WorldWideScience

Sample records for alveolar epithelial permeability

  1. Alveolar epithelial permeability in bronchial asthma in children; An evaluation by [sup 99m]Tc-DTPA inhalation scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Takuji (Nippon Medical School, Tokyo (Japan))

    1993-02-01

    To evaluate alveolar epithelial permeability (k[sub ep]) in children with bronchial asthma, [sup 99m]Tc-DTPA (diethylene triamine penta acetate) aerosol lung inhalation scintigraphies were performed. There was no correlation between the k[sub ep] value and the severity of asthma. On the other hand, out of 10 cases which had no aerosol deposition defect in the lung field, 4 showed high k[sub ep] values on the whole lung field and 7 had high k[sub ep] value areas, particularly apparent in the upper lung field. These results suggest that even when the central airway lesions are mild, severe damage exists in the alveolar region of the peripheral airway. (author).

  2. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  3. Nuclear methods in pulmonary medicine. Evaluation of lung epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    Newhouse, M.; Jordana, M.; Dolovich, M.

    1987-06-01

    During the last few years a number of factors affecting the measurements of the rate of absorption of /sup 99m/Tc-DTPA across the alveolar-capillary membrane have been identified. These have helped to provide insights into the significance of lung epithelial permeability (LEP) measurements and their potential limitations.

  4. Haemophilia, AIDS and lung epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    O' Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G. (Haemophilia Centre and Coagulation Research Unit, Department of Nuclear Medicine, Rayne Institute, St. Thomas' Hospital, London (United Kingdom))

    1990-01-01

    Lung {sup 99m}Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung {sup 99m}Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of {sup 99m}Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au).

  5. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  6. Reversible transdifferentiation of alveolar epithelial cells.

    Science.gov (United States)

    Danto, S I; Shannon, J M; Borok, Z; Zabski, S M; Crandall, E D

    1995-05-01

    Alveolar epithelial type II (AT2) cells have been thought to be the progenitors of terminally differentiated type I (AT1) cells in the adult animal in vivo. In this study, we used an AT1 cell-specific monoclonal antibody (mAb VIII B2) to investigate expression of the AT1 cell phenotype accompanying reversible changes in expression of the AT2 cell phenotype. AT2 cells were isolated and cultured either on attached collagen gels or on gels detached 1 or 4 days after plating and maintained thereafter as floating gels. Monolayers on both attached and floating gels were harvested on days 4 and 8 and analyzed by electron microscopy for changes in morphology and binding of mAb VIII B2. Results indicate that: (1) alveolar epithelial cells (AEC) on attached gels develop characteristics of the AT1 cell phenotype, (2) AEC on gels detached on day 1 maintain features of the AT2 cell phenotype (and do not react with mAb VIII B2), and (3) the expression of AT1 cell phenotypic traits seen by day 4 on attached gels is reversed after detachment. We conclude that commitment to the AT1 and AT2 cell lineages requires continuous regulatory input to maintain the differentiated states, and that transdifferentiation between AT2 and AT1 cells may be reversible.

  7. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    OpenAIRE

    Simon, R H; DeHart, P D; Todd, R F

    1986-01-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neut...

  8. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Simon, R H; DeHart, P D; Todd, R F

    1986-11-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing.

  9. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function.

    Science.gov (United States)

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin; Metcalf, Jordan Patrick

    2012-12-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.

  10. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    Full Text Available Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200-300 g were sacrificed 24 hours after cecal ligation and double puncture (2CLP or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A and MAPk (JNK, ERK, an p38 signaling activation, or barrier function was examined by measuring transepithelial resistance (TER or the flux of two molecular tracers (5 and 20 A. Inhibitors of JNK (SP600125, 20 microM and ERK (U0126, 10 microM were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm(2, respectively, however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique

  11. Barrier-protective effects of activated protein C in human alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ferranda Puig

    Full Text Available Acute lung injury (ALI is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC on mechanical tension and barrier integrity in human alveolar epithelial cells (A549 exposed to thrombin. Cells were pretreated for 3 h with APC (50 µg/ml or vehicle (control. Subsequently, thrombin (50 nM or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

  12. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  13. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport

    Science.gov (United States)

    Birch, Nigel P.; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  14. Regulation of epithelial sodium channel a-subunit expression by adenosine receptor A2a in alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    DENG Wang; WANG Dao-xin; ZHANG Wei; LI Chang-yi

    2011-01-01

    Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury.

  15. Alveolar epithelial type II cell: defender of the alveolus revisited

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2001-01-01

    Full Text Available Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2 cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today.

  16. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  17. Alveolar type II epithelial cell dysfunction in rat experimental hepatopulmonary syndrome (HPS.

    Directory of Open Access Journals (Sweden)

    Wenli Yang

    Full Text Available The hepatopulmonary syndrome (HPS develops when pulmonary vasodilatation leads to abnormal gas exchange. However, in human HPS, restrictive ventilatory defects are also observed supporting that the alveolar epithelial compartment may also be affected. Alveolar type II epithelial cells (AT2 play a critical role in maintaining the alveolar compartment by producing four surfactant proteins (SPs, SP-A, SP-B, SP-C and SP-D which also facilitate alveolar repair following injury. However, no studies have evaluated the alveolar epithelial compartment in experimental HPS. In this study, we evaluated the alveolar epithelial compartment and particularly AT2 cells in experimental HPS induced by common bile duct ligation (CBDL. We found a significant reduction in pulmonary SP production associated with increased apoptosis in AT2 cells after CBDL relative to controls. Lung morphology showed decreased mean alveolar chord length and lung volumes in CBDL animals that were not seen in control models supporting a selective reduction of alveolar airspace. Furthermore, we found that administration of TNF-α, the bile acid, chenodeoxycholic acid, and FXR nuclear receptor activation (GW4064 induced apoptosis and impaired SP-B and SP-C production in alveolar epithelial cells in vitro. These results imply that AT2 cell dysfunction occurs in experimental HPS and is associated with alterations in the alveolar epithelial compartment. Our findings support a novel contributing mechanism in experimental HPS that may be relevant to humans and a potential therapeutic target.

  18. Relationship between changed alveolar-capillary permeability and angiotensin converting enzyme activity in serum in sarcoidosis.

    OpenAIRE

    Eklund, A; Blaschke, E

    1986-01-01

    The effect of altered alveolar-capillary permeability on angiotensin converting enzyme (ACE) activity in serum (SACE) was studied in 45 patients with sarcoidosis and 21 healthy controls. In sarcoidosis increased albumin concentrations in the bronchoalveolar lavage fluid (L albumin) and increased ratios of L albumin to albumin in serum (S albumin) indicated an increased permeability of the alveolar-capillary membrane. ACE activity in the lavage fluid (LACE) was correlated with the number of al...

  19. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Jessica L Eisenberg

    2011-01-01

    Full Text Available Jessica L Eisenberg1,2, Asmahan Safi3, Xiaoding Wei3, Horacio D Espinosa3, GR Scott Budinger2, Desire Takawira1, Susan B Hopkinson1, Jonathan CR Jones1,21Department of Cell and Molecular Biology, 2Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; 3Department of Mechanical Engineering, Northwestern University, Evanston, IL, USAAim: The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC in the lung, including their deposition and organization of extracellular matrix (ECM proteins.Methods: Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy.Results: We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM.Conclusions: An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung.Keywords: alveolar epithelial cells, fibrosis, extracellular matrix, substrate stiffness

  20. Alveolocapillary model system to study alveolar re-epithelialization

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Coen H.M.P.; Zimmermann, Luc J.I.; Sanders, Patricia J.L.T.; Wagendorp, Margot; Kloosterboer, Nico [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands); Cohen Tervaert, Jan Willem [Division of Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht (Netherlands); Duimel, Hans J.Q.; Verheyen, Fons K.C.P. [Electron Microscopy Unit, Department of Molecular Cell Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Iwaarden, J. Freek van, E-mail: f.vaniwaarden@maastrichtuniversity.nl [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands)

    2013-01-01

    In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process. -- Highlights: ► Model system for vital imaging and high throughput screening. ► Microvascular endothelium influences re-epithelialization. ► A549 cells form protrusions through membrane to contact HPMEC. ► A549 cells and HPMECs form heterocellular tight-, gap- and adherens-junctions.

  1. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Science.gov (United States)

    Eisenberg, Jessica L; Safi, Asmahan; Wei, Xiaoding; Espinosa, Horacio D; Budinger, GR Scott; Takawira, Desire; Hopkinson, Susan B; Jones, Jonathan CR

    2012-01-01

    Aim The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. Methods Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy. Results We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM. Conclusions An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung. PMID:23204878

  2. High CO2 levels impair alveolar epithelial function independently of pH.

    Directory of Open Access Journals (Sweden)

    Arturo Briva

    Full Text Available BACKGROUND: In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2 is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. PRINCIPAL FINDINGS: We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. CONCLUSIONS: Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.

  3. Simvastatin Attenuates TGF-β1-Induced Epithelial-Mesenchymal Transition in Human Alveolar Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tuo Yang

    2013-06-01

    Full Text Available Background: Transforming growth factor-β1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to idiopathic pulmonary fibrosis (IPF. TGF-β1-induced EMT in A549 cells (a human AEC cell line resulted in the adoption of mesenchymal responses that were predominantly mediated via the TGF-β1-Smad2/3 signaling pathway. Simvastatin (Sim, a 3-hydroxy-3-methylglutaryl CoA (HMG-CoA reductase inhibitor, has been previously reported to inhibit EMT in human proximal tubular epithelial cells and porcine lens epithelial cells and to suppress Smad2/3 phosphorylation in animal models. However, whether Sim can attenuate TGF-β1-induced EMT in A549 cells and its underlying mechanisms remains unknown. Methods: Cells were incubated with TGF-β1 in the presence or absence of Sim. The epithelial marker E-cadherin (E-Cad and the mesenchymal markers, α-smooth muscle actin (α-SMA, vimentin (Vi and fibronectin (FN, were detected using western blotting analyses and immunofluorescence. Phosphorylated Smad2 and Smad3 levels and connective tissue growth factor (CTGF were analyzed using western blotting. In addition, a cell migration assay was performed. Moreover, the levels of matrix metalloproteinase (MMP-2 and -9 in the culture medium were examined using ELISA. Results: Sim significantly attenuated the TGF-β1-induced decrease in E-Cad levels and elevated the levels of α-SMA, Vi and FN via the suppression of Smad2 and Smad3 phosphorylation. Furthermore, Sim inhibited the mesenchymal-like responses in A549 cells, including cell migration, CTGF expression and secretion of MMP-2 and -9. However, Sim failed to reverse the cell morphologial changes induced by TGF-β1 in A549 cells. Conclusion: Sim attenuated TGF-β1-induced EMT in A549 cells and might be a promising therapeutic agent for treating IPF.

  4. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    Science.gov (United States)

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  5. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    Science.gov (United States)

    Checa, Marco; Hagood, James S; Velazquez-Cruz, Rafael; Ruiz, Victor; García-De-Alba, Carolina; Rangel-Escareño, Claudia; Urrea, Francisco; Becerril, Carina; Montaño, Martha; García-Trejo, Semiramis; Cisneros Lira, José; Aquino-Gálvez, Arnoldo; Pardo, Annie; Selman, Moisés

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549), was exposed to cigarette smoke extract (CSE) for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12) and rat (RLE-6TN) epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  6. MCP-1 expression by rat type II alveolar epithelial cells in primary culture.

    Science.gov (United States)

    Paine, R; Rolfe, M W; Standiford, T J; Burdick, M D; Rollins, B J; Strieter, R M

    1993-05-15

    Recruitment and activation of mononuclear phagocytes are potentially critical regulatory events for control of pulmonary inflammation. Located at the boundary between the alveolar airspace and the interstitium, alveolar epithelial cells are ideally situated to regulate the recruitment and activation of mononuclear phagocytes through the production of cytokines in response to inflammatory stimulation from the alveolar space. To test this hypothesis, we investigated the production of monocyte chemotactic polypeptide-1 (MCP-1), a protein that is chemotactic for and that activates monocytes, by rat type II alveolar epithelial cells in primary culture. Immunocytochemical staining using anti-murine JE, an antibody recognizing rat MCP-1, demonstrated cell-associated MCP-1 Ag throughout the monolayer. The intensity of staining was increased in response to IL-1 beta. When type II epithelial cells formed a tight monolayer on a filter support, there was polar secretion of MCP-1 Ag into the apical compartment by both control and IL-1-stimulated cells as measured by specific MCP-1 ELISA. Northern blot analysis revealed that IL-1 and TNF-alpha stimulated MCP-1 mRNA expression in a dose-dependent manner, whereas dexamethasone blocked MCP-1 expression by cells stimulated with IL-1. In contrast to previous results using transformed epithelial cell lines, MCP-1 mRNA was induced in these primary cultures directly by stimulation with LPS. These data suggest that alveolar epithelial cells may have an important and previously unrecognized role in the initiation and maintenance of inflammatory processes in the lung by recruiting and activating circulating monocytes through the production of MCP-1.

  7. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Marco Checa

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549, was exposed to cigarette smoke extract (CSE for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12 and rat (RLE-6TN epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  8. Glucose-6-phosphate dehydrogenase in rat lung alveolar epithelial cells. An ultrastructural enzyme-cytochemical study

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly- developed enzyme-cytochemistry (copper-ferrocyanide method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.

  9. Hot spices influence permeability of human intestinal epithelial monolayers.

    Science.gov (United States)

    Jensen-Jarolim, E; Gajdzik, L; Haberl, I; Kraft, D; Scheiner, O; Graf, J

    1998-03-01

    Indirect evidence suggests that hot spices may interact with epithelial cells of the gastrointestinal tract to modulate their transport properties. Using HCT-8 cells, a cell line from a human ileocoecal carcinoma, we studied the effects of spices on transepithelial electrical resistance (TER), permeability for fluorescein isothiocyanate (FITC)-labeled dextrans with graded molecular weight, and morphological alterations of tight junctions by immunofluorescence using an anti-ZO-1 antibody, a marker for tight junction integrity. Two different reactivity patterns were observed: paprika and cayenne pepper significantly decreased the TER and increased permeability for 10-, 20- and 40-kDa dextrans but not for -70 kDa dextrans. Simultaneously, tight junctions exhibited a discontinuous pattern. Applying extracts from black or green pepper, bay leaf or nutmeg increased the TER and macromolecular permeability remained low. Immunofluorescence ZO-1 staining was preserved. In accordance with the above findings, capsaicin transiently reduced resistance and piperine increased resistance, making them candidates for causing the effects seen with crude spice extracts. The observation that Solanaceae spices (paprika, cayenne pepper) increase permeability for ions and macromolecules might be of pathophysiological importance, particularly with respect to food allergy and intolerance.

  10. Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake.

    Science.gov (United States)

    Kemp, Sarah J; Thorley, Andrew J; Gorelik, Julia; Seckl, Michael J; O'Hare, Michael J; Arcaro, Alexandre; Korchev, Yuri; Goldstraw, Peter; Tetley, Teresa D

    2008-11-01

    Primary human alveolar type 2 (AT2) cells were immortalized by transduction with the catalytic subunit of telomerase and simian virus 40 large-tumor antigen. Characterization by immunochemical and morphologic methods demonstrated an AT1-like cell phenotype. Unlike primary AT2 cells, immortalized cells no longer expressed alkaline phosphatase, pro-surfactant protein C, and thyroid transcription factor-1, but expressed increased caveolin-1 and receptor for advanced glycation end products (RAGE). Live cell imaging using scanning ion conductance microscopy showed that the cuboidal primary AT2 cells were approximately 15 microm and enriched with surface microvilli, while the immortal AT1 cells were attenuated more than 40 microm, resembling these cells in situ. Transmission electron microscopy highlighted the attenuated morphology and showed endosomal vesicles in some immortal AT1 cells (but not primary AT2 cells) as found in situ. Particulate air pollution exacerbates cardiopulmonary disease. Interaction of ultrafine, nano-sized particles with the alveolar epithelium and/or translocation into the cardiovasculature may be a contributory factor. We hypothesized differential uptake of nanoparticles by AT1 and AT2 cells, depending on particle size and surface charge. Uptake of 50-nm and 1-microm fluorescent latex particles was investigated using confocal microscopy and scanning surface confocal microscopy of live cells. Fewer than 10% of primary AT2 cells internalized particles. In contrast, 75% immortal AT1 cells internalized negatively charged particles, while less than 55% of these cells internalized positively charged particles; charge, rather than size, mattered. The process was rapid: one-third of the total cell-associated negatively charged 50-nm particle fluorescence measured at 24 hours was internalized during the first hour. AT1 cells could be important in translocation of particles from the lung into the circulation.

  11. Transcriptomic profiling of primary alveolar epithelial cell differentiation in human and rat

    Directory of Open Access Journals (Sweden)

    Crystal N. Marconett

    2014-12-01

    Full Text Available Cell-type specific gene regulation is a key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how changes in transcriptional activation during alveolar epithelial cell (AEC differentiation determine phenotype. We performed transcriptomic profiling using in vitro differentiation of human and rat primary AEC. This model recapitulates in vitro an in vivo process in which AEC transition from alveolar type 2 (AT2 cells to alveolar type 1 (AT1 cells during normal maintenance and regeneration following lung injury. Here we describe in detail the quality control, preprocessing, and normalization of microarray data presented within the associated study (Marconett et al., 2013. We also include R code for reproducibility of the referenced data and easily accessible processed data tables.

  12. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  13. Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Shimpei Gotoh

    2014-09-01

    Full Text Available No methods for isolating induced alveolar epithelial progenitor cells (AEPCs from human embryonic stem cells (hESCs and induced pluripotent stem cells (hiPSCs have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs, we identified carboxypeptidase M (CPM as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine.

  14. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis

    Directory of Open Access Journals (Sweden)

    Li Changgong

    2011-10-01

    Full Text Available Abstract Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.

  15. Establishment and evaluation of a stable cattle type II alveolar epithelial cell line.

    Directory of Open Access Journals (Sweden)

    Feng Su

    Full Text Available Macrophages and dendritic cells are recognized as key players in the defense against mycobacterial infection. Recent research has confirmed that alveolar epithelial cells (AECs also play important roles against mycobacterium infections. Thus, establishing a stable cattle AEC line for future endogenous immune research on bacterial invasion is necessary. In the present study, we first purified and immortalized type II AECs (AEC II cells by transfecting them with a plasmid containing the human telomerase reverse trancriptase gene. We then tested whether or not the immortalized cells retained the basic physiological properties of primary AECs by reverse-transcription polymerase chain reaction and Western blot. Finally, we tested the secretion capacity of immortalized AEC II cells upon stimulation by bacterial invasion. The cattle type II alveolar epithelial cell line (HTERT-AEC II that we established retained lung epithelial cell characteristics: the cells were positive for surfactants A and B, and they secreted tumor necrosis factor-α and interleukin-6 in response to bacterial invasion. Thus, the cell line we established is a potential tool for research on the relationship between AECs and Mycobacterium tuberculosis.

  16. Na(+)-K(+)-ATPase expression in alveolar epithelial cells: upregulation of active ion transport by KGF.

    Science.gov (United States)

    Borok, Z; Danto, S I; Dimen, L L; Zhang, X L; Lubman, R L

    1998-01-01

    We evaluated the effects of keratinocyte growth factor (KGF) on alveolar epithelial cell (AEC) active ion transport and on rat epithelial Na channel (rENaC) subunit and Na(+)-K(+)-adenosinetriphosphatase (ATPase) subunit isoform expression using monolayers of AEC grown in primary culture. Rat alveolar type II cells were plated on polycarbonate filters in serum-free medium, and KGF (10 ng/ml) was added to confluent AEC monolayers on day 4 in culture. Exposure of AEC monolayers to KGF on day 4 resulted in dose-dependent increases in short-circuit current (Isc) compared with controls by day 5, with further increases occurring through day 8. Relative Na(+)-K(+)-ATPase alpha 1-subunit mRNA abundance was increased by 41% on days 6 and 8 after exposure to KGF, whereas alpha 2-subunit mRNA remained only marginally detectable in both the absence and presence of KGF. Levels of mRNA for the beta 1-subunit of Na(+)-K(+)-ATPase did not increase, whereas cellular alpha 1- and beta 1-subunit protein increased 70 and 31%, respectively, on day 6. mRNA for alpha-, beta-, and gamma-rENaC all decreased in abundance after treatment with KGF. These results indicate that KGF upregulates active ion transport across AEC monolayers via a KGF-induced increase in Na pumps, primarily due to increased Na(+)-K(+)-ATPase alpha 1-subunit mRNA expression. We conclude that KGF may enhance alveolar fluid clearance after acute lung injury by upregulating Na pump expression and transepithelial Na transport across the alveolar epithelium.

  17. Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus

    Directory of Open Access Journals (Sweden)

    Kosmider Beata

    2012-06-01

    Full Text Available Abstract Background Influenza A virus (IAV infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2 activates the majority of antioxidant genes. Methods Alveolar type II (ATII cells and alveolar macrophages (AM were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8 virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2 or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively. Results We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and

  18. Hydrogen sulfide donor regulates alveolar epithelial cell apoptosis in rats with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-li; LIU Zhi-wei; LI Tian-shui; WANG Cong; ZHAO Bin

    2013-01-01

    Background Acute lung injury (ALl) is a common syndrome associated with high morbidity and mortality in emergency medicine.Cell apoptosis plays a key role in the pathogenesis of ALl.Hydrogen sulfide (H2S) plays a protective role during acute lung injury.We designed this study to examine the role of H2S in the lung alveolar epithelial cell apoptosis in rats with ALl.Methods Sixty-nine male Sprague Dawley rats were used.ALl was induced by intra-tail vein injection of oleic acid (OA).NaHS solution was injected intraperitonally 30 minutes before OA injection as the NaHS pretreatment group.Single sodium hydrosulfide pretreatment group and control group were designed.Index of quantitative assessment (IQA),wet/dry weight (W/D) ratio and the percentage of polymorphonuclear leukocyte (PMN) cells in the bronchoalveolar lavage fluid (BALF) were determined.H2S level in lung tissue was measured by a sensitive sulphur electrode.Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Fas protein was measured by immunohistochemical staining.Results The level of endogenous H2S in lung tissue decreased with the development of ALl induced by OA injection.Apoptosis and Fas protein in alveolar epithelial cells increased in the ALl of rats but NaHS lessened apoptosis and Fas protein expression in alveolar epithelial cells of rats with ALl.Conclusion Endogenous H2S protects rats from oleic acid-induced ALl,probably by inhibiting cell apoptosis.

  19. Reactivity of alveolar epithelial cells in primary culture with type I cell monoclonal antibodies.

    Science.gov (United States)

    Danto, S I; Zabski, S M; Crandall, E D

    1992-03-01

    An understanding of the process of alveolar epithelial cell growth and differentiation requires the ability to trace and analyze the phenotypic transitions that the cells undergo. This analysis demands specific phenotypic probes to type II and, especially, type I pneumocytes. To this end, monoclonal antibodies have been generated to type I alveolar epithelial cells using an approach designed to enhance production of lung-specific clones from a crude lung membrane preparation. The monoclonal antibodies were screened by a combination of enzyme-linked immunosorbent assay and immunohistochemical techniques, with the determination of type I cell specificity resting primarily on immunoelectron microscopic localization. Two of these new markers of the type I pneumocyte phenotype (II F1 and VIII B2) were used to analyze primary cultures of type II cells growing on standard tissue culture plastic and on a variety of substrata reported to affect the morphology of these cells in culture. On tissue culture plastic, the antibodies fail to react with early (days 1 to 3) type II cell cultures. The cells become progressively more reactive with time in culture to a plateau of approximately 6 times background by day 8, with a maximum rate of increase between days 3 and 5. This finding is consistent with the hypothesis that type II cells in primary culture undergo at least partial differentiation into type I cells. Type II cells grown on laminin, which reportedly delays the loss of type II cell appearance, and on fibronectin, which has been reported to facilitate cell spreading and loss of type II cell features, develop the type I cell markers during cultivation in vitro with kinetics similar to those on uncoated tissue culture plastic. Cells on type I collagen and on tissue culture-treated Nuclepore filters, which have been reported to support monolayers with type I cell-like morphology, also increase their expression of the II F1 and VIII B2 epitopes around days 3 to 5. Taken

  20. Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias

    Directory of Open Access Journals (Sweden)

    Kajiki Akira

    2011-03-01

    Full Text Available Abstract Background It is difficult to predict survival in patients with idiopathic pulmonary fibrosis. Recently, several proteins, such as surfactant protein (SP and KL-6, have been reported to be useful biologic markers for prediction of prognosis for interstitial pneumonias. It is not clear whether there is any relationship between expression of these proteins in regenerative/hyperplastic alveolar epithelial cells and prognosis of idiopathic interstitial pneumonias (IIPs. Objectives This study aimed to elucidate the clinical significance of the expression of such lung secretory proteins as SP-A and KL-6 in lung tissues of patients with IIPs. Methods We retrospectively investigated the immunohistochemical expression of SP-A, KL-6, cytokeratin (CK, and epithelial membrane antigen (EMA in alveolar epithelial cells in lung tissues obtained from surgical lung biopsy in 43 patients with IIPs, and analyzed the correlation between expression of these markers and the prognosis of each IIP patient. CK and EMA were used as general markers for epithelial cells. Results In patients with usual interstitial pneumonia (UIP, the ratio of SP-A positive epithelial cells to all alveolar epithelial cells (SP-A positive ratio in the collapsed and mural fibrosis areas varied, ranging from cases where almost all alveolar epithelial cells expressed SP-A to cases where only a few did. On the other hand, in many patients with nonspecific interstitial pneumonia (NSIP, many of the alveolar epithelial cells in the diseased areas expressed SP-A. The SP-A positive ratio was significantly lower in patients who died from progression of UIP than in patients with UIP who remained stable or deteriorated but did not die. In NSIP patients, a similar tendency was noted between the SP-A positive ratio and prognosis. Conclusions The results suggest that the paucity of immunohistochemical SP-A expression in alveolar epithelial cells in diseased areas (i.e. regenerative

  1. Cigarette Smoke Extract Inhibits the Proliferation of Alveolar Epithelial Cells and Augments the Expression of P21WAF1

    Institute of Scientific and Technical Information of China (English)

    Zongxian JIAO; Qilin AO; Xiaona GE; Mi XIONG

    2008-01-01

    Cigarette smoking is intimately related with the development of chronic obstructive pulmonary diseases, and alveolar epithelium is a major target for the exposure of cigarette smoke ex- tract. In order to investigate the effect of cigarette smoke extract on the proliferation of alveolar epithelial cell type Ⅱand its relationship with P21WAF1, the alveolar epithelial type Ⅱ cell line (A549) cells were chosen as surrogate cells to represent alveolar epithelial type Ⅱ cells. MTT assay was used to detect cell viability after interfered with different concentrations of cigarette smoke ex-tract. It was observed cigarette smoke extract inhibited the growth of A549 cells in a dose- and time-dependent manner. The morphological changes, involving the condensation and margination of nuclear chromatin, even karyorrhexis, were observed by both Hoechst staining and electronic mi-croscopy. Flow cytometry analysis demonstrated the increased cell percentages in G1 and subG1phases after the cells were incubated with cigarette smoke extract. The expression of p21WAF1 protein and mRNA was also significantly increased as detected by the methods of Western blot or reverse transcription-polymerase chain reaction respectively. In conclusion, cigarette smoke extract inhibits the proliferation of alveolar epithelial cell type Ⅱ and blocks them in G1/S phase. The intracellular accumulation of P21WAF1 may be one of the mechanisms which contribute to cigarette smoke ex-tract-induced inhibition of cell proliferation.

  2. Primary Culture of Alveolar Epithelial Type Ⅱ Cells and Its Bionomic Study

    Institute of Scientific and Technical Information of China (English)

    SHI Xuemei; NI Wang; ZHANG Huilan; XIONG Shengdao; ZHEN Guohua; XIONG Weining; ZHANG Zhenxiang; XU Yongjian; HU Qiongjie; ZHAO Jianping

    2007-01-01

    To establish a better method of primary culture for alveolar epithelial type Ⅱ cells (AEC Ⅱ) and to study its bionomics, alveolar epithelial type Ⅱ cells were isolated by digestion with tryp- sin and collagenase, which were then purified by plated into culture flask coated with rat immu- noglobulin G. The purified AEC Ⅱ were identified by alkaline phosphatase staining, electron mi-croscopy, immunocytochemical staining of pulmonary surfactant protein A (SPA). The SPA expres-sion and transfection characteristics were compared with those of A549 cell line. The results showed that AEC Ⅱ could be isolated by digestion with trysin and collagenase and purified by adhesive pu- rification by using IgG, with a yield of about 2-3×107, and a purity of about 75%-84 %. Cells could be quickly identified with AKP staining. AEC Ⅱ were different from A549 cell line in terms of SPA expression and transfection characteristics. It is concluded that adhesive purification with IgG can improve the purity of AEC Ⅱ, and AKP staining is simple in cell identification. AEC Ⅱ can not be completely replaced by A549 cells in some studies because the differences between them, such as SPA expression.

  3. Ultrastructural Study of Alveolar Epithelial Type II Cells by High-Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    Xiaofei Qin

    2013-01-01

    Full Text Available Alveolar epithelial type II cells (AECIIs containing lamellar bodies (LBs are alveolar epithelial stem cells that have important functions in the repair of lung structure and function after lung injury. The ultrastructural changes in AECIIs after high-frequency oscillatory ventilation (HFOV with a high lung volume strategy or conventional ventilation were evaluated in a newborn piglet model with acute lung injury (ALI. After ALI with saline lavage, newborn piglets were randomly assigned into five study groups (three piglets in each group, namely, control (no mechanical ventilation, conventional ventilation for 24 h, conventional ventilation for 48 h, HFOV for 24 h, and HFOV for 48 h. The lower tissues of the right lung were obtained to observe the AECII ultrastructure. AECIIs with reduced numbers of microvilli, decreased LBs electron density, and vacuole-like LBs deformity were commonly observed in all five groups. Compared with conventional ventilation groups, the decrease in numbers of microvilli and LBs electron density, as well as LBs with vacuole-like appearance and polymorphic deformity, was less severe in HFOV with high lung volume strategy groups. AECIIs were injured during mechanical ventilation. HFOV with a high lung volume strategy resulted in less AECII damage than conventional ventilation.

  4. Role of cytoskeleton in cytokine production from lung alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cytokines are involved in both host defense and inflammatory lung injury. Recent work from our laboratory and others has demonstrated that in addition to classical immune cells, lung alveolar epithelial cells (or pneumocytes) can also produce cytokines in response to various stimuli. This new knowledge has advanced our view of the host defense system in the lung. The regulatory mechanisms of cytokine production have been studied in great detail at various cellular and molecular levels, but the mechanisms of intracellular cytokine transport are largely unknown. Our recent studies suggest that the cytoskeleton could play an important role in mediating intracellular cytokine trafficking. This could be an important regulatory step for cytokine production. For example, lipopolyssacharide (LPS) induced tumor necrosis factor-α (TNF-α) from rat pneumocytes, which was further enhanced by a microfilament-disrupting agent. LPS also induced macrophage inflammatory protein-2(MIP-2), a chemokine for neutrophil recruitment and activation, from rat pneumocytes. This effect was enhanced by microtubule-disrupting agents. We speculate that both microfilaments and microtubules are involved in regulating cytokine transportation in pneumocytes through different mechanisms. Further investigation in on going in my laboratory. From a clinical perspective, if we understand the mechanisms regulating cytokine production and release from lung alveolar epithelial cells, we may be able to enhance or inhibit release of crucial cytokines depending on the clinical situation.

  5. Late appearance of a type I alveolar epithelial cell marker during fetal rat lung development.

    Science.gov (United States)

    Danto, S I; Zabski, S M; Crandall, E D

    1994-10-01

    Recent studies in fetal lung using immunological and molecular probes have revealed type I and type II cell phenotypic markers in primordial lung epithelial cells prior to the morphogenesis of these cell types. We have recently developed monoclonal antibodies specific for adult type I cells. To evaluate further the temporal appearance of the type I cell phenotype during alveolar epithelial cell ontogeny, we analyzed fetal lung development using one of our monoclonal antibodies (mAb VIII B2). The epitope recognized by mAb VIII B2 first appears in the canalicular stage of fetal lung development, at approx. embryonic day 19 (E19), in occasional, faintly stained tubules. Staining with this type I cell probe becomes more intense and more widespread with increasing gestational age, during which time the pattern of staining changes. Initially, all cells of the distal epithelial tubules are uniformly labelled along their apical and basolateral surfaces. As morphological differentiation of the alveolar epithelium proceeds, type I cell immunoreactivity appears to become restricted to the apical surface of the primitive type I cells in a pattern approaching that seen in the mature lung. We concurrently analyzed developing fetal lung with an antiserum to surfactant apoprotein-A (alpha-SP-A). Consistent with the findings of others, labeling of SP-A was first detectable in scattered cuboidal cells at E18. Careful examination of the double-labeled specimens suggested that some cells were reactive with both the VIII B2 and SP-A antibodies, particularly at E20. Confocal microscopic analysis of such sections from E20 lung confirmed this impression. Three populations of cells were detected: cells labeled only with alpha-SP-A, cells labeled only with mAb VIII B2, and a smaller subset of cells labeled by both.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Alteration in Intrapulmonary Pharmacokinetics of Aerosolized Model Compounds Due to Disruption of the Alveolar Epithelial Barriers Following Bleomycin-Induced Pulmonary Fibrosis in Rats.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Tada, Hitoshi

    2016-03-01

    Idiopathic pulmonary fibrosis is a lethal lung disease that is characterized by the accumulation of extracellular matrix and a change in lung structure. In this study, intrapulmonary pharmacokinetics of aerosolized model compounds were evaluated using rats with bleomycin-induced pulmonary fibrosis. Aerosol formulations of indocyanine green, 6-carboxyfluorescein (6-CF), and fluorescein isothiocyanate dextrans (FD; 4.4, 10, 70, and 250 kDa) were administered to rat lungs using a MicroSprayer. Indocyanine green fluorescence signals were significantly weaker in fibrotic lungs than in control lungs and 6-CF and FD concentrations in the plasma of pulmonary fibrotic animals were markedly higher than in the plasma of control animals. Moreover, disrupted epithelial tight junctions, including claudins-1, -3, and -5, were observed in pulmonary fibrotic lesions using immunofluorescence microscopy. In addition, destruction of tight junctions on model alveolar epithelial cells (NCI-H441) by transforming growth factor-β1 treatment enhanced the permeability of 6-CF and FDs through NCI-H441 cell monolayers. These results indicate that aerosolized drugs are easily distributed into the plasma after leakage through damaged tight junctions of alveolar epithelium. Therefore, the development of delivery systems for anti-fibrotic agents to improve intrapulmonary pharmacokinetics may be necessary for effective idiopathic pulmonary fibrosis therapy.

  7. Modulation of t1alpha expression with alveolar epithelial cell phenotype in vitro.

    Science.gov (United States)

    Borok, Z; Danto, S I; Lubman, R L; Cao, Y; Williams, M C; Crandall, E D

    1998-07-01

    T1alpha is a recently identified gene expressed in the adult rat lung by alveolar type I (AT1) epithelial cells but not by alveolar type II (AT2) epithelial cells. We evaluated the effects of modulating alveolar epithelial cell (AEC) phenotype in vitro on T1alpha expression using either soluble factors or changes in cell shape to influence phenotype. For studies on the effects of soluble factors on T1alpha expression, rat AT2 cells were grown on polycarbonate filters in serum-free medium (MDSF) or in MDSF supplemented with either bovine serum (BS, 10%), rat serum (RS, 5%), or keratinocyte growth factor (KGF, 10 ng/ml) from either day 0 or day 4 through day 8 in culture. For studies on the effects of cell shape on T1alpha expression, AT2 cells were plated on thick collagen gels in MDSF supplemented with BS. Gels were detached on either day 1 (DG1) or day 4 (DG4) or were left attached until day 8. RNA and protein were harvested at intervals between days 1 and 8 in culture, and T1alpha expression was quantified by Northern and Western blotting, respectively. Expression of T1alpha progressively increases in AEC grown in MDSF +/- BS between day 1 and day 8 in culture, consistent with transition toward an AT1 cell phenotype. Exposure to RS or KGF from day 0 prevents the increase in T1alpha expression on day 8, whereas addition of either factor from day 4 through day 8 reverses the increase. AEC cultured on attached gels express high levels of T1alpha on days 4 and 8. T1alpha expression is markedly inhibited in both DG1 and DG4 cultures, consistent with both inhibition and reversal of the transition toward the AT1 cell phenotype. These results demonstrate that both soluble factors and alterations in cell shape modulate T1alpha expression in parallel with AEC phenotype and provide further support for the concept that transdifferentiation between AT2 and AT1 cell phenotypes is at least partially reversible.

  8. Keratinocyte growth factor modulates alveolar epithelial cell phenotype in vitro: expression of aquaporin 5.

    Science.gov (United States)

    Borok, Z; Lubman, R L; Danto, S I; Zhang, X L; Zabski, S M; King, L S; Lee, D M; Agre, P; Crandall, E D

    1998-04-01

    We investigated the role of keratinocyte growth factor (KGF) in regulation of alveolar epithelial cell (AEC) phenotype in vitro. Effects of KGF on cell morphology, expression of surfactant apoproteins A, B, and C (SP-A, -B, and -C), and expression of aquaporin 5 (AQP5), a water channel present in situ on the apical surface of alveolar type I (AT1) cells but not expressed in alveolar type II (AT2) cells, were evaluated in AECs grown in primary culture. Observations were made on AEC monolayers grown in serum-free medium without KGF (control) or grown continuously in the presence of KGF (10 ng/ml) from either Day 0 (i.e., the time of plating) or Day 4 or 6 through Day 8 in culture. AECs monolayers express AQP5 only on their apical surfaces as determined by cell surface biotinylation studies. Control AECs grown in the absence of KGF through Day 8 express increasing levels of AQP5, consistent with transition toward the AT1 cell phenotype. Exposure of AECs to KGF from Day 0 results in decreased AQP5 expression, retention of a cuboidal morphology, and greater numbers of lamellar bodies relative to control on Day 8 in culture. AECs treated with KGF from Day 4 or 6 exhibit a decrease in AQP5 expression through subsequent days in culture, as well as an increase in expression of surfactant apoproteins. These data, showing that KGF both prevents and reverses the increase in AQP5 (and decrease in surfactant apoprotein) expression that accompanies progression of the AT2 toward the AT1 cell phenotype, support the concepts that transdifferentiation between AT2 and AT1 cell phenotypes is at least partially reversible and that KGF may play a major role in modulating AEC phenotype.

  9. Proteolysis of synaptobrevin, syntaxin, and SNAP-25 in alveolar epithelial type II cells.

    Science.gov (United States)

    Zimmerman, U J; Malek, S K; Liu, L; Li, H L

    1999-10-01

    Synaptobrevin-2, syntaxin-1, and SNAP-25 were identified in rat alveolar epithelial type II cells by Western blot analysis. Synaptobrevin-2 was localized in the lamellar bodies, and syntaxin-1 and SNAP-25 were found in 0.4% Nonidet P40-soluble and -insoluble fractions, respectively, of the type II cells. When the isolated type II cells were stimulated for secretion with calcium ionophore A23187 or with phorbol 12-myristate 13-acetate, these proteins were found to have been proteolyzed. Preincubation of cells with calpain inhibitor II (N-acetylleucylleucylmethionine), however, prevented the proteolysis. Treatment of the cell lysate with exogenous calpain resulted in a time-dependent decrease of these proteins. The data suggest that synaptobrevin, syntaxin, and SNAP-25 are subject to proteolytic modification by activated calpain in intact type II cells stimulated for secretion.

  10. SPC-Cre-ERT2 transgenic mouse for temporal gene deletion in alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yao-Song Gui

    Full Text Available Although several Cre-loxP-based gene knockout mouse models have been generated for the study of gene function in alveolar epithelia in the lung, their applications are still limited. In this study, we developed a SPC-Cre-ER(T2 mouse model, in which a tamoxifen-inducible Cre recombinase (Cre-ER(T2 is under the control of the human surfactant protein C (SPC promoter. The specificity and efficiency of Cre-ER(T2 activity was first evaluated by crossing SPC-Cre-ER(T2 mouse with ROSA26R mouse, a β-galactosidase reporter strain. We found that Cre-ER(T2 was expressed in 30.7% type II alveolar epithelial cells of SPC-Cre-ER(T2/ROSA26R mouse lung tissues in the presence of tamoxifen. We then tested the tamoxifen-inducible recombinase activity of Cre-ER(T2 in a mouse strain bearing TSC1 conditional knockout alleles (TSC1(fx/fx. TSC1 deletion was detected in the lungs of tamoxifen treated SPC-Cre-ER(T2/TSC1(fx/fx mice. Therefore this SPC-Cre-ER(T2 mouse model may be a valuable tool to investigate functions of genes in lung development, physiology and disease.

  11. SPC-Cre-ERT2 transgenic mouse for temporal gene deletion in alveolar epithelial cells.

    Science.gov (United States)

    Gui, Yao-Song; Wang, Lianmei; Tian, Xinlun; Feng, Ruie; Ma, Aiping; Cai, Baiqiang; Zhang, Hongbing; Xu, Kai-Feng

    2012-01-01

    Although several Cre-loxP-based gene knockout mouse models have been generated for the study of gene function in alveolar epithelia in the lung, their applications are still limited. In this study, we developed a SPC-Cre-ER(T2) mouse model, in which a tamoxifen-inducible Cre recombinase (Cre-ER(T2)) is under the control of the human surfactant protein C (SPC) promoter. The specificity and efficiency of Cre-ER(T2) activity was first evaluated by crossing SPC-Cre-ER(T2) mouse with ROSA26R mouse, a β-galactosidase reporter strain. We found that Cre-ER(T2) was expressed in 30.7% type II alveolar epithelial cells of SPC-Cre-ER(T2)/ROSA26R mouse lung tissues in the presence of tamoxifen. We then tested the tamoxifen-inducible recombinase activity of Cre-ER(T2) in a mouse strain bearing TSC1 conditional knockout alleles (TSC1(fx/fx)). TSC1 deletion was detected in the lungs of tamoxifen treated SPC-Cre-ER(T2)/TSC1(fx/fx) mice. Therefore this SPC-Cre-ER(T2) mouse model may be a valuable tool to investigate functions of genes in lung development, physiology and disease.

  12. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces.

    Science.gov (United States)

    Kaneko, Keita; Togami, Kohei; Yamamoto, Eri; Wang, Shujun; Morimoto, Kazuhiro; Itagaki, Shirou; Chono, Sumio

    2016-10-01

    The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases.

  13. Mechanisms of EGF-induced stimulation of sodium reabsorption by alveolar epithelial cells.

    Science.gov (United States)

    Danto, S I; Borok, Z; Zhang, X L; Lopez, M Z; Patel, P; Crandall, E D; Lubman, R L

    1998-07-01

    We investigated the effects of epidermal growth factor (EGF) on active Na+ absorption by alveolar epithelium. Rat alveolar epithelial cells (AEC) were isolated and cultivated in serum-free medium on tissue culture-treated polycarbonate filters. mRNA for rat epithelial Na+ channel (rENaC) alpha-, beta-, and gamma-subunits and Na+ pump alpha1- and beta1-subunits were detected in day 4 monolayers by Northern analysis and were unchanged in abundance in day 5 monolayers in the absence of EGF. Monolayers cultivated in the presence of EGF (20 ng/ml) for 24 h from day 4 to day 5 showed an increase in both alpha1 and beta1 Na+ pump subunit mRNA but no increase in rENaC subunit mRNA. EGF-treated monolayers showed parallel increases in Na+ pump alpha1- and beta1-subunit protein by immunoblot relative to untreated monolayers. Fixed AEC monolayers demonstrated predominantly membrane-associated immunofluorescent labeling with anti-Na+ pump alpha1- and beta1-subunit antibodies, with increased intensity of cell labeling for both subunits seen at 24 h following exposure to EGF. These changes in Na+ pump mRNA and protein preceded a delayed (>12 h) increase in short-current circuit (measure of active transepithelial Na+ transport) across monolayers treated with EGF compared with untreated monolayers. We conclude that EGF increases active Na+ resorption across AEC monolayers primarily via direct effects on Na+ pump subunit mRNA expression and protein synthesis, leading to increased numbers of functional Na+ pumps in the basolateral membranes.

  14. Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase.

    Science.gov (United States)

    Wilhelm, Kristina R; Roan, Esra; Ghosh, Manik C; Parthasarathi, Kaushik; Waters, Christopher M

    2014-02-01

    Patients with acute lung injury are administered high concentrations of oxygen during mechanical ventilation, and while both hyperoxia and mechanical ventilation are necessary, each can independently cause additional injury. However, the precise mechanisms that lead to injury are not well understood. We hypothesized that alveolar epithelial cells may be more susceptible to injury caused by mechanical ventilation because hyperoxia causes cells to be stiffer due to increased filamentous actin (f-actin) formation via the GTPase RhoA and its effecter Rho kinase (ROCK). We examined cytoskeletal structures in cultured murine lung alveolar epithelial cells (MLE-12) under normoxic and hyperoxic (48 h) conditions. We also measured cell elasticity (E) using an atomic force microscope in the indenter mode. Hyperoxia caused increased f-actin stress fibers and bundle formation, an increase in g- and f-actin, an increase in nuclear area and a decrease in nuclear height, and cells became stiffer (higher E). Treatment with an inhibitor (Y-27632) of ROCK significantly decreased E and prevented the cytoskeletal changes, while it did not influence the nuclear height and area. Pre-exposure of cells to hyperoxia promoted detachment when cells were subsequently stretched cyclically, but the ROCK inhibitor prevented this effect. Hyperoxia caused thickening of vinculin focal adhesion plaques, and inhibition of ROCK reduced the formation of distinct focal adhesion plaques. Phosphorylation of focal adhesion kinase was significantly reduced by both hyperoxia and treatment with Y-27632. Hyperoxia caused increased cell stiffness and promoted cell detachment during stretch. These effects were ameliorated by inhibition of ROCK.

  15. Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers

    Directory of Open Access Journals (Sweden)

    Fazlollahi F

    2011-11-01

    Full Text Available Farnoosh Fazlollahi1,8, Arnold Sipos1,2, Yong Ho Kim1,2, Sarah F Hamm-Alvarez6, Zea Borok1–3, Kwang-Jin Kim1,2,5–7, Edward D Crandall1,2,4,8 1Will Rogers Institute Pulmonary Research Center, 2Department of Medicine, 3Department of Biochemistry and Molecular Biology, 4Department of Pathology, 5Department of Physiology and Biophysics, 6Department of Pharmacology and Pharmaceutical Sciences, 7Department of Biomedical Engineering, 8Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA Background: In this study, primary rat alveolar epithelial cell monolayers (RAECM were used to investigate transalveolar epithelial quantum dot trafficking rates and underlying transport mechanisms. Methods: Trafficking rates of quantum dots (PEGylated CdSe/ZnS, core size 5.3 nm, hydrodynamic size 25 nm in the apical-to-basolateral direction across RAECM were determined. Changes in bioelectric properties (ie, transmonolayer resistance and equivalent active ion transport rate of RAECM in the presence or absence of quantum dots were measured. Involvement of endocytic pathways in quantum dot trafficking across RAECM was assessed using specific inhibitors (eg, methyl-ß-cyclodextrin, chlorpromazine, and dynasore for caveolin-, clathrin-, and dynamin-mediated endocytosis, respectively. The effects of lowering tight junctional resistance on quantum dot trafficking were determined by depleting Ca2+ in apical and basolateral bathing fluids of RAECM using 2 mM EGTA. Effects of temperature on quantum dot trafficking were studied by lowering temperature from 37°C to 4°C. Results: Apical exposure of RAECM to quantum dots did not elicit changes in transmonolayer resistance or ion transport rate for up to 24 hours; quantum dot trafficking rates were not surface charge-dependent; methyl-ß-cyclodextrin, chlorpromazine, and dynasore did not decrease quantum dot trafficking rates; lowering of temperature

  16. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  17. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    Science.gov (United States)

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  18. RNA interference-mediated silencing of SOCS-1 via lentiviral vector promotes apoptosis of alveolar epithelial cells in vitro.

    Science.gov (United States)

    Qian, Yan-Rong; Zhang, Qiu-Rui; Cheng, Ting; Wan, Huan-Ying; Zhou, Min

    2012-02-01

    Suppressor of cytokine signaling-1 (SOCS1) is a protein that negatively regulates cytokine and growth factor signaling. However, little is known regarding the precise role it plays in idiopathic pulmonary fibrosis. The aim of the present study was to construct a recombinant lentiviral vector for RNA interference targeting the SOCS1 gene and to detect the expression in human alveolar epithelial cells. A lentiviral vector-mediated RNA interference method was used to establish a SOCS1-negative cell line of alveolar origin (A549). Three pairs of complementary small hairpin RNA (shRNA) oligonucleotides targeting the SOCS1 gene were designed, synthesized and inserted into the pPll3.7 vector. Packaged lentivirus particles were obtained after 48 h, and the supernatant was used to transfect the human alveolar epithelial cell line A549. The expression of the SOCS1 protein was detected by Western blotting. MTT assay was used to detect the cell proliferation of alveolar epithelial cells with SOCS1 knockdown. The recombinant plasmids were confirmed by sequencing. The lentivirus-containing supernatant effectively infected the A549 cell line, and the expression of SOCS1 protein was inhibited, which was confirmed by Western blotting in the target cells. MTT assay indicated the inhibition effect for cell proliferation of A549 cells in the SOCS1-RNA interference group, compared to the control group with no interference-mediated silencing of the SOCS1 gene. A lentiviral vector for RNA interference targeting the SOCS1 gene was successfully constructed, and cell survival tests showed that knockdown of the SOCS1 gene promotes the apoptosis of alveolar cells.

  19. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xu-Guang [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ji, Tian-Xing [Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Xia, Yong, E-mail: gysyxy@gmail.com [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ma, Yue-Yun, E-mail: cmbmayy@fmmu.edu.cn [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China)

    2013-03-08

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  20. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia.

    Directory of Open Access Journals (Sweden)

    Katrin Högner

    2013-02-01

    Full Text Available Influenza viruses (IV cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL. Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR- and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.

  1. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  2. Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Georg Ebeling

    Full Text Available P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis.

  3. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.

  4. Rv3351c, a Mycobacterium tuberculosis gene that affects bacterial growth and alveolar epithelial cell viability.

    Science.gov (United States)

    Pavlicek, Rebecca L; Fine-Coulson, Kari; Gupta, Tuhina; Quinn, Frederick D; Posey, James E; Willby, Melisa; Castro-Garza, Jorge; Karls, Russell K

    2015-12-01

    Despite the interactions known to occur between various lower respiratory tract pathogens and alveolar epithelial cells (AECs), few reports examine factors influencing the interplay between Mycobacterium tuberculosis bacilli and AECs during infection. Importantly, in vitro studies have demonstrated that the M. tuberculosis hbha and esxA gene products HBHA and ESAT6 directly or indirectly influence AEC survival. In this report, we identify Rv3351c as another M. tuberculosis gene that impacts the fate of both the pathogen and AEC host. Intracellular replication of an Rv3351c mutant in the human AEC type II pneumocyte cell line A549 was markedly reduced relative to the complemented mutant and parent strain. Deletion of Rv3351c diminished the release of lactate dehydrogenase and decreased uptake of trypan blue vital stain by host cells infected with M. tuberculosis bacilli, suggesting attenuated cytotoxic effects. Interestingly, an isogenic hbha mutant displayed reductions in AEC killing similar to those observed for the Rv3351c mutant. This opens the possibility that multiple M. tuberculosis gene products interact with AECs. We also observed that Rv3351c aids intracellular replication and survival of M. tuberculosis in macrophages. This places Rv3351c in the same standing as HBHA and ESAT6, which are important factors in AECs and macrophages. Defining the mechanism(s) by which Rv3351c functions to aid pathogen survival within the host may lead to new drug or vaccine targets.

  5. Integrin alpha(3)-subunit expression modulates alveolar epithelial cell monolayer formation.

    Science.gov (United States)

    Lubman, R L; Zhang, X L; Zheng, J; Ocampo, L; Lopez, M Z; Veeraraghavan, S; Zabski, S M; Danto, S I; Borok, Z

    2000-07-01

    We investigated expression of the alpha(3)-integrin subunit by rat alveolar epithelial cells (AECs) grown in primary culture as well as the effects of monoclonal antibodies with blocking activity against the alpha(3)-integrin subunit on AEC monolayer formation. alpha(3)-Integrin subunit mRNA and protein were detectable in AECs on day 1 and increased with time in culture. alpha(3)- and beta(1)-integrin subunits coprecipitated in immunoprecipitation experiments with alpha(3)- and beta(1)-subunit-specific antibodies, consistent with their association as the alpha(3)beta(1)-integrin receptor at the cell membrane. Treatment with blocking anti-alpha(3) monoclonal antibody from day 0 delayed development of transepithelial resistance, reduced transepithelial resistance through day 5 compared with that in untreated AECs, and resulted in large subconfluent patches in monolayers viewed by scanning electron microscopy on day 3. These data indicate that alpha(3)- and beta(1)-integrin subunits are expressed in AEC monolayers where they form the heterodimeric alpha(3)beta(1)-integrin receptor at the cell membrane. Blockade of the alpha(3)-integrin subunit inhibits formation of confluent AEC monolayers. We conclude that the alpha(3)-integrin subunit modulates formation of AEC monolayers by virtue of the key role of the alpha(3)beta(1)-integrin receptor in AEC adhesion.

  6. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Seok-Jo Kim

    2015-09-01

    Full Text Available Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC programmed cell death (apoptosis that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF and asbestosis (pulmonary fibrosis following asbestos exposure. The mammalian mitochondrial DNA (mtDNA encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1 and mitochondrial aconitase (ACO-2 in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.

  7. Nanoparticle (NP) uptake by type I alveolar epithelial cells and their oxidant stress response

    Science.gov (United States)

    VanWinkle, Beth A.; de Mesy Bentley, Karen L.; Malecki, Jonathan M.; Gunter, Karlene K.; Evans, Irene M.; Elder, Alison; Finkelstein, Jacob N.; Oberdörster, Günter; Gunter, Thomas E.

    2009-01-01

    Mammalian cells take up nanoparticles (NPs) and some NPs increase ROS. We use imaging and measure ROS in parallel to evaluate NP-cell interactions with type I-like alveolar epithelial cells exposed to NPs at 1.2 µg/cm2 . Titanium dioxide (Ti02), gold (Au), silver (Ag), and manganese (Mn) were internalized by R3-1 cells; copper (Cu) NPs were observed at the cell surface only. TiO2 and Au did not increase cell death but Mn and Cu did, with surviving cells recovering after initial Cu exposure. Ag NPs caused 80% of R3-1 cells to lift off the slides within one hour. Amplex Red was used to report H2O2 production after exposure to 0.4 µg/cm2 TiO2, Au, Cu, Mn and Ag. TiO2, Au, and Ag caused no significant increase in H2O2 while Cu and Mn increased H2O2. NPs that give up electrons, increase ROS production and cause cell death in R3-1 cells. PMID:20563262

  8. Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Michelle B Ryndak

    Full Text Available Mycobacterium tuberculosis (M. tb infection is initiated by the few bacilli inhaled into the alveolus. Studies in lungs of aerosol-infected mice provided evidence for extensive replication of M. tb in non-migrating, non-antigen-presenting cells in the alveoli during the first 2-3 weeks post-infection. Alveoli are lined by type II and type I alveolar epithelial cells (AEC which outnumber alveolar macrophages by several hundred-fold. M. tb DNA and viable M. tb have been demonstrated in AEC and other non-macrophage cells of the kidney, liver, and spleen in autopsied tissues from latently-infected subjects from TB-endemic regions indicating systemic bacterial dissemination during primary infection. M. tb have also been demonstrated to replicate rapidly in A549 cells (type II AEC line and acquire increased invasiveness for endothelial cells. Together, these results suggest that AEC could provide an important niche for bacterial expansion and development of a phenotype that promotes dissemination during primary infection. In the current studies, we have compared the transcriptional profile of M. tb replicating intracellularly in A549 cells to that of M. tb replicating in laboratory broth, by microarray analysis. Genes significantly upregulated during intracellular residence were consistent with an active, replicative, metabolic, and aerobic state, as were genes for tryptophan synthesis and for increased virulence (ESAT-6, and ESAT-6-like genes, esxH, esxJ, esxK, esxP, and esxW. In contrast, significant downregulation of the DevR (DosR regulon and several hypoxia-induced genes was observed. Stress response genes were either not differentially expressed or were downregulated with the exception of the heat shock response and those induced by low pH. The intra-type II AEC M. tb transcriptome strongly suggests that AEC could provide a safe haven in which M. tb can expand dramatically and disseminate from the lung prior to the elicitation of adaptive immune

  9. Pulmonary alveolar epithelial uptake of S-nitrosothiols is regulated by L-type amino acid transporter.

    Science.gov (United States)

    Granillo, Olivia M; Brahmajothi, Mulugu V; Li, Sheng; Whorton, A Richard; Mason, S Nicholas; McMahon, Timothy J; Auten, Richard L

    2008-07-01

    Nitric oxide (NO) effects are often mediated via S-nitrosothiol (SNO) formation; SNO uptake has recently been shown to be mediated in some cell types via system L-type amino acid transporters (LAT-1, 2). Inhaled NO therapy may exert some biological effects via SNO formation. We therefore sought to determine if pulmonary epithelial SNO uptake depended on LAT or peptide transporter 2 (PEPT2). Both LAT-1 and PEPT2 proteins were detected by immunoblot and immunocytochemistry in L2 cells and rat lung. We tested SNO uptake through the transporters by exposing rat alveolar epithelial cells (L2 and type II) to RSNOs: S-nitrosoglutathione, S-nitrosocysteinylglycine (SNO-Cys-Gly), S-nitrosocysteine (CSNO), and to NO donor diethylamine NONOate (DEA-NONOate). SNO was detected in cell lysates by ozone chemiluminescence. NO uptake was detected by fluorescence in alveolar epithelial cells loaded with 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) diacetate cultured in submersion and exposed to RSNOs and DEA NONOate. Addition of L-Cys but not D-Cys to RSNOs or DEA NONOate increased SNO and DAF-FM signal that was inhibited by coincubation with LAT competitors. Incubation of cells with PEPT2 substrate SNO-Cys-Gly showed no increase in SNO or DAF-FM signal unless incubated with L-Cys. This was unaffected by PEPT2 inhibition. We conclude that RSNOs (thionitrites, S-nitrosothiols) and NO enter alveolar epithelial cells predominantly by S-nitrosation of L-Cys, which is then imported through LAT.

  10. Effect of cigarette smoke extract on P-glycoprotein function in primary cultured and newly developed alveolar epithelial cells.

    Science.gov (United States)

    Takano, Mikihisa; Naka, Ryosuke; Sasaki, Yoshihiro; Nishimoto, Saori; Yumoto, Ryoko

    2016-12-01

    The effect of cigarette smoke extract (CSE) on P-glycoprotein (P-gp) function in the distal lung is unclear. In this study, we first examined the expression and function of P-gp and the effect of CSE in rat primary cultured alveolar epithelial cells. The expression of P-gp protein was observed in type I-like cells, but not in type II cells. In type I-like cells, rhodamine 123 (Rho123) accumulation was enhanced by various P-gp inhibitors such as verapamil and cyclosporine A. In addition, the expression of P-gp mRNAs, mdr1a and mdr1b, as well as P-gp activity increased along with the transdifferentiation. When type I-like cells were co-incubated with CSE, P-gp activity was suppressed. Next, we attempted to clarify the effect of CSE on P-gp function in human-derived cultured alveolar epithelial cells. For this purpose, we isolated an A549 clone (A549/P-gp) expressing P-gp, because P-gp expression in native A549 cells was negligible. In A549/P-gp cells, P-gp was functionally expressed, and the inhibitory effect of CSE on P-gp was observed. These results suggested that smoking would directly suppress P-gp activity, and that A549/P-gp cell line should be a useful model to further study the effect of xenobiotics on P-gp function in the alveolar epithelial cells.

  11. Identification of Na(+)-K(+)-ATPase beta-subunit in alveolar epithelial cells.

    Science.gov (United States)

    Zhang, X L; Danto, S I; Borok, Z; Eber, J T; Martín-Vasallo, P; Lubman, R L

    1997-01-01

    The Na(+)-K(+)-ATPase is a heterodimeric plasma membrane protein that consists of a catalytic alpha-subunit and a smaller glycosylated beta-subunit that has not been fully characterized in alveolar epithelial cells (AEC) to date. In this study, we identified the Na(+)-K(+)-ATPase beta-subunit protein in rat AEC and lung membranes using immunochemical techniques. Rat AEC grown in primary culture and rat lung, brain, and kidney membranes were solubilized in either 2% sodium dodecyl sulfate (SDS) sample buffer for SDS-polyacrylamide gel electrophoresis or in 1% Nonidet P-40 lysis buffer for immunoprecipitation studies. Na(+)-K(+)-ATPase beta-subunit was not detected in either AEC or lung membranes on Western blots when probed with a panel of antibodies (Ab) against beta-subunit isoforms, whereas brain and kidney beta-subunit were recognized as broad approximately 50-kDa bands. AEC, lung, and kidney membranes were immunoprecipitated with anti-beta Ab IEC 1/48, a monoclonal Ab that recognizes beta-subunit protein only in its undenatured state. The beta-subunit was detected in the immunoprecipitate (IP) from kidney membranes by several different anti-beta-subunit Ab. The beta-subunit was faintly detectable from AEC and lung IP as a broad approximately 50-kDa band when blotted with the polyclonal anti-beta 1-subunit Ab SpET but could not be detected by blotting with other anti-beta Ab. Treatment of the IP from kidney, lung, and AEC with N-glycosidase F for 2 h at 37 degrees C resulted in immunodetection of identical approximately 35 kDa bands when probed with all anti-beta 1 Ab on Western blots. From these results, we conclude that rat lung and AEC possess immunoreactive beta-subunit protein that is only readily detectable after deglycosylation. Because anti-beta Ab fail to detect the Na(+)-K(+)-ATPase beta-subunit in rat lung or AEC by standard Western blotting techniques under the conditions of these experiments, our results suggest that lung beta-subunit may be

  12. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew Faron

    Full Text Available Francisella tularensis is classified as a Tier 1 select agent by the CDC due to its low infectious dose and the possibility that the organism can be used as a bioweapon. The low dose of infection suggests that Francisella is unusually efficient at evading host defenses. Although ~50 cfu are necessary to cause human respiratory infection, the early interactions of virulent Francisella with the lung environment are not well understood. To provide additional insights into these interactions during early Francisella infection of mice, we performed TEM analysis on mouse lungs infected with F. tularensis strains Schu S4, LVS and the O-antigen mutant Schu S4 waaY::TrgTn. For all three strains, the majority of the bacteria that we could detect were observed within alveolar type II epithelial cells at 16 hours post infection. Although there were no detectable differences in the amount of bacteria within an infected cell between the three strains, there was a significant increase in the amount of cellular debris observed in the air spaces of the lungs in the Schu S4 waaY::TrgTn mutant compared to either the Schu S4 or LVS strain. We also studied the interactions of Francisella strains with human AT-II cells in vitro by characterizing the ability of these three strains to invade and replicate within these cells. Gentamicin assay and confocal microscopy both confirmed that F. tularensis Schu S4 replicated robustly within these cells while F. tularensis LVS displayed significantly lower levels of growth over 24 hours, although the strain was able to enter these cells at about the same level as Schu S4 (1 organism per cell, as determined by confocal imaging. The Schu S4 waaY::TrgTn mutant that we have previously described as attenuated for growth in macrophages and mouse virulence displayed interesting properties as well. This mutant induced significant airway inflammation (cell debris and had an attenuated growth phenotype in the human AT-II cells. These

  13. Green tea polyphenol blocks h(2)o(2)-induced interleukin-8 production from human alveolar epithelial cells.

    Science.gov (United States)

    Matsuoka, Katsunari; Isowa, Noritaka; Yoshimura, Takashi; Liu, Mingyao; Wada, Hiromi

    2002-06-07

    Reactive oxygen species (ROS) play crucial roles in ischemia-reperfusion (IR) injury of lung transplants. Reactive oxygen species may stimulate the production of neutrophil chemotactic factors such as interleukin-8 (IL-8), from alveolar epithelial cells, causing recruitment and activation of neutrophils in the reperfused tissue. Green tea polyphenol has potent anti-oxidative activities and anti-inflammatory effects by decreasing cytokine production. In the present study, we found that green tea polyphenol significantly inhibited IL-8 production induced by hydrogen peroxide (H(2)O(2)) in human lung alveolar epithelial cells (A549 line). It has been shown that mitogen activated protein kinases, such as Jun N-terminal kinase (JNK), p38 and p44/42, could mediate IL-8 production from a variety of cell types. We further investigated the effect of green tea polyphenol on these protein kinases, and demonstrated that H(2)O(2)-induced phosphorylation of JNK and p38 but not p44/42 was inhibited by green tea polyphenol in A549 cells. We speculate that green tea polyphenol may inhibit H(2)O(2)-induced IL-8 production from A549 cells through inactivation of JNK and p38.

  14. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  15. Hypotonic shock modulates Na(+ current via a Cl(- and Ca(2+/calmodulin dependent mechanism in alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    André Dagenais

    Full Text Available Alveolar epithelial cells are involved in Na(+ absorption via the epithelial Na(+ channel (ENaC, an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl(- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl(- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC inhibitor reduced the total and ENaC currents, showing that transcellular Cl(- transport plays a major role in that process. During hypotonic shock, a basolateral Cl(- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca(2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl(- influx as well as Ca(2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock.

  16. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H

    1999-01-01

    (IL-8) and monocyte chemoattractant protein-1 (MCP-1) from an alveolar epithelial cell line (A549). RESULTS: Incubation of A549 cells with MSG in concentrations from 0.4 to 10 microg mL-1 for 24 h caused dose-dependent increases in IL-8 release (3.4-fold above control, P

  17. Electron microscope study on the relationship between macrophages of the alevolar space and spheroid alveolar epithelial cells on mice after injection of squid-ink (sepia-melanin solution into the trachea

    Directory of Open Access Journals (Sweden)

    Suwa,Kiichi

    1977-02-01

    Full Text Available The relationship between alveolar macrophages and spheroid alveolar epithelial cells was studied with the electron microscope after injection of squid-ink solution into the trachea of the mouse. At 20 hours after injection of squid-ink solution slight degeneration was evident in alveolar macrophages with sepia-melanin particles being phagocytized with partial digestion by lysosmes. Furthermore, hardly any changes were seen in mitochondria and inclusion bodies of the spheroid alveolar epithelial cells. In contrast, at one week after injection of squid-ink solution, almost all alveolar macrophages were degenerated with destruction of the ectoplasm in which the ingested sepia-melanin particles were digested by lysosomes into fine particles, and the mitochondria of spheroid alveolar epithelial cells were degenerated and the inclusion bodies were hardly formed. At three weeks after injection of squid-ink solution, alveolar macrophages as well as speroid alveolar epithelial cells showed almost complete recovery of functional structure. As the phagocyte in the alveolar space, neutrophile leucocytes were also observed in addition to the so-called alveolar macrophage.

  18. A novel dual-flow bioreactor simulates increased fluorescein permeability in epithelial tissue barriers.

    Science.gov (United States)

    Giusti, Serena; Sbrana, Tommaso; La Marca, Margherita; Di Patria, Valentina; Martinucci, Valentina; Tirella, Annalisa; Domenici, Claudio; Ahluwalia, Arti

    2014-09-01

    Permeability studies across epithelial barriers are of primary importance in drug delivery as well as in toxicology. However, traditional in vitro models do not adequately mimic the dynamic environment of physiological barriers. Here, we describe a novel two-chamber modular bioreactor for dynamic in vitro studies of epithelial cells. The fluid dynamic environment of the bioreactor was characterized using computational fluid dynamic models and measurements of pressure gradients for different combinations of flow rates in the apical and basal chambers. Cell culture experiments were then performed with fully differentiated Caco-2 cells as a model of the intestinal epithelium, comparing the effect of media flow applied in the bioreactor with traditional static transwells. The flow increases barrier integrity and tight junction expression of Caco-2 cells with respect to the static controls. Fluorescein permeability increased threefold in the dynamic system, indicating that the stimulus induced by flow increases transport across the barrier, closely mimicking the in vivo situation. The results are of interest for studying the influence of mechanical stimuli on cells, and underline the importance of developing more physiologically relevant in vitro tissue models. The bioreactor can be used to study drug delivery, chemical, or nanomaterial toxicity and to engineer barrier tissues.

  19. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    Science.gov (United States)

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter 5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549.

  20. Cytotoxicity and inflammation in human alveolar epithelial cells following exposure to occupational levels of gold and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, George D., E-mail: gdbacha@sandia.gov [Sandia National Laboratories, Center for Integrated Nanotechnologies (United States); Allen, Amy [Sandia National Laboratories, Department of Analytical Science (United States); Bachand, Marlene [Sandia National Laboratories, Department of Nanobiology (United States); Achyuthan, Komandoor E. [Sandia National Laboratories, Department of Biosensors and Nanomaterials (United States); Seagrave, Jean Clare [Lovelace Respiratory Research Institute, Applied Life Science and Toxicology Division (United States); Brozik, Susan M. [Sandia National Laboratories, Department of Biosensors and Nanomaterials (United States)

    2012-10-15

    While inhalation represents one of the most likely routes of exposure, the toxicity and response of nanoparticles at concentrations expected from such an exposure are not well understood. Here we characterized the in vitro response of human A549 adenocarcinomic alveolar epithelial cells following exposure to gold (AuNP) and silver (AgNP) nanoparticles at levels approximating an occupational exposure. Changes in neither oxidative stress nor cytotoxicity were significantly affected by exposure to AgNPs and AuNPs, regardless of NP type (Ag vs. Au), concentration, surface ligand (citrate or tannic acid), or size. An inflammatory response was, however, observed in response to 20 nm AgNPs and 20 nm AuNPs, where significant differences in the release of interleukin (IL)-8 but not IL-6 were observed. Additional data demonstrated that increased IL-8 secretion was strongly dependent on both nanoparticle size and concentration. Overall these data suggest that, while not acutely toxic, occupational exposure to AuNPs and AgNPs may trigger a significant inflammatory response in alveolar epithelium. Moreover, the differential responses in IL-8 and IL-6 secretion suggest that NPs may induce a response pathway that is distinct from those commonly elicited by allergens and pathogens.

  1. Proinflammatory cytokine responses induced by influenza A (H5N1 viruses in primary human alveolar and bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Poon LLM

    2005-11-01

    Full Text Available Abstract Background Fatal human respiratory disease associated with influenza A subtype H5N1 has been documented in Hong Kong, and more recently in Vietnam, Thailand and Cambodia. We previously demonstrated that patients with H5N1 disease had unusually high serum levels of IP-10 (interferon-gamma-inducible protein-10. Furthermore, when compared with human influenza virus subtype H1N1, the H5N1 viruses in 1997 (A/Hong Kong/483/97 (H5N1/97 were more potent inducers of pro-inflammatory cytokines (e.g. tumor necrosis factor-a and chemokines (e.g. IP-10 from primary human macrophages in vitro, which suggests that cytokines dysregulation may play a role in pathogenesis of H5N1 disease. Since respiratory epithelial cells are the primary target cell for replication of influenza viruses, it is pertinent to investigate the cytokine induction profile of H5N1 viruses in these cells. Methods We used quantitative RT-PCR and ELISA to compare the profile of cytokine and chemokine gene expression induced by H5N1 viruses A/HK/483/97 (H5N1/97, A/Vietnam/1194/04 and A/Vietnam/3046/04 (both H5N1/04 with that of human H1N1 virus in human primary alveolar and bronchial epithelial cells in vitro. Results We demonstrated that in comparison to human H1N1 viruses, H5N1/97 and H5N1/04 viruses were more potent inducers of IP-10, interferon beta, RANTES (regulated on activation, normal T cell expressed and secreted and interleukin 6 (IL-6 in primary human alveolar and bronchial epithelial cells in vitro. Recent H5N1 viruses from Vietnam (H5N1/04 appeared to be even more potent at inducing IP-10 than H5N1/97 virus. Conclusion The H5N1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus. We suggest that this hyper-induction of cytokines may be relevant to the pathogenesis of human H5N1 disease.

  2. Membrane-Permeable Calpain Inhibitors Promote Rat Oral Mucosal Epithelial Cell Proliferation by Inhibiting IL-1α Signaling.

    Directory of Open Access Journals (Sweden)

    Makoto Kondo

    Full Text Available To standardise regenerative medicine using cultured cells, the use of serum-free, chemically defined media will be necessary. We have reported that IL-1α inhibits the growth of epithelial cells in culture and that recombinant IL-1 receptor antagonist (IL-1RA significantly promotes epithelial cell growth in no feeder layer condition. In this study, we examined inhibitors of calpain, a cysteine proteinase that plays crucial roles in various cellular functions, including IL-1α maturation and secretion. The culturing of epithelial cells in serum-free media supplemented with a membrane-permeable calpain inhibitor significantly promoted growth while suppressing IL-1α maturation and secretion. By contrast, non-membrane-permeable calpain inhibitor treatment did not have these effects. Interestingly, immunoblotting analysis revealed that immature, untruncated, IL-1α expression was also downregulated by cell-permeable calpain inhibitor treatment, and the difference in IL-1α gene expression increased from day 2 to day 6. Although IL-1RA has been reported to promote epithelial cell growth, we detected no synergistic promotion of epithelial cell growth using a calpain inhibitor and IL-1RA. These findings indicate that calpain inhibitors promote epithelial cell proliferation by inhibiting IL-1α maturation at an early phase of epithelial cell culture and by suppressing the positive feedback-mediated amplification of IL-1α signalling.

  3. Cytoskeletal re-arrangement in TGF-β1-induced alveolar epithelial-mesenchymal transition studied by atomic force microscopy and high-content analysis.

    Science.gov (United States)

    Buckley, Stephen T; Medina, Carlos; Davies, Anthony M; Ehrhardt, Carsten

    2012-04-01

    Epithelial-mesenchymal transition (EMT) is closely implicated in the pathogenesis of idiopathic pulmonary fibrosis. Associated with this phenotypic transition is the acquisition of an elongated cell morphology and establishment of stress fibers. The extent to which these EMT-associated changes influence cellular mechanics is unclear. We assessed the biomechanical properties of alveolar epithelial cells (A549) following exposure to TGF-β1. Using atomic force microscopy, changes in cell stiffness and surface membrane features were determined. Stimulation with TGF-β1 gave rise to a significant increase in stiffness, which was augmented by a collagen I matrix. Additionally, TGF-β1-treated cells exhibited a rougher surface profile with notable protrusions. Simultaneous quantitative examination of the morphological attributes of stimulated cells using an image-based high-content analysis system revealed dramatic alterations in cell shape, F-actin content and distribution. Together, these investigations point to a strong correlation between the cytoskeletal-associated cellular architecture and the mechanical dynamics of alveolar epithelial cells undergoing EMT. From the Clinical Editor: Epithelial-mesenchymal transition is implicated in the pathogenesis of pulmonary fibrosis. Using atomic force microscopy, the authors demonstrate a strong correlation between the cytoskeletal-associated cellular architecture and the mechanical dynamics of alveolar epithelial cells undergoing mesenchymal transition.

  4. Asbestos fibre length-dependent detachment injury to alveolar epithelial cells in vitro: role of a fibronectin-binding receptor.

    Science.gov (United States)

    Donaldson, K.; Miller, B. G.; Sara, E.; Slight, J.; Brown, R. C.

    1993-01-01

    A short and a long fibre sample of amosite asbestos were tested for their effects on cells of the human Type 2 alveolar epithelial cell-line A549 in vitro. The long amosite sample was found to cause a rapid detachment of the epithelial cells live from their substratum. At the highest dose, on average 28% of the cells present were detached in this way. Studies on the mechanism of the detachment injury showed that it did not involve oxidants since it was not ameliorated by scavengers of active oxygen species. Neither was the effect reduced by treatment of the fibres with the iron chelator Desferal. Treatments reported to increase the interaction between fibres and cells, serum and poly-L-lysine, did not influence the detachment injury, nor did lung lining fluid. Conversely, the fibronectin tripeptide RGD alone could cause detachment which suggested that a fibronectin-binding integrin was involved. This receptor could be reduced in activity by long fibre exposure, leading to detachment. The detaching effect of fibre could be mimicked by the protein kinase C activator PMA, and so the second messenger system of the cell could also be involved. This type of injury could be important in the pathology associated with exposure to long fibres. PMID:8392859

  5. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier

    Directory of Open Access Journals (Sweden)

    Raymond Derk

    2015-03-01

    Full Text Available Pulmonary barrier function plays a pivotal role in protection from inhaled particles. However, some nano-scaled particles, such as carbon nanotubes (CNT, have demonstrated the ability to penetrate this barrier in animal models, resulting in an unusual, rapid interstitial fibrosis. To delineate the underlying mechanism and specific bio-effect of inhaled nanoparticles in respiratory toxicity, models of lung epithelial barriers are required that allow accurate representation of in vivo systems; however, there is currently a lack of consistent methods to do so. Thus, this work demonstrates a well-characterized in vitro model of pulmonary barrier function using Calu-3 cells, and provides the experimental conditions required for achieving tight junction complexes in cell culture, with trans-epithelial electrical resistance measurement used as a biosensor for proper barrier formation and integrity. The effects of cell number and serum constituents have been examined and we found that changes in each of these parameters can greatly affect barrier formation. Our data demonstrate that use of 5.0 × 104 Calu-3 cells/well in the Transwell cell culture system, with 10% serum concentrations in culture media is optimal for assessing epithelial barrier function. In addition, we have utilized CNT exposure to analyze the dose-, time-, and nanoparticle property-dependent alterations of epithelial barrier permeability as a means to validate this model. Such high throughput in vitro cell models of the epithelium could be used to predict the interaction of other nanoparticles with lung epithelial barriers to mimic respiratory behavior in vivo, thus providing essential tools and bio-sensing techniques that can be uniformly employed.

  6. Role of mechanical stretching and lipopolysaccharide in early apoptosis and IL-8 of alveolar epithelial typeⅡ cells A549

    Institute of Scientific and Technical Information of China (English)

    Qiao-Ming Ning; Xiao-Ning Sun; Xin-Kai Zhao

    2012-01-01

    Objective:To investigate the effects of mechanical stretching and lipopolysaccharide (LPS) on the early apoptosis and IL-8 production of alveolar epithelial typeⅡ cellsA549.Methods:The experimental matrix consisted of three integrated studies.In the first study,A549 cells were subjected to different stretching strain frequency and duration time to see the effects on the early apoptosis.In the second study,A549 cells were subjected to mechanical stretch(15%4 h, 0.5Hz) andLPS(1 or100 ng/mL) to see whether mechanical strain andLPS also have an addictive effect on the early apoptosis.In the third study to investigate whether this addictive effect could be induced byLPS and mechanical stretch onIL-8 production,A549 cells were subjected to LPS(100 ng/mL) and mechanical strain(15%,0.5Hz,4 h).Real timePCR and enzyme linked immunosorbent assay were used to measure mRNA and protein level ofIL-8.The early apoptosis was detected by flow cytometry.Results:Mechanical stretch induced the early apoptosis in a force and frequency and time-dependent manner.In the presence ofLPS, mechanical stretch enhancedLPS-induced early apoptosis, especially in100 ng/mLLPS group compared with1 ng/mLLPS and the control group.Mechanical stretch increasedIL-8 production and enhancedLPS-inducedIL-8 screation both in mRNA and protein levels.Conclusions:Mechanical stretch can induce the early apoptosis andIL-8 secretion.Mechanical stretch andLPS have an addictive effect on the early apoptosis andIL-8 production in alveolar type2 cells, which is one of the mechanisms of ventilator-induced lung injury.

  7. CCR2 and CXCR3 agonistic chemokines are differently expressed and regulated in human alveolar epithelial cells type II

    Directory of Open Access Journals (Sweden)

    Prasse Antje

    2005-07-01

    Full Text Available Abstract The attraction of leukocytes from circulation to inflamed lungs depends on the activation of both the leukocytes and the resident cells within the lung. In this study we determined gene expression and secretion patterns for monocyte chemoattractant protein-1 (MCP-1/CCL2 and T-cell specific CXCR3 agonistic chemokines (Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11 in TNF-α-, IFN-γ-, and IL-1β-stimulated human alveolar epithelial cells type II (AEC-II. AEC-II constitutively expressed high level of CCL2 mRNA in vitro and in situ , and released CCL2 protein in vitro . Treatment of AEC-II with proinflammatory cytokines up-regulated both CCL2 mRNA expression and release of immunoreactive CCL2, whereas IFN-γ had no effect on CCL2 release. In contrast, CXCR3 agonistic chemokines were not detected in freshly isolated AEC-II or in non-stimulated epithelial like cell line A549. IFN-γ, alone or in combination with IL-1β and TNF-α resulted in an increase in CXCL10, CXCL11, and CXCL9 mRNA expression and generation of CXCL10 protein by AEC-II or A549 cells. CXCL10 gene expression and secretion were induced in dose-dependent manner after cytokine-stimulation of AEC-II with an order of potency IFN-γ>>IL-1β ≥ TNF-α. Additionally, we localized the CCL2 and CXCL10 mRNAs in human lung tissue explants by in situ hybridization, and demonstrated the selective effects of cytokines and dexamethasone on CCL2 and CXCL10 expression. These data suggest that the regulation of the CCL2 and CXCL10 expression exhibit significant differences in their mechanisms, and also demonstrate that the alveolar epithelium contributes to the cytokine milieu of the lung, with the ability to respond to locally generated cytokines and to produce potent mediators of the local inflammatory response.

  8. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis.

    Science.gov (United States)

    Nighot, Prashant; Al-Sadi, Rana; Rawat, Manmeet; Guo, Shuhong; Watterson, D Martin; Ma, Thomas

    2015-12-15

    Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9(-/-) mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9(-/-) mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9(-/-) mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK(-/-) mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9(-/-) mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK.

  9. Environmental particulate (PM2.5 augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta.

    Directory of Open Access Journals (Sweden)

    Marilyn M Dysart

    Full Text Available Dysfunctional pulmonary homeostasis and repair, including diseases such as pulmonary fibrosis (PF, chronic obstructive pulmonary disease (COPD, and tumorigenesis have been increasing over the past decade, a fact that heavily implicates environmental influences. Several investigations have suggested that in response to increased transforming growth factor--beta (TGFβ signaling, the alveolar type II (ATII epithelial cell undergoes phenotypic changes that may contribute to the complex pathobiology of PF. We have previously demonstrated that increased tissue stiffness associated with PF is a potent extracellular matrix (ECM signal for epithelial cell activation of TGFβ. The work reported here explores the relationship between tissue stiffness and exposure to environmental stimuli in the activation of TGFβ. We hypothesized that exposure of ATII cells to fine particulate matter (PM2.5 will result in enhanced cell contractility, TGFβ activation, and subsequent changes to ATII cell phenotype. ATII cells were cultured on increasingly stiff substrates with or without addition of PM2.5. Exposure to PM2.5 resulted in increased activation of TGFβ, increased cell contractility, and elongation of ATII cells. Most notably, on 8 kPa substrates, a stiffness greater than normal but less than established fibrotic lung, addition of PM2.5 resulted in increased cortical cell stiffness, enhanced actin staining and cell elongation; a result not seen in the absence of PM2.5. Our work suggests that PM2.5 exposure additionally enhances the existing interaction between ECM stiffness and TGFβ that has been previously reported. Furthermore, we show that this additional enhancement is likely a consequence of intracellular reactive oxygen species (ROS leading to increased TGFβ signaling events. These results highlight the importance of both the micromechanical and biochemical environment in lung disease initiation and suggest that individuals in early stages of lung

  10. Effect of Amygdalin on the Proliferation of Hyperoxia-exposed Type Ⅱ Alveolar Epithelial Cells Isolated from Premature Rat

    Institute of Scientific and Technical Information of China (English)

    祝华平; 常立文; 李文斌; 刘汉楚

    2004-01-01

    Summary: The pathogenesis of hyperoxia lung injury and the mechanism of amygdalin on type 2 alveolar epithelial cells (AEC2) isolated from premature rat lungs in vitro were investigated. AEC2 were obtained by primary culture from 20-days fetal rat lung and hyperoxia-exposed cell model was established. Cell proliferating viability was examined by MTT assay after treatment of amygdalin at various concentrations. DNA content and the proliferating cell nuclear antigen (PCNA) protein expression of AEC2 were measured by using flow cytometry and immunocytochemistry respectively after 24 h of hyperoxia exposure or amygdalin treatment. The results showed that hyperoxia inhibited the proliferation and decreased PCNA protein expression in AEC2 of premature rat in vitro. Amygdalin at the concentration range of 50-200 μmol/L stimulated the proliferation of AEC2 in a dose-dependent manner, however, 400 μmol/L amygdalin inhibited the proliferation of AEC2. Amygdalin at the concentration of 200 μmol/L played its best role in facilitating proliferation of AEC2s in vitro and could partially ameliorated the changes of proliferation in hyperoxia exposed AEC2 of premature rat. It has been suggested that hyperoxia inhibited the proliferation of AEC2s of premature rat, which may contribute to hyperoxia lung injury. Amygdalin may play partial protective role in hyperoxia-induced lung injury.

  11. Effect of amygdalin on the proliferation of hyperoxia-exposed type II alveolar epithelial cells isolated from premature rat.

    Science.gov (United States)

    Zhu, Huaping; Chang, Liwen; Li, Wenbin; Liu, Hanchu

    2004-01-01

    The pathogenesis of hyperoxia lung injury and the mechanism of amygdalin on type 2 alveolar epithelial cells (AEC2) isolated from premature rat lungs in vitro were investigated. AEC2 were obtained by primary culture from 20-days fetal rat lung and hyperoxia-exposed cell model was established. Cell proliferating viability was examined by MTT assay after treatment of amygdalin at various concentrations. DNA content and the proliferating cell nuclear antigen (PCNA) protein expression of AEC2 were measured by using flow cytometry and immunocytochemistry respectively after 24 h of hyperoxia exposure or amygdalin treatment. The results showed that hyperoxia inhibited the proliferation and decreased PCNA protein expression in A-EC2 of premature rat in vitro. Amygdalin at the concentration range of 50-200 micromol/L stimulated the proliferation of AEC2 in a dose-dependent manner, however, 400 micromol/L amygdalin inhibited the proliferation of AEC2. Amygdalin at the concentration of 200 micromol/L played its best role in facilitating proliferation of AEC2s in vitro and could partially ameliorated the changes of proliferation in hyperoxia exposed AEC2 of premature rat. It has been suggested that hyperoxia inhibited the proliferation of AEC2s of premature rat, which may contribute to hyperoxia lung injury. Amygdalin may play partial protective role in hyperoxia-induced lung injury.

  12. Evaluation of layers of the rat airway epithelial cell line RL-65 for permeability screening of inhaled drug candidates.

    Science.gov (United States)

    Hutter, V; Hilgendorf, C; Cooper, A; Zann, V; Pritchard, D I; Bosquillon, C

    2012-09-29

    A rat respiratory epithelial cell culture system for in vitro prediction of drug pulmonary absorption is currently lacking. Such a model may however enhance the understanding of interspecies differences in inhaled drug pharmacokinetics by filling the gap between human in vitro and rat in/ex vivo drug permeability screens. The rat airway epithelial cell line RL-65 was cultured on Transwell inserts for up to 21 days at an air-liquid (AL) interface and cell layers were evaluated for their suitability as a drug permeability measurement tool. These layers were found to be morphologically representative of the bronchial/bronchiolar epithelium when cultured for 8 days in a defined serum-free medium. In addition, RL-65 layers developed epithelial barrier properties with a transepithelial electrical resistance (TEER) >300 Ω cm(2) and apparent (14)C-mannitol permeability (P(app)) values between 0.5-3.0 × 10(-6)cm/s; i.e., in the same range as established in vitro human bronchial epithelial absorption models. Expression of P-glycoprotein was confirmed by gene analysis and immunohistochemistry. Nevertheless, no vectorial transport of the established substrates (3)H-digoxin and Rhodamine123 was observed across the layers. Although preliminary, this study shows RL-65 cell layers have the potential to become a useful in vitro screening tool in the pre-clinical development of inhaled drug candidates.

  13. Bradykinin is degraded in hypoxic lungs and does not affect epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    O' Brodovich, H.; Kay, J.; Coates, G.

    1985-10-01

    To investigate the effect of intravenous infusions of bradykinin (BK) on the permeability of the hypoxic pulmonary epithelium to small solutes, experiments (n = 7) were performed in yearling sheep with chronic vascular catheters. Sheep were anesthetized, intubated, paralyzed, and ventilated. After establishing stable and normal base-line pulmonary hemodynamics and blood gas tensions, the lungs were insufflated with a submicronic aerosol of technetium-/sup 99m/-labeled diethylenetriaminepentaacetate (/sup 99m/Tc-DTPA, mol wt = 492). Radioactivity arising from the right hemithorax was measured by an NaI probe with a parallel-holed collimator. The base-line pulmonary clearance rate (k) for /sup 99m/Tc-DTPA was 0.51 +/- 0.09% (SE)/min, while the sheep were ventilated with a fractional concentration of inspired O2 (FIO2) of 0.5 (arterial partial pressure of O2 (PaO2) = 196 +/- 11.4 (SE) Torr). Clearance of 99mTc-DTPA was unaffected by hypoxia alone or BK infusions in nonhypoxic lungs. The combination of an intravenous infusion of BK at either 1.2 (n = 3) or 2.4 micrograms . kg-1 . min-1 (n = 4) and alveolar hypoxia (FIO2 = 0.11, PaO2 = 28 +/- 1.6 (SE) Torr) did not affect pulmonary clearance of 99mTc-DTPA (k = 0.43 +/- 0.08% (SE)/min). In contrast, a 0.05-ml/kg intravenous infusion of oleic acid increased clearance 10-fold in one sheep. During combined hypoxia and BK infusion the pulmonary arterial BK concentration (radioimmunoassay) increased from 0.82 +/- 0.16 (SE) to 7.05 +/- 1.86 ng/ml (P less than 0.001), but the systemic arterial concentrations were unchanged (0.67 +/- 0.19 (SE) to 0.66 +/- 0.09 ng/ml).

  14. Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions.

    Directory of Open Access Journals (Sweden)

    Ken Kobayashi

    Full Text Available Mastitis, inflammation of the mammary gland, is the most costly common disease in the dairy industry, and is caused by mammary pathogenic bacteria, including Escherichia coli. The bacteria invade the mammary alveolar lumen and disrupt the blood-milk barrier. In normal mammary gland, alveolar epithelial tight junctions (TJs contribute the blood-milk barrier of alveolar epithelium by blocking the leakage of milk components from the luminal side into the blood serum. In this study, we focused on claudin subtypes that participate in the alveolar epithelial TJs, because the composition of claudins is an important factor that affects TJ permeability. In normal mouse lactating mammary glands, alveolar TJs consist of claudin-3 without claudin-1, -4, and -7. In lipopolysaccharide (LPS-induced mastitis, alveolar TJs showed 2-staged compositional changes in claudins. First, a qualitative change in claudin-3, presumably caused by phosphorylation and participation of claudin-7 in alveolar TJs, was recognized in parallel with the leakage of fluorescein isothiocyanate-conjugated albumin (FITC-albumin via the alveolar epithelium. Second, claudin-4 participated in alveolar TJs with claudin-3 and claudin-7 12 h after LPS injection. The partial localization of claudin-1 was also observed by immunostaining. Coinciding with the second change of alveolar TJs, the severe disruption of the blood-milk barrier was recognized by ectopic localization of β-casein and much leakage of FITC-albumin. Furthermore, the localization of toll-like receptor 4 (TLR4 on the luminal side and NFκB activation by LPS was observed in the alveolar epithelial cells. We suggest that the weakening and disruption of the blood-milk barrier are caused by compositional changes of claudins in alveolar epithelial TJs through LPS/TLR4 signaling.

  15. Viable but not culturable forms of Legionella pneumophila generated after heat shock treatment are infectious for macrophage-like and alveolar epithelial cells after resuscitation on Acanthamoeba polyphaga.

    Science.gov (United States)

    Epalle, Thibaut; Girardot, Françoise; Allegra, Séverine; Maurice-Blanc, Cécile; Garraud, Olivier; Riffard, Serge

    2015-01-01

    Legionella pneumophila, the causative agent of legionellosis is transmitted to human through aerosols from environmental sources and invades lung's macrophages. It also can invade and replicate within various protozoan species in environmental reservoirs. Following exposures to various stresses, L. pneumophila enters a non-replicative viable but non-culturable (VBNC) state. Here, we evaluated whether VBNC forms of three L. pneumophila serogroup 1 strains (Philadelphia GFP 008, clinical 044 and environmental RNN) infect differentiated macrophage-like cell lines (U937 and HL-60), A549 alveolar cells and Acanthamoeba polyphaga. VBNC forms obtained following shocks at temperatures ranging from 50 to 70 °C for 5 to 60 min were quantified using a flow cytometric assay (FCA). Their loss of culturability was checked on BCYE agar medium. VBNC forms were systematically detected upon a 70 °C heat shock for 30 min. When testing their potential to resuscitate upon amoebal infection, VBNC forms obtained after 30 min at 70 °C were re-cultivated except for the clinical strain. No resuscitation or cell lysis was evidenced when using U937, HL-60, or A549 cells despite the use of various contact times and culture media. None of the strains tested could infect A. polyphaga, macrophage-like or alveolar epithelial cells after a 60-min treatment at 70 °C. However, heat-treated VBNC forms were able to infect macrophage-like or alveolar epithelial cells following their resuscitation on A. polyphaga. These results suggest that heat-generated VBNC forms of L. pneumophila (i) are not infectious for macrophage-like or alveolar epithelial cells in vitro although resuscitation is still possible using amoeba, and (ii) may become infectious for human cell lines following a previous interaction with A. polyphaga.

  16. Nano-titanium dioxide bioreactivity with human alveolar type-I-like epithelial cells: Investigating crystalline phase as a critical determinant.

    Science.gov (United States)

    Sweeney, Sinbad; Berhanu, Deborah; Ruenraroengsak, Pakatip; Thorley, Andrew J; Valsami-Jones, Eugenia; Tetley, Teresa D

    2015-05-01

    There can be significant variability between bioreactivity studies of nanomaterials that are apparently the same, possibly reflecting differences in the models used and differing sources of experimental material. In this study, we have generated two crystal forms of titanium dioxide nanoparticles (nano-TiO2), pure anatase and pure rutile to address the hypothesis that the bioreactivity of these nanoparticles with human alveolar epithelium will depend on their crystal phase. We used a human alveolar type-I-like epithelial cell model (TT1; generated in-house from primary human alveolar epithelial type II cells); these cells cover 95% of the alveolar epithelial surface area and are an important target cell for inhaled nanomaterials. Using literature as a guide, we hypothesised that pure anatase nano-TiO2 would display greater bioreactivity with TT1 cells in comparison to pure rutile nano-TiO2. However, we found the profile and pattern of inflammatory mediator release was similar between these two nano-TiO2 formats, although pure rutile treatment caused a small, but consistently greater, response for IL-6, IL-8 and MCP-1. Interestingly, the temporal induction of oxidative stress (increased reactive oxygen species levels and depleted glutathione) varied markedly between the different nano-TiO2 formats. We have shown that a combination of using nanomaterials synthesised specifically for toxicological study and the use of a highly relevant, reproducible human lung cell model, offers a useful approach to delineating the physicochemical properties of nanomaterials that may be important in their cellular reactivity.

  17. Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells.

    Science.gov (United States)

    Grabowski, Nadège; Hillaireau, Hervé; Vergnaud, Juliette; Santiago, Letícia Aragão; Kerdine-Romer, Saadia; Pallardy, Marc; Tsapis, Nicolas; Fattal, Elias

    2013-10-01

    In vitro cytotoxicity and inflammatory response following exposure to nanoparticles (NPs) made of poly(lactide-co-glycolide) (PLGA) have been investigated on A549 human lung epithelial cells. Three different PLGA NPs (230 nm) were obtained using different stabilizers (polyvinyl alcohol, chitosan, or Pluronic(®) F68) to form respectively neutral, positively or negatively charged NPs. Polystyrene NPs were used as polymeric but non-biodegradable NPs, and titanium dioxide (anatase and rutile) as inorganic NPs, for comparison. Cytotoxicity was evaluated through mitochondrial activity as well as membrane integrity (lactate dehydrogenase release, trypan blue exclusion, propidium iodide staining). The cytotoxicity of PLGA-based and polystyrene NPs was lower or equivalent to the one observed after exposure to titanium dioxide NPs. The inflammatory response, evaluated through the release of the IL-6, IL-8, MCP-1, TNF-α cytokines, was low for all NPs. However, some differences were observed, especially for negative PLGA NPs that led to a higher inflammatory response, which can be correlated to a higher uptake of these NPs. Taken together, these results show that both coating of PLGA NPs and the nature of the core play a key role in cell response.

  18. Overexpression of sICAM-1 in the Alveolar Epithelial Space Results in an Exaggerated Inflammatory Response and Early Death in Gram Negative Pneumonia

    Directory of Open Access Journals (Sweden)

    Curtis Jeffery L

    2011-01-01

    Full Text Available Abstract Background A sizeable body of data demonstrates that membrane ICAM-1 (mICAM-1 plays a significant role in host defense in a site-specific fashion. On the pulmonary vascular endothelium, mICAM-1 is necessary for normal leukocyte recruitment during acute inflammation. On alveolar epithelial cells (AECs, we have shown previously that the presence of normal mICAM-1 is essential for optimal alveolar macrophage (AM function. We have also shown that ICAM-1 is present in the alveolar space as a soluble protein that is likely produced through cleavage of mICAM-1. Soluble intercellular adhesion molecule-1 (sICAM-1 is abundantly present in the alveolar lining fluid of the normal lung and could be generated by proteolytic cleavage of mICAM-1, which is highly expressed on type I AECs. Although a growing body of data suggesting that intravascular sICAM-1 has functional effects, little is known about sICAM-1 in the alveolus. We hypothesized that sICAM-1 in the alveolar space modulates the innate immune response and alters the response to pulmonary infection. Methods Using the surfactant protein C (SPC promoter, we developed a transgenic mouse (SPC-sICAM-1 that constitutively overexpresses sICAM-1 in the distal lung, and compared the responses of wild-type and SPC-sICAM-1 mice following intranasal inoculation with K. pneumoniae. Results SPC-sICAM-1 mice demonstrated increased mortality and increased systemic dissemination of organisms compared with wild-type mice. We also found that inflammatory responses were significantly increased in SPC-sICAM-1 mice compared with wild-type mice but there were no difference in lung CFU between groups. Conclusions We conclude that alveolar sICAM-1 modulates pulmonary inflammation. Manipulating ICAM-1 interactions therapeutically may modulate the host response to Gram negative pulmonary infections.

  19. Induction of type Ⅱ alveolar epithelial cells apoptosis in mouse by lipopolysaccharide does not require TNF-α

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To examine whether lipopolysaccharide (LPS)-induced apoptosis correlates with TNF-α release by type Ⅱ alveolar epithelial cells (AEC Ⅱ), whether TNF-α knockout (TNF KO) abrogates the induction of apoptosis by LPS and whether TNF-α is sufficient to induce apoptosis in this cell type.Methods AEC Ⅱ were isolated from wild type mice and TNF KO mice. Cells were stimulated with LPS or recombinant murine TNF-α for 24 h. TNF-α in culture supernatant was determined by ELISA following LPS stimulation. Apoptosis was determined by the terminal deoxynucleotidyl transferase end-labeling (TUNEL) assay after treatment with either LPS or TNF-α. Results LPS induced apoptosis in wild type AEC Ⅱ in a concentration-dependent manner. LPS-induced AEC Ⅱ apoptosis was accompanied by an 11-fold increase (from 0.073±0.065 ng/ml in control to 0.94±0.14 ng/ml in 50 μg/ml of LPS, P<0.01) in TNF-α release. However, increasing concentrations (5 or 25 ng/ml) of recombinant murine TNF-α failed to induce AEC Ⅱ apoptosis. In addition, apoptosis did occur in AEC Ⅱ isolated from TNF KO mice following LPS stimulation.Conclusions This study confirms that LPS induces TNF-α release and apoptosis in murine AEC Ⅱ in vitro. Exogenous TNF-α failed to induce AEC Ⅱ apoptosis, and apoptosis occurred following LPS stimulation in cells lacking the ability to produce TNF-α. Taken together, these results suggest that LPS-induced AEC Ⅱ apoptosis occurs by a TNF-α-independent mechanism.

  20. Differential regulation of epidermal growth factor receptor by hydrogen peroxide and flagellin in cultured lung alveolar epithelial cells.

    Science.gov (United States)

    Nishi, Hiroyuki; Maeda, Noriko; Izumi, Shunsuke; Higa-Nakamine, Sayomi; Toku, Seikichi; Kakinohana, Manabu; Sugahara, Kazuhiro; Yamamoto, Hideyuki

    2015-02-05

    In previous studies, we found that stimulation of Toll-like receptor 5 (TLR5) by flagellin induced the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase-2 (MAPKAPK-2) through activation of the p38 MAPK pathway in cultured alveolar epithelial A549 cells. Our studies strongly suggested that MAPKAPK-2 phosphorylated epidermal growth factor receptor (EGFR) at Ser1047. It has been reported that phosphorylation of Ser1047 after treatment with tumor necrosis factor α (TNFα) induced the internalization of EGFR. In the present study, we first found that treatment of A549 cells with hydrogen peroxide induced the activation of MAPKAPK-2 and phosphorylation of EGFR at Ser1047 within 30 min. This was different from flagellin treatment because hydrogen peroxide treatment induced the phosphorylation of EGFR at Tyr1173 as well as Ser1047, indicating the activation of EGFR. We also found that KN93, an inhibitor of CaM kinase II, inhibited the hydrogen peroxide-induced phosphorylation of EGFR at Ser1047 through inhibition of the activation of the p38 MAPK pathway. Furthermore, we examined the internalization of EGFR by three different methods. Flow cytometry with an antibody against the extracellular domain of EGFR and biotinylation of cell surface proteins revealed that flagellin, but not hydrogen peroxide, decreased the amount of cell-surface EGFR. In addition, activation of extracellular signal-regulated kinase by EGF treatment was reduced by flagellin pre-treatment. These results strongly suggested that hydrogen peroxide activated the p38 MAPK pathway via activation of CaM kinase II and that flagellin and hydrogen peroxide regulate the functions of EGFR by different mechanisms.

  1. Nano-biointeractions of PEGylated and bare reduced graphene oxide on lung alveolar epithelial cells: A comparative in vitro study.

    Science.gov (United States)

    Reshma, S C; Syama, S; Mohanan, P V

    2016-04-01

    Graphene and its derivatives have garnered significant scientific interest and have potential use in nano-electronics as well as biomedicine. However the undesirable biological consequence, especially upon inhalation of the particle, requires further investigations. This study aimed to elucidate the nano-biointeractions of PEGylated reduced graphene oxide (PrGO) and reduced graphene oxide (rGO) with that of lung alveolar epithelial cells (A549). Both nanomaterials showed dose dependent decrease in cell viability and alteration of cell morphology after 24h. Upon intracellular uptake of PrGO, it elicited oxidative stress mediated apoptosis in the cells by inducing ROS, loss of mitochondrial membrane potential (MMP) and inflammatory response by NF-κB activation. Conversely, rGO was found to scavenge ROS efficiently except at high dose after 24h. It was found that ROS at high dose of rGO prompted loss of MMP. rGO was found to adhere to the cell membrane, where it is assumed to bind to cell surface Toll like receptors (TLRs) thereby activating NF-κB mediated inflammatory response. All these events culminated in an increase in apoptosis of A549 cells after 24h of rGO exposure. It was also noticed that both the nanomaterials did not initiate lysosomal pathway but instead activated mitochondria mediated apoptosis. This study highlights the possible adverse toxic effect of PrGO and rGO upon inhalation and persistence of these particles in the lungs. Further research is required to comprehend the biological response of PrGO and rGO so as to advance its biomedical application and safety.

  2. Microarray identifies ADAM family members as key responders to TGF-β1 in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Walls Dermot

    2006-09-01

    Full Text Available Abstract The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF remain elusive. Transforming Growth Factor beta 1(TGF-β1 is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549 in response to TGF-β1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-β1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-β1, suggesting a potential role for these molecules in ECM accumulation in IPF.

  3. Development of a lung slice preparation for recording ion channel activity in alveolar epithelial type I cells

    Directory of Open Access Journals (Sweden)

    Crandall Edward D

    2005-04-01

    Full Text Available Abstract Background Lung fluid balance in the healthy lung is dependent upon finely regulated vectorial transport of ions across the alveolar epithelium. Classically, the cellular locus of the major ion transport processes has been widely accepted to be the alveolar type II cell. Although evidence is now emerging to suggest that the alveolar type I cell might significantly contribute to the overall ion and fluid homeostasis of the lung, direct assessment of functional ion channels in type I cells has remained elusive. Methods Here we describe a development of a lung slice preparation that has allowed positive identification of alveolar type I cells within an intact and viable alveolar epithelium using living cell immunohistochemistry. Results This technique has allowed, for the first time, single ion channels of identified alveolar type I cells to be recorded using the cell-attached configuration of the patch-clamp technique. Conclusion This exciting new development should facilitate the ascription of function to alveolar type I cells and allow us to integrate this cell type into the general model of alveolar ion and fluid balance in health and disease.

  4. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H;

    1999-01-01

    (IL-8) and monocyte chemoattractant protein-1 (MCP-1) from an alveolar epithelial cell line (A549). RESULTS: Incubation of A549 cells with MSG in concentrations from 0.4 to 10 microg mL-1 for 24 h caused dose-dependent increases in IL-8 release (3.4-fold above control, P ..., suggesting that MSG stimulates A549 cells in part through carbohydrate moieties. Dexamethasone significantly inhibited MSG-induced IL-8 release in concentrations of 10-6-10-8 mol L-1 compared with control experiments (P

  5. Mesenchymal Stem Cell Conditioned Medium Promotes Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2015-11-01

    Full Text Available Background/Aims: Mesenchymal stem cell (MSC based therapies may be useful for treating acute respiratory distress syndrome (ARDS, but the underlying mechanisms are incompletely understood. We investigated the impact of human umbilical cord Wharton's jelly-derived MSC (hUC-MSC secreted factors on alveolar epithelial cells under septic conditions and determined the relevant intracellular signaling pathways. Methods: Human alveolar epithelial cells (AEC and primary human small airway epithelial cells (SAEC were subjected to lipopolysaccharide (LPS with or without the presence of hUC-MSC-conditioned medium (CM. Proliferation and migration of AEC and SAEC were determined via an MTT assay, a wound healing assay and a transwell migration assay (only for AEC. Protein phosphorylation was determined by western blot and the experiments were repeated in presence of small-molecule inhibitors. The hMSC-secretory proteins were identified by LC-MS/MS mass spectrometry. Results: MSC-CM enhanced proliferation and migration. Activation of JNK and P38, but not ERK, was required for the proliferation and migration of AEC and SAEC. Pretreatment of AEC or SAEC with SP600125, an inhibitor of JNK1 or SB200358, an inhibitor of P38, significantly reduced cell proliferation and migration. An array of proteins including TGF-beta receptor type-1, TGF-beta receptor type-2, Ras-related C3 botulinum toxin substrate 1 and Ras-related C3 botulinum toxin substrate 2 which influencing the proliferation and migration of AEC and SAEC were detected in MSC-CM. Conclusion: Our data suggest MSC promote epithelial cell repair through releasing a repertoire of paracrine factors via activation of JNK and P38 MAPK.

  6. Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone

    Directory of Open Access Journals (Sweden)

    Koide Michio

    2008-05-01

    Full Text Available Abstract Background Legionella pneumophila pneumonia often exacerbates acute lung injury (ALI and acute respiratory distress syndrome (ARDS. Apoptosis of alveolar epithelial cells is considered to play an important role in the pathogenesis of ALI and ARDS. In this study, we investigated the precise mechanism by which A549 alveolar epithelial cells induced by L. pneumophila undergo apoptosis. We also studied the effect of methyl prednisolone on apoptosis in these cells. Methods Nuclear deoxyribonucleic acid (DNA fragmentation and caspase activation in L. pneumophila-infected A549 alveolar epithelial cells were assessed using the terminal deoxyribonucleotidyl transferase-mediated triphosphate (dUTP-biotin nick end labeling method (TUNEL method and colorimetric caspase activity assays. The virulent L. pneumophila strain AA100jm and the avirulent dotO mutant were used and compared in this study. In addition, we investigated whether methyl prednisolone has any influence on nuclear DNA fragmentation and caspase activation in A549 alveolar epithelial cells infected with L. pneumophila. Results The virulent strain of L. pneumophila grew within A549 alveolar epithelial cells and induced subsequent cell death in a dose-dependent manner. The avirulent strain dotO mutant showed no such effect. The virulent strains of L. pneumophila induced DNA fragmentation (shown by TUNEL staining and activation of caspases 3, 8, 9, and 1 in A549 cells, while the avirulent strain did not. High-mobility group box 1 (HMGB1 protein was released from A549 cells infected with virulent Legionella. Methyl prednisolone (53.4 μM did not influence the intracellular growth of L. pneumophila within alveolar epithelial cells, but affected DNA fragmentation and caspase activation of infected A549 cells. Conclusion Infection of A549 alveolar epithelial cells with L. pneumophila caused programmed cell death, activation of various caspases, and release of HMGB1. The dot/icm system, a

  7. Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability.

    Science.gov (United States)

    Kürti, Levente; Veszelka, Szilvia; Bocsik, Alexandra; Ozsvári, Béla; Puskás, László G; Kittel, Agnes; Szabó-Révész, Piroska; Deli, Mária A

    2013-05-01

    The nasal pathway represents an alternative route for non-invasive systemic administration of drugs. The main advantages of nasal drug delivery are the rapid onset of action, the avoidance of the first-pass metabolism in the liver and the easy applicability. In vitro cell culture systems offer an opportunity to model biological barriers. Our aim was to develop and characterize an in vitro model based on confluent layers of the human RPMI 2650 cell line. Retinoic acid, hydrocortisone and cyclic adenosine monophosphate, which influence cell attachment, growth and differentiation have been investigated on the barrier formation and function of the nasal epithelial cell layers. Real-time cell microelectronic sensing, a novel label-free technique was used for dynamic monitoring of cell growth and barrier properties of RPMI 2650 cells. Treatments enhanced the formation of adherens and tight intercellular junctions visualized by electron microscopy, the presence and localization of junctional proteins ZO-1 and β-catenin demonstrated by fluorescent immunohistochemistry, and the barrier function of nasal epithelial cell layers. The transepithelial resistance of the RPMI 2650 cell model reached 50 to 200 Ω × cm(2), the permeability coefficient for 4.4 kDa FITC-dextran was 9.3 to 17 × 10(-6) cm/s, in agreement with values measured on nasal mucosa from in vivo and ex vivo experiments. Based on these results human RPMI 2650 cells seem to be a suitable nasal epithelial model to test different pharmaceutical excipients and various novel formulations, such as nanoparticles for toxicity and permeability.

  8. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death.

    Science.gov (United States)

    Matsuzaki-Horibuchi, Shiori; Yasuda, Takeshi; Sakaguchi, Nagako; Yamaguchi, Yoshihiro; Akashi, Makoto

    2015-01-01

    One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries.

  9. IN VITRO LUNG ALVEOLAR EPITHELIAL CELL INJURY AND INFLAMMATORY RESPONSE TO PARTICULATE MATTER-ASSOCIATED METALS - MODULATION BY EXPOSURE TO TNF-ALPHA, IL-BETA, OR IFN-GAMMA

    Science.gov (United States)

    IN VITRO LUNG ALVEOLAR EPITHELIAL CELL INJURY AND INFLAMMATORY RESPONSE TO PARTICULATE MATTER-ASSOCIATED METALS - MODULATION BY EXPOSURE TO TNF , IL-1 , OR IFN .JA Dye, KE Peoples*, CL Hayes?. US EPA, ORD, Pulmonary Toxicology Branch, RTP, NC, *HHMI-SRI, NCSU, Raleigh, NC...

  10. Salvianolic acid B improves bone marrow-derived mesenchymal stem cell differentiation into alveolar epithelial cells type I via Wnt signaling.

    Science.gov (United States)

    Gao, Peng; Yang, Jingxian; Gao, Xi; Xu, Dan; Niu, Dongge; Li, Jinglin; Wen, Qingping

    2015-08-01

    Acute lung injury (ALI) is among the most common causes of mortality in intensive care units. Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMSCs) may attenuate pulmonary edema. In addition, alveolar epithelial cells type I (ATI) are involved in reducing the alveolar edema in response to ALI. However, the mechanism involved in improving the efficiency of differentiation of MSCs into ATI remains to be elucidated. In the present study, the effect of salvianolic acid B (Sal B) on the differentiation of BMSCs into ATI and the activities of the Wnt signaling pathways were investigated. The BMSCs were supplemented with conditioned medium (CM). The groups were as follows: i) CM group: BMSCs were supplemented with CM; ii) lithium chloride (LiCl) group: BMSCs were supplemented with CM and 5 mM LiCl; iii) Sal B group: BMSCs were supplemented with CM and 10 mM Sal B. The samples were collected and assessed on days 7 and 14. It was revealed that aquaporin (AQP)-5 and T1α were expressed in BMSCs, and induction with LiCl or Sal B increased the expression of AQP-5 and T1α. Furthermore, the Wnt-1 and Wnt-3a signaling pathways were activated during the differentiation of BMSCs into ATI. In conclusion, it was suggested that the promotive effects of Sal B on the differentiation of BMSCs into ATI occurred through the activation of Wnt signaling pathways.

  11. N-Acetylcysteine counteracts oxidative stress and protects alveolar epithelial cells from lung contusion-induced apoptosis in rats with blunt chest trauma.

    Science.gov (United States)

    Topcu-Tarladacalisir, Yeter; Tarladacalisir, Taner; Sapmaz-Metin, Melike; Karamustafaoglu, Altemur; Uz, Yesim Hulya; Akpolat, Meryem; Cerkezkayabekir, Aysegul; Turan, Fatma Nesrin

    2014-08-01

    The aim of this study was to investigate the protective effects of N-acetylcysteine (NAC) on peroxidative and apoptotic changes in the contused lungs of rats following blunt chest trauma. The rats were randomly divided into three groups: control, contusion, and contusion + NAC. All the rats, apart from those in the control group, performed moderate lung contusion. A daily intramuscular NAC injection (150 mg/kg) was given immediately following the blunt chest trauma and was continued for two additional days following cessation of the trauma. Samples of lung tissue were taken in order to evaluate the tissue malondialdehyde (MDA) level, histopathology, and epithelial cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and active caspase-3 immunostaining. In addition, we immunohistochemically evaluated the expression of surfactant protein D (SP-D) in the lung tissue. The blunt chest trauma-induced lung contusion resulted in severe histopathological injury, as well as an increase in the MDA level and in the number of cells identified on TUNEL assay together with active caspase-3 positive epithelial cells, but a decrease in the number of SP-D positive alveolar type 2 (AT-2) cells. NAC treatment effectively attenuated histopathologic, peroxidative, and apoptotic changes, as well as reducing alterations in SP-D expression in the lung tissue. These findings indicate that the beneficial effects of NAC administrated following blunt chest trauma is related to the regulation of oxidative stress and apoptosis.

  12. Distribution characteristics of clarithromycin and azithromycin, macrolide antimicrobial agents used for treatment of respiratory infections, in lung epithelial lining fluid and alveolar macrophages.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Morimoto, Kazuhiro

    2011-10-01

    The distribution characteristics of clarithromycin (CAM) and azithromycin (AZM), macrolide antimicrobial agents, in lung epithelial lining fluid (ELF) and alveolar macrophages (AMs) were evaluated. In the in vivo animal experiments, the time-courses of the concentrations of CAM and AZM in ELF and AMs following oral administration (50 mg/kg) to rats were markedly higher than those in plasma, and the area under the drug concentration-time curve (AUC) ratios of ELF/plasma of CAM and AZM were 12 and 2.2, and the AUC ratios of AMs/ELF were 37 and 291, respectively. In the in vitro transport experiments, the basolateral-to-apical transport of CAM and AZM through model lung epithelial cell (Calu-3) monolayers were greater than the apical-to-basolateral transport. MDR1 substrates reduced the basolateral-to-apical transport of CAM and AZM. In the in vitro uptake experiments, the intracellular concentrations of CAM and AZM in cultured AMs (NR8383) were greater than the extracellular concentrations. The uptake of CAM and AZM by NR8383 was inhibited by ATP depletors. These data suggest that the high distribution of CAM and AZM to AMs is due to the sustained distribution to ELF via MDR1 as well as the high uptake by the AMs themselves via active transport mechanisms.

  13. Distribution characteristics of telithromycin, a novel ketolide antimicrobial agent applied for treatment of respiratory infection, in lung epithelial lining fluid and alveolar macrophages.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-01-01

    The distribution characteristics of telithromycin (TEL), a novel ketolide antimicrobial agent, in lung epithelial fluid (ELF) and alveolar macrophages (AMs) were evaluated. In vivo animal experiments, the time-courses of the concentrations of TEL in ELF and AMs following oral administration of TEL solution (50 mg/4 mL/kg) to rats were markedly higher than in plasma, and areas under drug concentration-time curve (AUC) ratios of ELF/plasma and AMs/plasma were 2.4 and 65.3, respectively. In vitro transport experiments, the basolateral-to-apical transport of TEL through model lung epithelial cell (Calu-3) monolayers was greater than apical-to-basolateral transport. Rhodamine123 and verapamil, MDR1 substrates, reduced the basolateral-to-apical transport of TEL. In vitro uptake experiments, the intracellular equilibrated concentration of TEL in cultured AMs (NR8383) was approximately 40 times the extracellular concentration. The uptake of TEL by NR8383 was inhibited by rotenone and FCCP, ATP depletors and was temperature-dependent. These data suggest that the high distribution of TEL to AMs is due to the sustained distribution to ELF via MDR1 as well as the high uptake by AMs themselves via active transport mechanisms.

  14. Conjugated primary bile salts reduce permeability of endotoxin through bacteria-stimulated intestinal epithelial cells and synergize with lecithin in suppression of inflammatory cytokine production

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schaeckeler, Simone; Moser, Lydia

    2007-01-01

    : The effect of CPBS (0.5 mM and 1.5 mM), phosphatidylcholine(0.38 mM), and human bile (0.5% vol/vol) on the barrier function was assessed by the measurement of transepithelial electrical resistance, by endotoxin permeability through the intestinal epithelial cell layer, and by basolateral cytokine enzyme...

  15. Conjugated primary bile salts reduce permeability of endotoxin through intestinal epithelial cells and synergize with phosphatidylcholine in suppression of inflammatory cytokine production

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schaeckeler, S.; Moser, L.

    2007-01-01

    : The effect of CPBS (0.5 mM and 1.5 mM), phosphatidylcholine (0.38 mM), and human bile (0.5% vol/vol) on the barrier function was assessed by the measurement of transepithelial electrical resistance, by endotoxin permeability through the intestinal epithelial cell layer, and by basolateral cytokine enzyme...

  16. Water permeability of Na+-K+-2C1- cotransporters in mammalian epithelial cells

    DEFF Research Database (Denmark)

    Hammann, Steffen; Herrera-Perez, J.J.; Bundgaard, Magnus

    2005-01-01

    Water transport properties of the Na+-K+-2Cl- cotransporter (NKCC) were studied in cultures of pigmented epithelial cells (PE) from the ciliary body of the eye. Here, the membrane that faces upwards contains NKCCs and can be subjected to rapid changes in bathing solution composition and osmolarity...... changes of the cotransporter and interaction with Na+, K+ and Cl-. Similar measurements were performed on immortalized cell cultures from the thick ascending limb of the loop of Henle (TALH). Given similar overall transport rates of bumetanide-sensitive 86Rb+, the NKCCs of this tissue did not contribute...... any bumetanide-sensitive Lp. This suggests that the cotransporters of the two tissues are either different isoforms or the same cotransporter but in two different transport modes....

  17. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF-β1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells.

    Science.gov (United States)

    Watanabe-Takano, Haruko; Takano, Kazunori; Hatano, Masahiko; Tokuhisa, Takeshi; Endo, Takeshi

    2015-01-01

    Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial-mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF-β1) are converted into myofibroblasts through EMT. TGF-β induces both canonical Smad signaling and non-canonical signaling, including the Ras-induced ERK pathway (Raf-MEK-ERK). However, the signaling mechanisms regulating TGF-β1-induced EMT are not fully understood. Here, we show that the Ras-ERK pathway negatively regulates TGF-β1-induced EMT in RLE-6TN cells and that DA-Raf1 (DA-Raf), a splicing isoform of A-Raf and a dominant-negative antagonist of the Ras-ERK pathway, plays an essential role in EMT. Stimulation of the cells with fibroblast growth factor 2 (FGF2), which activated the ERK pathway, prominently suppressed TGF-β1-induced EMT. An inhibitor of MEK, but not an inhibitor of phosphatidylinositol 3-kinase, rescued the TGF-β1-treated cells from the suppression of EMT by FGF2. Overexpression of a constitutively active mutant of a component of the Ras-ERK pathway, i.e., H-Ras, B-Raf, or MEK1, interfered with EMT. Knockdown of DA-Raf expression with siRNAs facilitated the activity of MEK and ERK, which were only weakly and transiently activated by TGF-β1. Although DA-Raf knockdown abrogated TGF-β1-induced EMT, the abrogation of EMT was reversed by the addition of the MEK inhibitor. Furthermore, DA-Raf knockdown impaired the TGF-β1-induced nuclear translocation of Smad2, which mediates the transcription required for EMT. These results imply that intrinsic DA-Raf exerts essential functions for EMT by antagonizing the TGF-β1-induced Ras-ERK pathway in RLE-6TN cells.

  18. EGFR在TGFβ1诱导Ⅱ型肺泡上皮细胞转分化中的作用%Effect of EGFR on epithelial-mesenchymal transition of type Ⅱ alveolar epithelial cells induced by TGFβ1

    Institute of Scientific and Technical Information of China (English)

    蔡琳; 阮志燕

    2012-01-01

    目的 探讨表皮生长因子受体(EGFR)在转分化因子β1(TGFβ1)体外诱导Ⅱ型肺泡上皮细胞转分化中的作用.方法 体外培养Ⅱ型肺泡上皮细胞系细胞-A549细胞,以TGFβ1刺激,倒置相差显微镜观察细胞形态学的变化;收集不同时段的细胞,应用RT-PCR检测TGFβ1干预前后E-钙黏蛋白(E-cadherin)和α平滑肌肌动蛋白(α-SMA)mRNA表达变化;Western blot观察E-cad、α-SMA和信号转导蛋白EGFR表达的变化.结果 倒置相差显微镜观察到TGFβ1刺激后A549细胞由鹅卵石状变为梭形,形态如同肌成纤维细胞;TGFβ1刺激A549细胞能导致E-cadherin mRNA和蛋白表达下调;α-SMA mRNA和蛋白表达上调;磷酸化EGFR(p-EGFR)表达上调.结论 TGFβ1能在体外诱导肺泡上皮细胞向间质细胞转分化,其机制与EGFR信号通路的活化相关.抑制EGFR的活化可能为临床防治肺纤维化提供新的途径.%Objective To investigate the effect of epidermal growth fart or receptor ( EGFR ) expression on epithelial-mesenchy-mal transition ( EMT ) of type Ⅱ alveolar epithelial cells induced by TGFβ1 . Methods The in vitro cultured type fl alveolar epithelial cell line-A549 cells were treated with TGFpl at different time points to observe its cellular morphology changes under phase-contrast micro scope. The cells at different time point were collected to assay mRNA expression of E-cadherin and ?smooth muscle actin ( a-SMA ) by RT-PCR before and after A549 cells being treated by TGFpl , and protein expression of E-cadherin, a-SMA and phosphorylated EGFR ( p-EGFR ) were detected by Western blot. Results After TGFpl treatment, A549 cells were turned from cobblestone into spindle-shaped , a myofibroblast-like morphology. Protein and mRNA expression of E-cadherin were down regulated ( P < 0. 05 ) , but protein and mRNA expression of a-tSMA and p-EGFR were up regulated ( P < 0. 05 ). Conclusion TGFpl can induce EMT of alveolar- epithelial cells in vitro, where the

  19. Efficient drug delivery to alveolar macrophages and lung epithelial lining fluid following pulmonary administration of liposomal ciprofloxacin in rats with pneumonia and estimation of its antibacterial effects.

    Science.gov (United States)

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2008-10-01

    The efficacy of pulmonary administration of liposomal ciprofloxacin (CPFX) in pneumonia was evaluated. In brief, the pharmacokinetics following pulmonary administration of liposomal CPFX (particle size, 1,000 nm; dose, 200 microg/kg) were examined in rats with lipopolysaccharide-induced pneumonia as an experimental pneumonia model. Furthermore, the antibacterial effects of liposomal CPFX against the pneumonic causative organisms were estimated by pharmacokinetic/pharmacodynamic (PK/PD) analysis. The time-courses of the concentration of CPFX in alveolar macrophages (AMs) and lung epithelial lining fluid (ELF) following pulmonary administration of liposomal CPFX to rats with pneumonia were markedly higher than that following the administration of free CPFX (200 microg/kg). The time course of the concentrations of CPFX in plasma following pulmonary administration of liposomal CPFX was markedly lower than that in AMs and ELF. These results indicate that pulmonary administration of liposomal CPFX was more effective in delivering CPFX to AMs and ELF compared with free CPFX, and it avoids distribution of CPFX to the blood. According to PK/PD analysis, the liposomal CPFX exhibited potent antibacterial effects against the causative organisms of pneumonia. This study indicates that pulmonary administration of CPFX could be an effective technique for the treatment of pneumonia.

  20. Mild stretch activates cPLA2 in alveolar type II epithelial cells independently through the MEK/ERK and PI3K pathways.

    Science.gov (United States)

    Letsiou, Eleftheria; Kitsiouli, Ei; Nakos, George; Lekka, Marilena E

    2011-06-01

    Alveolar epithelial type II cells (AT II) in which lung surfactant synthesis and secretion take place, are subjected to low magnitude stretch during normal breathing. The aim of the study was to explore the effect of mild stretch on phospholipase A(2) (PLA(2)) activation, an enzyme known to be involved in surfactant secretion. In A549 cells (a model of AT II cells), we showed, using a fluorometric assay, that stretch triggers an increase of total PLA(2) activity. Western blot experiments revealed that the cytosolic isoform cPLA(2) is rapidly phosphorylated under stretch, in addition to a modest increase in cPLA(2) mRNA levels. Treatment of A549 cells with selective inhibitors of the MEK/ERK pathway significantly attenuated the stretch-induced cPLA(2) phosphorylation. A strong interaction of cPLA(2) and pERK enzymes was demonstrated by immunoprecipitation. We also found that inhibition of PI3K pathway attenuated cPLA(2) activation after stretch, without affecting pERK levels. Our results suggest that low magnitude stretch can induce cPLA(2) phosphorylation through the MEK/ERK and PI3K-Akt pathways, independently.

  1. Effect of FCCP on tight junction permeability and cellular distribution of ZO-1 protein in epithelial (MDCK) cells.

    Science.gov (United States)

    Li, C X; Poznansky, M J

    1990-12-14

    The effect of the uncoupler of oxidative phosphorylation, FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), on the tight junction of Madin-Darby canine kidney cells was examined. FCCP induced an abrupt decrease in the transepithelial electrical resistance of the confluent monolayers over a period of 20 s. When FCCP was withdrawn from the incubation medium, the monolayer resistance recovered to close to the original level in less than 2 h. Staining of the tight junction-associated protein ZO-1 showed that the changes in transepithelial electrical resistance were accompanied by a diffusing of the protein away from cell peripheries and a reconcentration to the tight junction areas following resistance recovery. Intracellular pH was decreased by FCCP on a similar time-scale with no obvious changes in ATP levels over this time-course. These data suggest that the uncoupler FCCP has a profound effect on tight junction permeability and cellular distribution of the tight junction protein ZO-1 in the epithelial cells and that it probably acts by breaking down proton gradients and altering intracellular pH.

  2. Regulation of pulmonary surfactant synthesis in fetal rat type II alveolar epithelial cells by microRNA-26a.

    Science.gov (United States)

    Zhang, Xiao-Qun; Zhang, Pan; Yang, Yang; Qiu, Jie; Kan, Qin; Liang, Hong-Lu; Zhou, Xiao-Yu; Zhou, Xiao-Guang

    2014-09-01

    Pulmonary surfactant, a unique developmentally regulated, phospholipid-rich lipoprotein, is synthesized by the type II epithelial cells (AECII) of the pulmonary alveolus, where it is stored in organelles termed lamellar bodies. The synthesis of pulmonary surfactant is under multifactorial control and is regulated by a number of hormones and factors, including glucocorticoids, prolactin, insulin, growth factors, estrogens, androgens, thyroid hormones, and catecholamines acting through beta-adrenergic receptors, and cAMP. While there is increasing evidence that microRNAs (miRNAs) are involved in the regulation of almost every cellular and physiological process, the potential role of miRNAs in the regulation of pulmonary surfactant synthesis remains unknown. miRNA-26a (miR-26a) has been predicted to target SMAD1, one of the bone morphogenetic protein (BMP) receptor downstream signaling proteins that plays a key role in differentiation of lung epithelial cells during lung development. In this study, we explored the regulation role of miR-26a in the synthesis of pulmonary surfactant. An adenoviral miR-26a overexpression vector was constructed and introduced into primary cultured fetal AECII. GFP fluorescence was observed to determinate the transfection efficiency and miR-26a levels were measured by RT-PCR. MTT was performed to analyze AECII viability. qRT-PCR and Western blotting were used to determine the mRNA and protein level of SMAD1 and surfactant-associated proteins. The results showed that miR-26a in fetal AECII was overexpressed after the transfection, and that the overexpression of miR-26a inhibited pulmonary surfactant synthesis in AECII. There was no significant change in cell proliferation. Our results further showed that overexpression of miR-26a reduced the SMAD1 expression both in mRNA and protein level in fetal AECII. These findings indicate that miR-26a regulates surfactant synthesis in fetal AECII through SMAD1.

  3. C22-bronchial and T7-alveolar epithelial cell lines of the immortomouse are excellent murine cell culture model systems to study pulmonary peroxisome biology and metabolism.

    Science.gov (United States)

    Karnati, Srikanth; Palaniswamy, Saranya; Alam, Mohammad Rashedul; Oruqaj, Gani; Stamme, Cordula; Baumgart-Vogt, Eveline

    2016-03-01

    In pulmonary research, temperature-sensitive immortalized cell lines derived from the lung of the "immortomouse" (H-2k(b)-tsA58 transgenic mouse), such as C22 club cells and T7 alveolar epithelial cells type II (AECII), are frequently used cell culture models to study CC10 metabolism and surfactant synthesis. Even though peroxisomes are highly abundant in club cells and AECII and might fulfill important metabolic functions therein, these organelles have never been investigated in C22 and T7 cells. Therefore, we have characterized the peroxisomal compartment and its associated gene transcription in these cell lines. Our results show that peroxisomes are highly abundant in C22 and T7 cells, harboring a common set of enzymes, however, exhibiting specific differences in protein composition and gene expression patterns, similar to the ones observed in club cells and AECII in situ in the lung. C22 cells contain a lower number of larger peroxisomes, whereas T7 cells possess more numerous tubular peroxisomes, reflected also by higher levels of PEX11 proteins. Moreover, C22 cells harbor relatively higher amounts of catalase and antioxidative enzymes in distinct subcellular compartments, whereas T7 cells exhibit higher levels of ABCD3 and plasmalogen synthesizing enzymes as well as nuclear receptors of the PPAR family. This study suggest that the C22 and T7 cell lines of the immortomouse lung are useful models to study the regulation and metabolic function of the peroxisomal compartment and its alterations by paracrine factors in club cells and AECII.

  4. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals.

    Science.gov (United States)

    Marcinkiewicz, Mariola M; Baker, Sandy T; Wu, Jichuan; Hubert, Terrence L; Wolfson, Marla R

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.

  5. Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment

    Directory of Open Access Journals (Sweden)

    Mukae Hiroshi

    2005-08-01

    Full Text Available Abstract Background Studies from our laboratory have shown that human alveolar macrophages (AM and bronchial epithelial cells (HBEC exposed to ambient particles (PM10 in vitro increase their production of inflammatory mediators and that supernatants from PM10-exposed cells shorten the transit time of monocytes through the bone marrow and promote their release into the circulation. Methods The present study concerns co-culture of AM and HBEC exposed to PM10 (EHC-93 and the production of mediators involved in monocyte kinetics measured at both the mRNA and protein levels. The experiments were also designed to determine the role of the adhesive interaction between these cells via the intercellular adhesion molecule (ICAM-1 in the production of these mediators. Results AM/HBEC co-cultures exposed to 100 μg/ml of PM10 for 2 or 24 h increased their levels of granulocyte-macrophage colony-stimulating factor (GM-CSF, M-CSF, macrophage inflammatory protein (MIP-1β, monocyte chemotactic protein (MCP-1, interleukin (IL-6 and ICAM-1 mRNA, compared to exposed AM or HBEC mono-cultures, or control non-exposed co-cultures. The levels of GM-CSF, M-CSF, MIP-1β and IL-6 increased in co-cultured supernatants collected after 24 h exposure compared to control cells (p 10-induced increase in co-culture mRNA expression. Conclusion We conclude that an ICAM-1 independent interaction between AM and HBEC, lung cells that process inhaled particles, increases the production and release of mediators that enhance bone marrow turnover of monocytes and their recruitment into tissues. We speculate that this interaction amplifies PM10-induced lung inflammation and contributes to both the pulmonary and systemic morbidity associated with exposure to air pollution.

  6. Alveolar inflammation in cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Worlitzsch, Dieter; Viglio, Simona

    2010-01-01

    BACKGROUND: In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release...... accumulated in type II alveolar epithelial cells, lacking CFTR. P. aeruginosa organisms were rarely present in inflamed alveoli. CONCLUSIONS: Chronic inflammation and remodeling is present in alveolar tissues of the CF lung and needs to be addressed by anti-inflammatory therapies....

  7. Effects of Ambient Air Particulate Exposure on Blood-Gas Barrier Permeability and Lung Function

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Mortensen, Jann; Møller, Peter

    2009-01-01

    Particulate air pollution is associated with increased risk of pulmonary diseases and detrimental outcomes related to the cardiovascular system, including altered vessel functions. This study's objective was too evaluate the effects of ambient particle exposure on the blood-gas permeability, lung.......5-15.8 microg/m(3) PM(10-2.5)) or filtered (91-542 particles/cm(3)) air collected above a busy street. The clearance rate of aerosolized (99m)Tc-labeled diethylenetriamine pentaacetic acid ((99m)Tc-DTPA) was measured as an index for the alveolar epithelial membrane integrity and permeability of the lung blood...... on the concentration of CC16 in plasma and urine or on the static and dynamic volumes or ventilation distribution of the lungs. The study thus demonstrates increased permeability of the alveolar blood-gas barrier following moderate exercise, whereas exposure to ambient levels of urban air particles has no detectable...

  8. Lung alveolar epithelium and interstitial lung disease.

    Science.gov (United States)

    Corvol, Harriet; Flamein, Florence; Epaud, Ralph; Clement, Annick; Guillot, Loic

    2009-01-01

    Interstitial lung diseases (ILDs) comprise a group of lung disorders characterized by various levels of inflammation and fibrosis. The current understanding of the mechanisms underlying the development and progression of ILD strongly suggests a central role of the alveolar epithelium. Following injury, alveolar epithelial cells (AECs) may actively participate in the restoration of a normal alveolar architecture through a coordinated process of re-epithelialization, or in the development of fibrosis through a process known as epithelial-mesenchymal transition (EMT). Complex networks orchestrate EMT leading to changes in cell architecture and behaviour, loss of epithelial characteristics and gain of mesenchymal properties. In the lung, AECs themselves may serve as a source of fibroblasts and myofibroblasts by acquiring a mesenchymal phenotype. This review covers recent knowledge on the role of alveolar epithelium in the pathogenesis of ILD. The mechanisms underlying disease progression are discussed, with a main focus on the apoptotic pathway, the endoplasmic reticulum stress response and the developmental pathway.

  9. [Alveolar hemorrhage].

    Science.gov (United States)

    Parrot, A; Fartoukh, M; Cadranel, J

    2015-04-01

    Alveolar hemorrhage occurs relatively rarely and is a therapeutic emergency because it can quickly lead to acute respiratory failure, which can be fatal. Hemoptysis associated with anemia and pulmonary infiltrates suggest the diagnosis of alveolar hemorrhage, but may be absent in one third of cases including patients in respiratory distress. The diagnosis of alveolar hemorrhage is based on the findings of a bronchoalveolar lavage. The causes are numerous. It is important to identify alveolar hemorrhage due to sepsis, then separate an autoimmune cause (vasculitis associated with antineutrophil cytoplasmic antibody, connective tissue disease and Goodpasture's syndrome) with the search for autoantibodies and biopsies from readily accessible organs, from a non-immune cause, performing echocardiography. Lung biopsy should be necessary only in exceptional cases. If the hemorrhage has an immune cause, treatment with steroids and cyclophosphamide may be started. The indications for treatment with rituximab are beginning to be established (forms that are not severe and refractory forms). The benefit of plasma exchange is unquestionable in Goodpasture's syndrome. In patients with an immune disease that can lead to an alveolar hemorrhage, removing any source of infection is the first priority.

  10. Lipoteichoic acid induces surfactant protein-A biosynthesis in human alveolar type II epithelial cells through activating the MEK1/2-ERK1/2-NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng-Lin

    2012-10-01

    Full Text Available Abstract Background Lipoteichoic acid (LTA, a gram-positive bacterial outer membrane component, can cause septic shock. Our previous studies showed that the gram-negative endotoxin, lipopolysaccharide (LPS, could induce surfactant protein-A (SP-A production in human alveolar epithelial (A549 cells. Objectives In this study, we further evaluated the effect of LTA on SP-A biosynthesis and its possible signal-transducing mechanisms. Methods A549 cells were exposed to LTA. Levels of SP-A, nuclear factor (NF-κB, extracellular signal-regulated kinase 1/2 (ERK1/2, and mitogen-activated/extracellular signal-regulated kinase kinase (MEK1 were determined. Results Exposure of A549 cells to 10, 30, and 50 μg/ml LTA for 24 h did not affect cell viability. Meanwhile, when exposed to 30 μg/ml LTA for 1, 6, and 24 h, the biosynthesis of SP-A mRNA and protein in A549 cells significantly increased. As to the mechanism, LTA enhanced cytosolic and nuclear NF-κB levels in time-dependent manners. Pretreatment with BAY 11–7082, an inhibitor of NF-κB activation, significantly inhibited LTA-induced SP-A mRNA expression. Sequentially, LTA time-dependently augmented phosphorylation of ERK1/2. In addition, levels of phosphorylated MEK1 were augmented following treatment with LTA. Conclusions Therefore, this study showed that LTA can increase SP-A synthesis in human alveolar type II epithelial cells through sequentially activating the MEK1-ERK1/2-NF-κB-dependent pathway.

  11. Alveolar development and disease.

    Science.gov (United States)

    Whitsett, Jeffrey A; Weaver, Timothy E

    2015-07-01

    Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. The lack of lung maturation and the associated lack of pulmonary surfactant in preterm infants causes respiratory distress syndrome, a common cause of morbidity and mortality associated with premature birth. At the time of birth, surfactant homeostasis begins to be established by balanced processes involved in surfactant production, storage, secretion, recycling, and catabolism. Insights from physiology and engineering made in the 20th century enabled survival of newborn infants requiring mechanical ventilation for the first time. Thereafter, advances in biochemistry, biophysics, and molecular biology led to an understanding of the pulmonary surfactant system that made possible exogenous surfactant replacement for the treatment of preterm infants. Identification of surfactant proteins, cloning of the genes encoding them, and elucidation of their roles in the regulation of surfactant synthesis, structure, and function have provided increasing understanding of alveolar homeostasis in health and disease. This Perspective seeks to consider developmental aspects of the pulmonary surfactant system and its importance in the pathogenesis of acute and chronic lung diseases related to alveolar homeostasis.

  12. Systems-level comparison of host responses induced by pandemic and seasonal influenza A H1N1 viruses in primary human type I-like alveolar epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Guan Yi

    2010-10-01

    Full Text Available Abstract Background Pandemic influenza H1N1 (pdmH1N1 virus causes mild disease in humans but occasionally leads to severe complications and even death, especially in those who are pregnant or have underlying disease. Cytokine responses induced by pdmH1N1 viruses in vitro are comparable to other seasonal influenza viruses suggesting the cytokine dysregulation as seen in H5N1 infection is not a feature of the pdmH1N1 virus. However a comprehensive gene expression profile of pdmH1N1 in relevant primary human cells in vitro has not been reported. Type I alveolar epithelial cells are a key target cell in pdmH1N1 pneumonia. Methods We carried out a comprehensive gene expression profiling using the Affymetrix microarray platform to compare the transcriptomes of primary human alveolar type I-like alveolar epithelial cells infected with pdmH1N1 or seasonal H1N1 virus. Results Overall, we found that most of the genes that induced by the pdmH1N1 were similarly regulated in response to seasonal H1N1 infection with respect to both trend and extent of gene expression. These commonly responsive genes were largely related to the interferon (IFN response. Expression of the type III IFN IL29 was more prominent than the type I IFN IFNβ and a similar pattern of expression of both IFN genes was seen in pdmH1N1 and seasonal H1N1 infection. Genes that were significantly down-regulated in response to seasonal H1N1 but not in response to pdmH1N1 included the zinc finger proteins and small nucleolar RNAs. Gene Ontology (GO and pathway over-representation analysis suggested that these genes were associated with DNA binding and transcription/translation related functions. Conclusions Both seasonal H1N1 and pdmH1N1 trigger similar host responses including IFN-based antiviral responses and cytokine responses. Unlike the avian H5N1 virus, pdmH1N1 virus does not have an intrinsic capacity for cytokine dysregulation. The differences between pdmH1N1 and seasonal H1N1 viruses

  13. Alveolar epithelial cells (A549) exposed at the air-liquid interface to diesel exhaust: First study in TNO's powertrain test center

    NARCIS (Netherlands)

    Kooter, I.M.; Alblas, M.J.; Jedynska, A.D.; Steenhof, M.; Houtzager, M.M.G.; Ras, M.G. van

    2013-01-01

    Air–liquid interface (ALI) exposures enable in vitro testing ofmixtures of gases and particles such as diesel exhaust (DE). The main objective of this study was to investigate the feasibility of exposing human lung epithelial cells at the ALI to complete DE generated by a heavy-duty truck in the sta

  14. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity

    Science.gov (United States)

    Westphalen, Kristin; Gusarova, Galina A.; Islam, Mohammad N.; Subramanian, Manikandan; Cohen, Taylor S.; Prince, Alice S.; Bhattacharya, Jahar

    2014-02-01

    The tissue-resident macrophages of barrier organs constitute the first line of defence against pathogens at the systemic interface with the ambient environment. In the lung, resident alveolar macrophages (AMs) provide a sentinel function against inhaled pathogens. Bacterial constituents ligate Toll-like receptors (TLRs) on AMs, causing AMs to secrete proinflammatory cytokines that activate alveolar epithelial receptors, leading to recruitment of neutrophils that engulf pathogens. Because the AM-induced response could itself cause tissue injury, it is unclear how AMs modulate the response to prevent injury. Here, using real-time alveolar imaging in situ, we show that a subset of AMs attached to the alveolar wall form connexin 43 (Cx43)-containing gap junction channels with the epithelium. During lipopolysaccharide-induced inflammation, the AMs remained sessile and attached to the alveoli, and they established intercommunication through synchronized Ca2+ waves, using the epithelium as the conducting pathway. The intercommunication was immunosuppressive, involving Ca2+-dependent activation of Akt, because AM-specific knockout of Cx43 enhanced alveolar neutrophil recruitment and secretion of proinflammatory cytokines in the bronchoalveolar lavage. A picture emerges of a novel immunomodulatory process in which a subset of alveolus-attached AMs intercommunicates immunosuppressive signals to reduce endotoxin-induced lung inflammation.

  15. Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model.

    Science.gov (United States)

    Nishiguchi, Akihiro; Singh, Smriti; Wessling, Matthias; Kirkpatrick, Charles J; Möller, Martin

    2017-03-13

    In vitro reconstruction of an alveolar barrier for modeling normal lung functions and pathological events serve as reproducible, high-throughput pharmaceutical platforms for drug discovery, diagnosis, and regenerative medicine. Despite much effort, the reconstruction of organ-level alveolar barrier functions has failed due to the lack of structural similarity to the natural basement membrane, functionalization with specific ligands for alveolar cell function, the use of primary cells and biodegradability. Here we report a bipolar cultured alveolar-capillary barrier model of human primary cells supported by a basement membrane mimics of fully synthetic bifunctional nanofibers. One-step electrospinning process using a bioresorbable polyester and multifunctional star-shaped polyethylene glycols (sPEG) enables the fabrication of an ultrathin nanofiber mesh with interconnected pores. The nanofiber mesh possessed mechanical stability against cyclic expansion as seen in the lung in vivo. The sPEGs as an additive provide biofunctionality to fibers through the conjugation of peptide to the nanofibers and hydrophilization to prevent unspecific protein adsorption. Biofunctionalized nanofiber meshes facilitated bipolar cultivation of endothelial and epithelial cells with fundamental alveolar functionality and showed higher permeability for molecules compared to microporous films. This nanofiber mesh for a bipolar cultured barrier have the potential to promote growth of an organ-level barrier model for modeling pathological conditions and evaluating drug efficacy, environmental pollutants, and nanotoxicology.

  16. Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF-β1/ROCK1 pathway in silicosis in rat.

    Science.gov (United States)

    Deng, Haijing; Xu, Hong; Zhang, Xianghong; Sun, Yue; Wang, Ruimin; Brann, Darrell; Yang, Fang

    2016-03-01

    The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-β1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-β1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-β1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-β1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-β1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties.

  17. Ischemia Induced Caveolin-1 Moving from Cell Membrane to Lipid Droplets in Type Ⅱ Alveolar Epithelial Cell%缺血引起陷窝蛋白-1在肺泡Ⅱ型上皮细胞定位的改变

    Institute of Scientific and Technical Information of China (English)

    李凌海; 耿万明; 王子彤; 秦林; 张慧娜

    2013-01-01

    Type Ⅱ alveolar epithelial cells play an important role in ischemia of the lung.In this research,the authors studied the intracellular location of the caveolin-1 in type Ⅱ alveolar epithelial cells under normal and ischemia status.They purified the lipid droplets from type Ⅱ alveolar epithelial cell line A549.The results indicated that caveolin-1 was localized on plasma membrane as well as lipid droplets of alveolar epithelial cell,whereas ischemia stimulus induced caveolin-1 moving from cell membrane to lipid droplets in A549 cell line.In human lung tissue,They also observed the translocation of caveolin-1 from cell membrane to lipid droplets under ischemia status.These findings may promote new directions in future research concerning the mechanism of lung ischemia injury.%肺泡Ⅱ型上皮细胞在肺缺血病理过程中具有重要作用.为研究缺血对陷窝蛋白-1在肺泡Ⅱ型上皮细胞A549脂滴定位的影响,利用已经建立的脂滴纯化方法,纯化得到肺泡Ⅱ型上皮细胞A549的脂滴,并在脂滴上发现了陷窝蛋白-1.在A549细胞缺血模型中发现缺血可以导致陷窝蛋白-1从细胞膜移动到脂滴.人肺组织脂滴纯化实验也证实缺血可以刺激陷窝蛋白-1从细胞膜移动到脂滴.这一发现将为肺缺血机制的研究提供新的思路.

  18. 香烟烟雾提取物抑制肺泡上皮细胞的增殖并诱导其凋亡%Cigarette smoke extract inhibits the proliferation of alveolar epithelial cells and induces apoptosis

    Institute of Scientific and Technical Information of China (English)

    焦宗宪; 敖启林; 熊密

    2006-01-01

    香烟烟雾提取物(cigarette smoke extract,CSE)中含有丰富的氧化剂和自由基,由它所引起的氧化应激可导致肺泡壁的损伤进而发展为肺气肿.近年来,围绕CSE损伤肺泡壁作用机制的研究较为活跃,但其结果却一直存在着分歧.本实验的目的是观察CSE对肺泡Ⅱ型上皮细胞的损伤作用并探讨与其相关的分子机制.MTT比色法的结果显示,CSE以时间和剂量依赖性的方式降低细胞的增殖活力,流式细胞术的分析结果表明细胞增殖周期被阻滞在G1/S期.Hoechst 33258染色以及透射电镜观察从形态上确认CSE诱导细胞凋亡的发生,DNA梯的出现和Annexin V-FITC/碘化丙啶双染色的结果从分子水平得到进一步的证实.同时,运用流式细胞术检测到CSE诱导的凋亡伴随着Fas受体的高表达和caspase-3的显著活化.另外,使用H2DCFDA染色,经激光共聚焦显微镜术测得细胞内氧自由基在细胞受到CSE刺激以后大量快速积累.结果表明CSE能够抑制肺泡Ⅱ型上皮细胞来源的A549细胞的生长和增殖,并诱导细胞凋亡,由Fas受体所介导的死亡受体途径参与此凋亡过程,而CSE所引起的氧化应激则可能是阻止肺泡上皮细胞生长增殖并诱导其凋亡的始动因素.%Cigarette smoke extract (CSE) contains abundant oxidants and free radicals. Oxidative stress caused by cigarette smoking results in the destruction of the alveolar cell walls and emphysema. However, there exists discrepancy about how CSE works in the process. In the present study, we observed the effect of CSE on the cell growth of type Ⅱ alveolar epithelial cell-derived A549 cell line,and provided molecular understanding of this effect. The MTT assay results showed that CSE decreased the cell viability of A549 cells in a dose- and time-dependent manner, and cell cycle was arrested in G1/S phase. Furthermore, CSE-induced apoptosis of A549 cells was verified by Hoechst 33258 staining, electron microscopy

  19. Epidermal growth factor receptor and alveolar epithelial atypical adenomatous hyperplasia%表皮生长因子受体与肺泡上皮不典型腺瘤样增生的关系

    Institute of Scientific and Technical Information of China (English)

    黄谦

    2012-01-01

    Lung cancer is a common malignant tumor and lung adenocarcinoma is the main type of it. Bronchioloalveolar lung carcinoma (BAC) is a special type of lung adenocarcinoma. Research indicates that alveolar epithelial atypical adenomatous hyperplasia (AAH) in BAC or adenocarcinoma may be a precancerous lesion, even in the early stage of cancer. Overexpression and/or mutatioin of epidermal growth factor receptor (EGFR) is closely related to the occurrence, development, invasion and metastasis of lung cancer, especially in non-small-cell lung cancer (NSCLC). But there are few studies reported about EGFR in the precancerous lesion of non-small-cell lung cancer.%肺癌是人类常见的恶性肿瘤,肺腺癌是其主要类型之一.细支气管肺泡癌(bronchioloalveolar lung carcinoma,BAC)是肺腺癌的一个特殊类型.肺泡上皮不典型腺瘤样增生(atypical adenomatous hyperplasia,AAH)可能是BAC或腺癌的癌前病变,甚至是其早期癌.表皮生长因子受体(epidermal growth factor receptor,EGFR)的过表达和(或)突变与肺癌尤其是非小细胞肺癌(non-small-cell lung cancer,NSCLC)的发生、发展、侵袭和转移等密切相关.

  20. Anacardic acid, a histone acetyltransferase inhibitor, modulates LPS-induced IL-8 expression in a human alveolar epithelial cell line A549 [v1; ref status: indexed, http://f1000r.es/o7

    Directory of Open Access Journals (Sweden)

    Tetsuo Yasutake

    2013-03-01

    Full Text Available Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs, which promote acetylation, and histone deacetylases (HDACs, which promote deacetylation. We studied the effects of lipopolysaccharide (LPS on histone acetylation and its role in the regulation of interleukin (IL-8 expression.  Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA, and a HAT inhibitor, anacardic acid, were assessed.  Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells.  Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition.

  1. Differences in Cytotoxic, Genotoxic, and Inflammatory Response of Bronchial and Alveolar Human Lung Epithelial Cells to Pristine and COOH-Functionalized Multiwalled Carbon Nanotubes

    Science.gov (United States)

    Fresegna, Anna Maria; Ciervo, Aureliano; Buresti, Giuliana

    2014-01-01

    Functionalized MWCNTs are used in many commercial and biomedical applications, but their potential health effects are not well defined. We investigated and compared cytotoxic, genotoxic/oxidative, and inflammatory effects of pristine and carboxyl MWCNTs exposing human respiratory (A549 and BEAS-2B) cells to 1–40 μg/mL of CNTs for 24 h. Both MWCNTs induced low viability reduction (by WST1 assay) in A549 cells and only MWCNTs-COOH caused high viability reduction in BEAS-2B cells reaching 28.5% viability at 40 μg/mL. Both CNTs induced membrane damage (by LDH assay) with higher effects in BEAS-2B cells at the highest concentrations reaching 20% cytotoxicity at 40 μg/mL. DNA damage (by Fpg-comet assay) was induced by pristine MWCNTs in A549 cells and by both MWCNTs in BEAS-2B cells reaching for MWCNTs-COOH a tail moment of 22.2 at 40 μg/mL versus 10.2 of unexposed cells. Increases of IL-6 and IL-8 release (by ELISA) were detected in A549 cells exposed to MWCNTs-COOH from 10 μg/mL while IL-8 increased in BEAS-2B cells exposed to pristine MWCNTs at 20 and 40 μg/mL. The results show higher cytogenotoxicity of MWCNTs-COOH in bronchial and of pristine MWCNTs in alveolar cells. Different inflammatory response was also found. The findings suggest the use of in vitro models with different end points and cells to study CNT toxicity. PMID:25147797

  2. Differences in cytotoxic, genotoxic, and inflammatory response of bronchial and alveolar human lung epithelial cells to pristine and COOH-functionalized multiwalled carbon nanotubes.

    Science.gov (United States)

    Ursini, Cinzia Lucia; Cavallo, Delia; Fresegna, Anna Maria; Ciervo, Aureliano; Maiello, Raffaele; Buresti, Giuliana; Casciardi, Stefano; Bellucci, Stefano; Iavicoli, Sergio

    2014-01-01

    Functionalized MWCNTs are used in many commercial and biomedical applications, but their potential health effects are not well defined. We investigated and compared cytotoxic, genotoxic/oxidative, and inflammatory effects of pristine and carboxyl MWCNTs exposing human respiratory (A549 and BEAS-2B) cells to 1-40 μg/mL of CNTs for 24 h. Both MWCNTs induced low viability reduction (by WST1 assay) in A549 cells and only MWCNTs-COOH caused high viability reduction in BEAS-2B cells reaching 28.5% viability at 40 μg/mL. Both CNTs induced membrane damage (by LDH assay) with higher effects in BEAS-2B cells at the highest concentrations reaching 20% cytotoxicity at 40 μg/mL. DNA damage (by Fpg-comet assay) was induced by pristine MWCNTs in A549 cells and by both MWCNTs in BEAS-2B cells reaching for MWCNTs-COOH a tail moment of 22.2 at 40 μg/mL versus 10.2 of unexposed cells. Increases of IL-6 and IL-8 release (by ELISA) were detected in A549 cells exposed to MWCNTs-COOH from 10 μg/mL while IL-8 increased in BEAS-2B cells exposed to pristine MWCNTs at 20 and 40 μg/mL. The results show higher cytogenotoxicity of MWCNTs-COOH in bronchial and of pristine MWCNTs in alveolar cells. Different inflammatory response was also found. The findings suggest the use of in vitro models with different end points and cells to study CNT toxicity.

  3. Regulation of p53-mediated changes in the uPA-fibrinolytic system and in lung injury by loss of surfactant protein-C expression in alveolar epithelial cells.

    Science.gov (United States)

    Puthusseri, Bijesh; Marudamuthu, Amarnath S; Tiwari, Nivedita; Fu, Jian; Idell, Steven; Shetty, Sreerama

    2017-04-06

    Pulmonary surfactant protein-C (SP-C) expression by type II alveolar epithelial cells (AECs) is markedly reduced in diverse types of lung injuries and is often associated with AEC apoptosis. It is unclear whether loss of SP-C contributes to the increased p53 and urokinase-type plasminogen activator (uPA) system cross talk and apoptosis of AECs. We therefore inhibited SP-C expression in human and murine AECs using lentivirus vector expressing shRNA and tested p53 and downstream changes in uPA-fibrinolytic system. Inhibition of SP-C expression in AECs induced p53 and activated caspase-3, indicating AEC apoptosis. We also found that bleomycin or cigarette smoke exposure failed to inhibit SP-C expression or apoptosis in AECs in p53- and plasminogen activator inhibitor-1 (PAI-1)-deficient mice. Depletion of SP-C expression by lentiviral SP-C shRNA in PAI-1-deficient mice failed to induce p53 or apoptosis in AECs, while it increased both AEC p53 and apoptosis in wild type or uPA-deficient mice. SP-C inhibition in AECs also increased in CXCL1 and CXCL2, and their receptor CXCR2 as well as ICAM-1 expression, indicative of a pro-inflammatory response. Overexpression of p53-binding 3'UTR sequences in AECs inhibited PAI-1 induction while maintaining uPA and uPAR protein and mRNA expression. Further, caveolin-1 expression and phosphorylation were increased in AECs indicating an intricate link between caveolin-1 and Src kinase-mediated cell signalling and AEC apoptosis due to loss of SP-C expression through p53 and uPA system-mediated cross-talk. The role of uPA, PAI-1 and p53 in the regulation of AEC apoptosis after injury was also determined in knock out mice.

  4. JNK对TGF-β1诱导的人肺上皮-间质转分化的调控作用%Influence of JNK Signaling Pathway in the Epithelial-mesenchymal Transition Process of Human Alveolar Epithelial Cells Induced by TGF-β1

    Institute of Scientific and Technical Information of China (English)

    邹勇; 曾玉兰

    2014-01-01

    目的:探讨c‐Jun氨基末端激酶(JNK)在转化生长因子‐β1(TGF‐β1)诱导的人肺上皮细胞A549转分化中的调控作用。方法将体外培养的人肺上皮细胞(A549)随机分成3组:正常对照组、TGF‐β1组(加入10 ng/mL TGF‐β1)及抑制剂组(加入10 ng/mL TGF‐β1和20μmol/L JNK的特异性抑制剂Sp600125),培养于3%的血清培养液中,光镜下观察3组细胞形态的变化,并通过RT‐PCT检测各组A549细胞的上皮标志物E‐钙黏蛋白(E‐cadherin ,E‐cad)及间充质标志物α‐平滑肌肌动蛋白(α‐smooth muscle actin ,α‐SMA)和胶原纤维Ⅰ(collagen fibersⅠ,ColⅠ)的表达的变化,West‐ern blot检测JNK磷酸化(p‐JNK)水平的变化。结果正常对照组体外培养的A549细胞光镜下为鹅卵石样紧密排列生长,有E‐cad表达及微量的α‐SMA、ColⅠ及p‐JNK表达。TGF‐β1组培养72 h后细胞基本长成梭形、纺锤形,E‐cad表达下调,α‐SMA、ColⅠ及p‐JNK表达上调。与 TGF‐β1组比较,抑制剂组培养72 h后细胞梭形有所逆转,E‐cad表达上调,α‐SM A、ColⅠ及p‐JNK表达明显抑制;与正常对照组比较,细胞形态较扁长,E‐cad、α‐SM A、ColⅠ及p‐JNK表达差异无统计学意义。结论 JNK信号通路参与 TGF‐β1介导的人肺上皮‐间质转分化过程,JNK的特异性抑制剂Sp600125可有效抑制该过程。%Objective To explore the role of JNK signaling pathway in epithelial mesenchymal transition (EMT)process of human alveolar epithelial cells A549 induced by TGF‐β1 in vitro.Methods Human alveolar epithelial cells (A549)cultured in vitro were divided randomly into three groups :normal group ,TGF‐β1 group ( treated by TGF‐β1 with 10 ng/mL)and inhibitor group (treated by 10 ng/mL TGF‐β1 and 20 μmol/L Sp600125).Morphological observation on the cells was performed under light microscope after

  5. Loss of p120 catenin aggravates alveolar edema of ventilation induced lung injury

    Institute of Scientific and Technical Information of China (English)

    DAI Chen-yang; DAI Guo-feng; SUN Yu; WANG Yue-lan

    2013-01-01

    Background p120 catenin (p120ctn) is an adheren junction protein that regulates barrier function,but its role has not been explored in alveolar edema induced by ventilation.We measured stretch-induced cell gap formation in MLE 12 cells due to the loss of p120.We hypothesized that alveolar permeability was increased by high lung inflation associated with alveolar epithelia cell tight junctions being destroyed,which resulted from the loss of p120.Methods Cultured MLE12 cells were subjected to being stretched or un-stretched (control) and some cells were pretreated with pp2 (c-src inhibitor).After the end of stretching for 0,1,2,and 4 hours,the cells were lysed,and p120 expression and c-src activation was determined by Western blotting analysis.In vivo,SD rats were taken to different tidal volumes (Vt 7 ml/kg or 40 ml/kg,PEEP=0,respiratory rate 30-40 betas/min) for 0,1,2,and 4 hour and some were pretreated with pp2,and alveolar edema was calculated.Rerults It was found that p120 expression was reduced and c-src activation increased in a time-dependent and strain-dependent manner due to cyclic-stretch of the alveolar epithelial cells.These changes could be reversed by inhibition of c-src.We obtained similar changes in rats when they were subjected to large tidal volumes and the alveolar edema increased more than in rats in the low Vt group.Pretreated the rats with inhibition of c-src had less pulmonary edema induced by the high tidal volume ventilation.Conclusions Cyclic stretch MLE 12 cells induced the loss of p120 and may be the same reason by high tidal volume ventilation in rats can aggravate alveolar edema.Maintenance of p120 expression may be a novel therapeutic strategy for the prevention and treatment of ventilation induced lung injury (VILI).

  6. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Horzinek, M C; Van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable supp

  7. Phagocytic properties of lung alveolar wall cells

    Directory of Open Access Journals (Sweden)

    Tanaka,Akisuke

    1974-04-01

    Full Text Available For the purpose to define the mechanism of heavy metal intoxication by inhalation, morphologic observations were made on rat lungs after nasal instillation of iron colloid particles of positive and negative electric charges. Histochemical observation was also made on the liver and spleen of these animals. The instilled iron colloid particles reach the alveolar cavity easily, as can be seen in the tissue sections stained by Prussian blue reaction. Alveolar macrophages do take up them avidly both of positive and negative charges, though much less the positive particles than negative ones. In contrast, the alveolar epithelial cells take up solely positive particles by phagocytosis but not negative ones. Electron microscope observation revealed that the positive particles are ingested by Type I epithelial cells by pinocytosis and by Type II cells by phagocytosis as well. Then the iron colloid particles are transferred into the basement membrane by exocytosis. Travelling through the basement membrane they are again taken up by capillary endothelial cells by phagocytosis. Some particles were found in the intercellular clefts of capillary endothelial cells but not any iron colloid particles in the intercellular spaces of epithelial cells and in the capillary lumen. However, the liver and spleen tissues of the animals given iron colloid showed a strong positive iron reaction. On the basis of these observations, the mechanism of acute intoxication by inhaling heavy metal dusts like lead fume is discussed from the view point of selective uptake of alveolar epithelial and capillary endothelial cells for the particles of the positive electric cha'rge.

  8. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    C Lin

    Full Text Available Our previous studies showed that bovine respiratory syncytial virus (BRSV followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2 epithelial cells with H. somni concentrated culture supernatant (CCS stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2 and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.

  9. Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model.

    Science.gov (United States)

    Neuhaus, Winfried; Samwer, Fabian; Kunzmann, Steffen; Muellenbach, Ralf M; Wirth, Michael; Speer, Christian P; Roewer, Norbert; Förster, Carola Y

    2012-11-01

    The blood-air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighbored cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood-air barrier.

  10. Keratinocyte growth factor improves alterations of lung permeability and bronchial epithelium in allergic rats.

    Science.gov (United States)

    Tillie-Leblond, I; Gosset, P; Le Berre, R; Janin, A; Prangère, T; Tonnel, A B; Guery, B P H

    2007-07-01

    Chronic allergic asthma is associated with marked inflammatory reaction, microvascular leakage and epithelium injury. As previously shown in a rat model of chronic asthma, these alterations increase lung permeability and distal airway fluid clearance. Keratinocyte growth factor (KGF) has been shown to induce epithelial cell proliferation and to protect from acute lung injuries. Therefore, the current authors evaluated the potential role of KGF treatment on lung permeability and airway inflammation in rats with chronic asthma. KGF (1 mg x kg(-1)) was administered intravenously before the last ovalbumin (OVA) challenge in sensitised rats. Permeability was assessed by the leak of radiolabelled albumin from the alveolar and systemic compartments. Histopathological analysis was also performed. Treatment with KGF decreased the leak of both markers and decreased the level of extravascular lung water in sensitised rats challenged with OVA. KGF treatment also reduced the inflammatory cell number in bronchoalveolar lavage fluid but not in bronchial mucosa. KGF markedly limited the allergen-induced alterations in epithelium integrity and the expression of the intercellular junction proteins beta-catenin and zonula occludens protein-1. In conclusion, keratinocyte growth factor administration markedly limits lung permeability and airway inflammation, an effect associated with a decrease in epithelium alterations during chronic allergic asthma. These data open new prospects in the therapeutic strategy of asthma.

  11. 连续性血液净化对肺泡上皮细胞Connexin43的影响%Effects of continuous blood purification on Connexin43 in human alveolar epi-thelial cells

    Institute of Scientific and Technical Information of China (English)

    杨溢; 甘华; 李正荣; 文以君; 王喜超

    2009-01-01

    AIM: To investigate the effect of continuous blood purification (CBP) on the expression of Connexin43 (Cx43) in human alveolar epithelial cells (AECs) induced by the serum of patients with severe acute pancreatitis (SAP) accompanied with acute lung injury (ALI). METHODS: Fasting serum of healthy volunteers and serum of patients with SAP and ALI at pre-CBP, 6-hour-CBP and 20-hour-CBP were collected, Immunofluores-cence staining and RT-PCR were used to detect the expression of Cx43 and Cx43 mRNA in AECs separately cultured by the serum from different groups for 48 h in vitro. ELISA was used to detect the level of serum TNF-α in each group. RESULTS: Cx43 posi-tive staining in each patient group was significantly less than that in healthy control group. With the increase of the treatment time, the positive staining gradually increased. The relative expression of Cx43 mRNA in pre-CBP group(0.08±0.01) was significantly leas than that in healthy control group (0.57±0.02) (P<0.01). With the increase of the treatment time, the expression gradually increased in 6-hoar-CBP group(0.23±0.02) and 20-hour-CBP group(0.36±0.02) (P<0.01). The level of serum TNF-α in pre-CBP group (59.43±4.50) ng/L was significantly higher than that in healthy control group(16.06±3.68) ng/L(P<0.01). With the increase of the treatment time, the level gradually decreased in 6-hour-CBP group (41.16±3.49) ng/L and 20-hour-CBP group (34.65±3.22) ng/L (P<0.01). The expression of Cx43 mRNA was negatively correlated with the level of TNF-α. CONCLUSION: The decrease of Cx43 in AECs plays a part in the process of SAP patients with secondary ALI. CBP up-regulates the expression of Cx43 by removing TNF-α and thus protects the respiratory function.%目的:研究连续性血液净化(CBP)对重症急性胰腺炎(SAP)伴急性肺损伤(ALI)患者血清诱导的人肺泡上皮细胞(AECs)间隙连接蛋白Connexin43(Cx43)表达的影响.方法:采集健康志愿者清晨空腹及SAP伴ALI患者CBP

  12. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells.

    Science.gov (United States)

    Tesoriere, L; Attanzio, A; Allegra, M; Gentile, C; Livrea, M A

    2014-02-01

    Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1β, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1β brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-κB, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5-25 μM), and IL-1β prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1β also prevented the IL-1β-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-κB was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level.

  13. Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema.

    Science.gov (United States)

    Solymosi, Esther A; Kaestle-Gembardt, Stefanie M; Vadász, István; Wang, Liming; Neye, Nils; Chupin, Cécile Julie Adrienne; Rozowsky, Simon; Ruehl, Ramona; Tabuchi, Arata; Schulz, Holger; Kapus, Andras; Morty, Rory E; Kuebler, Wolfgang M

    2013-06-18

    Alveolar fluid clearance driven by active epithelial Na(+) and secondary Cl(-) absorption counteracts edema formation in the intact lung. Recently, we showed that impairment of alveolar fluid clearance because of inhibition of epithelial Na(+) channels (ENaCs) promotes cardiogenic lung edema. Concomitantly, we observed a reversal of alveolar fluid clearance, suggesting that reversed transepithelial ion transport may promote lung edema by driving active alveolar fluid secretion. We, therefore, hypothesized that alveolar ion and fluid secretion may constitute a pathomechanism in lung edema and aimed to identify underlying molecular pathways. In isolated perfused lungs, alveolar fluid clearance and secretion were determined by a double-indicator dilution technique. Transepithelial Cl(-) secretion and alveolar Cl(-) influx were quantified by radionuclide tracing and alveolar Cl(-) imaging, respectively. Elevated hydrostatic pressure induced ouabain-sensitive alveolar fluid secretion that coincided with transepithelial Cl(-) secretion and alveolar Cl(-) influx. Inhibition of either cystic fibrosis transmembrane conductance regulator (CFTR) or Na(+)-K(+)-Cl(-) cotransporters (NKCC) blocked alveolar fluid secretion, and lungs of CFTR(-/-) mice were protected from hydrostatic edema. Inhibition of ENaC by amiloride reproduced alveolar fluid and Cl(-) secretion that were again CFTR-, NKCC-, and Na(+)-K(+)-ATPase-dependent. Our findings show a reversal of transepithelial Cl(-) and fluid flux from absorptive to secretory mode at hydrostatic stress. Alveolar Cl(-) and fluid secretion are triggered by ENaC inhibition and mediated by NKCC and CFTR. Our results characterize an innovative mechanism of cardiogenic edema formation and identify NKCC1 as a unique therapeutic target in cardiogenic lung edema.

  14. Pulmonary alveolar proteinosis

    Directory of Open Access Journals (Sweden)

    B. Crestani

    2011-06-01

    Full Text Available Pulmonary alveolar proteinosis (PAP is a rare pulmonary disease characterised by alveolar accumulation of surfactant. It may result from mutations in surfactant proteins or granulocyte macrophage-colony stimulating factor (GM-CSF receptor genes, it may be secondary to toxic inhalation or haematological disorders, or it may be auto-immune, with anti-GM-CSF antibodies blocking activation of alveolar macrophages. Auto-immune alveolar proteinosis is the most frequent form of PAP, representing 90% of cases. Although not specific, high-resolution computed tomography shows a characteristic “crazy paving” pattern. In most cases, bronchoalveolar lavage findings establish the diagnosis. Whole lung lavage is the most effective therapy, especially for auto-immune disease. Novel therapies targeting alveolar macrophages (recombinant GM-CSF therapy or anti-GM-CSF antibodies (rituximab and plasmapheresis are being investigated. Our knowledge of the pathophysiology of PAP has improved in the past 20 yrs, but therapy for PAP still needs improvement.

  15. Pulmonary alveolar microlithiasis

    Directory of Open Access Journals (Sweden)

    Surender Kashyap

    2013-01-01

    Full Text Available Pulmonary alveolar microlithiasis (PAM is a rare, chronic lung disease with bilateral intra-alveolar calcium and phosphate deposition throughout the lung parenchyma with predominance to lower and midzone. Although, etiology and pathogenesis of PAM is not fully understood, the mutation in SLC34A2 gene that encodes a sodium-phosphate co-transporter in alveolar type II cells resulting in the accumulation and forming of microliths rich in calcium phosphate (due to impaired clearance are considered to be the cause of the disease. Chest radiograph and high-resolution CT of thorax are nearly pathognomonic for diagnosing PAM. HRCT demonstrates diffuse micronodules showing slight perilobular predominance resulting in calcification of interlobular septa. Patients with PAM are asymptomatic till development of hypoxemia and cor-pulmonale. No therapy has been proven to be beneficial except lung transplantation.

  16. Effects of the treatment with different fluids on alveolar epithelium barrier in rats with acute lung injury%不同液体治疗对急性肺损伤大鼠肺泡上皮细胞屏障功能的影响

    Institute of Scientific and Technical Information of China (English)

    魏洪霞; 杨毅; 邱海波; 郭涛; 赵明明; 陈秋华

    2009-01-01

    目的 观察不同液体治疗对急性肺损伤(ALI)大鼠肺泡上皮细胞屏障功能的影响.方法 ①与对照组比较,LPS组、NS组肺损伤评分明显升高(P均0.05),且后3组间比较差异也无统计学意义.②与对照组比较,LPS组、NS组肺W/D比值明显升高(P均0.05).⑤各组肺泡上皮细胞凋亡指数(AI)明显高于对照组(P均0.05).结论 胶体液较NS更能改善ALI大鼠肺泡上皮通透性,保护上皮细胞屏障功能.%Objective To observe the effects of different fluids on alveolar epithelium barrier in rats with acute lung injury (ALI). Methods Thirty-six Sprague-Dawley (SD) rats were randomly assigned into six groups with 6 rats in each group. ALI was induced by intravenous injection of lipopolysaccharide(LPS). Rats in all treatment groups were given different fluids and sacrificed after 4 hours. Evans blue dye (EBD) was injected via the femoral vein 30 minutes before death. Tracheobronchial tree was washed with normal saline (NS) after death, and broncho-alveolar lavage fluid (BALF) was collected. Leakage of EBD from blood into BALF (alveolar epithelial permeability) and wet/dry (W/D) ratio were measured. The mRNA expression of surfactant protein-C (SP-C) was assessed by reverse transcription-polymerase chain reaction (RT-PCR). Alveolar epithelium apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling (TUNEL). Lung injury was evaluated by Smith lung injury score. Results ①Lung injury scores in LPS and NS groups were significantly higher than in control group (both P0.05). No significant difference was found among the latter three groups. ②W/D ratio in LPS and NS groups were significantly higher than that in control group (both P0.05). ⑤Apoptosis index (AI) of alveolar epithelial cell in all the treatment groups were significantly higher than that in control group (all P<0.05). Compared with NS group, AI were noticeably lower in ALB and HES groups (both P<0

  17. [Dento-alveolar injuries].

    Science.gov (United States)

    Voorsmit, R A; Kuijpers-Jagtman, A M

    1992-11-01

    Most dento-alveolar traumas can be managed by the dentist-general practitioner. Still, there are some specific injuries which should be treated by dental specialists. Some specific guidelines are given for the combined surgical-orthodontic treatment of fracture of the coronal part of the root, intrusive luxation, abnormal position of the permanent tooth due to traumatic displacement of the deciduous tooth, ankylosis and tooth loss.

  18. 石棉暴露下内质网应激在肺泡上皮细胞凋亡中的作用机制%THE MECHANISM OF ENDOPLASMIC RETICULUM STRESS INDUCING ALVEOLAR EPI-THELIAL CELLS APOPTOSIS UNDERLYING ASBESTOS EXPOSURE

    Institute of Scientific and Technical Information of China (English)

    周煦; 刘刚

    2014-01-01

    Objective To investigate the role of endoplasmic reticulum stress ( ERS) in asbestos-induced Alveolar epithelial cell apoptosis.Methods A549 cells were treated with asbestos to observe the expression of ERS proteins and apop-tosis gene by immunofluorescence staining and western blotting.Results Under asbestos exposure, the expression of Bip, GRP94, IRE-1α, BAX and BAK are up-regulated.There is a positive correlativity of the expression of proteins to the ex-posure time of asbestos.Conclusion Endoplasmic reticulum stress takes part in asbestos-induced apoptosis.%目的:探讨石棉暴露下内质网应激在细胞凋亡中的作用机制。方法应用石棉处理A549细胞,免疫荧光染色免疫法和免疫印迹法观察内质网应激( ERS)相关蛋白与促凋亡基因的变化。结果石棉暴露下,ERS相关蛋白Bip、IRE-1α和GRP94,以及促凋亡基因BAX、BAK蛋白表达均上调,且与石棉暴露时间呈正相关。结论内质网应激参与了石棉诱导的细胞凋亡。

  19. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah

    2007-01-01

    a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation...... in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue...

  20. Overexpression of cyclooxygenase-2 in NCI-H292 human alveolar epithelial carcinoma cells: roles of p38 MAPK, ERK-1/2, and PI3K/PKB signaling proteins.

    Science.gov (United States)

    Sung, Suhaeng; Park, Yukyoung; Jo, Jeong-Rang; Jung, Nak-Kyun; Song, Dae-Kyu; Bae, Jaehoon; Keum, Dong-Yun; Kim, Jae-Bum; Park, Gy-Young; Jang, Byeong-Churl; Park, Jong-Wook

    2011-10-01

    Evidence suggests overexpression of COX-2 and its role in many human cancers, including lung. However, the regulatory mechanism underlying COX-2 overexpression in lung cancer is not fully understood. We herein investigated whether COX-2 is overexpressed in human airway cancer cell lines, including A549 (lung), Hep-2 (bronchial), and NCI-H292 (alveolar). When grown in cell culture medium containing 10% FBS (serum), of note, there was strong and transient induction of COX-2 protein and mRNA in NCI-H292 cells, but little or low COX-2 expression is seen in A549 or Hep-2 cells. Interestingly, strong and sustained activities of ERK-1/2, JNK-1/2, p38 MAPK, and PKB were also shown in NCI-H292 cells grown in presence of serum. Profoundly, results of pharmacological inhibition studies demonstrated that the serum-dependent COX-2 up-regulation in NCI-H292 cells is attributed to not only the p38 MAPK-, PI3K/PKB-, and ERK-1/2-mediated COX-2 transcriptional up-regulation but also the p38 MAPK- and ERK-1/2-mediated post-transcriptional COX-2 mRNA stabilization. Of further note, it was shown that the ERK-1/2 and PI3K/PKB (but not COX-2, p38 MAPK, and JNK-1/2) activities are necessary for growth of NCI-H292 cells. These findings collectively demonstrate for the first time that COX-2 expression is transiently up-regulated by serum addition in NCI-H292 cells and the serum-induced COX-2 expression is closely linked to the p38 MAPK-, ERK-1/2-, and PI3K/PKB-mediated COX-2 transcriptional and post-transcriptional up-regulation.

  1. Wnt signaling promotes the differentiation of adipose mesenchymal stem cells into type II alveolar epithelial cells%Wnt信号途径促进脂肪间充质干细胞向Ⅱ型肺泡上皮细胞分化

    Institute of Scientific and Technical Information of China (English)

    石莉; 竭晶; 王芳; 赵丹; 张秀芳; 彭丽萍

    2015-01-01

    背景:脂肪间充质干细胞向Ⅱ型肺泡上皮细胞定向分化的能力以及调节机制尚未完全阐明。  目的:观察脂肪间充质干细胞在体外分化为Ⅱ型肺泡上皮的能力以及W nt途径对分化的调节作用。  方法:取大鼠脂肪组织,体外分离培养脂肪间充质干细胞并通过流式细胞术进行鉴定。实验分为对照组、小气道生长液组和Wnt3a组,对照组用普通DMEM培养基培养,小气道生长液组和Wnt3a组均使用小气道生长液培养,且Wnt3a组加入Wnt信号通路激动剂Wnt3a培养。诱导10 d后分别通过qRT-PCR和免疫荧光检测Ⅱ型肺泡上皮标志物肺表面活性蛋白B,C,D的表达,并于诱导5 d和10 d时通过Western blot检测磷酸化β-catenin和GSK-3β。  结果与结论:大鼠脂肪组织中可成功分离出纯度较高的脂肪间充质干细胞,可表达 CD44和 CD29,不表达CD11b和CD45;经小气道生长液诱导后,脂肪间充质干细胞中肺表面活性蛋白B,C,D蛋白和mRNA表达均上调(P OBJECTIVE:To study the ability of adipose mesenchymal stem cels differentiating into type II alveolar epithelial cels in vitro and the function of Wnt pathway in the regulation of differentiation. METHODS:Adipose mesenchymal stem cels were obtained from fat tissue of rats and identified by flow cytometry. The adipose mesenchymal stem cels were divided into control group, smal airway growth medium (SAGM) group and Wnt3a group. Control group was treated with normal DMEM medium; SAGM and Wnt3a groups were both treated with smal airway growth medium, and additionaly, the Wnt3a group was treated with Wnt3a, a Wnt signaling pathway agonist. After 10 days, quantitative RT-PCR and immunofluorescence detection were used to test the expression of surfactant proteins B, C, D, type II alveolar epithelial markers. Phosphorylatedβ-catenin and GSK-3β were detected using western blot after 5 and 10 days of induction. RESULTS

  2. Megalin mediates transepithelial albumin clearance from the alveolar space of intact rabbit lungs.

    Science.gov (United States)

    Buchäckert, Yasmin; Rummel, Sebastian; Vohwinkel, Christine U; Gabrielli, Nieves M; Grzesik, Benno A; Mayer, Konstantin; Herold, Susanne; Morty, Rory E; Seeger, Werner; Vadász, István

    2012-10-15

    The alveolo-capillary barrier is effectively impermeable to large solutes such as proteins. A hallmark of acute lung injury/acute respiratory distress syndrome is the accumulation of protein-rich oedema fluid in the distal airspaces. Excess protein must be cleared from the alveolar space for recovery; however, the mechanisms of protein clearance remain incompletely understood. In intact rabbit lungs 29.8 ± 2.2% of the radio-labelled alveolar albumin was transported to the vascular compartment at 37°C within 120 min, as assessed by real-time measurement of 125I-albumin clearance from the alveolar space. At 4°C or 22°C significantly lower albumin clearance (3.7 ± 0.4 or 16.2 ± 1.1%, respectively) was observed. Deposition of a 1000-fold molar excess of unlabelled albumin into the alveolar space or inhibition of cytoskeletal rearrangement or clathrin-dependent endocytosis largely inhibited the transport of 125I-albumin to the vasculature, while administration of unlabelled albumin to the vascular space had no effect on albumin clearance. Furthermore, albumin uptake capacity was measured as about 0.37 mg ml−1 in cultured rat lung epithelial monolayers, further highlighting the (patho)physiological relevance of active alveolar epithelial protein transport. Moreover, gene silencing and pharmacological inhibition of the multi-ligand receptor megalin resulted in significantly decreased albumin binding and uptake in monolayers of primary alveolar type II and type I-like and cultured lung epithelial cells. Our data indicate that clearance of albumin from the distal air spaces is facilitated by an active, high-capacity, megalin-mediated transport process across the alveolar epithelium. Further understanding of this mechanism is of clinical importance, since an inability to clear excess protein from the alveolar space is associated with poor outcome in patients with acute lung injury/acute respiratory distress syndrome.

  3. 油烟中细颗粒物致胎鼠肺泡Ⅱ型上皮细胞DNA损伤的研究%Assessment of DNA Damage Induced by Cooking Oil Fumes Particulate in the Mice Alveolar Type Ⅱ Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    梁春梅; 操基玉; 王勇; 冯哲伟; 汪磊

    2011-01-01

    目的 探讨油烟中的细颗粒物(PM2.5)对原代培养的胎鼠肺泡Ⅱ型上皮细胞(AECⅡ)DNA的损伤效应.方法 将1只妊娠18d的SPF级ICR小鼠体内的胎鼠肺组织制成AECⅡ细胞悬液,取对数生长期细胞,调整细胞密度为1×106/ml,分别加入终浓度为0(溶剂对照,含10% FBS的DMEM)、12.5、25、50、100μg/ml的PM2.5(来源于烹调油烟)溶液,培养6、12h后进行MTT试验和彗星试验,并检测AECⅡ细胞的尾长、尾部DNA百分比、尾矩和Olive尾矩.结果与溶剂对照组比较,50、100 μg/ml PM2.5染毒6、12 h时胎鼠AECⅡ存活率下降,差异均有统计学意义(P<0.05);12.5、25、50μg/mlPM2.5染毒6、12h时胎鼠AECⅡ的尾长、尾部DNA百分比、尾矩和Olive尾矩升高,差异均有统计学意义(P<0.05).随着PM2.5染毒浓度的升高,AECⅡ细胞存活率呈下降趋势,尾长、尾部DNA百分比、尾矩和Olive尾矩均呈上升趋势.结论油烟中的PM2.5可降低AECⅡ的细胞活性,对AECⅡ的DNA具有损伤效应.%Objective To investigate DNA damage induced by cooking oil fume participate (PM2.5) in the mice alveolar type II epithelial cells in primary cultured. Methods The mice alveolar type Ⅱ epithelial cells were isolated from 18 days old fetuses of ICR mice. The cells in exponential phase were cultured at a density of 1×106 cells/ml,AEC II cells were treated with PM2.5 at the doses of 0 μg/ml (the solvent control, 10% FBS of DMEM), 12.5,25,50 and 100 μg/ml for 6 and 12 h. AEC Ⅱ cell proliferation were detected with MTT assays and the comet assay was used to detect the Olive tail moment,tail moment,tail length and tail intensity. Results The survival rate of AEC II was decreased with a dose-dependent manner; Olive tail moment, tail moment, tail length and tail intensity were increased with a dose-dependent manner. Conclusion Cooking oil fume participate may decrease the viability of AEC II cells and produce evident DNA damage.

  4. Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema

    OpenAIRE

    Solymosi, Esther A.; Kaestle-Gembardt, Stefanie M.; Vadász, István; Wang, Liming; Neye, Nils; Chupin, Cécile Julie Adrienne; Rozowsky, Simon; Ruehl, Ramona; Tabuchi, Arata; Schulz, Holger; Kapus, Andras; Morty, Rory E.; Kuebler, Wolfgang M.

    2013-01-01

    This study describes a novel mechanism for the formation of cardiogenic lung edema, a potentially fatal complication of left heart disease that was previously attributed to passive fluid filtration across an intact alveolo-capillary barrier. Instead, we demonstrate that a major part of cardiogenic edema results from active epithelial secretion of Cl− and secondary fluid flux into the alveolar space. Transepithelial Cl− secretion is triggered by inhibition of epithelial Na+ uptake and mediated...

  5. Alveolar bone grafting

    Directory of Open Access Journals (Sweden)

    Lilja Jan

    2009-10-01

    Full Text Available In patients with cleft lip and palate, bone grafting in the mixed dentition in the residual alveolar cleft has become a well-established procedure. The main advantages can be summarised as follows: stabilisation of the maxillary arch; facilitation of eruption of the canine and sometimes facilitation of the lateral incisor eruption; providing bony support to the teeth adjacent to the cleft; raising the alar base of the nose; facilitation of closure of an oro-nasal fistula; making it possible to insert a titanium fixture in the grafted site and to obtain favourable periodontal conditions of the teeth within and adjacent to the cleft. The timing of the ABG surgery take into consideration not only eruption of the canine but also that of the lateral incisor, if present. The best time for bone grafting surgery is when a thin shell of bone still covers the soon erupting lateral incisor or canine tooth close to the cleft.

  6. A Case of Acquired Pulmonary Alveolar Proteinosis Successfully Treated with Whole Lung Lavage

    Science.gov (United States)

    2016-05-18

    of your presentation. It is important to update this information so that we can provide quality support for you, your department, and the Medical...within the alveoli . Surfactant phospholipids and proteins are produced by type II alveolar epithelial cells, and subsequently cleared by the

  7. Alveolar system of Paramecium. I. Trapping polycationic dye as a result of membrane impairment.

    Science.gov (United States)

    Wyroba, E

    1981-01-01

    The function of Paramecium alveolar system underlying the cell membrane has been studied. Permeability and structure of cell membrane, alveolar membranes and alveoli following alpha-amylase, beta-amylase, phospholipase C and hyaluronidase treatment has been examined. It is demonstrated that droplets of polycationic dye, ruthenium red, have been trapped within the alveoli whereas the dye was also bound by the outer and inner alveolar membrane. This suggest the presence of anionic sites capable to bind cationic compounds within the alveoli. It may be concluded that the alveolar system in Paramecium is functioning as a barrier protecting the cell against the chemicals added from the outside when the cell membrane separating the cytoplasm from the medium is impaired.

  8. Bulky PAH-DNA induced by exposure of a co-culture model of human alveolar macrophages and embryonic epithelial cells to atmospheric particulate pollution; Adduits encombrants a l'ADN dans des cocultures de cellules pulmonaires humaines exposees a une pollution atmospherique particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Imane; Garcon, Guillaume; Billet, Sylvain; Shirali, Pirouz [Universite Lille Nord de France - Lille (France); Unite de Chimie Environnementale et Interactions sur le Vivant, MREI, Universite du Littoral Cote d' Opale, Dunkerque (France); Andre, Veronique; Le Goff, Jeremie; Sichel, Francois [GRECAN, Universite de Caen Basse-Normandie et centre Francois Baclesse, Caen (France); Roy Saint-Georges, Francoise; Mulliez, Philippe [Service de Pneumologie, Hopital Saint-Philibert, GHICL, Lille (France)

    2012-01-15

    Because of their deep penetration in human lungs, fine airborne particulate matter were described as mainly responsible for the deleterious effects of exposure to air pollution on health. Organic constituents are adsorbed on particles surface and, after inhalation, some (polycyclic aromatic hydrocarbons, PAHs) can be activated into reactive metabolites and can bind to DNA. The formation of bulky DNA adducts has been researched after exposure of mono-and co-cultures of alveolar macrophages (AM) and human embryonic human lung epithelial (L132), to fine air pollution particulate matter Air samples have been collected with cascade impactor and characterized: size distribution (92.15% < 2.5{mu}.m), specific surface area (1 m{sup 2}/g), inorganic (Fe, AI, Ca, Na, K, Mg, Pb, etc.) and organic compounds (PAHs, etc.). {sup 32}P post-labeling method was applied to detect bulky DNA adducts in AM and L132, in mono-and co-cultures, 72 h after their exposure to atmospheric particles at their Lethals and Effects concentrations or (LC or CE) to 50% (i.e. MA: EC{sub 50} = 74.63 {mu}g/mL and L132: LC-5-0 = 75.36 {mu}g/mL). Exposure to desorbed particles (MA: C1= 61.11 {mu}g/mL and L132 : C2 = 61.71 {mu}g/mL) and B[a]P (1 {mu}M) were included. Bulky PAH-DNA adducts were detected in AM in mono-culture after exposure to total particles (Pt), to B[a]P and desorbed particles (Pd). Whatever the exposure, no DNA adduct was detected in L132 in mono-culture. These results are coherent with the enzymatic activities of cytochrome P450 l Al in AM and L132. Exposure of co-culture to Pt, or Pd induced bulky adducts to DNA in AM but not in L132. Exposure to B[a]P alone has altered the DNA of AM and L132, in co-culture. Exposure to Pt is closer to the environmental conditions, but conferred an exposure to amounts of genotoxic agents compared to studies using organic extracts. The formation of bulky DNA adducts was nevertheless observed in AM exposed to Pt, in mono- or co-culture, indicating that

  9. 硫化氢对急性肺损伤大鼠肺泡上皮细胞内质网应激的调节%Regulatory effects of hydrogen sulfide on alveolar epithelial cell endoplasmic reticulum stress in rats with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    刘志伟; 王海英; 关岚; 赵斌

    2014-01-01

    目的 探索内源性硫化氢对于油酸诱导的急性肺损伤大鼠肺泡上皮细胞内质网应激的调节作用.方法 雄性Sprague Dawley大鼠随机(随机数字法)被分入正常对照组、油酸组、油酸+硫氢化钠组及硫氢化钠对照组.每个组进一步分为2、4和6h3个时间点.对肺组织进行肺组织损伤半定量评分,检测肺组织湿、干质量比和匀浆硫化氢含量.通过免疫组化染色和蛋白印迹法检测内质网应激的标志蛋白(GRP78和elF2α)的表达.结果 肺损伤大鼠肺组织损伤半定量评分及湿、干质量比明显升高,而肺组织硫化氢含量,肺泡上皮细胞GRP78及eIF2α的表达明显降低.在硫氢化钠预处理的大鼠中,肺损伤半定量评分及肺组织湿、干质量比明显降低,而肺组织硫化氢含量,肺泡上皮细胞GRP78及eIF2α的表达明显升高.结论 内源性硫化氢可以通过促进肺泡上皮细胞内质网应激反应进而在肺损伤过程中起到保护作用.%Objective To study the regulatory effect of hydrogen sulfide (H2S) on endoplasmic reticulum stress in alveolar epithelial cells of rats with acute lung injury (ALI) induced by oleic acid (OA).Methods Seventy-two male Sprague Dawley (SD) rats were equally divided into control group (C group),oleic acid-induced ALI group (OA group),oleic acid-induced ALI with sodium hydrosulfide (NaHS) pretreatment group (OA + NaHS group) and sodium hydrosulfide treatment group (NaHS group).The model of acute lung injury was made by oleic acid intravenous injection in dose of 0.1 mL/kg.NaHS was injected intra-abdominally in dose of 1 ml/kg with concentration of 56 μmol/L 30 min before administration of oleic acid for pretreatment.In control groups,saline was used instead of oleic acid and NaHS in the equivalent volume.Six rats of each group were sacrificed at 2 h,4 h and 6 hours separately after modeling for observing the acute injury of lung tissue.Index of quantitative assessment of

  10. Pulmonary alveolar microlithiasis with calcified pleural plaques

    Directory of Open Access Journals (Sweden)

    Malhotra Balbir

    2010-01-01

    Full Text Available Pulmonary alveolar microlithiasis (PAM is a rare disease. Herein we report a case of pulmonary alveolar microlithiasis who was suspected to have the disease on chest X-ray and was confirmed on high resolution CT and transbronchial lung biopsy. These investigations showed characteristic features of pulmonary alveolar microlithiasis with diffuse interstitial pulmonary fibrosis.

  11. Chronic alcohol ingestion changes the landscape of the alveolar epithelium.

    Science.gov (United States)

    Downs, Charles A; Trac, David; Brewer, Elizabeth M; Brown, Lou Ann; Helms, My N

    2013-01-01

    Similar to effects of alcohol on the heart, liver, and brain, the effects of ethanol (EtOH) on lung injury are preventable. Unlike other vital organ systems, however, the lethal effects of alcohol on the lung are underappreciated, perhaps because there are no signs of overt pulmonary disorder until a secondary insult, such as a bacterial infection or injury, occurs in the lung. This paper provides overview of the complex changes in the alveolar environment known to occur following both chronic and acute alcohol exposures. Contemporary animal and cell culture models for alcohol-induced lung dysfunction are discussed, with emphasis on the effect of alcohol on transepithelial transport processes, namely, epithelial sodium channel activity (ENaC). The cascading effect of tissue and phagocytic Nadph oxidase (Nox) may be triggered by ethanol exposure, and as such, alcohol ingestion and exposure lead to a prooxidative environment; thus impacting alveolar macrophage (AM) function and oxidative stress. A better understanding of how alcohol changes the landscape of the alveolar epithelium can lead to improvements in treating acute respiratory distress syndrome (ARDS) for which hospitalized alcoholics are at an increased risk.

  12. True Fibroma of Alveolar Mucosa

    Directory of Open Access Journals (Sweden)

    Shankargouda Patil

    2014-01-01

    Full Text Available Benign fibrous overgrowths are often found in the oral cavity, almost always being reactive/irritational in nature. However, benign mesenchymal neoplasms of the fibroblasts are extremely uncommon. Here we report a case of “True Fibroma of Alveolar Mucosa” for its rarity.

  13. Structural determinants of glomerular permeability.

    Science.gov (United States)

    Deen, W M; Lazzara, M J; Myers, B D

    2001-10-01

    Recent progress in relating the functional properties of the glomerular capillary wall to its unique structure is reviewed. The fenestrated endothelium, glomerular basement membrane (GBM), and epithelial filtration slits form a series arrangement in which the flow diverges as it enters the GBM from the fenestrae and converges again at the filtration slits. A hydrodynamic model that combines morphometric findings with water flow data in isolated GBM has predicted overall hydraulic permeabilities that are consistent with measurements in vivo. The resistance of the GBM to water flow, which accounts for roughly half that of the capillary wall, is strongly dependent on the extent to which the GBM surfaces are blocked by cells. The spatial frequency of filtration slits is predicted to be a very important determinant of the overall hydraulic permeability, in keeping with observations in several glomerular diseases in humans. Whereas the hydraulic resistances of the cell layers and GBM are additive, the overall sieving coefficient for a macromolecule (its concentration in Bowman's space divided by that in plasma) is the product of the sieving coefficients for the individual layers. Models for macromolecule filtration reveal that the individual sieving coefficients are influenced by one another and by the filtrate velocity, requiring great care in extrapolating in vitro observations to the living animal. The size selectivity of the glomerular capillary has been shown to be determined largely by the cellular layers, rather than the GBM. Controversial findings concerning glomerular charge selectivity are reviewed, and it is concluded that there is good evidence for a role of charge in restricting the transmural movement of albumin. Also discussed is an effect of albumin that has received little attention, namely, its tendency to increase the sieving coefficients of test macromolecules via steric interactions. Among the unresolved issues are the specific contributions of the

  14. Cigarette smoke exposure aggravates air space enlargement and alveolar cell apoptosis in Smad3 knockout mice.

    Science.gov (United States)

    Farkas, Laszlo; Farkas, Daniela; Warburton, David; Gauldie, Jack; Shi, Wei; Stampfli, Martin R; Voelkel, Norbert F; Kolb, Martin

    2011-10-01

    The concept of genetic susceptibility factors predisposing cigarette smokers to develop emphysema stems from the clinical observation that only a fraction of smokers develop clinically significant chronic obstructive pulmonary disease. We investigated whether Smad3 knockout mice, which develop spontaneous air space enlargement after birth because of a defect in transforming growth factor-β (TGF-β) signaling, develop enhanced alveolar cell apoptosis and air space enlargement following cigarette smoke exposure. We investigated Smad3(-/-) and Smad3(+/+) mice at different adult ages and determined air space enlargement, alveolar cell proliferation, and apoptosis. Furthermore, laser-capture microdissection and real-time PCR were used to measure compartment-specific gene expression. We then compared the effects of cigarette smoke exposure on Smad3(-/-) and littermate controls. Smad3 knockout resulted in the development of air space enlargement in the adult mouse and was associated with decreased alveolar VEGF levels and activity and increased alveolar cell apoptosis. Cigarette smoke exposure aggravated air space enlargement and alveolar cell apoptosis. We also found increased Smad2 protein expression and phosphorylation, which was enhanced following cigarette smoke exposure, in Smad3-knockout animals. Double immunofluorescence analysis revealed that endothelial apoptosis started before epithelial apoptosis. Our data indicate that balanced TGF-β signaling is not only important for regulation of extracellular matrix turnover, but also for alveolar cell homeostasis. Impaired signaling via the Smad3 pathway results in alveolar cell apoptosis and alveolar destruction, likely via increased Smad2 and reduced VEGF expression and might represent a predisposition for accelerated development of emphysema due to cigarette smoke exposure.

  15. 艾烟冷凝物对肺泡Ⅱ型上皮细胞A549活性及凋亡的影响%Influences of condensate of moxa smoke on viability and apoptosis of type Ⅱ alveolar epithelial cells (A549)

    Institute of Scientific and Technical Information of China (English)

    胡海; 赵百孝; 邬继红; 杨陟华; 韩丽; 蔡虹; 朱茂祥

    2012-01-01

    目的 观察艾烟冷凝物(PM10采取人体可吸入的艾烟部分)对肺泡Ⅱ型上皮细胞(A549)活性及凋亡的影响.方法 体外培养A549细胞,加入不同浓度的艾烟冷凝物,应用四甲基偶氮唑蓝(MTT)法、荧光显微镜来观察其对A549的细胞活性以及细胞凋亡的影响.结果 MTT法结果显示:与对照组相比,A549的细胞存活率随浓度和时间发生改变,具有明显的时间浓度依赖性;0.12g/L浓度的艾烟冷凝物作用于细胞12h后可显著提高细胞存活率(P=0.005<0.01);荧光显微镜下观察发现艾烟冷凝物可以引起细胞发生凋亡,且具有浓度依赖性.结论 A549细胞随着艾烟冷凝物浓度的增加、刺激时间的增加而引起细胞活力逐渐下降,表明一定浓度的艾烟冷凝物和一定的刺激时间对细胞具有毒性作用;一定浓度的艾烟冷凝物在较短刺激时间内具有细胞增殖作用,故认为艾烟对细胞的增殖作用可能是艾烟发挥有效作用的重要因素之一;能够引起细胞的凋亡可能是毒性作用的重要因素之一.%Objective To observe the influences of condensate of moxa smoke (PM10, taken inhalable portion of moxa smoke) on viability and apoptosis of type Ⅱ alveolar epithelial cells ( A549 ). Methods A546 cells were cultured in vitro and then condensate of moxa smoke was added in different concentration. The influences of condensate of moxa smoke on the viability and apoptosis of A546 cells were observed by applying MTT assay and fluorescence microscope. Results The results of MTT assay showed that compared with control group, the survival rate of A546 cells changed with the changes of concentration and time showing an obvious time-dependence and a concentration-dependence. The condensate in the dose of 0. 12 mg/mL significantly improved the survival rate of A546 cells after acting on the cells for 12 hours (P =0. 005 <0. 01). The observation of fluorescence microscope showed that the apoptosis of A

  16. The effect of phospholipid transfer protein on cigarette smoke extract induced epithelial-mesenchymal transition of rat alveolar type Ⅱ cells%磷脂转运蛋白在烟草诱导RLE-6TN细胞株发生上皮间质转化中的作用

    Institute of Scientific and Technical Information of China (English)

    巫凤苹; 陈亚娟; 余秀英; 廖科; 李丹丹; 陈虹

    2016-01-01

    Objective To investigate the effect of phospholipid transfer protein(PLTP) on cigarette smoke extract(CSE) induced epithelial-mesenchymal transition(EMT) in rat alveolar Type Ⅱ cells (RLE-6TN).Methods CSE of different concentrations (0%,0.25%,0.5% and 1%) was co-cultured for 2 or 3days with RLE-6TN,either pre-treated or not pre-treated with siRNA-PLTP for 6 h.Expression levels of E-cadherin mRNA and Vimentin mRNA were examined by RT-PCR,while expression levels of PLTP,E-cadherin,N-cadherin and Vimentin were examined by Western blot.Results Our results showed that the expression of E-cadherin mRNA decreased in CSE-treated groups:1.01 ± 0.05,0.74 ± 0.05,0.65 ± 0.03,0.30 ±0.08 respectively at different concentrations of CSE (0 %,0.25%,0.5 %,and 1.0%);while the level of Vimentin mRNA increased significantly in 1% CSE treated cells (1.88 ± O.49),compared with control cells (1.01 ±0.20).Treatment with CSE at different concentrations (0%,0.25%,0.5% and 1%) showed that the protein levels of PLTP were 0.42 ± 0.02,0.89 ± 0.25,1.08 ± 0.18,1.61 ± 0.06 respectively;those of E-cadherin were 1.61 ± 0.04,1.08 ± 0.10,0.62 ± 0.08,0.68 ± 0.17,respectively;those of N-cadherin were 0.60 ± 0.14,0.57 ± 0.26,0.88 ± 0.30,1.94 ± 0.54,respectively;and those of Vimentin were 0.61 ± 0.05,0.98 ± 0.16,1.07 ± 0.14,1.34 ± 0.19,respectively;all P < 0.05 when the 1% CSE group was compared with the control group.EMT induced by CSE was significantly inhibited by siRNA-PLTP.Conclusion PLTP may be involved in CSE induced EMT of rat alveolar cells.%目的 探讨磷脂转运蛋白(PLTP)在烟草提取物(CSE)诱导大鼠Ⅱ型肺泡上皮细胞株RLE-6TN发生上皮间质转化(EMT)中的作用.方法 体外培养RLE-6TN细胞株24 h,分为4组,每组3孔,分别加入0%、0.25%、0.5%和1% CSE培养2d,检测E-钙黏蛋白和波形蛋白mRNA表达以及细胞和CSE共培养3d检测PLTP、EMT相关蛋白(E-钙黏蛋白、N-钙黏蛋白和波形

  17. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  18. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment

    OpenAIRE

    Degryse, Amber L.; Tanjore, Harikrishna; Xu, Xiaochuan C.; Polosukhin, Vasiliy V.; Jones, Brittany R.; Chad S Boomershine; Ortiz, Camila; Sherrill, Taylor P.; McMahon, Frank B.; Gleaves, Linda A.; Blackwell, Timothy S.; Lawson, William E.

    2011-01-01

    The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice tha...

  19. Alveolar Macrophage Polarisation in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Saleh A. Almatroodi

    2014-01-01

    Full Text Available The role of alveolar macrophages in lung cancer is multifaceted and conflicting. Alveolar macrophage secretion of proinflammatory cytokines has been found to enhance antitumour functions, cytostasis (inhibition of tumour growth, and cytotoxicity (macrophage-mediated killing. In contrast, protumour functions of alveolar macrophages in lung cancer have also been indicated. Inhibition of antitumour function via secretion of the anti-inflammatory cytokine IL-10 as well as reduced secretion of proinflammatory cytokines and reduction of mannose receptor expression on alveolar macrophages may contribute to lung cancer progression and metastasis. Alveolar macrophages have also been found to contribute to angiogenesis and tumour growth via the secretion of IL-8 and VEGF. This paper reviews the evidence for a dual role of alveolar macrophages in lung cancer progression.

  20. [Persistent dento-alveolar pain disorder (PDAP)].

    Science.gov (United States)

    Warnsinck, C J; Koutris, M; Shemesh, H; Lobbezoo, F

    2015-02-01

    Dento-alveolar pain is common in the orofacial area. Persistent dento-alveolar pain could be experienced without an identifiable etiology with poor response to existing treatments. Confusion about the diagnosis and classification of persistent dento-alveolar pain (PDAP) disorders could explain the difficulties in treatment and unfavorable prognosis. Recently, initial steps were made to improve the taxonomy and diagnostic criteria for PDAP in order to improve clinical research and care.

  1. Reserve autophagic capacity in alveolar epithelia provides a replicative niche for influenza A virus.

    Science.gov (United States)

    Hahn, David R; Na, Cheng-Lun; Weaver, Timothy E

    2014-09-01

    Autophagy contributes to cellular homeostasis through metabolite recycling and degradation of cytotoxic protein aggregates and damaged organelles. Although recent studies have established that the requirement for basal autophagy is largely tissue specific, the importance of autophagy for alveolar epithelial cell homeostasis remains an important knowledge gap. In the present study we generated two mouse models, with > 90% or > 50% recombination at the Atg5 locus in the distal respiratory epithelium, to assess the effect of dose-dependent decreases in autophagy on alveolar homeostasis. A 90% decrease in autophagy was well tolerated in young adult mice but resulted in alveolar septal thickening and altered lung mechanics in aged animals, consistent with accumulation of damage over time. By comparison, a 50% decrease in autophagy had no effect on alveolar structure or function throughout the murine life span, indicating that basal autophagy in this compartment exceeds that required for homeostasis. A 50% decrease in autophagy in the bronchoalveolar epithelium significantly attenuated influenza A/H3N2 viral replication, leading to improved lung structure and function and reduced morbidity and mortality after infection. The reserve of autophagic capacity in the alveolar epithelium may provide a niche for replication of influenza A virus.

  2. Estimation of soil permeability

    Directory of Open Access Journals (Sweden)

    Amr F. Elhakim

    2016-09-01

    Full Text Available Soils are permeable materials because of the existence of interconnected voids that allow the flow of fluids when a difference in energy head exists. A good knowledge of soil permeability is needed for estimating the quantity of seepage under dams and dewatering to facilitate underground construction. Soil permeability, also termed hydraulic conductivity, is measured using several methods that include constant and falling head laboratory tests on intact or reconstituted specimens. Alternatively, permeability may be measured in the field using insitu borehole permeability testing (e.g. [2], and field pumping tests. A less attractive method is to empirically deduce the coefficient of permeability from the results of simple laboratory tests such as the grain size distribution. Otherwise, soil permeability has been assessed from the cone/piezocone penetration tests (e.g. [13,14]. In this paper, the coefficient of permeability was measured using field falling head at different depths. Furthermore, the field coefficient of permeability was measured using pumping tests at the same site. The measured permeability values are compared to the values empirically deduced from the cone penetration test for the same location. Likewise, the coefficients of permeability are empirically obtained using correlations based on the index soil properties of the tested sand for comparison with the measured values.

  3. 促炎症细胞因子对新生猪肺泡Ⅱ型上皮细胞相关生长因子表达的影响%Effect of proinflammatory cytokines on growth factor expression of type n alveolar epithelial cells from neonate piglet lungs

    Institute of Scientific and Technical Information of China (English)

    吴盼盼; 刘海沛; 钱莉玲; 俞彰; 孙波

    2010-01-01

    Objective To establish a method of isolation, purification and identification of type Ⅱ alveolar epithelial cells (AEC- K ) from neonate piglet lungs of 1 ~ 3 days old and to investigate effects of proinflammatory cytokines on expression of growth factors (GFs). The yield, viability and purity of AEC- Ⅱ obtained using different enzyme digestion and purifying methods were compared. Methods After the first 24-hour culture of AEC- Ⅱ ,the media containing interleukin (IL)-1β,IL-6 and IGF-Ⅰ at different concentrations were used to culture AEC-Ⅱ for another 48 hours. And then the cells were counted and the expressions of insulin-like growth factor (IGF-Ⅰ ), platelet-derived growth factor ( PDGF), surfactant proteins (SP) -A and SP-B mRNA were determined by real time PCR. Results A significantly higher yield of AEC-Ⅱ was achieved by digesting the lung with 30 unit/ml elastase and 0.1 % trypsin at 37 t for 20 min, the yield was (5.33 ±0.54) × 106 after adjusted by the weight of lung and heart (P <0.01). The number of purified AEC-II obtained by immune adherence method was (38.0 ±28.0) × 106 perpiglet which was higher than by the method of percoll. The optimal phenotype maintenance time of AEC- Ⅱ was the first 24~96 hours in the primary culture. With increasing concentrations of IL-1 β and IL-6, there were decreased proliferation and expression of SP-A and IGF-Ⅰ mRNA in the cultured AEC- Ⅱ ,but SP-B mRNA expression was not affected. Both AEC-Ⅱ proliferation and expression of SP-A, SP-B mRNA decreased significantly after cultured with anti-IGF-Ⅰ. Conclusion In a new model of cultured AEC-Ⅱ from neonate piglets, IL-1β and IL-6 inhibited AEC- Ⅱ proliferation and SP-A mRNA expression through IGF-Ⅰ -dependent mechanisms.%目的 建立出生后1~3 d新生猪肺泡Ⅱ型上皮细胞(AEC-Ⅱ)体外分离纯化及鉴定方法,探讨促炎症细胞因子对AEC-Ⅱ长因子(GFs)的影响,比较不同消化酶溶液、纯化方法获得细

  4. Influences of methyl-β-cyclodextrin-caused caveolae destruction on TGF-y/Smad signaling pathway and on proliferation of type Ⅱ alveolar epithelial cells%甲基-β-环糊精对肺泡Ⅱ型上皮细胞增殖和TGF-β/Smad信号通路的影响

    Institute of Scientific and Technical Information of China (English)

    王勤; 王建春; 李玉英; 王关嵩

    2011-01-01

    Objective To study the influences of methyl-β-cyclodextrin ( MβCD)-caused caveolae destruction on proliferation of type Ⅱ alveolar epithelial cells ( AECs Ⅱ ) and on TGF-β/Smad signaling pathway in AECs Ⅱ. Methods Rat AECs Ⅱ were isolated through enzyme digestion, and then identified through immunofluorescence assay. The distribution of caveolin-1 (a caveolae-specific protein) and type Ⅰ TGF-β receptor (TβR- Ⅰ ) in AECs Ⅱ cell membranes was analyzed with double-labeling immunofluorescence assay and confocal laser scanning microscopy. AECs Ⅱ were divided into a treatment group and a control group. MβCD (5 mmol/L in DME0M) was added into the treatment group to destroy caveolae of AECs Ⅱ, while DMEM was added into the control group. Lipid rafts were extracted from AECs Ⅱ by nonionic detergent method, and the distribution of caveolin-1 and TβR- Ⅰ in cell membranes of treated AECs Ⅱ was analyzed through SDS-PAGE.The expression of caveolin-1 and phosphorylated Smad2 (pSmad2, a downstream molecule of TGF-β/Smad signaling pathway) in AECs Ⅱ was analyzed through Western blotting. The proliferation rate of AECs Ⅱ was analyzed through methyl thiazolyl tetrazolium method. Results The double-labeling immunofluorescence assay and lipid raft extraction showed that TβR-Ⅰ was mainly distributed in caveolae of cell membrane and, after MβCD treatment, was re-distributed in non-raft domains. The expression of caveolin-1 in AECs Ⅱ of the treatment group was significantly lower than that of the control group [( 24.53 ± 3.24 ) % vs (54.83 ± 5.67 ) %,P <0. 01]. The expression of pSmad2 in AECs Ⅱ of the treatment group was significantly higher than that of the control group [( 10.93 ± 1.11 ) % vs ( 8.36 ± 0.64) %, P < 0. 05]. The proliferation rate of AECs Ⅱ of the treatment group is significantly lower than that of the control group (31.00 ±4.18)% vs (49.20 ±4.44)%, P <0. 01 ). Corclusior MβCD-caused caveolae

  5. 全氟化碳对脂多糖诱导Ⅱ型肺泡上皮损伤的保护机制研究%The protective effect of perfluorocarbon on the injury of alveolar epithelial cells induced by lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    朱月钮; 陈菲; 张明军; 魏红霞; 朱晓东

    2014-01-01

    Objective To explore the effects of perfluorocarbon (PFC) on the damaged type Ⅱ alveolar epithelial cells (AEC Ⅱ) induced by lipopolysaccharide (LPS),and the apoptosis and inflammatory reaction of AEC Ⅱ induced by LPS.Methods Primary AEC Ⅱ was divided into control group according to the random number table method,LPS group,PFC group and PFC + LPS group.LPS group:LPS (1 μg/ml) was added to cells.PFC group:PFC (20%) was added to cells.PFC + LPS group:PFC (20%) and LPS (1 μg/ml) were added to cells.The apoptotic rate of AEC Ⅱ was detected by flow cytometry.Morphologic change was observed by electron microscope.Concentrations of intedeukin (IL)-6 and IL-10 of supernatant were detected by ELISA.Results Apoptotic rate of AEC Ⅱ remarkably increased in LPS group than in control grouop [(10.89 ± 1.04) % vs (14.29 ± 1.93) %] (P < 0.05).Compared with LPS group,the apoptotic rate of AEC Ⅱ decreased remarkably in the PFC + LPS group [(12.22 ± 1.47) %],(P < 0.05).IL-6 production of AEC Ⅱ significantly increased in LPS group than in control group [(482.58 ± 26.84) vs (229.40 ± 7.61) pg/ml pg/ml] (P < 0.05),while decreased in PFC + LPS group [(265.44 ± 29.95) pg/ml].IL-10 production of AEC Ⅱ significantly increased in LPS group than in control group [(1 497.29 ±191.89) pg/ml vs (725.87 ±51.83) pg/ml] (P <0.05),while there was no difference between LPS group and PFC + LPS group (P > 0.05).Conclusion PFC can protect AEC Ⅱ against the injury induced by LPS.PFC can also release the level of inflammatory response.%目的 探讨全氟化碳(perfluorocarbon,PFC)对脂多糖(lipopolysaccharide,LPS)作用下胎鼠Ⅱ型肺泡上皮细胞的凋亡以及炎症反应的影响.方法 分离纯化原代胎鼠Ⅱ型肺泡上皮细胞,采用随机数字表法随机分为对照组、LPS组、PFC组、PFC+ LPS组.LPS组培养液加入1μg/ml的LPS,PFC组培养液加入20%容积比的PFC,PFC+ LPS组培养液加入1μg/ml LPS和20%容积比PFC,

  6. JAM-A regulates permeability and inflammation in the intestine in vivo.

    Science.gov (United States)

    Laukoetter, Mike G; Nava, Porfirio; Lee, Winston Y; Severson, Eric A; Capaldo, Christopher T; Babbin, Brian A; Williams, Ifor R; Koval, Michael; Peatman, Eric; Campbell, Jacquelyn A; Dermody, Terence S; Nusrat, Asma; Parkos, Charles A

    2007-12-24

    Recent evidence has linked intestinal permeability to mucosal inflammation, but molecular studies are lacking. Candidate regulatory molecules localized within the tight junction (TJ) include Junctional Adhesion Molecule (JAM-A), which has been implicated in the regulation of barrier function and leukocyte migration. Thus, we analyzed the intestinal mucosa of JAM-A-deficient (JAM-A(-/-)) mice for evidence of enhanced permeability and inflammation. Colonic mucosa from JAM-A(-/-) mice had normal epithelial architecture but increased polymorphonuclear leukocyte infiltration and large lymphoid aggregates not seen in wild-type controls. Barrier function experiments revealed increased mucosal permeability, as indicated by enhanced dextran flux, and decreased transepithelial electrical resistance in JAM-A(-/-) mice. The in vivo observations were epithelial specific, because monolayers of JAM-A(-/-) epithelial cells also demonstrated increased permeability. Analyses of other TJ components revealed increased expression of claudin-10 and -15 in the colonic mucosa of JAM-A(-/-) mice and in JAM-A small interfering RNA-treated epithelial cells. Given the observed increase in colonic inflammation and permeability, we assessed the susceptibility of JAM-A(-/-) mice to the induction of colitis with dextran sulfate sodium (DSS). Although DSS-treated JAM-A(-/-) animals had increased clinical disease compared with controls, colonic mucosa showed less injury and increased epithelial proliferation. These findings demonstrate a complex role of JAM-A in intestinal homeostasis by regulating epithelial permeability, inflammation, and proliferation.

  7. Permeability prediction in chalks

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika

    2011-01-01

    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability....... The relationships between permeability and porosity from core data were first examined using Kozeny’s equation. The data were analyzed for any correlations to the specific surface of the grain, Sg, and to the hydraulic property defined as the flow zone indicator (FZI). These two methods use two different approaches...... to enhance permeability prediction fromKozeny’s equation. The FZI is based on a concept of a tortuous flow path in a granular bed. The Sg concept considers the pore space that is exposed to fluid flow and models permeability resulting from effective flow parallel to pressure drop. The porosity-permeability...

  8. Pulmonary alveolar proteinosis in a cat

    NARCIS (Netherlands)

    Szatmári, Viktor; Teske, Erik; Nikkels, Peter G J; Griese, Matthias; de Jong, Pim A; Grinwis, Guy; Theegarten, Dirk; Veraa, Stefanie; van Steenbeek, Frank G; Drent, Marjolein; Bonella, Francesco

    2015-01-01

    BACKGROUND: Pulmonary alveolar proteinosis is an extremely rare lung disease in animals and humans. It is characterized by the deposition of a large amount of phospholipoproteinaceous material in the alveoli. There are several possible etiologies, both congenital and acquired. Alveolar macrophages p

  9. Pulmonary alveolar microlithiasis in children

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H. [Center of Diagnostic Radiology, Frankfurt Univ. (Germany); Loercher, U. [Center of Diagnostic Radiology, Frankfurt Univ. (Germany); Kitz, R. [Center of Pediatrics, Frankfurt Univ. (Germany); Zielen, S. [Center of Pediatrics, Frankfurt Univ. (Germany); Ahrens, P. [Center of Pediatrics, Frankfurt Univ. (Germany); Koenig, R. [Inst. of Human Genetics, Frankfurt Univ. (Germany)

    1996-01-01

    Two asymptomatic Turkish sibs are presented, a 4-year-old boy and his 7-year-old sister, with pulmonary alveolar microlithiasis (PAM) confirmed by transbronchial lung biopsy and bronchoalveolar lavage. Chest radiographs and high resolution CT demonstrated wide-spread intra-alveolar calcifications in both lungs. The lesions were sharply defined and less than 1 mm in diameter. CT documented a high concentration of microliths along the bronchovascular bundles, the intralobular fissue and the (sub)pleural lung parenchyma. The combination of bronchoalveolar lavage and roentgenographic appearance in high resolution CT are characteristic and pathognomonic, and can confirm the diagnosis. The more severe changes in the elder sib and the radiographic controls suggest that the pulmonary disease may be progressive in our patients. The described family of consanguineous, unaffected parents with two affected and one healthy child confirmed the autosomal recessive inheritance of PAM (McKusick 265100). In addition, the affected girl had autosomal recessive Waardenburg-anophthalmia syndrome (McKusick 206920), raising the question of whether this is a chance occurrence or possibly a contiguous gene syndrome. (orig.)

  10. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chuan Junlan [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Li Yanzhen [Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics (China); Yang Likai; Sun Xun [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Zhang Qiang [Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences (China); Gong Tao, E-mail: gongtaoy@126.com; Zhang Zhirong, E-mail: zrzzl@vip.sina.com [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China)

    2013-05-15

    The present study aimed at developing a drug delivery system targeting the densest site of tuberculosis infection, the alveolar macrophages (AMs). Rifampicin (RFP)-loaded solid lipid nanoparticles (RFP-SLNs) with an average size of 829.6 {+-} 16.1 nm were prepared by a modified lipid film hydration method. The cytotoxicity of RFP-SLNs to AMs and alveolar epithelial type II cells (AECs) was examined using MTT assays. The viability of AMs and AECs was above 80 % after treatment with RFP-SLNs, which showed low toxicity to both AMs and AECs. Confocal Laser Scanning Microscopy was employed to observe the interaction between RFP-SLNs and both AMs and AECs. After incubating the cells with RFP-SLNs for 2 h, the fluorescent intensity in AMs was more and remained longer (from 0.5 to 12 h) when compared with that in AECs (from 0.5 to 8 h). In vitro uptake characteristics of RFP-SLNs in AMs and AECs were also investigated by detection of intracellular RFP by High performance liquid chromatography. Results showed that RFP-SLNs delivered markedly higher RFP into AMs (691.7 ng/mg in cultured AMs, 662.6 ng/mg in primary AMs) than that into AECs (319.2 ng/mg in cultured AECs, 287.2 ng/mg in primary AECs). Subsequently, in vivo delivery efficiency and the selectivity of RFP-SLNs were further verified in Sprague-Dawley rats. Under pulmonary administration of RFP-SLNs, the amount of RFP in AMs was significantly higher than that in AECs at each time point. Our results demonstrated that solid lipid nanoparticles are a promising strategy for the delivery of rifampicin to alveolar macrophages selectively.

  11. A computational approach to understand in vitro alveolar morphogenesis.

    Directory of Open Access Journals (Sweden)

    Sean H J Kim

    Full Text Available Primary human alveolar type II (AT II epithelial cells maintained in Matrigel cultures form alveolar-like cysts (ALCs using a cytogenesis mechanism that is different from that of other studied epithelial cell types: neither proliferation nor death is involved. During ALC formation, AT II cells engage simultaneously in fundamentally different, but not fully characterized activities. Mechanisms enabling these activities and the roles they play during different process stages are virtually unknown. Identifying, characterizing, and understanding the activities and mechanisms are essential to achieving deeper insight into this fundamental feature of morphogenesis. That deeper insight is needed to answer important questions. When and how does an AT cell choose to switch from one activity to another? Why does it choose one action rather than another? We report obtaining plausible answers using a rigorous, multi-attribute modeling and simulation approach that leveraged earlier efforts by using new, agent and object-oriented capabilities. We discovered a set of cell-level operating principles that enabled in silico cells to self-organize and generate systemic cystogenesis phenomena that are quantitatively indistinguishable from those observed in vitro. Success required that the cell components be quasi-autonomous. As simulation time advances, each in silico cell autonomously updates its environment information to reclassify its condition. It then uses the axiomatic operating principles to execute just one action for each possible condition. The quasi-autonomous actions of individual in silico cells were sufficient for developing stable cyst-like structures. The results strengthen in silico to in vitro mappings at three levels: mechanisms, behaviors, and operating principles, thereby achieving a degree of validation and enabling answering the questions posed. We suggest that the in silico operating principles presented may have a biological counterpart

  12. Control the Epithelial Barrier: A Pivotal First Line of Defense

    Directory of Open Access Journals (Sweden)

    Catherine M McKay

    2004-01-01

    Full Text Available Lumen-derived material gains access to the mucosa by permeating between adjacent epithelial cells (ie, paracellular pathway, by transcytosis across the apical and basolateral cell membranes (ie, transcellular pathway or by exploiting breaks or erosions in the epithelium that may, for example, result from inflammation. Increased epithelial permeability (or decreased barrier function has repeatedly been demonstrated in a variety of gut disturbances; notably, in inflammatory bowel disease (IBD. There has been an exponential increase in our knowledge of the structural elements that comprise the epithelial barrier, and of the intrinsic factors (eg, cytokines and external stimuli (eg, bacterial toxins that can either perturb or enhance epithelial permeability. Canadian researchers have been very active in the study of epithelial permeability and have been responsible for major advances in the field, documenting increased permeability in patients with ulcer disease and IBD and some of their first degree relatives (as well as before onset of overt inflammation, and elucidating mechanisms of stress-induced and cytokine-induced increases in permeability (1-8. A recent study from Scott et al (9 continues this impressive tradition.

  13. Oral administration of aflatoxin G₁ induces chronic alveolar inflammation associated with lung tumorigenesis.

    Science.gov (United States)

    Liu, Chunping; Shen, Haitao; Yi, Li; Shao, Peilu; Soulika, Athena M; Meng, Xinxing; Xing, Lingxiao; Yan, Xia; Zhang, Xianghong

    2015-02-03

    Our previous studies showed oral gavage of aflatoxin G₁ (AFG₁) induced lung adenocarcinoma in NIH mice. We recently found that a single intratracheal administration of AFG₁ caused chronic inflammatory changes in rat alveolar septum. Here, we examine whether oral gavage of AFG₁ induces chronic lung inflammation and how it contributes to carcinogenesis. We evaluated chronic lung inflammatory responses in Balb/c mice after oral gavage of AFG₁ for 1, 3 and 6 months. Inflammatory responses were heightened in the lung alveolar septum, 3 and 6 months after AFG₁ treatment, evidenced by increased macrophages and lymphocytes infiltration, up-regulation of NF-κB and p-STAT3, and cytokines production. High expression levels of superoxide dismutase (SOD-2) and hemoxygenase-1 (HO-1), two established markers of oxidative stress, were detected in alveolar epithelium of AFG₁-treated mice. Promoted alveolar type II cell (AT-II) proliferation in alveolar epithelium and angiogenesis, as well as increased COX-2 expression were also observed in lung tissues of AFG₁-treated mice. Furthermore, we prolonged survival of the mice in the above model for another 6 months to examine the contribution of AFG₁-induced chronic inflammation to lung tumorigenesis. Twelve months later, we observed that AFG₁ induced alveolar epithelial hyperplasia and adenocarcinoma in Balb/c mice. Up-regulation of NF-κB, p-STAT3, and COX-2 was also induced in lung adenocarcinoma, thus establishing a link between AFG₁-induced chronic inflammation and lung tumorigenesis. This is the first study to show that oral administration of AFG₁ could induce chronic lung inflammation, which may provide a pro-tumor microenvironment to contribute to lung tumorigenesis.

  14. Activation of Type II Cells into Regenerative Stem Cell Antigen-1+ Cells during Alveolar Repair

    Science.gov (United States)

    Kumar, Varsha Suresh; Zhang, Wei; Rehman, Jalees; Malik, Asrar B.

    2015-01-01

    The alveolar epithelium is composed of two cell types: type I cells comprise 95% of the gas exchange surface area, whereas type II cells secrete surfactant, while retaining the ability to convert into type I cells to induce alveolar repair. Using lineage-tracing analyses in the mouse model of Pseudomonas aeruginosa–induced lung injury, we identified a population of stem cell antigen (Sca)-1–expressing type II cells with progenitor cell properties that mediate alveolar repair. These cells were shown to be distinct from previously reported Sca-1–expressing bronchioalveolar stem cells. Microarray and Wnt reporter studies showed that surfactant protein (Sp)-C+Sca-1+ cells expressed Wnt signaling pathway genes, and inhibiting Wnt/β-catenin signaling prevented the regenerative function of Sp-C+Sca-1+ cells in vitro. Thus, P. aeruginosa–mediated lung injury induces the generation of a Sca-1+ subset of type II cells. The progenitor phenotype of the Sp-C+Sca-1+ cells that mediates alveolar epithelial repair might involve Wnt signaling. PMID:25474582

  15. Identification of an Autophagy Defect in Smokers’ Alveolar Macrophages1

    OpenAIRE

    2010-01-01

    Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbial-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers’ lungs but they have a functional immune deficit. In this study, we identify for the first time an autophagy defect in smokers’ alveolar macrophages. Smokers’ alveolar macrophages accumulate both autophagosomes and p6...

  16. Pulmonary administration of phosphoinositide 3-kinase inhibitor is a curative treatment for chronic obstructive pulmonary disease by alveolar regeneration.

    Science.gov (United States)

    Horiguchi, Michiko; Oiso, Yuki; Sakai, Hitomi; Motomura, Tomoki; Yamashita, Chikamasa

    2015-09-10

    Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causing widespread and irreversible alveoli collapse. The discovery of a low-molecular-weight compound that induces regeneration of pulmonary alveoli is of utmost urgency to cure intractable pulmonary diseases such as COPD. However, a practically useful compound for regenerating pulmonary alveoli is yet to be reported. Previously, we have elucidated that Akt phosphorylation is involved in a differentiation-inducing molecular mechanism of human alveolar epithelial stem cells, which play a role in regenerating pulmonary alveoli. In the present study, we directed our attention to phosphoinositide 3-kinase (PI3K)-Akt signaling and examined whether PI3K inhibitors display the pulmonary alveolus regeneration. Three PI3K inhibitors with different PI3K subtype specificities (Wortmannin, AS605240, PIK-75 hydrochloride) were tested for the differentiation-inducing effect on human alveolar epithelial stem cells, and Wortmannin demonstrated the most potent differentiation-inducing activity. We evaluated Akt phosphorylation in pulmonary tissues of an elastase-induced murine COPD model and found that Akt phosphorylation in the pulmonary tissue was enhanced in the murine COPD model compared with normal mice. Then, the alveolus-repairing effect of pulmonary administration of Wortmannin to murine COPD model was evaluated using X-ray CT analysis and hematoxylin-eosin staining. As a result, alveolar damages were repaired in the Wortmannin-administered group to a similar level of normal mice. Furthermore, pulmonary administration of Wortmannin induced a significant recovery of the respiratory function, compared to the control group. These results indicate that Wortmannin is capable of inducing differentiation of human alveolar epithelial stem cells and represents a promising drug candidate for curative treatment of pulmonary alveolar destruction in COPD.

  17. Soils - Mean Permeability

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...

  18. Permeable pavement study (Edison)

    Data.gov (United States)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  19. Permeability of edible coatings.

    Science.gov (United States)

    Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).

  20. Permeability of edible coatings

    OpenAIRE

    B Mishra; Khatkar, B. S.; Garg, M. K.; Wilson, L.A.

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m2.day (6% beeswax) to 758.0 g/m2.day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm3cm cm−2s−1Pa−1, with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrop...

  1. Regulation of antiapoptotic and cytoprotective pathways in colonic epithelial cells in ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob B

    2015-01-01

    Ulcerative colitis is an inflammatory bowel disease involving the colon resulting in bloody diarrhea and increased risk of colorectal cancer in certain patient subgroups. Increased apoptosis in the epithelial cell layer causes increased permeability, especially during flares; this leads...

  2. CAR siRNA 对睾丸支持细胞上皮屏障通透性的影响及机制%Effects of coxsackie-adenovirus′receptor siRNA on the permeability of Sertoli cell epithelial barrier and its related mechanism

    Institute of Scientific and Technical Information of China (English)

    李兴旺; 赵艳玲

    2014-01-01

    目的:观察柯萨奇病毒-腺病毒受体(CAR)siRNA对睾丸支持细胞上皮屏障通透性的影响,并探讨其机制。方法采用睾丸支持细胞原代双室培养方法制备睾丸支持细胞上皮屏障,细胞培养3 d后分为CAR siRNA组、对照组,分别转染CAR siRNA、无同源性非靶向双链RNA。转染后第2天,分别采用RT-PCR和Western blotting法检测睾丸支持细胞中CAR mRNA、蛋白表达;采用Millicell-ERS电阻系统测量双室模型内外室的电位差;采用免疫荧光细胞化学染色法检测支持细胞的Occludin蛋白,荧光显微镜下观察Occludin分布情况;采用Western blotting法检测支持细胞中总Occludin蛋白量、与早期内涵体抗原1(EEA1)抗体结合的Occludin蛋白。结果 CAR siRNA组与对照组CAR mRNA相对表达量分别为0.122±0.013、0.429±0.039,CAR 蛋白相对表达量分别为0.142±0.041、0.532±0.022,两组比较,P均<0.05。 CAR siRNA组与对照组TER分别为(37±2.5)、(50±3.0)ohm· cm2,两组比较,P<0.05。 CAR siRNA组与对照组Occludin蛋白相对表达量分别为0.164±0.025、0.143±0.031,两组比较,P>0.05。对照组Occludin呈蜂巢样沿细胞膜线状分布;CAR siRNA组Occludin分布较紊乱,细胞膜处减少,线性分布破坏,细胞质内增多。 CAR siRNA组、对照组细胞中与EEA1结合的Occludin蛋白量分别为1.332±0.018、1.000±0.015,两组比较,P<0.05。结论 CAR siRNA能增加睾丸支持细胞上皮屏障通透性,其机制可能与其诱导Occludin蛋白内吞增强而分布改变有关。%Objective To investigate the effect of coxsackie-adenovirus receptor(CAR) siRNA on the permeability of Sertoli cell epithelial barrier and its related mechanism.Methods By using two-compartment primary culture system, Sertoli cell epithelial barrier was established.After 3 days of culture, the cells were divided into control and

  3. Wound healing of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Masahiro Iizuka; Shiho Konno

    2011-01-01

    The intestinal epithelial cells (IECs) form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events;restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs), regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing.

  4. Perawatan Ortodontik Gigi Anterior Berjejal dengan Tulang Alveolar yang Tipis

    Directory of Open Access Journals (Sweden)

    Miesje K. Purwanegara

    2015-09-01

    Full Text Available Anterior teeth movement in orthodontic treatment is limited to labiolingual direction by very thin alveolar bone. An uncontrolled anterior tooth movement to labiolingual direction can cause alveolar bone perforation at its root segment. This case report is to remind us that alveolar bone thickness limits orthodontc tooth movement. A case of crowded anterior teeth with thin alveolar bone in malocclusion I is reported. This case is treated using adgewise orthodontic appliance. Protraction of anterior teeth is anticipated due to thin alveolar bone on the anterior surface. The conclusion is although the alveolar bone surrounding the crowded anterior teeth is thin, by controlling the movement the teeth reposition is allowed.

  5. Orthopantomographic study of the alveolar bone level on periodontal disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sik; You, Dong Soo [College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1972-11-15

    The author had measured the alveolar bone level of periodontal disease on 50 cases of orthopantomogram to detect the degree of alveolar bone resorption of both sexes of Korean. The results were obtained as follows; 1. Alveolar bone resorption of mesial and distal portion was similar in same patient. 2. The order of alveolar bone resorption was mandibular anterior region, posterior region, canine and premolar region of both jaws. 3. The degree of alveolar bone destruction was severe in shorter root length than longer one. 4. The degree of alveolar bone resorption was severe in fourth decades.

  6. When is an Alveolar Type 2 Cell an Alveolar Type 2 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine.

    Science.gov (United States)

    Beers, Michael F; Moodley, Yuben

    2017-03-22

    Generating mature, differentiated, adult lung cells from pluripotent cells such as induced pluripotent cells (iPS) and embryonic stem cells (ES) offers the hope of both generating disease specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung regenerative medicine, several groups have developed and reported on protocols utilizing either defined media, co-culture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared to their primary counterparts coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable but yet to emerge 2nd and higher generation techniques to create such assets, we were prompted to pose the question: "What makes a lung epithelial cell a lung epithelial cell?" and more specifically for this Perspective "What are the minimum features that constitute an alveolar type II epithelial cell (AT2)". In addressing this, we summarize a body of work spanning nearly five decades amassed by a series of "lung epithelial cell biology pioneers" which carefully describes well characterized molecular, functional, and morphological features critical for discriminate assessment of an AT2 phenotype. Armed with this we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiating protocol are indeed mature and functional AT2 epithelial cells.

  7. Alveolar rhabdomyosarcoma in children with histomorphological review

    Directory of Open Access Journals (Sweden)

    S. K. Nema

    2014-04-01

    Full Text Available Rhabdomyosarcomas (RMS are aggressive malignant neoplasm of mesenchymal origin, related to skeletal muscle lineage. These are the most common soft tissue tumors in children. The diagnosis is made by microscopic analysis and ancillary techniques like immunohistochemistry, electron microscopy, cytogenetics and molecular biology. We encountered a case of a 03 years old child who presented with a tender, reddish, soft swelling over cheek for three weeks. The FNAC was reported as a small round cell tumor, Probably Primitive Neuroectodermal Tumor (PNET. The biopsy of tumor revealed a small round cell tumor with an alveolar pattern. Tumor giant cells were absent and mitotic figures were infrequent. Hence, differentials of alveolar rhabdomyosarcoma and PNET were rendered. Immunohistochemistry (IHC demonstrated desmin positivity. Thus, a final diagnosis of alveolar rhabdomyosarcoma was offered. [Int J Res Med Sci 2014; 2(2.000: 775-778

  8. Lateralization Technique and Inferior Alveolar Nerve Transposition

    Directory of Open Access Journals (Sweden)

    Angélica Castro Pimentel

    2016-01-01

    Full Text Available Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics.

  9. Lateralization Technique and Inferior Alveolar Nerve Transposition

    Science.gov (United States)

    Sanches, Marco Antonio; Ramalho, Gabriel Cardoso; Manzi, Marcello Roberto

    2016-01-01

    Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics. PMID:27433360

  10. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers.

    Science.gov (United States)

    Selman, Moisés; Pardo, Annie

    2006-06-01

    Idiopathic pulmonary fibrosis (IPF), a progressive and relentless lung scarring of unknown etiology, has been recognized as the most lethal interstitial lung disease. Despite the growing interest in IPF, the precise molecular mechanisms underlying the development of fibrosis and leading to the irreversible destruction of the lung are still unknown. Recently, it has been proposed that IPF, instead of being a chronic inflammatory disorder, results from multiple cycles of epithelial cell injury and activation. In turn, active alveolar epithelial cells provoke the migration, proliferation, and activation of mesenchymal cells with the formation of fibroblastic/myofibroblastic foci and the exaggerated accumulation of extracellular matrix, mirroring abnormal wound repair. In this article, some characteristics of the alveolar epithelium are briefly outlined, and the fibrogenic mechanisms specifically operated by active abnormal epithelial cells are examined.

  11. Epithelial interleukin-8 responses to oral bacterial biofilms.

    Science.gov (United States)

    Peyyala, R; Kirakodu, S; Novak, K F; Ebersole, J L

    2011-10-01

    An in vitro model of bacterial biofilms on rigid gas-permeable contact lenses (RGPLs) was developed to challenge oral epithelial cells. This novel model provided seminal data on oral biofilm-host cell interactions, and with selected bacteria, the biofilms were more effective than their planktonic counterparts at stimulating host cell responses.

  12. Potential uses of milk epithelial cells: a review.

    Science.gov (United States)

    Boutinaud, Marion; Jammes, Hélène

    2002-01-01

    Secretions collected from the mammary gland of different species contain heterogeneous populations of cells including lymphocytes, neutrophils, macrophages and epithelial cells in different species. Several factors influence the somatic cell count in milk and the distribution of cell types, such as species, infection status, physiological status and management practices. The epithelial cells are shed into milk during the lactation process. Most of them are viable and exhibit the characteristics of fully differentiated alveolar cells. Primary cultures of epithelial cells from colostrum and milk of humans, baboons, cows and goats together with established cell lines from human and goat milk, provide a good model for the study of lactogenesis, immunity transmission, cancer research and infection by viruses. The RNA extracted from milk cells have been shown to be representative of gene expression in the mammary gland and thus provide a source of material for molecular studies of gene expression and environmental interactions.

  13. Quantitative electron microscopic analysis of the epithelium of normal human alveolar mucosa.

    Science.gov (United States)

    Bernimoulin, J P; Schroeder, H E

    1977-05-31

    The epithelium of normal human alveolar mucosa originating from the anterior vestibulum was subjected to stereologic analysis. Eight biopsies were collected half-way between the muco gingival junction and the vestibular fornix from 20 to 50 year-old females, and processed for light and electron microscopy. At two levels of magnification, electron micrographs were sampled from four artificially selected strata in regions of epithelial ridges. Stereologic point counting based on a computer-aided system for analyzing stratified epithelia served for examining a total of about 860 electron micrographs. The alveolar epithelium was 0.26 mm thick, occasionally interdigitated by short, slender connective tissue papillae, and consisted of (1) a narrow basal and suprabasal, and (2) a broad spinous and surface compartment. It displayed a differentiation pattern which, in most subjects studied, was similar to that of normal human buccal epithelium, however, on the average, produced less mature surface cells. This pattern was expressed mainly by a density increase of cytoplasmic filaments (98 A in diameter), a concomitant decrease of the cytoplasmic ground substance, the formation of dark-cored membrane coating granules, and invividually variable amounts of glycogen deposition. In some subjects, a mixed differentiation pattern was found. The structural organization of alveolar epithelium, in analogy to cheek epithelium, was compatible with the function of distensibility.

  14. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis.

    Science.gov (United States)

    Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y; Fong, Guo-Hua; Sakmar, Thomas P; Rafii, Shahin; Ding, Bi-Sen

    2016-02-01

    Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin-dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladapted hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis.

  15. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  16. Iatrogenic injury to the inferior alveolar nerve

    DEFF Research Database (Denmark)

    Hillerup, Søren

    2008-01-01

    The purpose of this prospective, non-randomised, descriptive study is to characterise the neurosensory deficit and associated neurogenic discomfort in 52 patients with iatrogenic injury to the inferior alveolar nerve (IAN). All patients were examined and followed up according to a protocol assess...

  17. Intracellular mediators of JAM-A-dependent epithelial barrier function.

    Science.gov (United States)

    Monteiro, Ana C; Parkos, Charles A

    2012-06-01

    Junctional adhesion molecule-A (JAM-A) is a critical signaling component of the apical junctional complex, a structure composed of several transmembrane and scaffold molecules that controls the passage of nutrients and solutes across epithelial surfaces. Observations from JAM-A-deficient epithelial cells and JAM-A knockout animals indicate that JAM-A is an important regulator of epithelial paracellular permeability; however, the mechanism(s) linking JAM-A to barrier function are not understood. This review highlights recent findings relevant to JAM-A-mediated regulation of epithelial permeability, focusing on the role of upstream and downstream signaling candidates. We draw on what is known about proteins reported to associate with JAM-A in other pathways and on known modulators of barrier function to propose candidate effectors that may mediate JAM-A regulation of epithelial paracellular permeability. Further investigation of pathways highlighted in this review may provide ideas for novel therapeutics that target debilitating conditions associated with barrier dysfunction, such as inflammatory bowel disease.

  18. Exogenous hydrogen sulfide (H2S protects alveolar growth in experimental O2-induced neonatal lung injury.

    Directory of Open Access Journals (Sweden)

    Arul Vadivel

    Full Text Available BACKGROUND: Bronchopulmonary dysplasia (BPD, the chronic lung disease of prematurity, remains a major health problem. BPD is characterized by impaired alveolar development and complicated by pulmonary hypertension (PHT. Currently there is no specific treatment for BPD. Hydrogen sulfide (H2S, carbon monoxide and nitric oxide (NO, belong to a class of endogenously synthesized gaseous molecules referred to as gasotransmitters. While inhaled NO is already used for the treatment of neonatal PHT and currently tested for the prevention of BPD, H2S has until recently been regarded exclusively as a toxic gas. Recent evidence suggests that endogenous H2S exerts beneficial biological effects, including cytoprotection and vasodilatation. We hypothesized that H2S preserves normal alveolar development and prevents PHT in experimental BPD. METHODS: We took advantage of a recently described slow-releasing H2S donor, GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino phosphinodithioate to study its lung protective potential in vitro and in vivo. RESULTS: In vitro, GYY4137 promoted capillary-like network formation, viability and reduced reactive oxygen species in hyperoxia-exposed human pulmonary artery endothelial cells. GYY4137 also protected mitochondrial function in alveolar epithelial cells. In vivo, GYY4137 preserved and restored normal alveolar growth in rat pups exposed from birth for 2 weeks to hyperoxia. GYY4137 also attenuated PHT as determined by improved pulmonary arterial acceleration time on echo-Doppler, pulmonary artery remodeling and right ventricular hypertrophy. GYY4137 also prevented pulmonary artery smooth muscle cell proliferation. CONCLUSIONS: H2S protects from impaired alveolar growth and PHT in experimental O2-induced lung injury. H2S warrants further investigation as a new therapeutic target for alveolar damage and PHT.

  19. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    Science.gov (United States)

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.

  20. Acyl-homoserine lactones suppresses IEC-6 cell proliferation and increase permeability of isolated rat colon.

    Science.gov (United States)

    Joe, Ga-Hyun; Andoh, Midori; Nomura, Mikako; Iwaya, Hitoshi; Lee, Jae-Sung; Shimizu, Hidehisa; Tsuji, Youhei; Maseda, Hideaki; Miyazaki, Hitoshi; Hara, Hiroshi; Ishizuka, Satoshi

    2014-01-01

    We investigated to determine whether a variety of acyl-homoserine lactones (AHLs) influences epithelial cell proliferation and mucosal permeability. 3-Oxo-C12-homoserine lactone (HSL) and 3-oxo-C14-HSL significantly suppressed IEC-6 cell proliferation. A significant increase in mucosal permeability was observed in isolated rat colon tissue exposed to C12-HSL, 3-oxo-C12-HSL, and 3-oxo-C14-HSL. These data indicate that AHLs suppress epithelial proliferation and disrupt barrier function in intestinal mucosa.

  1. Effects of long-term low-dose oxygen supplementation on the epithelial function, collagen metabolism and interstitial fibrogenesis in the guinea pig lung

    Directory of Open Access Journals (Sweden)

    Ishizaka Akitoshi

    2008-04-01

    Full Text Available Abstract Background The patient population receiving long-term oxygen therapy has increased with the rising morbidity of COPD. Although high-dose oxygen induces pulmonary edema and interstitial fibrosis, potential lung injury caused by long-term exposure to low-dose oxygen has not been fully analyzed. This study was designed to clarify the effects of long-term low-dose oxygen inhalation on pulmonary epithelial function, edema formation, collagen metabolism, and alveolar fibrosis. Methods Guinea pigs (n = 159 were exposed to either 21% or 40% oxygen for a maximum of 16 weeks, and to 90% oxygen for a maximum of 120 hours. Clearance of inhaled technetium-labeled diethylene triamine pentaacetate (Tc-DTPA and bronchoalveolar lavage fluid-to-serum ratio (BAL/Serum of albumin (ALB were used as markers of epithelial permeability. Lung wet-to-dry weight ratio (W/D was measured to evaluate pulmonary edema, and types I and III collagenolytic activities and hydroxyproline content in the lung were analyzed as indices of collagen metabolism. Pulmonary fibrotic state was evaluated by histological quantification of fibrous tissue area stained with aniline blue. Results The clearance of Tc-DTPA was higher with 2 week exposure to 40% oxygen, while BAL/Serum Alb and W/D did not differ between the 40% and 21% groups. In the 40% oxygen group, type I collagenolytic activities at 2 and 4 weeks and type III collagenolytic activity at 2 weeks were increased. Hydroxyproline and fibrous tissue area were also increased at 2 weeks. No discernible injury was histologically observed in the 40% group, while progressive alveolar damage was observed in the 90% group. Conclusion These results indicate that epithelial function is damaged, collagen metabolism is affected, and both breakdown of collagen fibrils and fibrogenesis are transiently induced even with low-dose 40% oxygen exposure. However, these changes are successfully compensated even with continuous exposure to low

  2. Targeted Type 2 Alveolar Cell Depletion. A Dynamic Functional Model for Lung Injury Repair.

    Science.gov (United States)

    Garcia, Orquidea; Hiatt, Michael J; Lundin, Amber; Lee, Jooeun; Reddy, Raghava; Navarro, Sonia; Kikuchi, Alex; Driscoll, Barbara

    2016-03-01

    Type 2 alveolar epithelial cells (AEC2) are regarded as the progenitor population of the alveolus responsible for injury repair and homeostatic maintenance. Depletion of this population is hypothesized to underlie various lung pathologies. Current models of lung injury rely on either uncontrolled, nonspecific destruction of alveolar epithelia or on targeted, nontitratable levels of fixed AEC2 ablation. We hypothesized that discrete levels of AEC2 ablation would trigger stereotypical and informative patterns of repair. To this end, we created a transgenic mouse model in which the surfactant protein-C promoter drives expression of a mutant SR39TK herpes simplex virus-1 thymidine kinase specifically in AEC2. Because of the sensitivity of SR39TK, low doses of ganciclovir can be administered to these animals to induce dose-dependent AEC2 depletion ranging from mild (50%) to lethal (82%) levels. We demonstrate that specific levels of AEC2 depletion cause altered expression patterns of apoptosis and repair proteins in surviving AEC2 as well as distinct changes in distal lung morphology, pulmonary function, collagen deposition, and expression of remodeling proteins in whole lung that persist for up to 60 days. We believe SPCTK mice demonstrate the utility of cell-specific expression of the SR39TK transgene for exerting fine control of target cell depletion. Our data demonstrate, for the first time, that specific levels of type 2 alveolar epithelial cell depletion produce characteristic injury repair outcomes. Most importantly, use of these mice will contribute to a better understanding of the role of AEC2 in the initiation of, and response to, lung injury.

  3. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    Science.gov (United States)

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  4. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Stevie Struiksma

    2009-06-01

    Full Text Available Background: Psychological stress is one of the factors associated with many human diseases; the mechanisms need to be further understood. Methods: Rats were subjected to chronic water avoid stress. Intestinal epithelial heat shock protein (HSP 70 was evaluated. The intestinal epithelial permeability was examined with Ussing chamber technique. Results: HSP70 was detected in normal intestinal epithelial cells. Psychological stress decreased HSP70 in the intestinal epithelial cells that correlated with the stress-induced intestinal epithelial hyperpermeability. Pretreatment with HSP70 abrogated stress-induced intestinal barrier dysfunction. Conclusions: Chronic stress inhibits HSP70 activity in rat intestinal epithelial layer that is associated with intestinal epithelial barrier dysfunction, which can be prevented by pretreatment with HSP70 protein.

  5. Relative permeability through fractures

    Energy Technology Data Exchange (ETDEWEB)

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  6. Silver Nanoparticles in Alveolar Bone Surgery Devices

    Directory of Open Access Journals (Sweden)

    Stefano Sivolella

    2012-01-01

    Full Text Available Silver (Ag ions have well-known antimicrobial properties and have been applied as nanostrategies in many medical and surgical fields, including dentistry. The use of silver nanoparticles (Ag NPs may be an option for reducing bacterial adhesion to dental implant surfaces and preventing biofilm formation, containing the risk of peri-implant infections. Modifying the structure or surface of bone grafts and membranes with Ag NPs may also prevent the risk of contamination and infection that are common when alveolar bone augmentation techniques are used. On the other hand, Ag NPs have revealed some toxic effects on cells in vitro and in vivo in animal studies. In this setting, the aim of the present paper is to summarize the principle behind Ag NP-based devices and their clinical applications in alveolar bone and dental implant surgery.

  7. Pelvic alveolar rhabdomyosarcoma in a young adult

    Directory of Open Access Journals (Sweden)

    David Reisner, MD

    2014-01-01

    Full Text Available Rhabdomyosarcomas are soft-tissue tumors, rare in adults. Accounting for nearly 5% of childhood cancers, they represent less than 0.03% of adult malignancies (1, 2. Three different subtypes of rhabdomyosarcoma have been described (embryonal, alveolar and pleomorphic, making up approximately 50%, 30%, and 20% of the cases, respectively (3. Although the definitive diagnosis is made pathologically, some distinguishing features among these subtypes, and between rhabdomyosarcomas and other soft-tissue tumors, can be suggested on MRI and CT. We present an interesting case of a 20-year-old female with a locally aggressive pelvic alveolar rhabdomyosarcoma. While the prognosis has improved with newer treatment techniques, overall survival rates remain poor. Our case study presents typical features of a rare disease, which can often present a diagnostic dilemma for clinicians.

  8. Bmp2 and Bmp4 accelerate alveolar bone development.

    Science.gov (United States)

    Ou, Mingming; Zhao, Yibing; Zhang, Fangming; Huang, Xiaofeng

    2015-06-01

    Alveolar bone remodeling is a continuous process that takes place during development and in response to various physiological and pathological stimuli. However, detailed knowledge regarding the underlying mechanisms involved in alveolar bone development is still lacking. This study aims at improving our understanding of alveolar bone formation and the role of bone morphogenetic proteins (Bmps) in this process. Mice at embryonic (E) day 13.5 to postnatal (PN) day 15.5 were selected to observe the process of alveolar bone development. Alveolar bone development was found to be morphologically observable at E14.5. Molar teeth isolated from mice at PN7.5 were pretreated with Bmp2, Bmp4, Noggin, or BSA, and grafted subcutaneously into mice. The subcutaneously implanted tooth germs formed alveolar bone indicating the role of the dental follicle in alveolar bone development. Alveolar bone formation was increased after pretreatment with Bmp2 and Bmp4, but not with Noggin. Gene expression levels in dental follicle cells from murine molars were also determined by real-time RT-PCR. The expression levels of Runx2, Bsp, and Ocn were significantly higher in dental follicle cells cultured with Bmp2 or Bmp4, and significantly lower in those cultured with Noggin when compared with that of the BSA controls. Our results suggest that the dental follicle participates in alveolar bone formation and Bmp2/4 appears to accelerate alveolar bone development.

  9. Permeability measuremens of brazilian Eucalyptus

    Directory of Open Access Journals (Sweden)

    Marcio Rogério da Silva

    2010-09-01

    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  10. Management of maxillary alveolar process fractures

    Directory of Open Access Journals (Sweden)

    Shukhrat Boymuradov

    2011-04-01

    Full Text Available Incidence of maxillofacial traumas is reported steadily increasing, maxillary fractures being extremely severe. Maxillary alveolar process (AP and front teeth are traumatized more frequently than any other parts of the maxilla. Deprivation of teeth and AP post-traumatic flaw as well as loss of alveolar height not only create a cosmetic defect but also complicate subsequent prosthetics of the patients. The work was initiated to assess efficacy of “CollapAn L” in comparison with a combination of “Osteon”, an osteoplastic material, and “Colla Guide” resorbable membrane in prevention of AP post-traumatic flaws and deformities. 60 patients aged from 16 to 47 with the comminuted fractures of maxillary AP emergently hospitalized were examined and treated. The findings showed that Combination of “Osteon” and “Colla Guide” resorbable membrane is the one to increase efficacy of the treatment, facilitating preservation of and alveolar crest height and shape. In addition, preservation of bone tissue mineralization helps avoid risk of the bone wound inflammatory morbidity.

  11. 肺泡内液体清除与肺水肿的研究进展%Progress in alveolar fluid clearance and pulmonary oedema

    Institute of Scientific and Technical Information of China (English)

    石伟; 张中军; 陶明哲

    2014-01-01

    Pulmonary edema is a so much hallmark event in pathology process of acute lung injury (ALI), which is associated with a increased alveolar-capillary permeability and decreased alveolar fluid clearance. The research of pulmonary edema mediated by alveolar-capillary permeability was much more than formation of pulmonary edema mediated by alveolar fluid clearance in past. Lung edema clearance is affected by aquaporin (AQP), epithelium Na+channel (ENaC) and Na+-K+-ATPase. The understanding of how edema is cleared from the alveoli may provide a reference in treating ALI for clinicians.%肺水肿是急性肺损伤(ALI)病理进程中的中心环节,与肺泡毛细血管通透性增加和肺泡内液体清除减少有关。以往对肺泡毛细血管通透性导致的肺水肿研究较多,而对肺泡内液体清除在肺水肿形成中的作用关注不足。肺泡内液体清除受水通道蛋白、钠离子通道、钠钾ATP酶的影响。认识肺泡内液体清除机制有望能为临床医师治疗ALI提供参考。

  12. Relationship between Passive Permeability and Molecular Polarity Using Block Relevance Analysis.

    Science.gov (United States)

    Goetz, Gilles H; Shalaeva, Marina; Caron, Giulia; Ermondi, Giuseppe; Philippe, Laurence

    2017-02-06

    EPSA is an experimental descriptor of molecular polarity obtained from chromatographic retention in supercritical fluid chromatography (SFC) systems, previously shown by Goetz et al. to correlate with passive permeability of cyclic peptides. The present study focuses on EPSA in relation to passive permeability of small molecules. We applied block relevance (BR) analysis to interpret the relative significance of mechanistic forces prevailing in EPSA. The BR analysis is a computational tool that allows the interpretation of the balance of intermolecular interactions governing systems such as the aforementioned chromatographic retention in EPSA. EPSA and passive permeability determined by Ralph Russ canine kidney cells (RRCK) or low efflux Madin Darby canine kidney cells (MDCK-LE) and human epithelial colorectal adenocarcinoma cells (Caco-2), studied on a data set of commercial drugs, indicated that EPSA is relevant in describing permeability of hydrophilic drugs (CLogP value of EPSA < 100 significantly increases the likelihood of high permeability.

  13. Inferior alveolar nerve injuries associated with mandibular fractures.

    Science.gov (United States)

    Bede, Salwan Yousif Hanna; Ismael, Waleed Khaleel; Al-Assaf, Dhuha A; Omer, Saad Salem

    2012-11-01

    The study evaluates the incidence of inferior alveolar nerve injuries in mandibular fractures, the duration of their recovery, and the factors associated with them. Fifty-two patients with mandibular fractures involving the ramus, angle, and body regions were included in this study; the inferior alveolar nerve was examined for neurological deficit posttraumatically using sharp/blunt differentiation method, and during the follow-up period the progression of neural recovery was assessed. The incidence of neural injury of the inferior alveolar nerve was 42.3%, comminuted and displaced linear fractures were associated with higher incidence of inferior alveolar nerve injury and prolonged recovery time, and recovery of inferior alveolar nerve function occurred in 91%.Fractures of the mandible involving the ramus, angle, and body regions, and comminuted and displaced linear fractures are factors that increase the incidence of inferior alveolar nerve injuries. Missile injuries can be considered as another risk factor.

  14. Low Permeability Polyimide Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  15. The role of synthetic biomaterials in resorptive alveolar bone regeneration

    OpenAIRE

    2007-01-01

    The alveolar bone tissue resorption defect has a significant role in dentistry. Because of the bone tissue deficit developed by alveolar resorption, the use of synthetic material CP/PLGA (calcium-phosphate/polylactide-co-gliycolide) composite was introduced. Investigations were performed on rats with artificially produced resorption of the mandibular bone. The results show that the best effect on alveolar bone were attained by using nano-composite implants. The effect of the nanocomposite was...

  16. p172: An alveolar type II and Clara cell specific protein with late developmental expression and upregulation by hyperoxic lung injury.

    Science.gov (United States)

    Girod, C E; Shin, D H; Hershenson, M B; Solway, J; Dahl, R; Miller, Y E

    1996-06-01

    The epithelium of the alveolus and distal airway meets unique requirements, functioning as a gas exchange membrane and barrier to alveolar flooding by vascular contents as well as to bloodstream contamination by airborne toxins and pathogens. Gene products specifically expressed by this epithelium, notably the surfactant apoproteins, have had important clinical application. No cell surface antigen specific for alveolar type II and Clara cells has been described. We report the biochemical characterization, tissue and developmental expression, and upregulation by injury of a 172 kD protein recognized by a monoclonal antibody, 3F9, synthesized in response to immunization with freshly isolated rat alveolar type II cells. p172 is expressed in a polarized fashion by the apical surface of rat alveolar type II and Clara cells. An immunohistochemical survey of various rat tissues and organs reveals lung specificity. p172 is first detectable in rare epithelial cells at 19 days of gestation, a time when the fully differentiated alveolar type II cell is identified by the first detection of lamellar bodies. There is a dramatic increase in p172 expression just prior to birth. Hyperoxic lung injury results in increased expression of p172. The upregulation of p172 by hyperoxia and its cell-specific expression suggests an important adaptive function.

  17. Vascularization of the gray whale palate (Cetacea, Mysticeti, Eschrichtius robustus): soft tissue evidence for an alveolar source of blood to baleen.

    Science.gov (United States)

    Ekdale, Eric G; Deméré, Thomas A; Berta, Annalisa

    2015-04-01

    The origin of baleen in mysticetes heralded a major transition during cetacean evolution. Extant mysticetes are edentulous in adulthood, but rudimentary teeth develop in utero within open maxillary and mandibular alveolar grooves. The teeth are resorbed prenatally and the alveolar grooves close as baleen germ develops. Arteries supplying blood to highly vascularized epithelial tissue from which baleen develops pass through lateral nutrient foramina in the area of the embryonic alveolar grooves and rudimentary teeth. Those vessels are hypothesized to be branches of the superior alveolar artery, but branches of the greater palatine arteries may play a role in the baleen vascularization. Through a combination of latex injection, CT, and traditional dissection of the palate of a neonatal gray whale (Eschrichtius robustus), we confirm that the baleen receives blood from vessels within the superior alveolar canal via the lateral foramina. The greater palatine artery is restricted to its own passage with no connections to the baleen. This study has implications for the presence of baleen in extinct taxa by identifying the vessels and bony canals that supply blood to the epithelium from which baleen develops. The results indicate that the lateral foramina in edentulous mysticete fossils are bony correlates for the presence of baleen, and the results can be used to help identify bony canals and foramina that have been used to reconstruct baleen in extinct mysticetes that retained teeth in adulthood. Further comparisons are made with mammals that also possess oral keratin structures, including ruminants, ornithorhynchid monotremes, and sirenians.

  18. Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components

    NARCIS (Netherlands)

    Ulluwishewa, D.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Wells, J.; Roy, N.C.

    2011-01-01

    The human intestinal epithelium is formed by a single layer of epithelial cells that separates the intestinal lumen from the underlying lamina propria. The space between these cells is sealed by tight junctions (TJ), which regulate the permeability of the intestinal barrier. TJ are complex protein s

  19. Adhesion, invasion and intracellular growth ability of Legionella dumoffii in alveolar epithelial cells%杜莫氏军团菌对上皮细胞A549粘附侵袭和胞内生长能力的研究

    Institute of Scientific and Technical Information of China (English)

    秦天; 任红宇; 朱兵清; 邵祝军

    2011-01-01

    目的 探明杜莫氏军团菌(Legionella dumoffii, L. dumoffii) 对上皮细胞A549的粘附、侵袭和胞内生长能力.方法 实验使用菌株为L. dumoffii TEX-KL(ATCC 33343) 、 L. dumoffii NY23(ATCC 33279)和嗜肺军团菌L. pneumophila philadelphila-1(ATCC 33155).配制1×108菌悬液,将其以100MOI(Multiplicity of Infection)的比例与肺泡上皮细胞A549相互作用.通过吉曼尼兹染色和菌落计数的方法,测定菌株的粘附、侵袭和胞内生长能力.结果 杜莫氏军团菌L. dumoffii TEX-KL、L. dumoffii NY23和嗜肺军团菌L. pneumophila philadelphila-1三株细菌在体外生长能力和体内对A549细胞的粘附能力方面无明显差别.L. dumoffii TEX-KL侵袭进入细胞内的菌数是其他两株菌的1 000倍,差异有统计学意义.结论 L. dumoffii TEX-KL与L. dumoffii NY23和嗜肺军团菌L. pneumophila philadelphila-1相比,对A549细胞具有更高的侵袭力,因此也具有较高的上皮细胞内生长能力.%In this study, the L. dumoffii TEX-KL (ATCC 33343), L. dumoffii NY23 (ATCC 33279) and L. pneumophila philadelphila-1(ATCC 33155) strains were used to explore the adhesion, invasion and intracellular growth ability in the epithelial cells. Approximately 1 × 108 bacteria were pelleted, resuspended, and diluted (1: 10) in RPMI 1640 tissue culture medium. The bacteria were then added to A549 cells (1 × 105 per well) in 24-well dishes togive a multiplicity of infection (MOI) of about 100. The Gimenez staining and colony counting methods were used for the determination of the strain adhesion, invasion and intracellular growth ability. It was found that in vitro growth ability of L. pneumophila philadelphila-1, L.dumoffii TEX-KL and L. dumoffii NY23 strains had no significant difference. In vivo assay, there was also no significant dif ference in adhesion ability of these strains. However, the CFU counts of L. dumoffii TEX-KL strain invaded into A549 cells was 1000 times higher than that of the other two

  20. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment.

    Science.gov (United States)

    Degryse, Amber L; Tanjore, Harikrishna; Xu, Xiaochuan C; Polosukhin, Vasiliy V; Jones, Brittany R; Boomershine, Chad S; Ortiz, Camila; Sherrill, Taylor P; McMahon, Frank B; Gleaves, Linda A; Blackwell, Timothy S; Lawson, William E

    2011-06-01

    The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.

  1. Fibrinolytic Regulation of Pulmonary Epithelial Sodium Channels: a Critical Review

    OpenAIRE

    Ji, Hong-Long

    2015-01-01

    Luminal fluid homeostasis in the respiratory system is crucial to maintain the gas-\\ud blood exchange in normal lungs and mucociliary clearance in the airways. Epithelial\\ud sodium channels (ENaC) govern ~70% of alveolar fluid clearance. Four ENaC subunits\\ud have been cloned, namely, α, β, γ, and δ ENaC subunits in mammalian cells. This\\ud critical review focuses on the expression and function of ENaC in human and murine\\ud lungs, and the post-translational regulation by fibrinolysins. Nebul...

  2. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus.

    Science.gov (United States)

    Qian, Zhaohui; Travanty, Emily A; Oko, Lauren; Edeen, Karen; Berglund, Andrew; Wang, Jieru; Ito, Yoko; Holmes, Kathryn V; Mason, Robert J

    2013-06-01

    Severe acute respiratory syndrome (SARS)-coronavirus (CoV) produces a devastating primary viral pneumonia with diffuse alveolar damage and a marked increase in circulating cytokines. One of the major cell types to be infected is the alveolar type II cell. However, the innate immune response of primary human alveolar epithelial cells infected with SARS-CoV has not been defined. Our objectives included developing a culture system permissive for SARS-CoV infection in primary human type II cells and defining their innate immune response. Culturing primary human alveolar type II cells at an air-liquid interface (A/L) improved their differentiation and greatly increased their susceptibility to infection, allowing us to define their primary interferon and chemokine responses. Viral antigens were detected in the cytoplasm of infected type II cells, electron micrographs demonstrated secretory vesicles filled with virions, virus RNA concentrations increased with time, and infectious virions were released by exocytosis from the apical surface of polarized type II cells. A marked increase was evident in the mRNA concentrations of interferon-β and interferon-λ (IL-29) and in a large number of proinflammatory cytokines and chemokines. A surprising finding involved the variability of expression of angiotensin-converting enzyme-2, the SARS-CoV receptor, in type II cells from different donors. In conclusion, the cultivation of alveolar type II cells at an air-liquid interface provides primary cultures in which to study the pulmonary innate immune responses to infection with SARS-CoV, and to explore possible therapeutic approaches to modulating these innate immune responses.

  3. Changes in liquid clearance of alveolar epithelium after oleic acid-induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    陶军; 杨天德; 陈祥瑞; 黄河

    2004-01-01

    Objective:Impaired active fluid transport of alveolar epithelium may involve in the pathogenesis and resolution of alveolar edema. Thc objective of this study was to explore the changes in alveolar epithelial liquid clearance during lung edema following acute lung injury induced by oleic acid. Methods:Forty-eight Wistar rats were randomly divided into six groups, I.e. , injured, amiloride, ouabain, amiloride plus ouabain and terbutaline groups. Twenty- four hours after the induction of acute lung injury by intravenous oleic acid (0.25 ml/kg), 5% albumin solution with 1.5 μCi 125Ⅰ-labeled albumin (5 ml/kg) was delivered into both lungs via trachea. Alveolar liquid clearance (ALC), extravascular lung water ( EVLW ) content and arterial blood gases were measured one hour thereafter.Results: At 24 h after the infusion of oleic acid, the rats developed pulmonary edema and severe hypoxemia, with EVLW increased by 47.9% and ALC decreased by 49.2%. Addition of either 2 × 10-3 M amiloride or 5 × 10-4 M ouabain to the instillation further reduced ALC and increased EVLW. ALC increased by approximately 63.7% and EVLW decreased by 46.9% with improved hypoxemia in the Terbutaline (10-4 M) group, compared those in injured rats. A significant negative correlation was found between the increment of EVLW and the reduction of ALC. Onclusions:Active fluid transport of alveolar epithelium might play a role in the pathogenesis of lung edema in acute lung injury.

  4. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  5. PERFORATION OF INFERIOR ALVEOLAR NERVE BY MAXILLARY ARTERY. LA PERFORACION DEL NERVIO ALVEOLAR INFERIOR POR LA ARTERIA MAXILAR

    OpenAIRE

    Vanishree S Nayak; Ramachandra Bhat K; Prakash Billakanti Babu

    2011-01-01

    Infratemporal fossa is clinically important anatomical area for the delivery of local anesthetic agents in dentistry and maxillofacial surgery. Variations in the anatomy of the inferior alveolar nerve and maxillary artery were studied in infratemporal dissection. During routine dissection of the head in an adult male cadaver an unusual variation in the origin of the inferior alveolar nerve and its relationship with the surrounding structures was observed. The inferior alveolar nerve originate...

  6. In vitro induction of human bone marrow mesenchymal stem cells to differentiate into type Ⅱalveolar epithelial cells%体外诱导人骨髓间充质干细胞向Ⅱ型肺泡上皮细胞分化

    Institute of Scientific and Technical Information of China (English)

    陈寅; 马南; 梅举; 肖海波; 陆善伟; 徐怀阳; 钟竑

    2012-01-01

    背景:Ⅱ型肺泡上皮细胞被证明在大鼠肺纤维化模型中直接参与肺的修复并可以减轻肺纤维化的程度.胚胎干细胞可以在体外诱导分化Ⅱ型肺泡上皮细胞,但是其应用受到多方面的限制.目的:探讨体外诱导骨髓间充质干细胞为Ⅱ型肺泡上皮细胞的方法及转化率.方法:取人胸骨骨髓细胞,体外分离培养骨髓间充质干细胞.采用无血清小气道生长液和改良无血清小气道生长液作为培养液,将骨髓间充质干细胞与人胚肺间质细胞共培养.观察骨髓间充质干细胞形态并用反转录PCR 检测表面活性蛋白C 的mRNA 以及免疫荧光检测表面活性蛋白C 表达.结果与结论:骨髓间充质干细胞与人胚肺间质细胞共培养10 d 后开始出现部分骨髓间充质干细胞由原先的长梭形变成和上皮细胞相似的形态.15d 后开始检测到表面活性蛋白C mRNA,但未随共培养时间延长而有所增加.改良无血清小气道生长液与无血清小气道生长液相比能增加表面活性蛋白C mRNA 表达(P < 0.05).说明采用无血清小气道生长液或改良无血清小气道生长液,并与胚肺间质细胞共培养可以将骨髓间充质干细胞在体外诱导分化为Ⅱ型肺泡上皮细胞,但其转化率较低,表面活性蛋白C 的阳性率仅为(3.15±0.69)%.%BACKGROUND: Al veolar epithelial type Ⅱ (AT Ⅱ) has been demonstrated to directly participate in liver recovery and can also alleviate the severity of pulmonary fibrosis in a rat model of pulmonary fibrosis. Embryonic stem cells (ESCs) can differentiate into AT Ⅱ in vitro, but the application of ESCs is confined by many factors. OBJECTIVE: To investigate the method and transformation rate of bone marrow mesenchymalstem cells (BMSCs) differentiation into AT Ⅱ. METHODS: The BMSCs were isolated from human bone marrow cells. BMSCs were co-cultured with human embryonic lung mesenchymal cells (MRC-5) in serum-free small ai rway

  7. Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Braunstein, Thomas Hartig; Jørgensen, Anders;

    2006-01-01

    Osmotic water permeability (P(f )) was measured in spheroid-shaped human nasal airway epithelial explants pre-exposed to increasing levels of hyperosmotic stress. The fluid-filled spheroids, derived from nasal polyps, were lined by a single cell layer with the ciliated apical cell membrane facing......-CF spheroids and were not significantly influenced by hyperosmotic stress. The results suggest that hyperosmotic stress is an important activator of AQP-5 in human airway epithelium, leading to significantly increased transepithelial water permeability.......Osmotic water permeability (P(f )) was measured in spheroid-shaped human nasal airway epithelial explants pre-exposed to increasing levels of hyperosmotic stress. The fluid-filled spheroids, derived from nasal polyps, were lined by a single cell layer with the ciliated apical cell membrane facing...

  8. Recent advances in alveolar biology: Evolution and function of alveolar proteins

    NARCIS (Netherlands)

    Orgeig, S.; Hiemstra, P.S.; Veldhuizen, E.J.A.; Casals, C.; Clark, H.W.; Hackzu, A.; Knudsen, L.; Possmayer, F.

    2010-01-01

    This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two gro

  9. Segment distraction to reduce a wide alveolar cleft before alveolar bone grafting.

    NARCIS (Netherlands)

    Binger, T.; Katsaros, C.; Rucker, M.; Spitzer, W.J.

    2003-01-01

    OBJECTIVE: To demonstrate a method for reduction of wide alveolar clefts prior to bone grafting. This method aims to facilitate bone grafting and achieve adequate soft tissue coverage of the graft with attached gingiva. CASE REPORT: Treatment of a patient with bilateral cleft lip and palate with a s

  10. 3D-CT evaluation of secondary alveolar bone grafts in alveolar clefts

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Hiroshi; Nishimura, Yoshihiko [Kyoto Univ. (Japan). Graduate School of Medicine; Yamawaki, Yoshiroh [Kyoto Katsura Hospital (Japan); Morimoto, Naoki [Kobe City General Hospital (Japan)

    2002-07-01

    From 1994 to 2000, we treated 116 patients with cleft alveolus by secondary alveolar bone grafts, and 48 of them were evaluated morphologically with 3D-CT. The frequency of successful bony bridging was significantly higher in the group whose grafts were completely enveloped (including the anterior alveolar ridge) with a mucoperiosteal flap. The frequency was also significantly higher in the group who underwent bone grafts at the age of 13 or less, and canine eruptions did not influence the ratio. Some cases showed such an improved growth pattern of grafted bone that the shape of the affected maxilla resembled that of the normal side, after long-term follow-up observations. The growth increment was remarkable in anterior maxillary height. Orthodontic management guides the canine or incisor into the reconstructed area of the previous cleft. We surmise that the new occlusal position puts pressure on the grafted bone and promotes further osteogenesis. These findings show that it is important to produce sufficient bony bridge to guide the canine or incisor, not the volume of grafted bone, in secondary alveolar bone grafts. Long-term follow-up observation, after more than 2-3 years, is also necessary to evaluate secondary alveolar bone grafts. (author)

  11. Decompression of inferior alveolar nerve: case report.

    Science.gov (United States)

    Marques, Tiago Miguel Santos; Gomes, Joana Marques

    2011-01-01

    Paresthesia as a result of mechanical trauma is one of the most frequent sensory disturbances of the inferior alveolar nerve. This case report describes surgical treatment for paresthesia caused by a compressive phenomenon within the mandibular canal. The cause of the compression, a broken instrument left in the patient's mouth during previous endodontic therapy, was identified during routine radiography and computed tomography. Once the foreign object was removed by surgery, the paresthesia resolved quickly. This case highlights the potential for an iatrogenic mechanical cause of paresthesia.

  12. Nostril Base Augmentation Effect of Alveolar Bone Graft

    Directory of Open Access Journals (Sweden)

    Woojin Lee

    2013-09-01

    Full Text Available Background The aims of alveolar bone grafting are closure of the fistula, stabilization ofthe maxillary arch, support for the roots of the teeth adjacent to the cleft on each side.We observed nostril base augmentation in patients with alveolar clefts after alveolar bonegrafting. The purpose of this study was to evaluate the nostril base augmentation effect ofsecondary alveolar bone grafting in patients with unilateral alveolar cleft.Methods Records of 15 children with alveolar clefts who underwent secondary alveolar bonegrafting with autogenous iliac cancellous bone between March of 2011 and May of 2012 werereviewed. Preoperative and postoperative worm’s-eye view photographs and reconstructedthree-dimensional computed tomography (CT scans were used for photogrammetry. Thedepression of the nostril base and thickness of the philtrum on the cleft side were measuredin comparison to the normal side. The depression of the cleft side pyriform aperture wasmeasured in comparison to the normal side on reconstructed three-dimensional CT.Results Significant changes were seen in the nostril base (P=0.005, the philtrum length(P=0.013, and the angle (P=0.006. The CT measurements showed significant changes in thepyriform aperture (P<0.001 and the angle (P<0.001.Conclusions An alveolar bone graft not only fills the gap in the alveolar process but alsoaugments the nostril base after surgery. In this study, only an alveolar bone graft was performedto prevent bias from other procedures. Nostril base augmentation can be achieved byperforming alveolar bone grafts in children, in whom invasive methods are not advised.

  13. Pulmonary administration of 1,25-dihydroxyvitamin D3 to the lungs induces alveolar regeneration in a mouse model of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Horiguchi, Michiko; Hirokawa, Mai; Abe, Kaori; Kumagai, Harumi; Yamashita, Chikamasa

    2016-07-10

    Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disease with several causes, including smoking, and no curative therapeutic agent is available, particularly for destructive alveolar lesions. In this study, we investigated the differentiation-inducing effect on undifferentiated lung cells (Calu-6) and the alveolar regenerative effect of the active vitamin 1,25-dihydroxy vitamin D3 (VD3) with the ultimate goal of developing a novel curative drug for COPD. First, the differentiation-inducing effect of VD3 on Calu-6 cells was evaluated. Treatment with VD3 increased the proportions of type I alveolar epithelial (AT-I) and type II alveolar epithelial (AT-II) cells constituting alveoli in a concentration- and treatment time-dependent manner, demonstrating the potent differentiation-inducing activity of VD3 on Calu-6 cells. We thus administered VD3 topically to the mice lung using a previously developed intrapulmonary administration via self-inhalation method. To evaluate the alveolus-repairing effect of VD3, we administered VD3 intrapulmonarily to elastase-induced COPD model mice and computed the mean distance between the alveolar walls as an index of the extent of alveolar injury. Results showed significant decreases in the alveolar wall distance in groups of mice that received 0.01, 0.1, and 1μg/kg of intrapulmonary VD3, revealing excellent alveolus-regenerating effect of VD3. Furthermore, we evaluated the effect of VD3 on improving respiratory function using a respiratory function analyzer. Lung elasticity and respiratory competence [forced expiratory volume (FEV) 1 s %] are reduced in COPD, reflecting advanced emphysematous changes. In elastase-induced COPD model mice, although lung elasticity and respiratory competence were reduced, VD3 administered intrapulmonarily twice weekly for 2weeks recovered tissue elastance and forced expiratory volume in 0.05s to the forced vital capacity, which are indicators of lung elasticity and respiratory

  14. 降钙素基因相关肽调控细胞外信号调节激酶减轻高体积分数氧对胎鼠肺泡Ⅱ型上皮细胞的损伤作用%Damage - Reduced Effects of Calcitonin Gene - Related Peptide on Hyperoxia - Exposed Type Ⅱ Alveolar Epithelial Cell Mediated by Extracellular Signal -Regulated Kinase

    Institute of Scientific and Technical Information of China (English)

    付红敏; 李利; 汤春辉; 皇甫春荣; 米弘瑛; 李献珍; 方芳; 许峰

    2012-01-01

    Objective To explore the effects of calcitonin gene - related peptide( CGRF) on type II alveolar epithelial cell( AEC II ) exposed to hyperoxia and whether the mechanism is mediated by extracellular signal - regulated kinase ( ERK) pathway. Methods AEC II were isolated from 21 d fetal rat lung and grew for 12 h to attach. Then AEC II were randomly divided into six groups;air group,CGRP/air group,CGRP8 -37/air group,hyperoxia group,CGRP/O2 and CGRP8 - 37/O2 group. Air or hyperoxia environment was achieved by exposing AEC1I into 210 mL · L-1oxygen or 850 mL · L-1 oxygen for 18 h. CGRP group or CGRP8 - 37 group was carried out by adding 10-1 mol · L-1 CGRP or both CGRP and CGRP8 -37(10-1 mol · L-1) ,a receptor antagonist against CGRP,into medium before cultured in air or 850 mL · I-1 oxygen. Lactate dehydrogenase (LDH) ,alkaline phosphatase (AKP) and malondialdehyde (MDA) were measured by immune tur-bidimetry and reactive oxygen species( ROS) by flow cytometry. Immunofluorescence microscopy was used to analyze the expression of surfactant protein C( SP - C) and Western blot was taken to detect the content of p - ERK1/2. Results The levels of MDA,LDH,AKP,ROS and p-ERKl/2 were markedly increased in hyperoxia group than those in air group [(2. 29 ±0.10) μmol · L-1 vs (1.06±0.14) μmol · L-1, (58.79 ±5.01) U ·L-1 vs (25.92 ±3.68) U · L-1,(24.63 ±2.92) U · L-1 vs (10. 34 ±1.78) U · L-1,47.74 ±3.35 vs 25.96 ±5.04, 1.21 ±0.06 vs 0.45 ±0.05 ,P, <0.01] .whereas expression of SP -C was decreased in hyperoxia group compared with air group (22.75 ±3.31 vs 43. 50 ± 4.42 ). Levels of MDA, LDH, AKP and ROS were reduced with an elevated expression of p - ERK1 /2 and SP - C in CGRP/O2 group compared with those in hyperoxia group and CGRP8 - 37/O2 group (Pa < 0. 01). There were no significant differences about the levels of MDA,LDH,AKP,ROS and SP- C among three groups cultured in air condition. The expression of p - ERK1/2 in CGRP/air group was also higher than

  15. Ultracytochemical study on the permeability of the human amniotic epithelium.

    Science.gov (United States)

    Matsubara, S; Tamada, T

    1991-06-01

    In order to elucidate and characterize the transport pathway of the substances in the amniotic fluid, the permeability of the term human amnion was studied ultracytochemically, with lanthanum or horse radish peroxidase (HRP) as a tracer. Pieces of the term human amnion were exposed to the solutions containing lanthanum or HRP, and processed for electronmicroscopy. Precipitates indicating lanthanum or HRP were observed in the lateral intercellular spaces of the amniotic epithelial cells through the entire depth of the spaces. Generally, pinocytosis of HPR was not observed. In rare cases, however, diffuse uptake of HRP was noticed in the cells of the electron-lucent cytoplasm. These facts indicated that the human amniotic epithelium is quite permeable and that this particular intercellular pathway is important in the mechanism of the transfer of substances between the mother and the fetus.

  16. Perawatan Pulpa Gigi Sulung Disertai Abses Dento Alveolar

    OpenAIRE

    2008-01-01

    Abses dento alveolar adalah kumputan pus yang berada pada tulang alveolar sekitar apeks gigi akibat kematian pulpa. Matinya pulpa dapat disebabkan bakteri, trauma, iritasi mekanis, termis maupun kimiawi. Pengaruh bakteri merupakan penyebab kerusakan jaringan pulpa yang terbesar. Perluasan infeksi ke dalam jaringan periapikal dapat melalui foramen apikalke jaringan periodontal sehingga terjadi inflarnasi. Bila virulensi bakteri meningkat disertai rendahnya pertahanan tubuh penderita dapat ...

  17. Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice.

    Science.gov (United States)

    Massaro, Donald; Massaro, Gloria Decarlo

    2004-12-01

    Lung tissue elastic recoil and the dimension and number of pulmonary gas-exchange units (alveoli) are major determinants of gas-exchange function. Loss of gas-exchange function accelerates after menopause in the healthy aged and is progressively lost in individuals with chronic obstructive pulmonary disease (COPD). The latter, a disease of midlife and later, though more common in men than in women, is a disease to which women smokers and never smokers may be more susceptible than men; it is characterized by diminished lung tissue elastic recoil and presently irremediable alveolar loss. Ovariectomy in sexually immature rats diminishes the formation of alveoli, and estrogen prevents the diminution. In the present work, we found that estrogen receptor-alpha and estrogen receptor-beta, the only recognized mammalian estrogen receptors, are required for the formation of a full complement of alveoli in female mice. However, only the absence of estrogen receptor-beta diminishes lung elastic tissue recoil. Furthermore, ovariectomy in adult mice results, within 3 wk, in loss of alveoli and of alveolar surface area without a change of lung volume. Estrogen replacement, after alveolar loss, induces alveolar regeneration, reversing the architectural effects of ovariectomy. These studies 1) reveal estrogen receptors regulate alveolar size and number in a nonredundant manner, 2) show estrogen is required for maintenance of already formed alveoli and induces alveolar regeneration after their loss in adult ovariectomized mice, and 3) offer the possibility estrogen can slow alveolar loss and induce alveolar regeneration in women with COPD.

  18. Alveolar ridge augmentation by osteoinductive materials in goats

    DEFF Research Database (Denmark)

    Pinholt, E M; Haanaes, H R; Roervik, M;

    1992-01-01

    The purpose of the present study was to determine whether alveolar ridge augmentation could be induced in goats. In 12 male goats allogenic, demineralized, and lyophilized dentin or bone was implanted subperiosteally on the buccal sides of the natural edentulous regions of the alveolar process of...

  19. Tongue-Palate Contact of Perceptually Acceptable Alveolar Stops

    Science.gov (United States)

    Lee, Alice; Gibbon, Fiona E.; O'Donovan, Cliona

    2013-01-01

    Increased tongue-palate contact for perceptually acceptable alveolar stops has been observed in children with speech sound disorders (SSD). This is a retrospective study that further investigated this issue by using quantitative measures to compare the target alveolar stops /t/, /d/ and /n/ produced in words by nine children with SSD (20 tokens of…

  20. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  1. Lipoxin A4 promotes lung epithelial repair whilst inhibiting fibroblast proliferation

    Directory of Open Access Journals (Sweden)

    Shengxing Zheng

    2016-10-01

    Full Text Available Therapy that promotes epithelial repair whilst protecting against fibroproliferation is critical for restoring lung function in acute and chronic respiratory diseases. Primary human alveolar type II cells were used to model the effects of lipoxin A4 in vitro upon wound repair, proliferation, apoptosis and transdifferention. Effects of lipoxin A4 upon primary human lung fibroblast proliferation, collagen production, and myofibroblast differentiation were also assessed. Lipoxin A4 promoted type II cell wound repair and proliferation, blocked the negative effects of soluble Fas ligand/tumour necrosis factor α upon cell proliferation, viability and apoptosis, and augmented the epithelial cell proliferative response to bronchoaveolar lavage fluid (BALF from acute respiratory distress syndrome (ARDS. In contrast, Lipoxin A4 reduced fibroblast proliferation, collagen production and myofibroblast differentiation induced by transforming growth factor β and BALF from ARDS. The effects of Lipoxin A4 were phosphatidylinositol 3′-kinase dependent and mediated via the lipoxin A4 receptor. Lipoxin A4 appears to promote alveolar epithelial repair by stimulating epitheial cell wound repair, proliferation, reducing apoptosis and promoting trans-differentiation of alveolar type II cells into type I cells. Lipoxin A4 reduces fibroblast proliferation, collagen production and myofibroblast differentiation. These data suggest that targeting lipoxin actions may be a therapeutic strategy for treating the resolution phase of ARDS.

  2. Identification of an autophagy defect in smokers' alveolar macrophages.

    Science.gov (United States)

    Monick, Martha M; Powers, Linda S; Walters, Katherine; Lovan, Nina; Zhang, Michael; Gerke, Alicia; Hansdottir, Sif; Hunninghake, Gary W

    2010-11-01

    Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbe-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers' lungs, but they have a functional immune deficit. In this study, we identify an autophagy defect in smokers' alveolar macrophages. Smokers' alveolar macrophages accumulate both autophagosomes and p62, a marker of autophagic flux. The decrease in the process of autophagy leads to impaired protein aggregate clearance, dysfunctional mitochondria, and defective delivery of bacteria to lysosomes. This study identifies the autophagy pathway as a potential target for interventions designed to decrease infection rates in smokers and possibly in individuals with high environmental particulate exposure.

  3. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lipchik, R.J.; Chauncey, J.B.; Paine, R.; Simon, R.H.; Peters-Golden, M. (Univ. of Michigan, Ann Arbor (USA))

    1990-08-01

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung.

  4. Interleukin-33 and RANK-L Interplay in the Alveolar Bone Loss Associated to Periodontitis

    Science.gov (United States)

    Lapérine, Olivier; Cloitre, Alexandra; Caillon, Jocelyne; Huck, Olivier; Bugueno, Isaac Maximiliano; Pilet, Paul; Sourice, Sophie; Le Tilly, Elodie; Palmer, Gaby; Davideau, Jean-Luc; Geoffroy, Valérie; Guicheux, Jérôme; Beck-Cormier, Sarah; Lesclous, Philippe

    2016-01-01

    Introduction Chronic Periodontitis (CP) is an inflammatory disease of bacterial origin that results in alveolar bone destruction. Porphyromonas gingivalis (Pg), one of the main periopathogens, initiates an inflammatory cascade by host immune cells thereby increasing recruitment and activity of osteoclasts, the bone resorbing cells, through enhanced production of the crucial osteoclastogenic factor, RANK-L. Antibodies directed against some cytokines (IL-1β, IL-6 and TNF-α) failed to exhibit convincing therapeutic effect in CP. It has been suggested that IL-33, could be of interest in CP. Objective the present study aims to analyze whether and how IL-33 and RANK-L and/or their interplay are involved in the bone destruction associated to CP. Material and Methods mRNAs and protein expressions of IL-33 and RANK-L were analyzed in healthy and CP human gingival samples by immunohistochemistry (IHC) and RT-qPCR. Murine experimental periodontitis (EP) was induced using Pg infected ligature and Pg free ligature around the first maxillary molar. Alveolar bone loss was recorded by μCT. Mouse gingival explants were stimulated for 24 hours with IL-33 and RANK-L mRNA expression investigated by RT-qPCR. Human oral epithelial cells were infected by Pg for 6, 12; 24 hours and IL-33 and RANK-L mRNA expressions were analyzed by RT-qPCR. Results IL-33 is overexpressed in gingival epithelial cells in human affected by CP as in the murine EP. In human as in murine gingival cells, RANK-L was independently induced by Pg and IL-33. We also showed that the Pg-dependent RANK-L expression in gingival epithelial cells occured earlier than that of IL-33. Conclusion Our results evidence that IL-33 overexpression in gingival epithelial cells is associated with CP and may trigger RANK-L expression in addition to a direct effect of Pg. Finally, IL-33 may act as an extracellular alarmin (danger signal) showing proinflammatory properties in CP perpetuating bone resorption induced by Pg infection

  5. Rituximab therapy in pulmonary alveolar proteinosis improves alveolar macrophage lipid homeostasis

    Directory of Open Access Journals (Sweden)

    Malur Anagha

    2012-06-01

    Full Text Available Abstract Rationale Pulmonary Alveolar Proteinosis (PAP patients exhibit an acquired deficiency of biologically active granulocyte-macrophage colony stimulating factor (GM-CSF attributable to GM-CSF specific autoantibodies. PAP alveolar macrophages are foamy, lipid-filled cells with impaired surfactant clearance and markedly reduced expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ and the PPARγ-regulated ATP binding cassette (ABC lipid transporter, ABCG1. An open label proof of concept Phase II clinical trial was conducted in PAP patients using rituximab, a chimeric murine-human monoclonal antibody directed against B lymphocyte specific antigen CD20. Rituximab treatment decreased anti-GM-CSF antibody levels in bronchoalveolar lavage (BAL fluid, and 7/9 patients completing the trial demonstrated clinical improvement as measured by arterial blood oxygenation. Objectives This study sought to determine whether rituximab therapy would restore lipid metabolism in PAP alveolar macrophages. Methods BAL samples were collected from patients pre- and 6-months post-rituximab infusion for evaluation of mRNA and lipid changes. Results Mean PPARγ and ABCG1 mRNA expression increased 2.8 and 5.3-fold respectively (p ≤ 0.05 after treatment. Lysosomal phospholipase A2 (LPLA2 (a key enzyme in surfactant degradation mRNA expression was severely deficient in PAP patients pre-treatment but increased 2.8-fold post-treatment. In supplemental animal studies, LPLA2 deficiency was verified in GM-CSF KO mice but was not present in macrophage-specific PPARγ KO mice compared to wild-type controls. Oil Red O intensity of PAP alveolar macrophages decreased after treatment, indicating reduced intracellular lipid while extracellular free cholesterol increased in BAL fluid. Furthermore, total protein and Surfactant protein A were significantly decreased in the BAL fluid post therapy. Conclusions Reduction in GM

  6. [Focal epithelial hyperplasia].

    Science.gov (United States)

    Vera-Iglesias, E; García-Arpa, M; Sánchez-Caminero, P; Romero-Aguilera, G; Cortina de la Calle, P

    2007-11-01

    Focal epithelial hyperplasia is a rare disease of the oral mucosa caused by the human papilloma virus (HPV). It appears as a benign epithelial growth, usually in the mucosa of the lower lip. It is mainly associated with HPV serotypes 13 and 32 and there is a clear racial predilection for the disease in Native Americans and Eskimos. We describe the case of a 17-year-old girl from Ecuador with multiple papular lesions in both lips that were clinically and histologically consistent with focal epithelial hyperplasia. Analysis by polymerase chain reaction detected HPV serotype 13.

  7. Inhibitory effects of French pine bark extract, Pycnogenol®, on alveolar bone resorption and on the osteoclast differentiation.

    Science.gov (United States)

    Sugimoto, Hideki; Watanabe, Kiyoko; Toyama, Toshizo; Takahashi, Shun-suke; Sugiyama, Shuta; Lee, Masaichi-Chang-il; Hamada, Nobushiro

    2015-02-01

    Pycnogenol(®) (PYC) is a standardized bark extract from French maritime pine (Pinus pinaster Aiton). We examined the inhibitory effects of PYC on alveolar bone resorption, which is a characteristic feature of periodontitis, induced by Porphyromonas gingivalis (P. gingivalis) and osteoclast differentiation. In rat periodontitis model, rats were divided into four groups: group A served as the non-infected control, group B was infected orally with P. gingivalis ATCC 33277, group C was administered PYC in the diet (0.025%: w/w), and group D was infected with P. gingivalis and administered PYC. Administration of PYC along with P. gingivalis infection significantly reduced alveolar bone resorption. Treatment of P. gingivalis with 1 µg/ml PYC reduced the number of viable bacterial cells. Addition of PYC to epithelial cells inhibited adhesion and invasion by P. gingivalis. The effect of PYC on osteoclast formation was confirmed by tartrate-resistant acid phosphatase staining. PYC treatment significantly inhibited osteoclast formation. Addition of PYC (1-100 µg/ml) to purified osteoclasts culture induced cell apoptosis. These results suggest that PYC may prevent alveolar bone resorption through its antibacterial activity against P. gingivalis and by suppressing osteoclastogenesis. Therefore, PYC may be useful as a therapeutic and preventative agent for bone diseases such as periodontitis.

  8. The Expression of Water and Ion Channels in Diffuse Alveolar Damage Is Not Dependent on DAD Etiology

    Science.gov (United States)

    Del Carlo Bernardi, Fabiola; Alves de Araujo, Priscila; Mauad, Thais; Dolhnikoff, Marisa

    2016-01-01

    Introduction Aquaporins and ion channels are membrane proteins that facilitate the rapid movement of water and solutes across biological membranes. Experimental and in vitro studies reported that the function of these channels and pulmonary edema resolution are impaired in acute lung injury (ALI). Although current evidence indicates that alveolar fluid clearance is impaired in patients with ALI/diffuse alveolar damage (DAD), few human studies have addressed the alterations in pulmonary channels in this clinical condition. Additionally, it is not known whether the primary cause of DAD is a relevant variable for the channel dysfunction. Methods Autopsied lungs of 43 patients with acute respiratory failure (ARF) due to DAD of three different etiologies, non-pulmonary sepsis, H1N1 viral infection and leptospirosis, were compared to 18 normal lungs. We quantified the expression of aquaporin (AQP) 1, AQP3, AQP5, epithelial Na+ channel (ENaC) and sodium potassium ATPase (Na-K-ATPase) in the alveolar septum using immunohistochemistry and image analysis. Results The DAD group presented with increased expression of AQP3, AQP5 and Na-K-ATPase and decreased expression of ENaC compared to controls. However, there was no difference in protein expression within the DAD groups of different etiologies. Conclusion Water and ion channels are altered in patients with ARF due to DAD. The cause of DAD does not seem to influence the level of impairment of these channels. PMID:27835672

  9. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  10. Hemorragia alveolar associada a nefrite lúpica Alveolar hemorrhage associated with lupus nephritis

    Directory of Open Access Journals (Sweden)

    Ricardo Henrique de Oliveira Braga Teixeira

    2003-12-01

    Full Text Available Hemorragia alveolar, como causa de insuficiência respiratória, é pouco freqüente, com diversas etiologias possíveis. Entre elas, o lúpus eritematoso sistêmico, que se apresenta geralmente como síndrome pulmão-rim, possui alta morbimortalidade. Acredita-se que a patogênese da microangiopatia, tanto renal como pulmonar, esteja associada ao depósito de imunocomplexos, que ativariam as vias de apoptose celular. Relatam-se dois casos de pacientes com nefrite lúpica que evoluíram com hemorragia alveolar associada à insuficiência respiratória necessitando de ventilação mecânica com evoluções totalmente distintas frente às terapias farmacológicas. O achado de anticorpos antimembrana basal em um dos casos evidencia a multiplicidade de mecanismos fisiopatológicos possivelmente envolvidos, que poderiam justificar as respostas heterogêneas frente aos tratamentos disponíveis.Alveolar hemorrhage leading to respiratory failure is uncommon. Various etiologies have been reported, including systemic lupus erythematosus, which generally presents as pulmonary-renal syndrome. It is believed that the pathogenesis of microangiopathy is related to deposits of immune complexes that lead to activation of cellular apoptosis. The authors report two cases of alveolar hemorrhage and respiratory failure, both requiring mechanical ventilation. The two cases had opposite outcomes after pharmacological therapy. The presence of anti-glomerular basement membrane antibodies in one of the cases demonstrates the multiplicity of physiopathological mechanisms that may be involved. This multiplicity of mechanisms provides a possible explanation for the heterogeneous responses to the available treatments.

  11. Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase.

    Science.gov (United States)

    Xu, Xuefeng; Wan, Xuan; Geng, Jing; Li, Fei; Yang, Ting; Dai, Huaping

    2013-09-01

    The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains largely unknown. It is believed that IPF is mainly driven by activated alveolar epithelial cells that have a compromised migration capacity, and that also produce substances (such as connective tissue growth factor, CTGF) that contribute to fibroblast activation and matrix protein accumulation. Because the mechanisms regulating these processes are unclear, the aim of this study was to determine the role of rapamycin in regulating epithelial cell migration and CTGF expression. Transformed epithelial cell line A549 and normal human pulmonary alveolar or bronchial epithelial cells were cultured in regular medium or medium containing rapamycin. Real time reverse transcriptase polymerase chain reaction was employed to determine CTGF mRNA expression. Western blotting and an enzyme-linked immunosorbent assay were used for detecting CTGF protein. Wound healing and migration assays were used to determine the cell migration potential. Transforming growth factor (TGF)-β type I receptor (TβRI) inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. It was found that treatment of A549 and normal human alveolar or bronchial epithelial cells with rapamycin significantly promoted basal or TGF-β1 induced CTGF expression. LY294002, not SB431542 attenuated the promotional effect of rapamycin on CTGF expression. Cell mobility was not affected by rapamycin in wound healing and migration assays. These data suggest rapamycin has a profibrotic effect in vitro and underscore the potential of combined therapeutic approach with PI3K and mammalian target of rapamycin inhibitors for the treatment of animal or human lung fibrosis.

  12. Imaging features of alveolar soft part sarcoma

    Institute of Scientific and Technical Information of China (English)

    Teng Jin; Ping Zhang Co-first author; Xiaoming Li

    2015-01-01

    Objective The aim of this study was to analyze the imaging features of alveolar soft part sarcoma (ASPS). Methods The imaging features of 11 cases with ASPS were retrospectively analyzed. Results ASPS mainly exhibited an isointense or slightly high signal intensity on T1-weighted imaging (T1WI), and a mixed high signal on T2-weighted imaging (T2WI). ASPS was partial, with rich tortuous flow voids, or “line-like” low signal septa. The essence of the mass was heterogeneous enhancement. The 1H-MRS showed a slight choline peak at 3.2 ppm. Conclusion The wel-circumscribed mass and blood voids, combined with “line-like” low signals play a significant role in diagnosis. The choline peak and the other signs may be auxiliary diagnoses.

  13. Diffuse alveolar hemorrhage due to ketorolac tromethamine.

    Science.gov (United States)

    Marak, Creticus P; Alappan, Narendrakumar; Shim, Chang; Guddati, Achuta K

    2013-01-01

    Drug-induced lung disease (DILD) is a common but frequently missed diagnosis. Therefore, a high index of clinical suspicion and familiarity with the clinical syndromes associated with DILD are important in making the diagnosis. Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the mostly commonly used classes of medications. NSAIDs are safe when used at prescribed doses. Side effects from use of NSAIDs are not uncommon and can affect almost every organ system in the body. NSAIDs are notorious for causing pulmonary toxicity, the common ones being bronchospasm and hypersensitivity reactions. Diffuse alveolar hemorrhage (DAH) secondary to NSAIDs is uncommon. Here, we report a case of DAH secondary to the use of ketorolac tromethamine.

  14. [Distraction osteogenesis of deficient alveolar bone prior to dental rehabilitation].

    Science.gov (United States)

    Shilo, D; Emodi, O; Aizenbud, D; Rachmiel, A

    2015-07-01

    Implant supported rehabilitation has become very common in treatment plans nowadays, yet many patients lack the vertical and horizontal bone dimensions required for endosseous implant insertion. Distraction osteogenesis is a technique in which bone is generated by progressive elongation of two bone fragments following an osteotomy or corticotomy. Distraction osteogenesis of the alveolar ridge as a treatment modality in implant dentistry is a very useful technique that allows for adequate bone formation suitable for implant insertion. Alveolar distraction can be unidirectional, bidirectional, multidirectional or horizontal. Alveolar distraction osteogenesis can be performed by using intraosseous distraction devices, intraosseous distraction implants or by extraosseous devices which are the most prevalent today. Distraction osteogenesis has many advantages such as gradual lengthening of the bone with no need for an autogenous bone graft and lack of the associated donor site morbidity as well as distraction of the surrounding soft tissue together with the transported bone. One of the major challenges when using alveolar distraction osteogenesis is controlling the vector of distraction, this problem should be further addressed in future researches. We describe different methods for alveolar distraction osteogenesis, including the surgical procedure, latency period, lengthening and consolidation period. We also discuss the advantages, disadvantages and complications of the method. In this manuscript a case of mandibular alveolar deficiency following mandibular fracture and loss of teeth and the alveolar bone is presented. This patient was treated by alveolar distraction osteogenesis with excellent results. This patient was later rehabilitated . using endosseous implants as demonstrated by radiographs. Alveolar distraction osteogenesis provides a method to regain both hard tissue and soft tissue without additional grafting and is an efficient modality in cases of medium

  15. Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs.

    Science.gov (United States)

    Shi, Han; Ma, Jia; Zhao, Ning; Chen, Yangxi; Liao, Yunmao

    2008-12-01

    Regeneration of lost periodontium is the focus of periodontal therapy. To achieve the effective regeneration, a number of bone graft substitute materials have been developed. This study aimed to investigate the histological response in alveolar bone dehiscences which were filled with an improved biphasic calcium phosphate (BCP) ceramic with more reasonable pore diameter, pore wall thickness and porosity. Twenty-four alveolar bone dehiscences were made surgically in twelve beagle dogs by reflecting mucoperiosteal flaps on the buccal aspect of bilateral lower second premolars and removing alveolar bone. The left dehiscences were treated with BCP ceramic and the contralaterals were cured with the open flap debridement (OFD) as controls. Three dogs were used at week 4, 12, and 24 respectively. Histological observations were processed through three-dimensional micro-computed tomographic imaging, fluorescence and light microscopy. The histological study indicated that the biphasic ceramic was biocompatible, and regeneration was achieved more effectively through the BCP treatment. There were also arrest of epithelial migration apically and formation of new bone and cementum, as well as proliferation of fibrous connective tissues that became attached to the newly formed cementum at week 24, while there was no significant periodontal regeneration in the OFD group only with epithelial tissue migrating into the dehiscence regions. Clinically speaking, though the surgical location formed a limitation to the application of the improved BCP on the periodontal regeneration, the actual result was positive. It proved that the BCP had biocompatibility and was able to act as a stable scaffold to induce periodontal regeneration effectively.

  16. Fractura da cortical alveolar resultante da exodontia de dentes anquilosados

    OpenAIRE

    2010-01-01

    Monografia apresentada à Universidade Fernando Pessoa para obtenção do grau Licenciado em Medicina Dentária A anquilose dento-alveolar constitui uma condição patológica que consiste na fusão anatómica entre o cemento radicular e o osso alveolar propriamente dito, podendo ocorrer durante qualquer etapa do processo eruptivo. Os factores etiológicos da anquilose dento-alveolar ainda não estão totalmente esclarecidos, existindo diversas teorias que pretendem explicar o fenómeno. O objectivo...

  17. DIESEL EXHAUST PARTICLES INDUCE ABERRANT ALVEOLAR EPITHELIAL DIRECTED CELL MOVEMENT BY DISRUPTION OF POLARITY MECHANISMS

    Science.gov (United States)

    Disruption of the respiratory epithelium contributes to the progression of a variety of respiratory diseases that are aggravated by exposure to air pollutants, specifically traffic-based pollutants such as diesel exhaust particles (DEP). Recognizing that lung repair following inj...

  18. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines

    Directory of Open Access Journals (Sweden)

    Boczkowski Jorge

    2009-04-01

    Full Text Available Abstract Background A critical issue with nanomaterials is the clear understanding of their potential toxicity. We evaluated the toxic effect of 24 nanoparticles of similar equivalent spherical diameter and various elemental compositions on 2 human pulmonary cell lines: A549 and THP-1. A secondary aim was to elaborate a generic experimental set-up that would allow the rapid screening of cytotoxic effect of nanoparticles. We therefore compared 2 cytotoxicity assays (MTT and Neutral Red and analyzed 2 time points (3 and 24 hours for each cell type and nanoparticle. When possible, TC50 (Toxic Concentration 50 i.e. nanoparticle concentration inducing 50% cell mortality was calculated. Results The use of MTT assay on THP-1 cells exposed for 24 hours appears to be the most sensitive experimental design to assess the cytotoxic effect of one nanoparticle. With this experimental set-up, Copper- and Zinc-based nanoparticles appear to be the most toxic. Titania, Alumina, Ceria and Zirconia-based nanoparticles show moderate toxicity, and no toxicity was observed for Tungsten Carbide. No correlation between cytotoxicity and equivalent spherical diameter or specific surface area was found. Conclusion Our study clearly highlights the difference of sensitivity between cell types and cytotoxicity assays that has to be carefully taken into account when assessing nanoparticles toxicity.

  19. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim;

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non-smok...

  20. Differential Effects of TNF (TNFSF2) and IFN-gamma on Intestinal Epithelial Cell Morphogenesis and Barrier Function in Three-Dimensional Culture

    NARCIS (Netherlands)

    Juuti-Uusitalo, Kati; Klunder, Leon J.; Sjollema, Klaas A.; Mackovicova, Katarina; Ohgaki, Ryuichi; Hoekstra, Dick; Dekker, Jan; van Ijzendoorn, Sven C. D.

    2011-01-01

    Background: The cytokines TNF (TNFSF2) and IFN gamma are important mediators of inflammatory bowel diseases and contribute to enhanced intestinal epithelial permeability by stimulating apoptosis and/or disrupting tight junctions. Apoptosis and tight junctions are also important for epithelial tissue

  1. Autoimmune pulmonary alveolar proteinosis co-existing with breast cancer: a case report

    OpenAIRE

    Sawai, Toyomitsu; Umeyama, Yasuhiro; Yoshioka, Sumako; Matsuo, Nobuko; Suyama, Naofumi; Kohno, Shigeru

    2014-01-01

    Introduction. Pulmonary alveolar proteinosis is a rare pulmonary disease characterized by excessive alveolar accumulation of surfactant due to defective alveolar clearance by macrophages. There are only a few published case reports of pulmonary alveolar proteinosis occurring in association with solid cancers. To the best of our knowledge, there are no previously reported cases of pulmonary alveolar proteinosis associated with breast cancer. Case presentation. A 48-year-old Asian woman, a nons...

  2. The role of synthetic biomaterials in resorptive alveolar bone regeneration

    Directory of Open Access Journals (Sweden)

    Kaličanin Biljana M.

    2007-01-01

    Full Text Available The alveolar bone tissue resorption defect has a significant role in dentistry. Because of the bone tissue deficit developed by alveolar resorption, the use of synthetic material CP/PLGA (calcium-phosphate/polylactide-co-gliycolide composite was introduced. Investigations were performed on rats with artificially produced resorption of the mandibular bone. The results show that the best effect on alveolar bone were attained by using nano-composite implants. The effect of the nanocomposite was ascertained by determining the calcium and phosphate content, as a basis of the hydroxyapatite structure. The results show that synthetic CP/PLGA nanocomposite alleviate the rehabilitation of weakened alveolar bone. Due to its osteoconductive effect, CP/PLGA can be the material of choice for bone substitution in the future.

  3. Alveolar proteinosis in Behçet's disease

    Directory of Open Access Journals (Sweden)

    Tetikkurt Cuneyt

    2010-08-01

    Full Text Available Abstract A 51-year-old man with Behçet's disease complained of fever, dry cough and dyspnea during exertion. Chest CT showed ground glass opacities with interstitial septal thickening in both lungs. Bronchoalveolar lavage (BAL revealed amorphous and lipoproteinaceous material that was periodic acid-Schiff (PAS stain positive. Transbronchial biopsy specimen demonstrated PAS positive alveolar eosinophilic material consistent with pulmonary alveolar proteinosis. Serum anti-granulocyte-macrophage colony stimulating factor (GM-CSF antibody was negative. Recent studies have reported anti-GMCSF not present in the the serum of patients with secondary pulmonary alveolar proteinosis (PAP but they have not reported so in patients with idiopathic PAP. We report a case of alveolar proteinosis in the setting of Behçet's disease with spontaneous remission.

  4. Alveolar lymphangioma in infants: report of two cases.

    LENUS (Irish Health Repository)

    FitzGerald, Kirsten

    2009-06-01

    The alveolar lymphangioma is a benign but relatively rare condition found only in the oral cavities of black infants. Dentists practising in Ireland may be unaware of this condition due to its racial specificity. This paper presents two case reports of multiple alveolar lymphangiomas found in black infants in a children\\'s hospital in Ireland. The epidemiology, aetiology, clinical presentation, histology, and management options are discussed. The photographs should aid the practitioner in recognising these lesions.

  5. Alveolar lymphangioma in infants: report of two cases.

    LENUS (Irish Health Repository)

    FitzGerald, Kirsten

    2012-02-01

    The alveolar lymphangioma is a benign but relatively rare condition found only in the oral cavities of black infants. Dentists practising in Ireland may be unaware of this condition due to its racial specificity. This paper presents two case reports of multiple alveolar lymphangiomas found in black infants in a children\\'s hospital in Ireland. The epidemiology, aetiology, clinical presentation, histology, and management options are discussed. The photographs should aid the practitioner in recognising these lesions.

  6. Dynamic thermal performance of alveolar brick construction system

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, A. de; Castell, A.; Medrano, M. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Cabeza, L.F., E-mail: lcabeza@diei.udl.ca [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain)

    2011-07-15

    Highlights: {yields} Even though U-value does not measure thermal inertia, it is the commonly used parameter. {yields} The thermal performance analysis of buildings must include the evaluation of transient parameters. {yields} Transient parameters of alveolar brick constructive system show good agreement with its low energy consumption. -- Abstract: Alveolar bricks are being introduced in building sector due to the simplicity of their construction system and to the elimination of the insulation material. Nevertheless, it is not clear if this new system is energetically efficient and which is its thermal behaviour. This paper presents an experimental and theoretical study to evaluate the thermal behaviour of the alveolar brick construction system, compared with a traditional Mediterranean brick system with insulation. The experimental study consists of measuring the thermal performance of four real house-like cubicles. The thermal transmittance in steady-state, also known as U-value, is calculated theoretically and experimentally for each cubicle, presenting the insulated cubicles as the best construction system, with differences around 45% in comparison to the alveolar one. On the other hand, experimental results show significantly smaller differences on the energy consumption between the alveolar and insulated construction systems during summer period (around 13% higher for the alveolar cubicle). These values demonstrate the high thermal efficiency of the alveolar system. In addition, the lack of agreement between the measured energy consumption and the calculated U-values, guides the authors to analyze the thermal inertia of the different building components. Therefore, several transient parameters, extracted from the heat transfer matrix and from experimental data, are also evaluated. It can be concluded that the alveolar brick construction system presents higher thermal inertia than the insulated one, justifying the low measured energy consumption.

  7. Modified Dento - Alveolar Distraction Osteogenesis Technique for Rapid Canine Retraction

    Directory of Open Access Journals (Sweden)

    Sameer Patil

    2012-01-01

    Full Text Available Distraction Osteogenesis claims to reduce the duration of treatment as well aid in conservation of anchorage. With the introduction of Dento- alveolar distraction retraction of canine can now be done in about 2-3 weeks with minimal loss of anchorage and little/no root resorption. However, surgical procedure required for dento-alveolar distraction can cause significant swelling and post operative discomfort. Our small modification in the surgical procedure drastically reduces the discomfort and improves patient compliance.

  8. Modified Dento - Alveolar Distraction Osteogenesis Technique for Rapid Canine Retraction

    OpenAIRE

    Sameer Patil; Sharadindu Kotrashetti; Sumit Yadev; Ketan Vhora

    2012-01-01

    Distraction Osteogenesis claims to reduce the duration of treatment as well aid in conservation of anchorage. With the introduction of Dento- alveolar distraction retraction of canine can now be done in about 2-3 weeks with minimal loss of anchorage and little/no root resorption. However, surgical procedure required for dento-alveolar distraction can cause significant swelling and post operative discomfort. Our small modification in the surgical procedure drastically reduces the discomfort an...

  9. Anaesthetic management of bilateral alveolar proteinosis for bronchopulmonary lavage.

    Directory of Open Access Journals (Sweden)

    Dixit R

    1998-01-01

    Full Text Available The most hazardous manifestation of pulmonary alveolar proteinosis is progressive hypoxia for which bronchopulmonary lavage (BPL is the single most effective treatment. Unfortunately this procedure under general anesthesia itself increases the risk of hypoxia due to the need for one lung ventilation. It was therefore considered interesting to report the successful anaesthetic management of a patient with pulmonary alveolar proteinosis for Bronchopulmonary lavage.

  10. Impact of the Oral Commensal Flora on Alveolar Bone Homeostasis

    OpenAIRE

    Irie, K; Novince, C.M.; Darveau, R. P.

    2014-01-01

    Homeostasis of healthy periodontal tissues is affected by innate and adaptive immunosurveillance mechanisms in response to the normal oral flora. Recent comparisons of germ-free (GF) and normal specific-pathogen-free (SPF) mice have revealed the impact of host immunosurveillance mechanisms in response to the normal oral flora on alveolar bone height. Prior reports that alveolar bone height is significantly less in normal SPF mice compared with their age- and strain-matched GF counterparts sug...

  11. Horizontal alveolar bone loss: A periodontal orphan

    Directory of Open Access Journals (Sweden)

    Jayakumar A

    2010-01-01

    Full Text Available Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician′s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs (of patients diagnosed with chronic periodontitis and seeking periodontal care, which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36% OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2% teeth, and vertical defects were found only in 264 (7.8% of the teeth, which was statistically significant (P<.001. Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3% have addressed vertical bone loss, and 18 (3.7% have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment

  12. Epidermal growth factor regulation in adult rat alveolar type II cells of amiloride-sensitive cation channels.

    Science.gov (United States)

    Kemp, P J; Borok, Z; Kim, K J; Lubman, R L; Danto, S I; Crandall, E D

    1999-12-01

    Using the patch-clamp technique, we studied the effects of epidermal growth factor (EGF) on whole cell and single channel currents in adult rat alveolar epithelial type II cells in primary culture in the presence or absence of EGF for 48 h. In symmetrical sodium isethionate solutions, EGF exposure caused a significant increase in the type II cell whole cell conductance. Amiloride (10 microM) produced approximately 20-30% inhibition of the whole cell conductance in both the presence and absence of EGF, such that EGF caused the magnitude of the amiloride-sensitive component to more than double. Northern analysis showed that alpha-, beta- and gamma-subunits of rat epithelial Na(+) channel (rENaC) steady-state mRNA levels were all significantly decreased by EGF. At the single channel level, all active inside-out patches demonstrated only 25-pS channels that were amiloride sensitive and relatively nonselective for cations (P(Na(+))/P(K(+)) approximately 1.0:0.48). Although the biophysical characteristics (conductance, open-state probability, and selectivity) of the channels from EGF-treated and untreated cells were essentially identical, channel density was increased by EGF; the modal channel per patch was increased from 1 to 2. These findings indicate that EGF increases expression of nonselective, amiloride-sensitive cation channels in adult alveolar epithelial type II cells. The contribution of rENaC to the total EGF-dependent cation current under these conditions is quantitatively less important than that of the nonselective cation channels in these cells.

  13. Nuclear methods in pulmonary medicine. Methodologic considerations in mucociliary clearance and lung epithelial absorption measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dolovich, M.B.; Jordana, M.; Newhouse, M.

    1987-06-01

    Measurements of mucociliary clearance and lung epithelial permeability are relatively simple to perform, with minimum discomfort to the subjects. Awareness of the factors influencing the outcome of these procedures will help to avoid errors and yield useful information about these two clearance mechanisms from both a physiological and a pathological point of view.

  14. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis.

    Science.gov (United States)

    Mohapatra, A; Van Dyken, S J; Schneider, C; Nussbaum, J C; Liang, H-E; Locksley, R M

    2016-01-01

    Group 2 innate lymphoid cells (ILC2s) have an important role in acute allergic lung inflammation. Given their distribution and function, lung ILC2s are hypothesized to coordinate epithelial responses to the external environment; however, how barrier surveillance is linked to ILC2 activation remains unclear. Here, we demonstrate that alveolar type II cells are the main source of interleukin (IL)-33 and thymic stromal lymphopoietin (TSLP) generated in response to chitin or migratory helminths. IL-33 and TSLP synergistically induce an interferon regulatory factor 4 (IRF4)-IL-9 program in ILC2s, and autocrine IL-9 promotes rapid IL-5 and IL-13 production required for optimal epithelial responses in the conducting airways. Thus, ILC2s link alveolar function to regulation of airway flow, revealing a key interaction between resident lymphoid and structural cells that might underlie similar organizational hierarchies in other organs.

  15. Endotoxin-induced lung alveolar cell injury causes brain cell damage

    Science.gov (United States)

    Rodríguez-González, Raquel; Ramos-Nuez, Ángela; Martín-Barrasa, José Luis; López-Aguilar, Josefina; Baluja, Aurora; Álvarez, Julián; Rocco, Patricia RM; Pelosi, Paolo

    2015-01-01

    Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome. PMID:25135986

  16. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome

    Science.gov (United States)

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  17. Lung vasculitis and alveolar hemorrhage: pathology.

    Science.gov (United States)

    Fishbein, Gregory A; Fishbein, Michael C

    2011-06-01

    Pulmonary vasculitides are a diverse group of limited and systemic disorders associated with inflammation of pulmonary vessels and parenchyma. These diseases often have distinctive clinical, serological, and histopathological features-extrapulmonary sites of involvement, circulating autoantibodies, predispositions for small or large vessels, and others. Some have characteristic inflammatory lesions; others are characterized by the absence of such lesions. Frequently pathological findings overlap, rendering classification, and diagnosis a challenge. The anti-neutrophil cytoplasmic antibody (ANCA)-associated small-vessel diseases constitute the major pulmonary vasculitides. These include Wegener granulomatosis (WG), Churg Strauss syndrome (CSS), and microscopic polyangiitis (MPA). Less frequently, diseases such as polyarteritis nodosa, Takayasu arteritis, Behçet syndrome, and connective tissue diseases may involve pulmonary vessels, but these entities are better associated with extrapulmonary disease. Diffuse alveolar hemorrhage (DAH) is a severe manifestation of pulmonary vasculitis. DAH is most commonly seen in small-vessel vasculitides, specifically MPA and WG. Other syndromes associated with DAH include Goodpasture syndrome, Henoch-Schönlein purpura, and systemic lupus erythematosus. Less commonly, DAH may be secondary to infection or drugs/toxins. Furthermore, in the absence of discernable systemic disease, DAH may be idiopathic-referred to as isolated pulmonary capillaritis (IPC) or idiopathic pulmonary hemosiderosis (IPH), depending on the presence of capillaritis.

  18. Capillary permeability in adipose tissue

    DEFF Research Database (Denmark)

    Paaske, W P; Nielsen, S L

    1976-01-01

    of about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  19. Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Richter Joachim

    2008-01-01

    Full Text Available Abstract Background Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. Methods Rats were randomly assigned to a control, Celsior (CE or Celsior + surfactant (CE+S group (n = 5 each. In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4°C and 50 min of reperfusion at 37°C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups or immediately after sacrifice (Control, the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. Results Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation: CE: 160 mm3 (0.61 vs. CE+S: 4 mm3 (0.75; p 3 (0.90 vs. CE+S: 0 mm3; p 3 (0.39 vs. CE+S: 268 mm3 (0.43; p 3(0.10 and CE+S (481 μm3(0.10 compared with controls (323 μm3(0.07; p Conclusion Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of

  20. Immunohistochemical demonstration of airway epithelial cell markers of guinea pig.

    Science.gov (United States)

    Li, Yong; Wang, Jing; He, Hai Yan; Ma, Ling Jie; Zeng, Jin; Deng, Guang Cun; Liu, Xiaoming; Engelhardt, John F; Wang, Yujiong

    2011-10-01

    The guinea pig (Cavea porcellus) is a mammalian non-rodent species in the Caviidae family. The sensitivity of the respiratory system and the susceptibility to infectious diseases allows the guinea pig to be a useful model for both infectious and non-infectious lung diseases such as asthma and tuberculosis. In this report, we demonstrated for the first time, the major cell types and composition in the guinea pig airway epithelium, using cell type-specific markers by immunohistochemical staining using the commercial available immunological reagents that cross-react with guinea pig. Our results revealed the availability of antibodies cross-reacting with airway epithelial cell types of basal, non-ciliated columnar, ciliated, Clara, goblet and alveolar type II cells, as well as those cells expressing Mucin 5AC, Mucin 2, Aquaporin 4 and Calcitonin Gene Related Peptide. The distribution of these various cell types were quantified in the guinea pig airway by immunohistochemical staining and were comparable with morphometric studies using an electron microscopy assay. Moreover, this study also demonstrated that goblet cells are the main secretory cell type in the guinea pig's airway, distinguishing this species from rats and mice. These results provide useful information for the understanding of airway epithelial cell biology and mechanisms of epithelial-immune integration in guinea pig models.

  1. Normal morphogenesis of epithelial tissues and progression of epithelial tumors.

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A

    2012-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted.

  2. TNF-α mediated increase of HIF-1α inhibits VASP expression, which reduces alveolar-capillary barrier function during acute lung injury (ALI).

    Science.gov (United States)

    Tang, Mengjie; Tian, Yihao; Li, Doulin; Lv, Jiawei; Li, Qun; Kuang, Changchun; Hu, Pengchao; Wang, Ying; Wang, Jing; Su, Ke; Wei, Lei

    2014-01-01

    Acute lung injury (ALI) is an inflammatory disorder associated with reduced alveolar-capillary barrier function and increased pulmonary vascular permeability. Vasodilator-stimulated phosphoprotein (VASP) is widely associated with all types of modulations of cytoskeleton rearrangement-dependent cellular morphology and function, such as adhesion, shrinkage, and permeability. The present studies were conducted to investigate the effects and mechanisms by which tumor necrosis factor-alpha (TNF-α) increases the tight junction permeability in lung tissue associated with acute lung inflammation. After incubating A549 cells for 24 hours with different concentrations (0-100 ng/mL) of TNF-α, 0.1 to 8 ng/mL TNF-α exhibited no significant effect on cell viability compared with the 0 ng/mL TNF-α group (control group). However, 10 ng/mL and 100 ng/mL TNF-α dramatically inhibited the viability of A549 cells compared with the control group (*pTNF-α for 24 hours displayed significantly increased cell permeability (*pinhibition of VASP expression increased the cell permeability (*pTNF-α in lung tissues and serum significantly increased at one hour, and the value reached a peak at four hours. Moreover, the Evans Blue absorption value of the mouse lung tissues reached a peak at four hours. The HIF-1α protein expression level in mouse lung tissues increased significantly at four hours and eight hours (**pTNF-α to inhibit VASP expression and to modulate the acute pulmonary inflammation process, and these molecules play an important role in the impairment of the alveolar-capillary barrier.

  3. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  4. Mammary epithelial cell: Influence of extracellular matrix composition and organization during development and tumorigenesis

    Science.gov (United States)

    Kass, Laura; Erler, Janine T.; Dembo, Micah; Weaver, Valerie M.

    2009-01-01

    Stromal–epithelial interactions regulate mammary gland development and are critical for the maintenance of tissue homeostasis. The extracellular matrix, which is a proteinaceous component of the stroma, regulates mammary epithelial growth, survival, migration and differentiation through a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue organization, and promote cell invasion and survival. In this review, we discuss the role of stromal–epithelial interactions in normal and malignant mammary epithelial cell behavior. We specifically focus on how dynamic modulation of the biochemical and biophysical properties of the extracellular matrix elicit a dialogue with the mammary epithelium through transmembrane integrin receptors to influence tissue morphogenesis, homeostasis and malignant transformation. PMID:17719831

  5. Partial pulmonary embolization disrupts alveolarization in fetal sheep

    Directory of Open Access Journals (Sweden)

    Hooper Stuart B

    2010-04-01

    Full Text Available Abstract Background Although bronchopulmonary dysplasia is closely associated with an arrest of alveolar development and pulmonary capillary dysplasia, it is unknown whether these two features are causally related. To investigate the relationship between pulmonary capillaries and alveolar formation, we partially embolized the pulmonary capillary bed. Methods Partial pulmonary embolization (PPE was induced in chronically catheterized fetal sheep by injection of microspheres into the left pulmonary artery for 1 day (1d PPE; 115d gestational age; GA or 5 days (5d PPE; 110-115d GA. Control fetuses received vehicle injections. Lung morphology, secondary septal crests, elastin, collagen, myofibroblast, PECAM1 and HIF1α abundance and localization were determined histologically. VEGF-A, Flk-1, PDGF-A and PDGF-Rα mRNA levels were measured using real-time PCR. Results At 130d GA (term ~147d, in embolized regions of the lung the percentage of lung occupied by tissue was increased from 29 ± 1% in controls to 35 ± 1% in 1d PPE and 44 ± 1% in 5d PPE fetuses (p VEGF and Flk-1, although a small increase in PDGF-Rα expression at 116d GA, from 1.00 ± 0.12 in control fetuses to 1.61 ± 0.18 in 5d PPE fetuses may account for impaired differentiation of alveolar myofibroblasts and alveolar development. Conclusions PPE impairs alveolarization without adverse systemic effects and is a novel model for investigating the role of pulmonary capillaries and alveolar myofibroblasts in alveolar formation.

  6. Donor smoking is associated with pulmonary edema, inflammation and epithelial dysfunction in ex vivo human donor lungs

    Science.gov (United States)

    Ware, Lorraine B.; Lee, Jae W.; Wickersham, Nancy; Nguyen, John; Matthay, Michael A.; Calfee, Carolyn S.

    2014-01-01

    Although recipients of donor lungs from smokers have worse clinical outcomes, the underlying mechanisms are unknown. We tested the association between donor smoking and the degree of pulmonary edema (as estimated by lung weight), the rate of alveolar fluid clearance (measured by airspace instillation of 5% albumin) and biomarkers of lung epithelial injury and inflammation (bronchoalveolar lavage surfactant protein-D and IL-8) in ex vivo lungs recovered from 298 organ donors. The extent of pulmonary edema was higher in current smokers (n=127) compared to non-smokers (median 408g, IQR 364-500 vs. 385g, IQR 340 - 460, p=0.009). Oxygenation at study enrollment was worse in current smokers versus non-smokers (median PaO2/FiO2 214 mmHg, IQR 126-323 vs. 266 mmHg, IQR 154-370, p=0.02). Current smokers with the highest exposure (≥20 pack-years) had significantly lower rates of alveolar fluid clearance, suggesting that the effects of cigarette smoke on alveolar epithelial fluid transport function may be dose related. BAL IL-8 was significantly higher in smokers while surfactant protein-D was lower. These findings indicate that chronic exposure to cigarette smoke has important effects on inflammation, gas exchange, lung epithelial function and lung fluid balance in the organ donor that could influence lung function in the lung transplant recipient. PMID:25146497

  7. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface.

    Science.gov (United States)

    Morton, Charles Oliver; Fliesser, Mirjam; Dittrich, Marcus; Mueller, Tobias; Bauer, Ruth; Kneitz, Susanne; Hope, William; Rogers, Thomas Richard; Einsele, Hermann; Loeffler, Juergen

    2014-01-01

    The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.

  8. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface.

    Directory of Open Access Journals (Sweden)

    Charles Oliver Morton

    Full Text Available The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549 and endothelium (human pulmonary artery epithelial cells, HPAEC on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC, monocyte-derived DC (moDC and myeloid DC (mDC, were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.

  9. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  10. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  11. Composition of alveolar liquid in the foetal lamb.

    Science.gov (United States)

    Adamson, T M; Boyd, R D; Platt, H S; Strang, L B

    1969-09-01

    1. Experiments were performed on foetal lambs at gestations between 125 days and term. The foetus was exteriorized at Caesarean section with the umbilical cord and placental attachment maintained intact. Samples of liquid from the alveolar parts of the lung were withdrawn through a tracheal cannula and samples of lung lymph, plasma and amniotic liquid were also obtained. Measurements were made of total osmolality, concentrations of electrolytes and urea, pH and P(CO2). Titrations were carried out with N/10 HCl and N/10 NaOH. The water content of the liquids was estimated and concentrations expressed per kg H(2)O.2. In alveolar liquid [H(+)], [K(+)] and [Cl(-)] were higher and [Ca(2+)], [phosphates] and [HCO(3) (-)] were lower than in plasma or lymph. In amniotic liquid osmolality [Na(+)], [Cl(-)] and [Ca(2+)] were lower and [phosphates] higher than in plasma or lymph. Alveolar liquid/plasma ratios of [HCO(3) (-)], [Ca(2+)], [Cl(-)] and [K(+)] differed from ultra filtrate/plasma ratios of these ions.3. Titration curves demonstrated a very small amount of buffering in alveolar liquid at its in vivo pH of 6.27 mostly due to HCO(3) (-) at an average concentration of 2.8 mM/kg H(2)O.4. It is concluded that foetal alveolar liquid is not an ultrafiltrate of plasma nor a mixture of amniotic liquid and plasma ultrafiltrate, but a special material elaborated by the foetal lung.

  12. Alveolar targeting of aerosol pentamidine. Toward a rational delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, A.K.; Newman, S.P.; Johnson, M.A.; Talaee, N.; Lee, C.A.; Clarke, S.W. (Royal Free Hospital, London (England))

    1990-04-01

    Nebulizer systems that deposit a high proportion of aerosolized pentamidine on large airways are likely to be associated with marked adverse side effects, which may lead to premature cessation of treatment. We have measured alveolar deposition and large airway-related side effects (e.g., cough, breathlessness, and effect on pulmonary function) after aerosolization of 150 mg pentamidine isethionate labeled with {sup 99m}Tc-Sn-colloid. Nine patients with AIDS were studied using three nebulizer systems producing different droplet size profiles: the Acorn System 22, Respirgard II, and Respirgard II with the inspiratory baffle removed. Alveolar deposition was greatest and side effects least with the nebulizer producing the smallest droplet size profile (Respirgard II), whereas large airway-related side effects were prominent and alveolar deposition lowest with the nebulizer producing the largest droplet size (Acorn System 22). Values for alveolar deposition and adverse airway effects were intermediate using the Respirgard with inspiratory baffle removed, thus indicating the importance of the baffle valve in determining droplet size. Addition of a similar baffle valve to the Acorn System 22 produced a marked improvement in droplet size profile. Selection of a nebulizer that produces an optimal droplet size range offers the advantage of enhancing alveolar targeting of aerosolized pentamidine while reducing large airway-related side effects.

  13. Is alveolar cleft reconstruction still controversial? (Review of literature

    Directory of Open Access Journals (Sweden)

    Sameh A. Seifeldin

    2016-01-01

    Full Text Available Cleft lip and palate (CL/P is a frequent congenital malformation that manifests in several varieties including unilateral or bilateral and complete or incomplete. Alveolar cleft reconstruction remains controversial with regard to timing, graft materials, surgical techniques, and methods of evaluation. Many studies have been conducted addressing these points to develop an acceptable universal protocol for managing CL/P. The primary goal of alveolar cleft reconstruction in CL/P patients is to provide a bony bridge at the cleft site that allows maxillary arch continuity, oronasal fistula repair, eruption of the permanent dentition into the newly formed bone, enhances nasal symmetry through providing alar base support, orthodontic movement and placement of osseointegrated implants when indicated. Other goals include improving speech, improvement of periodontal conditions, establishing better oral hygiene, and limiting growth disturbances. In order to rehabilitate oral function in CL/P patients alveolar bone grafting is necessary. Secondary bone grafting is the most widely accepted method for treating alveolar clefts. Autogenous bone graft is the primary source for reconstructing alveolar cleft defects and is currently the preferred grafting material.

  14. Phosphatidylcholine reverses ethanol-induced increase in transepithelial endotoxin permeability and abolishes transepithelial leukocyte activation

    DEFF Research Database (Denmark)

    Mitscherling, K.; Volynets, V.; Parlesak, Alexandr

    2009-01-01

    BACKGROUND: Chronic alcohol abuse increases both intestinal bacterial overgrowth and intestinal permeability to macromolecules. Intestinal permeability of endotoxin, a component of the outer cell membrane of Gram-negative bacteria, plays a crucial role in the development of alcohol-induced liver...... disease (ALD). As impaired bile flow leads to endotoxemia and the bile component phosphatidylcholine (PC) is therapeutically active in ALD, we tested the hypothesis that conjugated primary bile salts (CPBS) and PC inhibit ethanol-enhanced transepithelial permeability of endotoxin and the subsequent...... transepithelial activation of human leukocytes. METHODS: For this purpose, we used a model in which intestinal epithelial cells (Caco-2) were basolaterally cocultivated with mononuclear leukocytes. Cells were challenged apically with endotoxin from Escherichia coli K12 and were incubated with or without...

  15. Phosphatidylcholine Reverses Ethanol-Induced Increase in Transepithelial Endotoxin Permeability and Abolishes Transepithelial Leukocyte Activation

    DEFF Research Database (Denmark)

    Mitzscherling, Katja; Volynets, Valentina; Parlesak, Alexandr

    2009-01-01

    Chronic alcohol abuse increases both intestinal bacterial overgrowth and intestinal permeability to macromolecules. Intestinal permeability of endotoxin, a component of the outer cell membrane of Gram-negative bacteria, plays a crucial role in the development of alcohol-induced liver disease (ALD......). As impaired bile flow leads to endotoxemia and the bile component phosphatidylcholine (PC) is therapeutically active in ALD, we tested the hypothesis that conjugated primary bile salts (CPBS) and PC inhibit ethanol-enhanced transepithelial permeability of endotoxin and the subsequent transepithelial...... activation of human leukocytes. For this purpose, we used a model in which intestinal epithelial cells (Caco-2) were basolaterally cocultivated with mononuclear leukocytes. Cells were challenged apically with endotoxin from Escherichia coli K12 and were incubated with or without the addition of CPBS (1.5 m...

  16. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...

  17. Pathogenesis of idiopathic pulmonary fibrosis: from initial apoptosis of epithelial cells to lung remodeling?

    Institute of Scientific and Technical Information of China (English)

    JIN Hua-liang; DONG Jing-cheng

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal form of interstitial lung disease.Despite extensive efforts in research during recent years,the mechanisms of the disease remain poorly understood.Evidence of an inflammatory mechanism,both supportive and contrary,is briefly reviewed in this paper.However,growing evidence has indicated that the apoptosis of alveolar epithelial cells (AECs) may be the early driving force of progression,with subsequent disrupted integrity of the alveolar-capillary basement membrane leading to an abnormal wound healing pathway.Thus,this paper will focus on outlining a process of pathogenesis of IPF from initial apoptosis of AECs to end lung remodeling.

  18. Microbial products induce claudin-2 to compromise gut epithelial barrier function.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Liu

    Full Text Available The epithelial barrier dysfunction is an important pathogenic feature in a number of diseases. The underlying mechanism is to be further investigated. The present study aims to investigate the role of tight junction protein claudin-2 (Cldn2 in the compromising epithelial barrier function. In this study, the expression of Cldn2 in the epithelial layer of mice and patients with food allergy was observed by immunohistochemistry. The induction of Cldn2 was carried out with a cell culture model. The Cldn2-facilitated antigen internalization was observed by confocal microscopy. The epithelial barrier function in the gut epithelial monolayer was assessed by recording the transepithelial resistance and assessing the permeability to a macromolecular tracer. The results showed that the positive immune staining of Cldn2 was observed in the epithelial layer of the small intestine that was weakly stained in naïve control mice, and strongly stained in sensitized mice as well as patients with food allergy. Exposure to cholera toxin or Staphylococcal enterotoxin B induced the expression of Cldn2 in HT-29 or T84 cells. Cldn2 could bind protein antigen to form complexes to facilitate the antigen transport across the epithelial barrier. Blocking Cldn2 prevented the allergen-related hypersensitivity the intestine. We conclude that the tight junction protein Cldn2 is involved in the epithelial barrier dysfunction.

  19. Traumatic neuroma of the inferior alveolar nerve: a case report.

    Science.gov (United States)

    Arribas-García, Ignacio; Alcalá-Galiano, Andrea; Gutiérrez, Ramón; Montalvo-Moreno, Juan José

    2008-03-01

    Traumatic neuromas are rare entities which characteristically arise subsequently to surgery and are usually accompanied by pain, typically neuralgic. We present an unusual case of an intraosseous traumatic neuroma of the inferior alveolar nerve following tooth extraction. A 56-year-old man consulted for paresthesias and hyperesthesia in the left mandibular region following extraction of the left mandibular third molar (#38). The panoramic radiograph revealed a radiolucent lesion in the inferior alveolar nerve canal, and CT demonstrated the existence of a mass within the canal, producing widening of the same. Nerve-sparing excisional biopsy was performed. Histopathology and immunohistochemistry were consistent with traumatic neuroma of the left inferior alveolar nerve. After 3 years of follow-up, the patient is asymptomatic and there are no signs of recurrence.

  20. Alveolar process reconstruction after tooth extraction by orthodontic indications

    Directory of Open Access Journals (Sweden)

    Kovalev М.О.

    2013-09-01

    Full Text Available The objective of the study is to determine indications for alveolar bone reconstruction after tooth extraction according to orthodontic indications. Material and methods. 62 patients (first maturity level with dental arch asymmetry due to loss of a premolar on one side of the mouth were examined and treated. Frontal-diagonal coefficient of the dental arch was used to determine the correlation between tooth size and dental arch parameters. Results. It has been demonstrated that changes of the alveolar ridge following the extraction of the first premolars in patients of the experimental group were less significant as compared with the controls. Conclusion. It is reasonable to apply this method simultaneously with the removal of a tooth for orthodontic indications or when the alveolar ridge in the post-extraction socket leaves insufficient bone volume.

  1. Alveolar-filling growth pattern of sarcomatoid malignant pleural mesothelioma.

    Science.gov (United States)

    Hayakawa, Takamitsu; Tajima, Shogo; Takanashi, Yusuke; Takahashi, Tsuyoshi; Neyatani, Hiroshi; Funai, Kazuhito

    2016-09-01

    A case of sarcomatoid malignant pleural mesothelioma showing extremely rare growth pattern is described. A 63-year-old man presented to our hospital with left pleural effusion. A computed tomography (CT) scan of the chest showed diffusely thickened left visceral and parietal pleura associated with intermingled pulmonary infiltrative shadowing. Biopsy of the pleura under general anaesthesia confirmed the diagnosis of sarcomatoid malignant pleural mesothelioma. The patient underwent left extra-pleural pneumonectomy. Histopathologically, the sarcomatoid spindle tumour cells changed their morphology to polygonal cells in the pulmonary parenchyma and grew upwards, filling the alveolar space without the destruction of its septa, showing an alveolar-filling growth pattern. The current report indicates a case of sarcomatoid pleural mesothelioma that shows an alveolar-filling growth pattern, despite having not been thoroughly categorized in the World Health Organization (WHO) classification.

  2. Electronic thermography for the assessment of inferior alveolar nerve deficit.

    Science.gov (United States)

    Gratt, B M; Shetty, V; Saiar, M; Sickles, E A

    1995-08-01

    Neurosensory deficit is one of the major complications encountered in oral and maxillofacial surgery. OBJECTIVES. To determine the efficacy of electronic thermography in objectively assessing neurosensory deficits of the inferior alveolar nerve. STUDY DESIGN. Three studies were conducted measuring skin temperature over the chin region of the face at 0.1 degree C accuracy. RESULTS. (1) Thermal symmetry of the chin region in normal subjects (delta T = 0.2 degree C, SD = 0.02 degree C); (2) Induction of transient thermal asymmetry by local anesthetic injection (delta T = +0.4 degree C, SD = 0.2 degree C); (3) nine subjects with neurologic alterations of the inferior alveolar nerve (delta T = +0.5 degree C, SD = 0.2 degree C). Statistically significant differences were found between control group and experimental groups at p alveolar nerve injury or by pharmacologic nerve block.

  3. Alveolar rhabdomyosarcoma involving the mandibular ramus and its surrounding tissues

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Ja; Kang, Byung Cheol [Chonnam National University College of Medicine, Gwangju (Korea, Republic of)

    2004-06-15

    Rhabdomyosarcoma, when it occurs in the head and neck, is primarily found in children. Alveolar rhabdomyosarcoma is rarely seen in the oral lesion, comparing to the embryonal and the pleomorphic variants. This is a report of a case of alveolar rhabdomyosarcoma in the mandible in a ten-year old girl who complained of a non-painful swelling on the right cheek. The right lower 1st molar was mobile. Her radiographs revealed an extensive radiolucency with somewhat irregular border on the right mandibular ramus. The right mandibular 1st and 2nd molars lost their lamina dura and were floating. CT images revealed smooth-outlined soft tissue mass occupying the pterygomandibular space, the infratemporal space, and the masseteric muscle with thinning and perforation of the right mandibular angle and ramus. Histopathological and immunohistochemical findings established the final diagnosis of alveolar rhabdomyosarcoma.

  4. Oral focal epithelial hyperplasia.

    Science.gov (United States)

    López-Jornet, Pía; Camacho-Alonso, Fabio; Berdugo, Lucero

    2010-01-01

    Focal epithelial hyperplasia (FEH) is a benign, asymptomatic disease. It appears as papules, principally on the lower lip, although it can also be found on the retro-commissural mucosa and tongue and, less frequently, on the upper lip, gingiva and palate. FEH is caused by human papillomavirus subtype 13 or 32. The condition occurs in many populations and ethnic groups. We present the clinical case of a 31-year-old male with lesions that clinically and histologically corresponded to FEH.

  5. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dagmar A. Kuhn

    2014-09-01

    Full Text Available Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1 and a human alveolar epithelial type II cell line (A549. In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis. Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.

  6. Recent advances in alveolar biology: evolution and function of alveolar proteins.

    Science.gov (United States)

    Orgeig, Sandra; Hiemstra, Pieter S; Veldhuizen, Edwin J A; Casals, Cristina; Clark, Howard W; Haczku, Angela; Knudsen, Lars; Possmayer, Fred

    2010-08-31

    This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two groups of surfactant proteins - the small molecular weight hydrophobic SPs, SP-B and -C, that regulate interfacial adsorption of the lipids, and the large hydrophilic SPs, SP-A and -D, which are surfactant collectins capable of inhibiting foreign pathogens. Further aiding pulmonary host defence are non-surfactant collectins and antimicrobial peptides that are expressed across the biological kingdoms. Linking to the first symposium session, which emphasised molecular structure and biophysical function of surfactant lipids and proteins, this review begins with a discussion of the role of temperature and hydrostatic pressure in shaping the evolution of SP-C in mammals. Transitioning to the role of the alveolus in innate host defence we discuss the structure, function and regulation of antimicrobial peptides, the defensins and cathelicidins. We describe the recent discovery of novel avian collectins and provide evidence for their role in preventing influenza infection. This is followed by discussions of the roles of SP-A and SP-D in mediating host defence at the alveolar surface and in mediating inflammation and the allergic response of the airways. Finally we discuss the use of animal models of lung disease including knockouts to develop an understanding of the role of these proteins in initiating and/or perpetuating disease with the aim of developing new therapeutic strategies.

  7. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane

    Energy Technology Data Exchange (ETDEWEB)

    BARCELLOS-HOFF, M. H; AGGELER, J.; RAM, T. G; BISSELL, M. J

    1989-02-01

    An essential feature of mammary gland differentiation during pregnancy is the formation of alveoli composed of polarized epithelial cells, which, under the influence of lactogenic hormones, secrete vectorially and sequester milk proteins. Previous culture studies have described either organization of cells polarized towards lumina containing little or no demonstrable tissue-specific protein, or establishment of functional secretory cells exhibiting little or no glandular architecture. In this paper, we report that tissue-specific vectorial secretion coincides with the formation of functional alveoli-like structures by primary mammary epithelial cells cultured on a reconstituted basement membrane matrix (derived from Engelbreth-Holm-Swarm murine tumour). Morphogenesis of these unique three-dimensional structures was initiated by cell-directed remodelling of the exogenous matrix leading to reorganization of cells into matrixensheathed aggregates by 24 h after plating. The aggregates subsequently cavitated, so that by day 6 the cells were organized into hollow spheres in which apical cell surfaces faced lumina sealed by tight junctions and basal surfaces were surrounded by a distinct basal lamina. The profiles of proteins secreted into the apical (luminal) and basal (medium) compartments indicated that these alveoli-like structures were capable of an appreciable amount of vectorial secretion. Immunoprecipitation with a broad spectrum milk antiserum showed that more than 80% of caseins were secreted into the lumina, whereas iron-binding proteins (both lactoferrin and transferrin) were present in comparable amounts in each compartment. Thus, these mammary cells established protein targeting pathways directing milk-specific proteins to the luminal compartment. A time course monitoring secretory activity demonstrated that establishment of tissue-specific vectorial secretion and increased total and milk protein secretion coincided with functional alveolar

  8. Reconstruction of alveolar defects in patients with cleft lip and palate - 111 consecutive patients

    DEFF Research Database (Denmark)

    Andersen, Kristian

    2012-01-01

    Reconstruction of alveolar defects in patients with cleft lip and palate - 111 consecutive patients......Reconstruction of alveolar defects in patients with cleft lip and palate - 111 consecutive patients...

  9. Associação das manobras de recrutamento alveolar e posição prona na síndrome do desconforto respiratório agudo Association of alveolar recruitment maneuvers and prone position in acute respiratory disease syndrome patients

    Directory of Open Access Journals (Sweden)

    Daniela Caetano Costa

    2009-06-01

    Full Text Available A síndrome do desconforto respiratório agudo é a apresentação clínica de insuficiência respiratória aguda caracterizada por lesão alveolar difusa e pelo desenvolvimento do edema pulmonar não cardiogênico, devido ao aumento da permeabilidade da membrana alvéolo-capilar pulmonar. As manobras de recrutamento alveolar e a posição prona podem ser utilizadas no tratamento da síndrome do desconforto respiratório agudo. O objetivo deste estudo foi identificar os possíveis benefícios, indicações, complicações e cuidados na associação da manobra de recrutamento alveolar e posição prona na síndrome do desconforto respiratório agudo. Realizou-se revisão de literatura científica nacional e internacional conforme os critérios estabelecidos para a pesquisa documental nas bases de dados MedLine, LILACS, SciElo, PubMed, Cochrane, no período de 1994-2008, nas linguagens portuguesa e inglesa, com os unitermos: síndrome do desconforto respiratório agudo, manobra de recrutamento alveolar e posição prona. Apesar de avanços no entendimento da fisiopatologia da síndrome do desconforto respiratório agudo, essa ainda resulta em significativa mortalidade. A manobra de recrutamento alveolar e a posição prona contribuem significativamente no tratamento desses pacientes com a finalidade de melhorar a oxigenação e reduzir as complicações decorrentes da hipoxemia refratária e diminuição da complacência pulmonar. Entretanto, na literatura, há poucos estudos que associam a manobra de recrutamento alveolar e posição prona no tratamento da síndrome do desconforto respiratório agudo, fazendo-se necessária maior investigação sobre o tema e evidências de sua aplicação clínica.The acute respiratory distress syndrome is the clinical presentation of acute lung injury characterized by diffuse alveolar damage and development of non-cardiogenic pulmonary edema due to increased pulmonary alveolar-capillary membrane permeability

  10. Alveolar hemorrhage as the initial presentation of systemic lupus erythematosus.

    Science.gov (United States)

    de Holanda, Bruna A; Barreto, Isabela G Menna; de Araujo, Isadora S Gomes; de Araujo, Daniel B

    2016-01-01

    Alveolar hemorrhage (AH) is a rare syndrome that can often occur in autoimmune diseases, blood clotting disorders, infection or by acute inhalation injury, presenting rapid evolution and high mortality, especially with late diagnosis and treatment. Among the autoimmune diseases, there are reported cases in patients with primary antiphospholipid syndrome (PAPS), vasculitis and systemic lupus erythematosus (SLE). An early diagnosis is an essential tool in the successful management of this complication, requiring aggressive treatment based on vigorous immunosuppression and broad-spectrum antibiotic. We describe here a case of alveolar hemorrhage associated with glomerulonephritis as the open presentation in a patient with SLE.

  11. From alveolar diffuse atrophy to aggressive periodontitis: a brief history.

    Science.gov (United States)

    Guzeldemir, Esra; Toygar, Hilal Uslu

    2006-01-01

    Technologic advances in mechanics, electronics, physics, chemistry, and computer science have contributed to advances in dental medicine. Periodontology is not only a clinical science but is also directly related to the basic sciences. Research is conducted in laboratories rather than in clinics now. During the last century, aggressive periodontitis has received attention from numerous researchers because of its multifactorial features. This paper explores the long scientific journey of aggressive periodontitis, beginning with its first definition as alveolar diffuse atrophy. Perhaps in the future, "alveolar diffuse atrophy" will be referred to by another name or term. However, this journey will never end.

  12. Alveolar ridge rehabilitation to increase full denture retention and stability

    Directory of Open Access Journals (Sweden)

    Mefina Kuntjoro

    2010-12-01

    Full Text Available Background: Atrophic mandibular alveolar ridge generally complicates prostetic restoration expecially full denture. Low residual alveolar ridge and basal seat can cause unstable denture, permanent ulcer, pain, neuralgia, and mastication difficulty. Pre-proshetic surgery is needed to improve denture retention and stability. Augmentation is a major surgery to increase vertical height of the atrophic mandible while vestibuloplasty is aimed to increase the denture bearing area. Purpose: The augmentation and vestibuloplasty was aimed to provide stability and retentive denture atrophic mandibular alveolar ridge. Case: A 65 years old woman patient complained about uncomfortable denture. Clinical evaluate showed flat ridge in the anterior mandible, flabby tissue and candidiasis, while residual ridge height was classified into class IV. Case management: Augmentation using autograph was conducted as the mandible vertical height is less than 15 mm. Autograph was used to achieve better bone quantity and quality. Separated alveolar ridge was conducted from left to right canine region and was elevated 0.5 mm from the previous position to get new ridge in the anterior region. The separated alveolar ridge was fixated by using T-plate and ligature wire. Three months after augmentation fixation appliances was removed vestibuloplasty was performed to increase denture bearing area that can make a stable and retentive denture. Conclusion: Augmentation and vestibuloplasty can improve flat ridge to become prominent.Latar belakang: Ridge mandibula yang atrofi pada umumnya mempersulit pembuatan restorasi prostetik terutama gigi tiruan lengkap (GTL. Residual alveolar ridge dan basal seat yang rendah menyebabkan gigi tiruan menjadi tidak stabil, menimbulkan ulser permanen, nyeri, neuralgia, dan kesulitan mengunyah. Tujuan: Augmentasi dan vestibuloplasti pada ridge mandibula yang atrofi dilakukan untuk menciptakan gigi tiruan yang stabil dan retentive. Kasus: Pasien wanita

  13. Thermal behavior of premises equipped with different alveolar structures

    Directory of Open Access Journals (Sweden)

    Lajimi Nour

    2015-01-01

    Full Text Available This paper presents a numerical study of local thermal behavior. Vertical walls are equipped with alveolar structure and/or simple glazing in East, South and West frontages. Local temperature is assumed to be variable with time or imposed at set point temperature. Results principally show that the simple glazing number has a sensitive effect on convection heat transfer and interior air temperature. They also show that the diode effect is more sensitive in winter. The effect of alveolar structure and simple glazing on the power heating in case with set point temperature is also brought out.

  14. Alveolar hemorrhage as the initial presentation of systemic lupus erythematosus

    Science.gov (United States)

    de Holanda, Bruna A.; Barreto, Isabela G. Menna; de Araujo, Isadora S. Gomes

    2016-01-01

    Alveolar hemorrhage (AH) is a rare syndrome that can often occur in autoimmune diseases, blood clotting disorders, infection or by acute inhalation injury, presenting rapid evolution and high mortality, especially with late diagnosis and treatment. Among the autoimmune diseases, there are reported cases in patients with primary antiphospholipid syndrome (PAPS), vasculitis and systemic lupus erythematosus (SLE). An early diagnosis is an essential tool in the successful management of this complication, requiring aggressive treatment based on vigorous immunosuppression and broad-spectrum antibiotic. We describe here a case of alveolar hemorrhage associated with glomerulonephritis as the open presentation in a patient with SLE. PMID:27994272

  15. Aberrant proliferation of differentiating alveolar cells induces hyperplasia in resting mammary glands of SV40-TAg transgenic mice

    Directory of Open Access Journals (Sweden)

    Wolfgang eBohn

    2014-06-01

    Full Text Available WAP-T1 transgenic mice express SV40-TAg under control of the WAP promoter (Whey Acidic Protein which directs activity of this strong viral oncogene to luminal cells of the mammary gland. Resting uniparous WAP-T1 glands develop hyperplasia composed of TAg positive cells prior to appearance of advanced tumor stages. We show that cells in hyperplasia display markers of alveolar differentiation, suggesting that TAg targets differentiating cells of the alveolar compartment. The glands show significant expression of Elf5 and milk genes (Lalba, Csn2, and Wap. TAg expressing cells largely co-stain with antibodies to Elf5, lack the epithelial marker Sca-1, and are hormone receptor negative. High expression levels of Elf5 but not of milk genes are also seen in resting glands of normal BALB/c mice. This indicates that expression of Elf5 in resting WAP-T1 glands is not specifically induced by TAg. CK6a positive luminal cells lack TAg. These cells co-express the markers prominin1, CK6a, and Sca1, and are positive for hormone receptors. These hormone sensitive cells localize to ducts and seem not to be targeted by TAg. Despite reaching an advanced stage in alveolar differentiation the cells in hyperplasia do not exit the cell cycle. Thus, expression of TAg in conjunction with regular morphogenetic processes of alveologenesis seem to provide the basis for a hormone independent, unscheduled proliferation of differentiating cells in resting glands of WAP-T1 transgenic mice, leading to the formation of hyperplastic lesions.

  16. Aberrant Proliferation of Differentiating Alveolar Cells Induces Hyperplasia in Resting Mammary Glands of SV40-TAg Transgenic Mice.

    Science.gov (United States)

    Quante, Timo; Wegwitz, Florian; Abe, Julia; Rossi, Alessandra; Deppert, Wolfgang; Bohn, Wolfgang

    2014-01-01

    WAP-T1 transgenic mice express SV40-TAg under control of the whey acidic protein (WAP) promoter, which directs activity of this strong viral oncogene to luminal cells of the mammary gland. Resting uniparous WAP-T1 glands develop hyperplasia composed of TAg positive cells prior to appearance of advanced tumor stages. We show that cells in hyperplasia display markers of alveolar differentiation, suggesting that TAg targets differentiating cells of the alveolar compartment. The glands show significant expression of Elf5 and milk genes (Lalba, Csn2, and Wap). TAg expressing cells largely co-stain with antibodies to Elf5, lack the epithelial marker Sca1, and are hormone receptor negative. High expression levels of Elf5 but not of milk genes are also seen in resting glands of normal BALB/c mice. This indicates that expression of Elf5 in resting WAP-T1 glands is not specifically induced by TAg. CK6a positive luminal cells lack TAg. These cells co-express the markers prominin-1, CK6a, and Sca1, and are positive for hormone receptors. These hormone sensitive cells localize to ducts and seem not to be targeted by TAg. Despite reaching an advanced stage in alveolar differentiation, the cells in hyperplasia do not exit the cell cycle. Thus, expression of TAg in conjunction with regular morphogenetic processes of alveologenesis seem to provide the basis for a hormone independent, unscheduled proliferation of differentiating cells in resting glands of WAP-T1 transgenic mice, leading to the formation of hyperplastic lesions.

  17. On the permeability of fractal tube bundles

    CERN Document Server

    Zinovik, I

    2011-01-01

    The permeability of a porous medium is strongly affected by its local geometry and connectivity, the size distribution of the solid inclusions and the pores available for flow. Since direct measurements of the permeability are time consuming and require experiments that are not always possible, the reliable theoretical assessment of the permeability based on the medium structural characteristics alone is of importance. When the porosity approaches unity, the permeability-porosity relationships represented by the Kozeny-Carman equations and Archie's law predict that permeability tends to infinity and thus they yield unrealistic results if specific area of the porous media does not tend to zero. The goal of this paper is an evaluation of the relationships between porosity and permeability for a set of fractal models with porosity approaching unity and a finite permeability. It is shown that the two-dimensional foams generated by finite iterations of the corresponding geometric fractals can be used to model poro...

  18. Permeability equipment for porous friction surfaces

    Science.gov (United States)

    Standiford, D. L.; Graul, R. A.; Lenke, L. R.

    1985-04-01

    Hydroplaning is the loss of traction between tires and pavement due to the presence of a layer of water. This loss of traction can result in loss of vehicle control. A porous friction surface (PFS) applied over an existing pavement permits the water to drain laterally and vertically away from the tire path, effectively lowering hydroplaning potential. Equipment used to measure pavement drainage (permeability) is discussed with respect to usage on porous friction surface. Background information on hydroplaning, flow theory, and PFS field performance as they are affected by permeability are also presented. Two dynamic test devices and four static devices are considered for measuring PFS permeability. Permeability tests are recommended to measure PFS permeability for maintenance purposes and construction control. Dynamic devices cited could possibly estimate hydroplaning potential; further research must be done to determine this. Permeability devices cannot be used to accurately estimate friction of a pavement surface, however, decreased permeability of a pavement infers a decrease in friction.

  19. Hard and Soft Tissue Management of a Localized Alveolar Ridge Atrophy with Autogenous Sources and Biomaterials: A Challenging Clinical Case

    Science.gov (United States)

    Andreoni, D.

    2016-01-01

    Particularly in the premaxillary area, the stability of hard and soft tissues plays a pivotal role in the success of the rehabilitation from both a functional and aesthetic aspect. The present case report describes the clinical management of a localized alveolar ridge atrophy in the area of the upper right canine associated with a thin gingival biotype with a lack of keratinized tissue. An autogenous bone block harvested from the chin associated with heterologous bone particles was used to replace the missing bone, allowing for a prosthetic driven implant placement. Soft tissues deficiency was corrected by means of a combined epithelialized and subepithelial connective tissue graft. The 3-year clinical and radiological follow-up demonstrated symmetric gingival levels of the upper canines, with physiological peri-implant probing depths and bone loss. Thus, the use of autogenous tissues combined with biomaterials might be considered a reliable technique in case of highly aesthetic demanding cases.

  20. Hard and Soft Tissue Management of a Localized Alveolar Ridge Atrophy with Autogenous Sources and Biomaterials: A Challenging Clinical Case

    Directory of Open Access Journals (Sweden)

    C. Maiorana

    2016-01-01

    Full Text Available Particularly in the premaxillary area, the stability of hard and soft tissues plays a pivotal role in the success of the rehabilitation from both a functional and aesthetic aspect. The present case report describes the clinical management of a localized alveolar ridge atrophy in the area of the upper right canine associated with a thin gingival biotype with a lack of keratinized tissue. An autogenous bone block harvested from the chin associated with heterologous bone particles was used to replace the missing bone, allowing for a prosthetic driven implant placement. Soft tissues deficiency was corrected by means of a combined epithelialized and subepithelial connective tissue graft. The 3-year clinical and radiological follow-up demonstrated symmetric gingival levels of the upper canines, with physiological peri-implant probing depths and bone loss. Thus, the use of autogenous tissues combined with biomaterials might be considered a reliable technique in case of highly aesthetic demanding cases.

  1. A Long-Lived Luminal Subpopulation Enriched with Alveolar Progenitors Serves as Cellular Origin of Heterogeneous Mammary Tumors

    Directory of Open Access Journals (Sweden)

    Luwei Tao

    2015-07-01

    Full Text Available It has been shown that the mammary luminal lineage could be maintained by luminal stem cells or long-lived progenitors, but their identity and role in breast cancer remain largely elusive. By lineage analysis using Wap-Cre mice, we found that, in nulliparous females, mammary epithelial cells (MECs genetically marked by Wap-Cre represented a subpopulation of CD61+ luminal progenitors independent of ovarian hormones for their maintenance. Using a pulse-chase lineage-tracing approach based on Wap-Cre adenovirus (Ad-Wap-Cre, we found that Ad-Wap-Cre-marked nulliparous MECs were enriched with CD61+ alveolar progenitors (APs that gave rise to CD61− alveolar luminal cells during pregnancy/lactation and could maintain themselves long term. When transformed by different oncogenes, they could serve as cells of origin of heterogeneous mammary tumors. Thus, our study revealed a type of long-lived AP within the luminal lineage that may serve as the cellular origin of multiple breast cancer subtypes.

  2. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-α

    Directory of Open Access Journals (Sweden)

    Câmara Joana

    2010-01-01

    Full Text Available Abstract Background Defective epithelial repair, excess fibroblasts and myofibroblasts, collagen overproduction and fibrosis occur in a number of respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD and pulmonary fibrosis. Pathological conversion of epithelial cells into fibroblasts (epithelial-mesenchymal transition, EMT has been proposed as a mechanism for the increased fibroblast numbers and has been demonstrated to occur in lung alveolar epithelial cells. Whether other airway cell types also have the capability to undergo EMT has been less explored so far. A better understanding of the full extent of EMT in airways, and the underlying mechanisms, can provide important insights into airway disease pathology and enable the development of new therapies. The main aim of this study was to test whether primary human bronchial epithelial cells are able to undergo EMT in vitro and to investigate the effect of various profibrotic factors in the process. Results Our data demonstrate that primary human bronchial epithelial cells (HBECs are able to undergo EMT in response to transforming growth factor-beta 1 (TGF-β1, as revealed by typical morphological alterations and EMT marker progression at the RNA level by real-time quantitative polymerase chain reaction and, at the protein level, by western blot. By using pharmacological inhibitors we show that this is a Smad-dependent mechanism and is independent of extracellular signal-related kinase pathway activation. Additional cytokines and growth factors such as tumour necrosis factor-alpha (TNF-α, interleukin-1 beta (IL1β and connective tissue growth factor (CTGF were also tested, alone or in combination with TGF-β1. TNF-α markedly enhances the effect of TGF-β1 on EMT, whereas IL1β shows only a very weak effect and CTGF has no significant effect. We have also found that cell-matrix contact, in particular to fibronectin, an ECM component upregulated in fibrotic lesions

  3. Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To test the hypothesis that hydrolysis of sphingomyelin to ceramide changes the composition of tight junctions (TJs) with increasing permeability of the intestinal epithelium.METHODS: Monolayers of Caco-2 cells were used as an in vitro model for the intestinal barrier. Permeability was determined by quantification of transepithelial flux and transepithelial resistance. Sphingolipid-rich membrane microdomains were isolated by a discontinuous sucrose gradient and characterized by Western-blot. Lipid content of microdomains was analysed by tandem mass spectrometry. Ceramide was subcellularly localized by immunofluorescent staining.RESULTS: Exogenous sphingomyelinase increased transepithelial permeability and decreased transepithelial resistance at concentrations as low as 0.01 U/mL.Lipid analysis showed rapid accumulation of ceramide in the membrane fractions containing occludin and claudin-4, representing TJs. In these fractions we observed a concomitant decrease of sphingomyelin and cholesterol with increasing concentrations of ceramide.Immunofluorescent staining confirmed clustering of ceramide at the sites of cell-cell contacts. Neutralization of surface ceramide prevented the permeability-increase induced by platelet activating factor.CONCLUSION: Our findings indicate that changes in lipid composition of TJs impair epithelial barrier functions. Generation of ceramide by sphingomyelinases might contribute to disturbed barrier function seen in diseases such as inflammatory, infectious, toxic or radiogenic bowel disease.

  4. Serial bronchoscopic lung lavage in pulmonary alveolar proteinosis under local anesthesia

    Directory of Open Access Journals (Sweden)

    K Rennis Davis

    2015-01-01

    Full Text Available Pulmonary alveolar proteinosis (PAP is a rare disease, characterized by alveolar accumulation of surfactant composed of proteins and lipids due to defective surfactant clearance by alveolar macrophages. Mainstay of treatment is whole lung lavage, which requires general anesthesia. Herein, we report a case of primary PAP, successfully treated with serial bronchoscopic lung lavages under local anesthesia.

  5. DMPD: Silica binding and toxicity in alveolar macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18226603 Silica binding and toxicity in alveolar macrophages. Hamilton RF Jr, Thaku...l) Show Silica binding and toxicity in alveolar macrophages. PubmedID 18226603 Title Silica binding and toxicity in alveolar macropha...ges. Authors Hamilton RF Jr, Thakur SA, Holian A. Public

  6. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    Science.gov (United States)

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.

  7. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function.

    Science.gov (United States)

    Monteiro, Ana C; Sumagin, Ronen; Rankin, Carl R; Leoni, Giovanna; Mina, Michael J; Reiter, Dirk M; Stehle, Thilo; Dermody, Terence S; Schaefer, Stacy A; Hall, Randy A; Nusrat, Asma; Parkos, Charles A

    2013-09-01

    Intestinal barrier function is regulated by epithelial tight junctions (TJs), structures that control paracellular permeability. Junctional adhesion molecule-A (JAM-A) is a TJ-associated protein that regulates barrier; however, mechanisms linking JAM-A to epithelial permeability are poorly understood. Here we report that JAM-A associates directly with ZO-2 and indirectly with afadin, and this complex, along with PDZ-GEF1, activates the small GTPase Rap2c. Supporting a functional link, small interfering RNA-mediated down-regulation of the foregoing regulatory proteins results in enhanced permeability similar to that observed after JAM-A loss. JAM-A-deficient mice and cultured epithelial cells demonstrate enhanced paracellular permeability to large molecules, revealing a potential role of JAM-A in controlling perijunctional actin cytoskeleton in addition to its previously reported role in regulating claudin proteins and small-molecule permeability. Further experiments suggest that JAM-A does not regulate actin turnover but modulates activity of RhoA and phosphorylation of nonmuscle myosin, both implicated in actomyosin contraction. These results suggest that JAM-A regulates epithelial permeability via association with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and control contraction of the apical cytoskeleton.

  8. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets.

  9. Expression of B-RAF V600E in type II pneumocytes causes abnormalities in alveolar formation, airspace enlargement and tumor formation in mice.

    Directory of Open Access Journals (Sweden)

    Emanuele Zanucco

    Full Text Available Growth factor induced signaling cascades are key regulatory elements in tissue development, maintenance and regeneration. Perturbations of these cascades have severe consequences, leading to developmental disorders and neoplastic diseases. As a major function in signal transduction, activating mutations in RAF family kinases are the cause of human tumorigenesis, where B-RAF V600E has been identified as the prevalent mutant. In order to address the oncogenic function of B-RAF V600E, we have generated transgenic mice expressing the activated oncogene specifically in lung alveolar epithelial type II cells. Constitutive expression of B-RAF V600E caused abnormalities in alveolar epithelium formation that led to airspace enlargements. These lung lesions showed signs of tissue remodeling and were often associated with chronic inflammation and low incidence of lung tumors. The inflammatory cell infiltration did not precede the formation of the lung lesions but was rather accompanied with late tumor development. These data support a model where the continuous regenerative process initiated by oncogenic B-RAF-driven alveolar disruption provides a tumor-promoting environment associated with chronic inflammation.

  10. Epithelial myoepithelial carcinoma in nasal cavity with bony destruction: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ho Jin; Lee, Byung Hoon; Hwang, Yoon Joon; Kim, Su Young [Dept. of Radiology, Ilsan Paik Hospital, Inje University School of Medicine, Goyang , (Korea, Republic of)

    2013-10-15

    Epithelial-myoepithelial carcinoma (EMC) is a rare tumor that commonly involves the salivary glands. EMC arising from the nasal cavity is one of the most unusual cases. We describe a case of a 48-year-old patient who is presented with bilateral nasal obstruction for several months. Multidetector computed tomography reveals expansile, well-defined, heterogeneous enhancing soft tissue masses filling the nasal cavity with bony destruction of hard palate and maxillary alveolar ridge. The carcinoma was histologically characterized by a mixture of trabecular structure with myoepithelial cells and ductal cells, which are confirmed by electron microscopy and immunohistochemistry.

  11. Permeability of normal versus carious dentin.

    Science.gov (United States)

    Pashley, E L; Talman, R; Horner, J A; Pashley, D H

    1991-10-01

    Although a number of reports have been published demonstrating that carious dentin is less permeable than normal dentin, these reports have been qualitative rather than quantitative. The purpose of this in vitro study was to apply a quantitative technique to the study of the permeability of carious human teeth before and after excavation, before and after removal of the smear layer and before and after preparation of a control cavity of similar size and depth in normal dentin subjected to the same measurements, for comparative purposes. Dentin permeability was measured as a hydraulic conductance. The permeability values measured at each step in the protocol were expressed as a percent of the maximum permeability of both cavities, permitting each tooth the serve as its own control. Carious lesions exhibited a slight degree of permeability (2.3 +/- 0.6% of controls) which remained unchanged after excavation of the lesions. Removal of the smear layer in the excavated carious lesions increased the permeability significantly to 6.9 +/- 3.2%. Preparation of a control cavity of the same area and depth increased the permeability slightly. Removal of its smear layer increased the permeability of the dentin 91%. These results confirm previous qualitative studies that carious dentin, even after excavation and removal of the smear layer has a very low permeability.

  12. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues.

    Science.gov (United States)

    Xiong, Jimin; Gronthos, Stan; Bartold, P Mark

    2013-10-01

    Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal

  13. Remodeling dynamics in the alveolar process in skeletally mature dogs.

    Science.gov (United States)

    Huja, Sarandeep S; Fernandez, Soledad A; Hill, Kara J; Li, Yan

    2006-12-01

    Bone turnover rates can be altered by metabolic and mechanical demands. Due to the difference in the pattern of loading, we hypothesized that there are differences in bone remodeling rates between the maxillary and mandibular alveolar processes. Furthermore, in a canine model, the alveolar process of teeth that lack contact (e.g., second premolars) would have a different turnover rate than bone supporting teeth with functional contact (e.g., first molars). Six skeletally mature male dogs were given a pair of calcein labels. After sacrifice, specimens representing the anterior and posterior locations of both jaws were prepared for examination by histomorphometric methods to evaluate the bone volume/total volume (BV/TV; %), bone volume (mm2), mineral apposition rate (MAR; microm/day), and bone formation rate (BFR; %/year) in the alveolar process. There were no significant differences (P>0.05) in the BV/TV within the jaws. The bone volume within the alveolar process of the mandible was 2.8-fold greater than in the maxilla. The MAR was not significantly different between the jaws and anteroposterior locations. However, the BFR was significantly (Parchitecture.

  14. Granulocyte macrophage colony stimulating factor therapy for pulmonary alveolar proteinosis.

    Science.gov (United States)

    Shende, Ruchira P; Sampat, Bhavin K; Prabhudesai, Pralhad; Kulkarni, Satish

    2013-03-01

    We report a case of 58 year old female diagnosed with Pulmonary Alveolar Proteinosis (PAP) with recurrence of PAP after 5 repeated whole lung lavage, responding to subcutaneous injections of Granulocyte Macrophage Colony Stimulating Factor therapy (GM-CSF). Thus indicating that GM-CSF therapy is a promising alternative in those requiring repeated whole lung lavage

  15. An unusual delayed complication of inferior alveolar nerve block.

    Science.gov (United States)

    Smyth, Joanna; Marley, John

    2010-01-01

    Systemic and localised complications after administration of local anaesthetic for dental procedures are well recognised. We present two cases of patients with trismus and sensory deficit that arose during resolution of trismus as a delayed complication of inferior alveolar nerve block.

  16. Pulmonary alveolar proteinosis in an indium-processing worker

    Institute of Scientific and Technical Information of China (English)

    XIAO Yong-long; CAI Hou-rong; WANG Yi-hua; MENG Fan-qing; ZHANG De-ping

    2010-01-01

    @@ With the increasing number of workers engaged in liquid-crystal displays (LCD) manufacturer, lung diseases related to this occupational exposure are attracting more attention.Herein we report a case of interstitial lung disease in a LCD processing worker, which was pathologically confirmed as pulmonary alveolar proteinosis (PAP).

  17. Endodontic-related inferior alveolar nerve and mental foramen paresthesia.

    Science.gov (United States)

    Morse, D R

    1997-10-01

    Paresthesia is a condition that involves perverted sensations of pain, touch, or temperature. It has a variety of possible causes. This article presents a literature review and case reports of endodontically related inferior alveolar nerve and mental foramen paresthesia. Nondrug prevention methods and the dental uses of dexamethasone are also discussed.

  18. Complications in alveolar distraction osteogenesis of the atrophic mandible.

    NARCIS (Netherlands)

    Perdijk, F.B.; Meijer, G.J.; Strijen, P.J.; Koole, R.

    2007-01-01

    To improve the starting point for placement of dental implants, 45 patients suffering from atrophied edentulous mandibles, with a vertical height varying between 7.3 and 15.8mm, were treated by alveolar vertical distraction osteogenesis (VDO). The mean follow-up period was 3 years, ranging from 1 to

  19. Complications in alveolar distraction osteogenesis of the atrophic mandible

    NARCIS (Netherlands)

    Perdijk, F. B. T.; van Strijen, P. J.; Meijer, G.

    2007-01-01

    To improve the starting point for placement of dental implants, 45 patients suffering from atrophied edentulous mandibles, with a vertical height varying between 7.3 and 15.8 turn, were treated by alveolar vertical distraction osteogenesis (VDO). The mean follow-up period was 3 years, ranging from 1

  20. Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins

    NARCIS (Netherlands)

    Szafranski, P.; Gambin, T.; Dharmadhikari, A.V.; Akdemir, K.C.; Jhangiani, S.N.; Schuette, J.; Godiwala, N.; Yatsenko, S.A.; Sebastian, J.; Madan-Khetarpal, S.; Surti, U.; Abellar, R.G.; Bateman, D.A.; Wilson, A.L.; Markham, M.H.; Slamon, J.; Santos-Simarro, F.; Palomares, M.; Nevado, J.; Lapunzina, P.; Chung, B.H.; Wong, W.L.; Chu, Y.W.; Mok, G.T.; Kerem, E.; Reiter, J.; Ambalavanan, N.; Anderson, S.A.; Kelly, D.R.; Shieh, J.; Rosenthal, T.C.; Scheible, K.; Steiner, L.; Iqbal, M.A.; McKinnon, M.L.; Hamilton, S.J.; Schlade-Bartusiak, K.; English, D.; Hendson, G.; Roeder, E.R.; DeNapoli, T.S.; Littlejohn, R.O.; Wolff, D.J.; Wagner, C.L.; Yeung, A.; Francis, D.; Fiorino, E.K.; Edelman, M.; Fox, J.; Hayes, D.A.; Janssens, S.; Baere, E. De; Menten, B.; Loccufier, A.; Vanwalleghem, L.; Moerman, P.; Sznajer, Y.; Lay, A.S.; Kussmann, J.L.; Chawla, J.; Payton, D.J.; Phillips, G.E.; Brosens, E.; Tibboel, D.; Klein, A.; Maystadt, I.; Fisher, R.; Sebire, N.; Male, A.; Chopra, M.; Pinner, J.; Malcolm, G.; Peters, G.; Arbuckle, S.; Lees, M.; Mead, Z.; Quarrell, O.; Sayers, R.; Owens, M.; Shaw-Smith, C.; Lioy, J.; McKay, E.; Leeuw, N. de; Feenstra, I.; Spruijt, L.; Elmslie, F.; Thiruchelvam, T.; Bacino, C.A.; Langston, C.; Lupski, J.R.; Sen, P.; Popek, E.; Stankiewicz, P.

    2016-01-01

    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC0108

  1. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Science.gov (United States)

    Moro, Alessandro; Foresta, Enrico; Falchi, Marco; De Angelis, Paolo; D'Amato, Giuseppe; Pelo, Sandro

    2017-01-01

    The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  2. Alveolar echinococcosis localized in the liver, lung and brain

    Institute of Scientific and Technical Information of China (English)

    Seyit Mehmet Kayacan; Kutigin Turkmen; Fatih Yakar; Kerim Guier; Sezai Vatansever; Suleyman Temiz; Bora Uslu; Dilek Kayacan; Vakur Akkaya; Osman Erk; Büent Saka; Aytac Karadag

    2008-01-01

    @@ Echinococcosis is a parasitic disease caused by the larval forms of echinococci. It has two main forms as the unilocular cystic form that is more commonly seen and caused by E. granulosus and the alveolar form that is rarely seen and caused by E.

  3. 应用A549细胞单层模型研究蛋白多肽类药物肺部吸收的特性%Transport of proteins and peptides across human cultured alveolar A549 cell monolayers

    Institute of Scientific and Technical Information of China (English)

    王智瑛; 张悦; 张强

    2004-01-01

    Aim An in vitro cultured monolayer system of alveolar epithelial cells was used as a model to investigate the transport pathway peptides or proteins, salmon calcitonin (sCT), insulin (INS), recombinant hirudin (rHAV2), and recombinant human growth hormone (rhGH), in pulmonary epithelium in vivo. Methods Human lung adenocareinoma A549 cells formed continuous monolayers with growing polycarbonate filters of Transwell plate. Transport studies of macromolecules in the monolayer system were carried out after 6 days in culture. The transport of peptides or proteins with MW 3 400 - 22 000 was studied in cultured human lung adenocareinoma A549 cell monolayers at different conditions. Results The results showed that the apparent permeability coefficients (Papp) of these macromolecules across A549 cell monolayers ranged from 2×10-6 to 5×10-6 cm·s-1 and exhibited good inverse correlation with molecule weight. No concentration, direction and temperature dependence were observed in the permeation of sCT, INS and rHAV2. While the Papp of rhGH in the BA direction (2.25×10-6 cm·s-1) was significantly less than that in the reverse direction. ThePapp values of rhGH were concentration and temperature independent in the AB direction. Conclusion These findings suggest that the hydrophilic peptides and proteins, salmon calcitonin, insulin, recombinant hirudin, and recombinant human growth hormone used in this study, appeared to penetrate the A549 cell monolayers via a paracellular pathway by passive diffusion mechanism.

  4. Ex vivo correlation of the permeability of metoprolol across human and porcine buccal mucosa.

    Science.gov (United States)

    Meng-Lund, Emil; Marxen, Eva; Pedersen, Anne Marie L; Müllertz, Anette; Hyrup, Birgitte; Holm, Rene; Jacobsen, Jette

    2014-07-01

    The pH partition theory proposes a correlation between fraction of unionized drug substance and permeability. The aim of this study was to compare the permeability of metoprolol and mannitol in ex vivo human and porcine buccal mucosa models at varying pH to validate whether the porcine permeability model is predictive for human buccal absorption. Human (n = 9-10) and porcine (n = 6-7) buccal mucosa were mounted in a modified Ussing chamber, and the kinetics of metoprolol and mannitol transport was assessed for a period of 5.5 h with the pH values of donor medium set at 7.4, 8.5, and 9.0. In addition, hematoxylin-eosin and Alcian blue-van Gieson were used as tissue stains to evaluate the histology and the presence of acidic polysaccharides (e.g., mucins), respectively. The permeability of metoprolol was decreased in human buccal mucosa by almost twofold when compared with porcine buccal mucosa with a positive correlation (r(2) = 0.96) between the permeability assessed in porcine and human buccal mucosa. There was no change in the degree of either epithelial swelling or desquamation when treating with the pH 9.0 donor medium for 5.5 h. These data suggest that buccal mucosa from pigs can be used to predict human buccal absorption.

  5. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  6. Chronic Multifocal Inflammation of the Alveolar Bone Mimicking Malignancy: A Case Report

    Directory of Open Access Journals (Sweden)

    Shahidi Sh.

    2012-03-01

    Full Text Available ronic inflammation of the alveolar bone is a great clinical and radiologic mimic, which merits recognition by the clinician and pathologist. The patient can thus be reassured of the proper early treatment and a favorable prognosis. Occasionally, it is difficult to differentiate inflammatory lesions from malign-ant tumors. The aim of this report is to present a case with an inflammatory lesion mimicking malignant condition.We report a 19-year-old male complaining of rapid onset gingival swelling of the right side of both jaws and looseness of the right upper molar teeth in 20 days. Based on the acute onset of the gingival hyperplasia, severe looseness of the affected teeth especially in the maxilla, and the patient's age, multifocal rapid growing malignant condition was not ruled out. The lesion was misdiagnosed as a malignant condition by clinical and radiographic examination. The whole body bone scan showed no significant increased uptake in the right oral cavity compatible with no active bony pathology. The surgical pathology findings of the lesion showed severe chronic inflammation with surface epithelial hyperplasia.The initial diagnosis of the lesion was malignant condition but it was ruled out by bone scan and histological appearance.

  7. Effects of Perfluorocarbons on surfactant exocytosis and membrane properties in isolated alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Ravasio Andrea

    2010-05-01

    Full Text Available Abstract Background Perfluorocarbons (PFC are used to improve gas exchange in diseased lungs. PFC have been shown to affect various cell types. Thus, effects on alveolar type II (ATII cells and surfactant metabolism can be expected, data, however, are controversial. Objective The study was performed to test two hypotheses: (I the effects of PFC on surfactant exocytosis depend on their respective vapor pressures; (II different pathways of surfactant exocytosis are affected differently by PFC. Methods Isolated ATII cells were exposed to two PFC with different vapor pressures and spontaneous surfactant exocytosis was measured. Furthermore, surfactant exocytosis was stimulated by either ATP, PMA or Ionomycin. The effects of PFC on cell morphology, cellular viability, endocytosis, membrane permeability and fluidity were determined. Results The spontaneous exocytosis was reduced by PFC, however, the ATP and PMA stimulated exocytosis was slightly increased by PFC with high vapor pressure. In contrast, Ionomycin-induced exocytosis was decreased by PFC with low vapor pressure. Cellular uptake of FM 1-43 - a marker of membrane integrity - was increased. However, membrane fluidity, endocytosis and viability were not affected by PFC incubation. Conclusions We conclude that PFC effects can be explained by modest, unspecific interactions with the plasma membrane rather than by specific interactions with intracellular targets.

  8. Alveolar bone measurement precision for phosphor-plate images

    Science.gov (United States)

    HILDEBOLT, CHARLES F.; COUTURE, REX; GARCIA, NATHALIA M.; DIXON, DEBRA; SHANNON, WILLIAM DOUGLAS; LANGENWALTER, ERIC; CIVITELLI, ROBERTO

    2009-01-01

    Objectives To demonstrate methods for determining measurement precision and to determine the precision of alveolar-bone measurements made with a vacuum-coupled, positioning device and phosphor-plate images. Study design Subjects were rigidly attached to the x-ray tube by means of a vacuum coupling device and custom, cross-arch, bite plates. Original and repeat radiographs (taken within minutes of each other) were obtained of the mandibular posterior teeth of 51 subjects, and cementoenamel-junction-alveolar-crest (CEJ-AC) distances were measured on both sets of images. In addition, x-ray-transmission (radiodensity) and alveolar-crest-height differences were determined by subtracting one image from the other. Image subtractions and measurements were performed twice. Based on duplicate measurements, the root-mean-square standard deviation (precision) and least-significant change (LSC) were calculated. LSC is the magnitude of change in a measurement needed to indicate that a true biological change has occurred. Results The LSCs were 4% for x-ray transmission, 0.49 mm for CEJ-AC distance, and 0.06 mm for crest-height 0.06 mm. Conclusion The LSCs for our CEJ-AC and x-ray transmission measurements are similar to what has been reported. The LSC for alveolar-crest height (determined with image subtraction) was less than 0.1 mm. Compared with findings from previous studies, this represents a highly precise measurement of alveolar crest height. The methods demonstrated for calculating LSC can be used by investigators to determine how large changes in radiographic measurements need to be before the changes can be considered (with 95% confidence) true biological changes and not noise (that is, equipment/observer error). PMID:19716499

  9. A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions.

    Directory of Open Access Journals (Sweden)

    Nayden G Naydenov

    Full Text Available Tight junctions (TJs and adherens junctions (AJs are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF attachment protein alpha (αSNAP, regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.

  10. Interleukin-13 promotes expression of Alix to compromise renal tubular epithelial barrier function.

    Science.gov (United States)

    Xu, Chen; Sun, Guangdong; Yang, Jie; Sun, Qianmei; Tong, Zhaohui

    2015-05-01

    The epithelial barrier dysfunction plays a critical role in a number of kidney diseases. The mechanism is unclear. Alix is a protein involving in protein degradation in epithelial cells. This study aims to investigate that interleukin (IL)-13 inhibits Alix to compromise the kidney epithelial barrier function. In this study, the murine collecting duct cell line (M-1) was cultured in Transwell inserts to investigate the significance of Alix in compromising the epithelial barrier functions. T cell (Teff cells) proliferation assay was employed to assess the antigenicity of ovalbumin (OVA) that was transported across the M-1 monolayer barrier. The results showed that M-1 cells express Alix. Exposure to interleukin (IL)-13 markedly decreased the expression of Alix in M-1 cells, which compromised the M-1 monolayer barrier functions by showing the increases in the permeability to OVA. Over-expression of Alix abolished the IL-13-induced M-1 monolayer barrier dysfunction. Knockdown of Alix significantly increased M-1 monolayer permeability. The OVA collected from the Transwell basal chambers induced the OVA-specific T cell proliferation. We conclude that IL-13 compromises M-1 epithelial barrier functions via inhibiting Alix expression.

  11. Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation.

    Science.gov (United States)

    Nighot, Prashant K; Hu, Chien-An Andy; Ma, Thomas Y

    2015-03-13

    Autophagy is an intracellular degradation pathway and is considered to be an essential cell survival mechanism. Defects in autophagy are implicated in many pathological processes, including inflammatory bowel disease. Among the innate defense mechanisms of intestinal mucosa, a defective tight junction (TJ) barrier has been postulated as a key pathogenic factor in the causation and progression of inflammatory bowel disease by allowing increased antigenic permeation. The cross-talk between autophagy and the TJ barrier has not yet been described. In this study, we present the novel finding that autophagy enhances TJ barrier function in Caco-2 intestinal epithelial cells. Nutrient starvation-induced autophagy significantly increased transepithelial electrical resistance and reduced the ratio of sodium/chloride paracellular permeability. Nutrient starvation reduced the paracellular permeability of small-sized urea but not larger molecules. The role of autophagy in the modulation of paracellular permeability was confirmed by pharmacological induction as well as pharmacological and genetic inhibition of autophagy. Consistent with the autophagy-induced reduction in paracellular permeability, a marked decrease in the level of the cation-selective, pore-forming TJ protein claudin-2 was observed after cell starvation. Starvation reduced the membrane presence of claudin-2 and increased its cytoplasmic, lysosomal localization. Therefore, our data show that autophagy selectively reduces epithelial TJ permeability of ions and small molecules by lysosomal degradation of the TJ protein claudin-2.

  12. Functional and structural alterations of epithelial barrier properties of rat ileum following X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dublineau, I. [Inst. de Radioprotection et de Surete Nucleaire (IRSN), Direction de la RadioProtection de l' Homme, Service de Radiobiologie et d' Epidemiologie, Fontenay-aux-Roses, CEDEX (France)]. E-mail: isabelle.dublineau@irsn.fr; Lebrun, F. [Commissariat a l' Energie Atomique (CEA), Dept. de Radiopathologie et de Radiobiologie, Fontenay-aux-Roses, CEDEX (France); Grison, S.; Griffiths, N.M. [Inst. de Radioprotection et de Surete Nucleaire (IRSN), Direction de la RadioProtection de l' Homme, Service de Radiobiologie et d' Epidemiologie, Fontenay-aux-Roses, CEDEX (France)

    2004-02-01

    Irradiation of the digestive system leads to alterations of the small intestine. We have characterized the disruption of the barrier integrity in rat ileum from 1 to 14 days following irradiation ranging from 6 to 12 Gy. The intestinal permeability to {sup 14}C-mannitol and {sup 3}H-dextran 70,000 was measured in vitro in Ussing chambers. In parallel to these functional studies, immunohistochemical analyses of junctional proteins (ZO-1 and {beta}-catenin) of ileal epithelium were performed by confocal microscopy. Irradiation with 10 Gy induced a marked decrease in epithelial tissue resistance at three days and a fivefold increase in mannitol permeability, without modifications of dextran permeability. A disorganization of the localization for ZO-1 and {beta}-catenin was also observed. At 7 days after irradiation, we observed a recovery of the organization of junctional proteins in parallel to a return of intestinal permeability to control value. In addition to these time-dependent effects, a gradual effect on epithelial integrity of the radiation doses was observed 3 days after irradiation. This study shows a disruption of the integrity of the intestinal barrier in rat ileum following abdominal X-irradiation, depending on the time postirradiation and on the delivered dose. The loss of barrier integrity was characterized by a disorganization of proteins of tight and adherent junctions, leading to increased intestinal permeability to mannitol. (author)

  13. Clogging in permeable concrete: A review.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity.

  14. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.

    2006-01-01

    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model......, the predicted permeability of hydrating cement pastes is extremely sensitive to the particle size distribution of the cement and especially to the minimum size of the cement particles. Both in simulations and experiments, the permeability of cement pastes is mainly determined by the critical diameter...

  15. Lipopolysaccharide Induces Alveolar Macrophage Necrosis via CD14 and the P2X7 Receptor Leading to Interleukin-1α Release.

    Science.gov (United States)

    Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Tumurkhuu, Gantsetseg; Zhang, Wenxuan; Wawrowsky, Kolja A; Crother, Timothy R; Arditi, Moshe

    2015-04-21

    Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca(2+) influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration.

  16. Simple Epithelial Keratins.

    Science.gov (United States)

    Strnad, Pavel; Guldiken, Nurdan; Helenius, Terhi O; Misiorek, Julia O; Nyström, Joel H; Lähdeniemi, Iris A K; Silvander, Jonas S G; Kuscuoglu, Deniz; Toivola, Diana M

    2016-01-01

    Simple epithelial keratins (SEKs) are the cytoplasmic intermediate filament proteins of single-layered and glandular epithelial cells as found in the liver, pancreas, intestine, and lung. SEKs have broad cytoprotective functions, which are facilitated by dynamic posttranslational modifications and interaction with associated proteins. SEK filaments are composed of obligate heteropolymers of type II (K7, K8) and type I (K18-K20, K23) keratins. The multifaceted roles of SEKs are increasingly appreciated due to findings obtained from transgenic mouse models and human studies that identified SEK variants in several digestive diseases. Reorganization of the SEK network into aggregates called Mallory-Denk bodies (MDBs) is characteristic for specific liver disorders such as alcoholic and nonalcoholic steatohepatitis. To spur further research on SEKs, we here review the methods and potential caveats of their isolation as well as possibilities to study them in cell culture. The existing transgenic SEK mouse models, their advantages and potential drawbacks are discussed. The tools to induce MDBs, ways of their visualization and quantification, as well as the possibilities to detect SEK variants in humans are summarized.

  17. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair.

    Directory of Open Access Journals (Sweden)

    Jennifer Quantius

    2016-06-01

    Full Text Available Influenza Virus (IV pneumonia is associated with severe damage of the lung epithelium and respiratory failure. Apart from efficient host defense, structural repair of the injured epithelium is crucial for survival of severe pneumonia. The molecular mechanisms underlying stem/progenitor cell mediated regenerative responses are not well characterized. In particular, the impact of IV infection on lung stem cells and their regenerative responses remains elusive. Our study demonstrates that a highly pathogenic IV infects various cell populations in the murine lung, but displays a strong tropism to an epithelial cell subset with high proliferative capacity, defined by the signature EpCamhighCD24lowintegrin(α6high. This cell fraction expressed the stem cell antigen-1, highly enriched lung stem/progenitor cells previously characterized by the signature integrin(β4+CD200+, and upregulated the p63/krt5 regeneration program after IV-induced injury. Using 3-dimensional organoid cultures derived from these epithelial stem/progenitor cells (EpiSPC, and in vivo infection models including transgenic mice, we reveal that their expansion, barrier renewal and outcome after IV-induced injury critically depended on Fgfr2b signaling. Importantly, IV infected EpiSPC exhibited severely impaired renewal capacity due to IV-induced blockade of β-catenin-dependent Fgfr2b signaling, evidenced by loss of alveolar tissue repair capacity after intrapulmonary EpiSPC transplantation in vivo. Intratracheal application of exogenous Fgf10, however, resulted in increased engagement of non-infected EpiSPC for tissue regeneration, demonstrated by improved proliferative potential, restoration of alveolar barrier function and increased survival following IV pneumonia. Together, these data suggest that tropism of IV to distal lung stem cell niches represents an important factor of pathogenicity and highlight impaired Fgfr2b signaling as underlying mechanism. Furthermore, increase of

  18. Epithelial Sodium and Chloride Channels and Asthma

    Institute of Scientific and Technical Information of China (English)

    Wen Wang; Hong-Long Ji

    2015-01-01

    Objective:To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel.Data Sources:The data analyzed in this review were the English articles from 1980 to 2015 from journal databases,primarily PubMed and Google Scholar.The terms used in the literature search were:(1) ENaCs;cystic fibrosis (CF) transmembrane conductance regulator (CFTR);asthma/asthmatic,(2) ENaC/sodium salt;CF;asthma/asthmatic,(3) CFTR/chlorine ion channels;asthma/asthmatic,(4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt;asthma/asthmatic,lung/pulmonary/respiratory/tracheal/alveolar,and (5) CFTR;CF;asthma/asthmatic (ti).Study Selection:These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015).The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors.Results:Airway surface liquid dehydration can cause airway inflammation and obstruction.ENaC and CFTR are closely related to the airway mucociliary clearance.Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations.Conclusions:Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease.

  19. Vascular permeability in cerebral cavernous malformations.

    Science.gov (United States)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao; Girard, Romuald; Shenkar, Robert; Guo, Xiaodong; Shah, Akash; Larsson, Henrik B W; Tan, Huan; Li, Luying; Wishnoff, Matthew S; Shi, Changbin; Christoforidis, Gregory A; Awad, Issam A

    2015-10-01

    Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case-controlled observational study investigated whether the brains of human subjects with familial CCM show vascular hyperpermeability by dynamic contrast-enhanced quantitative perfusion magnetic resonance imaging, in comparison with CCM cases without familial disease, and whether lesional or brain vascular permeability correlates with CCM disease activity. Permeability in white matter far (WMF) from lesions was significantly greater in familial than in sporadic cases, but was similar in CCM lesions. Permeability in WMF increased with age in sporadic patients, but not in familial cases. Patients with more aggressive familial CCM disease had greater WMF permeability compared to those with milder disease phenotype, but similar lesion permeability. Subjects receiving statin medications for routine cardiovascular indications had a trend of lower WMF, but not lesion, permeability. This is the first demonstration of brain vascular hyperpermeability in humans with an autosomal dominant disease, as predicted mechanistically. Brain permeability, more than lesion permeability, may serve as a biomarker of CCM disease activity, and help calibrate potential drug therapy.

  20. Permeability of Electrospun Superhydrophobic Nanofiber Mats

    Directory of Open Access Journals (Sweden)

    Sarfaraz U. Patel

    2012-01-01

    Full Text Available This paper discusses the fabrication and characterization of electrospun nanofiber mats made up of poly(4-methyl-1-pentene polymer. The polymer was electrospun in different weight concentrations. The mats were characterized by their basis weight, fiber diameter distribution, contact angles, contact angle hysteresis, and air permeability. All of the electrospun nonwoven fiber mats had water contact angles greater than 150 degrees making them superhydrophobic. The permeabilities of the mats were empirically fitted to the mat basis weight by a linear relation. The experimentally measured air permeabilities were significantly larger than the permeabilities predicted by the Kuwabara model for fibrous media.

  1. MAPK-Mediated YAP Activation Controls Mechanical-Tension-Induced Pulmonary Alveolar Regeneration

    Directory of Open Access Journals (Sweden)

    Zhe Liu

    2016-08-01

    Full Text Available The pulmonary alveolar epithelium undergoes extensive regeneration in response to lung injuries, including lung resection. In recent years, our understanding of cell lineage relationships in the pulmonary alveolar epithelium has improved significantly. However, the molecular and cellular mechanisms that regulate pneumonectomy (PNX-induced alveolar regeneration remain largely unknown. In this study, we demonstrate that mechanical-tension-induced YAP activation in alveolar stem cells plays a major role in promoting post-PNX alveolar regeneration. Our results indicate that JNK and p38 MAPK signaling is critical for mediating actin-cytoskeleton-remodeling-induced nuclear YAP expression in alveolar stem cells. Moreover, we show that Cdc42-controlled actin remodeling is required for the activation of JNK, p38, and YAP in post-PNX lungs. Our findings together establish that the Cdc42/F-actin/MAPK/YAP signaling cascade is essential for promoting alveolar regeneration in response to mechanical tension in the lung.

  2. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yuka; Hagiwara, Natsumi [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan); Radisky, Derek C. [Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32225 (United States); Hirai, Yohei, E-mail: y-hirai@kwansei.ac.jp [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan)

    2014-09-10

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.

  3. Characteristic aspects of alveolar proteinosis diagnosis Aspectos característicos do diagnóstico da proteinose alveolar

    Directory of Open Access Journals (Sweden)

    Thiago Prudente Bártholo

    2012-02-01

    Full Text Available Alveolar proteinosis is an uncommon pulmonary disease characterized by an accumulation of surfactant in terminal airway and alveoli, thereby impairing gas exchange and engendering respiratory insufficiency in some cases. Three clinically and etiologically distinct forms of pulmonary alveolar proteinosis are recognized: congenital, secondary and idiopathic, the latter corresponding to 90% of the cases. In this case report we present a young male patient that was diagnosed with alveolar proteinosis. Computed tomography of the thorax, bronchoscopy and transbronchial biopsy were performed. The histopathologic aspect was characteristic. The patient was discharged in good health conditions and remains asymptomatic to date.Proteinose alveolar é uma doença pulmonar incomum caracterizada pelo acúmulo de surfactante nas vias aéreas terminais e nos alvéolos, alterando a troca gasosa e, em alguns casos, promovendo insuficiência respiratória. Três formas clínicas e etiologicamente distintas de proteinose alveolar são reconhecidas: congênitas, secundárias e idiopáticas (mais de 90% dos casos são de etiologia idiopática. Neste relato, apresentamos um homem jovem que foi diagnosticado com proteinose pulmonar. Tomografia computadorizada de tórax, broncoscopia e biópsia transbrônquica foram realizadas. O aspecto histopatológico foi característico. O paciente teve alta, com boas condições de saúde, e encontra-se assintomático nos dias de hoje.

  4. The H2S-generating enzymes cystathionine β-synthase and cystathionine γ-lyase play a role in vascular development during normal lung alveolarization.

    Science.gov (United States)

    Madurga, Alicia; Golec, Anita; Pozarska, Agnieszka; Ishii, Isao; Mižíková, Ivana; Nardiello, Claudio; Vadász, István; Herold, Susanne; Mayer, Konstantin; Reichenberger, Frank; Fehrenbach, Heinz; Seeger, Werner; Morty, Rory E

    2015-10-01

    The gasotransmitter hydrogen sulfide (H2S) is emerging as a mediator of lung physiology and disease. Recent studies revealed that H2S administration limited perturbations to lung structure in experimental animal models of bronchopulmonary dysplasia (BPD), partially restoring alveolarization, limiting pulmonary hypertension, limiting inflammation, and promoting epithelial repair. No studies have addressed roles for endogenous H2S in lung development. H2S is endogenously generated by cystathionine β-synthase (Cbs) and cystathionine γ-lyase (Cth). We demonstrate here that the expression of Cbs and Cth in mouse lungs is dynamically regulated during lung alveolarization and that alveolarization is blunted in Cbs(-/-) and Cth(-/-) mouse pups, where a 50% reduction in the total number of alveoli was observed, without any impact on septal thickness. Laser-capture microdissection and immunofluorescence staining indicated that Cbs and Cth were expressed in the airway epithelium and lung vessels. Loss of Cbs and Cth led to a 100-500% increase in the muscularization of small- and medium-sized lung vessels, which was accompanied by increased vessel wall thickness, and an apparent decrease in lung vascular supply. Ablation of Cbs expression using small interfering RNA or pharmacological inhibition of Cth using propargylglycine in lung endothelial cells limited angiogenic capacity, causing a 30-40% decrease in tube length and a 50% decrease in number of tubes formed. In contrast, exogenous administration of H2S with GYY4137 promoted endothelial tube formation. These data confirm a key role for the H2S-generating enzymes Cbs and Cth in pulmonary vascular development and homeostasis and in lung alveolarization.

  5. The role of probiotic on alveolar bone resorption

    Directory of Open Access Journals (Sweden)

    Desi Sandra Sari

    2011-09-01

    Full Text Available Background: Probiotics are microbes derived from the group of lactic acid bacteria that work to maintain the health of hosts. Probiotics can also be used to improve oral health. Periodontal disease is usually marked with gingival inflammation and alveolar bone resorption. Gram negative anaerobic bacteria that play important role in human periodontal disease are Porphyromonas gingivalis. (P. gingivalis. P. gingivalis is a virulent bacteria in vivo or in vitro, and mostly found in subgingival plaque of periodontitis patients. Purpose: This study is aimed to know the role of probiotics to inhibit the resorption of alveolar bone induced with P. gingivalis. Methods: This study used male wistar rats divided into 4 groups. Group I was control group (without treatment; group II was induced with P. gingivalis ATCC 33277 for 5 days; group III was induced with P. gingivalis ATCC 33277 and also injected with probiotics (Lactobacillus casei ATCC 4224 for 5 days simultaneously; and group IV was induced with P. gingivalis ATCC 33277 for 5 days and also injected by probiotics (Lactobacillus casei ATCC 4224 in the next 5 days. After that, the samples were decapitated, taken their alveolar bone, and then were examined by immunohistochemistry to observe osteoclast activity in alveolar bone resorption by using tartrate-resistant acid phosphatase (TRAP expression. All data were then analyzed statistically. Results: It is known that there were significant differences of TRAP expression among all those treatment groups (p < 0.05. Conclusion: It then can be concluded that probiotics can decrease osteoclast activity in periodontal tissue of wistar rats, so it can inhibit alveolar bone resorption.Latar belakang: Probiotik adalah mikroba dari golongan bakteri asam laktat yang bekerja mempertahankan kesehatan host dan probiotik dapat digunakan untuk meningkatkan kesehatan rongga mulut. Penyakit periodontal ditandai dengan adanya keradangan pada gingiva dan resobsi tulang

  6. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    Science.gov (United States)

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  7. Loss of epithelial Gq and G11 signaling inhibits TGFβ production but promotes IL-33–mediated macrophage polarization and emphysema

    OpenAIRE

    John, Alison, E.; Wilson, Michael; Habgood, Anthony; Porte, Joanne; Tatler, Amanda L; Stavrou, Anastasios; Miele, Gino; Jolly, Lisa; Knox, Alan J; Takata, Masao; Offermanns, Stefan; Jenkins, R. Gisli

    2016-01-01

    Heterotrimeric guanine nucleotide–binding protein (G protein) signaling is a ubiquitous signaling system that links hundreds of G protein–coupled receptors (GPCRs) with four G protein signaling pathways. Two of these pathways, one mediated by Gq and G11 and the other by G12 and G13, are implicated in the force-dependent activation of transforming growth factor–β (TGFβ) in lung epithelial cells. Reduced TGFβ activation in alveolar cells leads to emphysema, whereas enhanced TGFβ activation prom...

  8. Multiwall carbon nanotubes directly promote fibroblast-myofibroblast and epithelial-mesenchymal transitions through the activation of the TGF-β/Smad signaling pathway.

    Science.gov (United States)

    Wang, Peng; Wang, Yue; Nie, Xin; Braïni, Céline; Bai, Ru; Chen, Chunying

    2015-01-27

    A number of studies have demonstrated that MWCNTs induce granuloma formation and fibrotic responses in vivo, and it has been recently reported that MWCNT-induced macrophage activation and subsequent TGF-β secretion contribute to pulmonary fibrotic responses. However, their direct effects against alveolar type-II epithelial cells and fibroblasts and the corresponding underlying mechanisms remain largely unaddressed. Here, MWCNTs are reported to be able to directly promote fibroblast-to-myofibroblast conversion and the epithelial-mesenchymal transition (EMT) through the activation of the TGF-β/Smad signaling pathway. Both of the cell transitions may play important roles in MWCNT-induced pulmonary fibrosis. Firstly, in-vivo and in-vitro data show that long MWCNTs can directly interact with fibroblasts and epithelial cells, and some of them may be uptaken into fibroblasts and epithelial cells by endocytosis. Secondly, long MWCNTs can directly activate fibroblasts and increase both the basal and TGF-β1-induced expression of the fibroblast-specific protein-1, α-smooth muscle actin, and collagen III. Finally, MWCNTs can induce the EMT through the activation of TGF-β/Smad2 signaling in alveolar type-II epithelial cells, from which some fibroblasts involved in pulmonary fibrosis are thought to originate. These observations suggest that the activation of the TGF-β/Smad2 signaling plays a critical role in the process of the fibroblast-to-myofibroblast transition and the EMT induced by MWCNTs.

  9. Integrin α6β4 identifies human distal lung epithelial progenitor cells with potential as a cell-based therapy for cystic fibrosis lung disease.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Li

    Full Text Available To develop stem/progenitor cell-based therapy for cystic fibrosis (CF lung disease, it is first necessary to identify markers of human lung epithelial progenitor/stem cells and to better understand the potential for differentiation into distinct lineages. Here we investigated integrin α6β4 as an epithelial progenitor cell marker in the human distal lung. We identified a subpopulation of α6β4(+ cells that localized in distal small airways and alveolar walls and were devoid of pro-surfactant protein C expression. The α6β4(+ epithelial cells demonstrated key properties of stem cells ex vivo as compared to α6β4(- epithelial cells, including higher colony forming efficiency, expression of stem cell-specific transcription factor Nanog, and the potential to differentiate into multiple distinct lineages including basal and Clara cells. Co-culture of α6β4(+ epithelial cells with endothelial cells enhanced proliferation. We identified a subset of adeno-associated virus (AAVs serotypes, AAV2 and AAV8, capable of transducing α6β4(+ cells. In addition, reconstitution of bronchi epithelial cells from CF patients with only 5% normal α6β4(+ epithelial cells significantly rescued defects in Cl(- transport. Therefore, targeting the α6β4(+ epithelial population via either gene delivery or progenitor cell-based reconstitution represents a potential new strategy to treat CF lung disease.

  10. Extensive focal epithelial hyperplasia.

    Science.gov (United States)

    Hashemipour, Maryam Alsadat; Shoryabi, Ali; Adhami, Shahrzad; Mehrabizadeh Honarmand, Hoda

    2010-01-01

    Heck's disease or focal epithelial hyperplasia is a benign contagious disease caused by human papillomavirus types 13 or 32. It occurs with low frequency in the Iranian population. This condition is characterized by the occurrence of multiple, small papules or nodules in the oral cavity, especially on the labial and buccal mucosa and tongue. In some populations, up to 39% of children are affected. Conservative surgical excision of lesions may be performed for diagnostic or aesthetic purposes. The risk of recurrence after this therapy is minimal, and there seems to be no malignant transformation potential. In the present work, we presented the clinical case of a 12-year-old Iranian girl with oral lesions that clinically and histologically correspond to Heck's disease.

  11. Cell cycle regulation by glucosamine in human pulmonary epithelial cells.

    Science.gov (United States)

    Chuang, Kun-Han; Lu, Chih-Shen; Kou, Yu Ru; Wu, Yuh-Lin

    2013-04-01

    Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.

  12. Intercomparison on measurement of water vapour permeability

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard

    Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001).......Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001)....

  13. Accurate determination of characteristic relative permeability curves

    Science.gov (United States)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  14. Retinoid induction of alveolar regeneration: from mice to man?

    Science.gov (United States)

    Hind, M; Gilthorpe, A; Stinchcombe, S; Maden, M

    2009-05-01

    The use of retinoids to induce human lung regeneration is under investigation in a number of studies in patients with chronic obstructive pulmonary disease (COPD). Retinoic acid (RA) has complex pleiotropic functions during vertebrate patterning and development and can induce regeneration in a number of different organ systems. Studies of retinoid signalling during lung development might provide a molecular basis to explain pharmacological induction of alveolar regeneration in adult models of lung disease. In this review the role of endogenous RA signalling during alveologenesis is explored and data suggesting that a number of exogenous retinoids can induce regeneration in the adult lung are discussed. Current controversies in this area are highlighted and a hypothesis of lung regeneration is put forward. Understanding the cellular and molecular mechanisms of induction of regeneration will be central for effective translation into patients with lung disease and may reveal novel insights into the pathogenesis of alveolar disease and senescence.

  15. Alveolar bone loss in osteoporosis: a loaded and cellular affair?

    Science.gov (United States)

    Jonasson, Grethe; Rythén, Marianne

    2016-01-01

    Maxillary and mandibular bone mirror skeletal bone conditions. Bone remodeling happens at endosteal surfaces where the osteoclasts and osteoblasts are situated. More surfaces means more cells and remodeling. The bone turnover rate in the mandibular alveolar process is probably the fastest in the body; thus, the first signs of osteoporosis may be revealed here. Hormones, osteoporosis, and aging influence the alveolar process and the skeletal bones similarly, but differences in loading between loaded, half-loaded, and unloaded bones are important to consider. Bone mass is redistributed from one location to another where strength is needed. A sparse trabeculation in the mandibular premolar region (large intertrabecular spaces and thin trabeculae) is a reliable sign of osteopenia and a high skeletal fracture risk. Having dense trabeculation (small intertrabecular spaces and well-mineralized trabeculae) is generally advantageous to the individual because of the low fracture risk, but may imply some problems for the clinician. PMID:27471408

  16. Alveolar bone loss in osteoporosis: a loaded and cellular affair?

    Science.gov (United States)

    Jonasson, Grethe; Rythén, Marianne

    2016-01-01

    Maxillary and mandibular bone mirror skeletal bone conditions. Bone remodeling happens at endosteal surfaces where the osteoclasts and osteoblasts are situated. More surfaces means more cells and remodeling. The bone turnover rate in the mandibular alveolar process is probably the fastest in the body; thus, the first signs of osteoporosis may be revealed here. Hormones, osteoporosis, and aging influence the alveolar process and the skeletal bones similarly, but differences in loading between loaded, half-loaded, and unloaded bones are important to consider. Bone mass is redistributed from one location to another where strength is needed. A sparse trabeculation in the mandibular premolar region (large intertrabecular spaces and thin trabeculae) is a reliable sign of osteopenia and a high skeletal fracture risk. Having dense trabeculation (small intertrabecular spaces and well-mineralized trabeculae) is generally advantageous to the individual because of the low fracture risk, but may imply some problems for the clinician.

  17. Over-expression of Slit2 induces vessel formation and changes blood vessel permeability in mouse brain

    Institute of Scientific and Technical Information of China (English)

    Hai-xiong HAN; Jian-guo GENG

    2011-01-01

    Aim:To investigate the effect of the axon guidance cue Slit2 on the density of blood vessels and permeability of the blood-brain barrier in mouse brain.Methods:hSlit2 transgenic mouse line was constructed,and the phenotypes of the mice were compared with wild-type mice in respect to the lateral ventricle (LV),ventricle pressure,and the choroids plexus.An in vivo Miles permeability assay and an amyloid-β permeability assay were used to assess the permeability of brain blood vessels.Brain vessel casting and intracerebral hemorrhage models were built to investigate vessel density in the transgenic mice.An in vitro permeability assay was used to test whether Slit2 could change the permeability and tight junctions of blood vessel endothelial cells.Results:Hydrocephalus occurred in some transgenic mice,and a significantly larger lateral ventricle area and significantly higher ventricle pressure were observed in the transgenic mice.The transgenic mice displayed changed construction of the choroids plexus,which had more micro vessels,dilated vessels,gaps between epithelial cells and endothelial cells than wild-type mice.Slit2 significantly increased brain vessel density and the permeability of brain vessels to large molecules.These blood vessels were more sensitive to cues that induce brain hemorrhage.At the cellular level,Slit2 disturbed the integrity of tight junctions in blood vessel endothelial cells and improved the permeability of the endothelial cell layer.Thus,it promoted the entry of amyloid-β peptides from the serum into the central nervous system,where they bound to neurons.Conclusion:Slit2 increases vessel density and permeability in the brains of transgenic mice.Thus,Slit2 induces numerous changes in brain vessels and the barrier system.

  18. Macro fluid analysis of laminated fabric permeability

    Directory of Open Access Journals (Sweden)

    Qiu Li

    2016-01-01

    Full Text Available A porous jump model is put forward to predict the breathability of laminated fabrics by utilizing fluent software. To simplify the parameter setting process, the methods of determining the parameters of jump porous model by means of fabric layers are studied. Also, effects of single/multi-layer fabrics and thickness on breathability are analyzed, indicating that fabric breathability reduces with the increase of layers. Multi-layer fabric is simplified into a single layer, and the fabric permeability is calculated by proportion. Moreover, the change curve of fabric layer and face permeability, as well as the equation between the fabric layer and the face permeability are obtained. Then, face permeability and pressure-jump coefficient parameters setting of porous jump model could be integrated into single parameter (i. e. fabric layers, which simplifies the fluent operation process and realizes the prediction of laminated fabric permeability.

  19. Permeability Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends on the charact......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...... on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Eastern Scheldt Sand. The permeability is determined by use of a falling head apparatus. Finally the test results are briefly summarised and a relationship between...... void ratio and permeability is established....

  20. Injury of the Inferior Alveolar Nerve during Implant Placement: a Literature Review

    Directory of Open Access Journals (Sweden)

    Gintaras Juodzbalys

    2011-01-01

    Full Text Available Objectives: The purpose of present article was to review aetiological factors, mechanism, clinical symptoms, and diagnostic methods as well as to create treatment guidelines for the management of inferior alveolar nerve injury during dental implant placement.Material and Methods: Literature was selected through a search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were inferior alveolar nerve injury, inferior alveolar nerve injuries, inferior alveolar nerve injury implant, inferior alveolar nerve damage, inferior alveolar nerve paresthesia and inferior alveolar nerve repair. The search was restricted to English language articles, published from 1972 to November 2010. Additionally, a manual search in the major anatomy, dental implant, periodontal and oral surgery journals and books were performed. The publications there selected by including clinical, human anatomy and physiology studies.Results: In total 136 literature sources were obtained and reviewed. Aetiological factors of inferior alveolar nerve injury, risk factors, mechanism, clinical sensory nerve examination methods, clinical symptoms and treatment were discussed. Guidelines were created to illustrate the methods used to prevent and manage inferior alveolar nerve injury before or after dental implant placement.Conclusions: The damage of inferior alveolar nerve during the dental implant placement can be a serious complication. Clinician should recognise and exclude aetiological factors leading to nerve injury. Proper presurgery planning, timely diagnosis and treatment are the key to avoid nerve sensory disturbances management.

  1. An automatic early stage alveolar-bone-resorption evaluation method on digital dental panoramic radiographs

    Science.gov (United States)

    Zhang, Min; Katsumata, Akitoshi; Muramatsu, Chisako; Hara, Takeshi; Suzuki, Hiroki; Fujita, Hiroshi

    2014-03-01

    Periodontal disease is a kind of typical dental diseases, which affects many adults. The presence of alveolar bone resorption, which can be observed from dental panoramic radiographs, is one of the most important signs of the progression of periodontal disease. Automatically evaluating alveolar-bone resorption is of important clinic meaning in dental radiology. The purpose of this study was to propose a novel system for automated alveolar-bone-resorption evaluation from digital dental panoramic radiographs for the first time. The proposed system enables visualization and quantitative evaluation of alveolar bone resorption degree surrounding the teeth. It has the following procedures: (1) pre-processing for a test image; (2) detection of tooth root apices with Gabor filter and curve fitting for the root apex line; (3) detection of features related with alveolar bone by using image phase congruency map and template matching and curving fitting for the alveolar line; (4) detection of occlusion line with selected Gabor filter; (5) finally, evaluation of the quantitative alveolar-bone-resorption degree in the area surrounding teeth by simply computing the average ratio of the height of the alveolar bone and the height of the teeth. The proposed scheme was applied to 30 patient cases of digital panoramic radiographs, with alveolar bone resorption of different stages. Our initial trial on these test cases indicates that the quantitative evaluation results are correlated with the alveolar-boneresorption degree, although the performance still needs further improvement. Therefore it has potential clinical practicability.

  2. Thermal behavior of premises equipped with different alveolar structures

    OpenAIRE

    Lajimi Nour; Boukadida Noureddine

    2015-01-01

    This paper presents a numerical study of local thermal behavior. Vertical walls are equipped with alveolar structure and/or simple glazing in East, South and West frontages. Local temperature is assumed to be variable with time or imposed at set point temperature. Results principally show that the simple glazing number has a sensitive effect on convection heat transfer and interior air temperature. They also show that the diode effect is more sensitive in w...

  3. Bruxism elicited by inferior alveolar nerve injury: a case report.

    Science.gov (United States)

    Melis, Marcello; Coiana, Carlo; Secci, Simona

    2012-02-01

    The aim of this case report is to describe the history of a patient who received an injury to the right inferior alveolar nerve after placement of a dental implant, with bruxism noted afterward. The symptoms were managed by the use of an occlusal appliance worn at night and occasionally during the day, associated with increased awareness of parafunction during the day to reduce muscle pain and fatigue. Paresthesia of the teeth, gingiva, and lower lip persisted but were reduced during appliance use.

  4. Coronectomy - A viable alternative to prevent inferior alveolar nerve injury

    Directory of Open Access Journals (Sweden)

    Alok Sagtani

    2015-12-01

    Full Text Available Background and Objectives: Coronectomy is a relatively new method to prevent the risk of Inferior Alveolar Nerve (IAN injury during removal of lower third molars with limited scientific literature among Nepalese patients. Thus, a study was designed to evaluate coronectomy regarding its use, outcomes and complications.Materials and Methods: A descriptive study was conducted from December 2012 to December 2013 among patients attending Department of Oral and Maxillofacial Surgery, College of Dental Sciences, BP Koirala Institute of Health Sciences, Dharan, Nepal for removal of mandibular third molars. After reviewing the radiograph for proximity of third molar to the IAN, coronectomy was advised. A written informed consent was obtained from the patients and coronectomy was performed. Patients were recalled after one week. The outcome measures in the follow-up visit were primary healing, pain, infection, dry socket, root exposure and IAN injury. The prevalence of IAN proximity of lower third molars and incidence of complications were calculated.Results: A total 300 mandibular third molars were extracted in 278 patients during the study period. Out of 300 impacted mandibular third molar, 41 (13.7% showed close proximity to inferior alveolar nerve . The incidence of complications and failed procedure was 7.4% among the patients who underwent coronectomy. During the follow up visit, persistent pain and root exposure was reported while other complications like inferior alveolar nerve injury, dry socket and infection was not experienced by the study patients.Conclusion: With a success rate of 92.6% among the 41 patients, coronectomy is a viable alternative to conventional total extraction for mandibular third molars who have a higher risk for damage to the inferior alveolar nerve.JCMS Nepal. 2015;11(3:1-5.

  5. Primary Pulmonary Plasmacytoma with Diffuse Alveolar Consolidation: A Case Report

    Directory of Open Access Journals (Sweden)

    Zohreh Mohammad Taheri

    2010-01-01

    Full Text Available Solitary extramedullary plasmacytomas are plasma cell tumors that tend to develop in mucosa-associated lymphoid tissues including the sinonasal or nasopharyngeal regions. Primary plasmacytoma of the lung is exceedingly rare and often presents as a solitary mass or nodule in mid-lung or hilar areas and diagnosed after resection. Herein, we report a case of primary pulmonary plasmacytoma that presented with diffuse alveolar consolidation and diagnosed by transbronchial lung biopsy.

  6. Alveolar ridge augmentation in rats by Bio-Oss

    DEFF Research Database (Denmark)

    Pinholt, E M; Bang, G; Haanaes, H R

    1991-01-01

    The purpose of the study was to examine if Bio-Oss initiated osteoinduction or osteoconduction when implanted into rats. Sintered and unsintered granules of the anorganic bovine bone Bio-Oss was implanted subperiosteally for alveolar ridge augmentation purposes and heterotopically in the abdominal...... muscles of rats. Light microscopic evaluation revealed no osteoinduction or osteoconduction in connection with sintered or unsintered Bio-Oss. A foreign body reaction was observed around both forms....

  7. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    Science.gov (United States)

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  8. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  9. Compact rock material gas permeability properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanling, E-mail: whl_hm@163.com [Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098 (China); LML, University of Lille, Cite Scientifique, 59655 Villeneuve d’Ascq (France); Xu, Weiya; Zuo, Jing [Institutes of Geotechnical Engineering, Hohai University, Nanjing 210098 (China)

    2014-09-15

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO{sub 2,} shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10{sup −19} m{sup 2}; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10{sup −17} m{sup 2}; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens’ permeability evolution is related to the relative particle movements and microcrack closure.

  10. Referral practice of military corpsmen regarding dento-alveolar trauma.

    Science.gov (United States)

    Zadik, Yehuda; Levin, Liran

    2008-06-01

    The aim of this study was to evaluate the Israeli military corpsmens' practice of referral to professional treatment regarding traumatic dental injuries. The study consisted of 250 corpsmen during their military service. Questionnaire and slide show were used to present clinical photos with short history descriptions of dento-alveolar traumatic injuries. Participants were asked to indicate the preferred referral destination for each case to state the urgency of referral to the destination and to note their regional emergency department with an oral and maxillofacial surgery consultant and the nearest 24-h emergency dental clinic. Corpsmen immediately evacuated the wounded with full-thickness lip laceration (59%), tooth avulsion (79%), alveolar fracture (88%) and mandibular fracture (100%). Most corpsmen referred crown fracture to a dental clinic and alveolar- or mandibular-bone fracture to the emergency department. Tooth avulsion cases were equally distributed between the emergency department and dental clinic and full-thickness lip laceration between the emergency department and general medical office. Familiarity with the nearest 24-h emergency dental clinic was found in 38% and with the regional emergency department with an oral and maxillofacial surgery consultant in 57%. The knowledge of this group of military corpsmen regarding referral practices was encouraging. However, further continuing education with regards to the regionally available emergency services is needed. Special emphasis should be given to provide primary caregivers with the relevant education to improve their knowledge and ability of dealing dental trauma.

  11. Thermographic assessment of reversible inferior alveolar nerve deficit.

    Science.gov (United States)

    Shetty, V; Gratt, B M; Flack, V

    1994-01-01

    The purpose of this study was to investigate thermography's potential as a diagnostic alternative for evaluating neurosensory deficits of the inferior alveolar nerve. Electronic thermography was used to evaluate the alterations in facial thermal patterns attendant to a conduction defect of the inferior alveolar nerve induced in 12 subjects using 2% lidocaine. The rates of onset and duration of sensory block, as visualized by thermography, were related to the results of conventional neurosensory testing. Comparison of the rate of response change within each measurement system revealed that changes in facial skin temperature manifest the induced deficit earlier than discriminative tests. Also, the prolonged elevation of thermal asymmetry suggested that electronic thermography has the ability to detect subtle changes in nerve function that are not discernible by physical neurosensory tests relying on patient response. Although cutaneous temperature increases were highest in the field of observation near the sensory distribution of the mental nerve, an inexplicable warming of the contralateral side of the face and neck was also observed. These attendant findings emphasize the need for further studies on the pathophysiologic mechanisms of facial thermal changes to better understand thermography's diagnostic accuracy and clinical utility for monitoring inferior alveolar nerve dysfunction.

  12. Pregnancy in a patient with severe pulmonary alveolar microlithiasis.

    Science.gov (United States)

    Souza Filho, José Osmar Bezerra de; Silveira, Cristiane Maria Cavalcante; Cunha, Aline Barreto da; Pinheiro, Valéria Goes Ferreira; Feitosa, Francisco Edson de Lucena; Holanda, Marcelo Alcântara

    2008-10-01

    Pulmonary alveolar microlithiasis (PAM) is a rare disease that affects both lungs. It is characterized by the presence of small calculi (calcium phosphate) within the alveolar spaces. We report the case of a 26-year-old female whose diagnosis was based on characteristic findings on chest X-rays and high-resolution computed tomography scans. The patient, 28 weeks pregnant, was rehospitalized 10 months after the diagnosis, presenting hypoxemic acute respiratory failure and severe restrictive ventilatory defect on spirometry. After 32 completed weeks of gestation (228 days), she was submitted to cesarean section, and the outcome was successful for mother and newborn. PAM has a variable clinical course. It is suggestive of an autosomal recessive inheritance pattern and has been associated with positive family history. The etiology of PAM is unclear, and many authors speculate that there is a local enzymatic defect responsible for the intra-alveolar accumulation of calcium. Reports of patients with PAM who become pregnant are exceptional, and this is the first case described in Brazil. The course of this disease is usually slow and progressive, and patients typically die of cardiorespiratory failure. The present case illustrates the need to offer female patients, especially those with advanced disease, genetic counseling and orientation regarding the risks of pregnancy. Currently, the only effective therapy is lung transplantation.

  13. Intraosseous schwannoma originating in inferior alveolar nerve: a case report.

    Science.gov (United States)

    Suga, Kenichiro; Ogane, Satoru; Muramatsu, Kyotaro; Ohata, Hitoshi; Uchiyama, Takeshi; Takano, Nobuo; Shibahara, Takahiko; Eguchi, Jun; Murakami, Satoshi; Matsuzaka, Kenichi

    2013-01-01

    Schwannomas (neurilemmomas) are benign neoplasms derived from Schwann cells of the neurilemma and appear most frequently on the auditory nerve or peripheral nerves of the skin. They arise in the oral and maxillofacial region infrequently, and very rarely in the center of the jaw. We herein present a case of a rare mandibular intraosseous schwannoma derived from the main trunk of the inferior alveolar nerve in a 33-year-old man. Fusiform expansion in the mandibular canal was observed and a mass showing the target sign in the mandibular canal was confirmed on T2-weighted and Gd contrastenhanced T1-weighted MRI. Based on these findings, an inferior alveolar nerve-derived schwannoma or other benign nervous system neoplasm was diagnosed. A buccal side cortical bone flap in the mandibular molar region was removed to expose the mass, which was then peeled away from the nerve fibers and completely removed. Some inferior alveolar nerve fibers that were connected to the mass were removed at the same time, but the remaining nerve fiber bundle was preserved. Histopathology confirmed the diagnosis of a schwannoma with Antoni type A and Antoni type B regions. Although the patient experienced extremely mild paresthesia in the skin over the mental region and mental foramen at immediately after surgery, this had almost entirely disappeared at 7 years and 4 months later, and there has been no tumor recurrence.

  14. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens

    Science.gov (United States)

    Van de Velde, Nicholas C.; Karlsson, Erik A.; Neale, Geoff; Vogel, Peter; Sharma, Shalini; Duan, Susu; Surman, Sherri L.; Jones, Bart G.; Johnson, Michael D. L.; Bosio, Catharine; Jolly, Lisa; Jenkins, R. Gisli; Hurwitz, Julia L.; Rosch, Jason W.; Sheppard, Dean; Thomas, Paul G.; Murray, Peter J.; Schultz-Cherry, Stacey

    2016-01-01

    The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β). Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival. PMID:27505057

  15. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    Science.gov (United States)

    Meliopoulos, Victoria A; Van de Velde, Lee-Ann; Van de Velde, Nicholas C; Karlsson, Erik A; Neale, Geoff; Vogel, Peter; Guy, Cliff; Sharma, Shalini; Duan, Susu; Surman, Sherri L; Jones, Bart G; Johnson, Michael D L; Bosio, Catharine; Jolly, Lisa; Jenkins, R Gisli; Hurwitz, Julia L; Rosch, Jason W; Sheppard, Dean; Thomas, Paul G; Murray, Peter J; Schultz-Cherry, Stacey

    2016-08-01

    The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β). Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  16. Acidic bile salts modulate the squamous epithelial barrier function by modulating tight junction proteins.

    Science.gov (United States)

    Chen, Xin; Oshima, Tadayuki; Tomita, Toshihiko; Fukui, Hirokazu; Watari, Jiro; Matsumoto, Takayuki; Miwa, Hiroto

    2011-08-01

    Experimental models for esophageal epithelium in vitro either suffer from poor differentiation or complicated culture systems. An air-liquid interface system with normal human bronchial epithelial cells can serve as a model of esophageal-like squamous epithelial cell layers. Here, we explore the influence of bile acids on barrier function and tight junction (TJ) proteins. The cells were treated with taurocholic acid (TCA), glycocholic acid (GCA), or deoxycholic acid (DCA) at different pH values, or with pepsin. Barrier function was measured by transepithelial electrical resistance (TEER) and the diffusion of paracellular tracers (permeability). The expression of TJ proteins, including claudin-1 and claudin-4, was examined by Western blotting of 1% Nonidet P-40-soluble and -insoluble fractions. TCA and GCA dose-dependently decreased TEER and increased paracellular permeability at pH 3 after 1 h. TCA (4 mM) or GCA (4 mM) did not change TEER and permeability at pH 7.4 or pH 4. The combination of TCA and GCA at pH 3 significantly decreased TEER and increased permeability at lower concentrations (2 mM). Pepsin (4 mg/ml, pH 3) did not have any effect on barrier function. DCA significantly decreased the TEER and increased permeability at pH 6, a weakly acidic condition. TCA (4 mM) and GCA (4 mM) significantly decreased the insoluble fractions of claudin-1 and claudin-4 at pH 3. In conclusion, acidic bile salts disrupted the squamous epithelial barrier function partly by modulating the amounts of claudin-1 and claudin-4. These results provide new insights for understanding the role of TJ proteins in esophagitis.

  17. Paracellular epithelial sodium transport maximizes energy efficiency in the kidney.

    Science.gov (United States)

    Pei, Lei; Solis, Glenn; Nguyen, Mien T X; Kamat, Nikhil; Magenheimer, Lynn; Zhuo, Min; Li, Jiahua; Curry, Joshua; McDonough, Alicia A; Fields, Timothy A; Welch, William J; Yu, Alan S L

    2016-07-01

    Efficient oxygen utilization in the kidney may be supported by paracellular epithelial transport, a form of passive diffusion that is driven by preexisting transepithelial electrochemical gradients. Claudins are tight-junction transmembrane proteins that act as paracellular ion channels in epithelial cells. In the proximal tubule (PT) of the kidney, claudin-2 mediates paracellular sodium reabsorption. Here, we used murine models to investigate the role of claudin-2 in maintaining energy efficiency in the kidney. We found that claudin-2-null mice conserve sodium to the same extent as WT mice, even during profound dietary sodium depletion, as a result of the upregulation of transcellular Na-K-2Cl transport activity in the thick ascending limb of Henle. We hypothesized that shifting sodium transport to transcellular pathways would lead to increased whole-kidney oxygen consumption. Indeed, compared with control animals, oxygen consumption in the kidneys of claudin-2-null mice was markedly increased, resulting in medullary hypoxia. Furthermore, tubular injury in kidneys subjected to bilateral renal ischemia-reperfusion injury was more severe in the absence of claudin-2. Our results indicate that paracellular transport in the PT is required for efficient utilization of oxygen in the service of sodium transport. We speculate that paracellular permeability may have evolved as a general strategy in epithelial tissues to maximize energy efficiency.

  18. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms.

    Science.gov (United States)

    Lechuga, Susana; Ivanov, Andrei I

    2017-03-16

    The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders.

  19. Uranium induces apoptosis in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Sadanandan, Bindu; Thomas, Renard; Wilson, Bobby L. [Texas Southern University, Environmental Toxicology Program, Department of Chemistry, Houston, TX (United States); Ravichandran, Prabakaran; Sharma, Chidananda S.; Ramesh, Vani; Hall, Joseph C.; Ramesh, Govindarajan T. [Norfolk State University, Molecular Toxicology Laboratory, Department of Biology, Center for Biotechnology and Biomedical Sciences, Norfolk, VA (United States)

    2009-06-15

    Uranium is a naturally occurring radioactive material present everywhere in the environment. It is toxic because of its chemical or radioactive properties. Uranium enters environment mainly from mines and industry and cause threat to human health by accumulating in lungs as a result of inhalation. In our previous study, we have shown the effectiveness of antioxidant system response to the oxidative stress induced by uranyl acetate (UA) in rat lung epithelial (LE) cells. As part of our continuing studies; here, we investigated the mechanism underlying when LE cells are exposed to different concentration of UA. Oxidative stress may lead to apoptotic signaling pathways. LE cells treated with 0.25, 0.5 and 1 mM of UA results in dose and time-dependent increase in activity of both caspases-3 and -8. Increase in the concentration of cytochrome-c oxidase in cytosol was seen in LE cells treated with 1 mM UA as a result of mitochondria membrane permeability. The cytochrome-c leakage may trigger the apoptotic pathway. TUNEL assay performed in LE cells treated with 1 mM of UA showed significant incorporation of dNTPs in the nucleus after 24 h. In the presence of the caspase inhibitors, we observed the significant decrease in the activity of caspases-8 and -3 in 0.5 and 1 mM UA-treated LE cells. (orig.)

  20. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  1. Psychological Stress-Derived Prolactin Modulates Occludin Expression in Vaginal Epithelial Cells to Compromise Barrier Function

    Directory of Open Access Journals (Sweden)

    Xueyan Li

    2015-08-01

    Full Text Available Background/Aims: The causative factors of the vaginitis are not fully understood yet. Epithelial barrier dysfunction plays a critical role in the pathogenesis of vaginitis. This study aims to investigate the role of prolactin (PRL in the causing the vaginal epithelial barrier dysfunction. Methods: Adult rats were treated with water-avoid-stress. The serum levels of PRL were determined by ELISA. T84 cell (T84 cells; a vaginal epithelial cell line monolayers were prepared to be used assessing the epithelial barrier functions. The expression of occludin in T84 cells was assessed by Chromatin immunoprecipitation assay, methylation specifIc PCR, real time quantitative RT-PCR and Western blotting. Results: The results showed that psychological stress markedly increased the serum levels of PRL in the rat vaginal epithelia. Exposure of T84 cells to PRL in the culture markedly increased the phosphorylation of STAT3 and suppressed the expression of occludin in the cells; the transepithelial electric resistance was decreased and the permeability to a macromolecular tracer was increased in the T84 monolayers, which was mimicked by blocking STAT3, or abolished by over expression of occludin in the epithelial cells. Conclusions: Psychological stress-derived PRL induces vaginal epithelial barrier dysfunction by inhibiting the expression of occludin.

  2. Treatment of sharp mandibular alveolar process with hybrid prosthesis

    Directory of Open Access Journals (Sweden)

    Sukaedi Sukaedi

    2010-09-01

    Full Text Available Background: Losing posterior teeth for a long time would occasionally lead to the sharpening of alveolar process. The removable partial denture usually have problems when used during mastication, because of the pressure on the mucosa under the alveolar ridge. Purpose: The purpose of this case report was to manage patients with sharp mandibular alveolar process by wearing hybrid prosthesis with extra coronal precision attachment retention and soft liner on the surface base beneath the removable partial denture. Case: A 76 years old woman visited the Prosthodontic Clinic Faculty of Dentistry Airlangga University. The patient had a long span bridge on the upper jaw and a free end acrylic removable partial denture on the lower jaw. She was having problems with mastication. The patient did not wear her lower denture because of the discomfort with it during mastication. Hence, she would like to replace it with a new removable partial denture. Case management: The patient was treated by wearing a hybrid prosthesis with extra coronal precision attachment on the lower jaw. Soft liner was applied on the surface of the removable partial denture. Hybrid prosthesis is a complex denture consisting of removable partial denture and fixed bridge. Conclusion: It concluded that after restoration, the patient had no problems with sharp alveolar process with her new denture, and she was able to masticate well.Latar belakang: Kehilangan geligi posterior dapat menimbulkan processus alveolaris tajam. Gigi tiruan sebagian lepasan mempunyai masalah selama pengunyahan karena adanya tekanan di mukosa di bawah alveolar ridge. Tujuan: Tujuan laporan kasus ini adalah untuk menjelaskan cara menangani pasien yang mempunyai prosesus alveolaris yang tajam di rahang bawah dengan dibuatkan protesis hybrid dengan daya tahan extra coronal precision attachment dan soft liner di permukaan bawah basis gigi tiruan sebagian lepasan. Kasus: Pasien wanita berumur 76 tahun datang di klinik

  3. Integrins and epithelial cell polarity.

    Science.gov (United States)

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.

  4. Involvement of the autophagy pathway in trafficking of Mycobacterium tuberculosis bacilli through cultured human type II epithelial cells.

    Science.gov (United States)

    Fine, Kari L; Metcalfe, Maureen G; White, Elizabeth; Virji, Mumtaz; Karls, Russell K; Quinn, Frederick D

    2012-09-01

    Interactions between Mycobacterium tuberculosis bacilli and alveolar macrophages have been extensively characterized, while similar analyses in epithelial cells have not been performed. In this study, we microscopically examined endosomal trafficking of M. tuberculosis strain Erdman in A549 cells, a human type II pneumocyte cell line. Immuno-electron microscopic (IEM) analyses indicate that M. tuberculosis bacilli are internalized to a compartment labelled first with Rab5 and then with Rab7 small GTPase proteins. This suggests that, unlike macrophages, M. tuberculosis bacilli traffic to late endosomes in epithelial cells. However, fusion of lysosomes with the bacteria-containing compartment appears to be inhibited, as illustrated by IEM studies employing LAMP-2 and cathepsin-L antibodies. Examination by transmission electron microscopy and IEM revealed M. tuberculosis-containing compartments surrounded by double membranes and labelled with antibodies against the autophagy marker Lc3, providing evidence for involvement and intersection of the autophagy and endosomal pathways. Interestingly, inhibition of the autophagy pathway using 3-methyladenine improved host cell viability and decreased numbers of viable intracellular bacteria recovered after 72 h post infection. Collectively, these data suggest that trafficking patterns for M. tuberculosis bacilli in alveolar epithelial cells differ from macrophages, and that autophagy is involved this process.

  5. A plate reader-based method for cell water permeability measurement

    DEFF Research Database (Denmark)

    Fenton, Robert A.; Moeller, H B; Nielsen, S

    2010-01-01

    Cell volume and water permeability measurements in cultured mammalian cells are typically conducted under a light microscope. Many of the employed approaches are time consuming and not applicable to a study of confluent epithelial cell monolayers. We present here an adaptation of a calcein-quenching-based......-mannitol concentrations. Similarly, according average cell volumes have been measured in suspension in a Coulter counter (particle-sizing device). Based on these measurements, we have derived an equation that facilitates the modeling of cell volume changes based on fluorescence intensity changes. We have utilized...

  6. The use of digital periapical radiographs to study the prevalence of alveolar domes

    Science.gov (United States)

    Xambre, Pedro Augusto Oliveira Santos; Valerio, Claudia Scigliano; e Alves Cardoso, Claudia Assunção; Custódio, Antônio Luís Neto

    2016-01-01

    Purpose In the present study, we coined the term 'alveolar dome' and aimed to demonstrate the prevalence of alveolar domes through digital periapical radiographs. Materials and Methods This study examined 800 digital periapical radiographs in regard to the presence of alveolar domes. The periapical radiographs were acquired by a digital system using a photostimulable phosphor (PSP) plate. The χ2 test, with a significance level of 5%, was used to compare the prevalence of alveolar domes in the maxillary posterior teeth and, considering the same teeth, to verify the difference in the prevalence of dome-shaped phenomena between the roots. Results The prevalence of alveolar domes present in the first pre-molars was statistically lower as compared to the other maxillary posterior teeth (pauxiliary information necessary to identify alveolar domes, thus improving diagnosis, planning, and treatment. PMID:27672614

  7. Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells.

    Science.gov (United States)

    Wu, Yunpeng; Zhu, Cui; Chen, Zhuang; Chen, Zhongjian; Zhang, Weina; Ma, Xianyong; Wang, Li; Yang, Xuefen; Jiang, Zongyong

    2016-04-01

    Tight junctions (TJs) play an important role in maintaining the mucosal barrier function and gastrointestinal health of animals. Lactobacillus plantarum (L. plantarum) was reported to protect the intestinal barrier function of early-weaned piglets against enterotoxigenic Escherichia coli (ETEC) K88 challenge; however, the underlying cellular mechanism of this protection was unclear. Here, an established intestinal porcine epithelia cell (IPEC-J2) model was used to investigate the protective effects and related mechanisms of L. plantarum on epithelial barrier damages induced by ETEC K88. Epithelial permeability, expression of inflammatory cytokines, and abundance of TJ proteins, were determined. Pre-treatment with L. plantarum for 6h prevented the reduction in transepithelial electrical resistance (TEER) (Pplantarum were higher (Pplantarum was shown to regulate proteins of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results indicated that L. plantarum may improve epithelial barrier function by maintenance of TEER, inhibiting the reduction of TJ proteins, and reducing the expression of proinflammatory cytokines induced by ETEC K88, possibly through modulation of TLRs, NF-κB and MAPK pathways.

  8. Ameliorative effect of melatonin against increased intestinal permeability in diabetic rats: possible involvement of MLCK-dependent MLC phosphorylation.

    Science.gov (United States)

    Yang, Xiaoping; Zou, Duobing; Tang, Songtao; Fan, Tingting; Su, Huan; Hu, Ruolei; Zhou, Qing; Gui, Shuyu; Zuo, Li; Wang, Yuan

    2016-05-01

    The increased intestinal permeability and functional impairment play an important role in type 2 diabetes (T2D), and melatonin may possess enteroprotection properties. Therefore, we used streptozotocin-induced diabetic rat model to investigate the regulation of intestinal permeability by melatonin. Rats were randomly divided into three groups, including control, diabetes mellitus (DM), and DM rats treated with melatonin. Melatonin was administered (10 mg/kg/day) by gavage for 24 weeks. The DM rats significantly increased the serum fasting blood glucose and lipid levels, which were alleviated by melatonin treatment. Importantly, the intestinal epithelial permeability was significantly increased in DM rats but was ameliorated following treatment with melatonin. These findings also indicated the expression of myosin light chain kinase (MLCK) and phosphorylation of MLC targeting subunit (MYPT) induced myosin light chain (MLC) phosphorylation level was markedly elevated in hyperglycemic and hyperlipidemic status. They were partly associated with down-regulated membrane type 1 and 2 (MT1 and MT2) expression, and up-regulated Rho-associated protein kinase (ROCK) expression and increased extracellular signal-regulated kinase (ERK) phosphorylation. However, the changes in target protein expression were reversed by melatonin. In conclusion, our results show melatonin beneficial effects on impaired intestinal epithelial permeability in T2D by suppressing ERK/MLCK- and ROCK/MCLP-dependent MLC phosphorylation.

  9. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  10. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Rotoli, Bianca Maria; Bussolati, Ovidio [University of Parma, Department of Experimental Medicine (Italy); Costa, Anna Luisa; Blosi, Magda [National Research Council, Institute of Science and Technology for Ceramics (Italy); Di Cristo, Luisana [University of Parma, Department of Pharmacological, Biological and Applied Chemical Sciences (Italy); Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana [University of Parma, Department of Experimental Medicine (Italy); Bergamaschi, Enrico, E-mail: enrico.bergamaschi@unipr.it [University of Parma, Unit of Occupational Medicine, Department of Clinical Medicine, Nephrology and Health Sciences (Italy)

    2012-09-15

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO{sub 2} NPs (size range 4-33 nm), two preparations of CeO{sub 2} NPs (9-36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15-240 {mu}g/cm{sup 2} of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 {mu}g/cm{sup 2} of CuO NPs, compared to untreated control, and was abolished at doses {>=}80 {mu}g/cm{sup 2}, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO{sub 2} and CeO{sub 2} NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway

  11. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Science.gov (United States)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-09-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO2 NPs (size range 4-33 nm), two preparations of CeO2 NPs (9-36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15-240 μg/cm2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm2, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO2 and CeO2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured nanomaterials.

  12. Effect of heat stress on intestinal barrier function of human intestinal epithelial Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Gui-zhen XIAO

    2013-07-01

    Full Text Available Objective To investigate the heat stress-induced dysfunction of intestinal barrier including intestinal tight junction and apoptosis of epithelial cells. Methods Human intestinal epithelial Caco-2 cell monolayers, serving as the intestinal barrier model, were exposed to different temperature (37-43℃ for designated time. Transepithelial electrical resistance (TEER and horseradish peroxidase (HRP flux permeability were measured to evaluate barrier integrity. Level of tight junction (TJ protein occludin was analyzed by Western blotting. Cell apoptosis rate was determined using Annexin V-FITC/PI kit by flow cytometry. Results Compared with the 37℃ group, TEER lowered and the permeability for HRP increased significantly after heat exposure (P<0.01 in 39℃, 41℃ and 43℃ groups. The expression of occludin increased when the temperature was elevated from 37℃ to 41℃, and it reached the maximal level at 41℃. However, its expression gradually decreased with passage of time at 43℃. Cell apoptosis was enhanced with elevation of the temperature (P<0.05 or P<0.01. Conclusion Heat stress can induce damage to tight junction and enhance apoptosis of epithelial cells, thus causing dysfunction of intestinal epithelial barrier.

  13. A Negative Permeability Material at Red Light

    DEFF Research Database (Denmark)

    Yuan, Hsiao-Kuan; Chettiar, Uday K.; Cai, Wenshan;

    2007-01-01

    A negative permeability in a periodic array of pairs of thin silver strips is demonstrated experimentally for two distinct samples. The effect of the strip surface roughness on negative permeability is evaluated. The first sample, Sample A, is fabricated of thinner strips with a root mean square...... roughness of 7 nm, while Sample B is made of thicker strips with 3-nm roughness. The real part of permeability, μ ′ , is −1 at a wavelength of 770 nm in Sample A and −1.7 at 725 nm in Sample B. Relative to prototypes simulated with ideal strips, larger strip roughness acts to decrease μ ′ by a factor of 7...

  14. Gut Permeability in Autism Spectrum Disorders

    OpenAIRE

    2014-01-01

    ObjectiveTo test whether gut permeability is increased in autism spectrum disorders (ASD) by evaluating gut permeability in a population-derived cohort of children with ASD compared with age- and intelligence quotient-matched controls without ASD but with special educational needs (SEN).Patients and MethodsOne hundred thirty-three children aged 10–14 years, 103 with ASD and 30 with SEN, were given an oral test dose of mannitol and lactulose and urine collected for 6 hr. Gut permeability was a...

  15. Combined soft and hard tissue augmentation for a localized alveolar ridge defect

    OpenAIRE

    2013-01-01

    Ideal alveolar ridge width and height allows placement of a natural appearing pontic, which provides maintenance of a plaque-free environment. The contour of a partially edentulous ridge should be thoroughly evaluated before a fixed partial denture is undertaken. Localized alveolar ridge defect refers to a volumetric deficit of the limited extent of bone and soft-tissue within the alveolar process. These ridge defects can be corrected by hard tissue and/or soft-tissue augmentation. A 30-year-...

  16. Injury of the Inferior Alveolar Nerve during Implant Placement: a Literature Review

    OpenAIRE

    Gintaras Juodzbalys; Hom-Lay Wang; Gintautas Sabalys

    2011-01-01

    ABSTRACT Objectives The purpose of present article was to review aetiological factors, mechanism, clinical symptoms, and diagnostic methods as well as to create treatment guidelines for the management of inferior alveolar nerve injury during dental implant placement. Material and Methods Literature was selected through a search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were inferior alveolar nerve injury, inferior alveolar nerve injuries, inferior alveo...

  17. Atypical dento-alveolar fracture fixed with screws: a technical note.

    Science.gov (United States)

    Shinohara, Elio Hitoshi; Vieira, Eduardo Hochuli; Júnior, Idelmo Rangel Garcia; Pires-Soubhia, Ana Maria; Martini, Marcelo Zillo

    2010-08-01

    Dento-alveolar process fracture is an important and common event in the dental office practice usually managed under the well-established protocols, but sometimes this kind of lesion is evaluated in the hospital emergency rooms without attention to the dental injuries. In this type of trauma, the time between the injury and the definitive resolution is essential for the treatment success, usually 1 h in cases of dento-alveolar fractures (tooth and alveolar bone). This paper describes the management of a patient with unusual dento-alveolar fracture caused by gunshot and treated using screw fixation.

  18. Perawatan Ortodonti pada Kasus Mutilasi dengan Resorpsi Tulang Alveolar dan Resesi Gingiva (Laporan Kasus

    Directory of Open Access Journals (Sweden)

    Retno Widayati

    2015-09-01

    Full Text Available In the mutilated case in adults, generally malocclusion is often accompanied by less support of periodontal tissues, such as alveolar bone resorption and gingival recession. The treatment of orthodontic is to arrange the teeth into good position and good occlusion, but is widely known to increase the alveolar bone resorption. In handling such case, orthodontist needs to look at factors which do not increase existing alveolar bone resorption and gingival recession. In this case report, it will be reported orthodontic treatment on mutilated case which are accompanied by alveolar bone resorption and gingival recession on a patient of 45 years and 4 months of age.

  19. Calpain 1 regulates TGF-β1-induced epithelial-mesenchymal transition in human lung epithelial cells via PI3K/Akt signaling pathway

    Science.gov (United States)

    Tan, Wei-Jun; Tan, Qiu-Yue; Wang, Ting; Lian, Min; Zhang, Li; Cheng, Zhen-Shun

    2017-01-01

    Cell proliferation, transformation, and epithelial-mesenchymal transition (EMT) are key processes involved in the development of idiopathic pulmonary fibrosis (IPF). This study investigated the regulatory factors and signaling pathways that mediate EMT in the human type II alveolar epithelial A549 cell line. A549 cells were cultured in RPMI-1640 medium and allocated to the following four groups: blank control group or treated with transforming growth factor-β1 (TGF-β1), TGF-β1 + PD 150606 (a calpain 1 inhibitor), or PD 150606. We examined E-cadherin (E-cad), α-smooth muscle actin (α-SMA), and calpain 1 mRNA transcript and protein expression levels in these four groups by performing RT-PCR and western blot analyses. The results indicated that TGF-β1 treatment significantly downregulated E-cad and upregulated α-SMA expression compared with that of the blank control group (Pcells. However, TGF-β1-induced ETM was not correlated with the ERK and JNK signaling pathways. These combined results indicate that calpain 1 could regulate EMT in TGF-β1-treated A549 epithelial cells via the PI3K/Akt signaling pathway.

  20. Lunar electrical conductivity and magnetic permeability

    Science.gov (United States)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1975-01-01

    Improved analytical techniques are applied to a large Apollo magnetometer data set to yield values of electroconductivity, temperature, magnetic permeability, and iron abundance. Average bulk electroconductivity of the moon is calculated to be .0007 mho/m; a rapid increase with depth to about .003 mho/m within 250 km is indicated. The temperature profile, obtained from the electroconductivity profile for olivine, indicates high lunar temperatures at relatively shallow depths. Magnetic permeability of the moon relative to its environment is calculated to be 1.008 plus or minus .005; a permeability relative to free space of 1.012 plus 0.011, minus 0.008 is obtained. Lunar iron abundances corresponding to this permeability value are 2.5 plus 2.3, minus 1.7 wt% free iron and 5.0-13.5 wt% total iron for a moon composed of a combination of free iron, olivine, and orthopyroxene.

  1. Variability of permeability with diameter of conduit

    Indian Academy of Sciences (India)

    J A Adegoke; J A Olowofela

    2008-05-01

    An entry length is always observed before laminar flow is achieved in fluid flowing in a conduit. This depends on the Reynolds number of the flow and the degree of smoothness of the conduit. This work examined this region and the point where laminar flow commences in the context of flow through conduit packed with porous material like beads, of known porosity. Using some theoretical assumptions, it is demonstrated that permeability varies from zero at wall-fluid boundary to maximum at mid-stream, creating a permeability profile similar to the velocity profile. An equation was obtained to establish this. We also found that peak values of permeability increase with increasing porosity, and therefore entry length increases with increasing porosity with all other parameters kept constant. A plot of peak permeability versus porosity revealed that they are linearly related.

  2. Measuring Permeability of Composite Cryotank Laminants

    Science.gov (United States)

    Oliver, Stanley T.; Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    This paper describes a test method developed to identify whether certain materials and material systems are suitable candidates for large pressurized reusable cryogenic tanks intended for use in current and future manned launch systems. It provides a quick way to screen numerous candidate materials for permeability under anticipated loading environments consistent with flight conditions, as well as addressing reusability issues. cryogenic tank, where the major design issue was hydrogen permeability. It was successfully used to evaluate samples subjected to biaxial loading while maintaining test temperatures near liquid hydrogen. After each sample was thermally preconditioned, a cyclic pressure load was applied to simulate the in-plane strain. First permeability was measured while a sample was under load. Then the sample was unloaded and allowed to return to ambient temperature. The test was repeated to simulate reusability, in order to evaluate its effects on material permeability.

  3. Food Packaging Permeability Behaviour: A Report

    OpenAIRE

    Valentina Siracusa

    2012-01-01

    The use of polymer materials in food packaging field is one of the largest growing market area. Actually the optimization behaviour of packaging permeability is of crucial importance, in order to extend the food shelf-life and to reach the best engineering solution. Studying the permeability characterization of the different polymer material (homogeneous and heterogeneous polymer system) to the different packaging gases, in different environmental condition, is crucial to understand if the se...

  4. Pneumatic fracturing of low permeability media

    Energy Technology Data Exchange (ETDEWEB)

    Schuring, J.R. [New Jersey Institute of Technology, Newark, NJ (United States)

    1996-08-01

    Pneumatic fracturing of soils to enhance the removal and treatment of dense nonaqueous phase liquids is described. The process involves gas injection at a pressure exceeding the natural stresses and at a flow rate exceeding the permeability of the formation. The paper outlines geologic considerations, advantages and disadvantages, general technology considerations, low permeability media considerations, commercial availability, efficiency, and costs. Five case histories of remediation using pneumatic fracturing are briefly summarized. 11 refs., 2 figs., 1 tab.

  5. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture.

    Directory of Open Access Journals (Sweden)

    Yeojun Yun

    Full Text Available Commensal bacteria control the micro-ecology of metazoan epithelial surfaces with pivotal effect on tissue homeostasis and host defense. In contrast to the upper respiratory tract, the lower respiratory tract of healthy individuals has largely been considered free of microorganisms. To understand airway micro-ecology we studied microbiota of sterilely excised lungs from mice of different origin including outbred wild mice caught in the natural environment or kept under non-specific-pathogen-free (SPF conditions as well as inbred mice maintained in non-SPF, SPF or germ-free (GF facilities. High-throughput pyrosequencing of reverse transcribed 16S rRNA revealed metabolically active murine lung microbiota in all but GF mice. The overall composition across samples was similar at the phylum and family level. However, species richness was significantly different between lung microbiota from SPF and non-SPF mice. Non-cultivatable Betaproteobacteria such as Ralstonia spp. made up the major constituents and were also confirmed by 16S rRNA gene cloning analysis. Additionally, Pasteurellaceae, Enterobacteria and Firmicutes were isolated from lungs of non-SPF mice. Bacterial communities were detectable by fluorescent in situ hybridization (FISH at alveolar epithelia in the absence of inflammation. Notably, higher bacterial abundance in non-SPF mice correlated with more and smaller size alveolae, which was corroborated by transplanting Lactobacillus spp. lung isolates into GF mice. Our data indicate a common microbial composition of murine lungs, which is diversified through different environmental conditions and affects lung architecture. Identification of the microbiota of murine lungs will pave the path to study their influence on pulmonary immunity to infection and allergens using mouse models.

  6. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture.

    Science.gov (United States)

    Yun, Yeojun; Srinivas, Girish; Kuenzel, Sven; Linnenbrink, Miriam; Alnahas, Safa; Bruce, Kenneth D; Steinhoff, Ulrich; Baines, John F; Schaible, Ulrich E

    2014-01-01

    Commensal bacteria control the micro-ecology of metazoan epithelial surfaces with pivotal effect on tissue homeostasis and host defense. In contrast to the upper respiratory tract, the lower respiratory tract of healthy individuals has largely been considered free of microorganisms. To understand airway micro-ecology we studied microbiota of sterilely excised lungs from mice of different origin including outbred wild mice caught in the natural environment or kept under non-specific-pathogen-free (SPF) conditions as well as inbred mice maintained in non-SPF, SPF or germ-free (GF) facilities. High-throughput pyrosequencing of reverse transcribed 16S rRNA revealed metabolically active murine lung microbiota in all but GF mice. The overall composition across samples was similar at the phylum and family level. However, species richness was significantly different between lung microbiota from SPF and non-SPF mice. Non-cultivatable Betaproteobacteria such as Ralstonia spp. made up the major constituents and were also confirmed by 16S rRNA gene cloning analysis. Additionally, Pasteurellaceae, Enterobacteria and Firmicutes were isolated from lungs of non-SPF mice. Bacterial communities were detectable by fluorescent in situ hybridization (FISH) at alveolar epithelia in the absence of inflammation. Notably, higher bacterial abundance in non-SPF mice correlated with more and smaller size alveolae, which was corroborated by transplanting Lactobacillus spp. lung isolates into GF mice. Our data indicate a common microbial composition of murine lungs, which is diversified through different environmental conditions and affects lung architecture. Identification of the microbiota of murine lungs will pave the path to study their influence on pulmonary immunity to infection and allergens using mouse models.

  7. Relations Between Permeability and Structure of Wood

    Institute of Scientific and Technical Information of China (English)

    Bao Fucheng; Zhao Youke; Lü Jianxiong

    2003-01-01

    The permeability and the structure of heartwood and sapwood of the solvent-exchange dried and the air-dried green-wood of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) and masson pine (Pinus massoniana Lamb.) were measured inorder to study the relations between the permeability and the structure. The results showed that the permeability of sapwood of boththe air-dried and the solvent-exchange dried wood was higher than that of heartwood, and the permeability of the solvent-exchangeddried heartwood and sapwood was higher than that of the air-dried. A higher permeability of wood was attributed to, on the one hand,a bigger number of flow path per unit area of the wood perpendicular to the flow direction resulted from a bigger number ofunaspirated pits per unit area and a bigger number of effective pit openings per membrane, and on the other hand, a smaller numberof tracheid in series connection per unit length parallel to flow direction resulted from a longer tracheid length and an effectivetracheid length for permeability.

  8. Permeability of lateritic soil by various methods

    Directory of Open Access Journals (Sweden)

    Tatiana Tavares Rodriguez

    2015-10-01

    Full Text Available Soil Permeability is an important property of soil used to dimension several types of engineering works, and it can be quantified by the permeability rates. Despite of the great use, the type of the re doubts about the best way to determine de permeability rates. The main questions are: (1 the type of the method and (2 the reproducibility of samples in tropical soils. So, the objective of this work is to evaluate the permeability of a lateritic soil by comparing values of permeability coefficient determined for laboratory and in situ testing. For this, it was chosen the lateritic soil of Campo Experimental de Engenharia Geotécncia (CEEG of the Universidade Estadual de Londrina (UEL and four equipments: constant and variable head permeameters, Guelph permeameter and infiltrometer. The results show that all the methods present mean value of permeability coefficient on the order of 10-3 cm/s whit variation coefficient in range of 37% to 92% , except the constant permeameter. The heterogeneous structure of lateritic soil (in macro and micro pores is the probably determinant of the variability observed.

  9. Alveolar hemorrhage and kidney disease: characteristics and therapy.

    Science.gov (United States)

    Fatma, Lilia Ben; El Ati, Zohra; Lamia, Rais; Aich, Dorra Ben; Madiha, Krid; Wided, Smaoui; Maiz, Hedi Ben; Beji, Somaya; Karim, Zouaghi; Moussa, Fatma Ben

    2013-07-01

    Anti-neutrophil cytoplasmic antibody-associated vasculitis and Goodpasture's glomerular basement membrane disease are the most common causes of diffuse alveolar hemorrhage, a life-threatening disease. Systemic lupus erythematosus and the antiphospholipid syndrome are also causes of alveolar hemorrhage. We retrospectively reviewed 15 cases of diffuse alveolar hemorrhage (DAH) associated with renal diseases. Diagnosis of DAH was based on the presence of bloody bronchoalveolar lavage fluid. There were three men and 12 women, with a mean age of 50.5 years (extremes: 24-74 years). Proteinuria and hematuria were observed, respectively, in 15 and 14 cases. Six patients revealed arterial hypertension. Crescentic glomerulonephritis was diagnosed with kidney biopsies in ten cases. The etiology of renal disease was microscopic polyangiitis (MPA) in seven cases, Wegener disease in four cases, systemic lupus erythematous in one case, cryoglobulinemia in one case, myeloma in one case and propyl-thiouracil-induced MPA in one case. Hemoptysis occurred in 14 cases. The mean serum level of hemoglobin was 7.1 g/dL (5.1-10 g/dL). The mean serum creatinine concentration was 7.07 mg/dL (2.4-13.7 mg/dL). Gas exchange was severely compromised, with an oxygenation index <80 mmHg in 14 patients and <60 mmHg in seven patients. Bronchoalveolar lavage was performed in 11 cases, and had positive findings for hemorrhage in all. Methylprednisolone pulses and cyclophosphamide were used in 14 patients. Plasmapheresis was performed in three cases. One patient received cycles of Dexamethasome-Melphalan. Three patients died as a result of DAH. The mortality rate in our study was 20%.

  10. Alveolar hemorrhage and kidney disease: Characteristics and therapy

    Directory of Open Access Journals (Sweden)

    Lilia Ben Fatma

    2013-01-01

    Full Text Available Anti-neutrophil cytoplasmic antibody-associated vasculitis and Goodpasture′s glomerular basement membrane disease are the most common causes of diffuse alveolar hemorrhage, a life-threatening disease. Systemic lupus erythematosus and the antiphospholipid syndrome are also causes of alveolar hemorrhage. We retrospectively reviewed 15 cases of diffuse alveolar hemorrhage (DAH associated with renal diseases. Diagnosis of DAH was based on the presence of bloody bronchoalveolar lavage fluid. There were three men and 12 women, with a mean age of 50.5 years (extremes: 24-74 years. Proteinuria and hematuria were observed, respectively, in 15 and 14 cases. Six patients revealed arterial hypertension. Crescentic glomerulonephritis was diagnosed with kidney biopsies in ten cases. The etiology of renal disease was microscopic polyangiitis (MPA in seven cases, Wegener disease in four cases, systemic lupus erythematous in one case, cryoglobulinemia in one case, myeloma in one case and propyl-thiouracil-induced MPA in one case. Hemoptysis occurred in 14 cases. The mean serum level of hemoglobin was 7.1 g/dL (5.1-10 g/dL. The mean serum creatinine concentration was 7.07 mg/dL (2.4-13.7 mg/dL. Gas exchange was severely compromised, with an oxygenation index <80 mmHg in 14 patients and <60 mmHg in seven patients. Bronchoalveolar lavage was performed in 11 cases, and had positive findings for hemorrhage in all. Methylprednisolone pulses and cyclophosphamide were used in 14 patients. Plasmapheresis was performed in three cases. One patient received cycles of Dexamethasome-Melphalan. Three patients died as a result of DAH. The mortality rate in our study was 20%.

  11. Metabolic shift in lung alveolar cell mitochondria following acrolein exposure.

    Science.gov (United States)

    Agarwal, Amit R; Yin, Fei; Cadenas, Enrique

    2013-11-15

    Acrolein, an α,β unsaturated electrophile, is an environmental pollutant released in ambient air from diesel exhausts and cooking oils. This study examines the role of acrolein in altering mitochondrial function and metabolism in lung-specific cells. RLE-6TN, H441, and primary alveolar type II (pAT2) cells were exposed to acrolein for 4 h, and its effect on mitochondrial oxygen consumption rates was studied by XF Extracellular Flux analysis. Low-dose acrolein exposure decreased mitochondrial respiration in a dose-dependent manner because of alteration in the metabolism of glucose in all the three cell types. Acrolein inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, leading to decreased substrate availability for mitochondrial respiration in RLE-6TN, H441, and pAT2 cells; the reduced GAPDH activity was compensated in pAT2 cells by an increase in the activity of glucose-6-phosphate dehydrogenase, the regulatory control of the pentose phosphate pathway. The decrease in pyruvate from glucose metabolism resulted in utilization of alternative sources to support mitochondrial energy production: palmitate-BSA complex increased mitochondrial respiration in RLE-6TN and pAT2 cells. The presence of palmitate in alveolar cells for surfactant biosynthesis may prove to be the alternative fuel source for mitochondrial respiration. Accordingly, a decrease in phosphatidylcholine levels and an increase in phospholipase A2 activity were found in the alveolar cells after acrolein exposure. These findings have implications for understanding the decrease in surfactant levels frequently observed in pathophysiological situations with altered lung function following exposure to environmental toxicants.

  12. Albuterol Improves Alveolar-Capillary Membrane Conductance in Healthy Humans

    Science.gov (United States)

    Taylor, Natalie E.; Baker, Sarah E.; Olson, Thomas P.; Lalande, Sophie; Johnson, Bruce D.; Snyder, Eric M.

    2016-01-01

    BACKGROUND Beta-2 adrenergic receptors (β2ARs) are located throughout the body including airway and alveolar cells. The β2ARs regulate lung fluid clearance through a variety of mechanisms including ion transport on alveolar cells and relaxation of the pulmonary lymphatics. We examined the effect of an inhaled β2-agonist (albuterol) on alveolar-capillary membrane conductance (DM) and pulmonary capillary blood volume (VC) in healthy humans. METHODS We assessed the diffusing capacity of the lungs for carbon monoxide (DLCO) and nitric oxide (DLNO) at baseline, 30 minutes, and 60 minutes following nebulized albuterol (2.5 mg, diluted in 3 mL normal saline) in 45 healthy subjects. Seventeen subjects repeated these measures following nebulized normal saline (age = 27 ± 9 years, height = 165 ± 21 cm, weight = 68 ± 12 kg, BMI = 26 ± 9 kg/m2). Cardiac output (Q), heart rate, systemic vascular resistance (SVR), blood pressure, oxygen saturation, forced expiratory volume at one-second (FEV1), and forced expiratory flow at 50% of forced vital capacity (FEF50) were assessed at baseline, 30 minutes, and 60 minutes following the administration of albuterol or saline. RESULTS Albuterol resulted in a decrease in SVR, and an increase in Q, FEV1, and FEF50 compared to saline controls. Albuterol also resulted in a decrease in VC at 60 minutes post albuterol. Both albuterol and normal saline resulted in no change in DLCO or DM when assessed alone, but a significant increase was observed in DM when accounting for changes in VC. CONCLUSION These data suggest that nebulized albuterol improves pulmonary function in healthy humans, while nebulization of both albuterol and saline results in an increase in DM/VC. PMID:27773996

  13. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: Comparison with conventional monocultures

    Directory of Open Access Journals (Sweden)

    Stauber Roland

    2011-01-01

    Full Text Available Abstract Background To date silica nanoparticles (SNPs play an important role in modern technology and nanomedicine. SNPs are present in various materials (tyres, electrical and thermal insulation material, photovoltaic facilities. They are also used in products that are directly exposed to humans such as cosmetics or toothpaste. For that reason it is of great concern to evaluate the possible hazards of these engineered particles for human health. Attention should primarily be focussed on SNP effects on biological barriers. Accidentally released SNP could, for example, encounter the alveolar-capillary barrier by inhalation. In this study we examined the inflammatory and cytotoxic responses of monodisperse amorphous silica nanoparticles (aSNPs of 30 nm in size on an in vitro coculture model mimicking the alveolar-capillary barrier and compared these to conventional monocultures. Methods Thus, the epithelial cell line, H441, and the endothelial cell line, ISO-HAS-1, were used in monoculture and in coculture on opposite sides of a filter membrane. Cytotoxicity was evaluated by the MTS assay, detection of membrane integrity (LDH release, and TER (Transepithelial Electrical Resistance measurement. Additionally, parameters of inflammation (sICAM-1, IL-6 and IL-8 release and apoptosis markers were investigated. Results Regarding toxic effects (viability, membrane integrity, TER the coculture model was less sensitive to apical aSNP exposure than the conventional monocultures of the appropriate cells. On the other hand, the in vitro coculture model responded with the release of inflammatory markers in a much more sensitive fashion than the conventional monoculture. At concentrations that were 10-100fold less than the toxic concentrations the apically exposed coculture showed a release of IL-6 and IL-8 to the basolateral side. This may mimic the early inflammatory events that take place in the pulmonary alveoli after aSNP inhalation. Furthermore, a number

  14. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability.

  15. The management of dento-alveolar trauma--a review.

    Science.gov (United States)

    Stapleford, R G

    1990-01-01

    The clinician faced with the management of an insult to the masticatory system involving the dentition, its alveolar housing and the investing tissues often faces a formidable task. The restitution of traumatic derangement of oral-facial structures mandates a systematic approach to hard and soft tissue management with particular reference to the unique biological characteristics of this environment. A decidedly improved prognosis may be offered to the patient when basic principles are followed and the indicators for successful long term stabilization are realized. Awareness of these practical principles renders the dentist in general practice able to provide primary or referral care.

  16. Inferior alveolar nerve paresthesia relieved by microscopic endodontic treatment.

    Science.gov (United States)

    Yatsuhashi, Takaaki; Nakagawa, Kan-Ichi; Matsumoto, Miho; Kasahara, Masataka; Igarashi, Tomoko; Ichinohe, Tatsuya; Kaneko, Yuzuru

    2003-11-01

    We experienced two cases of inferior alveolar nerve paresthesia caused by root canal medicaments, which were successfully relieved by microscopic endodontic treatment. In the first case, the paresthesia might have been attributable to infiltration of calcium hydroxide into the mandibular canal through the root canals of the mandibular left second molar tooth. In the second case, the paresthesia might have been attributable to infiltration of paraformaldehyde through the root canals of the mandibular right second molar tooth. The paresthesia was relieved in both cases by repetitive microscopic endodontic irrigation using physiological saline solution in combination with oral vitamin B12 and adenosine triphosphate.

  17. Plasma cell gingivitis with severe alveolar bone loss.

    Science.gov (United States)

    Kumar, Vivek; Tripathi, Amitandra Kumar; Saimbi, Charanjit Singh; Sinha, Jolly

    2015-01-16

    Plasma cell gingivitis is a rare benign condition of the gingiva characterised by sharply demarcated erythaematous and oedematous gingiva often extending up to the muco gingival junction. It is considered a hypersensitive reaction. It presents clinically as a diffuse, erythaematous and papillary lesion of the gingiva, which frequently bleeds, with minimal trauma. This paper presents a case of a 42-year-old man who was diagnosed with plasma cell gingivitis, based on the presence of plasma cells in histological sections, and severe alveolar bone loss at the affected site, which was managed by surgical intervention.

  18. Does Orthodontic Treatment Affect the Alveolar Bone Density?

    Science.gov (United States)

    Yu, Jian-Hong; Huang, Heng-Li; Liu, Chien-Feng; Wu, Jay; Li, Yu-Fen; Tsai, Ming-Tzu; Hsu, Jui-Ting

    2016-03-01

    Few studies involving human participants have been conducted to investigate the effect of orthodontic treatment on alveolar bone density around the teeth. Our previous study revealed that patients who received 6 months of active orthodontic treatment exhibited an ∼24% decrease in alveolar bone density around the teeth. However, after an extensive retention period following orthodontic treatment, whether the bone density around the teeth can recover to its original state from before the treatment remains unclear, thus warranting further investigation.The purpose of this study was to assess the bone density changes around the teeth before, during, and after orthodontic treatment.Dental cone-beam computed tomography (CBCT) was used to measure the changes in bone density around 6 teeth in the anterior maxilla (maxilla central incisors, lateral incisors, and canines) of 8 patients before and after orthodontic treatment. Each patient underwent 3 dental CBCT scans: before treatment (T0); at the end of 7 months of active orthodontic treatment (T1); after several months (20-22 months) of retention (T2). The Friedman test was applied to evaluate the changes in the alveolar bone density around the teeth according to the 3 dental CBCT scans.From T0 to T1, a significant reduction in bone density was observed around the teeth (23.36 ± 10.33%); by contrast, a significant increase was observed from T1 to T2 (31.81 ± 23.80%). From the perspective of the overall orthodontic treatment, comparing the T0 and T2 scans revealed that the bone density around the teeth was relatively constant (a reduction of only 0.75 ± 19.85%). The results of the statistical test also confirmed that the difference in bone density between T0 and T2 was nonsignificant.During orthodontic tooth movement, the alveolar bone density around the teeth was reduced. However, after a period of bone recovery, the reduced bone density recovered to its previous state from before the orthodontic treatment

  19. Intestinal epithelium is more susceptible to cytopathic injury and altered permeability than the lung epithelium in the context of acute sepsis.

    Science.gov (United States)

    Julian, Mark W; Bao, Shengying; Knoell, Daren L; Fahy, Ruairi J; Shao, Guohong; Crouser, Elliott D

    2011-10-01

    Mitochondrial morphology and function are altered in intestinal epithelia during endotoxemia. However, it is unclear whether mitochondrial abnormalities occur in lung epithelial cells during acute sepsis or whether mitochondrial dysfunction corresponds with altered epithelial barrier function. Thus, we hypothesized that the intestinal epithelium is more susceptible to mitochondrial injury than the lung epithelium during acute sepsis and that mitochondrial dysfunction precedes impaired barrier function. Using a resuscitated feline model of Escherichia coli-induced sepsis, lung and ileal tissues were harvested after 6 h for histological and mitochondrial ultrastructural analyses in septic (n = 6) and time-matched controls (n = 6). Human lung epithelial cells (HLEC) and Caco-2 monolayers (n = 5) were exposed to 'cytomix' (TNFα: 40 ng/ml, IL-1β: 20 ng/ml, IFNγ: 10 ng/ml) for 24-72 h, and measurements of transepithelial electrical resistance (TER), epithelial permeability and mitochondrial membrane potential (ΔΨ) were taken. Lung epithelial morphology, mitochondrial ultrastructure and pulmonary gas exchange were unaltered in septic animals compared to matching controls. While histologically intact, ileal epithelia demonstrated marked mitochondrial ultrastructural damage during sepsis. Caco-2 monolayers treated with cytomix showed a significant decrease in mitochondrial ΔΨ within 24 h, which was associated with a progressive reduction in TER and increased epithelial permeability over the subsequent 48 h. In contrast, mitochondrial ΔΨ and epithelial barrier functions were preserved in HLEC following cytomix. These findings indicate that intestinal epithelium is more susceptible to mitochondrial damage and dysfunction than the lung epithelium in the context of sepsis. Early alterations in mitochondrial function portend subsequent epithelial barrier dysfunction.

  20. Effects of chlorhexidine on the structure and permeability of hamster cheek pouch mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, B.V.; Squier, C.A.; Hall, B.K.

    1984-10-01

    This study examined the effects of chlorhexidine (CHD) on the clinical appearance, morphology, and in vitro permeability of hamster cheek pouch mucosa. The cheek pouches were treated daily for 3 weeks with topical applications of saline, 0.2% CHD, or 2.0% CHD. Treatment with 2.0% CHD resulted in the formation of discrete white lesions in every animal in the group, whereas no changes were identified in any animal treated with 0.2% CHD or saline. Upon microscopic examination it was determined that treatment with 2.0% CHD resulted in a statistically significant increase in epithelial thickness, when compared to the other groups, and the lesions were found to consist of hyperplastic areas of epithelium with associated inflammatory cell accumulations. Daily treatments with 2.0% CHD, 0.2% CHD or saline had no effect on the very low permeability of cheek pouch mucosa to /sup 14/C-CHD. However, treatment with 2.0% CHD resulted in decreased permeability to /sup 3/H/sub 2/O when compared to the other groups. Treatment with 2.0% CHD also resulted in a thickened permeability barrier, as determined using a tracer, horseradish peroxidase. It is concluded that topical applications of 0.2% T CHD have no detectable effect on cheek-pouch mucosa while applications of 2.0% CHD result in hyperplasia and a decrease in mucosal permeability. Results suggest that CHD should be used with caution clinically and at a concentration of 0.2% or less.

  1. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles.

    Science.gov (United States)

    Schimpel, Christa; Teubl, Birgit; Absenger, Markus; Meindl, Claudia; Fröhlich, Eleonore; Leitinger, Gerd; Zimmer, Andreas; Roblegg, Eva

    2014-03-03

    Intestinal epithelial cell culture models, such as Caco-2 cells, are commonly used to assess absorption of drug molecules and transcytosis of nanoparticles across the intestinal mucosa. However, it is known that mucus strongly impacts nanoparticle mobility and that specialized M cells are involved in particulate uptake. Thus, to get a clear understanding of how nanoparticles interact with the intestinal mucosa, in vitro models are necessary that integrate the main cell types. This work aimed at developing an alternative in vitro permeability model based on a triple culture: Caco-2 cells, mucus-secreting goblet cells and M cells. Therefore, Caco-2 cells and mucus-secreting goblet cells were cocultured on Transwells and Raji B cells were added to stimulate differentiation of M cells. The in vitro triple culture model was characterized regarding confluence, integrity, differentiation/expression of M cells and cell surface architecture. Permeability of model drugs and of 50 and 200 nm polystyrene nanoparticles was studied. Data from the in vitro model were compared with ex vivo permeability results (Ussing chambers and porcine intestine) and correlated well. Nanoparticle uptake was size-dependent and strongly impacted by the mucus layer. Moreover, nanoparticle permeability studies clearly demonstrated that particles were capable of penetrating the intestinal barrier mainly via specialized M cells. It can be concluded that goblet cells and M cells strongly impact nanoparticle uptake in the intestine and should thus be integrated in an in vitro permeability model. The presented model will be an efficient tool to study intestinal transcellular uptake of particulate systems.

  2. Is there a relation between local bone quality as assessed on panoramic radiographs and alveolar bone level?

    Science.gov (United States)

    Nackaerts, Olivia; Gijbels, Frieda; Sanna, Anna-Maria; Jacobs, Reinhilde

    2008-03-01

    The aim was to explore the relation between radiographic bone quality on panoramic radiographs and relative alveolar bone level. Digital panoramic radiographs of 94 female patients were analysed (mean age, 44.5; range, 35-74). Radiographic density of the alveolar bone in the premolar region was determined using Agfa Musica software. Alveolar bone level and bone quality index (BQI) were also assessed. Relationships between bone density and BQI on one hand and the relative loss of alveolar bone level on the other were assessed. Mandibular bone density and loss of alveolar bone level were weakly but significantly negatively correlated for the lower premolar area (r = -.27). The BQI did not show a statistically significant relation to alveolar bone level. Radiographic mandibular bone density on panoramic radiographs shows a weak but significant relation to alveolar bone level, with more periodontal breakdown for less dense alveolar bone.

  3. Postoperative morbidity after reconstruction of alveolar bone defects with chin bone transplants in cleft patients - 111 consecutive patients

    DEFF Research Database (Denmark)

    Andersen, Kristian; Nørholt, Sven Erik; Knudsen, Johan;

    Postoperative morbidity after reconstruction of alveolar bone defects with chin bone transplants in cleft patients - 111 consecutive patients......Postoperative morbidity after reconstruction of alveolar bone defects with chin bone transplants in cleft patients - 111 consecutive patients...

  4. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression.

    Science.gov (United States)

    Pinton, Philippe; Nougayrède, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P

    2009-05-15

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  5. Involvement of intestinal permeability in the oral absorption of clarithromycin and telithromycin.

    Science.gov (United States)

    Togami, Kohei; Hayashi, Yoshiaki; Chono, Sumio; Morimoto, Kazuhiro

    2014-09-01

    The involvement of intestinal permeability in the oral absorption of clarithromycin (CAM), a macrolide antibiotic, and telithromycin (TEL), a ketolide antibiotic, in the presence of efflux transporters was examined. In order independently to examine the intestinal and hepatic availability, CAM and TEL (10 mg/kg) were administered orally, intraportally and intravenously to rats. The intestinal and hepatic availability was calculated from the area under the plasma concentration-time curve (AUC) after administration of CAM and TEL via different routes. The intestinal availabilities of CAM and TEL were lower than their hepatic availabilities. The intestinal availability after oral administration of CAM and TEL increased by 1.3- and 1.6-fold, respectively, after concomitant oral administration of verapamil as a P-glycoprotein (P-gp) inhibitor. Further, an in vitro transport experiment was performed using Caco-2 cell monolayers as a model of intestinal epithelial cells. The apical-to-basolateral transport of CAM and TEL through the Caco-2 cell monolayers was lower than their basolateral-to-apical transport. Verapamil and bromosulfophthalein as a multidrug resistance-associated proteins (MRPs) inhibitor significantly increased the apical-to-basolateral transport of CAM and TEL. Thus, the results suggest that oral absorption of CAM and TEL is dependent on intestinal permeability that may be limited by P-gp and MRPs on the intestinal epithelial cells.

  6. Changes in alveolar bone support induced by the Herbst appliance: a tomographic evaluation

    Directory of Open Access Journals (Sweden)

    João Paulo Schwartz

    2016-04-01

    Full Text Available ABSTRACT Objective: This study evaluated alveolar bone loss around mandibular incisors, induced by the Herbst appliance. Methods: The sample consisted of 23 patients (11 men, 12 women; mean age of 15.76 ± 1.75 years, Class II, Division 1 malocclusion, treated with the Herbst appliance. CBCT scans were obtained before treatment (T0 and after Herbst treatment (T1. Vertical alveolar bone level and alveolar bone thickness of mandibular incisors were assessed. Buccal (B, lingual (L and total (T bone thicknesses were assessed at crestal (1, midroot (2 and apical (3 levels of mandibular incisors. Student's t-test and Wilcoxon t-test were used to compare dependent samples in parametric and nonparametric cases, respectively. Pearson's and Spearman's rank correlation analyses were performed to determine the relationship of changes in alveolar bone thickness. Results were considered at a significance level of 5%. Results: Mandibular incisors showed no statistical significance for vertical alveolar bone level. Alveolar bone thickness of mandibular incisors significantly reduced after treatment at B1, B2, B3, T1 and significantly increased at L2. The magnitude of the statistically significant changes was less than 0.2 mm. The changes in alveolar bone thickness showed no statistical significance with incisor inclination degree. Conclusions: CBCT scans showed an association between the Herbst appliance and alveolar bone loss on the buccal surface of mandibular incisors; however, without clinical significance.

  7. Genesis of amorphous calcium carbonate containing alveolar plates in the ciliate Coleps hirtus (Ciliophora, Prostomatea).

    Science.gov (United States)

    Lemloh, Marie-Louise; Marin, Frédéric; Herbst, Frédéric; Plasseraud, Laurent; Schweikert, Michael; Baier, Johannes; Bill, Joachim; Brümmer, Franz

    2013-02-01

    In the protist world, the ciliate Coleps hirtus (phylum Ciliophora, class Prostomatea) synthesizes a peculiar biomineralized test made of alveolar plates, structures located within alveolar vesicles at the cell cortex. Alveolar plates are arranged by overlapping like an armor and they are thought to protect and/or stiffen the cell. Although their morphology is species-specific and of complex architecture, so far almost nothing is known about their genesis, their structure and their elemental and mineral composition. We investigated the genesis of new alveolar plates after cell division and examined cells and isolated alveolar plates by electron microscopy, energy-dispersive X-ray spectroscopy, FTIR and X-ray diffraction. Our investigations revealed an organic mesh-like structure that guides the formation of new alveolar plates like a template and the role of vesicles transporting inorganic material. We further demonstrated that the inorganic part of the alveolar plates is composed out of amorphous calcium carbonate. For stabilization of the amorphous phase, the alveolar vesicles, the organic fraction and the element phosphorus may play a role.

  8. A Rare Case of Diffuse Alveolar Hemorrhage Secondary to Acute Pulmonary Histoplasmosis

    Directory of Open Access Journals (Sweden)

    Kunal Grover

    2015-01-01

    Full Text Available Diffuse alveolar hemorrhage (DAH is a rare presentation of acute pulmonary histoplasmosis. While histoplasmosis has been reported to cause hemoptysis and alveolar hemorrhage in children, the English language literature lacks any adult case reports documenting this association. We report a case of pulmonary histoplasmosis where the initial presentation was pneumonia with a subsequent diagnosis of DAH.

  9. Popliteal pterygium syndrome (PPS) with intra-alveolar syngnathia: a discussion of anesthetic and surgical considerations.

    Science.gov (United States)

    Gahm, Caroline; Kuylenstierna, Richard; Papatziamos, Georgios