ 11 g C m−2 yr–1, as modeled from peat records across northern peatlands. This discrepancy highlights the urgent need for carbon accumulation data and process understanding, especially at decadal and centennial timescales

  1. Global patterns in mangrove soil carbon stocks and losses

    KAUST Repository

    Atwood, Trisha B.

    2017-06-26

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  2. The carbon debt from Amazon forest degradation: integrating airborne lidar, field measurements, and an ecosystem demography model.

    Science.gov (United States)

    Longo, M.; Keller, M. M.; dos-Santos, M. N.; Scaranello, M. A., Sr.; Pinagé, E. R.; Leitold, V.; Morton, D. C.

    2016-12-01

    Amazon deforestation has declined over the last decade, yet forest degradation from logging, fire, and fragmentation continue to impact forest carbon stocks and fluxes. The magnitude of this impact remains uncertain, and observation-based studies are often limited by short time intervals or small study areas. To better understand the long-term impact of forest degradation and recovery, we have been developing a framework that integrates field plot measurements and airborne lidar surveys into an individual- and process-based model (Ecosystem Demography model, ED). We modeled forest dynamics for three forest landscapes in the Amazon with diverse degradation histories: conventional and reduced-impact logging, logging and burning, and multiple burns. Based on the initialization with contemporary forest structure and composition, model results suggest that degraded forests rapidly recover (30 years) water and energy fluxes compared with old-growth, even at sites that were affected by multiple fires. However, degraded forests maintained different carbon stocks and fluxes even after 100 years without further disturbances, because of persistent differences in forest structure and composition. Recurrent disturbances may hinder the recovery of degraded forests. Simulations using a simple fire model entirely dependent on environmental controls indicate that the most degraded forests would take much longer to reach biomass typical of old-growth forests, because drier conditions near the ground make subsequent fires more intense and more recurrent. Fires in tropical forests are also closely related to nearby human activities; while results suggest an important feedback between fires and the microenvironment, additional work is needed to improve how the model represents the human impact on current and future fire regimes. Our study highlights that recovery of degraded forests may act as an important carbon sink, but efficient recovery depends on controlling future disturbances.

  3. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics

    Science.gov (United States)

    Jantz, Patrick; Goetz, Scott; Laporte, Nadine

    2014-02-01

    A key issue in global conservation is how biodiversity co-benefits can be incorporated into land use and climate change mitigation activities, particularly those being negotiated under the United Nations to reduce emissions from tropical deforestation and forest degradation. Protected areas have been the dominant strategy for tropical forest conservation and they have increased substantially in recent decades. Avoiding deforestation by preserving carbon stored in vegetation between protected areas provides an opportunity to mitigate the effects of land use and climate change on biodiversity by maintaining habitat connectivity across landscapes. Here we use a high-resolution data set of vegetation carbon stock to map corridors traversing areas of highest biomass between protected areas in the tropics. The derived corridors contain 15% of the total unprotected aboveground carbon in the tropical region. A large number of corridors have carbon densities that approach or exceed those of the protected areas they connect, suggesting these are suitable areas for achieving both habitat connectivity and climate change mitigation benefits. To further illustrate how economic and biological information can be used for corridor prioritization on a regional scale, we conducted a multicriteria analysis of corridors in the Legal Amazon, identifying corridors with high carbon, high species richness and endemism, and low economic opportunity costs. We also assessed the vulnerability of corridors to future deforestation threat.

  4. Effects of vegetation's degradation on carbon stock, morphological ...

    African Journals Online (AJOL)

    This study was conducted to assess the capacity of mangroves soils to stock carbon and how degradation can influence its various properties. Transect method was performed. So, two transects of 100 m length and 10 m wide were established according to the degradation level. Total of 18 Soil samples were taken to be ...

  5. Effects of vegetation's degradation on carbon stock, morphological ...

    African Journals Online (AJOL)

    ndema

    This study was conducted to assess the capacity of mangroves soils to stock carbon and how degradation can influence its various properties. Transect method was performed. So, two transects of. 100 m length and 10 m wide were established according to the degradation level. Total of 18 Soil samples were taken to be ...

  6. Biodiversity, carbon stocks and community monitoring in traditional agroforestry practices

    DEFF Research Database (Denmark)

    Hartoyo, Adisti Permatasari Putri; Siregar, Iskandar Z.; Supriyanto

    2016-01-01

    Traditional agroforestry practices in Berau, East Kalimantan, are suitable land use types to conserve that potentially support the implementation of REDD+. The objectives of this research are to assess biodiversity and carbon stock in various traditional agroforestry practices, also to determine...

  7. Organic carbon stocks in the soils of Brazil

    NARCIS (Netherlands)

    Batjes, N.H.

    2005-01-01

    Soil organic carbon stocks to 1 m for Brazil, calculated using an updated Soil and Terrain (SOTER) database and simulation of phenoforms, are 65.9-67.5 Pg C, of which 65% is in the Amazonian region of Brazil. Other researchers have obtained similar gross results, despite very different spatial

  8. A Canadian upland forest soil profile and carbon stocks database.

    Science.gov (United States)

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve

  9. Carbon stocks in tree biomass and soils of German forests

    Directory of Open Access Journals (Sweden)

    Wellbrock Nicole

    2017-06-01

    Full Text Available Close to one third of Germany is forested. Forests are able to store significant quantities of carbon (C in the biomass and in the soil. Coordinated by the Thünen Institute, the German National Forest Inventory (NFI and the National Forest Soil Inventory (NFSI have generated data to estimate the carbon storage capacity of forests. The second NFI started in 2002 and had been repeated in 2012. The reporting time for the NFSI was 1990 to 2006. Living forest biomass, deadwood, litter and soils up to a depth of 90 cm have stored 2500 t of carbon within the reporting time. Over all 224 t C ha-1 in aboveground and belowground biomass, deadwood and soil are stored in forests. Specifically, 46% stored in above-ground and below-ground biomass, 1% in dead wood and 53% in the organic layer together with soil up to 90 cm. Carbon stocks in mineral soils up to 30 cm mineral soil increase about 0.4 t C ha-1 yr-1 stocks between the inventories while the carbon pool in the organic layers declined slightly. In the living biomass carbon stocks increased about 1.0 t C ha-1 yr-1. In Germany, approximately 58 mill. tonnes of CO2 were sequestered in 2012 (NIR 2017.

  10. Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought

    Science.gov (United States)

    Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.

  11. Chemical and carbon isotope composition of Varzeas sediments and its interactions with some Amazon basin rivers

    International Nuclear Information System (INIS)

    Martinelli, L.A.

    1986-01-01

    Varzea sediment samples were collected on the banks of Amazon rivers and in the most important tributaires. The samples were taken in three different river stages. The major cations, pH, total nitrogen, total phosphorus, carbon and δ 13 C values were determined. The concentration of major basic cations - Ca,Mg,K e Na were greater in the main channel sediments than in the tributaires. Probably the differences in the substrats geology and erosion regimes of the basins account for this patterns, generally. The major basic cation, total phosphorus and carbon concentration were lower in the low Amazon Varzeas. Between the three differents sampling periods, pratically the elements concentration in Varzea sediment was constant. Finally, the datas showed that the most parts of Varzea carbon sediment had it's origin in the fine particulated organic matter transported by the Amazon river. (C.D.G.) [pt

  12. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Christopher [NASA Ames Research Center, Moffett Field, CA (United States); Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa [California State University Monterey Bay, Seaside, CA (United States); Castilla-Rubio, Juan Carlos, E-mail: chris.potter@nasa.gov [Planetary Skin Institute, Silicon Valley, CA (United States)

    2011-07-15

    Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO{sub 2} uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO{sub 2} to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains.

  13. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought

    International Nuclear Information System (INIS)

    Potter, Christopher; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubio, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO 2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO 2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains.

  14. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    John B. Bradford; Shawn Fraver; Amy M. Milo; Anthony W. D' Amato; Brian J. Palik

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing...

  15. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.

    Science.gov (United States)

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.

  16. Carbon Fluxes at the AmazonFACE Research Site

    Science.gov (United States)

    Norby, R.; De Araujo, A. C.; Cordeiro, A. L.; Fleischer, K.; Fuchslueger, L.; Garcia, S.; Hofhansl, F.; Garcia, M. N.; Grandis, A.; Oblitas, E.; Pereira, I.; Pieres, N. M.; Schaap, K.; Valverde-Barrantes, O.

    2017-12-01

    The free-air CO2 enrichment (FACE) experiment to be implemented in the Amazon rain forest requires strong pretreatment characterization so that eventual responses to elevated CO2 can be detected against a background of substantial species diversity and spatial heterogeneity. Two 30-m diameter plots have been laid out for initial characterization in a 30-m tall, old-growth, terra firme forest. Intensive measurements have been made of aboveground tree growth, leaf area, litter production, and fine-root production; these data sets together support initial estimates of plot-scale net primary productivity (NPP). Leaf-level measurements of photosynthesis throughout the canopy and over a daily time course in both the wet and dry season, coupled with meterological monitoring, support an initial estimate of gross primary productivity (GPP) and carbon-use efficiency (CUE = NPP/GPP). Monthly monitoring of CO2 efflux from the soil, partitioned into autotrophic and heterotrophic components, supports an estimate of net ecosystem production (NEP). Our estimate of NPP in the two plots (1.2 and 1.4 kg C m-2 yr-1) is 16-38% greater than previously reported for the site, primarily due to our more complete documentation of fine-root production, including root production deeper than 30 cm. The estimate of CUE of the ecosystem (0.52) is greater than most others in Amazonia; this discrepancy reflects large uncertainty in GPP, which derived from just two days of measurement, or to underestimates of the fine-root component of NPP in previous studies. Estimates of NEP (0 and 0.14 kg C m-2 yr-1) are generally consistent with a landscape-level estimate from flux tower data. Our C flux estimates, albeit very preliminary, provide initial benchmarks for a 12-model a priori evaluation of this forest. The model means of GPP, NPP, and NEP are mostly consistent with our field measurements. Predictions of C flux responses to elevated CO2 from the models become hypotheses to be tested in the FACE

  17. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2011-05-01

    Full Text Available Precise determination of changes in organic carbon (OC stocks is prerequisite to understand the role of soils in the global cycling of carbon and to verify changes in stocks due to management. A large dataset was collected to form base to repeated soil inventories at 12 CarboEurope sites under different climate and land-use, and with different soil types. Concentration of OC, bulk density (BD, and fine earth fraction were determined to 60 cm depth at 100 sampling points per site. We investigated (1 time needed to detect changes in soil OC, assuming future re-sampling of 100 cores; (2 the contribution of different sources of uncertainties to OC stocks; (3 the effect of OC stock calculation on mass rather than volume base for change detection; and (4 the potential use of pedotransfer functions (PTF for estimating BD in repeated inventories.

    The period of time needed for soil OC stocks to change strongly enough to be detectable depends on the spatial variability of soil properties, the depth increment considered, and the rate of change. Cropland sites, having small spatial variability, had lower minimum detectable differences (MDD with 100 sampling points (105 ± 28 gC m−2 for the upper 10 cm of the soil than grassland and forest sites (206 ± 64 and 246 ± 64 gC m−2 for 0–10 cm, respectively. Expected general trends in soil OC indicate that changes could be detectable after 2–15 yr with 100 samples if changes occurred in the upper 10 cm of stone-poor soils. Error propagation analyses showed that in undisturbed soils with low stone contents, OC concentrations contributed most to OC stock variability while BD and fine earth fraction were more important in upper soil layers of croplands and in stone rich soils. Though the calculation of OC stocks based on equivalent soil masses slightly decreases the chance to detect changes with time at most sites except for the croplands, it is still recommended to

  18. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility.

    Science.gov (United States)

    Greve, Michelle; Reyers, Belinda; Mette Lykke, Anne; Svenning, Jens-Christian

    2013-01-01

    Carbon offset projects through forestation are employed within the emissions trading framework to store carbon. Yet, information about the potential of landscapes to stock carbon, essential to the design of offset projects, is often lacking. Here, based on data on vegetation carbon, climate and soil, we quantify the potential for carbon storage in woody vegetation across tropical Africa. The ability of offset projects to produce co-benefits for ecosystems and people is then quantified. When co-benefits such as biodiversity conservation are considered, the top-ranked sites are sometimes different to sites selected purely for their carbon-stocking potential, although they still possess up to 92% of the latter carbon-stocking potential. This work provides the first continental-scale assessment of which areas may provide the greatest direct and indirect benefits from carbon storage reforestation projects at the smallest costs and risks, providing crucial information for prioritization of investments in carbon storage projects.

  19. Carbon stocks assessment in subtropical forest types of Kashmir Himalayas

    International Nuclear Information System (INIS)

    Shaheen, H.; Khan, R.W.A.; Hussain, K.; Ullah, T.S.; Mehmood, A.

    2016-01-01

    Estimation of carbon sequestration in forest ecosystem is necessary to mitigate impacts of climate change. Current research project was focused to assess the Carbon contents in standing trees and soil of different subtropical forest sites in Kashmir. Tree biomass was estimated by using allometric equations whereas Soil carbon was calculated by Walkey-Black titration method. Total carbon stock was computed as 186.27 t/ha with highest value of 326 t/ha recorded from Pinus roxburghii forest whereas lowest of 75.86 t/ha at mixed forest. Average biomass carbon was found to be 151.38 t/ha with a maximum value of 294.7 t/ha and minimum of 43.4 t/ha. Pinus roxburghii was the most significant species having biomass value of 191.8 t/ha, followed by Olea cuspidata (68.9 t/ha), Acacia modesta (12.71 t/ha), Dalbergia sissoo (12.01 t/ha), Broussonetia papyrifera (5.93 t/ha), Punica granatum (2.27 t/ha), Mallotus philippensis (2.2 t/ha), Albizia lebbeck (1.8t/ha), Ficus palmata (1.51 t/ha), Acacia arabica (1.4 t/ha), Melia azedarach, (1.14 t/ha) and Ficus carica (1.07 t/ha) respectively. Recorded value of tree density was 492/ha; average DBH was 87.27 cm; tree height was 13.3m; and regeneration value was 83 seedlings/ha. Soil carbon stocks were found to be 34.89 t/ha whereas agricultural soil carbon was calculated as 27.18 t/ha. Intense deforestation was represented by a stump density of 147.4/ha. The results of Principal Component Analysis (PCA) revealed the distinct species clusters on the basis of location, biomass and Carbon stock values. Pinus roxburghii and Olea cuspidata were found to be the major contributors of carbon stock having maximum vector lengths in the PCA Biplot. Forest in the area needs to be managed in a sustainable manner to increase its carbon sequestration potential. (author)

  20. Carbon stock loss from deforestation through 2013 in Brazilian Amazonia.

    Science.gov (United States)

    Nogueira, Euler Melo; Yanai, Aurora M; Fonseca, Frederico O R; Fearnside, Philip Martin

    2015-03-01

    The largest carbon stock in tropical vegetation is in Brazilian Amazonia. In this ~5 million km(2) area, over 750,000 km(2) of forest and ~240,000 km(2) of nonforest vegetation types had been cleared through 2013. We estimate current carbon stocks and cumulative gross carbon loss from clearing of premodern vegetation in Brazil's 'Legal Amazonia' and 'Amazonia biome' regions. Biomass of 'premodern' vegetation (prior to major increases in disturbance beginning in the 1970s) was estimated by matching vegetation classes mapped at a scale of 1 : 250,000 and 29 biomass means from 41 published studies for vegetation types classified as forest (2317 1-ha plots) and as either nonforest or contact zones (1830 plots and subplots of varied size). Total biomass (above and below-ground, dry weight) underwent a gross reduction of 18.3% in Legal Amazonia (13.1 Pg C) and 16.7% in the Amazonia biome (11.2 Pg C) through 2013, excluding carbon loss from the effects of fragmentation, selective logging, fires, mortality induced by recent droughts and clearing of forest regrowth. In spite of the loss of carbon from clearing, large amounts of carbon were stored in stands of remaining vegetation in 2013, equivalent to 149 Mg C ha(-1) when weighted by the total area covered by each vegetation type in Legal Amazonia. Native vegetation in Legal Amazonia in 2013 originally contained 58.6 Pg C, while that in the Amazonia biome contained 56 Pg C. Emissions per unit area from clearing could potentially be larger in the future because previously cleared areas were mainly covered by vegetation with lower mean biomass than the remaining vegetation. Estimates of original biomass are essential for estimating losses to forest degradation. This study offers estimates of cumulative biomass loss, as well as estimates of premodern carbon stocks that have not been represented in recent estimates of deforestation impacts. © 2014 John Wiley & Sons Ltd.

  1. Biomass and Carbon Stocks of Sofala Bay Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Almeida A. Sitoe

    2014-08-01

    Full Text Available Mangroves could be key ecosystems in strategies addressing the mitigation of climate changes through carbon storage. However, little is known regarding the carbon stocks of these ecosystems, particularly below-ground. This study was carried out in the mangrove forests of Sofala Bay, Central Mozambique, with the aim of quantifying carbon stocks of live and dead plant and soil components. The methods followed the procedures developed by the Center for International Forestry Research (CIFOR for mangrove forests. In this study, we developed a general allometric equation to estimate individual tree biomass and soil carbon content (up to 100 cm depth. We estimated the carbon in the whole mangrove ecosystem of Sofala Bay, including dead trees, wood debris, herbaceous, pneumatophores, litter and soil. The general allometric equation for live trees derived was [Above-ground tree dry weight (kg = 3.254 × exp(0.065 × DBH], root mean square error (RMSE = 4.244, and coefficient of determination (R2 = 0.89. The average total carbon storage of Sofala Bay mangrove was 218.5 Mg·ha−1, of which around 73% are stored in the soil. Mangrove conservation has the potential for REDD+ programs, especially in regions like Mozambique, which contains extensive mangrove areas with high deforestation and degradation rates.

  2. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  3. Size and frequency of natural forest disturbances and the Amazon forest carbon balance

    Science.gov (United States)

    F.D.B. Espirito-Santo; M. Gloor; M. Keller; Y. Malhi; S. Saatchi; B. Nelson; R.C. Oliveira Junior; C. Pereira; J. Lloyd; S. Frolking; M. Palace; Y.E. Shimabukuro; V. Duarte; A. Monteagudo Mendoza; G. Lopez-Gonzalez; T.R. Baker; T.R. Feldpausch; R.J.W. Brienen; G.P. Asner; D.S. Boyd; O.L. Phillips

    2014-01-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel...

  4. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    Science.gov (United States)

    Druffel, E. R. M.; Bauer, J. E.; Griffin, S.

    2005-03-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters, with slightly higher values at the river mouth. The low DIC δ13C signature of the river end-member (-11‰) demonstrates that about half of the DIC originated from the remineralization of terrestrially derived organic matter. A linear relationship between DIC and salinity indicates that DIC was mixed nearly conservatively in the transition zone from the river mouth to the open ocean, though there was a small amount (≤10%) of organic matter remineralization in the mesohaline region. The POC Δ14C values in the river mouth were markedly lower than those values from the western Amazon region (Hedges et al., 1986). We conclude that the dominant source of POC near the river mouth and in the inner Amazon plume during November 1991 was aged, resuspended material of significant terrestrial character derived from shelf sediments, while the outer plume contained mainly marine-derived POC.

  5. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories

    NARCIS (Netherlands)

    Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H.; Waal, de R.W.

    2008-01-01

    Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many

  7. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    Science.gov (United States)

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  8. The sustainability of carbon sinks in forests. Studying the sensitivity of forest carbon sinks in the Netherlands, Europe and the Amazon to climate and management

    International Nuclear Information System (INIS)

    Kruijt, B.; Kramer, K.; Van den Wyngaert, I.; Groen, R.; Elbers, J.A.; Jans, W.W.P.

    2003-01-01

    The aim of this study was to assess the sustainability of carbon sinks in managed or unmanaged forests of Europe and the Amazon. First, the functioning and seasonal variability of the carbon sink strength in forest ecosystems was analysed in relation to climate variability. For this, existing global data sets of ecosystem fluxes measured by eddy correlation were analysed. A simple, comprehensive empirical model was derived to represent these flux variabilities. Also, new soil respiration measurements were initiated in the Netherlands and Amazonia and their usefulness to understand the uptake- and emission components of carbon exchange was analysed. Then, two long-term forest dynamics models were parameterised (FORSPACE and CENTURY) for Dutch Pinus and Fagus forests, to study the development of forest carbon stocks over a century under different management and climate scenarios. Finally, using the empirical model as well as the long-term models, scenario predictions were made. It turns out that uptake rates are expected to decrease in a climate with higher temperatures, but that storage capacity for carbon can be expected to be slightly enhanced, especially if also the management intensity is carefully tuned down

  9. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks

    KAUST Repository

    Arias-Ortiz, Ariane; Serrano, Oscar; Masqué , Pere; Lavery, P. S.; Mueller, U.; Kendrick, G. A.; Rozaimi, M.; Esteban, A.; Fourqurean, J. W.; Marbà , N.; Mateo, M. A.; Murray, K.; Rule, M. J.; Duarte, Carlos M.

    2018-01-01

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass

  10. Predicting future UK housing stock and carbon emissions

    International Nuclear Information System (INIS)

    Natarajan, Sukumar; Levermore, Geoffrey J.

    2007-01-01

    This paper presents a novel method for exploring future transformations in the UK housing stock. The method is shown to be more robust and faster than existing methods through various tests. A Java-based implementation of the method in a new model of the UK housing stock, DECarb, is examined using a back-cast scenario from 1970 to 1996. The results show an average difference of -5.4% between predicted and actual energy demand. Comparison with predicted carbon emissions from the BRE's BREHOMES model shows a difference of around -0.9% for the same period. These results suggest that DECarb is likely to be an effective tool in examining future scenarios since the same objects and processes used in back-casting in the model are also used in forecasting. The model has an open framework and could therefore significantly benefit ongoing domestic and non-domestic climate futures research. (author)

  11. Separating the Effects of Tropical Atlantic and Pacific SST-driven Climate Variability on Amazon Carbon Exchange

    Science.gov (United States)

    Liptak, J.; Keppel-Aleks, G.

    2016-12-01

    Amazon forests store an estimated 25% percent of global terrestrial carbon per year1, 2, but the responses of Amazon carbon uptake to climate change is highly uncertain. One source of this uncertainty is tropical sea surface temperature variability driven by teleconnections. El Nino-Southern Oscillation (ENSO) is a key driver of year-to-year Amazon carbon exchange, with associated temperature and precipitation changes favoring net carbon storage in La Nina years, and net carbon release during El Nino years3. To determine how Amazon climate and terrestrial carbon fluxes react to ENSO alone and in concert with other SST-driven teleconnections such as the Atlantic Multidecadal Oscillation (AMO), we force the atmosphere (CAM5) and land (CLM4) components of the CESM(BGC) with prescribed monthly SSTs over the period 1950—2014 in a Historical control simulation. We then run an experiment (PAC) with time-varying SSTs applied only to the tropical equatorial Pacific Ocean, and repeating SST seasonal cycle climatologies elsewhere. Limiting SST variability to the equatorial Pacific indicates that other processes enhance ENSO-driven Amazon climate anomalies. Compared to the Historical control simulation, warming, drying and terrestrial carbon loss over the Amazon during El Nino periods are lower in the PAC simulation, especially prior to 1990 during the cool phase of the AMO. Cooling, moistening, and net carbon uptake during La Nina periods are also reduced in the PAC simulation, but differences are greater after 1990 during the warm phase of the AMO. By quantifying the relationships among climate drivers and carbon fluxes in the Historical and PAC simulations, we both assess the sensitivity of these relationships to the magnitude of ENSO forcing and quantify how other teleconnections affect ENSO-driven Amazon climate feedbacks. We expect that these results will help us improve hypotheses for how Atlantic and Pacific climate trends will affect future Amazon carbon carbon

  12. Amazon River carbon dioxide outgassing fuelled by wetlands

    NARCIS (Netherlands)

    Abril, G.; Martinez, J.M.; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M.F.; Vidal, L.; Meziane, T.; Kim, J.-H.; Bernardes, M.C.; Savoye, N.; Deborde, J.; Souza, E.L.; Alberic, P.; de Souza, M.F.L.; Roland, F.

    2014-01-01

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial

  13. Prescribed fire effects on field-derived and simulated forest carbon stocks over time

    Science.gov (United States)

    Nicole M. Vaillant; Alicia L. Reiner; Erin K. Noonan-Wright

    2013-01-01

    To better understand the impact of prescribed fire on carbon stocks, we quantified aboveground and belowground carbon stocks within five pools (live trees and coarse roots, dead trees and coarse roots, live understory vegetation, down woody debris, and litter and duff) and potential carbon emissions from a simulated wildfire before and up to 8 years after prescribed...

  14. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.

    Science.gov (United States)

    Kauffman, J Boone; Heider, Chris; Norfolk, Jennifer; Payton, Frederick

    2014-04-01

    Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (carbon-rich soils as deep as 2 m. Carbon stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions from their conversion, and the other important

  15. Accounting for biomass carbon stock change due to wildfire in temperate forest landscapes in Australia.

    Science.gov (United States)

    Keith, Heather; Lindenmayer, David B; Mackey, Brendan G; Blair, David; Carter, Lauren; McBurney, Lachlan; Okada, Sachiko; Konishi-Nagano, Tomoko

    2014-01-01

    Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha(-1), which represented 6-7% and 9-14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha(-1) depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities.

  16. Accounting for Biomass Carbon Stock Change Due to Wildfire in Temperate Forest Landscapes in Australia

    Science.gov (United States)

    Keith, Heather; Lindenmayer, David B.; Mackey, Brendan G.; Blair, David; Carter, Lauren; McBurney, Lachlan; Okada, Sachiko; Konishi-Nagano, Tomoko

    2014-01-01

    Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha−1, which represented 6–7% and 9–14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha−1 depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities

  17. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    Science.gov (United States)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  18. Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States

    Science.gov (United States)

    Christopher W. Woodall; Anthony W. D' Amato; John B. Bradford; Andrew O. Finley

    2011-01-01

    There is expanding interest in management strategies that maximize forest carbon (C) storage to mitigate increased atmospheric carbon dioxide. The tremendous tree species diversity and range of stand stocking found across the eastern United States presents a challenge for determining optimal combinations for the maximization of standing tree C storage. Using a...

  19. Rapid tree carbon stock recovery in managed Amazonian forests.

    Science.gov (United States)

    Rutishauser, Ervan; Hérault, Bruno; Baraloto, Christopher; Blanc, Lilian; Descroix, Laurent; Sotta, Eleneide Doff; Ferreira, Joice; Kanashiro, Milton; Mazzei, Lucas; d'Oliveira, Marcus V N; de Oliveira, Luis C; Peña-Claros, Marielos; Putz, Francis E; Ruschel, Ademir R; Rodney, Ken; Roopsind, Anand; Shenkin, Alexander; da Silva, Katia E; de Souza, Cintia R; Toledo, Marisol; Vidal, Edson; West, Thales A P; Wortel, Verginia; Sist, Plinio

    2015-09-21

    While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

    NARCIS (Netherlands)

    Mitchard, Edward T. A.; Feldpausch, Ted R.; Brienen, Roel J. W.; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R.; Lewis, Simon L.; Lloyd, Jon; Quesada, Carlos A.; Gloor, Manuel; ter Steege, Hans|info:eu-repo/dai/nl/075217120; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragao, Luiz E. O. C.; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I.; Ceron, Carlos E.; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A.; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R. C.; Di Fiore, Anthony; Domingues, Tomas F.; Erwin, Terry L.; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N.; Levis, Carolina; Killeen, Tim J.; Laurance, William F.; Magnusson, William E.; Marimon, Beatriz S.; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T.; Neill, David; Nunez Vargas, Mario P.; Palacios, Walter A.; Parada, Alexander; Pardo Molina, Guido; Pena-Claros, Marielos; Pitman, Nigel; Peres, Carlos A.; Prieto, Adriana; Poorter, Lourens; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H.; Rudas, Agustin; Salomao, Rafael P.; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F.; Steininger, Marc K.; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R.|info:eu-repo/dai/nl/205284868; van der Heijden, Geertje M. F.; Vieira, Ima C. G.; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A.; Wang, Ophelia; Zartman, Charles E.; Malhi, Yadvinder; Phillips, Oliver L.; Cruz, A.P.; Cuenca, W.P.; Espejo, J.E.; Ferreira, L.; Germaine, A.; Penuela, M.C.; Silva, N.; Valenzuela Gamarra, L.

    Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass

  1. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    OpenAIRE

    Chen, Y; Randerson, JT; Morton, DC

    2015-01-01

    ©2015. American Geophysical Union. All Rights Reserved. We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the south...

  2. Global assessment of soil organic carbon stocks and spatial distribution of histosols: the Machine Learning approach

    Science.gov (United States)

    Hengl, Tomislav

    2016-04-01

    tools. Results of model fitting using the R packages nnet, randomForest and the h2o software (machine learning functions) show that significant models can be fitted for soil classes, bulk density (R-square 0.76), soil organic carbon (R-square 0.62) and coarse fragments (R-square 0.59). Consequently, we were able to estimate soil organic carbon stock for majority of the land mask (excluding permanent ice) and detect patches of landscape containing mainly organic soils (peat and similar). Our results confirm that hotspots of soil organic carbon in Tropics are peatlands in Indonesia, north of Peru, west Amazon and Congo river basin. Majority of world soil organic carbon stock is likely in the Northern latitudes (tundra and taiga of the north). Distribution of histosols seems to be mainly controlled by climatic conditions (especially temperature regime and water vapor) and hydrologic position in the landscape. Predicted distributions of organic soils (probability of occurrence) and total soil organic carbon stock at resolutions of 1 km and 250 m are available via the SoilGrids.org project homepage.

  3. Contribution of dead wood to biomass and carbon stocks in the Caribbean: St. John, U.S. Virgin Islands

    Science.gov (United States)

    Sonja N. Oswalt; Thomas J. Brandeis

    2008-01-01

    Dead wood is a substantial carbon stock in terrestrial forest ecosystems and hence a critical component of global carbon cycles. Given the limited amounts of dead wood biomass and carbon stock information for Caribbean forests, our objectives were to: (1) describe the relative contribution of down woody materials (DWM) to carbon stocks on the island of St. John; (2)...

  4. Assessing ecosystem carbon stocks of Indonesia's threatened wetland forests

    Science.gov (United States)

    Warren, M.; Kauffman, B.; Murdiyarso, D.; Kurnianto, S.

    2011-12-01

    Over millennia, atmospheric carbon dioxide has been sequestered and stored in Indonesia's tropical wetland forests. Waterlogged conditions impede decomposition, allowing the formation of deep organic soils. These globally significant C pools are highly vulnerable to deforestation, degradation and climate change which can potentially switch their function as C sinks to long term sources of greenhouse gas (GHG) emissions. Also at risk are critical ecosystem services which sustain millions of people and the conservation of unique biological communities. The multiple benefits derived from wetland forest conservation makes them attractive for international C offset programs such as the proposed Reduced Emissions from Deforestation and Degradation (REDD+) mechanism. Yet, ecosystem C pools and fluxes in wetland forests remain poorly quantified. Significant knowledge gaps exist regarding how land use changes impact C dynamics in tropical wetlands, and very few studies have simultaneously assessed above- and belowground ecosystem C pools in Indonesia's freshwater peat swamps and mangroves. In addition, most of what is known about Indonesia's tropical wetland forests is derived from few geographic locations where long-standing research has focused, despite their broad spatial distribution. Here we present results from an extensive survey of ecosystem C stocks across several Indonesian wetland forests. Ecosystem C stocks were measured in freshwater peat swamp forests in West Papua, Central Kalimantan, West Kalimantan, and Sumatra. Carbon storage was also measured for mangrove forests in W. Papua, W. Kalimantan, and Sumatra. One overarching goal of this research is to support the development of REDD+ for tropical wetlands by informing technical issues related to carbon measuring, monitoring, and verification (MRV) and providing baseline data about the variation of ecosystem C storage across and within several Indonesian wetland forests.

  5. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations

    Directory of Open Access Journals (Sweden)

    Silvania Avelar

    2017-05-01

    Full Text Available Abstract Background Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm—particularly over continental margins—could be considered as part of national GHG inventories. Conclusions This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The

  6. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations.

    Science.gov (United States)

    Avelar, Silvania; van der Voort, Tessa S; Eglinton, Timothy I

    2017-12-01

    Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG)-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm-particularly over continental margins-could be considered as part of national GHG inventories. This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The latter carries potential implications for the management of

  7. The importance of forest structure for carbon fluxes of the Amazon rainforest

    Science.gov (United States)

    Rödig, Edna; Cuntz, Matthias; Rammig, Anja; Fischer, Rico; Taubert, Franziska; Huth, Andreas

    2018-05-01

    Precise descriptions of forest productivity, biomass, and structure are essential for understanding ecosystem responses to climatic and anthropogenic changes. However, relations between these components are complex, in particular for tropical forests. We developed an approach to simulate carbon dynamics in the Amazon rainforest including around 410 billion individual trees within 7.8 million km2. We integrated canopy height observations from space-borne LIDAR in order to quantify spatial variations in forest state and structure reflecting small-scale to large-scale natural and anthropogenic disturbances. Under current conditions, we identified the Amazon rainforest as a carbon sink, gaining 0.56 GtC per year. This carbon sink is driven by an estimated mean gross primary productivity (GPP) of 25.1 tC ha‑1 a‑1, and a mean woody aboveground net primary productivity (wANPP) of 4.2 tC ha‑1 a‑1. We found that successional states play an important role for the relations between productivity and biomass. Forests in early to intermediate successional states are the most productive, and woody above-ground carbon use efficiencies are non-linear. Simulated values can be compared to observed carbon fluxes at various spatial resolutions (>40 m). Notably, we found that our GPP corresponds to the values derived from MODIS. For NPP, spatial differences can be observed due to the consideration of forest successional states in our approach. We conclude that forest structure has a substantial impact on productivity and biomass. It is an essential factor that should be taken into account when estimating current carbon budgets or analyzing climate change scenarios for the Amazon rainforest.

  8. Agricultural management explains historic changes in regional soil carbon stocks

    Science.gov (United States)

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark

    2010-01-01

    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194

  9. Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments

    Science.gov (United States)

    Sun, Shuwen; Schefuß, Enno; Mulitza, Stefan; Chiessi, Cristiano M.; Sawakuchi, André O.; Zabel, Matthias; Baker, Paul A.; Hefter, Jens; Mollenhauer, Gesine

    2017-05-01

    The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al / Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S / V) and cinnamyl to vanillyl (C / V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon

  10. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks

    Science.gov (United States)

    Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.

  11. Global socioeconomic carbon stocks in long-lived products 1900–2008

    International Nuclear Information System (INIS)

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-01-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900–2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr −1 in 1900 to a maximum of 247 MtC yr −1 in 2007, corresponding to 2.2%–3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks. (letter)

  12. Global socioeconomic carbon stocks in long-lived products 1900-2008

    Science.gov (United States)

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-09-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900-2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr-1 in 1900 to a maximum of 247 MtC yr-1 in 2007, corresponding to 2.2%-3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks.

  13. Impact of mooring activities on carbon stocks in seagrass meadows

    KAUST Repository

    Serrano, O.; Ruhon, R.; Lavery, P. S.; Kendrick, G. A.; Hickey, S.; Masqué , P.; Arias-Ortiz, A.; Steven, A.; Duarte, Carlos M.

    2016-01-01

    Boating activities are one of the causes that threaten seagrass meadows and the ecosystem services they provide. Mechanical destruction of seagrass habitats may also trigger the erosion of sedimentary organic carbon (Corg) stocks, which may contribute to increasing atmospheric CO2. This study presents the first estimates of loss of Corg stocks in seagrass meadows due to mooring activities in Rottnest Island, Western Australia. Sediment cores were sampled from seagrass meadows and from bare but previously vegetated sediments underneath moorings. The Corg stores have been compromised by the mooring deployment from 1930s onwards, which involved both the erosion of existing sedimentary Corg stores and the lack of further accumulation of Corg. On average, undisturbed meadows had accumulated ~6.4 Kg Corg m−2 in the upper 50 cm-thick deposits at a rate of 34 g Corg m−2 yr−1. The comparison of Corg stores between meadows and mooring scars allows us to estimate a loss of 4.8 kg Corg m−2 in the 50 cm-thick deposits accumulated over ca. 200 yr as a result of mooring deployments. These results provide key data for the implementation of Corg storage credit offset policies to avoid the conversion of seagrass ecosystems and contribute to their preservation.

  14. Impact of mooring activities on carbon stocks in seagrass meadows

    KAUST Repository

    Serrano, O.

    2016-03-16

    Boating activities are one of the causes that threaten seagrass meadows and the ecosystem services they provide. Mechanical destruction of seagrass habitats may also trigger the erosion of sedimentary organic carbon (Corg) stocks, which may contribute to increasing atmospheric CO2. This study presents the first estimates of loss of Corg stocks in seagrass meadows due to mooring activities in Rottnest Island, Western Australia. Sediment cores were sampled from seagrass meadows and from bare but previously vegetated sediments underneath moorings. The Corg stores have been compromised by the mooring deployment from 1930s onwards, which involved both the erosion of existing sedimentary Corg stores and the lack of further accumulation of Corg. On average, undisturbed meadows had accumulated ~6.4 Kg Corg m−2 in the upper 50 cm-thick deposits at a rate of 34 g Corg m−2 yr−1. The comparison of Corg stores between meadows and mooring scars allows us to estimate a loss of 4.8 kg Corg m−2 in the 50 cm-thick deposits accumulated over ca. 200 yr as a result of mooring deployments. These results provide key data for the implementation of Corg storage credit offset policies to avoid the conversion of seagrass ecosystems and contribute to their preservation.

  15. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    International Nuclear Information System (INIS)

    Numata, Izaya; Cochrane, Mark A; Souza, Carlos M Jr; Sales, Marcio H

    2011-01-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  16. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    Science.gov (United States)

    Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.

    2011-10-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  17. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    Bradford, J.B.; Fraver, S.; Milo, A.M.; D'Amato, A.W.; Palik, B.; Shinneman, D.J.

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing blowdown and wildfire, both individually and in combination with and without post-disturbance salvage operations, in a sub-boreal jack pine ecosystem. Individually, blowdown or fire caused similar decreases in live carbon and total ecosystem carbon. However, whereas blowdown increased carbon in down woody material and forest floor, fire increased carbon in standing snags, a difference that may have consequences for long-term carbon cycling patterns. Fire after the blowdown caused substantial additional reduction in ecosystem carbon stocks, suggesting that potential increases in multiple disturbance events may represent a challenge for sustaining ecosystem carbon stocks. Salvage logging, as examined here, decreased carbon stored in snags and down woody material but had no significant effect on total ecosystem carbon stocks.

  18. Soil carbon stock change following afforestation in Northern Europe

    DEFF Research Database (Denmark)

    Bárcena, Teresa G; Kiær, Lars Pødenphant; Vesterdal, Lars

    2014-01-01

    of forest age, former land-use, forest type, and soil textural class. Three major improvements were incorporated in the meta-analysis: analysis of major interaction groups, evaluation of the influence of nonindependence between samples according to study design, and mass correction. Former land use......Northern Europe supports large soil organic carbon (SOC) pools and has been subjected to high frequency of land-use changes during the past decades. However, this region has not been well represented in previous large-scale syntheses of land-use change effects on SOC, especially regarding effects...... of afforestation. Therefore, we conducted a meta-analysis of SOC stock change following afforestation in Northern Europe. Response ratios were calculated for forest floors and mineral soils (0–10 cm and 0–20/30 cm layers) based on paired control (former land use) and afforested plots. We analyzed the influence...

  19. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land.

    Science.gov (United States)

    West, Paul C; Gibbs, Holly K; Monfreda, Chad; Wagner, John; Barford, Carol C; Carpenter, Stephen R; Foley, Jonathan A

    2010-11-16

    Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced carbon stocks in natural vegetation and soils. Here, we present a spatially explicit global analysis of tradeoffs between carbon stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much carbon (∼120 tons·ha(-1) vs. ∼63 tons·ha(-1)) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha(-1)·y(-1) vs. 3.84 tons·ha(-1)·y(-1)). Therefore, newly cleared land in the tropics releases nearly 3 tons of carbon for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between carbon stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions.

  20. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  1. National inventories of down and dead woody material forest carbon stocks in the United States: Challenges and opportunities

    Science.gov (United States)

    C.W. Woodall; L.S. Heath; J.E. Smith

    2008-01-01

    Concerns over the effect of greenhouse gases and consequent international agreements and regional/national programs have spurred the need for comprehensive assessments of forest ecosystem carbon stocks. Down and dead woody (DDW) materials are a substantial component of forest carbon stocks; however, few surveys of DDW carbon stocks have been conducted at national-...

  2. Low vertical transfer rates of carbon inferred from radiocarbon analysis in an Amazon Podzol

    Directory of Open Access Journals (Sweden)

    C. A. Sierra

    2013-06-01

    Full Text Available Hydromorphic Podzol soils in the Amazon Basin generally support low-stature forests with some of the lowest amounts of aboveground net primary production (NPP in the region. However, they can also exhibit large values of belowground NPP that can contribute significantly to the total annual inputs of organic matter into the soil. These hydromorphic Podzol soils also exhibit a horizon rich in organic matter at around 1–2 m depth, presumably as a result of eluviation of dissolved organic matter and sesquioxides of Fe and Al. Therefore, it is likely that these ecosystems store large quantities of carbon by (1 large amounts of C inputs to soils dominated by their high levels of fine-root production, (2 stabilization of organic matter in an illuviation horizon due to significant vertical transfers of C. To assess these ideas we studied soil carbon dynamics using radiocarbon in two adjacent Amazon forests growing on contrasting soils: a hydromorphic Podzol and a well-drained Alisol supporting a high-stature terra firme forest. Our measurements showed similar concentrations of C and radiocarbon in the litter layer and the first 5 cm of the mineral soil for both sites. This result is consistent with the idea that the hydromorphic Podzol soil has similar soil C storage and cycling rates compared to the well-drained Alisol that supports a more opulent vegetation. However, we found important differences in carbon dynamics and transfers along the vertical profile. At both soils, we found similar radiocarbon concentrations in the subsoil, but the carbon released after incubating soil samples presented radiocarbon concentrations of recent origin in the Alisol, but not in the Podzol. There were no indications of incorporation of C fixed after 1950 in the illuvial horizon of the Podzol. With the aid of a simulation model, we predicted that only a minor fraction (1.7% of the labile carbon decomposed in the topsoil is transferred to the subsoil of the Podzol

  3. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard ...

  4. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks.

    Science.gov (United States)

    John B. Bradford; Nicholas R. Jensen; Grant M. Domke; Anthony W. D' Amato

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior...

  5. Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration

    Science.gov (United States)

    D.C. Donato; J.B. Kauffman; R.A. Mackenzie; A. Ainsworth; A.Z. Pfleeger

    2012-01-01

    Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced...

  6. Scenarios in tropical forest degradation: carbon stock trajectories for REDD+

    Directory of Open Access Journals (Sweden)

    Rafael B. de Andrade

    2017-03-01

    Full Text Available Abstract Background Human-caused disturbance to tropical rainforests—such as logging and fire—causes substantial losses of carbon stocks. This is a critical issue to be addressed in the context of policy discussions to implement REDD+. This work reviews current scientific knowledge about the temporal dynamics of degradation-induced carbon emissions to describe common patterns of emissions from logging and fire across tropical forest regions. Using best available information, we: (i develop short-term emissions factors (per area for logging and fire degradation scenarios in tropical forests; and (ii describe the temporal pattern of degradation emissions and recovery trajectory post logging and fire disturbance. Results Average emissions from aboveground biomass were 19.9 MgC/ha for logging and 46.0 MgC/ha for fire disturbance, with an average period of study of 3.22 and 2.15 years post-disturbance, respectively. Longer-term studies of post-logging forest recovery suggest that biomass accumulates to pre-disturbance levels within a few decades. Very few studies exist on longer-term (>10 years effects of fire disturbance in tropical rainforests, and recovery patterns over time are unknown. Conclusions This review will aid in understanding whether degradation emissions are a substantial component of country-level emissions portfolios, or whether these emissions would be offset by forest recovery and regeneration.

  7. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in northwest China

    Directory of Open Access Journals (Sweden)

    Jun-Wei Yue

    2018-05-01

    Full Text Available Background The spruce forests are dominant communities in northwest China, and play a key role in national carbon budgets. However, the patterns of carbon stock distribution and accumulation potential across stand ages are poorly documented. Methods We investigated the carbon stocks in biomass and soil in the natural spruce forests in the region by surveys on 39 plots. Biomass of tree components were estimated using allometric equations previously established based on tree height and diameter at breast height, while biomass in understory (shrub and herb and forest floor were determined by total harvesting method. Fine root biomass was estimated by soil coring technique. Carbon stocks in various biomass components and soil (0–100 cm were estimated by analyzing the carbon content of each component. Results The results showed that carbon stock in these forest ecosystems can be as high as 510.1 t ha−1, with an average of 449.4 t ha−1. Carbon stock ranged from 28.1 to 93.9 t ha−1 and from 0.6 to 8.7 t ha−1 with stand ages in trees and deadwoods, respectively. The proportion of shrubs, herbs, fine roots, litter and deadwoods ranged from 0.1% to 1% of the total ecosystem carbon, and was age-independent. Fine roots and deadwood which contribute to about 2% of the biomass carbon should be attached considerable weight in the investigation of natural forests. Soil carbon stock did not show a changing trend with stand age, ranging from 254.2 to 420.0 t ha−1 with an average of 358.7 t ha−1. The average value of carbon sequestration potential for these forests was estimated as 29.4 t ha−1, with the lower aged ones being the dominant contributor. The maximum carbon sequestration rate was 2.47 t ha−1 year−1 appearing in the growth stage of 37–56 years. Conclusion The carbon stock in biomass was the major contributor to the increment of carbon stock in ecosystems. Stand age is not a good predictor of soil carbon stocks and accurate

  8. Long-term Carbon Loss and Recovery Following Selective Logging in Amazon Forests

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Maoyi; Asner, Gregory P.

    2010-09-30

    Amazon deforestation contributes significantly to global carbon (C) emissions. In comparison, the contribution from selective logging to atmospheric CO2 emissions, and its impact on regional C dynamics, is highly uncertain. Using a new geographically-based modeling approach in combination with high resolution remote sensing data from 1999-2002, we estimate that C emissions were 0.04 – 0.05 Pg C yr-1 due to selective logging from a ~2,664,960 km2 region of the Brazilian Amazon. Selective logging was responsible for 15-19% higher carbon emissions than reported from deforestation (clear-cutting) alone. Our simulations indicated that forest carbon lost via selective logging lasts two to three decades following harvest, and that the original live biomass takes up to a century to recover, if the forests are not subsequently cleared. The two- to three-decade loss of carbon results from the biomass damaged by logging activities, including leaves, wood, and roots, estimated to be 89.1 Tg C yr-1 from 1999-2002 over the study region, leaving 70.0 Tg C yr-1 and 7.9 Tg C yr-1 to accumulate as coarse woody debris and soil C, respectively. While avoided deforestation is central to crediting rainforest nations for reduced carbon emissions, the extent and intensity of selective logging are also critical to determining carbon emissions in the context of Reduced Emissions from Deforestation and Forest Degradation (REDD). We show that a combination of automated high-resolution satellite monitoring and detailed forest C modeling can yield spatially explicit estimates of harvest related C losses and subsequent recovery in support of REDD and other international carbon market mechanisms.

  9. Above Ground Carbon Stock Estimates of Mangrove Forest Using Worldview-2 Imagery in Teluk Benoa, Bali

    Science.gov (United States)

    Candra, E. D.; Hartono; Wicaksono, P.

    2016-11-01

    Mangrove forests have a role as an absorbent and a carbon sink to a reduction CO2 in the atmosphere. Based on the previous studies found that mangrove forests have the ability to sequestering carbon through photosynthesis and carbon burial of sediment effectively. The value and distribution of carbon stock are important to understand through remote sensing technology. In this study, will estimate the carbon stock using WorldView-2 imagery with and without distinction mangrove species. Worldview-2 is a high resolution image with 2 meters spatial resolution and eight spectral bands. Worldview-2 potential to estimate carbon stock in detail. Vegetation indices such as DVI (Difference Vegetation Index), EVI (Enhanced Vegetation Index), and MRE-SR (Modified Red Edge-Simple Ratio) and field data were modeled to determine the best vegetation indices to estimate carbon stocks. Carbon stock estimated by allometric equation approach specific to each species of mangrove. Worldview-2 imagery to map mangrove species with an accuracy of 80.95%. Total carbon stock estimation results in the study area of 35.349,87 tons of dominant species Rhizophora apiculata, Rhizophora mucronata and Sonneratia alba.

  10. Forest biomass carbon stocks and variation in Tibet's carbon-dense forests from 2001 to 2050.

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-10-05

    Tibet's forests, in contrast to China's other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet's forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr -1 between 2001 and 2010 and a decrease of 1.9 Tg C yr -1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet's mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity.

  11. Inverted edge effects on carbon stocks in human-dominated landscapes

    Science.gov (United States)

    Romitelli, I.; Keller, M.; Vieira, S. A.; Metzger, J. P.; Reverberi Tambosi, L.

    2017-12-01

    Although the importance of tropical forests to regulate greenhouse gases is well documented, little is known about what factors affect the ability of these forests to store carbon in human-dominated landscapes. Among those factors, the landscape structure, particularly the amount of forest cover, the type of matrix and edge effects, can have important roles. We tested how carbon stock is influenced by a combination of factors of landscape composition (pasture and forest cover), landscape configuration (edge effect) and relief factors (slope, elevation and aspect). To test those relationships, we performed a robust carbon stock estimation with inventory and LiDAR data in human-dominated landscapes from the Brazilian Atlantic forest region. The study area showed carbon stock mean 45.49 ± 9.34 Mg ha-1. The interaction between forest cover, edge effect and slope was the best combination explanatory of carbon stock. We observed an inverted edge effect pattern where carbon stock is higher close to the edges of the studied secondary forests. This inverted edge effect observed contradicts the usual pattern reported in the literature for mature forests. We suppose this pattern is related with a positive effect that edge conditions can have stimulating forest regeneration, but the underlying processes to explain the observed pattern should still be tested. Those results suggest that Carbon stocks in human-dominated and fragmented landscapes can be highly affected by the landscape structure, and particularly that edges conditions can favor carbon sequestration in regenerating tropical forests.

  12. Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape.

    Science.gov (United States)

    Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin

    2013-10-01

    Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010-2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710-6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.

  13. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture

    NARCIS (Netherlands)

    Batlle-Bayer, L.; Batjes, N.H.; Bindraban, P.S.

    2010-01-01

    This paper reviews current knowledge on changes in carbon stocks upon land use conversion in the Brazilian Cerrado. First, we briefly characterize the savanna ecosystem and summarize the main published data on C stocks under natural conditions. The effects of increased land use pressure in the

  14. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility

    DEFF Research Database (Denmark)

    Greve, Michelle; Reyers, Belinda; Lykke, Anne Mette

    2013-01-01

    Carbon (C) offset projects through forestation are employed within the emissions trading framework to store C. Yet, information about the potential of landscapes to stock C, essential to the design of offset projects, is often lacking. Based on data on vegetation C, climate and soil we quantified...... the potential for C storage in woody vegetation across tropical Africa. The ability for offset projects to produce co-benefits for ecosystems and local communities was also investigated. When co-benefits such as biodiversity conservation were considered, the top-ranked sites were often different to sites...... selected purely for their C stocking potential, but they still possessed 68% of the latter’s C stocking potential. This work provides the first continental-scale assessment of which areas may provide the greatest direct and indirect benefits from C storage reforestation projects at the smallest costs...

  15. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi

    2017-08-13

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications have dominated the SOC stock mapping at regional scale so far. However, the community has hardly ever attempted to implement Quantile Regression (QR) to spatially predict the SOC distribution. In this contribution, we test QR to estimate SOC stock (0-30 $cm$ depth) in the agricultural areas of a highly variable semi-arid region (Sicily, Italy, around 25,000 $km2$) by using topographic and remotely sensed predictors. We also compare the results with those from available SOC stock measurement. The QR models produced robust performances and allowed to recognize dominant effects among the predictors with respect to the considered quantile. This information, currently lacking, suggests that QR can discern predictor influences on SOC stock at specific sub-domains of each predictors. In this work, the predictive map generated at the median shows lower errors than those of the Joint Research Centre and International Soil Reference, and Information Centre benchmarks. The results suggest the use of QR as a comprehensive and effective method to map SOC using legacy data in agro-ecosystems. The R code scripted in this study for QR is included.

  16. Assessing soil carbon stocks under pastures through orbital remote sensing

    Directory of Open Access Journals (Sweden)

    Gabor Gyula Julius Szakács

    2011-10-01

    Full Text Available The growing demand of world food and energy supply increases the threat of global warming due to higher greenhouse gas emissions by agricultural activity. Therefore, it is widely admitted that agriculture must establish a new paradigm in terms of environmental sustainability that incorporate techniques for mitigation of greenhouse gas emissions. This article addresses to the scientific demand to estimate in a fast and inexpensive manner current and potential soil organic carbon (SOC stocks in degraded pastures, using remote sensing techniques. Four pastures on sandy soils under Brazilian Cerrado vegetation in São Paulo state were chosen due to their SOC sequestration potential, which was characterized for the soil depth 0-50 cm. Subsequently, a linear regression analysis was performed between SOC and Leaf Area Index (LAI measured in the field (LAIfield and derived by satellite (LAIsatellite as well as SOC and pasture reflectance in six spectra from 450 nm - 2350 nm, using the Enhanced Thematic Mapper (ETM+ sensor of satellite Landsat 7. A high correlation between SOC and LAIfield (R² = 0.9804 and LAIsatellite (R² = 0.9812 was verified. The suitability of satellite derived LAI for SOC determination leads to the assumption, that orbital remote sensing is a very promising SOC estimation technique from regional to global scale.

  17. Biomass models to estimate carbon stocks for hardwood tree species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Montero, G.; Rio, M. del

    2012-11-01

    To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data. (Author) 45 refs.

  18. Carbon stock and plants biodiversity of pekarangan in Cisadane watershed West Java

    Science.gov (United States)

    Aisyah Filqisthi, Tatag; Leonardus Kaswanto, Regan

    2017-01-01

    The presence of vegetation in Pekarangan can be proposed to mitigate global climate change impacts by CO2 sequestration and at the same time to promote the availability of food for the community. The aims of this research is to calculate carbon stock and biodiversity in pekarangan, and to compare carbon stock and biodiversity on three levels of Cisadane Watershed. Four groups of Pekarangan defined on a purposive random sampling. Allometric models were developed to estimate aboveground biomass of vegetation, and an inventory was conducted in 48 pekarangan. Shannon Weiner Index (H’) and Margalef Index (Dm) are used to evaluate biodiversity, averaged 2,84 and 5,10 (G1); 2,55 and 4,27 (G2); 2,56 and 4,52 (G3); 2,68 and 4,84 (G4), while carbon stock averaged 33,20 Mg Carbon/ha (G1); 29,97 Mg/ha (G2); 59,18 Mg/ha (G3); and 40,98 Mg/ha (G4). There is no relationship between biodiversity with carbon stock on pekarangan (R2 = 0,02), or tree’s biodiversity with carbon stock (R2 = 0,23). High resolution satellite imagery can be used to extrapolate carbon stock and plants biodiversity of Pekarangan at watershed level.

  19. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen. Richardson

    2014-01-01

    The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...

  20. Forest wildfire, fuel reduction treatments, and landscape carbon stocks: a sensitivity analysis

    Science.gov (United States)

    John L. Campbell; Alan A. Ager

    2013-01-01

    Fuel reduction treatments prescribed in fire-suppressed forests of western North America pose an apparent paradox with respect to terrestrial carbon management. Such treatments have the immediate effect of reducing forest carbon stocks but likely reduce future carbon losses through the combustion and mortality caused by high-severity wildfires. Assessing the long-term...

  1. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  2. Fire suppression and fuels treatment effects on mixed-conifer carbon stocks and emissions

    Science.gov (United States)

    M. North; M Hurteau; J Innes

    2009-01-01

    Depending on management, forests can be an important sink or source of carbon that if released as CO2 could contribute to global warming. Many forests in the western United States are being treated to reduce fuels, yet the effects of these treatments on forest carbon are not well understood. We compared the immediate effects of fuels treatments on carbon stocks and...

  3. Carbon Stocks in the Small Estuarine Mangroves of Geza and Mtimbwani, Tanga, Tanzania

    Directory of Open Access Journals (Sweden)

    Edmond Alavaisha

    2016-01-01

    Full Text Available Mangrove forests offer important ecosystem services, including their high capacity for carbon sequestration and stocking. However, they face rapid degradation and loss of ecological resilience particularly at local scales due to human pressure. We conducted inventory of mangrove forests to characterise forest stand structure and estimate carbon stocks in the small estuarine mangroves of Geza and Mtimbwani in Tanga, Tanzania. Forest structure, above-ground carbon (AGC, and below-ground carbon (BGC were characterised. Soil carbon was estimated to 1 m depth using loss on ignition procedure. Six common mangrove species were identified dominated by Avicennia marina (Forsk. Vierh. and Rhizophora mucronata Lamarck. Forest stand density and basal area were 1740 stems ha−1 and 17.2 m2 ha−1 for Geza and 2334 stems ha−1 and 30.3 m2 ha−1 for Mtimbwani. Total ecosystem carbon stocks were 414.6 Mg C ha−1 for Geza and 684.9 Mg C ha−1 for Mtimbwani. Soil carbon contributed over 65% of these stocks, decreasing with depth. Mid zones of the mangrove stands had highest carbon stocks. These data demonstrate that studied mangroves are potential for carbon projects and provide the baseline for monitoring, reporting, and verification (MRV to support the projects.

  4. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Directory of Open Access Journals (Sweden)

    Sebastian Doetterl

    Full Text Available African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors.Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock were only half compared to an area with lower tree height (= smaller aboveground carbon stock. This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system.We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  5. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Science.gov (United States)

    Doetterl, Sebastian; Kearsley, Elizabeth; Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  6. Monitoring of soil organic carbon and nitrogen stocks in different ...

    African Journals Online (AJOL)

    SOC and SN stocks are a function of the SOC and SN concentrations and the bulk density of the soil that are prone to changes under land use types and soil erosion. The objective of this study was to evaluate SOC and SN stock in different land use types under surface erosion at catchment scale. In view of this, bulk density, ...

  7. Carbon stocks and potential carbon storage in the mangrove forests of China.

    Science.gov (United States)

    Liu, Hongxiao; Ren, Hai; Hui, Dafeng; Wang, Wenqing; Liao, Baowen; Cao, Qingxian

    2014-01-15

    Mangrove forests provide important ecosystem services, and play important roles in terrestrial and oceanic carbon (C) cycling. Although the C stocks or storage in terrestrial ecosystems in China have been frequently assessed, the C stocks in mangrove forests have often been overlooked. In this study, we estimated the C stocks and the potential C stocks in China's mangrove forests by combining our own field data with data from the National Mangrove Resource Inventory Report and from other published literature. The results indicate that mangrove forests in China store about 6.91 ± 0.57 Tg C, of which 81.74% is in the top 1 m soil, 18.12% in the biomass of mangrove trees, and 0.08% in the ground layer (i.e. mangrove litter and seedlings). The potential C stocks are as high as 28.81 ± 4.16 Tg C. On average, mangrove forests in China contain 355.25 ± 82.19 Mg C ha(-1), which is consistent with the global average of mangrove C density at similar latitudes, but higher than the average C density in terrestrial forests in China. Our results suggest that C storage in mangroves can be increased by selecting high C-density species for afforestation and stand improvement, and even more by increasing the mangrove area. The information gained in this study will facilitate policy decisions concerning the restoration of mangrove forests in China. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Benchmark map of forest carbon stocks in tropical regions across three continents.

    Science.gov (United States)

    Saatchi, Sassan S; Harris, Nancy L; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T A; Salas, William; Zutta, Brian R; Buermann, Wolfgang; Lewis, Simon L; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra

    2011-06-14

    Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ± 6% to ± 53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ± 5% and ca. ± 1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.

  9. First Assessment of Carbon Stock in the Belowground Biomass of Brazilian Mangroves

    Directory of Open Access Journals (Sweden)

    DANIEL M.C. SANTOS

    2017-08-01

    Full Text Available ABSTRACT Studies on belowground roots biomass have increasingly reported the importance of the contribution of this compartment in carbon stock maintenance in mangrove forests. To date, there are no estimates of this contribution in Brazilian mangrove forests, although the country has the second largest area of mangroves worldwide. For this study, trenches dug in fringing forests in Guaratiba State Biological Reserve (Rio de Janeiro, Brazil were used to evaluate the contribution of the different classes of roots and the vertical stratification of carbon stock. The total carbon stock average in belowground roots biomass in these forests was 104.41 ± 20.73 tC.ha−1. From that, an average of 84.13 ± 21.34 tC.ha−1 corresponded to the carbon stock only in fine roots, which have diameters smaller than 5 mm and are responsible for over 80% of the total belowground biomass. Most of the belowground carbon stock is concentrated in the first 40 cm below the surface (about 70%. The root:shoot ratio in this study is 1.14. These estimates demonstrate that the belowground roots biomass significantly contributes, more than 50%, to the carbon stock in mangrove forests. And the mangrove root biomass can be greater than that of other Brazilian ecosystems.

  10. Soil Carbon Stocks Decrease following Conversion of Secondary Forests to Rubber (Hevea brasiliensis) Plantations

    Science.gov (United States)

    de Blécourt, Marleen; Brumme, Rainer; Xu, Jianchu; Corre, Marife D.; Veldkamp, Edzo

    2013-01-01

    Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha−1 in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha−1 to an increase of 8 Mg C ha−1. In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes. PMID:23894456

  11. Linking plant functional traits and forest carbon stocks in the Congo Basin

    Science.gov (United States)

    Kearsley, Elizabeth; Verbeeck, Hans; Hufkens, Koen; Lewis, Simon; Huygens, Dries; Beeckman, Hans; Steppe, Kathy; Boeckx, Pascal

    2013-04-01

    Accurate estimates of the amount of carbon stored in tropical forests represent crucial baseline data for recent climate change mitigation policies. Such data are needed to quantify possible emissions due to deforestation and forest degradation, and to evaluate the potential of these forests to act as carbon sinks. Currently, only rough estimates of the carbon stocks for Central African tropical forests are available due to a lack of field data, and little is known about the response of these stocks to climate change. We present the first ground-based carbon stock data for the central Congo Basin in Yangambi, D. R. Congo, based on data of 20 inventory plots of 1 ha covering different forest types. We found an average aboveground carbon stock of 163 ± 19 Mg C ha-1 for intact old-growth forest, which is significantly lower than the stocks recorded in the outer regions of the Congo Basin. Commonly studied drivers for variations of carbon stocks include climatic and edaphic factors, but detailed trait-based studies are lacking. We identified a significant difference in height-diameter relations across the Congo Basin as a driver for spatial differences in carbon stocks. The study of a more detailed interaction of the environment and the available tree species pool as drivers for differences in carbon storage could have large implications. The effect of the species pool on carbon storage can be large since species differ in their ability to sequester carbon, and the collective functional characteristics of plant communities could be a major driver of carbon accumulation. The use of a trait-based approach shows high potential for identifying and quantifying carbon stocks as an ecosystem service. We test for associations between functional trait values and carbon storage across multiple regrowth and old-growth forests types in the Yangambi study area, with soil properties and climate similar for all plots. A selection of traits associated with carbon dynamics is made

  12. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  13. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem.

    Science.gov (United States)

    Mikhailova, Elena A; Post, Christopher J

    2006-01-01

    Little is known about changes in soil inorganic carbon (SIC) stocks with depth and with land use in grassland ecosystems. This study was conducted to determine SIC stocks under different management regimes in the Mollisol, one of the typical soils in grasslands. Four sites were sampled: a native grassland field (not cultivated for at least 300 yr), an adjacent 50-yr continuous fallow field, a yearly cut hay field in the V.V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. Significant differences occurred in SIC stocks between cultivated and grassland soil. The inorganic carbon stocks in the top 2 m were 107 Mg ha(-1) for the native grassland, 91 Mg ha(-1) for the yearly cut hay field, 242 Mg ha(-1) for the continuously cropped field, and 196 Mg ha(-1) for the 50-yr continuous fallow. The SIC was in the form of calcium carbonate and was mostly stored below the 1-m depth. The largest difference between inorganic carbon stocks was observed between the continuously cropped field and native grassland. The increase in inorganic carbon in the continuously cropped field and continuous fallow was attributed to initial cultivation and fertilization. Soil inorganic carbon in Mollisols is not accounted for in the current global carbon estimates.

  14. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  15. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  16. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil

    Science.gov (United States)

    Sanders, Luciana M.; Taffs, Kathryn; Stokes, Debra; Sanders, Christian J.; Enrich-Prast, Alex; Amora-Nogueira, Leonardo; Marotta, Humberto

    2018-01-01

    Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers). A sediment accumulation rate of ˜ 4 mm yr-1 for the previous ˜ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m-2 yr-1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC) burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer) during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer) during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in the floodplain of the Amazon Basin.

  17. Quantifying the uncertainty of regional and national estimates of soil carbon stocks

    Science.gov (United States)

    Papritz, Andreas

    2013-04-01

    At regional and national scales, carbon (C) stocks are frequently estimated by means of regression models. Such statistical models link measurements of carbons stocks, recorded for a set of soil profiles or soil cores, to covariates that characterize soil formation conditions and land management. A prerequisite is that these covariates are available for any location within a region of interest G because they are used along with the fitted regression coefficients to predict the carbon stocks at the nodes of a fine-meshed grid that is laid over G. The mean C stock in G is then estimated by the arithmetic mean of the stock predictions for the grid nodes. Apart from the mean stock, the precision of the estimate is often also of interest, for example to judge whether the mean C stock has changed significantly between two inventories. The standard error of the estimated mean stock in G can be computed from the regression results as well. Two issues are thereby important: (i) How large is the area of G relative to the support of the measurements? (ii) Are the residuals of the regression model spatially auto-correlated or is the assumption of statistical independence tenable? Both issues are correctly handled if one adopts a geostatistical block kriging approach for estimating the mean C stock within a region and its standard error. In the presentation I shall summarize the main ideas of external drift block kriging. To compute the standard error of the mean stock, one has in principle to sum the elements a potentially very large covariance matrix of point prediction errors, but I shall show that the required term can be approximated very well by Monte Carlo techniques. I shall further illustrated with a few examples how the standard error of the mean stock estimate changes with the size of G and with the strenght of the auto-correlation of the regression residuals. As an application a robust variant of block kriging is used to quantify the mean carbon stock stored in the

  18. Monitoring and estimating tropical forest carbon stocks: making REDD a reality

    International Nuclear Information System (INIS)

    Gibbs, Holly K; Brown, Sandra; Niles, John O; Foley, Jonathan A

    2007-01-01

    Reducing carbon emissions from deforestation and degradation in developing countries is of central importance in efforts to combat climate change. Key scientific challenges must be addressed to prevent any policy roadblocks. Foremost among the challenges is quantifying nations' carbon emissions from deforestation and forest degradation, which requires information on forest clearing and carbon storage. Here we review a range of methods available to estimate national-level forest carbon stocks in developing countries. While there are no practical methods to directly measure all forest carbon stocks across a country, both ground-based and remote-sensing measurements of forest attributes can be converted into estimates of national carbon stocks using allometric relationships. Here we synthesize, map and update prominent forest biomass carbon databases to create the first complete set of national-level forest carbon stock estimates. These forest carbon estimates expand on the default values recommended by the Intergovernmental Panel on Climate Change's National Greenhouse Gas Inventory Guidelines and provide a range of globally consistent estimates

  19. The role of composition, invasives, and maintenance emissions on urban forest carbon stocks.

    Science.gov (United States)

    Horn, Josh; Escobedo, Francisco J; Hinkle, Ross; Hostetler, Mark; Timilsina, Nilesh

    2015-02-01

    There are few field-based, empirical studies quantifying the effect of invasive trees and palms and maintenance-related carbon emissions on changes in urban forest carbon stocks. We estimated carbon (C) stock changes and tree maintenance-related C emissions in a subtropical urban forest by re-measuring a subsample of residential permanent plots during 2009 and 2011, using regional allometric biomass equations, and surveying residential homeowners near Orlando, FL, USA. The effect of native, non-native, invasive tree species and palms on C stocks and sequestration was also quantified. Findings show 17.8 tC/ha in stocks and 1.2 tC/ha/year of net sequestration. The most important species both by frequency of C stocks and sequestration were Quercus laurifolia Michx. and Quercus virginiana Mill., accounting for 20% of all the trees measured; 60% of carbon stocks and over 75% of net C sequestration. Palms contributed to less than 1% of the total C stocks. Natives comprised two-thirds of the tree population and sequestered 90% of all C, while invasive trees and palms accounted for 5 % of net C sequestration. Overall, invasive and exotic trees had a limited contribution to total C stocks and sequestration. Annual tree-related maintenance C emissions were 0.1% of total gross C sequestration. Plot-level tree, palm, and litter cover were correlated to C stocks and net sequestration. Findings can be used to complement existing urban forest C offset accounting and monitoring protocols and to better understand the role of invasive woody plants on urban ecosystem service provision.

  20. Maximizing Amazonia's Ecosystem Services: Juggling the potential for carbon storage, agricultural yield and biodiversity in the Amazon

    Science.gov (United States)

    O'Connell, C. S.; Foley, J. A.; Gerber, J. S.; Polasky, S.

    2011-12-01

    The Amazon is not only an exceptionally biodiverse and carbon-rich tract of tropical forest, it is also a case study in land use change. Over the next forty years it will continue to experience pressure from an urbanizing and increasingly affluent populace: under a business-as-usual scenario, global cropland, pasture and biofuels systems will carry on expanding, while the Amazon's carbon storage potential will likely become another viable revenue source under REDD+. Balancing those competing land use pressures ought also take into account Amazonia's high - but heterogeneous - biodiversity. Knowing where Amazonia has opportunities to make efficient or optimal trade offs between carbon storage, agricultural production and biodiversity can allow policymakers to direct or influence LUC drivers. This analysis uses a spatially-explicit model that takes climate and management into account to quantify the potential agricultural yield of both the Amazon's most important agricultural commodities - sugar, soy and maize - as well as several that are going to come into increasing prominence, including palm oil. In addition, it maps the potential for carbon to be stored in forest biomass and relative species richness across Amazonia. We then compare carbon storage, agricultural yield and species richness and identify areas where efficient trade offs occur between food, carbon, and biodiversity - three critical ecosystem goods and services provided by the world's largest tropical forest.

  1. Effects of Deforestation and Forest Degradation on Forest Carbon Stocks in Collaborative Forests, Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2012-12-01

    Full Text Available There are some key drivers that favor deforestation and forest degradation. Consequently, levels of carbon stock are affected in different parts of same forest types. But the problem lies in exploring the extent of the effects on level of carbon stocking. This paper highlights the variations in levels of carbon stocks in three different collaborative forests of same forest type i.e. tropical sal (Shorea robusta forest in Mahottari district of the central Terai in Nepal. Three collaborative forests namely Gadhanta-Bardibas Collaborative Forest (CFM, Tuteshwarnath CFM and Banke- Maraha CFM were selected for research site. Interview and workshops were organized with the key informants that include staffs, members and representatives of CFMs to collect the socio-economic data and stratified random sampling was applied to collect the bio-physical data to calculate the carbon stocks. Analysis was carried out using statistical tools. It was found five major drivers namely grazing, fire, logging, growth of invasive species and encroachment. It was found highest carbon 269.36 ton per ha in Gadhanta- Bardibash CFM. The findings showed that the levels of carbon stocks in the three studied CFMs are different depending on how the drivers of deforestation and forest degradation influence over them.

  2. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.

    Science.gov (United States)

    Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan

    2018-02-13

    Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.

  3. Carbon Stocks of Fine Woody Debris in Coppice Oak Forests at Different Development Stages

    Directory of Open Access Journals (Sweden)

    Ender Makineci

    2017-06-01

    Full Text Available Dead woody debris is a significant component of the carbon cycle in forest ecosystems. This study was conducted in coppice-originated oak forests to determine carbon stocks of dead woody debris in addition to carbon stocks of different ecosystem compartments from the same area and forests which were formerly elucidated. Weight and carbon stocks of woody debris were determined with recent samplings and compared among development stages (diameter at breast height (DBH, D1.3m, namely small-diameter forests (SDF = 0–8 cm, medium diameter forests (MDF = 8–20 cm, and large-diameter forests (LDF = 20–36 cm. Total woody debris was collected in samplings; as bilateral diameters of all woody debris parts were less than 10 cm, all woody parts were in the “fine woody debris (FWD” class. The carbon concentrations of FWD were about 48% for all stages. Mass (0.78–4.92 Mg·ha−1 and carbon stocks (0.38–2.39 Mg·ha−1 of FWD were significantly (p > 0.05 different among development stages. FWD carbon stocks were observed to have significant correlation with D1.3m, age, basal area, and carbon stocks of aboveground biomass (Spearman rank correlation coefficients; 0.757, 0.735, 0.709, and 0.694, respectively. The most important effects on carbon budgets of fine woody debris were determined to be coppice management and intensive utilization. Also, national forestry management, treatments of traditional former coppice, and conversion to high forest were emphasized as having substantial effects.

  4. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal.

    Science.gov (United States)

    Dangal, Shambhu Prasad; Das, Abhoy Kumar; Paudel, Shyam Krishna

    2017-07-01

    Nepal has successfully established more than 370,000 ha of plantations, mostly with Pinus patula, in the last three and a half decades. However, intensive management of these planted forests is very limited. Despite the fact that the Kyoto Convention in 1997 recognized the role of plantations for forest-carbon sequestration, there is still limited knowledge on the effects of management practices and stand density on carbon-sequestration of popular plantation species (i.e. Pinus patula) in Nepal. We carried out case studies in four community forests planted between 1976 and 1990 to assess the impacts of management on forest carbon stocks. The study found that the average carbon stock in the pine plantations was 217 Mg C ha -1 , and was lower in forests with intensively managed plantations (214.3 Mg C ha -1 ) than in traditionally managed plantations (219 Mg C ha -1 ). However, it was the reverse in case of soil carbon, which was higher (78.65 Mg C ha -1 ) in the forests with intensive management. Though stand density was positively correlated with carbon stock, the proportionate increment in carbon stock was lower with increasing stand density, as carbon stock increased by less than 25% with a doubling of stand density (300-600). The total carbon stock was higher in plantations aged between 25 and 30 years compared to those aged between 30 and 35 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012

    Science.gov (United States)

    Hamilton, Stuart E.; Friess, Daniel A.

    2018-03-01

    Mangrove forests store high densities of organic carbon, which, when coupled with high rates of deforestation, means that mangroves have the potential to contribute substantially to carbon emissions. Consequently, mangroves are strong candidates for inclusion in nationally determined contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and payments for ecosystem services (PES) programmes that financially incentivize the conservation of forested carbon stocks. This study quantifies annual mangrove carbon stocks from 2000 to 2012 at the global, national and sub-national levels, and global carbon emissions resulting from deforestation over the same time period. Globally, mangroves stored 4.19 Pg of carbon in 2012, with Indonesia, Brazil, Malaysia and Papua New Guinea accounting for more than 50% of the global stock. 2.96 Pg of the global carbon stock is contained within the soil and 1.23 Pg in the living biomass. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of 316,996,250 t of CO2 emissions.

  6. Disturbance and climate effects on carbon stocks and fluxes across western Oregon USA.

    Science.gov (United States)

    B.E. Law; D. Turner; J. Campbell; O.J. Sun; S. Van Tuyl; W.D. Ritts; W.B. Cohen

    2004-01-01

    We used a spatially nested hierarchy of field and remote-sensing observations and a process model, Biome-BGC, to produce a carbon budget for the forested region of Oregon, and to determine the relative influence of differences in climate and disturbance among the ecoregions on carbon stocks and fluxes. The simulations suggest that annual net uptake (net ecosystem...

  7. Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin

    Science.gov (United States)

    Bing Xu; Yude Pan; Alain F. Plante; Arthur Johnson; Jason Cole; Richard Birdsey

    2016-01-01

    Quantifying forest biomass carbon (C) stock change is important for understanding forest dynamics and their feedbacks with climate change. Forests in the northeastern U.S. have been a net carbon sink in recent decades, but C accumulation in some northern hardwood forests has been halted due to the impact of emerging stresses such as invasive pests, land use change and...

  8. Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere's Reserve, Mexico

    NARCIS (Netherlands)

    Balderas Torres, Arturo; Lovett, Jonathan Cranidge

    2012-01-01

    Increasing use of woody plants for greenhouse gas mitigation has led to demand for rapid, cost-effective estimation of forest carbon stocks. Bole diameter is readily measured and basal area can be correlated to biomass and carbon through application of allometric equations. We explore different

  9. Forest Carbon Stocks in Woody Plants of Arba Minch Ground Water ...

    African Journals Online (AJOL)

    The role of forests in mitigating the effect of climate change depends on the carbon sequestration potential and management. This study was conducted to estimate the carbon stock and its variation along environmental gradients in Arba Minch Ground Water Forest. The data was collected from the field by measuring plants ...

  10. Structural Break, Stock Prices of Clean Energy Firms and Carbon Market

    Science.gov (United States)

    Wang, Yubao; Cai, Junyu

    2018-03-01

    This paper uses EU ETS carbon future price and Germany/UK clean energy firms stock indices to study the relationship between carbon market and clean energy market. By structural break test, it is found that the ‘non-stationary’ variables judged by classical unit root test do own unit roots and need taking first difference. After analysis of VAR and Granger causality test, no causal relationships are found between the two markets. However, when Hsiao’s version of causality test is employed, carbon market is found to have power in explaining the movement of stock prices of clean energy firms, and stock prices of clean energy firms also affect the carbon market.

  11. The average carbon-stock approach for small-scale CDM AR projects

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Quijano, J.F.; Muys, B. [Katholieke Universiteit Leuven, Laboratory for Forest, Nature and Landscape Research, Leuven (Belgium); Schlamadinger, B. [Joanneum Research Forschungsgesellschaft mbH, Institute for Energy Research, Graz (Austria); Emmer, I. [Face Foundation, Arnhem (Netherlands); Somogyi, Z. [Forest Research Institute, Budapest (Hungary); Bird, D.N. [Woodrising Consulting Inc., Belfountain, Ontario (Canada)

    2004-06-15

    In many afforestation and reforestation (AR) projects harvesting with stand regeneration forms an integral part of the silvicultural system and satisfies local timber and/or fuelwood demand. Especially clear-cut harvesting will lead to an abrupt and significant reduction of carbon stocks. The smaller the project, the more significant the fluctuations of the carbon stocks may be. In the extreme case a small-scale project could consist of a single forest stand. In such case, all accounted carbon may be removed during a harvesting operation and the time-path of carbon stocks will typically look as in the hypothetical example presented in the report. For the aggregate of many such small-scale projects there will be a constant benefit to the atmosphere during the projects, due to averaging effects.

  12. Past and prospective carbon stocks in forests of northern Wisconsin: a report from the Chequamegon-Nicolet National Forest Climate Change Response Framework

    Science.gov (United States)

    Richard Birdsey; Yude Pan; Maria Janowiak; Susan Stewart; Sarah Hines; Linda Parker; Stith Gower; Jeremy Lichstein; Kevin McCullough; Fangmin Zhang; Jing Chen; David Mladenoff; Craig Wayson; Chris. Swanston

    2014-01-01

    This report assesses past and prospective carbon stocks for 4.5 million ha of forest land in northern Wisconsin, including a baseline assessment and analysis of the impacts of disturbance and management on carbon stocks. Carbon density (amount of carbon stock per unit area) averages 237 megagrams (Mg) per ha, with the National Forest lands having slightly higher carbon...

  13. What are the effects of agricultural management on soil organic carbon (SOC) stocks?

    DEFF Research Database (Denmark)

    Söderström, Bo; Hedlund, Katarina; Jackson, Louise E.

    2014-01-01

    the physical and biological properties of the soil. Intensification of agriculture and land-use change from grasslands to croplands are generally known to deplete SOC stocks. The depletion is exacerbated through agricultural practices with low return of organic material and various mechanisms......Changes in soil organic carbon (SOC) stocks significantly influence the atmospheric C concentration. Agricultural management practices that increase SOC stocks thus may have profound effects on climate mitigation. Additional benefits include higher soil fertility since increased SOC stocks improve......, such as oxidation/mineralization, leaching and erosion. However, a systematic review comparing the efficacy of different agricultural management practices to increase SOC stocks has not yet been produced. Since there are diverging views on this matter, a systematic review would be timely for framing policies...

  14. EFFECT OF EXTRACTIVES AND CARBONIZATION TEMPERATURE ON ENERGY CHARACTERISTICS OF WOOD WASTE IN AMAZON RAINFOREST

    Directory of Open Access Journals (Sweden)

    Jordão Cabral Moulin

    2017-06-01

    Full Text Available The objective of this study was to evaluate the effect of extractives soluble in hot water, besides final carbonization temperatures, on the gravimetric yield and properties of charcoal for waste of three native forest species from the Amazon region. Waste cuttings of Ipé, Grapia and Maçaranduba species, from the machine processing for joinery of a company in the State of Pará, were used. Carbonization was carried out in an adapted electric furnace with a heating rate of 1.67°C min-1 and final temperatures of 500, 600 and 700°C. The waste was carbonized fresh after extraction in hot water to remove extractives. Gravimetric yields were analyzed, as well as chemical features and high heating value. In the evaluation of the experiment, arranged in a factorial scheme with three factors (species x temperature x material with and without extraction, and Principal Component Analysis used too. The presence of extractives (soluble in hot water from wood waste had little influence on the gravimetric yield and immediate chemical composition of charcoal; however, it showed a greater high heating value and lower contents of hydrogen and nitrogen. The increase in the final carbonization temperature reduced the gravimetric yield in charcoal, the content of volatile materials and hydrogen, with a higher content of fixed carbon, carbon and high heating value. The treatments with the best energy characteristics were obtained from Ipé and Maçaranduba charcoals with extractives produced at 600°C, in addition to Ipê and Maçaranduba charcoals with and without extractives obtained at 700°C.

  15. Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils

    Science.gov (United States)

    Beem-Miller, Jeffrey P.; Kong, Angela Y. Y.; Ogle, Stephen; Wolfe, David

    2016-01-01

    Coring methods commonly employed in soil organic C (SOC) stock assessment may not accurately capture soil rock fragment (RF) content or soil bulk density (rho (sub b)) in rocky agricultural soils, potentially biasing SOC stock estimates. Quantitative pits are considered less biased than coring methods but are invasive and often cost-prohibitive. We compared fixed-depth and mass-based estimates of SOC stocks (0.3-meters depth) for hammer, hydraulic push, and rotary coring methods relative to quantitative pits at four agricultural sites ranging in RF content from less than 0.01 to 0.24 cubic meters per cubic meter. Sampling costs were also compared. Coring methods significantly underestimated RF content at all rocky sites, but significant differences (p is less than 0.05) in SOC stocks between pits and corers were only found with the hammer method using the fixed-depth approach at the less than 0.01 cubic meters per cubic meter RF site (pit, 5.80 kilograms C per square meter; hammer, 4.74 kilograms C per square meter) and at the 0.14 cubic meters per cubic meter RF site (pit, 8.81 kilograms C per square meter; hammer, 6.71 kilograms C per square meter). The hammer corer also underestimated rho (sub b) at all sites as did the hydraulic push corer at the 0.21 cubic meters per cubic meter RF site. No significant differences in mass-based SOC stock estimates were observed between pits and corers. Our results indicate that (i) calculating SOC stocks on a mass basis can overcome biases in RF and rho (sub b) estimates introduced by sampling equipment and (ii) a quantitative pit is the optimal sampling method for establishing reference soil masses, followed by rotary and then hydraulic push corers.

  16. Dynamics Analysis Of Land-Based Carbon Stock In The Region Of Samarinda East Kalimantan Province

    Directory of Open Access Journals (Sweden)

    Zikri Azham

    2017-10-01

    Full Text Available This study aims to determine the potential dynamics of carbon stocks in various land cover classes in the city of Samarinda in the calculation of carbon stocks land cover only devided into three 3 Class Land Cover CLC is a secondary forest CLC CLC thickets and CLC shrubs. Research results show that the above ground carbon AGC stocks on Secondary Forest Land Cover Class average of 71.93 tonnesha the land cover classes thickets of 32.34 tonnes hectares and shrubs land cover classes of 19.66 tonnes hectare. The carbon stocks in 2009 amounted to 2589929 tonnes in 2012 there were 2347477 tons and in 2015 there were 2201005 tonnes. Estimated decrease in land-based stock carbon in the city of Samarinda during the period 2009-2015 amounted to 388943 tonnes or an average of 70170 tonnes per year or approximately 2.73year or the emissions in the field of land amounting to 254538 tonnes of CO2 equivalent.

  17. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.

    Science.gov (United States)

    Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E

    2017-10-01

    Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across

  18. Effects of vegetation's degradation on carbon stock, morphological ...

    African Journals Online (AJOL)

    ndema

    stock value of 2102.06 ± 405 Mg.ha-1 while natural (T2) accumulate 2476.6 ± 409 Mg.ha-1. Colour are more ... zones with variable surface areas in the South Region of ... apart by a large number of waterways for fishermen, poachers and tourists. ..... and economics of exploitation, processing and marketing of bivalves.

  19. Influence of stocking, site quality, stand age, low-severity canopy disturbance, and forest composition on sub-boreal aspen mixedwood carbon stocks

    Science.gov (United States)

    Reinikainen, Michael; D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Low-severity canopy disturbance presumably influences forest carbon dynamics during the course of stand development, yet the topic has received relatively little attention. This is surprising because of the frequent occurrence of such events and the potential for both the severity and frequency of disturbances to increase as a result of climate change. We investigated the impacts of low-severity canopy disturbance and average insect defoliation on forest carbon stocks and rates of carbon sequestration in mature aspen mixedwood forests of varying stand age (ranging from 61 to 85 years), overstory composition, stocking level, and site quality. Stocking level and site quality positively affected the average annual aboveground tree carbon increment (CAAI), while stocking level, site quality, and stand age positively affected tree carbon stocks (CTREE) and total ecosystem carbon stocks (CTOTAL). Cumulative canopy disturbance (DIST) was reconstructed using dendroecological methods over a 29-year period. DIST was negatively and significantly related to soil carbon (CSOIL), and it was negatively, albeit marginally, related to CTOTAL. Minima in the annual aboveground carbon increment of trees (CAI) occurred at sites during defoliation of aspen (Populus tremuloides Michx.) by forest tent caterpillar (Malacosoma disstria Hubner), and minima were more extreme at sites dominated by trembling aspen than sites mixed with conifers. At sites defoliated by forest tent caterpillar in the early 2000s, increased sequestration by the softwood component (Abies balsamea (L.) Mill. and Picea glauca (Moench) Voss) compensated for overall decreases in CAI by 17% on average. These results underscore the importance of accounting for low-severity canopy disturbance events when developing regional forest carbon models and argue for the restoration and maintenance of historically important conifer species within aspen mixedwoods to enhance stand-level resilience to disturbance agents and maintain

  20. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    Science.gov (United States)

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  2. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  3. Soil organic carbon stocks under native vegetation - revised estimates for use with the simple assessment option of the Carbon Benefits Project system

    NARCIS (Netherlands)

    Batjes, N.H.

    2011-01-01

    The Carbon Benefits Project (CBP) is developing a standardized system for sustainable land management projects to measure, model and report changes in carbon stocks and greenhouse gas (GHG) emissions for use at varying scales. A global framework of soil organic carbon (SOC) stocks under native

  4. Carbon stock of oil palm plantations and tropical forests in Malaysia

    DEFF Research Database (Denmark)

    Kho, Lip Khoon; Jepsen, Martin Rudbeck

    2015-01-01

    cultivation (fallow forests) and 3) oil palm plantations. The forest ecosystems are classified by successional stage and edaphic conditions and represent samples along a forest succession continuum spanning pioneer species in shifting cultivation fallows to climax vegetation in old-growth forests. Total......In Malaysia, the main land change process is the establishment of oil palm plantations on logged-over forests and areas used for shifting cultivation, which is the traditional farming system. While standing carbon stocks of old-growth forest have been the focus of many studies, this is less...... the case for Malaysian fallow systems and oil palm plantations. Here, we collate and analyse Malaysian datasets on total carbon stocks for both above- and below-ground biomass. We review the current knowledge on standing carbon stocks of 1) different forest ecosystems, 2) areas subject to shifting...

  5. Climate change mitigation by carbon stock - the case of semi-arid West Africa

    Science.gov (United States)

    Lykke, A. M.; Barfod, A. S.; Tinggaard Svendsen, G.; Greve, M.; Svenning, J.-C.

    2009-11-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.

  6. Climate change mitigation by carbon stock - the case of semi-arid West Africa

    International Nuclear Information System (INIS)

    Lykke, A M; Barfod, A S; Greve, M; Svenning, J-C; Svendsen, G Tinggaard

    2009-01-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.

  7. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Adame

    Full Text Available Coastal wetlands can have exceptionally large carbon (C stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes, and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N and phosphorus (P from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1 followed by medium mangroves (623±41 Mg ha(-1, dwarf mangroves (381±52 Mg ha(-1 and marshes (177±73 Mg ha(-1. At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%. Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.

  8. Impacto da conversão floresta - pastagem nos estoques e na dinâmica do carbono e substâncias húmicas do solo no bioma Amazônico Impact of forest-pasture conversion on stocks and dynamics of soil carbon and humic substances in the Amazon

    Directory of Open Access Journals (Sweden)

    Edson Alves de Araújo

    2011-03-01

    of Rio Branco and comprises an area of bamboo- and palm-dominated open forest with two B. brizantha pastures of 3 and 10 years old. The second site, dominated by a dystrophic Red Yellow Latosol (Oxisol, is located in the municipality of Senador Guiomard and comprises an area of dense forest and a 20-year old B. brizantha pasture. In each site soil samples were collected in triplicate at depths of 0-5, 5-10, 10-20 and 20-40 cm. Samples were evaluated for physical and chemical characteristics, C of humic substances and light organic matter, and the isotopic composition of soil and its organic fractions to 1 m depth, determining the percentage of C derived of both grassland and forest. There were increases in stocks of soil C and δ13C soil with the time of grazing in both sites. The percentage of C derived from pasture was much higher in the surface layer of the Senador Guiomard site following 20 years of grazing, with proportions that reached 70% of the total C. δ13C values for the humic acids ranged from -12.19 to -17.57 ‰, indicating a higher proportion of C derived from pasture. The MOS structural stability inferred by the relationship of the humin with both fulvic acid and humic acid fractions (HUM / FAF + FAH tended to decrease in grassland ecosystems when compared with native forests.

  9. Benchmark map of forest carbon stocks in tropical regions across three continents

    Science.gov (United States)

    Saatchi, Sassan S.; Harris, Nancy L.; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T. A.; Salas, William; Zutta, Brian R.; Buermann, Wolfgang; Lewis, Simon L.; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra

    2011-01-01

    Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a “benchmark” map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ±6% to ±53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ±5% and ca. ±1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete. PMID:21628575

  10. The U.S. forest carbon accounting framework: stocks and stock change, 1990-2016

    Science.gov (United States)

    Christopher W. Woodall; John W. Coulston; Grant M. Domke; Brian F. Walters; David N. Wear; James E. Smith; Hans-Erik Andersen; Brian J. Clough; Warren B. Cohen; Douglas M. Griffith; Stephen C. Hagen; Ian S. Hanou; Michael C. Nichols; Charles H. (Hobie) Perry; Matthew B. Russell; Jim Westfall; Barry T. (Ty) Wilson

    2015-01-01

    As a signatory to the United Nations Framework Convention on Climate Change, the United States annually prepares an inventory of carbon that has been emitted and sequestered among sectors (e.g., energy, agriculture, and forests). For many years, the United States developed an inventory of forest carbon by comparing contemporary forest inventories to inventories that...

  11. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    Science.gov (United States)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2015-03-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  12. Eelgrass Blue Carbon-Quantification of Carbon Stocks and Sequestration Rates in Zostera Marina Beds in the Salish Sea

    Science.gov (United States)

    Lutz, M. D.; Rybczyk, J.; Poppe, K.; Johnson, C.; Kaminsky, M.; Lanphear, M.

    2017-12-01

    Seagrass meadows provide more than habitat, biodiversity support, wave abatement, and water quality improvement; they help mitigate climate change by taking up and storing (sequestering) carbon (C), reportedly at rates only surpassed worldwide by salt marsh and mangrove ecosystems. Now that their climate mitigation capacity has earned seagrass ecosystems a place in the Verified Carbon Standard voluntary greenhouse gas program, accurate ecosystem carbon accounting is essential. Though seagrasses vary in carbon storage and accumulation greatly across species and geography, the bulk of data included in calculating global averages involves tropical and subtropical seagrasses. We know little regarding carbon stocks nor sequestration rates for eelgrass (Zostera marina) meadows in the Pacific Northwest. The intent of our study was to quantify carbon stocks and sequestration rates in the central Salish Sea of Washington State. We gathered sediment cores over three bays, as close to 1 m in depth as possible, both on foot and while scuba diving. We measured bulk density, carbon concentration, carbon stock, grain size, and carbon accumulation rate with depth. Results from our study show lower estimated Corg concentration (mean = 0.39% C, SE=0.01, range=0.11-1.75, SE=0.01), Corg stock (mean=24.46 Mg ha-1, SE=0.00, range=16.31-49.99.70), and C sequestration rates (mean=33.96 g m-2yr-1, range=11.4-49.5) than those reported in published studies from most other locations. Zostera marina is highly productive, yet does not seem to have the capacity to store C in its sediments like seagrasses in warmer climes. These data have implications in carbon market trading, when determining appropriate seagrass restoration site dimensions to offset emissions from transportation, industry, and seagrass habitat disturbance. Awareness of lower rates could prevent underestimating the area appropriate for mitigation or restoration.

  13. Carbon stocks and fluxes in managed peatlands in northern Borneo

    Science.gov (United States)

    Arn Teh, Yit; Manning, Frances; Cook, Sarah; Zin Zawawi, Norliyana; Sii, Longwin; Hill, Timothy; Page, Susan; Whelan, Mick; Evans, Chris; Gauci, Vincent; Chocholek, Melanie; Khoon Kho, Lip

    2017-04-01

    Oil palm is the largest agricultural crop in the tropics and accounts for 13 % of current tropical land area. Patterns of land-atmosphere exchange from oil palm ecosystems therefore have potentially important implications for regional and global C budgets due to the large scale of land conversion. This is particularly true for oil palm plantations on peat because of the large C stocks held by tropical peat soils that are potential sensitivity to human disturbance. Here we report preliminary findings on C stocks and fluxes from a long-term, multi-scale project in Sarawak, Malaysia that aims to quantify the impacts of oil palm conversion on C and greenhouse gas fluxes from oil palm recently established on peat. Land-atmosphere fluxes were determined using a combination of top-down and bottom-up methods (eddy covariance, canopy/stem and soil flux measurements, net primary productivity). Fluvial fluxes were determined by quantifying rates of dissolved and particulate organic C export. Ecosystem C dynamics were determined using the intensive C plot method, which quantified all major C stocks and fluxes, including plant and soil stocks, leaf litterfall, aboveground biomass production, root production, stem/canopy respiration, root-rhizosphere respiration, and heterotrophic soil respiration. Preliminary analysis indicates that vegetative aboveground biomass in these 7 year old plantations was 8.9-11.9 Mg C ha-1, or approximately one-quarter of adjacent secondary forest. Belowground biomass was 5.6-6.5 Mg C ha-1; on par with secondary forests. Soil C stocks in the 0-30 cm depth was 233.1-240.8 Mg C ha-1, or 32-36% greater than soil C stocks in secondary forests at the same depth (176.8 Mg C ha-1). Estimates of vegetative aboveground and belowground net primary productivity were 1.3-1.7 Mg C ha-1 yr-1 and 0.8-0.9 Mg C ha-1 yr-1, respectively. Fruit brunch production was approximately 67 Mg C ha-1over 7 yearsor 9.6 Mg C ha-1 yr-1. Total soil respiration rates were 18 Mg C ha

  14. Long rotation swidden systems maintain higher carbon stocks than rubber plantations

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Berry, Nicholas; De Neergaard, Andreas

    2018-01-01

    in fallows were 1.5 ± 0.12 Mg C ha−1 yr−1 and 1.9 ± 0.14 Mg C ha−1 yr−1 in rubber plantations. When comparing time-averaged carbon stocks of swidden systems to rubber plantations with 30 year rotation periods, the stocks of swidden systems with rotation times of 5 and 10 years were 19% and 13% lower......Conversion of shifting cultivation to rubber (Hevea brasiliensis) plantations is one of the dominant land use changes in montane mainland areas of Southeast Asia, with the area of rubber expected to quadruple by 2050. However, the impacts of this transition on total ecosystem carbon stocks...... are poorly quantified. We undertook a chronosequence study to quantify changes in ecosystem carbon stocks following conversion from swidden agriculture to rubber plantations in Northern Laos. We measured above-ground biomass stocks and collected volume specific soil samples across rubber plantations...

  15. 329 Diversité végétale urbaine et estimation du stock de carbone ...

    African Journals Online (AJOL)

    TOSHIBA

    Diversité végétale urbaine et estimation du stock de carbone : cas de la commune du Plateau ... Urban plants diversity and carbon stock estimation: the case of Plateau district. Abidjan, Côte d'Ivoire ..... [15] - R. HOME; C. KELLER; P. NAGEL; N. BAUER et M. HUNZIKER, Selection criteria for flagship species by conservation ...

  16. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential

    International Nuclear Information System (INIS)

    Vågen, Tor-Gunnar; Winowiecki, Leigh A

    2013-01-01

    Current methods for assessing soil organic carbon (SOC) stocks are generally not well suited for understanding variations in SOC stocks in landscapes. This is due to the tedious and time-consuming nature of the sampling methods most commonly used to collect bulk density cores, which limits repeatability across large areas, particularly where information is needed on the spatial dynamics of SOC stocks at scales relevant to management and for spatially explicit targeting of climate change mitigation options. In the current study, approaches were explored for (i) field-based estimates of SOC stocks and (ii) mapping of SOC stocks at moderate to high resolution on the basis of data from four widely contrasting ecosystems in East Africa. Estimated SOC stocks for 0–30 cm depth varied both within and between sites, with site averages ranging from 2 to 8 kg m −2 . The differences in SOC stocks were determined in part by rainfall, but more importantly by sand content. Results also indicate that managing soil erosion is a key strategy for reducing SOC loss and hence in mitigation of climate change in these landscapes. Further, maps were developed on the basis of satellite image reflectance data with multiple R-squared values of 0.65 for the independent validation data set, showing variations in SOC stocks across these landscapes. These maps allow for spatially explicit targeting of potential climate change mitigation efforts through soil carbon sequestration, which is one option for climate change mitigation and adaptation. Further, the maps can be used to monitor the impacts of such mitigation efforts over time. (letter)

  17. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States

    Directory of Open Access Journals (Sweden)

    Liknes Greg C

    2008-06-01

    Full Text Available Abstract Background Coarse and fine woody debris are substantial forest ecosystem carbon stocks; however, there is a lack of understanding how these detrital carbon stocks vary across forested landscapes. Because forest woody detritus production and decay rates may partially depend on climatic conditions, the accumulation of coarse and fine woody debris carbon stocks in forests may be correlated with climate. This study used a nationwide inventory of coarse and fine woody debris in the United States to examine how these carbon stocks vary by climatic regions and variables. Results Mean coarse and fine woody debris forest carbon stocks vary by Köppen's climatic regions across the United States. The highest carbon stocks were found in regions with cool summers while the lowest carbon stocks were found in arid desert/steppes or temperate humid regions. Coarse and fine woody debris carbon stocks were found to be positively correlated with available moisture and negatively correlated with maximum temperature. Conclusion It was concluded with only medium confidence that coarse and fine woody debris carbon stocks may be at risk of becoming net emitter of carbon under a global climate warming scenario as increases in coarse or fine woody debris production (sinks may be more than offset by increases in forest woody detritus decay rates (emission. Given the preliminary results of this study and the rather tenuous status of coarse and fine woody debris carbon stocks as either a source or sink of CO2, further research is suggested in the areas of forest detritus decay and production.

  18. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    Science.gov (United States)

    Mishra, U.; Riley, W. J.

    2015-07-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained

  19. A blue carbon soil database: Tidal wetland stocks for the US National Greenhouse Gas Inventory

    Science.gov (United States)

    Feagin, R. A.; Eriksson, M.; Hinson, A.; Najjar, R. G.; Kroeger, K. D.; Herrmann, M.; Holmquist, J. R.; Windham-Myers, L.; MacDonald, G. M.; Brown, L. N.; Bianchi, T. S.

    2015-12-01

    Coastal wetlands contain large reservoirs of carbon, and in 2015 the US National Greenhouse Gas Inventory began the work of placing blue carbon within the national regulatory context. The potential value of a wetland carbon stock, in relation to its location, soon could be influential in determining governmental policy and management activities, or in stimulating market-based CO2 sequestration projects. To meet the national need for high-resolution maps, a blue carbon stock database was developed linking National Wetlands Inventory datasets with the USDA Soil Survey Geographic Database. Users of the database can identify the economic potential for carbon conservation or restoration projects within specific estuarine basins, states, wetland types, physical parameters, and land management activities. The database is geared towards both national-level assessments and local-level inquiries. Spatial analysis of the stocks show high variance within individual estuarine basins, largely dependent on geomorphic position on the landscape, though there are continental scale trends to the carbon distribution as well. Future plans including linking this database with a sedimentary accretion database to predict carbon flux in US tidal wetlands.

  20. Effects of rapid urban sprawl on urban forest carbon stocks: integrating remotely sensed, GIS and forest inventory data.

    Science.gov (United States)

    Ren, Yin; Yan, Jing; Wei, Xiaohua; Wang, Yajun; Yang, Yusheng; Hua, Lizhong; Xiong, Yongzhu; Niu, Xiang; Song, Xiaodong

    2012-12-30

    Research on the effects of urban sprawl on carbon stocks within urban forests can help support policy for sustainable urban design. This is particularly important given climate change and environmental deterioration as a result of rapid urbanization. The purpose of this study was to quantify the effects of urban sprawl on dynamics of forest carbon stock and density in Xiamen, a typical city experiencing rapid urbanization in China. Forest resource inventory data collected from 32,898 patches in 4 years (1972, 1988, 1996 and 2006), together with remotely sensed data (from 1988, 1996 and 2006), were used to investigate vegetation carbon densities and stocks in Xiamen, China. We classified the forests into four groups: (1) forest patches connected to construction land; (2) forest patches connected to farmland; (3) forest patches connected to both construction land and farmland and (4) close forest patches. Carbon stocks and densities of four different types of forest patches during different urbanization periods in three zones (urban core, suburb and exurb) were compared to assess the impact of human disturbance on forest carbon. In the urban core, the carbon stock and carbon density in all four forest patch types declined over the study period. In the suburbs, different urbanization processes influenced forest carbon density and carbon stock in all four forest patch types. Urban sprawl negatively affected the surrounding forests. In the exurbs, the carbon stock and carbon density in all four forest patch types tended to increase over the study period. The results revealed that human disturbance played the dominant role in influencing the carbon stock and density of forest patches close to the locations of human activities. In forest patches far away from the locations of human activities, natural forest regrowth was the dominant factor affecting carbon stock and density. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Comparing a Carbon Budget for the Amazon Basin Derived from Aircraft Observations

    Science.gov (United States)

    Chow, V. Y.; Dayalu, A.; Wofsy, S. C.; Gerbig, C.

    2015-12-01

    We present and compare a carbon budget for the Brazilian Amazon Basin based on the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program, which occurred in November 2008 & May 2009, to other published carbon budgets. In particular, we compare our budget and analysis to others also derived from aircraft observations. Using mesoscale meteorological fields from ECMWF and WRF, we drive the Stochastic Time-Inverted Lagrangian Transport (STILT) model and couple the footprint, or influence, to a biosphere model represented by the Vegetation Photosynthesis Respiration Model (VPRM). Since it is the main driver for the VPRM, we use observed shortwave radiation from towers in Brazil and French Guyana to examine the modeled shortwave radiation data from GL 1.2 (a global radiation model based on GOES 8 visible imagery), ECMWF, and WRF to determine if there are any biases in the modeled shortwave radiation output. We use WRF-STILT and ECMWF-STILT, GL 1.2 shortwave radiation, temperature, and vegetation maps (IGBP and SYNMAP) updated by landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil, to compute hourly a priori CO2 fluxes by calculating Gross Ecosystem Exchange and Respiration for the 4 significant vegetation types across two (wet and dry) seasons as defined by 10-years of averaged TRIMM precipitation data. SF6 from stations and aircraft observations are used to determine the anthropogenic CO2 background and the lateral boundary conditions are taken from CarbonTracker2013B. The BARCA aircraft mixing ratios are then used as a top down constraint in an inversion framework that solves for the parameters controlling the fluxes for each vegetation type. The inversion provides scaling factors for GEE and R for each vegetation type in each season. From there, we derive a budget for the Basin and compare/contrast with other published basinwide CO2 fluxes.

  2. Digital mapping of soil organic carbon contents and stocks in Denmark.

    Science.gov (United States)

    Adhikari, Kabindra; Hartemink, Alfred E; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B; Greve, Mogens H

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0-5, 5-15, 15-30, 30-60 and 60-100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg(-1) was reported for 0-5 cm soil, whereas there was on average 2.2 g SOC kg(-1) at 60-100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg(-1) was found at 60-100 cm soil depth. Average SOC stock for 0-30 cm was 72 t ha(-1) and in the top 1 m there was 120 t SOC ha(-1). In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories.

  3. Organic carbon stocks and sequestration rates of forest soils in Germany.

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems.

    Science.gov (United States)

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-13

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha(-1) yr(-1), with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  5. Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems

    Science.gov (United States)

    Wang, G.

    2017-12-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  6. Patterning between urban soil color and carbon stocks

    Science.gov (United States)

    Schifman, L. A.; Herrmann, D.; Shuster, W.

    2017-12-01

    Urban soils are extensively modified compared to their non-urban counterparts. These modifications are expected to affect the vertical distribution of total soil carbon as well as its constituent pools - soil organic carbon, black carbon, and inorganic carbon. Assigning color to soil horizons using the Munsell color system is a standard field method employed by soil scientists that can also reveal generalizable information about various environmental metrics. A new dataset on urban soils and their reference counterparts that cover 11 regions in the United States and advances in quantitative pedology allowed us to construct a log-linear model that relates Value, the lightness of a color hue, to the concentration of total carbon throughout a soil column of up to 450 cm depth. Overall, the relationship between 671 points resulted in an r2 of 0.23 with a p<0.001. As expected, organic carbon, shifted values to the lower end of the scale (darker), whereas inorganic carbon increased soil color values (lighter). These findings allow for a simplified understanding of shifts in carbon pools throughout a soil profile.

  7. High-severity wildfire effects on carbon stocks and emissions in fuels treated and untreated forest

    Science.gov (United States)

    Malcolm P. North; Matthew D. Hurteau

    2011-01-01

    Forests contain the world's largest terrestrial carbonstocks, but in seasonally dry environments stock stability can be compromised if burned by wildfire, emitting carbon back to the atmosphere. Treatments to reduce wildfireseverity can reduce emissions, but with an immediate cost of reducing carbonstocks. In this study we examine the tradeoffs in...

  8. An empirical assessment of forest floor carbon stock components across the United States

    Science.gov (United States)

    Christopher W. Woodall; Charles H. Perry; James A. Westfall

    2012-01-01

    Despite its prevalent reporting in regional/national greenhouse gas inventories (NGHGI), forest floor (FF) carbon (C) stocks (including litter, humus, and fine woody debris [FWD]) have not been empirically measured using a consistent approach across forests of the US. The goal of this study was to use the first national field inventory of litter and humic layer depths...

  9. Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods

    Science.gov (United States)

    Zhaodi Guo; Jingyun Fang; Yude Pan; Richard. Birdsey

    2010-01-01

    Several studies have reported different estimates for forest biomass carbon (C) stocks in China. The discrepancy among these estimates may be largely attributed to the methods used. In this study, we used three methods [mean biomass density method (MBM), mean ratio method (MRM), and continuous biomass expansion factor (BEF) method (abbreviated as CBM)] applied to...

  10. Trends in management of the world's forests and impacts on carbon stocks

    Science.gov (United States)

    Richard Birdsey; Yude. Pan

    2015-01-01

    Global forests are increasingly affected by land-use change, fragmentation, changing management objectives, and degradation. In this paper we broadly characterize trends in global forest area by intensity of management, and provide an overview of changes in global carbon stocks associated with managed forests. We discuss different interpretations of "management...

  11. Biomasse et stocks de carbone des forêts tropicales africaines (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Loubota Panzou, GJ.

    2016-01-01

    Full Text Available Biomass and carbon stocks of tropical African forests. A review. Introduction. Quantifying the biomass and carbon stocks contained in tropical forests has become an international priority for the implementation of the REDD+ mechanism. Forest biomass is estimated at three successive levels: the tree, the stand and the region level. This paper reviews the state of the art regarding the estimation of biomass and carbon stocks in tropical African forests. Literature. This review highlights the fact that very few allometric equations, equations used for estimating the biomass of the tree using non-destructive measurements (diameter, height, have been established for tropical African forests. At the stand level, the review highlights the spatial and temporal variations in biomass between forest types in Central and Eastern Africa. While biomass recovery after a disturbance (logging, for instance is rather quick, a great deal of uncertainty still remains regarding the spatial variation in biomass, and there is no consensus on a regional biomass map. The quality of biomass mapping in tropical Africa strongly depends on the type of remotely-sensed data being used (optical, RADAR or LIDAR, and the allometric equation used to convert forest inventory data into biomass. Conclusions. Based on the lack of precision of the available allometric equations and forest inventory data and the large spatial scale involved, many uncertainties persist in relation to the estimation of the biomass and carbon stocks contained in African tropical forests.

  12. Increasing carbon sinks in European forests: effect of afforestation and changes in mean growing stock volume

    NARCIS (Netherlands)

    Vilén, T.; Cienciala, E.; Schelhaas, M.; Verkerk, P.J.; Lindner, M.; Peltola, H.

    2016-01-01

    In Europe, both forest area and growing stock have increased since the 1950s, and European forests have acted as a carbon sink during the last six decades. However, the contribution of different factors affecting the sink is not yet clear. In this study, historical inventory data were combined with

  13. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil

    Directory of Open Access Journals (Sweden)

    L. M. Sanders

    2018-01-01

    Full Text Available Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers. A sediment accumulation rate of  ∼ 4 mm yr−1 for the previous  ∼ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m−2 yr−1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in

  14. Carbon balance variability in the Amazon Basin with climate change based on regular atmospheric profiling of greenhouse gases

    Science.gov (United States)

    Gatti, L.; Domingues, L. G.; Gloor, M.; Miller, J. B.; Peters, W.; Silva, M. G.; Correia, C. S. D. C.; Basso, L. S.; Alden, C. B.; Borges, V. F.; Marani, L.; Santos, R. S.; Crispim, S. P.; Sanches, A.; Costa, W. R.

    2017-12-01

    Net carbon exchange between tropical land and the atmosphere is potentially important because the vast amounts of carbon in forests and soils can be released on short time-scales e.g. via deforestation or changes in temperature and precipitation. Such changes may thus cause feedbacks on global climate as have been predicted in earth system models. The Amazon is the most significant region in the global carbon cycle, hosting by far the largest carbon vegetation and soil carbon pools ( 200 PgC). From 2010 onwards we have extended an earlier greenhouse gas measurement program to include regular vertical profiles of CO2 from the ground up to 4.5 km height at four sites along the main air-stream over the Amazon Basin. Our measurements demonstrate that surface flux signals are primarily concentrated to the lower 2 km and thus vertical profile measurements are ideally suited to estimate greenhouse gas balances. To understand the role of Amazon in global carbon budget it is important to maintain a long period of measurements that can represent the whole region. Our results already permit a range of insights about the magnitude, seasonality, inter-annual variation of carbon fluxes and their climate controls. Most recent years have been anomalously hot with the southern part of the Basin having warmed the most. Precipitation regimes also seem to have shifted with an increase in extreme floods. For the specific period we will discuss the period of 2010 to 2016, where the years 2010 and 2015/16 were anomalously dry and hot (both El Nino years) and the year 2013 was the wettest and coldest year. This period provides an interesting contrast of climatic conditions in a warming world with increasing human pressures and we will present the carbon balance for the basin during the last 7 years. We will analyze the effect of this climate variability on annual and seasonal carbon balances for these seven years using our atmospheric data. Our data permit us not only to estimate net CO2

  15. Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030

    NARCIS (Netherlands)

    Cerri, C.E.P.; Easter, M.; Paustian, K.; Killian, K.; Coleman, K.; Bernoux, M.; Falloon, P.; Powlson, D.S.; Batjes, N.H.; Milne, E.; Cerri, C.C.

    2007-01-01

    This research investigated adult age differences in a metamemory monitoring task¿episodic feeling-of-knowing (FOK) and in an episodic memory task¿cued recall. Executive functioning and processing speed were examined as mediators of these age differences. Young and elderly adults were administered an

  16. Soil carbon stocks and carbon sequestration rates in seminatural grassland in Aso region, Kumamoto, Southern Japan.

    Science.gov (United States)

    Toma, Yo; Clifton-Brown, John; Sugiyama, Shinji; Nakaboh, Makoto; Hatano, Ryusuke; Fernández, Fabián G; Ryan Stewart, J; Nishiwaki, Aya; Yamada, Toshihiko

    2013-06-01

    Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well-informed, land-use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km(2) (767-937 m asl.) from the surface down to the k-Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using (14) C dating) and δ(13) C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C-sequestration rates. The mean total C stock of all six sites was 232 Mg C ha(-1) (28-417 Mg C ha(-1) ), which equates to a soil C sequestration rate of 32 kg C ha(-1)  yr(-1) over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha(-1)  yr(-1) , respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ(13) C abundance. We conclude that the seminatural, C4 -dominated grassland system serves as an important C sink, and worthy of future conservation. © 2013 Blackwell Publishing Ltd.

  17. Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China.

    Science.gov (United States)

    Xu, Mengjie; Ji, Haibao; Zhuang, Shunyao

    2018-01-01

    Latitude is an important factor that influences the carbon stock of Moso bamboo (Phyllostachys pubescens) forests. Accurate estimation of the carbon stock of Moso bamboo forest can contribute to sufficient evaluation of forests in carbon sequestration worldwide. Nevertheless, the effect of latitude on the carbon stock of Moso bamboo remains unclear. In this study, a field survey with 36 plots of Moso bamboo forests along a latitude gradient was conducted to investigate carbon stock. Results showed that the diameter at breast height (DBH) of Moso bamboo culms increased from 8.37 cm to 10.12 cm that well fitted by Weibull model, whereas the bamboo culm density decreased from 4722 culm ha-1 to 3400 culm ha-1 with increasing latitude. The bamboo biomass carbon decreased from 60.58 Mg C ha-1 to 48.31 Mg C ha-1 from north to south. The total carbon stock of Moso bamboo forests, which comprises soil and biomass carbon, ranged from 87.83 Mg C ha-1 to 119.5 Mg C ha-1 and linearly increased with latitude. As a fast-growing plant, Moso bamboo could be harvested amounts of 6.0 Mg C ha-1 to 7.6 Mg C ha-1 annually, which indicates a high potential of this species for carbon sequestration. Parameters obtained in this study can be used to accurately estimate the carbon stock of Moso bamboo forest to establish models of the global carbon balance.

  18. Biophysical Controls over Carbon and Nitrogen Stocks in Desert Playa Wetlands

    Science.gov (United States)

    McKenna, O. P.; Sala, O. E.

    2014-12-01

    Playas are ephemeral desert wetlands situated at the bottom of closed catchments. Desert playas in the Southwestern US have not been intensively studied despite their potential importance for the functioning of desert ecosystems. We want to know which geomorphic and ecological variables control of the stock size of soil organic carbon, and soil total nitrogen in playas. We hypothesize that the magnitude of carbon and nitrogen stocks depends on: (a) catchment size, (b) catchment slope, (d) catchment vegetation cover, (e) bare-ground patch size, and (f) catchment soil texture. We chose thirty playas from across the Jornada Basin (Las Cruces, NM) ranging from 0.5-60ha in area and with varying catchment characteristics. We used the available 5m digital elevation map (DEM) to calculate the catchment size and catchment slope for these thirty playas. We measured percent cover, and patch size using the point-intercept method with three 10m transects in each catchment. We used the Bouyoucos-hydrometer soil particle analysis to determine catchment soil texture. Stocks of organic carbon and nitrogen were measured from soil samples at four depths (0-10 cm, 10-30 cm, 30-60 cm, 60-100 cm) using C/N combustion analysis. In terms of nitrogen and organic carbon storage, we found soil nitrogen values in the top 10cm ranging from 41.963-214.365 gN/m2, and soil organic carbon values in the top 10cm ranging from 594.339-2375.326 gC/m2. The results of a multiple regression analysis show a positive relationship between catchment slope and both organic carbon and nitrogen stock size (nitrogen: y= 56.801 +47.053, R2=0.621; organic carbon: y= 683.200 + 499.290x, R2= 0.536). These data support our hypothesis that catchment slope is one of factors controlling carbon and nitrogen stock in desert playas. We also applied our model to the 69 other playas of the Jornada Basin and estimated stock sizes (0-10cm) between 415.07-447.97 Mg for total soil nitrogen and 4627.99-5043.51 Mg for soil organic

  19. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  20. The Effectiveness of Ameliorant to Increase Carbon Stock of Oilpalm and Rubber Plantation on Peatland

    Directory of Open Access Journals (Sweden)

    Ai Dariah

    2015-05-01

    Full Text Available Application of peatland amelioration can improve soil quality, reduce GHG emissions, and increase carbon sequestration. The research aimed to study the effect of peatland amelioration on oil palm and rubber carbon stock improvement. Research was conducted from August 2013 until June 2014. The researches on oil palm were done in Arang-arang Village, Kumpeh Subdistrict, Muaro Jambi District, and in Lubuk Ogong Village, Bandar Seikijang Sub-district, Pelalawan District. Both sites are in Jambi and Riau Province. The research on rubber was done in Jabiren Village, Jabiren Raya Subdistrict, Pulang Pisau District, Central Kalimantan Province. The study used a Randomized Completely Block Design (RCBD, in four treatments and four replications. The treatments were pugam (peat fertilizer enriched by polyvalent cation, manure; empty fruit bunch compost, and control (no application. The measurement of C stock was performed 10 months after application using nondestructive methods. The results showed that peatland amelioration treatments had no significant effect to improve C stock on oil palm in 6 years old and 7 years old of rubber. After 10 months of amelioration application, the treatments increased C - stock of oil palm and rubber were 2.1-2.4 Mg ha-1 and 5-11 Mg ha-1, respectively. Longer time observation may be needed to study the effect of ameliorant on C-stock of annual crops.

  1. Organic Carbon Stocks, Dynamics and Restoration in Relation to Soils of Agroecosystems in Ethiopia: A Review

    Directory of Open Access Journals (Sweden)

    Getaneh Gebeyehu

    2017-02-01

    Full Text Available Soils represent the largest carbon pool and play important roles for carbon storage for prolonged periods in agroecosystems. A number of studies were conducted to quantify soil organic carbon (SOC worldwide. The objective of this review was to evaluate organic carbon stocks, dynamics and restoration in soils of agroecosystems in Ethiopia. Soil data from 32 different observations, representing four different agroecosystems, were analysed. The mean SOC stocks in the four agroecosystems varied and ranged from 25.66 (sub-humid agroecosystem to 113.17 (humid mid-highland agroecosystems Mg C ha-1 up to one meter depth. The trend of mean SOC followed (in descending order: humid mid-highland (113.17 Mg C ha-1 > per-humid highland (57.14 Mg C ha-1 > semi-arid (25.77 Mg C ha-1 > sub-humid (25.66 Mg C ha-1. Compared with soils of tropical countries, those in Ethiopian agroecosystems contained low SOC storage potential. This might be associated with differences in measurement and analysis methods as 53.1% of the studies employed the Walkley-Black Method, which is known to underestimate carbon stocks in addition to ecological and management effects. However, shifts of land management from rain-fed to irrigation farming systems exhibited progress in the improvement of mean SOC storage potential. The analyses showed that farming systems involving irrigation sequestered more carbon than rain-fed farm systems. The mean SOC in the various agricultural land uses followed the following trend (in descending order: agroforestry (153.57 Mg C ha-1 > grazing land (34.61 Mg C ha-1 > cereal cultivation (24.18 Mg C ha-1. Therefore, the possible solutions for improvement of organic carbon stocks would be implementation of appropriate restoration strategies based on agroecosystems.INTERNATIONAL JOURNAL OF ENVIRONMENT Volume-6, Issue-1, Dec-Feb 2016/17, page: 1-22 

  2. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  3. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    Science.gov (United States)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should

  4. Unexpectedly high soil organic carbon stocks under impervious surfaces contributed by urban deep cultural layers

    Science.gov (United States)

    Bae, J.; Ryu, Y.

    2017-12-01

    The expansion of urban artificial structures has altered the spatial distribution of soil organic carbon (SOC) stocks. The majority of the urban soil studies within the land-cover types, however, focused on top soils despite the potential of deep soils to store large amounts of SOC. Here, we investigate vertical distribution of SOC stocks in both impervious surfaces (n = 11) and adjacent green spaces (n = 8) to a depth of 4 m with in an apartment complex area, Seoul, Republic of Korea. We found that more than six times differences in SOC stocks were observed at 0-1 m depth between the impervious surfaces (1.90 kgC m-2) and the green spaces (12.03 kgC m-2), but no significant differences appeared when comparing them at the depth of 0-4 m. We found "cultural layers" with the largest SOC stocks at 1-2 m depth in the impervious surfaces (15.85 kgC m-2) and 2-3 m depths in urban green spaces (12.52 kgC m-2). Thus, the proportions of SOC stocks at the 0-1 m depth to the total of 0-4 m depth were 6.83% in impervious surfaces and 32.15% in urban green spaces, respectively. The 13C and 15N stable isotope data with historical aerial photographs revealed that the cropland which existed before 1978 formed the SOC in the cultural layers. Our results highlight that impervious surface could hold large amount of SOC stock which has been overlooked in urban carbon cycles. We believe this finding will help city planners and policy makers to develop carbon management programs better towards sustainable urban ecosystems.

  5. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  6. NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue

    Directory of Open Access Journals (Sweden)

    Fen Yue

    2018-04-01

    Full Text Available Hydrothermal carbonization (HTC is a valuable approach to convert furfural residue (FR into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques (1H and 13C NMR, 1H–1H COSY and 1H13C HSQC etc. especially 1D selective gradient total correlation spectroscopy (TOCSY NMR were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions (180–240 °C at 8 h, and 1–24 h at 240 °C was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies. Keywords: NMR, Hydrothermal carbonization, Furfural residue, Stock process water

  7. Deep soil carbon stock in Chinese Loess Plateau and its turnover

    Science.gov (United States)

    Song, C.; Han, G.; Yingchun, S.; Liu, C. Q.

    2017-12-01

    The loess plateau in northwestern China has been regarded as a huge carbon stock in China. However, so far, the mechanisms of carbon cycle in deep loess is still not well known. Hence, we established a field experiment site of carbon cycle in deep loess at Qiushe village, Lingtai county, Gansu province, and observed: (1) the hydro-chemical composition, DIC (Dissolved Inorganic Carbon), DOC (Dissolved Organic Carbon), and POC (Particulate Organic Carbon) in spring water discharging from loess section in Qiushe village, Lingtai county, Gansu province of Northwestern China; and (2) soil CO2 concentration and its lateral fluxes in loess section. The results showed that: (i) The DIC and DOC concentration in groundwater of loess area is 5.25 5.45mmol/L, and 0.59 0.62 mg/L, respectively, while POC concentration is high due to the mixture of loess particle matter. According to the ion balance of carbonate weathering reaction, the 2.82 mmol CO2 can be absorbed by carbonate weathering when 1 L rainfall can infiltrate into the loess until below the zero flux plane. (2) CO2 concentration in loess is higher than in atmosphere and reaches the maximum of 4180 μmol·mol-1 in S14, different loess/paleosol fails to display an instinct trend. The δ13C value of CO2 ranged from -21.31 ‰ to -15.37 ‰, and had a positive relationship with 1/[CO2] (r = 0.74), suggesting that CO2 in loess is not only relative to decomposed organic carbon by microbe, and also to the balance system among CaCO3-H2O-CO2 in the interface between saturated and unsaturated zone. The comparison between the lateral flux of CO2 in loess profile and the vertical CO2 flux in ground surface reveal that ignoring the lateral flux of CO2 may lead to a severe underestimation of soil carbon emission in mountainous area. So the geomorphological surficial area should be used instead of acreage in relative models to avoid the underestimation during estimating the soil carbon emission. (3) At the annual scale, the carbon

  8. Carbon stock projection in North Sumatera using multi objective land allocation approach

    Science.gov (United States)

    Ichwani, S. N.; Wulandari, R.; Ramachandra, A.

    2018-05-01

    Nowadays, GHG emission is a critical issue for environmental management due to the large scale of land cover change, especially forest cover. This study provides a protection development strategy for North Sumatera as one way to manage the area. By using Multi Objective Land Allocation (MOLA), we evaluated two GHG emission scenarios, including a Business As Usual (BAU) scenario and Protection scenario. The result shows that the province will lose the carbon stock up to 24 million tons in the year of 2035 by using a BAU scenario. On the other hand, by implementing the Protection scenario, total carbon stock that is lost in the same period is about 5 millions tons solely. It proves that protection scenario is a good scenario and effective to reduce the carbon loss. Furthermore, this scenario can be an alternative for North Sumatera spatial plan.

  9. Impact of deforestation on soil carbon stock and its spatial distribution in the Western Black Sea Region of Turkey.

    Science.gov (United States)

    Kucuker, Mehmet Ali; Guney, Mert; Oral, H Volkan; Copty, Nadim K; Onay, Turgut T

    2015-01-01

    Land use management is one of the most critical factors influencing soil carbon storage and the global carbon cycle. This study evaluates the impact of land use change on the soil carbon stock in the Karasu region of Turkey which in the last two decades has undergone substantial deforestation to expand hazelnut plantations. Analysis of seasonal soil data indicated that the carbon content decreased rapidly with depth for both land uses. Statistical analyses indicated that the difference between the surface carbon stock (defined over 0-5 cm depth) in agricultural and forested areas is statistically significant (Agricultural = 1.74 kg/m(2), Forested = 2.09 kg/m(2), p = 0.014). On the other hand, the average carbon stocks estimated over the 0-1 m depth were 12.36 and 12.12 kg/m(2) in forested and agricultural soils, respectively. The carbon stock (defined over 1 m depth) in the two land uses were not significantly different which is attributed in part to the negative correlation between carbon stock and bulk density (-0.353, p < 0.01). The soil carbon stock over the entire study area was mapped using a conditional kriging approach which jointly uses the collected soil carbon data and satellite-based land use images. Based on the kriging map, the spatially soil carbon stock (0-1 m dept) ranged about 2 kg/m(2) in highly developed areas to more than 23 kg/m(2) in intensively cultivated areas as well as the averaged soil carbon stock (0-1 m depth) was estimated as 10.4 kg/m(2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. [Remote sensing estimation of urban forest carbon stocks based on QuickBird images].

    Science.gov (United States)

    Xu, Li-Hua; Zhang, Jie-Cun; Huang, Bo; Wang, Huan-Huan; Yue, Wen-Ze

    2014-10-01

    Urban forest is one of the positive factors that increase urban carbon sequestration, which makes great contribution to the global carbon cycle. Based on the high spatial resolution imagery of QuickBird in the study area within the ring road in Yiwu, Zhejiang, the forests in the area were divided into four types, i. e., park-forest, shelter-forest, company-forest and others. With the carbon stock from sample plot as dependent variable, at the significance level of 0.01, the stepwise linear regression method was used to select independent variables from 50 factors such as band grayscale values, vegetation index, texture information and so on. Finally, the remote sensing based forest carbon stock estimation models for the four types of forest were established. The estimation accuracies for all the models were around 70%, with the total carbon reserve of each forest type in the area being estimated as 3623. 80, 5245.78, 5284.84, 5343.65 t, respectively. From the carbon density map, it was found that the carbon reserves were mainly in the range of 25-35 t · hm(-2). In the future, urban forest planners could further improve the ability of forest carbon sequestration through afforestation and interplanting of trees and low shrubs.

  11. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.

    Science.gov (United States)

    Ahmad Dar, Javid; Somaiah, Sundarapandian

    2015-02-01

    Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.

  12. Quantifying the Stock of Soil Organic Carbon using Multiple ...

    African Journals Online (AJOL)

    The stepwise multiple regression model was employed to identify ecological variables that explained significant variation of carbon in fallow soils. Using fallow genealogical cycles of 1st, 2nd, 3rd, 4th and 5th generations, soil and vegetation variables from 30 sampling plots were collected and subjected to linear regression ...

  13. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks

    KAUST Repository

    Arias-Ortiz, A.

    2018-03-29

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system.

  14. A marine heatwave drives massive losses from the world's largest seagrass carbon stocks

    Science.gov (United States)

    Arias-Ortiz, A.; Serrano, O.; Masqué, P.; Lavery, P. S.; Mueller, U.; Kendrick, G. A.; Rozaimi, M.; Esteban, A.; Fourqurean, J. W.; Marbà, N.; Mateo, M. A.; Murray, K.; Rule, M. J.; Duarte, C. M.

    2018-04-01

    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay's seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO2 could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4-21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system.

  15. Alaskan soil carbon stocks: spatial variability and dependence on environmental factors

    Directory of Open Access Journals (Sweden)

    U. Mishra

    2012-09-01

    Full Text Available The direction and magnitude of soil organic carbon (SOC changes in response to climate change depend on the spatial and vertical distributions of SOC. We estimated spatially resolved SOC stocks from surface to C horizon, distinguishing active-layer and permafrost-layer stocks, based on geospatial analysis of 472 soil profiles and spatially referenced environmental variables for Alaska. Total Alaska state-wide SOC stock was estimated to be 77 Pg, with 61% in the active-layer, 27% in permafrost, and 12% in non-permafrost soils. Prediction accuracy was highest for the active-layer as demonstrated by highest ratio of performance to deviation (1.5. Large spatial variability was predicted, with whole-profile, active-layer, and permafrost-layer stocks ranging from 1–296 kg C m−2, 2–166 kg m−2, and 0–232 kg m−2, respectively. Temperature and soil wetness were found to be primary controllers of whole-profile, active-layer, and permafrost-layer SOC stocks. Secondary controllers, in order of importance, were found to be land cover type, topographic attributes, and bedrock geology. The observed importance of soil wetness rather than precipitation on SOC stocks implies that the poor representation of high-latitude soil wetness in Earth system models may lead to large uncertainty in predicted SOC stocks under future climate change scenarios. Under strict caveats described in the text and assuming temperature changes from the A1B Intergovernmental Panel on Climate Change emissions scenario, our geospatial model indicates that the equilibrium average 2100 Alaska active-layer depth could deepen by 11 cm, resulting in a thawing of 13 Pg C currently in permafrost. The equilibrium SOC loss associated with this warming would be highest under continuous permafrost (31%, followed by discontinuous (28%, isolated (24.3%, and sporadic (23.6% permafrost areas. Our high-resolution mapping of soil carbon stock reveals the

  16. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests.

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G; Lindenmayer, David B

    2009-07-14

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.

  17. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.

    2009-01-01

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199

  18. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Corina Dörfer

    Full Text Available The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA and continuous permafrost (site Wudaoliang, WUD. Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3 of mineral associated organic matter (MOM. The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1. Higher SOC contents (320 g kg(-1 were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1. Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA and 22% (WUD to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth account for 10.4 kg m(-2, compared to 3.4 kg m(-2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  19. Modeling soil organic carbon stocks and changes in Spain using the GEFSOC system

    Science.gov (United States)

    Álvaro-Fuentes, Jorge; Easter, Mark; Cantero-Martínez, Carlos; Paustian, Keith

    2010-05-01

    Currently, there is little information about soil organic carbon (SOC) stocks in Spain. To date the effects of land-use and soil management on SOC stocks in Spain have been evaluated in experimental fields under certain soil and climate conditions. However, these field experiments do not account for the spatial variability in management, cropping systems and soil and climate characteristics that exist in the whole territory. More realistic approaches like ecosystem-level dynamic simulation systems linked to geographic information systems (GIS) allow better assessments of SOC stocks at a regional or national level. The Global Environmental Facility Soil Organic Carbon (GEFSOC) system was recently built for this purpose (Milne et al., 2007) and it incorporates three widely used models for estimating SOC dynamics: (a) the Century ecosystem model; (b) the RothC soil C decomposition model; and (c) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. We modeled 9.5 Mha in northeast Spain using the GEFSOC system to predict SOC stocks and changes comprising: pasture, forest, cereal-fallow, cereal monoculture, orchards, rice, irrigated land and grapes and olives. The spatial distribution of the different land use categories and their change over time was obtained from the European Corine database and from Spanish census data on land use from 1926 to 2007. At the same time, current and historical management information was collected from different sources in order to have a fairly well picture of changes in land use and management for this area. Soil parameters needed by the system were obtained from the European soil map (1 km x 1 km) and climate data was produced by the Meteorology State Agency (Ministry of the Environment and Rural and Marine Environs of Spain). The SOC stocks simulated were validated with SOC values from the European SOC map and from other national studies. Modeled SOC results suggested that spatial

  20. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

    Science.gov (United States)

    Li, Xiaoqiong; Ye, Duo; Liang, Hongwen; Zhu, Hongguang; Qin, Lin; Zhu, Yuling; Wen, Yuanguang

    2015-01-01

    Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR) and a second rotation (SR) stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC) did not significantly differ between rotations, while understory vegetation (UC) and soil organic matter (SOC) stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1) and 70.68 vs. 81.08 Mg. ha(-1), respectively) and forest floor carbon (FFC) conversely stored more (2.80 vs. 2.34 Mg. ha(-1)). The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool) of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential.

  1. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

    Directory of Open Access Journals (Sweden)

    Xiaoqiong Li

    Full Text Available Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR and a second rotation (SR stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC did not significantly differ between rotations, while understory vegetation (UC and soil organic matter (SOC stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1 and 70.68 vs. 81.08 Mg. ha(-1, respectively and forest floor carbon (FFC conversely stored more (2.80 vs. 2.34 Mg. ha(-1. The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential.

  2. Pyrogenic Carbon Erosion: Implications for Stock and Persistence of Pyrogenic Carbon in Soil

    Directory of Open Access Journals (Sweden)

    Rebecca B. Abney

    2018-03-01

    Full Text Available Pyrogenic carbon (PyC constitutes an important pool of soil organic matter (SOM, particularly for its reactivity and because of its assumed long residence times in soil. In the past, research on the dynamics of PyC in the soil system has focused on quantifying stock and mean residence time (MRT of PyC in soil, as well as determining both PyC stabilization mechanisms and loss pathways. Much of this research has focused on decomposition as the most important loss pathway for PyC from soil. However, the low density of PyC and its high concentration on the soil surface after fire indicates that a significant proportion of PyC formed or deposited on the soil surface is likely laterally transported away from the site of production by wind and water erosion. Here, we present a synthesis of available data and literature to compare the magnitude of the water-driven erosional PyC flux with other important loss pathways, including leaching and decomposition, of PyC from soil. Furthermore, we use a simple first-order kinetic model of soil PyC dynamics to assess the effect of erosion and deposition on residence time of PyC in eroding landscapes. Current reports of PyC MRT range from 250 to 660 years. Using a specific example-based model system, we find that ignoring the role of erosion may lead to the under- or over-estimation of PyC MRT on the centennial time scale. Furthermore, we find that, depending on the specific landform positions, timescales considered, and initial concentrations of PyC in soil, ignoring the role of erosion in distributing PyC across a landscape can lead to discrepancies in PyC concentrations on the order of several 100 g PyC m−2. Erosion is an important PyC flux that can act as a significant control on the stock and residence time of PyC in the soil system.

  3. Pyrogenic carbon erosion: implications for stock and persistence of pyrogenic carbon in soil

    Science.gov (United States)

    Abney, Rebecca B.; Berhe, Asmeret Asefaw

    2018-03-01

    Pyrogenic carbon (PyC) constitutes an important pool of soil organic matter, particularly for its reactivity and because of its assumed long residence times in soil. In the past, research on the dynamics of PyC in the soil system has focused on quantifying stock and mean residence time of PyC in soil, as well as determining both PyC stabilization mechanisms and loss pathways. Much of this research has focused on decomposition as the most important loss pathway for PyC from soil. However, the low density of PyC and its high concentration on the soil surface after fire indicates that a significant proportion of PyC formed or deposited on the soil surface is likely laterally transported away from the site of production by wind and water erosion. Here, we present a synthesis of available data and literature to compare the magnitude of the water-driven erosional PyC flux with other important loss pathways, including leaching and decomposition, of PyC from soil. Furthermore, we use a simple first-order kinetic model of soil PyC dynamics to assess the effect of erosion and deposition on residence time of PyC in eroding landscapes. Current reports of PyC mean residence time (MRT) range from 250 to 660 years. Using a specific example-based model system, we find that ignoring the role of erosion may lead to the under- or over-estimation of PyC MRT on the centennial time scale. Furthermore, we find that, depending on the specific landform positions, timescales considered, and initial concentrations of PyC in soil, ignoring the role of erosion in distributing PyC across a landscape can lead to discrepancies in PyC concentrations on the order of several hundred g PyC m-2. Erosion is an important PyC flux that can act as a significant control on the stock and residence time of PyC in the soil system.

  4. A direct estimate of evapotranspiration over the Amazon basin and implications for our understanding of carbon and water cycling

    Science.gov (United States)

    Swann, A. L. S.; Koven, C.; Lombardozzi, D.; Bonan, G. B.

    2017-12-01

    Evapotranspiration (ET) is a critical term in the surface energy budget as well as the water cycle. There are few direct measurements of ET, and thus the magnitude and variability is poorly constrained at large spatial scales. Estimates of the annual cycle of ET over the Amazon are critical because they influence predictions of the seasonal cycle of carbon fluxes, as well as atmospheric dynamics and circulation. We estimate ET for the Amazon basin using a water budget approach, by differencing rainfall, discharge, and time-varying storage from the Gravity Recovery and Climate Experiment. We find that the climatological annual cycle of ET over the Amazon basin upstream of Óbidos shows suppression of ET during the wet season, and higher ET during the dry season, consistent with flux tower based observations in seasonally dry forests. We also find a statistically significant decrease in ET over the time period 2002-2015 of -1.46 mm/yr. Our direct estimate of the seasonal cycle of ET is largely consistent with previous indirect estimates, including energy budget based approaches, an up-scaled station based estimate, and land surface model estimates, but suggests that suppression of ET during the wet season is underestimated by existing products. We further quantify possible contributors to the phasing of the seasonal cycle and downward time trend using land surface models.

  5. The soil classification and the subsurface carbon stock estimation with a ground-penetrating radar

    International Nuclear Information System (INIS)

    Onishi, K.; Rokugawa, S.; Kato, Y.

    2002-01-01

    One of the serious problems of the Kyoto Protocol is that we have no effective method to estimate the carbon stock of the subsurface. To solve this problem, we propose the application of ground-penetrating radar (GPR) to the subsurface soil survey. As a result, it is shown that GPR can detect the soil horizons, stones and roots. The fluctuations of the soil horizons in the forest are cleanly indicated as the reflection pattern of the microwaves. Considering the fact that the physical, chemical, and biological characteristics of each soil layer is almost unique, GPR results can be used to estimate the carbon stock in soil by combining with the vertical soil sample survey at one site. Then as a trial, we demonstrate to estimate the carbon content fixed in soil layers based on the soil samples and GPR survey data. we also compare this result with the carbon stock for the flat horizon case. The advantages of GPR usage for this object are not only the reduction of uncertainty and the cost, but also the environmental friendliness of survey manner. Finally, we summarize the adaptabilities of various antennas having different predominant frequencies for the shallow subsurface zone. (author)

  6. The rapid measurement of soil carbon stock using near-infrared technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono; Bustan

    2018-03-01

    As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.

  7. Correlation analysis between forest carbon stock and spectral vegetation indices in Xuan Lien Nature Reserve, Thanh Hoa, Viet Nam

    Science.gov (United States)

    Dung Nguyen, The; Kappas, Martin

    2017-04-01

    In the last several years, the interest in forest biomass and carbon stock estimation has increased due to its importance for forest management, modelling carbon cycle, and other ecosystem services. However, no estimates of biomass and carbon stocks of deferent forest cover types exist throughout in the Xuan Lien Nature Reserve, Thanh Hoa, Viet Nam. This study investigates the relationship between above ground carbon stock and different vegetation indices and to identify the most likely vegetation index that best correlate with forest carbon stock. The terrestrial inventory data come from 380 sample plots that were randomly sampled. Individual tree parameters such as DBH and tree height were collected to calculate the above ground volume, biomass and carbon for different forest types. The SPOT6 2013 satellite data was used in the study to obtain five vegetation indices NDVI, RDVI, MSR, RVI, and EVI. The relationships between the forest carbon stock and vegetation indices were investigated using a multiple linear regression analysis. R-square, RMSE values and cross-validation were used to measure the strength and validate the performance of the models. The methodology presented here demonstrates the possibility of estimating forest volume, biomass and carbon stock. It can also be further improved by addressing more spectral bands data and/or elevation.

  8. How can soil organic carbon stocks in agriculture be maintained or increased?

    Science.gov (United States)

    Don, Axel; Leifeld, Jens

    2015-04-01

    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  9. Soil carbon stocks along an altitudinal gradient in different land-use categories in Lesser Himalayan foothills of Kashmir

    Science.gov (United States)

    Shaheen, H.; Saeed, Y.; Abbasi, M. K.; Khaliq, A.

    2017-04-01

    The carbon sequestration potential of soils plays an important role in mitigating the effect of climate change, because soils serve as sinks for atmospheric carbon. The present study was conducted to estimate the carbon stocks and their variation with altitudinal gradient in the Lesser Himalayan foothills of Kashmir. The carbon stocks were estimated in different land use categories, namely: closed canopy forests, open forests, disturbed forests, and agricultural lands within the altitudinal range from 900 to 2500 m. The soil carbon content was determined by the Walkley-Black titration method. The average soil carbon stock was found to be 2.59 kg m-2. The average soil carbon stocks in closed canopy forests, open forests, and disturbed forests were 3.39, 2.06, and 2.86 kg m-2, respectively. The average soil carbon stock in the agricultural soils was 2.03 kg m-2. The carbon stocks showed a significant decreasing trend with the altitudinal gradient with maximum values of 4.13 kg m-2 at 900-1200 m a.s.l. and minimum value of 1.55 kg m-2 at 2100-2400 m a.s.l. The agricultural soil showed the least carbon content values indicating negative impacts of soil plowing, overgrazing, and soil degradation. Lower carbon values at higher altitudes attest to the immature character of forest stands, as well as to degradation due to immense fuel wood extraction, timber extraction, and harsh climatic conditions. The study indicates that immediate attention is required for the conservation of rapidly declining carbon stocks in agricultural soils, as well as in the soils of higher altitudes.

  10. Remote SST Forcing and Local Land-Atmosphere Moisture Coupling as Drivers of Amazon Temperature and Carbon Cycle Variability

    Science.gov (United States)

    Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.

    2017-12-01

    Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes

  11. Comparisons of allometric and climate-derived estimates of tree coarse root carbon stocks in forests of the United States

    Science.gov (United States)

    Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Anthony W. D' Amato

    2015-01-01

    Background: Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Specifically, belowground C stocks are currently estimated in the United States' national greenhouse gas inventory (US NGHGI) using...

  12. Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks

    NARCIS (Netherlands)

    Manning, P.; de Vries, F.T.; Tallowin, J.R.B.; Smith, R.; Mortimer, S.R.; Pilgrim, E.S.; Harrison, K.A.; Wright, D.G.; Quirk, H.; Benson, J.; Shipley, B.; Cornelissen, J.H.C.; Kattge, J.; Bönisch, G.; Wirth, C.; Bardgett, R.D.

    2015-01-01

    Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their

  13. Massive carbon addition to an organic-rich Andosol increased the subsoil but not the topsoil carbon stock

    Science.gov (United States)

    Zieger, Antonia; Kaiser, Klaus; Ríos Guayasamín, Pedro; Kaupenjohann, Martin

    2018-05-01

    Andosols are among the most carbon-rich soils, with an average of 254 Mg ha-1 organic carbon (OC) in the upper 100 cm. A current theory proposes an upper limit for OC stocks independent of increasing carbon input, because of finite binding capacities of the soil mineral phase. We tested the possible limits in OC stocks for Andosols with already large OC concentrations and stocks (212 g kg-1 in the first horizon, 301 Mg ha-1 in the upper 100 cm). The soils received large inputs of 1800 Mg OC ha-1 as sawdust within a time period of 20 years. Adjacent soils without sawdust application served as controls. We determined total OC stocks as well as the storage forms of organic matter (OM) of five horizons down to 100 cm depth. Storage forms considered were pyrogenic carbon, OM of 2.0 g cm-3. The two fractions > 1.6 g cm-3 were also analysed for aluminium-organic matter complexes (Al-OM complexes) and imogolite-type phases using ammonium-oxalate-oxalic-acid extraction and X-ray diffraction (XRD). Pyrogenic organic carbon represented only up to 5 wt % of OC, and thus contributed little to soil OM. In the two topsoil horizons, the fraction between 1.6 and 2.0 g cm-3 had 65-86 wt % of bulk soil OC and was dominated by Al-OM complexes. In deeper horizons, the fraction > 2.0 g cm-3 contained 80-97 wt % of the bulk soil's total OC and was characterized by a mixture of Al-OM complexes and imogolite-type phases, with proportions of imogolite-type phases increasing with depth. In response to the sawdust application, only the OC stock at 25-50 cm depth increased significantly (α = 0.05, 1 - β = 0.8). The increase was entirely due to increased OC in the two fractions > 1.6 g cm-3. However, there was no significant increase in the total OC stocks within the upper 100 cm. The results suggest that long-term large OC inputs cannot be taken up by the obviously OC-saturated topsoil but induce downward migration and gradually increasing storage of OC in subsurface soil layers. The small

  14. Soil Carbon and Nitrogen Stocks of Different Hawaiian Sugarcane Cultivars

    Directory of Open Access Journals (Sweden)

    Rebecca Tirado-Corbalá

    2015-06-01

    Full Text Available Sugarcane has been widely used as a biofuel crop due to its high biological productivity, ease of conversion to ethanol, and its relatively high potential for greenhouse gas reduction and lower environmental impacts relative to other derived biofuels from traditional agronomic crops. In this investigation, we studied four sugarcane cultivars (H-65-7052, H-78-3567, H-86-3792 and H-87-4319 grown on a Hawaiian commercial sugarcane plantation to determine their ability to store and accumulate soil carbon (C and nitrogen (N across a 24-month growth cycle on contrasting soil types. The main study objective establish baseline parameters for biofuel production life cycle analyses; sub-objectives included (1 determining which of four main sugarcane cultivars sequestered the most soil C and (2 assessing how soil C sequestration varies among two common Hawaiian soil series (Pulehu-sandy clay loam and Molokai-clay. Soil samples were collected at 20 cm increments to depths of up to 120 cm using hand augers at the three main growth stages (tillering, grand growth, and maturity from two experimental plots at to observe total carbon (TC, total nitrogen (TN, dissolved organic carbon (DOC and nitrates (NO−3 using laboratory flash combustion for TC and TN and solution filtering and analysis for DOC and NO−3. Aboveground plant biomass was collected and subsampled to determine lignin and C and N content. This study determined that there was an increase of TC with the advancement of growing stages in the studied four sugarcane cultivars at both soil types (increase in TC of 15–35 kg·m2. Nitrogen accumulation was more variable, and NO−3 (<5 ppm were insignificant. The C and N accumulation varies in the whole profile based on the ability of the sugarcane cultivar’s roots to explore and grow in the different soil types. For the purpose of storing C in the soil, cultivar H-65-7052 (TC accumulation of ~30 kg·m−2 and H-86-3792 (25 kg·m−2 rather H-78

  15. A comparison of soil organic carbon stock in ancient and modern land use systems in Denmark

    DEFF Research Database (Denmark)

    Breuning-Madsen, Henrik; Elberling, Bo; Balstrøm, Thomas

    2009-01-01

    . A comparison of the organic matter content in these mound cores and the plough layer in modern farmland offers an opportunity to compare the soil organic carbon (SOC) stocks in ancient and modern land use systems and to evaluate the long-term trends in carbon (C) sequestration in relation to modern farmland......During the South Scandinavian Early Bronze Age about 3300 years ago, thousands of burial mounds were constructed of sods from fallow ground used for grazing in Denmark and northern Germany. In some of these mounds a wet, anaerobic core developed, preventing the decomposition of organic matter...... with varying inputs of manure and inorganic fertilizers. In the present paper we compare SOC stocks based on integrated horizon-specific densities and SOC contents in three 3300-year-old buried farmland soils, representing the land use system at that time, with results from soil surveys representing modern...

  16. Data for developing allometric models and evaluating carbon stocks of the Zambezi Teak Forests in Zambia.

    Science.gov (United States)

    Ngoma, Justine; Moors, Eddy; Kruijt, Bart; Speer, James H; Vinya, Royd; Chidumayo, Emmanuel N; Leemans, Rik

    2018-04-01

    This paper presents data on carbon stocks of tropical tree species along a rainfall gradient. The data was generated from the Sesheke, Namwala, and Kabompo sites in Zambia. Though above-ground data was generated for all these three sites, we uprooted trees to determine below-ground biomass from the Sesheke site only. The vegetation was assessed in all three sites. The data includes tree diameter at breast height (DBH), total tree height, wood density, wood dry weight and root dry weight for large (≥ 5 cm DBH) and small (importance-value indices of various species for large and small trees are also determined. Below and above-ground carbon stocks of the surveyed tree species are presented per site. This data were used by Ngoma et al. (2018) [1] to develop above and below-ground biomass models and the reader is referred to this study for additional information, interpretation, and reflection on applying this data.

  17. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    Energy Technology Data Exchange (ETDEWEB)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-07-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m{sup -}2 yr{sup -}1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59{+-}0.43 g kg{sup -}1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha{sup -}1 yr{sup -}1. (Author) 20 refs.

  18. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-01-01

    Tibet’s forests, in contrast to China’s other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet’s forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr−1 between 2001 and 2010 and a decrease of 1.9 Tg C yr−1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet’s mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity. PMID:27703215

  19. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    International Nuclear Information System (INIS)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-01-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m - 2 yr - 1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59±0.43 g kg - 1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha - 1 yr - 1. (Author) 20 refs.

  20. Urban soils as hotspots of anthropogenic carbon accumulation: Review of stocks, mechanisms and factors

    Science.gov (United States)

    Vasenev, Viacheslav; Kuzyakov, Yakov

    2017-04-01

    Urban soils and cultural layers accumulate carbon (C) over centuries and consequently large C stocks are sequestered below the cities. These C stocks as well as the full range of processes and mechanisms leading to high C accumulation in urban soils remain unknown. We collected data on organic (SOC), inorganic (SOC) and black (pyrogenic) (BC) C content in urban and natural soils from 100 papers based on Scopus and Web-of-Knowledge databases. The yielded database includes 770 values on SOC, SIC and BC stocks from 118 cities worldwide. The collected data were analyzed considering the effects of climatic conditions and urban-specific factors: city size, age and functional zoning. For the whole range of climatic conditions, the C contents in urban soils were 1.5-3 times higher than in respective natural soils. This higher C content and much deeper C accumulation in urban soils resulted in 3 to 5 times higher C stocks compared to natural soils. Urban SOC stocks were positively correlated with latitude, whereas SIC stocks were less affected by climate. The city size and age were the main factors controlling intra-city variability of C stocks with higher stocks in small cities compared to megapolises and in medieval compared to new cities. The inter-city variability of C stocks was dominated by functional zoning: large SOC and N stocks in residential areas and large SIC and BC stocks in industrial zones and roadsides were similar for all climates and for cities of different size and age. Substantial stocks of SOC, SIC and N were sequestered for long-term in the subsoils and cultural layers of the sealed soils, which underline the importance of these 'hidden' stocks for C assessments. Typical and specific for urban soils is that the anthropogenic factor overshadows the other five factors of soil formation. Substantial C stocks in urban soils and cultural layers result from specific mechanisms of C accumulation in cities: i) large and long-term C inputs from outside the

  1. Terrestrial Carbon Fluxes from Deforestation in the Brazilian Amazon and Cerrado Regions Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Klooster, S.; Potter, C.; Genovese, V.

    2008-12-01

    The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate tropical forest and savanna (Cerrado) carbon pools for the Brazilian Amazon region over the period 2000-2004. Adjustments for mean age of forest stands were carried out across the region, resulting in a new mapping of aboveground biomass pools based on MODIS satellite data. Yearly maps of newly deforested lands from the Brazilian PRODES (Programa de calculo do desflorestamento da Amazonia ) project were combined with these NASA-CASA biomass predictions to generate seasonal budgets of potential carbon and nitrogen trace gas losses from biomass burning events. Simulations of plant residue and soil carbon decomposition were conducted in the NASA-CASA model during and following deforestation events to track the fate of aboveground biomass pools that were cut and burned each year across the region.

  2. Carbon stock in forest aboveground biomass –comparison based on Landsat data

    Czech Academy of Sciences Publication Activity Database

    Pechanec, V.; Stržínek, F.; Purkyt, Jan; Štěrbová, Lenka; Cudlín, Pavel

    2017-01-01

    Roč. 63, 2-3 (2017), s. 126-132 ISSN 2454-0358 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:EHP,MF ČR(CZ) EHP-CZ02-OV-1-014-2014 Program:CZ02 Institutional support: RVO:67179843 Keywords : aboveground biomass * carbon stock * remote sensing data * vegetation indices * Czech Republic Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)

  3. Combining satellite, aerial and ground measurements to assess forest carbon stocks in Democratic Republic of Congo

    Science.gov (United States)

    Beaumont, Benjamin; Bouvy, Alban; Stephenne, Nathalie; Mathoux, Pierre; Bastin, Jean-François; Baudot, Yves; Akkermans, Tom

    2015-04-01

    Monitoring tropical forest carbon stocks changes has been a rising topic in the recent years as a result of REDD+ mechanisms negotiations. Such monitoring will be mandatory for each project/country willing to benefit from these financial incentives in the future. Aerial and satellite remote sensing technologies offer cost advantages in implementing large scale forest inventories. Despite the recent progress made in the use of airborne LiDAR for carbon stocks estimation, no widely operational and cost effective method has yet been delivered for central Africa forest monitoring. Within the Maï Ndombe region of Democratic Republic of Congo, the EO4REDD project develops a method combining satellite, aerial and ground measurements. This combination is done in three steps: [1] mapping and quantifying forest cover changes using an object-based semi-automatic change detection (deforestation and forest degradation) methodology based on very high resolution satellite imagery (RapidEye), [2] developing an allometric linear model for above ground biomass measurements based on dendrometric parameters (tree crown areas and heights) extracted from airborne stereoscopic image pairs and calibrated using ground measurements of individual trees on a data set of 18 one hectare plots and [3] relating these two products to assess carbon stocks changes at a regional scale. Given the high accuracies obtained in [1] (> 80% for deforestation and 77% for forest degradation) and the suitable, but still to be improved with a larger calibrating sample, model (R² of 0.7) obtained in [2], EO4REDD products can be seen as a valid and replicable option for carbon stocks monitoring in tropical forests. Further improvements are planned to strengthen the cost effectiveness value and the REDD+ suitability in the second phase of EO4REDD. This second phase will include [A] specific model developments per forest type; [B] measurements of afforestation, reforestation and natural regeneration processes and

  4. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    Directory of Open Access Journals (Sweden)

    C. Smeaton

    2017-12-01

    Full Text Available Fjords are recognised as hotspots for the burial and long-term storage of carbon (C and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  5. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    Science.gov (United States)

    Smeaton, Craig; Austin, William E. N.; Davies, Althea L.; Baltzer, Agnes; Howe, John A.; Baxter, John M.

    2017-12-01

    Fjords are recognised as hotspots for the burial and long-term storage of carbon (C) and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  6. Site productivity and forest carbon stocks in the United States: Analysis and implications for forest offset project planning

    Science.gov (United States)

    Coeli M. Hoover; James E. Smith

    2012-01-01

    The documented role of United States forests in sequestering carbon, the relatively low cost of forest-based mitigation, and the many co-benefits of increasing forest carbon stocks all contribute to the ongoing trend in the establishment of forest-based carbon offset projects. We present a broad analysis of forest inventory data using site quality indicators to provide...

  7. Whole-island carbon stocks in the tropical Pacific: implications for mangrove conservation and upland restoration.

    Science.gov (United States)

    Donato, D C; Kauffman, J B; Mackenzie, R A; Ainsworth, A; Pfleeger, A Z

    2012-04-30

    Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced in tropical islands and low-lying coastal areas where climate change impacts are expected to be among the most severe. This study presents the first field estimate of island-wide carbon storage in ecosystems of Oceania, with special attention to the regional role of coastal mangroves, which occur on islands and coastal zones throughout the tropics. On two island groups of Micronesia (Yap and Palau), we sampled all above- and belowground C pools, including soil and vegetation, in 24 sites distributed evenly among the three major vegetation structural types: mangroves, upland forests, and open savannas (generally on degraded lands formerly forested). Total C stocks were estimated to be 3.9 and 15.2 Tg C on Yap and Palau, respectively. Mangroves contained by far the largest per-hectare C pools (830-1218 Mg C ha(-1)), with deep organic-rich soils alone storing more C (631-754 Mg C ha(-1)) than all pools combined in upland systems. Despite covering just 12-13% of land area, mangroves accounted for 24-34% of total island C stocks. Savannas (156-203 Mg C ha(-1)) contained significantly lower C stocks than upland forests (375-437 Mg C ha(-1)), suggesting that reforesting savannas where appropriate has high potential for carbon-based funding to aid restoration objectives. For mangroves, these results demonstrate the key role of these systems within the broader context of C storage in island and coastal landscapes. Sustainable management of mangrove forests and their large C stocks is of high importance at the regional scale, and climate change mitigation programs such as REDD+ could play a large role in

  8. Greenness and Carbon Stocks of Mangroves: A climate-driven Effect

    Science.gov (United States)

    Lule, A. V.; Colditz, R. R.; Herrera-Silveira, J.; Guevara, M.; Rodriguez-Zuniga, M. T.; Cruz, I.; Ressl, R.; Vargas, R.

    2017-12-01

    Mangroves cover less than 1% of the earth's surface and are one o­­­f the most productive ecosystems of the world. They are highly vulnerable to climate variability due to their sensitivity to environmental changes; therefore, there are scientific and societal needs to designed frameworks to assess mangrove's vulnerability. We study the relationship between climate drivers, canopy greenness and carbon stocks to quantify a potential climate-driven effect on mangrove carbon dynamics. We identify greenness trends and their relationships with climate drivers and carbon stocks throughout 15 years (2001-2015) across mangrove forests of Mexico. We defined several categories for mangroves: a) Arid mangroves with superficial water input (ARsw); b) Humid mangroves with interior or underground water input (HUiw); and c) Humid mangroves with superficial water input (HUsw). We found a positive significant trend of greenness for ARsw and HUsw categories (pmangrove's categories (pmangrove categories showed higher greenness values during winter; which is likely driven by temperature with a lag of -3 to -5 months (r2 > 0.69). Precipitation and temperature drive canopy greenness only across HUsw. Regarding carbon stocks, the HUiw shows the lower amount of aboveground carbon (AGC; 12.7 Mg C ha-1) and the higher belowground carbon (BGC; 219 Mg C ha-1). The HUsw shows the higher amount of AGC (169.5 Mg C ha-1) and the ARsw the lower of BGC (92.4 Mg C ha-1). Climate drivers are better related with canopy greenness and AGC for both humid mangrove categories (r2 > 0.48), while the relationship of BGC and canopy greenness is lower for all categories (r2 mangrove's ecosystem function and environmental services, as well as their potential vulnerability to climate variability.

  9. A framework for assessing global change risks to forest carbon stocks in the United States.

    Directory of Open Access Journals (Sweden)

    Christopher W Woodall

    Full Text Available Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C, but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and evaluated a basic risk framework which combined the magnitude of C stocks and their associated probability of stock change in the context of global change across the US. For the purposes of this analysis, forest C was divided into five pools, two live (aboveground and belowground biomass and three dead (dead wood, soil organic matter, and forest floor with a risk framework parameterized using the US's national greenhouse gas inventory and associated forest inventory data across current and projected future Köppen-Geiger climate zones (A1F1 scenario. Results suggest that an initial forest C risk matrix may be constructed to focus attention on short- and long-term risks to forest C stocks (as opposed to implementation in decision making using inventory-based estimates of total stocks and associated estimates of variability (i.e., coefficient of variation among climate zones. The empirical parameterization of such a risk matrix highlighted numerous knowledge gaps: 1 robust measures of the likelihood of forest C stock change under climate change scenarios, 2 projections of forest C stocks given unforeseen socioeconomic conditions (i.e., land-use change, and 3 appropriate social responses to global change events for which there is no contemporary climate/disturbance analog (e.g., severe droughts in the Lake States. Coupling these current technical/social limits of developing a risk matrix to the biological processes of forest ecosystems (i.e., disturbance events and interaction among diverse forest C pools, potential positive feedbacks, and forest resiliency/recovery suggests an operational

  10. Carbon stock and humification index of organic matter affected by sugarcane straw and soil management

    Directory of Open Access Journals (Sweden)

    Aline Segnini

    2013-10-01

    Full Text Available The maintenance of sugarcane (Saccharum spp. straw on a soil surface increases the soil carbon (C stocks, but at lower rates than expected. This fact is probably associated with the soil management adopted during sugarcane replanting. This study aimed to assess the impact on soil C stocks and the humification index of soil organic matter (SOM of adopting no-tillage (NT and conventional tillage (CT for sugarcane replanting. A greater C content and stock was observed in the NT area, but only in the 0-5 cm soil layer (p < 0.05. Greater soil C stock (0-60 cm was found in soil under NT, when compared to CT and the baseline. While C stock of 116 Mg ha-1 was found in the baseline area, in areas under CT and NT systems the values ranged from 120 to 127 Mg ha-1. Carbon retention rates of 0.67 and 1.63 Mg C ha-1 year-1 were obtained in areas under CT and NT, respectively. Laser-Induced Fluorescence Spectroscopy showed that CT makes the soil surface (0-20 cm more homogeneous than the NT system due to the effect of soil disturbance, and that the SOM humification index (H LIF is larger in CT compared to NT conditions. In contrast, NT had a gradient of increasing H LIF, showing that the entry of labile organic material such as straw is also responsible for the accumulation of C in this system. The maintenance of straw on the soil surface and the adoption of NT during sugarcane planting are strategies that can increase soil C sequestration in the Brazilian sugarcane sector.

  11. A preliminary assessment of the impact of landslide, earthflow, and gully erosion on soil carbon stocks in New Zealand

    Science.gov (United States)

    Basher, Les; Betts, Harley; Lynn, Ian; Marden, Mike; McNeill, Stephen; Page, Mike; Rosser, Brenda

    2018-04-01

    In geomorphically active landscapes such as New Zealand, quantitative data on the relationship between erosion and soil carbon (C) are needed to establish the effect of erosion on past soil C stocks and future stock changes. The soil C model currently used in New Zealand for soil C stock reporting does not account for erosion. This study developed an approach to characterise the effect of erosion suitable for soil C stock reporting and provides an initial assessment of the magnitude of the effect of erosion. A series of case studies were used to establish the local effect of landslide, earthflow, and gully erosion on soil C stocks and to compare field measurements of soil C stocks with model estimates. Multitemporal erosion mapping from orthophotographs was used to characterise erosion history, identify soil sampling plot locations, and allow soil C stocks to be calculated accounting for erosion. All eroded plots had lower soil C stocks than uneroded (by mass movement and gully erosion) plots sampled at the same sites. Landsliding reduces soil C stocks at plot and landscape scale, largely as a result of individual large storms. After about 70 years, soil C stocks were still well below the value measured for uneroded plots (by 40% for scars and 20-30% for debris tails) indicating that the effect of erosion is very persistent. Earthflows have a small effect on estimates of baseline (1990) soil C stocks and reduce soil C stocks at landscape scale. Gullies have local influence on soil C stocks but because they cover a small proportion of the landscape have little influence at landscape scale. At many of the sites, the soil C model overestimates landscape-scale soil C stocks.

  12. Carbon stocks in Norwegian forested systems. Preliminary data

    Directory of Open Access Journals (Sweden)

    Oyen BH.

    2000-01-01

    Full Text Available Between 1990 and 2010 the projected emissions of greenhouse gases in Norway is assumed to increase 24%. As a signatory to the Kyoto Protocol, Norway is supposed to limit the greenhouse gas emissions in the period 2008–2012 to 1% above the 1990 level. Potentially, forestry activities may contribute as a means to achieve the set target of emission reductions. The initial Norwegian views and proposals for definitions and accounting framework for activities under Articles 3.3 and 3.4 of the Kyoto Protocol was reported to the UNFCCC August 1 2000 by the Norwegian Ministry of Environment. There was also an annex to the submission with preliminary data and information on Articles 3.3 and 3.4 of the Kyoto Protocol. This paper is based on this annex, and focuses mainly on data for forests and other woodlands. Preliminary data indicate that approximately 85% of the carbon (C pool of forested systems is found in the soil. The major part of the annual C sequestration takes place in living biomass and soil, while sequestration in wood products and landfills etc. has been found to be of minor importance. It must be noted that the reported data are preliminary and contain large uncertainties.

  13. A cost-efficient method to assess carbon stocks in tropical peat soil

    Directory of Open Access Journals (Sweden)

    M. W. Warren

    2012-11-01

    Full Text Available Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m−3; Cd as a function of bulk density (gC cm−3; Bd, which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151 for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm−3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.

  14. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  15. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  16. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach

    KAUST Repository

    Hickey, S.M.; Callow, N.J.; Phinn, S.; Lovelock, C.E.; Duarte, Carlos M.

    2017-01-01

    Mangroves are integral to ecosystem services provided by the coastal zone, in particular carbon (C) sequestration and storage. Allometric relationships linking mangrove height to estimated biomass and C stocks have been developed from field sampling

  17. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France

    Science.gov (United States)

    Cardinael, Rémi; Chevallier, Tiphaine; Cambou, Aurélie; Beral, Camille; Barthes, Bernard; Dupraz, Christian; Kouakoua, Ernest; Chenu, Claire

    2017-04-01

    Introduction: Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. Methods: This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. Results: In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09-0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004-1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30-50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in

  18. Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest

    Science.gov (United States)

    Nyirambangutse, Brigitte; Zibera, Etienne; Uwizeye, Félicien K.; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2017-03-01

    As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tropical forest ecosystems (ca. 8 %, elevation > 1000 m a.s.l.), there are still significant knowledge gaps regarding the carbon dynamics and stocks of these forests, and how these differ between early (ES) and late successional (LS) stages. This study examines the carbon (C) stock, relative growth rate (RGR) and net primary production (NPP) of ES and LS forest stands in an Afromontane tropical rainforest using data from inventories of quantitatively important ecosystem compartments in fifteen 0.5 ha plots in Nyungwe National Park in Rwanda. The total C stock was 35 % larger in LS compared to ES plots due to significantly larger above-ground biomass (AGB; 185 and 76 Mg C ha-1 in LS and ES plots), while the soil and root C stock (down to 45 cm depth in the mineral soil) did not significantly differ between the two successional stages (178 and 204 Mg C ha-1 in LS and ES plots). The main reasons for the difference in AGB were that ES trees had significantly lower stature and wood density compared to LS trees. However, ES and LS stands had similar total NPP (canopy, wood and roots of all plots ˜ 9.4 Mg C ha-1) due to counterbalancing effects of differences in AGB (higher in LS stands) and RGR (higher in ES stands). The AGB in the LS plots was considerably higher than the average value reported for old-growth tropical montane forest of south-east Asia and Central and South America at similar elevations and temperatures, and of the same magnitude as in tropical lowland forest of these regions. The results of this study highlight the importance of accounting for disturbance regimes and differences in wood density and allometry of

  19. Simulation of salinity effects on past, present, and future soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo

    2012-02-07

    Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study

  20. Current and potential carbon stocks in Moso bamboo forests in China.

    Science.gov (United States)

    Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Lu, Dengsheng; Mo, Lufeng; Xu, Xiaojun; Shi, Yongjun; Zhou, Yufeng

    2015-06-01

    Bamboo forests provide important ecosystem services and play an important role in terrestrial carbon cycling. Of the approximately 500 bamboo species in China, Moso bamboo (Phyllostachys pubescens) is the most important one in terms of distribution, timber value, and other economic values. In this study, we estimated current and potential carbon stocks in China's Moso bamboo forests and in their products. The results showed that Moso bamboo forests in China stored about 611.15 ± 142.31 Tg C, 75% of which was in the top 60 cm soil, 22% in the biomass of Moso bamboos, and 3% in the ground layer (i.e., bamboo litter, shrub, and herb layers). Moso bamboo products store 10.19 ± 2.54 Tg C per year. The potential carbon stocks reach 1331.4 ± 325.1 Tg C, while the potential C stored in products is 29.22 ± 7.31 Tg C a(-1). Our results indicate that Moso bamboo forests and products play a critical role in C sequestration. The information gained in this study will facilitate policy decisions concerning carbon sequestration and management of Moso bamboo forests in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Carbon Stock in Integrated Field Laboratory Faculty of Agriculture University of Lampung

    Directory of Open Access Journals (Sweden)

    Irwan Sukri Banuwa

    2016-05-01

    Full Text Available This study aimed to determine the amount of carbon stock and CO2 plant uptake in the Integrated Field Laboratory (IFL Faculty of Agriculture University of Lampung. The research was conducted from April to November 2015. The study was arranged in a completely randomized block design (CRBD, consisting of five land units as treatment with four replications for each treatment. Biomass of woody plants was estimated using allometric equation, biomass of understorey plants was estimated using plant dry weight equation, and organic C content in plants and soils were analyzed using a Walkey and Black method. The results showed that land unit consisting of densely woody plants significantly affects total biomass of woody plants, organic C content in woody plants and total carbon content (above and below ground. The highest amount of woody plant biomass was observed in land unit 5, i.e. 1,196.88 Mg ha-1, and above ground total carbon was 437.19 Mg ha-1. IFL Faculty of Agriculture University of Lampung has a total carbon stock of 2,051.90 Mg and capacity to take up total CO2 of 6,656.88 Mg.

  2. ORGANIC CARBON AND CARBON STOCK: RELATIONS WITH PHYSICAL INDICATORS AND SOIL AGGREGATION IN AREAS CULTIVATED WITH SUGAR CANE

    Directory of Open Access Journals (Sweden)

    Diego Tolentino de Lima

    2017-08-01

    Full Text Available Soil organic carbon and carbon stock influence, directly or indirectly, most of soil aggregate stability indicators. The objective of this study was to quantify the production of dry biomass (DB, total organic carbon (TOC and carbon stock (CStk in soil, and to evaluate their influence on some indicators of aggregation in an Oxisol at a Cerrado biome in Uberaba-MG, Brazil. The design was completely randomized blocks, in two evaluation periods: three and six cuts, at six depths (0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5 and 0.5-0.6 m. It was evaluated: soil density (SD, volumetric humidity (VH, aggregate stability index (AEI, weighted mean diameter (WDA, mean diameter (GDA, index of aggregates with diameter greater than 2 mm (AI and sensitivity index (SI, replicated by 4. The best AEI of the soil and the highest TOC contents were found in the most superficial layers, 0 to 0.2 m, for both cuttings. The greater values of TOC and CStk, occurred at the sixth cut area, where there was a higher amount of DB on soil surface. The higher levels of organic matter did not provide higher AEI in the area of sixth cut, when compared to that of the third cut. The TOC and CStk levels in both areas generally had a positive influence on soil aggregation indicators for both cuts.

  3. Carbon stocks in mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA: Vegetative and soil characteristics.

    Science.gov (United States)

    Moyer, R. P.; Radabaugh, K.; Chappel, A. R.; Powell, C.; Bociu, I.; Smoak, J. M.

    2017-12-01

    When compared to other terrestrial environments, coastal "blue carbon" habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and sedimentary peat deposits. This study quantified total carbon stocks in vegetation and soil of 17 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. The average vegetative carbon stock in mangrove forests was 60.1 ± 2.7 Mg ha-1. Mangrove forests frequently consisted of a few large Avicennia germinans trees with smaller, abundant Rhizophora mangle and/or Laguncularia racemosa trees. The average vegetative carbon stock was 11.8 ± 3.7 Mg ha-1 for salt marshes and 2.0 ± 1.2 Mg ha-1 for salt barrens. Vegetative carbon did not significantly differ between natural and newly created salt marsh habitats, indicating that mature restored wetlands can be included with natural wetlands for the calculation of vegetative carbon in coastal blue carbon assessments. Peat deposits were generally less than 50 cm thick and organic content rapidly decreased with depth in all habitats. Soil in this study was analyzed in 1 cm intervals; the accuracy of subsampling or binning soil into depth intervals of 2-5 cm was also assessed. In most cases, carbon stock values obtained from these larger sampling intervals were not statistically different from values obtained from sampling at 1 cm intervals. In the first 15 cm, soil in mangrove forests contained an average of 15.1% organic carbon by weight, salt marshes contained 6.5%, and salt barrens contained 0.8%. Total carbon stock in mangroves was 187.1±17.3 Mg ha-1, with 68% of that carbon stored in soil. Salt marshes contained an average of 65.2±25.3 Mg ha-1 (82% soil carbon) and salt barrens had carbon stocks of 21.4±7.4 Mg ha-1 (89% soil carbon). These values were much lower than global averages for

  4. New views on "old" carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian Andes

    Science.gov (United States)

    Clark, K. E.; Hilton, R. G.; West, A. J.; Malhi, Y.; Gröcke, D. R.; Bryant, C. L.; Ascough, P. L.; Robles Caceres, A.; New, M.

    2013-05-01

    rivers play a key role in the delivery of particulate organic carbon (POC) to large river systems and the ocean. Due to the extent of its drainage area and runoff, the Amazon River is one of Earth's most important biogeochemical systems. However, the source of POC eroded from the humid region of the Eastern Andes and the input of fossil POC from sedimentary rocks (POCfossil) remains poorly constrained. Here we collected suspended sediments from the Kosñipata River during flood events to better characterize Andean POC, measuring the nitrogen to organic carbon ratio (N/C), stable carbon isotopes (δ13Corg) and radiocarbon (Δ14Corg). Δ14Corg values ranged from -711‰ to -15‰, and significant linear trends between Δ14Corg, N/C and δ13Corg suggested that this reflects the mixing of POCfossil with very young organic matter (Δ14Corg 50‰) from the terrestrial biosphere (POCnon-fossil). Using N/C and Δ14Corg in an end-member mixing analysis, we quantify the fraction of POCfossil (to within 0.1) and find that it contributes a constant proportion of the suspended sediment mass (0.37 ± 0.03%) and up to 80% of total POC. In contrast, the relative contribution of POCnon-fossil was variable, being most important during the rising limb and peak discharges of flood events. The new data shed light on published measurements of "old" POC (low Δ14Corg) in Andean-fed tributaries of the Amazon River, with their Δ14Corg and δ13Corg values consistent with variable addition of POCfossil. The findings suggest a greater persistence of Andean POC in the lowland Amazon than previously recognized.

  5. Evaluation of approaches focused on modelling of organic carbon stocks using the RothC model

    Science.gov (United States)

    Koco, Štefan; Skalský, Rastislav; Makovníková, Jarmila; Tarasovičová, Zuzana; Barančíková, Gabriela

    2014-05-01

    The aim of current efforts in the European area is the protection of soil organic matter, which is included in all relevant documents related to the protection of soil. The use of modelling of organic carbon stocks for anticipated climate change, respectively for land management can significantly help in short and long-term forecasting of the state of soil organic matter. RothC model can be applied in the time period of several years to centuries and has been tested in long-term experiments within a large range of soil types and climatic conditions in Europe. For the initialization of the RothC model, knowledge about the carbon pool sizes is essential. Pool size characterization can be obtained from equilibrium model runs, but this approach is time consuming and tedious, especially for larger scale simulations. Due to this complexity we search for new possibilities how to simplify and accelerate this process. The paper presents a comparison of two approaches for SOC stocks modelling in the same area. The modelling has been carried out on the basis of unique input of land use, management and soil data for each simulation unit separately. We modeled 1617 simulation units of 1x1 km grid on the territory of agroclimatic region Žitný ostrov in the southwest of Slovakia. The first approach represents the creation of groups of simulation units based on the evaluation of results for simulation unit with similar input values. The groups were created after the testing and validation of modelling results for individual simulation units with results of modelling the average values of inputs for the whole group. Tests of equilibrium model for interval in the range 5 t.ha-1 from initial SOC stock showed minimal differences in results comparing with result for average value of whole interval. Management inputs data from plant residues and farmyard manure for modelling of carbon turnover were also the same for more simulation units. Combining these groups (intervals of initial

  6. Elevation-based upscaling of organic carbon stocks in High-Arctic permafrost terrain

    DEFF Research Database (Denmark)

    Weiss, Niels; Faucherre, Samuel; Lampiris, Nikos

    2017-01-01

    Accurate quantity and distribution estimates of permafrost soil organic carbon (SOC) stocks are needed to project potential feedbacks to climate, following warming. Still, upscaling from local field observations to regional estimates to circumarctic assessments remains a challenge. Here we explore...... elevation-based upscaling techniques for High-Arctic permafrost SOC stocks. We combine two detailed, high-resolution SOC inventories on Spitsbergen (Svalbard) with regional validation data. We find a clear relationship between elevation and SOC content, and use this observed exponential correlation, as well...... as discrete elevation classes, as upscaling models for Spitsbergen. We estimate the total amount of permafrost SOC currently present in soils on Spitsbergen to be 105.36 Tg (0.11 Pg), with a mean SOC content of 2.84 ± 0.74 kg C m−2 (mean ± 95% confidence interval). Excluding glaciers and permanent snowfields...

  7. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in

  8. Carbon Stocks and Fluxes in Tropical Lowland Dipterocarp Rainforests in Sabah, Malaysian Borneo

    Science.gov (United States)

    Saner, Philippe; Loh, Yen Yee; Ong, Robert C.; Hector, Andy

    2012-01-01

    Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+) good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha−1±3.8 (SD), including: Total aboveground (TAGC: 55%; 91.9 Mg C ha−1±2.9 SEM) and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha−1±0.5 SEM), deadwood (8%; 13.2 Mg C ha−1±3.5 SEM) and soil organic matter (SOM: 24%; 39.6 Mg C ha−1±0.9 SEM), understory vegetation (3%; 5.1 Mg C ha−1±1.7 SEM), standing litter (logging TAGC stocks were 28% lower compared to unlogged forest (128 Mg C ha−1±13.4 SEM); a combined weighted average mean reduction due to selective logging of −57.8 Mg C ha−1 (with 95% CI −75.5 to −40.2). Based on the findings we conclude that selective logging decreased the dipterocarp stock by 55–66%. Silvicultural treatments may have the potential to accelerate the recovery of dipterocarp C stocks to pre-logging levels. PMID:22235319

  9. Clay content drives carbon stocks in soils under a plantation of Eucalyptus saligna Labill. in southern Brazil

    Directory of Open Access Journals (Sweden)

    Tanise Luisa Sausen

    2014-06-01

    Full Text Available Soil carbon accumulation is largely dependent on net primary productivity. To our knowledge, there have been no studies investigating the dynamics of carbon accumulation in weathered subtropical soils, especially in managed eucalyptus plantations. We quantified the seasonal input of leaf litter, the leaf decomposition rate and soil carbon stocks in an commercial plantation of Eucalyptus saligna Labill. in southern Brazil. Our goal was to evaluate, through multiple linear regression, the influence that certain chemical characteristics of litter, as well as chemical and physical characteristics of soil, have on carbon accumulation in soil organic matter fractions. Variables related to the chemical composition of litter were not associated with the soil carbon stock in the particulate and mineral fractions. However, certain soil characteristics were significantly associated with the carbon stock in both fractions. The concentrations of nutrients associated with plant growth and productivity, such as phosphorus, sulfur, copper and zinc, were associated with variations in the labile carbon pool (particulate fraction. Clay content was strongly associated with the carbon stock in the mineral fraction. The carbon accumulation and stabilization in weathered subtropical Ultisol seems to be mainly associated with the intrinsic characteristics of the soil, particularly clay content, rather than with the quantity, chemical composition or decomposition rate of the litter.

  10. Rationally Managed Pastures Stock More Carbon than No-Tillage Fields

    Directory of Open Access Journals (Sweden)

    Hizumi L. S. Seó

    2017-12-01

    Full Text Available A significant share of Greenhouse Gases (GHG produced from agriculture comes from cattle farming. The reduction in GHG emissions from ruminants fed with grains has led some researchers to recommend such a diet as a means of mitigating emissions in the sector. A more accurate balance of emissions, however, must include the carbon (C stocked by feed crops. Within the grain production system, no-tillage (NT cultivation systems have a greater capacity to increase and store soil organic carbon (SOC. Within grazing management systems, the rotation used in Voisin's Rational Grazing (VRG allows the accumulation of SOC through root growth. The objective of this study was to assess the C stock of pasture under VRG and compare soil C stock between VRG pasture and fields under no-tillage management, in two seasons over a period of 1 year. The study included five dairy farms in Santa Catarina State, Brazil. In each property, we collected soil to quantify SOC from VRG pasture and NT fields, in summer and winter. In the pasture, to determine the total stock, we also collected samples from the aerial parts of plants and the roots. Further, we estimated how efficient would be producing milk from those pastures or from those crops. The VRG pasture showed a greater capacity to stock C in the soil than the no-tillage fields (VRG = 115.0 Mg C ha−1; NT = 92.5 Mg C ha−1; p < 0.00009, with the greatest difference at a depth of 0–10 cm (VRG = 41 Mg C ha−1; NT = 32 Mg C ha−1; p < 0.00008. In VRG, 95% of C was in the soil, 1% in the aerial part of plants, and 4% in the roots. On pasture was produced 0.15 kg of milk.kg−1 of C stored, and on NT system 0.13 kg of milk.kg−1 of C stored. In this study, we conclude that independent of season, the soil in well managed pastures had a greater stock of C, produced more milk and produced more milk.kg−1 of stored C than fields under NT management. Therefore, when comparing GHG emissions of ruminants with different

  11. Land-cover effects on soil organic carbon stocks in a European city.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2014-02-15

    Soil is the vital foundation of terrestrial ecosystems storing water, nutrients, and almost three-quarters of the organic carbon stocks of the Earth's biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a growing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces across a typical mid-sized U.K. city (Leicester, 73 km(2), 56% greenspace), and map citywide distribution of this ecosystem service. SOC was measured in topsoil and compared to surrounding extra-urban agricultural land. Average SOC storage in the city's greenspace was 9.9 kg m(-2), to 21 cm depth. SOC concentrations under trees and shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m(-2) to 21 cm depth, more than 3 kg m(-2) greater than any other land-cover class in domestic and non-domestic greenspace and 5 kg m(-2) greater than in arable land. Land-cover did not significantly affect SOC concentrations in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land, whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We conclude that although differences in greenspace management affect SOC stocks, trees only marginally increase these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and driveways. Copyright

  12. MODELING THE EFFECTS OF CLIMATE AND LAND USE CHANGE ON CARBON AND TRACE GAS BUDGETS OVER THE AMAZON REGION USING NASA SATELLITE PRODUCTS

    Science.gov (United States)

    As part of the LBA-ECO Phase III synthesis efforts for remote sensing and predictive modeling of Amazon carbon, water, and trace gas fluxes, we are evaluating results from the regional ecosystem model called NASA-CASA (Carnegie-Ames Stanford Approach). The NASA-CASA model has bee...

  13. Aboveground stock of biomass and organic carbon in stands of Pinus taeda L.

    Directory of Open Access Journals (Sweden)

    Luciano Farinha Watzlawick

    2013-09-01

    Full Text Available This study aimed to estimate biomass and organic carbon in stands of Pinus taeda L. at different ages (14, 16, 19, 21, 22, 23 and 32 years and located in the municipality of General Carneiro (PR. In order to estimate biomass and organic carbon in different tree components (needles, live branches, dead branches, bark and stem wood, the destructive quantification method was used in which seven trees from each age category were randomly sampled across the stand. Stocks of biomass and organic carbon were found to vary between the different age categories, mainly as a result of existing dissimilarities between ages in association with forest management practices such as thinning, pruning and tree density per hectare.

  14. Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    Science.gov (United States)

    Neigh, Christopher S. R.; Nelson, Ross F.; Ranson, K. Jon; Margolis, Hank A.; Montesano, Paul M.; Sun, Guoqing; Kharuk, Viacheslav; Naesset, Erik; Wulder, Michael A.; Andersen, Hans-Erik

    2013-01-01

    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content.

  15. Vegetation Structure and Carbon Stocks of Two Protected Areas within the South-Sudanian Savannas of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Mohammad Qasim

    2016-09-01

    Full Text Available Savannas and adjacent vegetation types like gallery forests are highly valuable ecosystems contributing to several ecosystem services including carbon budgeting. Financial mechanisms such as REDD+ (Reduced Emissions from Deforestation and Forest Degradation can provide an opportunity for developing countries to alleviate poverty through conservation of its forestry resources. However, for availing such opportunities carbon stock assessments are essential. Therefore, a research study for this purpose was conducted at two protected areas (Nazinga Game Ranch and Bontioli Nature Reserve in Burkina Faso. Similarly, analysis of various vegetation parameters was also conducted to understand the overall vegetation structure of these two protected areas. For estimating above ground biomass, existing allometric equations for dry tropical woody vegetation types were used. Compositional structure was described by applying tree species and family importance indices. The results show that both sites collectively contain a mean carbon stock of 3.41 ± 4.98 Mg·C·ha−1. Among different savanna vegetation types, gallery forests recorded the highest mean carbon stock of 9.38 ± 6.90 Mg·C·ha−1. This study was an attempt at addressing the knowledge gap particularly on carbon stocks of protected savannas—it can serve as a baseline for carbon stocks for future initiatives such as REDD+ within these areas.

  16. Species diversity, biomass, and carbon stock assessments of a natural mangrove forest in palawan, philippines

    International Nuclear Information System (INIS)

    Abino, A.C.; Lee, Y.J.; Castillo, J.A.A

    2014-01-01

    Philippines claims international recognition for its mangrove-rich ecosystem which play significant functions from the viewpoint of ecosystem services and climate change mitigation. In this study, we assessed the species diversity of the natural mangrove forest of Bahile, Puerto Princesa City, Palawan and evaluated its potential to sequester and store carbon. Sixteen plots with a size of 10 m * 10 m were established using quadrat sampling technique to identify, record, and measure the trees. Diversity index and allometric equations were utilized to determine species diversity, and biomass and carbon stocks. Sediment samples in undisturbed portions using a 30 cm high and 5 cm diameter corer were collected in all plots to determine near-surface sediment carbon. The diversity index (H = 0.9918) was very low having a total of five true mangrove species identified dominated by Rhizophora apiculata Bl. with an importance value index of 148.1%. Among the stands, 74% of the total biomass was attributed to the above-ground (561.2 t ha-1) while 26% was credited to the roots (196.5 t ha-1). The total carbon sequestered and stored in the above-ground and root biomass were 263.8 t C ha-1 (50%) and 92.3 t C ha-1 (17%), respectively. Sediments contained 33% (173.75 t C ha-1) of the mangrove C-stocks. Stored carbon was equivalent to 1944.5 t CO/sub 2/ ha-1. These values suggest that Bahile natural mangrove forest has a potential to sequester and store substantial amounts of atmospheric carbon, hence the need for sustainable management and protection of this important coastal ecosystem. (author)

  17. Trade-offs between forest carbon stocks and harvests in a steady state - A multi-criteria analysis.

    Science.gov (United States)

    Pingoud, Kim; Ekholm, Tommi; Sievänen, Risto; Huuskonen, Saija; Hynynen, Jari

    2018-03-15

    This paper provides a perspective for comparing trade-offs between harvested wood flows and forest carbon stocks with different forest management regimes. A constant management regime applied to a forest area with an even age-class distribution leads to a steady state, in which the annual harvest and carbon stocks remain constant over time. As both are desirable - carbon stocks for mitigating climate change and harvests for the economic use of wood and displacing fossil fuels - an ideal strategy should be chosen from a set of management regimes that are Pareto-optimal in the sense of multi-criteria decision-making. When choosing between Pareto-optimal alternatives, the trade-off between carbon stock and harvests is unavoidable. This trade-off can be described e.g. in terms of carbon payback times or carbon returns. As numerical examples, we present steady-state harvest levels and carbon stocks in a Finnish boreal forest region for different rotation periods, thinning intensities and collection patterns for harvest residues. In the set of simulated management practices, harvest residue collection presents the most favorable trade-off with payback times around 30-40 years; while Pareto-optimal changes in rotation or thinnings exhibited payback times over 100 years, or alternatively carbon returns below 1%. By extending the rotation period and using less-intensive thinnings compared to current practices, the steady-state carbon stocks could be increased by half while maintaining current harvest levels. Additional cases with longer rotation periods should be also considered, but were here excluded due to the lack of reliable data on older forest stands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Estimating Forest Carbon Stock in Alpine and Arctic Ecotones of the Urals

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2014-10-01

    Full Text Available This paper reports on measured carbon stocks in the forests of two tree line ecotones of the Ural region where climate change might improve growing conditions. The first is an alpine ecotone that is represented by an altitudinal gradient of the spruce-dominated forests on the Western slope of the Tylaiskii Kamen Mountain (Western part of the Konzhakovskii-Tylaiskii-Serebryanskii Mountain system, 59°30′N, 59°00′E, at the alpine timber line that has risen from 864 to 960 m above sea level in the course of the last 100 years. The second is an arctic ecotone in larch-dominated forests at the lower course of the Pur river (67°N, 78°E, at the transition zone between closed floodplain forests and open or island-like communities of upland forests on tundra permafrost. According to our results, there are large differences in the carbon of the aboveground biomass of both ecotones across environmental gradients. In the alpine tree line ecotone, a 19-fold drop of the carbon stocks was detected between the lower and higher altitudinal levels. In the arctic ecotone the aboveground biomass carbon stock of forests of similar densities (1300 to 1700 trees per ha was 7 times as much in the river flood bed, and 5 times as much in mature, dense forests as the low density forests at higher elevations. Twelve regression equations describing dependencies of the aboveground tree biomass (stems, branches, foliage, total aboveground part upon stem diameter of the tree are proposed, which can be used to estimating the biological productivity (carbon of spruce and larch forests on Tylaiskii Kamen Mountain and the lower Pur river and on surrounding areas on the base of traditional forest mensuration have been proposed. In order to reduce the labor intensity of a coming determination of forest biomass the average values of density and dry matter content in the biomass fractions are given that were obtained by taking our sample trees.The results can be useful in

  19. Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming

    Energy Technology Data Exchange (ETDEWEB)

    Khvorostyanov, D.V.; Ciais, G. (Laboratoire des Sciences du Climat et l' Environnement, Saclay (France)); Krinner, G. (Laboratoire de Glaciologie et Geophysique de l' Environnement, St Martin d' Heres (France)). e-mail: Dimitry.Khvorostiyanov@lsce.ipsl.fr; Zimov, S.A. (Northeast Science Station, Cherskii (RU)); Corradi, C. (UNITUS, Univ. of Tuscia, Veterbo (Italy)); Guggenberger, G. (Inst. of Soil Science and Plant Nutrition, Martin-Luther-Univ., Halle-Wittenberg (DE))

    2008-07-01

    In the companion paper (Part I), we presented a model of permafrost carbon cycle to study the sensitivity of frozen carbon stocks to future climate warming. The mobilization of deep carbon stock of the frozen Pleistocene soil in the case of rapid stepwise increase of atmospheric temperature was considered. In this work, we adapted the model to be used also for floodplain tundra sites and to account for the processes in the soil active layer. The new processes taken into account are litter input and decomposition, plant-mediated transport of methane, and leaching of exudates from plant roots. The SRES-A2 transient climate warming scenario of the IPSL CM4 climate model is used to study the carbon fluxes from the carbon-rich Pleistocene soil with seasonal active-layer carbon cycling on top of it. For a point to the southwest from the western branch of Yedoma Ice Complex, where the climate warming is strong enough to trigger self-sustainable decomposition processes, about 256 kg C/m2, or 70% of the initial soil carbon stock under present-day climate conditions, are emitted to the atmosphere in about 120 yr, including 20 kg C/m2 released as methane. The total average flux of CO{sub 2} and methane emissions to the atmosphere during this time is of 2.1 kg C/m2/yr. Within the Yedoma, whose most part of the territory remains relatively cold, the emissions are much smaller: 0.2 kg C/m2/yr between 2050 and 2100 for Yakutsk area. In a test case with saturated upper-soil meter, when the runoff is insufficient to evacuate the meltwater, 0.05 kg CH{sub 4}/m2/yr on average are emitted as methane during 250 yr starting from 2050. The latter can translate to the upper bound of 1 GtC/yr in CO{sub 2} equivalent from the 1 million km2 area of the Yedoma

  20. Modeling climate and fuel reduction impacts on mixed-conifer forest carbon stocks in the Sierra Nevada, California

    Science.gov (United States)

    Matthew D. Hurteau; Timothy A. Robards; Donald Stevens; David Saah; Malcolm North; George W. Koch

    2014-01-01

    Quantifying the impacts of changing climatic conditions on forest growth is integral to estimating future forest carbon balance. We used a growth-and-yield model, modified for climate sensitivity, to quantify the effects of altered climate on mixed-conifer forest growth in the Lake Tahoe Basin, California. Estimates of forest growth and live tree carbon stocks were...

  1. Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates

    Science.gov (United States)

    Grant M. Domke; Christopher W. Woodall; James E. Smith; James A. Westfall; Ronald E. McRoberts

    2012-01-01

    Forest ecosystems are the largest terrestrial carbon sink on earth and their management has been recognized as a relatively cost-effective strategy for offsetting greenhouse gas emissions. Forest carbon stocks in the U.S. are estimated using data from the USDA Forest Service, Forest Inventory and Analysis (FIA) program. In an attempt to balance accuracy with...

  2. Mapping aboveground carbon stocks using LiDAR data in Eucalyptus spp. plantations in the state of Sao Paulo, Brazil

    Science.gov (United States)

    Carlos Alberto Silva; Carine Klauberg; Samuel de Padua Chaves e Carvalho; Andrew T. Hudak; e Luiz Carlos Estraviz. Rodriguez

    2014-01-01

    Fast growing plantation forests provide a low-cost means to sequester carbon for greenhouse gas abatement. The aim of this study was to evaluate airborne LiDAR (Light Detection And Ranging) to predict aboveground carbon (AGC) stocks in Eucalyptus spp. plantations. Biometric parameters (tree height (Ht) and diameter at breast height (DBH)) were collected from...

  3. Measuring and modeling carbon stock change estimates for US forests and uncertainties from apparent inter-annual variability

    Science.gov (United States)

    James E. Smith; Linda S. Heath

    2015-01-01

    Our approach is based on a collection of models that convert or augment the USDA Forest Inventory and Analysis program survey data to estimate all forest carbon component stocks, including live and standing dead tree aboveground and belowground biomass, forest floor (litter), down deadwood, and soil organic carbon, for each inventory plot. The data, which include...

  4. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador

    NARCIS (Netherlands)

    Tonneijck, F.H.; Jansen, B.; Nierop, K.G.J.; Verstraten, J.M.; Sevink, J.; de Lange, L.

    2010-01-01

    Volcanic ash soils contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute potential sources or sinks for the greenhouse gas carbon dioxide. Whether soils become a net carbon source or sink with climate and/or land-use change depends on the stability of

  5. The Dynamics, Ecological Variability and Estimated Carbon Stocks of Mangroves in Mahajamba Bay, Madagascar

    Directory of Open Access Journals (Sweden)

    Trevor G. Jones

    2015-08-01

    Full Text Available Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Globally, mangroves are being rapidly degraded and deforested at rates exceeding loss in many tropical inland forests. Madagascar contains around 2% of the global distribution, >20% of which has been deforested since 1990, primarily from over-harvest for forest products and conversion for agriculture and aquaculture. While historically not prominent, mangrove loss in Madagascar’s Mahajamba Bay is increasing. Here, we focus on Mahajamba Bay, presenting long-term dynamics calculated using United States Geological Survey (USGS national-level mangrove maps contextualized with socio-economic research and ground observations, and the results of contemporary (circa 2011 mapping of dominant mangrove types. The analysis of the USGS data indicated 1050 hectares (3.8% lost from 2000 to 2010, which socio-economic research suggests is increasingly driven by commercial timber extraction. Contemporary mapping results permitted stratified sampling based on spectrally distinct and ecologically meaningful mangrove types, allowing for the first-ever vegetation carbon stock estimates for Mahajamba Bay. The overall mean carbon stock across all mangrove classes was estimated to be 100.97 ± 10.49 Mg C ha−1. High stature closed-canopy mangroves had the highest average carbon stock estimate (i.e., 166.82 ± 15.28 Mg C ha−1. These estimates are comparable to other published values in Madagascar and elsewhere in the Western Indian Ocean and demonstrate the ecological variability of Mahajamba Bay’s mangroves and their value towards climate change mitigation.

  6. Estimating national forest carbon stocks and dynamics: combining models and remotely sensed information

    Science.gov (United States)

    Smallman, Thomas Luke; Exbrayat, Jean-François; Bloom, Anthony; Williams, Mathew

    2017-04-01

    Forests are a critical component of the global carbon cycle, storing significant amounts of carbon, split between living biomass and dead organic matter. The carbon budget of forests is the most uncertain component of the global carbon cycle - it is currently impossible to quantify accurately the carbon source/sink strength of forest biomes due to their heterogeneity and complex dynamics. It has been a major challenge to generate robust carbon budgets across landscapes due to data scarcity. Models have been used for estimating carbon budgets, but outputs have lacked an assessment of uncertainty, making a robust assessment of their reliability and accuracy challenging. Here a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC) data assimilation framework has been used to combine remotely sensed leaf area index (MODIS), biomass (where available) and deforestation estimates, in addition to forest planting information from the UK's national forest inventory, an estimate of soil carbon from the Harmonized World Database (HWSD) and plant trait information with a process model (DALEC) to produce a constrained analysis with a robust estimate of uncertainty of the UK forestry carbon budget between 2000 and 2010. Our analysis estimates the mean annual UK forest carbon sink at -3.9 MgC ha-1 yr-1 with a 95 % confidence interval between -4.0 and -3.1 MgC ha-1yr-1. The UK national forest inventory (NFI) estimates the mean UK forest carbon sink to be between -1.4 and -5.5 MgC ha-1 yr-1. The analysis estimate for total forest biomass stock in 2010 is estimated at 229 (177/232) TgC, while the NFI an estimated total forest biomass carbon stock of 216 TgC. Leaf carbon area (LCA) is a key plant trait which we are able to estimate using our analysis. Comparison of median estimates for (LCA) retrieved from the analysis and a UK land cover map show higher and lower values for LCA are estimated areas dominated by needle leaf and broad leaf forests forest respectively, consistent with

  7. Sedimentology and stratigraphy of Neoproterozoic-lower Paleozoic carbonate-siliciclastic succession of the southwesternmost Amazon Craton, state of Rondônia, Brazil

    OpenAIRE

    Afonso, Jhon Willy Lopes; Nogueira, Afonso César Rodrigues

    2018-01-01

    ABSTRACT: Facies and stratigraphic analysis were carried out in Neoproterozoic-Lower Paleozoic carbonate-siliciclastic deposits of Cacoal and Pimenta Bueno formations exposed on basement rocks and into the Pimenta Bueno Graben, northwestern portion of Parecis Basin, southwesternmost Amazon Craton. The redescription and redefinion of this succession confirmed the previous interpretation for the Cacoal Formation as a Marinoan (~ 635 Ma) cap carbonate. The Cacoal Formation is subdivided here in ...

  8. Carbon stock assessment of two agroforestry systems in a tropical forest reserve in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lasco, R.D.; Sales, R.F.; Estrella, R.; Saplaco, S.R.; Castillo, A.S.A.; Cruz, R.V.O.; Pulhin, F.B. [University of Philippines Los Banos, Laguna (Philippines). College of Forestry & Natural Resources Environmental Forestry Programme

    2001-07-01

    Carbon dioxide is the most abundant greenhouse gas (GHG) that causes global warming. Thus, land uses such as an agroforestry system have a significant role in moderating climate change since they can be sources and sinks of carbon. The aim of the study was to generate data on the carbon stocks of two agroforestry systems, specifically a Gmelina arborea-Theobroma cacao multistorey system and an alley cropping system with Gliricidia sepium hedges at the agroforestry research and demonstration area inside a forest reserve in Southern Luzon, Philippines. The multistorey system had a mean biomass of 258 Mg C ha{sup -1} and a carbon density of 185 Mg C ha{sup -1}. Carbon was stored in the various pools in the following order of magnitude: soil > tree biomass (above-ground) > necromass > understorey vegetation > roots. The Gliricidia hedgerow had a biomass density of 3.8 Mg C ha{sup -1}; total carbon density was 93 Mg C ha{sup -1}, of which 92 Mg C ha{sup -1} was in the soil.

  9. Soil, vegetation and total organic carbon stock development in self-restoring abandoned vineyards

    Science.gov (United States)

    József Novák, Tibor; Incze, József; Spohn, Marie; Giani, Luise

    2016-04-01

    Abandoned vineyard's soil and vegetation development was studied on Tokaj Nagy-Hill, which is one of the traditional wine-producing regions of Hungary, it is declared as UNESCO World Heritage site as cultural landscape. Spatial distribution and pattern of vineyards were changing during the last several hundreds of years, therefore significant part of abandoned vineyards were subjected to long-term spontaneous secondary succession of vegetation and self-restoration of soils in absence of later cultivation. Two chronosequences of spontaneously regenerating vineyard abandonments, one on south (S-sequence) and one on southwest (SW-sequence) slope with differing times since their abandonment (193, 142, 101, 63, 39 and 14 years), were compiled and studied. The S-sequence was 25-35% sloped and strongly eroded, and the SW-sequence was 17-25% sloped and moderately eroded. The sites were investigated in respect of vegetation characteristics, soil physico-chemical characteristics, total organic carbon stocks (TOC stocks), accumulation rates of total organic carbon (TOC accumulation rates), and soil profiles, which were classified according to the World Reference Base (WRB) 2014. Vegetation development resulted in shrub-grassland mosaics, supplemented frequently by protected forb species and forest development at the earliest abandonment in S-sequence, and predominantly to forest vegetation in SW-sequence, where trees were only absent at the 63 and 14 years old abandonment sites. In all sites soils on level of reference groups according to WRB were classified, and Cambisols, Regosols, Calcisols, Leptosols, Chernozems and Phaeozems were found. Soils of the S-sequence show shallow remnants of loess cover with colluvic and redeposited soil materials containing 15-65% skeletal volcanic rock of weathering products coated by secondary calcium carbonates. The SW-sequence profiles are developed on deep loess or loess derivatives. The calcium-carbonate content was higher in profiles of

  10. Massive carbon addition to an organic-rich Andosol increased the subsoil but not the topsoil carbon stock

    Directory of Open Access Journals (Sweden)

    A. Zieger

    2018-05-01

    Full Text Available Andosols are among the most carbon-rich soils, with an average of 254 Mg ha−1 organic carbon (OC in the upper 100 cm. A current theory proposes an upper limit for OC stocks independent of increasing carbon input, because of finite binding capacities of the soil mineral phase. We tested the possible limits in OC stocks for Andosols with already large OC concentrations and stocks (212 g kg−1 in the first horizon, 301 Mg ha−1 in the upper 100 cm. The soils received large inputs of 1800 Mg OC ha−1 as sawdust within a time period of 20 years. Adjacent soils without sawdust application served as controls. We determined total OC stocks as well as the storage forms of organic matter (OM of five horizons down to 100 cm depth. Storage forms considered were pyrogenic carbon, OM of < 1.6 g cm−3 density and with little to no interaction with the mineral phase, and strongly mineral-bonded OM forming particles of densities between 1.6 and 2.0 g cm−3 or > 2.0 g cm−3. The two fractions > 1.6 g cm−3 were also analysed for aluminium-organic matter complexes (Al–OM complexes and imogolite-type phases using ammonium-oxalate–oxalic-acid extraction and X-ray diffraction (XRD. Pyrogenic organic carbon represented only up to 5 wt % of OC, and thus contributed little to soil OM. In the two topsoil horizons, the fraction between 1.6 and 2.0 g cm−3 had 65–86 wt % of bulk soil OC and was dominated by Al–OM complexes. In deeper horizons, the fraction > 2.0 g cm−3 contained 80–97 wt % of the bulk soil's total OC and was characterized by a mixture of Al–OM complexes and imogolite-type phases, with proportions of imogolite-type phases increasing with depth. In response to the sawdust application, only the OC stock at 25–50 cm depth increased significantly (α = 0.05, 1 − β = 0.8. The increase was entirely due to increased OC in the two fractions > 1.6

  11. Potential Carbon Stock Changes in Arizona's Ecosystems Due to Projected Climate Change

    Science.gov (United States)

    Finley, B. K.; Ironside, K.; Hungate, B. A.; Hurteau, M.; Koch, G. W.

    2011-12-01

    Climate change can alter the role of plants and soils as sources or sinks of atmospheric carbon dioxide and result in changes in long-term carbon storage. To understand the sensitivity of Arizona's ecosystems to climate change, we quantified the present carbon stocks in Arizona's major ecosystem types using the NASA-CASA (Carnegie Ames Stanford Approach) model. Carbon stocks for each vegetation type included surface mineral soil, dead wood litter, standing wood and live leaf biomass. The total Arizona ecosystem carbon stock is presently 1775 MMtC, 545 MMtC of which is in Pinus ponderosa and Pinus edulis forests and woodlands. Evergreen forest vegetation, predominately Pinus ponderosa, has the largest current C density at 11.3 kgC/m2, while Pinus edulis woodlands have a C density of 6.0 kgC/m2. A change in climate will impact the suitable range for each tree species, and consequentially the amount of C stored. Present habitat ranges for these tree species are projected to have widespread mortality and likely will be replaced by herbaceous species, resulting in a loss of C stored. We evaluated the C storage implications over the 2010 to 2099 period of climate change based on output from GCMs with contrasting projections for the southwestern US: MPI-ECHAM5, which projects warming and reduced precipitation, and UKMO-HadGEM, which projects warming and increased precipitation. These projected changes are end points of a spectrum of possible future climate scenarios. The vegetation distribution models used describe potential suitable habitat, and we assumed that the growth rate for each vegetation type would be one-third of the way to full C density for each 30 year period up to 2099. With increasing temperature and decreasing precipitation predictions under the MPI-ECHAM5 model, P. ponderosa and P. edulis vegetation show a decrease in carbon stored from 545 MMtC presently to 116 MMtC. With the combined increase in temperature and precipitation, C storage in these

  12. Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests

    Science.gov (United States)

    Trugman, Anna T.; Medvigy, David; Hoffmann, William A.; Pellegrini, Adam F. A.

    2018-01-01

    Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.

  13. Impact of a Historical Fire Event on Pyrogenic Carbon Stocks and Dissolved Pyrogenic Carbon in Spodosols in Northern Michigan

    Directory of Open Access Journals (Sweden)

    Fernanda Santos

    2017-10-01

    Full Text Available Inventories of fire-derived (pyrogenic C (PyC stocks in soils remain incomplete for many parts of the world, yet are critical to reduce uncertainties in global PyC estimates. Additionally, PyC dynamics in soils remain poorly understood. For example, dissolved PyC (DPyC fluxes from soil horizons, as well as the influence of historical fire events on these fluxes and soil PyC stocks remain poorly quantified. In this study, we examined stock and concentration differences in soil PyC and leached DPyC, respectively, between two forest types in the Great Lakes region (USA: (1 a red pine (Pinus resinosa forest planted after the site had experienced post-logging slash burning in the late nineteenth century (100 year-burned site, and (2 a sugar maple (Acer saccharum forest that showed no evidence of burning in the past 250 years (unburned site. We hypothesized that the 100 year-burned site would have greater PyC stocks and concentrations of DPyC compared to the unburned site. We measured PyC in soil, as well as DPyC in soil water leaching from O and E horizons following a spring snowmelt event in both 100 year-burned and unburned sites. Additionally, we measured DPyC drained from B horizons in 100 year-burned site. In organic horizons, PyC stocks were 1.8 (Oi and 2.3 (Oe times greater in the 100 year-burned site than in the unburned site. Contrary to our initial hypothesis, DPyC concentrations did not differ between sites. On average, DPyC leached from all sites contributed 3.11 ± 0.27% of the total dissolved organic carbon pool. In the 100 year-burned site, a significant decline in concentrations of DPyC leaving the B horizon was attributed to the immobilization of this C pool in the Al and Fe oxides-rich subsoil. Even though PyC stock in O horizons was higher in 100 year-burned than in unburned site, our results did not support our initial hypothesis that the 100 year-burned site would have greater DPyC concentrations than the unburned site

  14. Combined influence of sedimentation and vegetation on the soil carbon stocks of a coastal wetland in the Changjiang estuary

    Science.gov (United States)

    Zhang, Tianyu; Chen, Huaipu; Cao, Haobing; Ge, Zhenming; Zhang, Liquan

    2017-07-01

    Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the expansion of saltmarsh vegetation, and carbon sequestration. In this study, using the Chongming Dongtan Wetland in the Changjiang estuary as the study area, the spatial and temporal distribution of soil organic carbon (SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013. There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area, and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southern area. More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat. The total organic carbon (TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter; in the below-ground biomass, they gradually increased from spring to winter. The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P. australis and Spartina alterniflora marshes, but were lower in the below-ground biomass in S. mariqueter marsh. Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter. The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order: P. australis marsh > S. alterniflora marsh > S. mariqueter marsh > bare mudflat. The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect. These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.

  15. Ecological carbon sequestration via wood harvest and storage (WHS): Can it be a viable climate mitigation and adaptation strategy for the Amazon?

    Science.gov (United States)

    Zeng, N.

    2015-12-01

    A carbon sequestration strategy is proposed in which forests are sustainably managed to optimal carbon productivity, and a fraction of the wood is selectively harvested and stored to prevent decomposition under anaerobic, dry or cold conditions. Because a large flux of CO2 is constantly assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. The live trees serve as a 'carbon scrubber' or 'carbon remover' that provides continuous sequestration (negative emissions). The stored wood is a semi-permanent carbon sink, but also serves as a 'biomass/bioenergy reserve' that could be utilized in the future. We discuss the particular relevance of this strategy to the Amazon which is under the double threat of climate change and deforestation. As an alternative to REDD, we propose mixed-use of peripheral Amazon basin while keeping the core of the Amazon intact. We argue that this may be a more practical solution in light of the likely climate change impact and human activities.

  16. Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing

    Science.gov (United States)

    Grinand, C.; Maire, G. Le; Vieilledent, G.; Razakamanarivo, H.; Razafimbelo, T.; Bernoux, M.

    2017-02-01

    Soil organic carbon (SOC) plays an important role in climate change regulation notably through release of CO2 following land use change such a deforestation, but data on stock change levels are lacking. This study aims to empirically assess SOC stocks change between 1991 and 2011 at the landscape scale using easy-to-access spatially-explicit environmental factors. The study area was located in southeast Madagascar, in a region that exhibits very high rate of deforestation and which is characterized by both humid and dry climates. We estimated SOC stock on 0.1 ha plots for 95 different locations in a 43,000 ha reference area covering both dry and humid conditions and representing different land cover including natural forest, cropland, pasture and fallows. We used the Random Forest algorithm to find out the environmental factors explaining the spatial distribution of SOC. We then predicted SOC stocks for two soil layers at 30 cm and 100 cm over a wider area of 395,000 ha. By changing the soil and vegetation indices derived from remote sensing images we were able to produce SOC maps for 1991 and 2011. Those estimates and their related uncertainties where combined in a post-processing step to map estimates of significant SOC variations and we finally compared the SOC change map with published deforestation maps. Results show that the geologic variables, precipitation, temperature, and soil-vegetation status were strong predictors of SOC distribution at regional scale. We estimated an average net loss of 10.7% and 5.2% for the 30 cm and the 100 cm layers respectively for deforested areas in the humid area. Our results also suggest that these losses occur within the first five years following deforestation. No significant variations were observed for the dry region. This study provides new solutions and knowledge for a better integration of soil threats and opportunities in land management policies.

  17. Differences on soil organic carbon stock estimation according to sampling type in Mediterranean areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2016-04-01

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Consequently, the scientific community is researching the fate of the organic carbon in the ecosystems. In this line, soil organic matter configuration plays an important role in the Soil System (Parras-Alcántara and Lozano García, 2014). Internationally it is known that soil C sequestration is a strategy to mitigate climate change. In this sense, many soil researchers have studied this parameter (SOC). However, many of these studies were carried out arbitrarily using entire soil profiles (ESP) by pedogenetic horizons or soil control sections (SCS) (edaphic controls to different thickness). As a result, the indiscriminate use of both methodologies implies differences with respect to SOC stock (SOCS) quantification. This scenario has been indicated and warned for different researchers (Parras-Alcántara et al., 2015a; Parras-Alcántara et al., 2015b). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in the Cardeña and Montoro Natural Park (Spain). This nature reserve is a forested area with 385 km2 in southern Spain. Thirty-seven sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The results obtained show an overestimation of SOCS when SCS sampling approach is used compared to ESP. This supports that methodology selection is very important to SOCS quantification. This research is an assessment for modeling SOCS at the regional level in Mediterranean natural areas. References Parras-Alcántara, L., Lozano-García, B., 2014

  18. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  19. Carbon Stocks across a Fifty Year Chronosequence of Rubber Plantations in Tropical China

    Directory of Open Access Journals (Sweden)

    Chenggang Liu

    2017-06-01

    Full Text Available Transition from forest to rubber (Hevea brasiliensis Muell. Arg. plantation has occurred in tropical China for decades. Rubber has been planted on 1 million ha to provide raw materials to the rubber industry. The role of various-aged rubber plantations in carbon (C sequestration remains unclear. The biomass C accumulation including latex C and C distribution in soil of five different-aged stands (7, 13, 19, 25 and 47 years old were examined. The total biomass C stock (TBC and total net primary productivity (NPPtotal, whether with or without latex C, had a close quadratic relationship with stand age. Regardless of stand age, around 68% of the C was stored in aboveground biomass, and NPPlatex contributed to approximately 18% of C sequestration. Soil organic carbon stock in the 100-cm depth remained relatively stable, but it lost about 16.8 Mg ha−1 with stand age. The total ecosystem C stock (TEC across stands averaged 159.6, 174.4, 229.6, 238.1 and 291.9 Mg ha−1, respectively, of which more than 45% was stored in the soil. However, biomass would become the major C sink rather than soil over a maximal rubber life expectancy. Regression analysis showed that TEC for rubber plantation at 22 years is comparable to a baseline of 230.4 Mg ha−1 for tropical forest in China, and would reach the maximum value at around 54 years. Therefore, rubber plantation can be considered as alternative land use without affecting net forest ecosystem C storage. In addition to the potential C gains, a full set of ecosystem and economic properties have to be quantified in order to assess the trade-offs associated with forest-to-rubber transition.

  20. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons.

    Directory of Open Access Journals (Sweden)

    J Boone Kauffman

    Full Text Available Globally, it is recognized that blue carbon ecosystems, especially mangroves, often sequester large quantities of carbon and are of interest for inclusion in climate change mitigation strategies. While 19% of the world's mangroves are in Africa, they are among the least investigated of all blue carbon ecosystems. We quantified total ecosystem carbon stocks in 33 different mangrove stands along the Atlantic coast of West-Central Africa from Senegal to Southern Gabon spanning large gradients of latitude, soil properties, porewater salinity, and precipitation. Mangrove structure ranged from low and dense stands that were 35,000 trees ha-1 to tall and open stands >40m in height and 1,000 Mg C ha-1. The lowest carbon stocks were found in the low mangroves of the semiarid region of Senegal (463 Mg C ha-1 and in mangroves on coarse-textured soils in Gabon South (541 Mg C ha-1. At the scale of the entirety of West-Central Africa, total ecosystem carbon stocks were poorly correlated to aboveground ecosystem carbon pools, precipitation, latitude and soil salinity (r2 = ≤0.07 for all parameters. Based upon a sample of 158 sites from Africa, Asia and Latin America that were sampled in a similar manner to this study, the global mean of carbon stocks for mangroves is 885 Mg C ha-1. The ecosystem carbon stocks of mangroves for West-Central Africa are slightly lower than those of Latin America (940 Mg C ha-1 and Asia (1049 Mg C ha-1 but substantially higher than the default Intergovernmental Panel on Climate Change (IPCC values for mangroves (511 Mg C ha-1. This study provides an improved estimation of default estimates (Tier 1 values of mangroves for Asia, Latin America, and West Central Africa.

  1. Modelling the Carbon Stocks Estimation of the Tropical Lowland Dipterocarp Forest Using LIDAR and Remotely Sensed Data

    Science.gov (United States)

    Zaki, N. A. M.; Latif, Z. A.; Suratman, M. N.; Zainal, M. Z.

    2016-06-01

    Tropical forest embraces a large stock of carbon in the global carbon cycle and contributes to the enormous amount of above and below ground biomass. The carbon kept in the aboveground living biomass of trees is typically the largest pool and the most directly impacted by the anthropogenic factor such as deforestation and forest degradation. However, fewer studies had been proposed to model the carbon for tropical rain forest and the quantification still remain uncertainties. A multiple linear regression (MLR) is one of the methods to define the relationship between the field inventory measurements and the statistical extracted from the remotely sensed data which is LiDAR and WorldView-3 imagery (WV-3). This paper highlight the model development from fusion of multispectral WV-3 with the LIDAR metrics to model the carbon estimation of the tropical lowland Dipterocarp forest of the study area. The result shown the over segmentation and under segmentation value for this output is 0.19 and 0.11 respectively, thus D-value for the classification is 0.19 which is 81%. Overall, this study produce a significant correlation coefficient (r) between Crown projection area (CPA) and Carbon stocks (CS); height from LiDAR (H_LDR) and Carbon stocks (CS); and Crown projection area (CPA) and height from LiDAR (H_LDR) were shown 0.671, 0.709 and 0.549 respectively. The CPA of the segmentation found to be representative spatially with higher correlation of relationship between diameter at the breast height (DBH) and carbon stocks which is Pearson Correlation p = 0.000 (p using multiple linear regression method. The study concluded that the integration of WV-3 imagery with the CHM raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the Lowland Dipterocarp forest.

  2. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    International Nuclear Information System (INIS)

    Bright, B C; Hicke, J A; Hudak, A T

    2012-01-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40–50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75–89% of the study area had >25% AGC in killed trees and 3–6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale. (letter)

  3. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.

    2015-01-01

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  4. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States.

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L; Wu, Yiping; Young, Claudia J

    2015-10-13

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands' contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency's land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  5. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.

    Directory of Open Access Journals (Sweden)

    Shuaifeng Li

    Full Text Available The objectives of this study were to estimate changes of tree carbon (C and soil organic carbon (SOC stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0-1 m. The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1 with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0-0.1 m contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded.

  6. Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.).

    Science.gov (United States)

    Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan

    2018-04-15

    Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.

  7. Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks

    International Nuclear Information System (INIS)

    Elliott Campbell, J.; Moen, Jeremie C.; Ney, Richard A.; Schnoor, Jerald L.

    2008-01-01

    Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively. - Large differences in estimates of soil organic carbon stocks and annual changes in stocks for Wisconsin forestlands indicate a need for validation from forthcoming forest surveys

  8. Relationships between forest fine and coarse woody debris carbon stocks across latitudinal gradients in the United States as an indicator of climate change effects

    Science.gov (United States)

    C.W. Woodall; G.C. Liknes

    2008-01-01

    Coarse and fine woody materials (CWD and FWD) are substantial forest ecosystem carbon (C) stocks. There is a lack of understanding how these detritus C stocks may respond to climate change. This study used a nation-wide inventory of CWD and FWD in the United States to examine how these C stocks vary by latitude. Results indicate that the highest CWD and FWD C stocks...

  9. Evaluating the Potential of Commercial Forest Inventory Data to Report on Forest Carbon Stock and Forest Carbon Stock Changes for REDD+ under the UNFCCC

    Directory of Open Access Journals (Sweden)

    Danae Maniatis

    2011-01-01

    Full Text Available In the context of the adoption at the 16th Conference of the Parties in 2010 on the REDD+ mitigation mechanism, it is important to obtain reliable data on the spatiotemporal variation of forest carbon stocks and changes (called Emission Factor, EF. A re-occurring debate in estimating EF for REDD+ is the use of existing field measurement data. We provide an assessment of the use of commercial logging inventory data and ecological data to estimate a conservative EF (REDD+ phase 2 or to report on EF following IPCC Guidance and Guidelines (REDD+ phase 3. The data presented originate from five logging companies dispersed over Gabon, totalling 2,240 plots of 0.3 hectares.We distinguish three Forest Types (FTs in the dataset based on floristic conditions. Estimated mean aboveground biomass (AGB in the FTs ranges from 312 to 333 Mg ha−1. A 5% accuracy is reached with the number of plots put in place for the FTs and a low sampling uncertainty obtained (± 10 to 13 Mg ha−1. The data could be used to estimate a conservative EF in REDD+ phase 2 and only partially to report on EF following tier 2 requirements for a phase 3.

  10. Underestimation of soil carbon stocks by Yasso07, Q, and CENTURY models in boreal forest linked to overlooking site fertility

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-04-01

    The soil organic carbon stock (SOC) changes estimated by the most process based soil carbon models (e.g. Yasso07, Q and CENTURY), needed for reporting of changes in soil carbon amounts for the United Nations Framework Convention on Climate Change (UNFCCC) and for mitigation of anthropogenic CO2 emissions by soil carbon management, can be biased if in a large mosaic of environments the models are missing a key factor driving SOC sequestration. To our knowledge soil nutrient status as a missing driver of these models was not tested in previous studies. Although, it's known that models fail to reconstruct the spatial variation and that soil nutrient status drives the ecosystem carbon use efficiency and soil carbon sequestration. We evaluated SOC stock estimates of Yasso07, Q and CENTURY process based models against the field data from Swedish Forest Soil National Inventories (3230 samples) organized by recursive partitioning method (RPART) into distinct soil groups with underlying SOC stock development linked to physicochemical conditions. These models worked for most soils with approximately average SOC stocks, but could not reproduce higher measured SOC stocks in our application. The Yasso07 and Q models that used only climate and litterfall input data and ignored soil properties generally agreed with two third of measurements. However, in comparison with measurements grouped according to the gradient of soil nutrient status we found that the models underestimated for the Swedish boreal forest soils with higher site fertility. Accounting for soil texture (clay, silt, and sand content) and structure (bulk density) in CENTURY model showed no improvement on carbon stock estimates, as CENTURY deviated in similar manner. We highlighted the mechanisms why models deviate from the measurements and the ways of considering soil nutrient status in further model development. Our analysis suggested that the models indeed lack other predominat drivers of SOC stabilization

  11. Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo.

    Directory of Open Access Journals (Sweden)

    Philippe Saner

    Full Text Available Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+ good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha⁻¹±3.8 (SD, including: Total aboveground (TAGC: 55%; 91.9 Mg C ha⁻¹±2.9 SEM and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha⁻¹±0.5 SEM, deadwood (8%; 13.2 Mg C ha⁻¹±3.5 SEM and soil organic matter (SOM: 24%; 39.6 Mg C ha⁻¹±0.9 SEM, understory vegetation (3%; 5.1 Mg C ha⁻¹±1.7 SEM, standing litter (<1%; 0.7 Mg C ha⁻¹±0.1 SEM and fine root biomass (<1%; 0.9 Mg C ha⁻¹±0.1 SEM. Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha⁻¹ yr⁻¹±0.1 SEM, and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha⁻¹ yr⁻¹±1.2 SEM. The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration.Twenty-two years after logging TAGC stocks were 28% lower compared to unlogged forest (128 Mg C ha⁻¹±13.4 SEM; a combined weighted average mean reduction due to selective logging of -57.8 Mg C ha⁻¹ (with 95% CI -75.5 to -40.2. Based on the findings we conclude that selective logging decreased the dipterocarp stock by 55-66%. Silvicultural treatments may have the potential to accelerate the recovery of dipterocarp C stocks to pre-logging levels.

  12. Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Nicola Clerici

    2016-07-01

    Full Text Available Periurban forests are key to offsetting anthropogenic carbon emissions, but they are under constant threat from urbanization. In particular, secondary Neotropical forest types in Andean periurban areas have a high potential to store carbon, but are currently poorly characterized. To address this lack of information, we developed a method to estimate periurban aboveground biomass (AGB—a proxy for multiple ecosystem services—of secondary Andean forests near Bogotá, Colombia, based on very high resolution (VHR GeoEye-1, Pleiades-1A imagery and field-measured plot data. Specifically, we tested a series of different pre-processing workflows to derive six vegetation indices that were regressed against in situ estimates of AGB. Overall, the coupling of linear models and the Ratio Vegetation Index produced the most satisfactory results. Atmospheric and topographic correction proved to be key in improving model fit, especially in high aerosol and rugged terrain such as the Andes. Methods and findings provide baseline AGB and carbon stock information for little studied periurban Andean secondary forests. The methodological approach can also be used for integrating limited forest monitoring plot AGB data with very high resolution imagery for cost-effective modelling of ecosystem service provision from forests, monitoring reforestation and forest cover change, and for carbon offset assessments.

  13. Ecological Variability and Carbon Stock Estimates of Mangrove Ecosystems in Northwestern Madagascar

    Directory of Open Access Journals (Sweden)

    Trevor G. Jones

    2014-01-01

    Full Text Available Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Despite their value, world-wide, mangroves are being rapidly degraded and deforested. Madagascar contains approximately 2% of the world’s mangroves, >20% of which has been deforested since 1990 from increased extraction for charcoal and timber and conversion to small to large-scale agriculture and aquaculture. Loss is particularly prominent in the northwestern Ambaro and Ambanja bays. Here, we focus on Ambaro and Ambanja bays, presenting dynamics calculated using United States Geological Survey (USGS national-level mangrove maps and the first localized satellite imagery derived map of dominant land-cover types. The analysis of USGS data indicated a loss of 7659 ha (23.7% and a gain of 995 ha (3.1% from 1990–2010. Contemporary mapping results were 93.4% accurate overall (Kappa 0.9, with producer’s and user’s accuracies ≥85%. Classification results allowed partitioning mangroves in to ecologically meaningful, spectrally distinct strata, wherein field measurements facilitated estimating the first total carbon stocks for mangroves in Madagascar. Estimates suggest that higher stature closed-canopy mangroves have average total vegetation carbon values of 146.8 Mg/ha (±10.2 and soil organic carbon of 446.2 (±36.9, supporting a growing body of studies that mangroves are amongst the most carbon-dense tropical forests.

  14. Mangrove Carbon Stocks and Ecosystem Cover Dynamics in Southwest Madagascar and the Implications for Local Management

    Directory of Open Access Journals (Sweden)

    Lisa Benson

    2017-05-01

    Full Text Available Of the numerous ecosystem services mangroves provide, carbon storage is gaining particular attention for its potential role in climate change mitigation strategies. Madagascar contains 2% of the world’s mangroves, over 20% of which is estimated to have been deforested through charcoal production, timber extraction and agricultural development. This study presents a carbon stock assessment of the mangroves in Helodrano Fagnemotse in southwest Madagascar alongside an analysis of mangrove land-cover change from 2002 to 2014. Similar to other mangrove ecosystems in East Africa, higher stature, closed-canopy mangroves in southwest Madagascar were estimated to contain 454.92 (±26.58 Mg·C·ha−1. Although the mangrove extent in this area is relatively small (1500 ha, these mangroves are of critical importance to local communities and anthropogenic pressures on coastal resources in the area are increasing. This was evident in both field observations and remote sensing analysis, which indicated an overall net loss of 3.18% between 2002 and 2014. Further dynamics analysis highlighted widespread transitions of dense, higher stature mangroves to more sparse mangrove areas indicating extensive degradation. Harnessing the value that the carbon stored within these mangroves holds on the voluntary carbon market could generate revenue to support and incentivise locally-led sustainable mangrove management, improve livelihoods and alleviate anthropogenic pressures.

  15. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia.

    Science.gov (United States)

    Jaquetti, Roberto K; Gonçalves, José Francisco C

    2017-01-01

    Amazonia is crucial to global carbon cycle. Deforestation continues to be one of the main causes of the release of C into the atmosphere, but forest restoration plantations can reverse this scenario. However, there is still diffuse information about the C and nutrient stocks in the vegetation biomass. We investigated the carbon and nutrient stocks of Fabaceae trees (Inga edulis, Schizolobium amazonicum and Dipteryx odorata) subjected to fertilization treatments (T1 - no fertilization; T2 - chemical; T3 - organic; and T4 - organic and chemical fertilization) in a degraded area of the Balbina Hydroelectric Dam, AM - Brazil. As an early successional species, I. edulis stocked more C and nutrients than the other two species independent of the fertilization treatment, and S. amazonicum stocked more C than D. odorata under T1 and T4. The mixed species plantation had the potential to stock 4.1 Mg C ha-1 year-1, while I. edulis alone could stock 9.4 Mg C ha-1 year-1. Mixing species that rapidly assimilate C and are of significant ecological and commercial value (e.g., Fabaceae trees) represents a good way to restore degraded areas. Our results suggest that the tested species be used for forest restoration in Amazonia.

  16. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia

    Directory of Open Access Journals (Sweden)

    ROBERTO K. JAQUETTI

    2017-08-01

    Full Text Available ABSTRACT Amazonia is crucial to global carbon cycle. Deforestation continues to be one of the main causes of the release of C into the atmosphere, but forest restoration plantations can reverse this scenario. However, there is still diffuse information about the C and nutrient stocks in the vegetation biomass. We investigated the carbon and nutrient stocks of Fabaceae trees (Inga edulis, Schizolobium amazonicum and Dipteryx odorata subjected to fertilization treatments (T1 - no fertilization; T2 - chemical; T3 - organic; and T4 - organic and chemical fertilization in a degraded area of the Balbina Hydroelectric Dam, AM - Brazil. As an early successional species, I. edulis stocked more C and nutrients than the other two species independent of the fertilization treatment, and S. amazonicum stocked more C than D. odorata under T1 and T4. The mixed species plantation had the potential to stock 4.1 Mg C ha-1 year-1, while I. edulis alone could stock 9.4 Mg C ha-1 year-1. Mixing species that rapidly assimilate C and are of significant ecological and commercial value (e.g., Fabaceae trees represents a good way to restore degraded areas. Our results suggest that the tested species be used for forest restoration in Amazonia.

  17. [Tree above-ground biomass allometries for carbon stocks estimation in the Caribbean mangroves in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Zapata, Mauricio; Bolivar, Jhoanata; Monsalve, Alejandra; Espinosa, Sandra Milena; Sierra-Correa, Paula Cristina; Sierra, Andrés

    2016-06-01

    The distribution of carbon in “Blue Carbon” ecosystems such as mangroves is little known, when compared with the highly known terrestrial forests, despite its particular and recognized high productivity and carbon storage capacity. The objective of this study was to analyze the above ground biomass (AGB) of the species Rhizophora mangle and Avicennia germinans from the Marine Protected Area of Distrito de Manejo Integrado (DMI), Cispatá-Tinajones-La Balsa, Caribbean Colombian coast. With official authorization, we harvested and studied 30 individuals of each species, and built allometric models in order to estimate AGB. Our AGB results indicated that the studied mangrove forests of the DMI Colombian Caribbean was of 129.69 ± 20.24 Mg/ha, equivalent to 64.85 ± 10.12 MgC/ha. The DMI has an area of 8 570.9 ha in mangrove forests, and we estimated that the total carbon potential stored was about 555 795.93 Mg C. The equations generated in this study can be considered as an alternative for the assessment of carbon stocks in AGB of mangrove forests in Colombia; as other available AGB allometric models do not discriminate mangrove forests, despite being particular ecosystems. They can be used for analysis at a more detailed scale and are considered useful to determine the carbon storage potential of mangrove forests, as a country alternative to support forest conservation and emission reduction strategies. In general, the potential of carbon storage from Colombian Caribbean mangrove forests is important and could promote the country leadership of the “blue carbon” stored.

  18. Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China

    Directory of Open Access Journals (Sweden)

    Hailiang Lv

    2016-09-01

    Full Text Available Society has placed greater focus on the ecological service of urban forests; however, more information is required on the variation of carbon (C in trees and soils in different functional forest types, administrative districts, and urban-rural gradients. To address this issue, we measured various tree and soil parameters by sampling 219 plots in the urban forest of the Harbin city region. Averaged tree and soil C stock density (C stocks per unit tree cover for Harbin city were 7.71 (±7.69 kg C·m−2 and 5.48 (±2.86 kg C·m−2, respectively. They were higher than those of other Chinese cities (Shenyang and Changchun, but were much lower than local natural forests. The tree C stock densities varied 2.3- to 3.2-fold among forest types, administrative districts, and ring road-based urban-rural gradients. In comparison, soil organic C (SOC densities varied by much less (1.4–1.5-fold. We found these to be urbanization-dependent processes, which were closely related to the urban-rural gradient data based on ring-roads and settlement history patterns. We estimated that SOC accumulation during the 100-year urbanization of Harbin was very large (5 to 14 thousand tons, accounting for over one quarter of the stored C in trees. Our results provide new insights into the dynamics of above- and below-ground C (especially in soil during the urbanization process, and that a city’s ability to provide C-related ecosystem services increases as it ages. Our findings highlight that urbanization effects should be incorporated into calculations of soil C budgets in regions subject to rapid urban expansion, such as China.

  19. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi; Saia, Sergio; Schillaci, Calogero; Mai, Paul Martin; Huser, Raphaë l

    2017-01-01

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications

  20. GRANULOMETRIC AND HUMIC FRACTIONS CARBON STOCKS OF SOIL ORGANIC MATTER UNDER NO-TILLAGE SYSTEM IN UBERABA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Marcos Gervasio Pereira

    2011-12-01

    Full Text Available The cover plant use preceding grain crops in Cerrado soil can increase the carbon stocks of chemical and physical fractions of soil organic matter (SOM. The present study aimed to quantify the carbon stocks of SOM granulometric and humic fractions in a Cerrado area under no-tillage system with different cover plant, and compare the results with those from conventional tillage and fallow areas, in Uberaba, MG, Brazil. The implemented cover crops were: millet, tropical grass and sunn hemp. Furthermore, an area was used in fallow and another as a control area (conventional tillage. After cover crop removal, the areas were subdivided for the corn and soybean plantation. Soil samples were collected in the 0.0-0.025, 0.025-0.05, 0.05-0.10 and 0.10-0.20 m depths, with posterior quantification of total organic carbon (TOC levels and chemical and granulometric fractionation of SOM. Humic acid carbon (C-HAF, fulvic acids (C-FAF and humin (C-HUM were quantified through these fractionations. The granulometric fractions consisted in particulate organic matter (POM and mineral organic matter (MOM. Using the carbon levels for each fraction, the respective stocks for each depth were calculated, including the 0.0-0.20 m layer. In the 0.0-0.20 m layer, TOC had the highest stocks for the millet area. The highest POM stocks were found for the corn plantation over sunn hemp and the fallow and soybean area over millet and tropical grass (0.0-0.20 m. In relation to the MOM stocks, the highest values were observed in the areas with millet, sunn hemp and tropical (palisade grass, all superior to those found in the conventional tillage and fallow areas, independent of evaluated culture (0.10-0.20 m. The highest C-HUM stocks were observed in the area with tropical grass (0.025-0.05 m and areas with tropical grass and sunn hemp (0.10-0.20 m, when compared to conventional tillage, independent of evaluated culture (corn and soybean. The highest C-FAH stocks in the depth of 0

  1. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Directory of Open Access Journals (Sweden)

    Lucía Gaitán

    Full Text Available Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1, compared with adjacent secondary forests (43 Mg C ha-1. We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA out of 16 farms had highest milk yields (6.2 kg cow-1day-1 and lowest emissions (1.7 kg CO2-eq. per kg milk produced. Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  2. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Science.gov (United States)

    Gaitán, Lucía; Läderach, Peter; Graefe, Sophie; Rao, Idupulapati; van der Hoek, Rein

    2016-01-01

    Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG) emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1), compared with adjacent secondary forests (43 Mg C ha-1). We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA) out of 16 farms had highest milk yields (6.2 kg cow-1day-1) and lowest emissions (1.7 kg CO2-eq. per kg milk produced). Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  3. How do soil properties and soil carbon stocks change after land abandonment in Mediterranean mountain areas?

    Science.gov (United States)

    Nadal Romero, Estela; Cammeraat, Erik; Pérez Cardiel, Estela; Lasanta, Teodoro

    2016-04-01

    Land abandonment and subsequent revegetation processes (due to secondary succession and afforestation practices) are global issues with important implications in Mediterranean mountain areas. Moreover, the effects of land use changes on soil carbon stocks are a matter of concern stated in international policy agendas on the mitigation of greenhouse emissions, and afforestation practices are increasingly viewed as an environmental restorative land use change prescription and are considered one of the most efficient carbon sequestration strategies currently available. The MED-AFFOREST project aims to gain more insight into the discussion by exploring the following central research questions: (i) what is the impact of land abandonment on soil properties? and (ii) how do soil organic carbon change after land abandonment? The main objective of this study is to assess the effects of land abandonment, land use change and afforestation practices on soil properties and soil organic carbon (SOC) dynamics. For this aim, five different land covers (bare soil, meadows, secondary succession, Pinus sylvestris (PS) and Pinus nigra (PN) afforestation), in the Central Spanish Pyrenees were analysed. Results showed that changes in soil properties after land abandonment were limited, even if afforestation practices were carried out and no differences were observed between natural succession and afforestation. The results on SOC dynamics showed that: (i) SOC contents were higher in the PN sites in the topsoil (10 cm), (ii) when all the profile was considered no significant differences were observed between meadows and PN, (iii) SOC accumulation under secondary succession is a slow process, and (iv) meadows should also be considered due to the relative importance in SOC stocks. The first step of SOC stabilization after afforestation is the formation of macro-aggregates promoted by large inputs of SOC, with a high contribution of labile organic matter. However, our respiration

  4. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya

    Directory of Open Access Journals (Sweden)

    Kumar Munesh

    2009-08-01

    Full Text Available Abstract Background The Himalayan zones, with dense forest vegetation, cover a fifth part of India and store a third part of the country reserves of soil organic carbon (SOC. However, the details of altitudinal distribution of these carbon stocks, which are vulnerable to forest management and climate change impacts, are not well known. Results This article reports the results of measuring the stocks of SOC along altitudinal gradients. The study was carried out in the coniferous subtropical and broadleaf temperate forests of Garhwal Himalaya. The stocks of SOC were found to be decreasing with altitude: from 185.6 to 160.8 t C ha-1 and from 141.6 to 124.8 t C ha-1 in temperature (Quercus leucotrichophora and subtropical (Pinus roxburghii forests, respectively. Conclusion The results of this study lead to conclusion that the ability of soil to stabilize soil organic matter depends negatively on altitude and call for comprehensive theoretical explanation

  5. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Science.gov (United States)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.

    2017-11-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that

  6. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden

    International Nuclear Information System (INIS)

    Oostra, Swantje; Majdi, Hooshang; Olsson, Mats

    2006-01-01

    The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinusbetulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20 cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction hornbeam > oak > beech > ash > elm. The pH in the O-horizon ranged in the order elm > ash > hornbeam > beech > oak > spruce. In the mineral soil, SOC and TN ranged in the order elm > oak > ash = hornbeam > spruce > beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate

  7. Uncertainty of forest carbon stock changes. Implications to the total uncertainty of GHG inventory of Finland

    International Nuclear Information System (INIS)

    Monni, S.; Savolainen, I.; Peltoniemi, M.; Lehtonen, A.; Makipaa, R.; Palosuo, T.

    2007-01-01

    Uncertainty analysis facilitates identification of the most important categories affecting greenhouse gas (GHG) inventory uncertainty and helps in prioritisation of the efforts needed for development of the inventory. This paper presents an uncertainty analysis of GHG emissions of all Kyoto sectors and gases for Finland consolidated with estimates of emissions/removals from LULUCF categories. In Finland, net GHG emissions in 2003 were around 69 Tg (±15 Tg) CO2 equivalents. The uncertainties in forest carbon sink estimates in 2003 were larger than in most other emission categories, but of the same order of magnitude as in carbon stock change estimates in other land use, land-use change and forestry (LULUCF) categories, and in N2O emissions from agricultural soils. Uncertainties in sink estimates of 1990 were lower, due to better availability of data. Results of this study indicate that inclusion of the forest carbon sink to GHG inventories reported to the UNFCCC increases uncertainties in net emissions notably. However, the decrease in precision is accompanied by an increase in the accuracy of the overall net GHG emissions due to improved completeness of the inventory. The results of this study can be utilised when planning future GHG mitigation protocols and emission trading schemes and when analysing environmental benefits of climate conventions

  8. Modeling changes in organic carbon stocks for distinct soils in southeastern brazil after four eucalyptus rotations using the century model

    Directory of Open Access Journals (Sweden)

    Augusto Miguel Nascimento Lima

    2011-06-01

    Full Text Available Soil organic matter (SOM plays an important role in carbon (C cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i soil organic carbon (SOC stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii SOC values simulated by the Century model would describe the data better than the mean of observations. So, the aims of the current study were: (i to evaluate the SOM dynamics using the Century model to simulate the changes of C stocks for two eucalyptus chronosequences in the Rio Doce Valley, Minas Gerais State, Brazil; and (ii to compare the C stocks simulated by Century with the C stocks measured in soils of different Orders and regions of the Rio Doce Valley growing eucalyptus. In Belo Oriente (BO, short-rotation eucalyptus plantations had been cultivated for 4.0; 13.0, 22.0, 32.0 and 34.0 years, at a lower elevation and in a warmer climate, while in Virginópolis (VG, these time periods were 8.0, 19.0 and 33.0 years, at a higher elevation and in a milder climate. Soil samples were collected from the 0-20 cm layer to estimate C stocks. Results indicate that the C stocks simulated by the Century model decreased after 37 years of poorly managed pastures in areas previously covered by native forest in the regions of BO and VG. The substitution of poorly managed pastures by eucalyptus in the early 1970´s led to an average increase of C of 0.28 and 0.42 t ha-1 year-1 in BO and VG, respectively. The measured C stocks under eucalyptus in distinct soil Orders and independent regions with variable edapho-climate conditions were not far from the values estimated by the Century model (root mean square error - RMSE = 20.9; model efficiency - EF = 0.29 despite the opposite result obtained

  9. The effect of land use intensity on soil organic carbon stocks of European croplands

    Science.gov (United States)

    Dechow, Rene; Gebbert, Sören; Franko, Uwe; Kätterer, Thomas; Kolbe, Hartmut

    2013-04-01

    Croplands cover about one third of Europe and are assumed to be the biggest source of greenhouse gas emissions of the European biosphere with the degradation of soil organic carbon (SOC) being a major contributor of this source. Soil carbon stocks of croplands are subjected to ranges of natural and anthropogenic influences that control the release or uptake of CO2. The separation of drivers is essential for assessing recent and prospective GHG mitigation potentials by cropland management. Within the last decades the management of European croplands is characterized by an ongoing intensification. The increasing influence of the global market on farmers' decision and the establishment of industrialized farming practise in Europe had significant impact on the shift of crop rotations during the last decades. Due to the high spatial variability and the dominating fraction of slowly degradable carbon it needs at least decades to detect changes while agricultural management is characterized by short term system interventions. Long term observations representing time intervals of decades to hundreds of years are therefore essential to make reliable suggestions about the sensitivity of soil carbon turnover against external impacts because the temporal scale of these experiments corresponds to the temporal scale of soil C turnover. A data set of about 32 European long-term experiments (380 variants) was used to quantify the uncertainty of the RothC soil carbon model. The parameters of the model were adapted to represent the sensitivity of SOC on weather conditions and crop types found in the data set by applying an Monte Carlo Markov Chain algorithm. Integrated in a GIS environment the modified model was used to run scenarios that vary in terms of climate conditions and crop rotations within the time period 1970-2010 on a European scale. Regionalized sensitivities of SOC on natural drivers and crop rotations will be presented.

  10. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina.

    Science.gov (United States)

    Villarino, Sebastián Horacio; Studdert, Guillermo Alberto; Baldassini, Pablo; Cendoya, María Gabriela; Ciuffoli, Lucía; Mastrángelo, Matias; Piñeiro, Gervasio

    2017-01-01

    Land use change affects soil organic carbon (SOC) and generates CO 2 emissions. Moreover, SOC depletion entails degradation of soil functions that support ecosystem services. Large areas covered by dry forests have been cleared in the Semiarid Chaco Region of Argentina for cropping expansion. However, deforestation impacts on the SOC stock and its distribution in the soil profile have been scarcely reported. We assessed these impacts based on the analysis of field data along a time-since-deforestation-for-cropping chronosequence, and remote sensing indices. Soil organic C was determined up to 100cm depth and physically fractionated into mineral associated organic carbon (MAOC) and particulate organic C (POC). Models describing vertical distribution of SOC were fitted. Total SOC, POC and MAOC stocks decreased markedly with increasing cropping age. Particulate organic C was the most sensitive fraction to cultivation. After 10yr of cropping SOC loss was around 30%, with greater POC loss (near 60%) and smaller MAOC loss (near 15%), at 0-30cm depth. Similar relative SOC losses were observed in deeper soil layers (30-60 and 60-100cm). Deforestation and subsequent cropping also modified SOC vertical distribution. Soil organic C loss was negatively associated with the proportion of maize in the rotation and total crop biomass inputs, but positively associated with the proportion of soybean in the rotation. Without effective land use polices, deforestation and agricultural expansion can lead to rapid soil degradation and reductions in the provision of important ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of mapped variation in soil conditions on estimates of soil carbon and nitrogen stocks for South America

    NARCIS (Netherlands)

    Batjes, N.H.

    2000-01-01

    Organic carbon and total nitrogen stocks for South America are computed using four 1:5,000,000 scale soil data sets of different spatial resolution. These are the 60' by 60' resolution Zobler soil data file, the 30' by 30' resolution World Inventory of Soil Emission Potentials (WISE) database, a 5'

  12. Carbon stocks and fluxes in the high latitudes: using site-levelbreak data to evaluate Earth system models

    DEFF Research Database (Denmark)

    Chadburn, S. E.; Krinner, G.; Porada, P.

    2017-01-01

    from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which...

  13. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States

    Science.gov (United States)

    Eric M. Pfeifer; Jeffrey A. Hicke; Arjan J.H. Meddens

    2011-01-01

    Bark beetle epidemics result in tree mortality across millions of hectares in North America. However, few studies have quantified impacts on carbon (C) cycling. In this study, we quantified the immediate response and subsequent trajectories of stand-level aboveground tree C stocks and fluxes using field measurements and modeling for a location in central Idaho, USA...

  14. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity

    Science.gov (United States)

    Mercedes M. C. Bustamante; Iris Roitman; T. Mitchell Aide; Ane Alencar; Liana O. Anderson; Luiz Aragao; Gregory P. Asner; Jos Barlow; Erika Berenguer; Jeffrey Chambers; Marcos H. Costa; Thierry Fanin; Laerte G. Ferreira; Joice Ferreira; Michael Keller; William E. Magnusson; Lucia Morales-Barquero; Douglas Morton; Jean P. H. B. Ometto; Michael Palace; Carlos A. Peres; Divino Silverio; Susan Trumbore; Ima C. G. Vieira

    2015-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks...

  15. Evaluation of paleovegetation changes in the northwest part of the Amazon region, Brazil: a carbon isotope approach in soils

    International Nuclear Information System (INIS)

    Gomes, B.M.; Pessenda, L.C.R.; Aravena, R.

    1995-01-01

    Full text. Numerous studies have focused on the understanding of the vegetation dynamics in the amazon region and its realtion to climate. The research approaches in these studies have involved the use of biological, geomorphologic and botanical tools, (1,2). Our approach involves the use of 13 and 14 C analyses in soil organic mater t infer past vegeation changes in the Amazon region (3). This is based on the distinct composition that characterize the C 3 and C 4 plants, that formed the different vegetation communities that exist in the Amazon region. 14 C used as a dating tool. This paper present data in soils collected in the Rondonia State, located in the northwestern part of the Amazon region. The soils were collected along a transect that include four distinct vegetation communities, ranging from a Cerrado type vegetation (southern part), dominated by C 4 grasses, to a tropical forest (northern part). The soils types are Latossolo Vermelho Amarelo at the Cerrado, Cerrado-transition and forest-transition sites, and Podzolico Vermelho amarelo at the forest site. 14 C data obtained in total soil organic matter, humin fraction and charcoal indicate that the organic matterin these soils is at least Holocene in age. The forest and the forest-transition sites area characterized by typical δ 13 C profiles (-29 to -24 0/00), indicating the predominance of C 3 plants during the past in this region. The Cerrado-transition sites show a significant change in δ 13 C from -27.5 0/00 at the surface to -19 0/00 at 30 cm. This value changed toward more depleted δ 13 C values at the 90-100 cm depth interval, reaching a value of -30 0/00 at 190-200 cm depth interval. This trend has to be associated to a change from a forest type vegetation (190-200 cm to 130-140 cm), to a vegetation community with a mayor influence of C 4 palnts recorded i the interval between 110-120 to 20-23 cm depth. The δ 13 C values at the Cerrado sites are the more enriched ones observed in this study

  16. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Science.gov (United States)

    Portner, H.; Wolf, A.; Bugmann, H.

    2009-04-01

    function of Lloyd&Taylor therefore is an adequate choice to model the temperature dependency of soil organic matter decomposition. The Ticino catchment (300-2300m) in Southern Switzerland was used to study the sensitivity of long-term changes (100 years) in the prediction of carbon storage. The uncertainty in temperature response introduced into the model lead to high uncertainties in long-term soil carbon stocks. Interestingly, the uncertainty increased with decreasing temperature and increasing elevation. The carbon pools in lower elevations (mean annual temperature > 15 °C) turned over faster and little carbon accumulated in the soil. The carbon pools in higher elevations and hence in higher latitudes experiencing colder temperature (mean annual temperature < 15 °C) turned over slower and therefore accumulated more carbon over the simulation period. Therefore, the high elevation soils stored more carbon, but the prediction of the carbon pool size had a much higher uncertainty than the low elevation soils. We concluded that with our model, the predictions of the potential loss of soil carbon in cold temperature regimes is more uncertain than the carbon loss in warmer regions, both due to the higher soil carbon pools, but also due to the higher uncertainty found in our simulations.

  17. The effect of cassava-based bioethanol production on above-ground carbon stocks: A case study from Southern Mali

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Birch-Thomsen, Torben; Kristensen, Søren B.P.; Traoré, Oumar

    2012-01-01

    Increasing energy use and the need to mitigate climate change make production of liquid biofuels a high priority. Farmers respond worldwide to this increasing demand by converting forests and grassland into biofuel crops, but whether biofuels offer carbon savings depends on the carbon emissions that occur when land use is changed to biofuel crops. This paper reports the results of a study on cassava-based bioethanol production undertaken in the Sikasso region in Southern Mali. The paper outlines the estimated impacts on above-ground carbon stocks when land use is changed to increase cassava production. The results show that expansion of cassava production for bioethanol will most likely lead to the conversion of fallow areas to cassava. A land use change from fallow to cassava creates a reduction in the above-ground carbon stocks in the order of 4–13 Mg C ha −1 , depending on (a) the age of the fallow, (b) the allometric equation used and (c) whether all trees are removed or the larger, useful trees are preserved. This ‘carbon debt’ associated with the above-ground biomass loss would take 8–25 years to repay if fossil fuels are replaced with cassava-based bioethanol. - Highlights: ► Demands for biofuels make production of cassava-based bioethanol a priority. ► Farmers in Southern Mali are likely to convert fallow areas to cassava production. ► Converting fallow to cassava creates reductions in above-ground carbon stocks. ► Estimates of carbon stock reductions include that farmers preserve useful trees. ► The carbon debt associated with above-ground biomass loss takes 8–25 years to repay.

  18. MODELLING THE CARBON STOCKS ESTIMATION OF THE TROPICAL LOWLAND DIPTEROCARP FOREST USING LIDAR AND REMOTELY SENSED DATA

    Directory of Open Access Journals (Sweden)

    N. A. M. Zaki

    2016-06-01

    Full Text Available Tropical forest embraces a large stock of carbon in the global carbon cycle and contributes to the enormous amount of above and below ground biomass. The carbon kept in the aboveground living biomass of trees is typically the largest pool and the most directly impacted by the anthropogenic factor such as deforestation and forest degradation. However, fewer studies had been proposed to model the carbon for tropical rain forest and the quantification still remain uncertainties. A multiple linear regression (MLR is one of the methods to define the relationship between the field inventory measurements and the statistical extracted from the remotely sensed data which is LiDAR and WorldView-3 imagery (WV-3. This paper highlight the model development from fusion of multispectral WV-3 with the LIDAR metrics to model the carbon estimation of the tropical lowland Dipterocarp forest of the study area. The result shown the over segmentation and under segmentation value for this output is 0.19 and 0.11 respectively, thus D-value for the classification is 0.19 which is 81%. Overall, this study produce a significant correlation coefficient (r between Crown projection area (CPA and Carbon stocks (CS; height from LiDAR (H_LDR and Carbon stocks (CS; and Crown projection area (CPA and height from LiDAR (H_LDR were shown 0.671, 0.709 and 0.549 respectively. The CPA of the segmentation found to be representative spatially with higher correlation of relationship between diameter at the breast height (DBH and carbon stocks which is Pearson Correlation p = 0.000 (p Dipterocarp forest.

  19. ForC: a global database of forest carbon stocks and fluxes.

    Science.gov (United States)

    Anderson-Teixeira, Kristina J; Wang, Maria M H; McGarvey, Jennifer C; Herrmann, Valentine; Tepley, Alan J; Bond-Lamberty, Ben; LeBauer, David S

    2018-06-01

    Forests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO 2 ) emitted by anthropogenic activities. Yet, scaling up from field-based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open-access global Forest Carbon database (ForC) containing previously published records of field-based measurements of ecosystem-level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using For

  20. Conservation tillage versus conventional tillage on carbon stock in a Mediterranean dehesa (southern Spain)

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    Understanding soil dynamics is essential for making appropriate land management decisions, as soils can affect the carbon content from the atmosphere, emitting large quantities of CO2 or storing carbon. This property is essential for climate change mitigation strategies as agriculture and forestry soil management can affect the carbon cycle. The dehesa is a Mediterranean silvopastoral system formed by grasslands with scattered oaks (Quercus ilex or Q. suber). The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. In addition, the dehesa is a practice dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork, as well as hunting. The dehesa is characterized by the preservation of forest oaks. In this work, we compared two management practices such as organic farming (OF) and conventional tillage (CT) on soil organic carbon stocks (SOC-S) in Cambisols (CM) and Leptosols (LP), and we analyzed the quality of these soils based on stratification ratio (SR) in a Mediterranean dehesa. MATERIAL AND METHODS An analysis of 85 soil profiles was performed in 2009 in Los Pedroches Valley (Cordoba, southern Spain). Two soil management practices were selected: OF (isolated trees of variable densities —15-25— trees ha-1, mostly holm and cork oaks, and patches of shrubs — cistaceae, fabaceae and lamiaceae— with a herbaceous pasture layer mostly composed of therophytic species and livestock are introduced to provide organic fertilizer to the soil, without ploughing and animal manure from the farms may be incorporated) for 20 years and CT (similar to OF, with ploughing —annual passes with a disc harrow and/or cultivator— is aimed at growing grain for livestock or at clearing the encroaching shrubs) in CM and LP. The dehesas studied were silvopastoral systems without cropping. Soil properties

  1. Spatial variability and response of soil organic carbon stocks to land abandonment and erosion in mountainous drylands (Invited)

    Science.gov (United States)

    De Baets, S. L.; Meersmans, J.; Vanacker, V.; Quine, T. A.; van oost, K.

    2013-12-01

    This research focuses on understanding the impact of human activities on C dynamics in a mountainous and semi-arid environment. Despite the low C status of drylands, soil organic carbon (SOC) is the largest C pool in these systems and hence possess a large restoration capacity. Still, regional estimates of SOC stocks and insights in their determining factors are lacking. This study therefore aims 1) to interpret the variability of soil organic carbon in relation to key soil, topographical and land use variables and 2) to quantify the effects of land regeneration following abandonment on SOC stocks. Soil profiles were taken in the Sierra de los Filabres (SE Spain) in different land units along geomorphic and degradation gradients. SOC contents were modelled using recovery period, soil and topographical variables. Sample depth, topographical position, altitude, recovery period and stone content are identified as the main factors for predicting SOC concentrations. SOC stocks in 1 m depth of soil vary between 3.16 and 76.44 t ha-1. Recovery period (years since abandonment), topographical position and altitude were used to predict and map SOC stocks in the top 0.2 m. The results show that C accumulates fast during the first 10-50 years following abandonment, whereafter the stocks evolve towards a steady state level. The erosion zones in the study area demonstrate a higher potential to increase their SOC stocks when abandoned. Deposition zones have higher SOC stocks, although their C accumulation rate is lower compared to erosion dominated landscapes in the first 10-50 years following abandonment. Therefore, full understanding of the C sequestration potential of land use change in areas of complex topography requires knowledge of spatial variability in soil properties and in particular SOC.

  2. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses.

    Science.gov (United States)

    S. R. Saleska; S. D. Miller; D. M. Matross; M. L. Goulden; S. C. Wofsy; H. R. da Rocha; P. B. de Camargo; P. Crill; B. C. Daube; H. C. de Freitas; L. Hutyra; M. Keller; V. Kirchhoff; M. Menton; J. W. Munger; H. E. Pyle; A. H. Rice; H. Silva

    2003-01-01

    The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarém, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence...

  3. Greater carbon stocks and faster turnover rates with increasing agricultural productivity

    Science.gov (United States)

    Sanderman, J.; Fallon, S.; Baisden, T. W.

    2013-12-01

    H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to

  4. Content and carbon stocks in labile and recalcitrant organic matter of the soil under crop-livestock integration in Cerrado

    Directory of Open Access Journals (Sweden)

    Itaynara Batista

    2013-12-01

    Full Text Available The study of organic matter and its compartments and their relationship with management, aims to develop strategies for increasing their levels in soils and better understanding of its dynamics. This work aimed to evaluate the fractions of soil organic matter and their carbon stocks in different soil cover system in crop-livestock integration and native Cerrado vegetation. The study was conducted at the farm Cabeceira, Maracajú – MS, sample area have the following history: soybean/corn + brachiaria/cotton/oat + pasture/soybean/formation of pasture/grazing, sampling was carried out in two seasons, dry (May/2009 and rainy (March 2010, in the dry season, crops present were: pasture, corn and cotton + brachiaria and in the rainy season were corn, cotton and soybeans, so the areas in the two evaluation periods were: pasture / maize + brachiaria / cotton, cotton / soybean area and a native of Savanna. Was performed to determine the exchangeable cations, particle size analysis, bulk density, organic carbon, particle size fractionation of organic matter of the soil with the quantification of particulate organic carbon (POC and organic carbon associated with minerals (OCam. Was also quantified the carbon stock and size fractions. The area of pasture / maize showed higher carbon stock in the particulate fraction in the topsoil. The area of cotton / soy due to its lower clay, showed the greatest loss of carbon. Because of the areas have the same history, the stock of more recalcitrant fraction was not sensitive to variations in coverage. The POC fraction appears more sensitive to different soil covers and seasonality.

  5. Exploring the ecosystem engineering ability of Red Sea shallow benthic habitats using stocks and fluxes in carbon biogeochemistry

    KAUST Repository

    Baldry, Kimberlee

    2017-12-01

    The coastal ocean is a marginal region of the global ocean, but is home to metabolically intense ecosystems which increase the structural complexity of the benthos. These ecosystems have the ability to alter the carbon chemistry of surrounding waters through their metabolism, mainly through processes which directly release or consume carbon dioxide. In this way, coastal habitats can engineer their environment by acting as sources or sinks of carbon dioxide and altering their environmental chemistry from the regional norm. In most coastal water masses, it is difficult to resolve the ecosystem effect on coastal carbon biogeochemistry due to the mixing of multiple offshore end members, complex geography or the influence of variable freshwater inputs. The Red Sea provides a simple environment for the study of ecosystem processes at a coastal scale as it contains only one offshore end-member and negligible freshwater inputs due to the arid climate of adjacent land. This work explores the ability of three Red Sea benthic coastal habitats (coral reefs, seagrass meadows and mangrove forests) to create characteristic ecosystem end-members, which deviate from the biogeochemistry of offshore source waters. This is done by both calculating non-conservative deviations in carbonate stocks collected over each ecosystem, and by quantifying net carbonate fluxes (in seagrass meadows and mangrove forests only) using 24 hour incubations. Results illustrate that carbonate stocks over ecosystems conform to broad ecosystem trends, which are different to the offshore end-member, and are influenced by inherited properties from surrounding ecosystems. Carbonate fluxes also show ecosystem dependent trends and further illustrate the importance of sediment processes in influencing CaCO3 fluxes in blue carbon benthic habitats, which warrants further attention. These findings show the respective advantages of studying both carbonate stocks and fluxes of coastal benthic ecosystems in order to

  6. Ability of LANDSAT-8 Oli Derived Texture Metrics in Estimating Aboveground Carbon Stocks of Coppice Oak Forests

    Science.gov (United States)

    Safari, A.; Sohrabi, H.

    2016-06-01

    The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived texture metrics

  7. Impact of vegetation types on soil organic carbon stocks SOC-S in Mediterranean natural areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Cantudo-Pérez, Marta

    2015-04-01

    Soils play a key role in the carbon geochemical cycle because they can either emit large quantities of CO2 or on the contrary they can act as a store for carbon. Agriculture and forestry are the only activities that can achieve this effect through photosynthesis and the carbon incorporation into carbohydrates (Parras-Alcántara et al., 2013). The Mediterranean evergreen oak Woodland (MEOW - dehesa) is a type of pasture with scattered evergreen and deciduous oak stands in which cereals are often grown under the tree cover. It is a system dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork as well as to hunting. These semi-natural areas still preserve some of the primitive vegetation of the Mediterranean oak forests. The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. These Iberian open woodland rangelands (dehesas) have been studied from different points of view: hydrologically, with respect to soil organic matter content, as well as in relation to gully erosion, topographical thresholds, soil erosion and runoff production, soil degradation and management practices…etc, among others. The soil organic carbon stock capacity depends not only on abiotic factors such as the mineralogical composition and the climate, but also on soil use and management (Parras et al., 2014 and 2015). In Spanish soils, climate, use and management strongly affect the carbon variability, mainly in soils in dry Mediterranean climates characterized by low organic carbon content, weak structure and readily degradable soils. Hontoria et al. (2004) emphasized that the climate and soil use are two factors that greatly influence carbon content in the Mediterranean climate. This research sought to analyze the SOC stock (SOCS) variability in MEOW - dehesa with cereals, olive grove and Mediterranean oak forest

  8. Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons

    Science.gov (United States)

    Andreae, M. O.; Artaxo, P.; Beck, V.; Bela, M.; Freitas, S.; Gerbig, C.; Longo, K.; Munger, J. W.; Wiedemann, K. T.; Wofsy, S. C.

    2012-07-01

    We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm-3; the highest values were in the southern part of the Basin at altitudes of 1-3 km. The ΔCN/ΔCO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300-500 cm-3) prevailed basinwide, and CO mixing ratios were enhanced by only ~10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no

  9. Mapping afforestation and its carbon stock using time-series Landsat stacks

    Science.gov (United States)

    Liu, L.; Wu, Y.

    2015-12-01

    The Three Norths Shelter Forest Programme (TNSFP) is the largest afforestation reconstruction project in the world. Remote sensing is a crucial tool to map land cover and cover changes, but it is still challenging to accurately quantify the plantation and its carbon stock from time-series satellite images. In this paper, the Yulin district, Shaanxi province, representing a typical afforestation area in the TNSFP region, was selected as the study area, and there were twenty-nine Landsat MSS/TM/ETM+ epochs were collected from 1974 to 2012 to reconstruct the forest changes and carbon stock in last 40 years. Firstly, the Landsat ground surface reflectance (GSR) images from 1974 to 2013 were collected and processed based on 6S atmospheric transfer code and a relative reflectance normalization algorithm. Subsequently, we developed a vegetation change tracking method to reconstruct the forest change history (afforestation and deforestation) from the dense time-series Landsat GSR images based on the integrated forest z-score (IFZ) model, and the afforestation age was successfully retrieved from the Landsat time-series stacks in the last forty years and shown to be consistent with the surveyed tree ages, with a RMSE value of 4.32 years and a determination coefficient (R²) of 0.824. Then, the AGB regression models were successfully developed by integrating vegetation indices and tree age. The simple ratio vegetation index (SR) is the best candidate of the commonly used vegetation indices for estimating forest AGB, and the forest AGB model was significantly improved using the combination of SR and tree age, with R² values from 0.50 to 0.727. Finally, the forest AGB images were mapped at eight epochs from 1985 to 2013 using SR and afforestation age. The total forest AGB in six counties of Yulin District increased by 20.8 G kg, from 5.8 G kg in 1986 to 26.6 G kg in 2013, a total increase of 360%. For the forest area since 1974, the forest AGB density increased from 15.72 t

  10. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage

    Directory of Open Access Journals (Sweden)

    Wilson Barry Tyler

    2013-01-01

    Full Text Available Abstract The U.S. has been providing national-scale estimates of forest carbon (C stocks and stock change to meet United Nations Framework Convention on Climate Change (UNFCCC reporting requirements for years. Although these currently are provided as national estimates by pool and year to meet greenhouse gas monitoring requirements, there is growing need to disaggregate these estimates to finer scales to enable strategic forest management and monitoring activities focused on various ecosystem services such as C storage enhancement. Through application of a nearest-neighbor imputation approach, spatially extant estimates of forest C density were developed for the conterminous U.S. using the U.S.’s annual forest inventory. Results suggest that an existing forest inventory plot imputation approach can be readily modified to provide raster maps of C density across a range of pools (e.g., live tree to soil organic carbon and spatial scales (e.g., sub-county to biome. Comparisons among imputed maps indicate strong regional differences across C pools. The C density of pools closely related to detrital input (e.g., dead wood is often highest in forests suffering from recent mortality events such as those in the northern Rocky Mountains (e.g., beetle infestations. In contrast, live tree carbon density is often highest on the highest quality forest sites such as those found in the Pacific Northwest. Validation results suggest strong agreement between the estimates produced from the forest inventory plots and those from the imputed maps, particularly when the C pool is closely associated with the imputation model (e.g., aboveground live biomass and live tree basal area, with weaker agreement for detrital pools (e.g., standing dead trees. Forest inventory imputed plot maps provide an efficient and flexible approach to monitoring diverse C pools at national (e.g., UNFCCC and regional scales (e.g., Reducing Emissions from Deforestation and Forest

  11. Estimating Carbon Stocks and Atmospheric Exchange of Depressional Marshes on the Central Florida Landscape

    Science.gov (United States)

    Benscoter, B.; McClellan, M. D.; Benavides, V.; Harshbarger, D.; Comas, X.

    2014-12-01

    Depressional marshes are ubiquitous throughout central and south Florida. Often distributed within a matrix of sandy pine flatwoods and hammocks, these wetlands have a seasonally variable water table, alternating between inundation and complete drydown. Though these landforms are typically small individually, they comprise a substantial component of the landscape and provide vital habitat for an array of flora and fauna. Given their fluctuating hydrology, conditions for soil and plant carbon (C) exchange mechanisms can vary greatly both spatially and temporally. In this study, we are developing a C budget for depressional marsh landforms by assessing ecosystem carbon exchange along an ecotone gradient and quantifying belowground C stocks using non-invasive geophysical methods (ground penetrating radar, GPR) at the Disney Wilderness Preserve (DWP) in Kissimmee, FL, USA. Using a series of closed chambers transecting the marsh from the center outward into the surrounding flatwoods, we are quantifying the effects of seasonal water table change on the magnitude of C exchange. Three dimensional GPR surveys were used to quantify peat layer thickness, and were constrained with direct core sampling to verify subsurface lithology and to assess peat C content. Using the relationship between landform surface area and belowground C volume, we assessed the cumulative C storage in depressional marshes across the DWP landscape. In conjunction with a nearby eddy covariance tower and seasonal hydrologic data, these response functions will help to evaluate the contribution of these small but widespread landscape features on regional C cycling.

  12. Impacts of fire management on aboveground tree carbon stocks in Yosemite and Sequoia & Kings Canyon National Parks

    Science.gov (United States)

    Matchett, John R.; Lutz, James A.; Tarnay, Leland W.; Smith, Douglas G.; Becker, Kendall M.L.; Brooks, Matthew L.

    2015-01-01

    Forest biomass on Sierra Nevada landscapes constitutes one of the largest carbon stocks in California, and its stability is tightly linked to the factors driving fire regimes. Research suggests that fire suppression, logging, climate change, and present management practices in Sierra Nevada forests have altered historic patterns of landscape carbon storage, and over a century of fire suppression and the resulting accumulation in surface fuels have been implicated in contributing to recent increases in high severity, stand-replacing fires. For over 30 years, fire management at Yosemite (YOSE) and Sequoia & Kings Canyon (SEKI) national parks has led the nation in restoring fire to park landscapes; however, the impacts on the stability and magnitude of carbon stocks have not been thoroughly examined.

  13. Carbon stocks of three secondary coniferous forests along an altitudinal gradient on Loess Plateau in inland China

    Science.gov (United States)

    Liu, Ning; Nan, Hongwei

    2018-01-01

    Natural forests in inland China are generally distributed in montane area and secondary due to a semi-arid climate and past anthropogenic disturbances. However, quantification of carbon (C) stock in these forests and the role of altitude in determining C storage and its partition among ecosystem components are unclear. We sampled 54 stands of three secondary coniferous forests (Larix principis-rupprechtii (LP) forest, Picea meyerii (PM) forest and Pinus tabulaeformis (PT) forest) on Loess Plateau in an altitudinal range of 1200-2700m a.s.l. C stocks of tree layer, shrub layer, herb layer, coarse wood debris, forest floor and soil were estimated. We found these forests had relatively high total C stocks. Driven by both higher vegetation and soil C stocks, total C stocks of LP and PM forests in the high altitudinal range were 375.0 and 368.4 t C ha-1 respectively, significantly higher than that of PT forest in the low altitudinal range (230.2 t C ha-1). In addition, understory shrubs accounted for about 20% of total biomass in PT forest. The proportions of vegetation to total C stock were similar among in the three forests (below 45%), so were the proportions of soil C stock (over 54%). Necromass C stocks were also similar among these forests, but their proportions to total C stock were significantly lower in LP and PM forests (1.4% and 1.6%) than in PT forest (3.0%). Across forest types, vegetation biomass and soil C stock simultaneously increased with increasing altitude, causing fairly unchanged C partitioning among ecosystem components along the altitudinal gradient. Soil C stock also increased with altitude in LP and PT forests. Forest floor necromass decreased with increasing altitude across the three forests. Our results suggest the important role of the altitudinal gradient in C sequestration and floor necromass of these three forests in terms of alleviated water conditions and in soil C storage of LP and PM forests in terms of temperature change. PMID

  14. Mixed-species allometric equations and estimation of aboveground biomass and carbon stocks in restoring degraded landscape in northern Ethiopia

    Science.gov (United States)

    Mokria, Mulugeta; Mekuria, Wolde; Gebrekirstos, Aster; Aynekulu, Ermias; Belay, Beyene; Gashaw, Tadesse; Bräuning, Achim

    2018-02-01

    Accurate biomass estimation is critical to quantify the changes in biomass and carbon stocks following the restoration of degraded landscapes. However, there is lack of site-specific allometric equations for the estimation of aboveground biomass (AGB), which consequently limits our understanding of the contributions of restoration efforts in mitigating climate change. This study was conducted in northwestern Ethiopia to develop a multi-species allometric equation and investigate the spatial and temporal variation of C-stocks following the restoration of degraded landscapes. We harvested and weighed 84 trees from eleven dominant species from six grazing exclosures and adjacent communal grazing land. We observed that AGB correlates significantly with diameter at stump height D 30 (R 2 = 0.78 P < 0.01), and tree height H (R 2 = 0.41, P < 0.05). Our best model, which includes D 30 and H as predictors explained 82% of the variations in AGB. This model produced the lowest bias with narrow ranges of errors across different diameter classes. Estimated C-stock showed a significant positive correlation with stem density (R 2 = 0.80, P < 0.01) and basal area (R 2 = 0.84, P < 0.01). At the watershed level, the mean C-stock was 3.8 (±0.5) Mg C ha-1. Plot-level C-stocks varied between 0.1 and 13.7 Mg C ha-1. Estimated C-stocks in three- and seven-year-old exclosures exceeded estimated C-stock in the communal grazing land by 50%. The species that contribute most to C-stocks were Leucaena sp. (28%), Calpurnia aurea (21%), Euclea racemosa (20.9%), and Dodonaea angustifolia (15.8%). The equations developed in this study allow monitoring changes in C-stocks and C-sequestration following the implementation of restoration practices in northern Ethiopia over space and time. The estimated C-stocks can be used as a reference against which future changes in C-stocks can be compared.

  15. Multitemporal mapping of peri-urban carbon stocks and soil sealing from satellite data.

    Science.gov (United States)

    Villa, Paolo; Malucelli, Francesco; Scalenghe, Riccardo

    2018-01-15

    Peri-urbanisation is the expansion of compact urban areas towards low-density settlements. This phenomenon directly challenges the agricultural landscape multifunctionality, including its carbon (C) storage capacity. Using satellite data, we mapped peri-urban C stocks in soil and built-up surfaces over three areas from 1993 to 2014 in the Emilia-Romagna region, Italy: a thinly populated area around Piacenza, an intermediate-density area covering the Reggio Emilia-Modena conurbation and a densely anthropized area developing along the coast of Rimini. Satellite-derived maps enabled the quantitative analysis of spatial and temporal features of urban growth and soil sealing, expressed as the ratio between C in built-up land and organic C in soils (Cc/Co). The three areas show substantial differences in C stock balance and soil sealing evolution. In Piacenza (Cc/Co=0.07 in 1993), although questioned by late industrial expansion and connected residential sprawl (Cc/Co growth by 38%), most of the new urbanisation spared the best rural soils. The Reggio Emilia-Modena conurbation, driven by the polycentricism of the area and the heterogeneity of economic sectors (Cc/Co rising from 0.08 to 0.14 from 1993 to 2014), balances sprawl and densification. Rimini, severely sealed since the 1960s (Cc/Co=0.23 in 1993), densifies its existing settlements and develops an industrial expansion of the hinterland, with Cc/Co growth accelerating from +15% before 2003 to +36% for the last decade. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Carbon Stocks in Permafrost-Affected Soils of the Lena River Delta

    Science.gov (United States)

    Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.

    2012-12-01

    The soil organic carbon stock (SSOC) of soils in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies report mainly the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 29) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 7 kg m-2 and 48 kg m-2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 29 kg m-2 (n = 22) for the first terrace and 14 kg m-2 (n = 7) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions a mean SSOC of 27 kg m-2 (min: 0.1 kg m-2, max: 126 kg m-2) for a depth of 1 m was reported [1]. For up-scaling solely over the soil-covered areas of the Lena River Delta, we excluded all water bodies >3,600 m2 from the geomorphological units studied (first river terrace and the active floodplains) and

  17. Impacts of land use and cover change on terrestrial carbon stocks and the micro-climate over urban surface: a case study in Shanghai, China

    Science.gov (United States)

    Zhang, F.; Zhan, J.; Bai, Y.

    2016-12-01

    Land use and cover change is the key factor affecting terrestrial carbon stocks and micro-climate, and their dynamics not only in regional ecosystems but also in urbanized areas. Using the typical fast-growing city of Shanghai, China as a case study, this paper explored the relationships between terrestrial carbon stocks, micro-climate and land cover within an urbanized area. The main objectives were to assess variation in soil carbon stocks and local climate conditions across terrestrial land covers with different intensities of urban development, and quantify spatial distribution and dynamic variation of carbon stocks and microclimate in response to urban land use and cover change. On the basis of accurate spatial datasets derived from a series of Landsat TM images during the years 1988 to 2010 and reliable estimates of urban climate and soil carbon stocks using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, our results showed that carbon stocks per unit area in terrestrial land covers decreased and urban temperature increased with increasing intensity of urban development. Urban land use and cover change and sealing of the soil surface created hotspots for losses in carbon stocks. Total carbon stocks in Shanghai decreased by about 30%-35%, representing a 1.5% average annual decrease, and the temperature increased by about 0.23-0.4°/10a during the past 20 years. We suggested potential policy measures to mitigate negative effects of land use and cover change on carbon stocks and microclimate in urbanized areas.

  18. Variation of the isotopic composition of dissolved organic carbon during the runoff cycle in the Amazon River and the floodplains

    Science.gov (United States)

    Albéric, Patrick; Pérez, Marcela A. P.; Moreira-Turcq, Patricia; Benedetti, Marc F.; Bouillon, Steven; Abril, Gwenaël

    2018-01-01

    Given the relative scarcity of stable isotope data on dissolved organic carbon (DOC) in the Amazon Basin, we hypothesized that the variability in DOC sources may be underestimated in such major river basins. To explore the links between the mainstem and tributaries and the floodplain, particular efforts were made during five distinct cruises at different stages of the hydrograph between October 2008 and January 2011, to document the spatial and temporal variation of DOC concentrations and δ13C-DOC in the central Amazon River system (Brazil). Based on more than 200 data, the spatial and temporal variability of δ13C-DOC values was found to be larger than previously reported in the same area. Although a small range of variation was observed throughout the hydrological cycle in the upper reach of the studied section (-29.2 to -29.5‰ in the Rio Negro and -28.7 to -29.0‰ in the Rio Solimões), a much larger one (-28.0 to -34.6‰) was found in the lower reach of the river, as the proportion of open lakes increased downstream in the floodplains. The low variability in the upper reaches suggests constant and homogeneous DOC sources from upland soils and flooded forest, while lower δ13C-DOC values recorded in the lower reach mainstem at high and falling waters can be attributed to a greater export of plankton-derived 13C-depleted DOC from flooded lakes. Noteworthy are the higher δ13C-DOC values measured in the Rio Madeira and the associated flooded lakes (-26.5 to -28.8‰), which may reflect the imprint from upland headwaters and a weaker density of flooded forest in the watershed. The higher δ13C-DOC values observed in the lower reach during low waters are still not fully understood. Floating meadows principally consisting of C4 macrophytes were found to increase δ13C-DOC values by ∼1.5‰ in their vicinity, but this impact was no longer noticeable at distances of ∼10 m from the plant rafts. This rather modest 13C-enrichment suggests rapid decomposition and

  19. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A

    2009-01-01

    Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... mesic-dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular...... hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most...

  20. The effect of long-term changes in plant inputs on soil carbon stocks

    Science.gov (United States)

    Georgiou, K.; Li, Z.; Torn, M. S.

    2017-12-01

    Soil organic carbon (SOC) is the largest actively-cycling terrestrial reservoir of C and an integral component of thriving natural and managed ecosystems. C input interventions (e.g., litter removal or organic amendments) are common in managed landscapes and present an important decision for maintaining healthy soils in sustainable agriculture and forestry. Furthermore, climate and land-cover change can also affect the amount of plant C inputs that enter the soil through changes in plant productivity, allocation, and rooting depth. Yet, the processes that dictate the response of SOC to such changes in C inputs are poorly understood and inadequately represented in predictive models. Long-term litter manipulations are an invaluable resource for exploring key controls of SOC storage and validating model representations. Here we explore the response of SOC to long-term changes in plant C inputs across a range of biomes and soil types. We synthesize and analyze data from long-term litter manipulation field experiments, and focus our meta-analysis on changes to total SOC stocks, microbial biomass carbon, and mineral-associated (`protected') carbon pools and explore the relative contribution of above- versus below-ground C inputs. Our cross-site data comparison reveals that divergent SOC responses are observed between forest sites, particularly for treatments that increase C inputs to the soil. We explore trends among key variables (e.g., microbial biomass to SOC ratios) that inform soil C model representations. The assembled dataset is an important benchmark for evaluating process-based hypotheses and validating divergent model formulations.

  1. A case study of carbon fluxes from land change in the southwest Brazilian Amazon

    Science.gov (United States)

    Barrett, K.; Rogan, J.; Eastman, J.R.

    2009-01-01

    Worldwide, land change is responsible for one-fifth of anthropogenic carbon emissions. In Brazil, three-quarters of carbon emissions originate from land change. This study represents a municipal-scale study of carbon fluxes from vegetation in Rio Branco, Brazil. Land-cover maps of pasture, forest, and secondary growth from 1993, 1996, 1999, and 2003 were produced using an unsupervised classification method (overall accuracy = 89%). Carbon fluxes from land change over the decade of imagery were estimated from transitions between land-cover categories for each time interval. This article presents new methods for estimating emissions reductions from carbon stored in the vegetation that replaces forests (e.g., pasture) and sequestration by new (>10-15 years) forests, which reduced gross emissions by 16, 15, and 22% for the period of 1993-1996, 1996-1999, and 1999-2003, respectively. The methods used in the analysis are broadly applicable and provide a comprehensive characterization of regional-scale carbon fluxes from land change.

  2. Amazon rainforest exchange of carbon and subcanopy air flow: Manaus LBA site--a complex terrain condition.

    Science.gov (United States)

    Tóta, Julio; Fitzjarrald, David Roy; da Silva Dias, Maria A F

    2012-01-01

    On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras--ZF2--02°36'17.1'' S, 60°12'24.4'' W), subcanopy horizontal and vertical gradients of the air temperature, CO(2) concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008) was used with a network of wind, air temperature, and CO(2) sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO(2)) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO(2) into those estimates.

  3. Amazon Rainforest Exchange of Carbon and Subcanopy Air Flow: Manaus LBA Site—A Complex Terrain Condition

    Directory of Open Access Journals (Sweden)

    Julio Tóta

    2012-01-01

    Full Text Available On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras—ZF2—02°36′17.1′′ S, 60°12′24.4′′ W, subcanopy horizontal and vertical gradients of the air temperature, CO2 concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008 was used with a network of wind, air temperature, and CO2 sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy and daytime downslope (negative buoyancy flow pattern on a moderately inclined slope (12% was observed. The microcirculations observed above the canopy (38 m over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO2 were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO2 into those estimates.

  4. Impacts of Jatropha-based biodiesel production on above and below-ground carbon stocks: A case study from Mozambique

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Bech Bruun, Thilde

    2012-01-01

    The need to mitigate climate change makes production of liquid biofuels a high priority. Substituting fossil fuels by biodiesel produced from Jatropha curcas has gained widespread attention as Jatropha cultivation is claimed to offer green house gas emission reductions. Farmers respond worldwide to this increasing demand by converting forests into Jatropha, but whether Jatropha-based biodiesel offers carbon savings depends on the carbon emissions that occur when land use is changed to Jatropha. This paper provides an impact assessment of a small-scale Jatropha project in Cabo Delgado, Mozambique. The paper outlines the estimated impacts on above and below-ground carbon stocks when land use is changed to increase Jatropha production. The results show that expansion of Jatropha production will most likely lead to the conversion of miombo forest areas to Jatropha, which implies a reduction in above and below-ground carbon stocks. The carbon debts created by the land use change can be repaid by replacing fossil fuels with Jatropha-based biodiesel. A repayment time of almost two centuries is found with optimistic estimates of the carbon debt, while the use of pessimistic values results in a repayment time that approaches the millennium. - Highlights: ► Demands for biofuels make production of Jatropha-based biodiesel a priority. ► Farmers in Northern Mozambique are likely to convert un-logged miombo to Jatropha. ► Converting miombo to Jatropha creates reductions in above and below-ground carbon. ► It takes 187–966 years to repay emissions from above and below-ground carbon stocks.

  5. Alpine grassland soil organic carbon stock and its uncertainty in the three rivers source region of the Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Chang

    Full Text Available Alpine grassland of the Tibetan Plateau is an important component of global soil organic carbon (SOC stocks, but insufficient field observations and large spatial heterogeneity leads to great uncertainty in their estimation. In the Three Rivers Source Region (TRSR, alpine grasslands account for more than 75% of the total area. However, the regional carbon (C stock estimate and their uncertainty have seldom been tested. Here we quantified the regional SOC stock and its uncertainty using 298 soil profiles surveyed from 35 sites across the TRSR during 2006-2008. We showed that the upper soil (0-30 cm depth in alpine grasslands of the TRSR stores 2.03 Pg C, with a 95% confidence interval ranging from 1.25 to 2.81 Pg C. Alpine meadow soils comprised 73% (i.e. 1.48 Pg C of the regional SOC estimate, but had the greatest uncertainty at 51%. The statistical power to detect a deviation of 10% uncertainty in grassland C stock was less than 0.50. The required sample size to detect this deviation at a power of 90% was about 6-7 times more than the number of sample sites surveyed. Comparison of our observed SOC density with the corresponding values from the dataset of Yang et al. indicates that these two datasets are comparable. The combined dataset did not reduce the uncertainty in the estimate of the regional grassland soil C stock. This result could be mainly explained by the underrepresentation of sampling sites in large areas with poor accessibility. Further research to improve the regional SOC stock estimate should optimize sampling strategy by considering the number of samples and their spatial distribution.

  6. Changes in Soil Carbon Stocks and Fluxes in Response to Altered Above- and Belowground Vegetation Inputs

    Science.gov (United States)

    Marañón-Jiménez, S.; Schuetze, C.; Cuntz, M.; García-Quirós, I.; Dienstbach, L.; Schrumpf, M.; Rebmann, C.

    2016-12-01

    The stimulation of vegetation productivity in response to rising atmospheric CO2 concentrations can potentially compensate climate change feedbacks. However, this will depend on the allocation of C resources of vegetation into biomass production versus root exudates and on the feedbacks with soil microorganisms. These dynamic adjustments of vegetation will result on changes in above- and belowground productivity and on the amount of C exported to root exudates. Consequent alteration of litter and rhizosphere detritus inputs to the soil and their interaction on controlling soil C sequestration capacity has been, however, rarely assessed. We hypothesize that above- and belowground vegetation exert a synergistic control of soil CO2 emissions, and that the activation of soil organic matter mineralization by the addition of labile organic substrates (i.e.: the priming effect) is altered by changes in the amount and in the quality of the carbon inputs. In order to elucidate these questions, different levels of litter addition were implemented on trenched (root exclusion) and non-trenched plots (with roots) in a temperate deciduous forest. Changes in the sensitivity of soil respiration to temperature and moisture were detected by measuring CO2 fluxes continuously at high temporal resolution with automatic chambers, whereas the spatial and seasonal variability was determined using portable chambers. Annual changes in soil carbon and nitrogen stocks provide additional information on the soil carbon sequestration in response to above- and belowground inputs. Both roots and litter inputs significantly enhanced soil CO2 effluxes soon after the implementation of the experiment. We detected synergistic effects between roots and litter inputs on soil CO2 emissions: When roots were present, carbon mineralized in response to litter addition was much higher than the total amount of carbon added in litter (ca. 170 g C m-2 y-1). Preliminary results of this study suggest that labile

  7. Variability in above- and belowground carbon stocks in a Siberian larch watershed

    Directory of Open Access Journals (Sweden)

    E. E. Webb

    2017-09-01

    Full Text Available Permafrost soils store between 1330 and 1580 Pg carbon (C, which is 3 times the amount of C in global vegetation, almost twice the amount of C in the atmosphere, and half of the global soil organic C pool. Despite the massive amount of C in permafrost, estimates of soil C storage in the high-latitude permafrost region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. Siberian forests are particularly undersampled, yet the larch forests that dominate this region may store more than twice as much soil C as all other boreal forest types in the continuous permafrost zone combined. Here we present above- and belowground C stocks from 20 sites representing a gradient of stand age and structure in a larch watershed of the Kolyma River, near Chersky, Sakha Republic, Russia. We found that the majority of C stored in the top 1 m of the watershed was stored belowground (92 %, with 19 % in the top 10 cm of soil and 40 % in the top 30 cm. Carbon was more variable in surface soils (10 cm; coefficient of variation (CV  =  0.35 between stands than in the top 30 cm (CV  =  0.14 or soil profile to 1 m (CV  =  0.20. Combined active-layer and deep frozen deposits (surface – 15 m contained 205 kg C m−2 (yedoma, non-ice wedge and 331 kg C m−2 (alas, which, even when accounting for landscape-level ice content, is an order of magnitude more C than that stored in the top meter of soil and 2 orders of magnitude more C than in aboveground biomass. Aboveground biomass was composed of primarily larch (53 % but also included understory vegetation (30 %, woody debris (11 % and snag (6 % biomass. While aboveground biomass contained relatively little (8 % of the C stocks in the watershed, aboveground processes were linked to thaw depth and

  8. Quantifying Changes in Total and Pyrogenic Carbon Stocks Across Fire Severity Gradients Using Active Wildfire Incidents

    Directory of Open Access Journals (Sweden)

    Jessica Miesel

    2018-05-01

    Full Text Available Positive feedbacks between wildfire emissions and climate are expected to increase in strength in the future; however, fires not only release carbon (C from terrestrial to atmospheric pools, they also produce pyrogenic C (PyC which contributes to longer-term C stability. Our objective was to quantify wildfire impacts on total C and PyC stocks in California mixed-conifer forest, and to investigate patterns in C and PyC stocks and changes across gradients of fire severity, using metrics derived from remote sensing and field observations. Our unique study accessed active wildfires to establish and measure plots within days before and after fire, prior to substantial erosion. We measured pre- and post-fire aboveground forest structure and woody fuels to calculate aboveground biomass, C and PyC, and collected forest floor and 0–5 cm mineral soil samples. Immediate tree mortality increased with severity, but overstory C loss was minimal and limited primarily to foliage. Fire released 85% of understory and herbaceous C (comprising < 1.0% of total ecosystem C. The greatest C losses occurred from downed wood and forest floor pools (19.3 ± 5.1 Mg ha−1 and 25.9 ± 3.2 Mg ha−1, respectively. Tree bark and downed wood contributed the greatest PyC gains (1.5 ± 0.3 Mg ha−1 and 1.9 ± 0.8 Mg ha−1, respectively, and PyC in tree bark showed non-significant positive trends with increasing severity. Overall PyC losses of 1.9 ± 0.3 Mg ha−1 and 0.5 ± 0.1 Mg ha−1 occurred from forest floor and 0–5 cm mineral soil, with no clear patterns across severity. Fire resulted in a net ecosystem PyC gain (1.0 ± 1.0 Mg ha−1 across aboveground and belowground components of these forests, and there were no differences among severity levels. Carbon emissions represented only 21.6% of total forest C; however, extensive conversion of C from live to dead pools will contribute to large downed wood C pools susceptible to release in a subsequent fire, indicating

  9. A national scale estimation of soil carbon stocks of Pinus densiflora forests in Korea: a modelling approach

    Science.gov (United States)

    Yi, K.; Park, C.; Ryu, S.; Lee, K.; Yi, M.; Kim, C.; Park, G.; Kim, R.; Son, Y.

    2011-12-01

    Soil carbon (C) stocks of Pinus densiflora forests in Korea were estimated using a generic forest soil C dynamics model based on the process of dead organic matter input and decomposition. Annual input of dead organic matter to the soil was determined by stand biomass and turnover rates of tree components (stem, branch, twig, foliage, coarse root, and fine root). The model was designed to have a simplified structure consisting of three dead organic matter C (DOC) pools (aboveground woody debris (AWD), belowground woody debris (BWD), and litter (LTR) pool) and one soil organic C (SOC) pool. C flows in the model were regulated by six turnover rates of stem, branch, twig, foliage, coarse root, and fine root, and four decay rates of AWD, BWD, LTR, and SOC. To simulate the soil C stocks of P. densiflora forests, statistical data of forest land area (1,339,791 ha) and growing stock (191,896,089 m3) sorted by region (nine provinces and seven metropolitan cities) and stand age class (11 to 20- (II), 21 to 30- (III), 31 to 40- (IV), 41 to 50- (V), and 51 to 60-year-old (VI)) were used. The growing stock of each stand age class was calculated for every region and representable site index was also determined by consulting the yield table. Other model parameters related to the stand biomass, annual input of dead organic matter and decomposition were estimated from previous studies conducted on P. densiflora forests in Korea, which were also applied for model validation. As a result of simulation, total soil C stock of P. densiflora forests were estimated as 53.9 MtC and soil C stocks per unit area ranged from 28.71 to 47.81 tC ha-1 within the soil depth of 30 cm. Also, soil C stocks in the P. densiflora forests of age class II, III, IV, V, and VI were 16,780,818, 21,450,812, 12,677,872, 2,366,939, and 578,623 tC, respectively, and highly related to the distribution of age classes. Soil C stocks per unit area initially decreased with stand age class and started to increase

  10. Historical carbon emissions and uptake from the agricultural frontier of the Brazilian Amazon.

    Science.gov (United States)

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Mustard, John F; Cronin, Timothy W; Cerri, Carlos E P; Cerri, Carlos C

    2011-04-01

    Tropical ecosystems play a large and complex role in the global carbon cycle. Clearing of natural ecosystems for agriculture leads to large pulses of CO2 to the atmosphere from terrestrial biomass. Concurrently, the remaining intact ecosystems, especially tropical forests, may be sequestering a large amount of carbon from the atmosphere in response to global environmental changes including climate changes and an increase in atmospheric CO2. Here we use an approach that integrates census-based historical land use reconstructions, remote-sensing-based contemporary land use change analyses, and simulation modeling of terrestrial biogeochemistry to estimate the net carbon balance over the period 1901-2006 for the state of Mato Grosso, Brazil, which is one of the most rapidly changing agricultural frontiers in the world. By the end of this period, we estimate that of the state's 925 225 km2, 221 092 km2 have been converted to pastures and 89 533 km2 have been converted to croplands, with forest-to-pasture conversions being the dominant land use trajectory but with recent transitions to croplands increasing rapidly in the last decade. These conversions have led to a cumulative release of 4.8 Pg C to the atmosphere, with 80% from forest clearing and 20% from the clearing of cerrado. Over the same period, we estimate that the residual undisturbed ecosystems accumulated 0.3 Pg C in response to CO2 fertilization. Therefore, the net emissions of carbon from Mato Grosso over this period were 4.5 Pg C. Net carbon emissions from Mato Grosso since 2000 averaged 146 Tg C/yr, on the order of Brazil's fossil fuel emissions during this period. These emissions were associated with the expansion of croplands to grow soybeans. While alternative management regimes in croplands, including tillage, fertilization, and cropping patterns promote carbon storage in ecosystems, they remain a small portion of the net carbon balance for the region. This detailed accounting of a region's carbon

  11. Soil Carbon and Nitrogen Stock as Affected by Agricultural Wastes in a Typic Haplusult of Owerri, Southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    Stanley Uchenna Onwudike

    2016-07-01

    Full Text Available We evaluated the effect of saw dust ash (SDA and poultry droppings (PD on soil physico-chemical properties, soil carbon and nitrogen stock and their effects on the growth and yield of okra (Abelmoshus esculentus on a typic haplusult in Owerri, Imo State Southeastern Nigeria. The experiment was a factorial experiment consisted of saw dust ash applied at the rates of 0, 5 and 10 t/ha and poultry droppings applied at the rates of 0, 5 and 10 t/ha. The treatments were laid out in a randomized complete block design and replicated four times. Results showed that plots amended with 10 t/ha PD + 10 t/ha SDA significantly reduced soil bulk density from 1.37 – 1.07 g/cm3, increased soil total porosity from 48.4 – 59.7% and the percentage of soil weight that is water (soil gravimetric moisture content was increased by 68.4%. There were significant improvements on soil chemical properties with plots amended with 10 t/ha PD + 10 t/ha SDA recording the highest values on soil organic carbon, soil total nitrogen and exchangeable bases. Plots amended with 10 t/ha PD + 10 t/ha SDA significantly increased soil carbon stock by 24% and soil nitrogen stock by 49.5% more than other treatments. There was significant increase in the growth of okra when compared to the un-amended soil with application of 10 t/ha PD + 10 t/ha SDA increasing the fresh okra pod yield by 78.5%. Significant positive correlation existed between SCS and organic carbon (r = 0.6128, exchangeable Mg (r= 0.5035, total nitrogen (r = 0.6167 and soil pH (r = 0.5221. SNS correlated positively with organic carbon (r = 0.5834, total nitrogen (r= 0.6101 and soil pH (r = 5150. Therefore applications of these agro-wastes are effective in improving soil properties, increasing soil carbon and nitrogen stock. From the results of the work, application of 10 t/ha PD + 10 t/ha SDA which was the treatment combination that improved soil properties and growth performances of okra than other treatments studied is

  12. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment

    Science.gov (United States)

    S. C. Stark; V. Leitold; J. L. Wu; M. O. Hunter; C. V. de Castilho; F. R. C. Costa; S. M. McMahon; G. G. Parker; M. Takako Shimabukuro; M. A. Lefsky; M. Keller; L. F. Alves; J. Schietti; Y. E. Shimabukuro; D. O. Brandao; T. K. Woodcock; N. Higuchi; P. B de Camargo; R. C. de Oliveira; S. R. Saleska

    2012-01-01

    Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) – remotely estimated from LiDAR – control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth...

  13. Ecuador’s Mangrove Forest Carbon Stocks: A Spatiotemporal Analysis of Living Carbon Holdings and Their Depletion since the Advent of Commercial Aquaculture

    Science.gov (United States)

    2015-01-01

    In this paper we estimate the living carbon lost from Ecuador’s mangrove forests since the advent of export-focused shrimp aquaculture. We use remote sensing techniques to delineate the extent of mangroves and aquaculture at approximately decadal periods since the arrival of aquaculture in each Ecuadorian estuary. We then spatiotemporally calculate the carbon values of the mangrove forests and estimate the amount of carbon lost due to direct displacement by aquaculture. Additionally, we calculate the new carbon stocks generated due to mangrove reforestation or afforestation. This research introduces time and LUCC (land use / land cover change) into the tropical forest carbon literature and examines forest carbon loss at a higher spatiotemporal resolution than in many earlier analyses. We find that 80 percent, or 7,014,517 t of the living carbon lost in Ecuadorian mangrove forests can be attributed to direct displacement of mangrove forests by shrimp aquaculture. We also find that IPCC (Intergovernmental Panel on Climate Change) compliant carbon grids within Ecuador’s estuaries overestimate living carbon levels in estuaries where substantial LUCC has occurred. By approaching the mangrove forest carbon loss question from a LUCC perspective, these findings allow for tropical nations and other intervention agents to prioritize and target a limited set of land transitions that likely drive the majority of carbon losses. This singular cause of transition has implications for programs that attempt to offset or limit future forest carbon losses and place value on forest carbon or other forest good and services. PMID:25738286

  14. Ecuador's mangrove forest carbon stocks: a spatiotemporal analysis of living carbon holdings and their depletion since the advent of commercial aquaculture.

    Science.gov (United States)

    Hamilton, Stuart E; Lovette, John

    2015-01-01

    In this paper we estimate the living carbon lost from Ecuador's mangrove forests since the advent of export-focused shrimp aquaculture. We use remote sensing techniques to delineate the extent of mangroves and aquaculture at approximately decadal periods since the arrival of aquaculture in each Ecuadorian estuary. We then spatiotemporally calculate the carbon values of the mangrove forests and estimate the amount of carbon lost due to direct displacement by aquaculture. Additionally, we calculate the new carbon stocks generated due to mangrove reforestation or afforestation. This research introduces time and LUCC (land use / land cover change) into the tropical forest carbon literature and examines forest carbon loss at a higher spatiotemporal resolution than in many earlier analyses. We find that 80 percent, or 7,014,517 t of the living carbon lost in Ecuadorian mangrove forests can be attributed to direct displacement of mangrove forests by shrimp aquaculture. We also find that IPCC (Intergovernmental Panel on Climate Change) compliant carbon grids within Ecuador's estuaries overestimate living carbon levels in estuaries where substantial LUCC has occurred. By approaching the mangrove forest carbon loss question from a LUCC perspective, these findings allow for tropical nations and other intervention agents to prioritize and target a limited set of land transitions that likely drive the majority of carbon losses. This singular cause of transition has implications for programs that attempt to offset or limit future forest carbon losses and place value on forest carbon or other forest good and services.

  15. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  16. Carbon stocks and greenhouse gas balance of an old-growth forest and an anthropogenic peatland in southern Chile

    Science.gov (United States)

    Perez-Quezada, J. F.; Brito, C. E.; Valdés, A.; Urrutia, P.

    2016-12-01

    Few studies have reported the effects of deforestation on carbon stocks and greenhouse gas balance in the temperate forests of the southern hemisphere. In some areas of southern Chile, after clear-cut or forest fires occurs a proliferation of Sphagnum moss, generating an anthropogenic type of peatland. We measured the effects of this change on the carbon stocks and the greenhouse gas balance, starting in 2013. Carbon stocks were measured in >30 plots on each site; ecosystem CO2 fluxes were measured continuously using eddy covariance stations; CH4 and N2O fluxes were measured monthly using closed chambers and cavity ring-down spectroscopy technology. Total ecosystem carbon stock was 1,523 Mg ha-1 in the forest and 130 Mg ha-1 in the peatland, representing a 91% difference. Both land use types were found to act as sinks of CO2 (NEE=-1094.2 and -31.9 g CO2 m-2 year-¹ for the forest and peatland, respectively); CH4 was mainly captured in the forest and peatland soils, generating balances of -0.70 and -0.12 g CH₄ m-2 year-¹. N2O fluxes were extremely low, so were considered as null. These results indicate that the greenhouse gas balance moved from -1134.6 to -38.8 g CO2-eq m-2 year-1 when land use changed from forest to anthropogenic peatland. These results provide evidence of the importance of preserving old-growth forests in southern Chile.

  17. Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, and gains through seagrass restoration.

    Science.gov (United States)

    Thorhaug, Anitra; Poulos, Helen M; López-Portillo, Jorge; Ku, Timothy C W; Berlyn, Graeme P

    2017-12-15

    Seagrasses comprise a substantive North American and Caribbean Sea blue carbon sink. Yet fine-scale estimates of seagrass carbon stocks, fluxes from anthropogenic disturbances, and potential gains in sedimentary carbon from seagrass restoration are lacking for most of the Western Hemisphere. To begin to fill this knowledge gap in the subtropics and tropics, we quantified organic carbon (C org ) stocks, losses, and gains from restorations at 8 previously-disturbed seagrass sites around the Gulf of Mexico (GoM) (n=128 cores). Mean natural seagrass C org stocks were 25.7±6.7MgC org ha -1 around the GoM, while mean C org stocks at adjacent barren sites that had previously hosted seagrass were 17.8MgC org ha -1 . Restored seagrass beds contained a mean of 38.7±13.1MgC org ha -1 . Mean C org losses differed by anthropogenic impact type, but averaged 20.98±7.14MgC org ha -1 . C org gains from seagrass restoration averaged 20.96±8.59Mgha -1 . These results, when combined with the similarity between natural and restored C org content, highlight the potential of seagrass restoration for mitigating seagrass C org losses from prior impact events. Our GoM basin-wide estimates of natural C org totaled ~36.4Tg for the 947,327ha for the USA-GoM. Including Mexico, the total basin contained an estimated 37.2-37.5Tg C org . Regional US-GoM losses totaled 21.69Tg C org . C org losses differed significantly among anthropogenic impacts. Yet, seagrass restoration appears to be an important climate change mitigation strategy that could be implemented elsewhere throughout the tropics and subtropics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica †

    OpenAIRE

    Grossmann, Sönnke; Dieckmann, Gerhard S.

    1994-01-01

    Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 × 108 to 3 × 108 liter-1, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low conce...

  19. Simulated long-term effects of varying tree retention on wood production, dead wood and carbon stock changes.

    Science.gov (United States)

    Santaniello, Francesca; Djupström, Line B; Ranius, Thomas; Weslien, Jan; Rudolphi, Jörgen; Sonesson, Johan

    2017-10-01

    Boreal forests are an important source of timber and pulp wood, but provide also other products and services. Utilizing a simulation program and field data from a tree retention experiment in a Scots pine forest in central Sweden, we simulated the consequences during the following 100 years of various levels of retention on production of merchantable wood, dead wood input (as a proxy for biodiversity), and carbon stock changes. At the stand level, wood production decreased with increased retention levels, while dead wood input and carbon stock increased. We also compared 12 scenarios representing a land sharing/land sparing gradient. In each scenario, a constant volume of wood was harvested with a specific level of retention in a 100-ha landscape. The area not needed to reach the defined volume was set-aside during a 100-year rotation period, leading to decreasing area of set-asides with increasing level of retention across the 12 scenarios. Dead wood input was positively affected by the level of tree retention whereas the average carbon stock decreased slightly with increasing level of tree retention. The scenarios will probably vary in how they favor species preferring different substrates. Therefore, we conclude that a larger variation of landscape-level conservation strategies, also including active creation of dead wood, may be an attractive complement to the existing management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    Science.gov (United States)

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical

  1. Spatial modeling of litter and soil carbon stocks with associated uncertainty on forest land in the conterminous United States

    Science.gov (United States)

    Cao, B.; Domke, G. M.; Russell, M.; McRoberts, R. E.; Walters, B. F.

    2017-12-01

    Forest ecosystems contribute substantially to carbon (C) storage. The dynamics of litter decomposition, translocation and stabilization into soil layers are essential processes in the functioning of forest ecosystems, as they control the cycling of soil organic matter and the accumulation and release of C to the atmosphere. Therefore, the spatial distributions of litter and soil C stocks are important in greenhouse gas estimation and reporting and inform land management decisions, policy, and climate change mitigation strategies. In this study, we explored the effects of spatial aggregation of climatic, biotic, topographic and soil input data on national estimates of litter and soil C stocks and characterized the spatial distribution of litter and soil C stocks in the conterminous United States. Data from the Forest Inventory and Analysis (FIA) program within the US Forest Service were used with vegetation phenology data estimated from LANDSAT imagery (30 m) and raster data describing relevant environmental parameters (e.g. temperature, precipitation, topographic properties) for the entire conterminous US. Litter and soil C stocks were estimated and mapped through geostatistical analysis and statistical uncertainty bounds on the pixel level predictions were constructed using a Monte Carlo-bootstrap technique, by which credible variance estimates for the C stocks were calculated. The sensitivity of model estimates to spatial aggregation depends on geographic region. Further, using long-term (30-year) climate averages during periods with strong climatic trends results in large differences in litter and soil C stock estimates. In addition, results suggest that local topographic aspect is an important variable in litter and soil C estimation at the continental scale.

  2. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach

    Science.gov (United States)

    Hickey, S. M.; Callow, N. J.; Phinn, S.; Lovelock, C. E.; Duarte, C. M.

    2018-01-01

    Mangroves are integral to ecosystem services provided by the coastal zone, in particular carbon (C) sequestration and storage. Allometric relationships linking mangrove height to estimated biomass and C stocks have been developed from field sampling, while various forms of remote sensing has been used to map vegetation height and biomass. Here we combine both these approaches to investigate spatial patterns in living biomass of mangrove forests in a small area of mangrove in north-west Australia. This study used LiDAR data and Landsat 8 OLI (Operational Land Imager) with allometric equations to derive mangrove height, biomass, and C stock estimates. We estimated the study site, Mangrove Bay, a semi-arid site in north-western Australia, contained 70 Mg ha-1 biomass and 45 Mg C ha-1 organic C, with total stocks of 2417 Mg biomass and 778 Mg organic C. Using spatial statistics to identify the scale of clustering of mangrove pixels, we found that living biomass and C stock declined with increasing distance from hydrological features (creek entrance: 0-150 m; y = -0.00041x + 0.9613, R2 = 0.96; 150-770 m; y = -0.0008x + 1.6808, R2 = 0.73; lagoon: y = -0.0041x + 3.7943, R2 = 0.78). Our results illustrate a set pattern of living C distribution within the mangrove forest, and then highlight the role hydrologic features play in determining C stock distribution in the arid zone.

  3. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping.

    Science.gov (United States)

    Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R

    2018-05-01

    Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands

    Science.gov (United States)

    Matthew D. Powers; Randall K. Kolka; John B. Bradford; Brian J. Palik; Shawn Fraver; Martin F. Jurgensen

    2012-01-01

    Forests function as a major global C sink, and forest management strategies that maximize C stocks offer one possible means of mitigating the impacts of increasing anthropogenic CO2 emissions. We studied the effects of thinning, a common management technique in many forest types, on age-related trends in C stocks using a chronosequence of thinned...

  5. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Directory of Open Access Journals (Sweden)

    S. E. Chadburn

    2017-11-01

    Full Text Available It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France. We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI, the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our

  6. Carbon Stock of Seagrass Community in Barranglompo Island, Makassar (Stok Karbon pada Komunitas Lamun di Pulau Barranglompo, Makassar

    Directory of Open Access Journals (Sweden)

    Supriadi Supriadi

    2014-03-01

    Full Text Available Konsep blue carbon yang diperkenalkan oleh UNEP, FAO dan UNESCO pada tahun 2009 memasukkan padang lamun sebagai salah satu ekosistem yang mempunyai peran dalam penyerapan karbon global. Karbon yang diserap disimpan dan dialirkan dalam beberapa kompartemen, antara lain di sedimen, herbivora, kolom air, ekosistem lain dan dalam bentuk biomassa. Penelitian dilakukan di Pulau Barranglompo, Makassar, untuk melihat potensi stok karbon yang tersimpan dalam biomassa lamun. Kepadatan lamun diukur dengan melakukan sampling menggunakan metode transek kuadrat dengan ukuran 50cm x 50cm. Sedangkan untuk biomassa dilakukan dengan transek 20cm x 20cm. Hubungan antara kepadatan, biomassa dan kandungan karbon dari lamun digunakan untuk menentukan jumlah stok karbon. Kepadatan lamun disurvei pada 236 titik, sedangkan untuk pengambilan sampel biomassa dilakukan pada 30 titik. Hasil penelitian menunjukkan bahwa komunitas lamun mempunyai total stok karbon sebesar 73,86 ton dari total luas padang lamun 64,3 ha. Karbon di bawah substrat sebesar 56,55 ton (76,3%, lebih tinggi dibanding karbon di atas substrat yang hanya 17,57 ton (23,7%. Jenis lamun Enhalus acoroides menyumbang lebih dari 70% terhadap total stok karbon. Berdasarkan kelas karbon, kontribusi terbesar ditemukan pada kelas 100-200 gC.m-2 sebesar 29,41 ton (39,7%. Hasil ini menunjukkan bahwa ekosistem lamun berperan sangat penting dalam menjaga stok karbon di laut sehingga perlu mendapatkan perhatian untuk konservasinya. Kata kunci: konsep blue karbon, lamun, Barranglompo   Blue carbon concept as introduced by UNEP, FAO and UNESCO in 2009 included seagrass beds as one ecosystem having a significant role in global carbon absorption. Absorbed carbon was stored and distributed in various compartments such as in sediments, herbivores, water column, other ecosystems and in form of biomass. The research was conducted in Barranglompo Island, Makassar City to analyze the potency of carbon stock that stored within

  7. Impacts of vinasse and methods of sugarcane harvesting on the availability of K and carbon stock of an Argisol

    Directory of Open Access Journals (Sweden)

    Claudinei Alberto Cardin

    2016-02-01

    Full Text Available ABSTRACT Soils of tropical regions are more weathered and in need of conservation managements to maintain and improve the quality of its components. The objective of this study was to evaluate the availability of K, the organic matter content and the stock of total carbon of an Argisol after vinasse application and manual and mechanized harvesting of burnt and raw sugarcane, in western São Paulo.The data collection was done in the 2012/2013 harvest, in a bioenergy company in Presidente Prudente/SP. The research was arranged out following a split-plot scheme in a 5x5 factorial design, characterized by four management systems: without vinasse application and harvest without burning; with vinasse application and harvest without burning; with vinasse application and harvest after burning; without vinasse application and harvest after burning; plus native forest, and five soil sampling depths (0-10 10-20, 20-30, 30-40, 40-50 cm, with four replications. In each treatment, the K content in the soil and accumulated in the remaining dry biomass in the area, the levels of organic matter, organic carbon and soil carbon stock were determined. The mean values were compared by Tukey test. The vinasse application associated with the harvest without burning increased the K content in soil layers up to 40 cm deep. The managements without vinasse application and manual harvest after burning, and without vinasse application with mechanical harvesting without burning did not increase the levels of organic matter, organic carbon and stock of total soil organic carbon, while the vinasse application and harvest after burning and without burning increased the levels of these attributes in the depth of 0-10 cm.

  8. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-05-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%-44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all

  9. From models to measurements: comparing downed dead wood carbon stock estimates in the U.S. forest inventory.

    Directory of Open Access Journals (Sweden)

    Grant M Domke

    Full Text Available The inventory and monitoring of coarse woody debris (CWD carbon (C stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI. Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.'s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles in the conterminous U.S. was 9 percent (145.1 Tg greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events.

  10. From models to measurements: comparing downed dead wood carbon stock estimates in the U.S. forest inventory.

    Science.gov (United States)

    Domke, Grant M; Woodall, Christopher W; Walters, Brian F; Smith, James E

    2013-01-01

    The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.'s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles) in the conterminous U.S. was 9 percent (145.1 Tg) greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg) greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg) smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events.

  11. POTENTIAL OF CARBON STORAGE OF RUBBER (Hevea brasiliensis MÃœLL. ARG. PLANTATIONS IN MONOCULTURE AND AGROFORESTRY SYSTEMS IN THE COLOMBIAN AMAZON

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade

    2014-08-01

    Full Text Available Carbon sequestration potential of rubber (Hevea brasiliensis plantations was estimated in two production systems: monoculture and agroforestry system with copoazú (Theobroma grandiflorum, on farms of Florencia, El Doncello and Belén de los Andaquíes, in northeastern Colombian Amazon, department of Caquetá. The plantations were classified into three age classes, according to their productive stage: 1-7, 8-20 and > 20 years. The carbon storage was estimated using the methodology proposed by Andrade and Ibrahim (2003 and recommended by IPCC (2003. Tree carbon sinks were evaluated: above and below ground biomass, and necromass. The highest proportion of carbon storage was found in biomass, with 95 and 92% in monoculture plantations and agroforestry systems, respectively. In both types of production systems, carbon storage is a function of tree age and density. The carbon stored in monoculture plantations was higher than in agroforestry systems, due to a greater density of rubber trees in the first production system. This study confirms that rubber plantations have potential to capture and store atmospheric carbon. With this information, the issue of participating in carbon markets of the rubber production chain can be addressed, and therefore strengthen in the region’s competitiveness and sustainability.

  12. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China.

    Directory of Open Access Journals (Sweden)

    Gaoyang Cui

    Full Text Available The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989-1993, 1994-1998, 1999-2003, and 2004-2008 and field-sampling measurements (2012. The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude to south (low latitude generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg and slightly underestimated (778.07 Tg when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change.

  13. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.

    Science.gov (United States)

    Parker, Thomas C; Subke, Jens-Arne; Wookey, Philip A

    2015-05-01

    Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a 'space-for-time' approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg ) is significantly lower at shrub (2.98 ± 0.48 kg m(-2) ) and forest (2.04 ± 0.25 kg m(-2) ) plots than at heath plots (7.03 ± 0.79 kg m(-2) ). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system. © 2014 John Wiley & Sons Ltd.

  14. North American coastal carbon stocks and exchanges among the coupled ecosystems of tidal wetlands and estuaries

    Science.gov (United States)

    Windham-Myers, L.; Cai, W. J.

    2017-12-01

    The development of the 2nd State of the Carbon Cycle Report (SOCCR-2) has recognized a significant role of aquatic ecosystems, including coastal zones, in reconciling some of the gaps associated with the North American carbon (C) budget. Along with a large community of coauthors, we report major C stocks and fluxes for tidal wetlands and estuaries of Canada, Mexico and the United States. We find divergent patterns between these coupled ecosystems, with tidal wetlands largely serving as CO2 sinks (net autotrophic), and open-water estuaries largely serving as CO2 sources (net heterotrophic). We summarized measurements across 4 continental regions - East Coast, Gulf of Mexico, West Coast, and High Latitudes - to assess spatial variability and datagaps in our understanding of coastal C cycling. Subtracting estuarine outgassing of 10 ± 10 Tg C yr-1 from the tidal wetland uptake of 23 ± 10 Tg C yr-1 leaves a net uptake of the combined system of 13 ± 14 Tg C yr-1. High uncertainty for net atmospheric C exchange in this combined coastal system is further complicated by spatially and temporally dynamic boundaries, as well as terrestrial C sources. Tidal wetlands are among the most productive ecosystems on earth and are capable of continuously accumulating organic C in their sediments as a result of environmental conditions that inhibit organic matter decomposition. Estuaries have more interannual variability in C dynamics than those of tidal wetlands, reflecting the estuarine balance of exchanges with terrestrial watersheds, tidal wetlands, and the continental shelf. Whereas tidal, subtidal and estuarine maps are of limited accuracy at larger scales, North America likely represents less than 1/10 of global distributions of coastal wetland habitats. Coupled land-ocean C flux models are increasingly robust but lacking much of the data needed for parameterization and validation. Accurate boundary maps and synoptic monitoring data on air-water CO2 exchange may be developed

  15. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion.

    Science.gov (United States)

    Warren, Matthew; Hergoualc'h, Kristell; Kauffman, J Boone; Murdiyarso, Daniel; Kolka, Randall

    2017-12-01

    A large proportion of the world's tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia's climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth published by Wetlands International (WI) and the Indonesian Ministry of Agriculture (MoA), and used regionally specific values of carbon density to calculate carbon stocks. Peatland extent and volume published in the MoA maps are lower than those in the WI maps, resulting in lower estimates of carbon storage. We estimate Indonesia's total peat carbon store to be within 13.6 GtC (the low MoA map estimate) and 40.5 GtC (the high WI map estimate) with a best estimate of 28.1 GtC: the midpoint of medium carbon stock estimates derived from WI (30.8 GtC) and MoA (25.3 GtC) maps. This estimate is about half of previous assessments which used an assumed average value of peat thickness for all Indonesian peatlands, and revises the current global tropical peat carbon pool to 75 GtC. Yet, these results do not diminish the significance of Indonesia's peatlands, which store an estimated 30% more carbon than the biomass of all Indonesian forests. The largest discrepancy between maps is for the Papua province, which accounts for 62-71% of the overall differences in peat area, volume and carbon storage. According to the MoA map, 80% of Indonesian peatlands are peatlands is conservatively estimated to be 10.6 GtC, equivalent to 42% of Indonesia's total peat carbon and about 12 years of global emissions from land use change at current rates. Considering the high uncertainties in peatland extent, volume and carbon storage revealed in this assessment of current maps, a systematic revision of Indonesia's peat maps to produce a single geospatial reference that is universally accepted would improve national peat carbon storage estimates and

  16. Comparative Status of Sequestered Carbon Stock of Azadirachta indica and Conocarpus erectus at the University of Karachi Campus, Pakistan

    Directory of Open Access Journals (Sweden)

    Amber Ajani

    2016-05-01

    Full Text Available Carbon sequestration by trees is one of the most cost-effective and efficient methods to remove carbon dioxide from atmosphere since trees remove and store carbon at higher rates compared to other land covers. Carbon storage by trees typically ranges from 1 to 8 MgC ha-1 yr-1.The carbon is sequestered in different parts of the trees as biomass. The measurements of biomass provide reasonably accurate estimate of the amount of carbon that was removed from lower troposphere over the years. Therefore, the present study investigates and compares the carbon stock of native Azadirachta indica and exotic Conocarpus erectus, which are extensively cultivated in the campus of the University of Karachi, Pakistan. The above-ground and below-ground biomass of 327 trees of A. indica and 253 trees of C. erectus were estimated by using non-destructive method. The average carbon content of A. indica is calculated to be 662.32 + 1144.81 Kg while that of C. erectus is 192.70 + 322.60 Kg. The independent t-test analysis showed significant difference (p < 0.001 between the means of the carbon content of both the species. The carbon contents of two different species were also correlated with bole’s diameter at breast height (DBH and tree’s height. The analysis demonstrated greater correlation between the carbon content and the DBH of both the species compared to that with their height. The study will help to understand the carbon sequestration potential of two different types of species for planting particularly in urban area of the world.INTERNATIONAL JOURNAL OF ENVIRONMENTVolume-5, Issue-2, March-May 2016, Page: 89-97

  17. Palaeovegetation dynamics of an ecotone forest-savanna in southern Brazilian Amazon during the late Pleistocene and Holocene based on carbon isotopes of soil organic matter

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.; Gouveia, S.E.M.; Freitas, H.A. de; Bendassoli, J.A.; Gomes, B.M.; Aravena, R.; Ribeiro, A.S.; Boulet, R.

    2002-01-01

    This study was carried out in the Brazilian southern Amazon region (Rondonia state and Humaita, southern Amazon state). Carbon isotope data on soil organic matter have been collected along an ecosystem transect of about 750 km that includes a savanna, a wooded savanna (cerrado), a tropical semideciduous forest (cerradao), a forest transition type and a tropical forest. The main objective is to evaluate the expansion-regression dynamics of these vegetation units in relation to climate changes during the Late Pleistocene (Late Glacial) and Holocene. Large ranges in δ 13 values were observed in soil organic matter collected from profiles in the savanna (-27 to -14 per mille and forest regions (-26 to -19 per mille) reflecting changing distribution of 13 C-depleted C 3 forest and 13 C enriched C 4 savanna vegetation in response to climate change. 14 C data of humin fraction and buried charcoal indicate that the organic matter in these soils is at least 17,000 years BP at 300-cm depth. In this period, the entire ecosystem transect are characterized by δ 13 C soil depth profiles, generated typically by C 3 plants (forest), inferring a humid climate in the southern Amazon region after the end of last glaciation. 13 C data also indicate that C 4 plants (grasses) have influenced significantly the vegetation at the transitional forest and the cerrado sites of southern Rondonia state and two distinct points in the forest ecosystem in the southern Amazon state. These typical C 4 type isotopic signatures probably reflect a drier climate during about 9000-8000 yr BP to 3000 yr BP and the savanna and wooded savanna expansion in distinct points of the transect. The 13 C records representing the 3000 yr show an expansion of the forest, due to a climatic improvement, in areas previously occupied by savanna vegetation. This study adds to the mounting evidence that extensive forested areas existed in the Amazon during the last glacial and that savanna vegetation expanded in response

  18. Soil Organic Carbon Stocks in Arctic Deltaic Sediments: Investigations in the Lena River Delta.

    Science.gov (United States)

    Zubrzycki, S.; Kutzbach, L.; Desyatkin, A.; Pfeiffer, E.-M.

    2012-04-01

    The soil organic carbon stock (SSOC) of deltaic sediments in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies were conducted mainly in the comparatively well studied Mackenzie River Delta (area: 13,000 km2) in Canada. The few studies from other arctic delta regions report only the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers in other arctic delta regions are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 37) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 6 kg m2 and 54 kg m2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 31 kg m2 (n = 31) for the first terrace and 15 kg m2 (n = 6) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions, Tarnocai et al. 2009 reported a mean SSOC of 27 kg m2 (min: 0.1 kg m2, max: 126 kg m2) for a depth of 1 m. For up

  19. Who owns the Brazilian carbon?

    Science.gov (United States)

    Freitas, Flavio L M; Englund, Oskar; Sparovek, Gerd; Berndes, Göran; Guidotti, Vinicius; Pinto, Luís F G; Mörtberg, Ulla

    2018-05-01

    Brazil is one of the major contributors to land-use change emissions, mostly driven by agricultural expansion for food, feed, and bioenergy feedstock. Policies to avoid deforestation related to private commitments, economic incentives, and other support schemes are expected to improve the effectiveness of current command and control mechanisms increasingly. However, until recently, land tenure was unknown for much of the Brazilian territory, which has undermined the governance of native vegetation and challenged support and incentive mechanisms for avoiding deforestation. We assess the total extent of public governance mechanisms protecting aboveground carbon (AGC) stocks. We constructed a land tenure dataset for the entire nation and modeled the effects and uncertainties of major land-use acts on protecting AGC stocks. Roughly 70% of the AGC stock in Brazil is estimated to be under legal protection, and an additional 20% is expected to be protected after areas in the Amazon with currently undesignated land undergo a tenure regularization. About 30% of the AGC stock is on private land, of which roughly two-thirds are protected. The Cerrado, Amazon, and Caatinga biomes hold about 40%, 30%, and 20% of the unprotected AGC, respectively. Effective conservation of protected and unprotected carbon will depend on successful implementation of the Forest Act, and regularization of land tenure in the Amazon. Policy development that prioritizes unprotected AGC stocks is warranted to promote conservation of native vegetation beyond the legal requirements. However, different biomes and land tenure structures may require different policy settings considering local and regional specifics. Finally, the fate of current AGC stocks relies upon effective implementation of command and control mechanisms, considering that unprotected AGC in native vegetation on private land only accounts for 6.5% of the total AGC stock. © 2017 John Wiley & Sons Ltd.

  20. Soil carbon and nitrogen stocks in traditional agricultural and agroforestry systems in the semiarid region of Brazil

    Directory of Open Access Journals (Sweden)

    José Augusto Amorim Silva do Sacramento

    2013-06-01

    Full Text Available In the semiarid region of Brazil, inadequate management of cropping systems and low plant biomass production can contribute to reduce soil carbon (C and nitrogen (N stocks; therefore, management systems that preserve C and N must be adopted. This study aimed to evaluate the changes in soil C and N stocks that were promoted by agroforestry (agrosilvopastoral and silvopastoral and traditional agricultural systems (slash-and-burn clearing and cultivation for two and three years and to compare these systems with the natural Caatinga vegetation after 13 years of cultivation. The experiment was carried out on a typical Ortic Chromic Luvisol in the municipality of Sobral, Ceará, Brazil. Soil samples were collected (layers 0-6, 6-12, 12-20, 20-40 and 40-60 cm with four replications. The plain, convex and concave landforms in each study situation were analyzed, and the total organic C, total N and densities of the soil samples were assessed. The silvopastoral system promoted the greatest long-term reductions in C and N stocks, while the agrosilvopastoral system promoted the smallest losses and therefore represents a sustainable alternative for soil C and N sequestration in these semiarid conditions. The traditional agricultural system produced reductions of 58.87 and 9.57 Mg ha-1 in the organic C and total N stocks, respectively, which suggests that this system is inadequate for these semiarid conditions. The organic C stocks were largest in the concave landform in the agrosilvopastoral system and in the plain landform in the silvopastoral system, while the total N values were highest in the concave landform in the native, agrosilvopastoral and silvopastoral systems.

  1. Amazon rainforest responses to elevated CO2: Deriving model-based hypotheses for the AmazonFACE experiment

    Science.gov (United States)

    Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.

    2017-12-01

    Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected

  2. Trade-offs between carbon stocks and timber recovery in tropical forests are mediated by logging intensity.

    Science.gov (United States)

    Roopsind, Anand; Caughlin, T Trevor; van der Hout, Peter; Arets, Eric; Putz, Francis E

    2018-03-30

    Forest degradation accounts for ~ 70% of total carbon losses from tropical forests. Substantial emissions are from selective logging, a land-use activity that decreases forest carbon density. To maintain carbon values in selectively logged forests, climate change mitigation policies and government agencies promote the adoption of reduced-impact logging (RIL) practices. However, whether RIL will maintain both carbon and timber values in managed tropical forests over time remains uncertain. In this study, we quantify the recovery of timber stocks and aboveground carbon at an experimental site where forests were subjected to different intensities of RIL (4 trees ha -1 , 8 trees ha -1 , and 16 trees ha -1 ). Our census data spans 20 years post-logging and 17 years after the liberation of future crop trees from competition in a tropical forest on the Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and carbon with a breakpoint regression that allowed us to capture elevated tree mortality immediately after logging. Recovery rates of timber and carbon were governed by the presence of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold logging intensity beyond which forests managed for timber and carbon derive few benefits from RIL, with recruitment and residual growth not sufficient to offset losses. Inclusion of the breakpoint at which carbon and timber gains outpaced post-logging mortality led to high predictive accuracy, including out-of-sample R 2 values >90%, and enabled inference on demographic changes post-logging. Our modeling framework is broadly applicable to studies that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial mortality drives variation in recovery rates, that the second harvest depends on old growth wood, and that timber

  3. Chemical attributes, total organic carbon stock and humified fractions of organic matter soil submitted to different systems of sugarcane management

    Directory of Open Access Journals (Sweden)

    Jean Sérgio Rosset

    2014-10-01

    Full Text Available Mechanized harvesting maintenance of trash from cane sugar and soil application of waste as vinasse and filter cake can improve the system of crop yield. Thus, this study aimed to evaluate the changes in the chemical, the stock of total organic carbon and humified organic matter fractions in an Oxisol cultivated with cane sugar with the following management systems: with sugarcane vinasse application (CCV, without application of burnt cane waste (CQS, with burnt cane vinasse application (CQV, with application of burnt cane filter cake (CQTF and burnt cane with joint application of vinasse and filter cake (CQVTF. For reference we used an area of natural vegetation (NV, Cerrado sensu stricto. Treatment CQVTF showed improvement in soil chemical properties, increased inventory levels of total organic carbon – TOC (values ranging from 21.28 to 40.02 Mg ha-1 and humified fractions of soil organic matter in relation to other treatments. The CQS area at a depth of 0-0.05 m, showed the greatest losses of soil TOC stocks (56.3% compared to NV. The adoption of management presented CCV and chemical attributes of the soil TOC stocks equivalent to those observed in areas with CQV CQTF and despite the short period of adoption (3 years. The TOC correlated with the sum of bases (r = 0.76 **, cation exchange capacity (r = 0.59 ** and base saturation (r = 0.63 **, while the humic acids (r = 0.40 ** fulvic acids (r = 0.49 ** and humin (r = 0.59 ** correlated with the cation exchange capacity of the soil. These results indicate that the preservation of trash in the management of cane sugar added to the application of vinasse and filter cake increases the TOC stocks promoting improvement in soil chemical properties.

  4. Sedimentology and stratigraphy of Neoproterozoic-lower Paleozoic carbonate-siliciclastic succession of the southwesternmost Amazon Craton, state of Rondônia, Brazil

    Directory of Open Access Journals (Sweden)

    Jhon Willy Lopes Afonso

    2018-02-01

    Full Text Available ABSTRACT: Facies and stratigraphic analysis were carried out in Neoproterozoic-Lower Paleozoic carbonate-siliciclastic deposits of Cacoal and Pimenta Bueno formations exposed on basement rocks and into the Pimenta Bueno Graben, northwestern portion of Parecis Basin, southwesternmost Amazon Craton. The redescription and redefinion of this succession confirmed the previous interpretation for the Cacoal Formation as a Marinoan (~ 635 Ma cap carbonate. The Cacoal Formation is subdivided here in two units separate by sharp contact found exclusively overlying Mesoproterozoic crystalline basement rocks: 1 a homonymous formation characterized by diamictites, sandstones and siltstones with dropstones interpreted as glacio-marine deposits; and 2 the Espigão d’Oeste Formation that consists of dolostone, dolomitic stromatolites, dolostone-siltstone rhythmite and siltstone interpreted as shallow to moderately deep platform deposits. The Ordovician to Silurian Pimenta Bueno Formation is a filling of Pimenta Bueno graben and overlies locally the Meso and Neoproterozoic rocks. This unit consists in diamictites, sandstones, siltstones and pelites interpreted as glacial-marine and tide- to storm-influenced platform deposits, recording a glacio-eustatic regressive-transgressive event. This new stratigraphic proposal modify the current stratigraphy for the Parecis Basin and suggest, at least, two levels of glaciation exposed in the sothwesternmost Amazon Craton related to the Marinoan and Late Ordovician-Early Silurian events.

  5. Biomass carbon stocks in China's forests between 2000 and 2050: a prediction based on forest biomass-age relationships.

    Science.gov (United States)

    Xu, Bing; Guo, ZhaoDi; Piao, ShiLong; Fang, JingYun

    2010-07-01

    China's forests are characterized by young forest age, low carbon density and a large area of planted forests, and thus have high potential to act as carbon sinks in the future. Using China's national forest inventory data during 1994-1998 and 1999-2003, and direct field measurements, we investigated the relationships between forest biomass density and forest age for 36 major forest types. Statistical approaches and the predicted future forest area from the national forestry development plan were applied to estimate the potential of forest biomass carbon storage in China during 2000-2050. Under an assumption of continuous natural forest growth, China's existing forest biomass carbon (C) stock would increase from 5.86 Pg C (1 Pg=10(15) g) in 1999-2003 to 10.23 Pg C in 2050, resulting in a total increase of 4.37 Pg C. Newly planted forests through afforestation and reforestation will sequestrate an additional 2.86 Pg C in biomass. Overall, China's forests will potentially act as a carbon sink for 7.23 Pg C during the period 2000-2050, with an average carbon sink of 0.14 Pg C yr(-1). This suggests that China's forests will be a significant carbon sink in the next 50 years.

  6. A method for the assessment of long-term changes in carbon stock by construction of a hydropower reservoir.

    Science.gov (United States)

    Bernardo, Julio Werner Yoshioka; Mannich, Michael; Hilgert, Stephan; Fernandes, Cristovão Vicente Scapulatempo; Bleninger, Tobias

    2017-09-01

    Sustainability of hydropower reservoirs has been questioned since the detection of their greenhouse gas (GHG) emissions which are mainly composed of carbon dioxide and methane. A method to assess the impact on the carbon cycle caused by the transition from a natural river system into a reservoir is presented and discussed. The method evaluates the long term changes in carbon stock instead of the current approach of monitoring and integrating continuous short term fluxes. A case study was conducted in a subtropical reservoir in Brazil, showing that the carbon content within the reservoir exceeds that of the previous landuse. The average carbon sequestration over 43 years since damming was 895 mg C m[Formula: see text] and found to be mainly due to storage of carbon in sediments. These results demonstrate that reservoirs have two opposite effects on the balance of GHGs. By storing organic C in sediments, reservoirs are an important carbon sink. On the other hand, reservoirs increase the flux of methane into the atmosphere. If the sediments of reservoirs could be used for long term C storage, reservoirs might have a positive effect on the balance of GHGs.

  7. Temporal Decorrelation Effect in Carbon Stocks Estimation Using Polarimetric Interferometry Synthetic Aperture Radar (PolInSAR (Case Study: Southeast Sulawesi Tropical Forest

    Directory of Open Access Journals (Sweden)

    Laode M Golok Jaya

    2017-07-01

    Full Text Available This paper was aimed to analyse the effect of temporal decorrelation in carbon stocks estimation. Estimation of carbon stocks plays important roles particularly to understand the global carbon cycle in the atmosphere regarding with climate change mitigation effort. PolInSAR technique combines the advantages of Polarimetric Synthetic Aperture Radar (PolSAR and Interferometry Synthetic Aperture Radar (InSAR technique, which is evidenced to have significant contribution in radar mapping technology in the last few years. In carbon stocks estimation, PolInSAR provides information about vertical vegetation structure to estimate carbon stocks in the forest layers. Two coherence Synthetic Aperture Radar (SAR images of ALOS PALSAR full-polarimetric with 46 days temporal baseline were used in this research. The study was carried out in Southeast Sulawesi tropical forest. The research method was by comparing three interferometric phase coherence images affected by temporal decorrelation and their impacts on Random Volume over Ground (RvoG model. This research showed that 46 days temporal baseline has a significant impact to estimate tree heights of the forest cover where the accuracy decrease from R2=0.7525 (standard deviation of tree heights is 2.75 meters to R2=0.4435 (standard deviation 4.68 meters and R2=0.3772 (standard deviation 3.15 meters respectively. However, coherence optimisation can provide the best coherence image to produce a good accuracy of carbon stocks.

  8. Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region

    KAUST Repository

    Schillaci, Calogero

    2016-10-29

    Efficient modelling methods to assess soil organic carbon (SOC) stocks have a pivotal importance as inputs for global carbon cycle studies and decision-making processes. However, laboratory analyses of SOC field samples are costly and time consuming. Global-scale estimates of SOC were recently made according to categorical variables, including land use and soil texture. Remote sensing (RS) data can contribute to the better modelling of the spatial distribution of SOC stock at a regional scale. In the present study, we used Stochastic Gradient Treeboost (SGT) to estimate the topsoil (0–30 cm) SOC stock of a Mediterranean semiarid area (Sicily, Italy, 25,286 km2). In particular, our study examined agricultural lands, which represent approximately 64% of the entire region. An extensive soil dataset (2202 samples, 1 profile/7.31 km2 on average) was acquired from the soil database of Sicily. The georeferenced field observations were intersected with remotely sensed environmental data and other spatial data, including climatic data from WORLDCLIM, land cover from CORINE, soil texture, topography and derived indices. Finally, the SGT was compared to published global estimates (GSOC) and data from the International Soil Reference and Information Centre (ISRIC) Soil Grids by comparing the pseudo-regressions of the SGT, GSOC and ISRIC with soil observations. The mean SOC stock across the entire region that was estimated by GSOC and ISRIC was 3.9% lower and 46.2% higher compared to the SGT. The SGT efficiently predicted SOC stocks that were < 70 t ha− 1 (corresponding to the 90th percentile of the observed values). On average, the coefficient of variation of the SGT model was 3.6% when computed on the whole dataset and remained lower than 23% when computed on a distribution basis. The SGT mean absolute error was 14.84 t ha− 1, 18.4% and 36.3% lower than GSOC and ISRIC, respectively. The mean annual rainfall, soil texture, land use, mean annual temperature and Landsat 7

  9. Modelling the topsoil carbon